CLLMM Seed Research Project

Progress Report

Picture - male flower spike of Adriana quadripartita (Woods Well Rd).

June 2015
SOUTH AUSTRALIAN SEED CONSERVATION CENTRE
BOTANIC GARDENS OF SOUTH AUSTRALIA

Summary

This report is a progress update from the South Australian Seed Conservation Centre for the project to undertake seed germination and propagation research for plant species to be utilised in the Coorong, Lower Lakes Recovery project, as part of the Commonwealth Bioremediation and Revegetation Project. The time frame for this project is from February 2013 to May 2016 and this report is the second year final report scheduled for June 2015.

Seed collections from 28 plant species have been made and collections for extra species are scheduled for the following season. The collections from 25 species contained sufficient quantities of viable seed for analysis, and germination experiments have been conducted for all of these species. Initial experiments are still in progress for four species, *Boronia coerulescens*, *Gahnia filum*, *Hibbertia crinita* and *H. riparia*. High levels of germination (> 40%) were recorded for 16 of the remaining 21 species. Further experiments will be conducted on 5 species that had lower germination levels (4 - 36%).

Recent experiments testing six *Lomandra* species and two *Astroloma* species are described in this report. High germination levels (69-93%) were achieved for four of the *Lomandra* species however, two species had lower levels of germination (32-35%). These species (*L. juncea* and *L. leucocephala*) will be tested with different treatments to try and improve germination rates. Of all the species tested throughout this project the two *Astroloma* species have been the most difficult to germinate. However, there has been some indication that temperature cycling in combination with gibberellic acid and smoked water alleviates dormancy. Further germination testing for these species will be undertaken in the next phase of the project.

Vegetative propagation from cuttings was investigated for *Astroloma conostephioides* and *A. humifusum* and strike rates of 44% and 20% were measured for each species respectively. This method of propagation may be useful for revegetation and further experiments will be conducted to try and improve the production of plants through cuttings.

Data presented in this report has also been incorporated in the Seeds of South Australia website (www.saseedbank.com.au), which is freely accessible to the public. A page will be generated for each species with photographic images of plants, flowers and seeds as well as information on seed collection and germination to facilitate the propagation of these plants by future practitioners.

Background

The purpose of this project is to investigate the germination and/or propagation requirements of key species identified by the Coorong Lower Lake Recovery Project group to support the Bioremediation and Revegetation Project. The plants identified as priority species for this project were selected because they are difficult to propagate. Research into germination and propagation methods is required in order to increase the number of species available for revegetation programs.

The South Australian Seed Conservation Centre (SASCC) is well equipped to identify plant species, collect seeds and investigate their germination requirements. Seeds are routinely tested for viability and germination as part of the regimen of the seed bank curation. The SASCC has equipment for incubating seeds under a variety of temperatures and moisture levels, designed to reflect the conditions seeds would experience in their natural habitat. A range of chemical and physical treatments are also used that can increase the level of germination in difficult seeds. These include plant hormones, heat and smoke treatments that simulate fire cues and stratification or after ripening treatments that can be used to alleviate dormancy and enhance germination levels. In addition to this equipment, staff at the SASCC have experience with germinating seed from a wide range of habitats and across many genera. Information for designing germination experiments is drawn from scientific articles, text books, practical experience and data from other seed banks. The local growing conditions also provide clues to environmental cues for germination, for example, disturbance, fires, flooding, arid environments etc.

The SASCC also works closely with the staff at the Mount Lofty Botanic Gardens Nursery when setting up propagation experiments to investigate methods for obtaining rooted cuttings and growing plants from seed in tube stocks ready for planting.

This project involves finding suitable propagation methods for 24 plant species that were identified as priority species for the region. In this report we present data for 21 species that have been tested to date. Experiments for four more species are currently in progress. In the interests of sharing information with the wider community, data from this project has been loaded onto the Seeds of South Australia website, which is freely accessible to the public.

Methods

Seed collection, cleaning and quantification.

Plant populations with adequate seed set were located and mature seed was collected for 28 species (Table 2). The seeds were left to dry and cleaned using a combination of sieves and aspiration to remove other plant material.

Species with seeds encased in fleshy fruits (*Astroloma conostephioides, Astroloma humifusum, Leucopogon parviflorus, Nitraria billardierei*) were treated with a solution of pectinase (1% (w/v)) for approximately 24 hours, then flesh was washed away by rubbing through a sieve.

Dry seeds were stored in a controlled environment room maintained at 15°C and 15% relative humidity before germination experiments were commenced.

The seeds were quantified by weighing out 100 seeds (5 replicates of 20 seeds), and then calculating the average weight of one seed.

The number of seeds in the seed lot was estimated by dividing the weight of the seed lot (g) by the weight of one seed (g).

The number of seeds per gram was determined by the formula:

1/weight of 1 seed (g) = #seed/g.

Two species were added to the original target list:

Spyridium fontis woodsii is endemic to South Australia and currently known from a single extant roadside population near Woods Well. It grows in shallow sands over calcrete with *Eucalyptus diversifolia* and coastal heath plants.

Hibbertia riparia is a common plant species growing throughout the CLLMM area and more research is required into the germination of this and other Hibbertia species.

Seed Viability Testing

Testing seed viability is a crucial step as non-viable seeds will never germinate. Seeds can be non-viable for several reasons, for example; stress during development, predation, collection of immature seeds and inappropriate storage conditions.

Seed viability was estimated by x-raying 50 seeds to determine the percent of seeds that are filled. Seeds were also dissected to examine the condition of the embryo and endosperm. Seed dissection is a readily available tool for estimating seed quality and correlates to the expected germination percentage in the sample. This can be done in the field or in a laboratory using

small snips or other similar tools. Cut seeds can be viewed with a hand lens or dissecting microscope. Images of viable cut seeds have been provided to assist seed collectors to examine the quality of seeds in the field before collection.

Germination Experiments

Seed germination was tested using a variety of methods depending on the plant species. The protocols for the germination tests vary depending on the predicted requirements for each species. The specific methods were derived from several sources including previous experiments within the seed bank, background information from textbooks or practitioners and published articles.

Table 1 lists the treatments that were applied to seeds and the conditions of the incubation periods when germination was scored. For each species a number of different treatments was tested. Each treatment was applied to 50 seeds plated into 90mm glass petri dishes on a supporting media such as agar (1% (w/v)) or moist sand. Germination was recorded on a weekly basis when the radicle had emerged from the seed and had grown at least half the width of the seed. An explanation of why the treatments were applied is also listed in Table 1. A combination of treatments was used in several experiments and these are listed in sequential order in Appendix 1.

Table 1 List of treatments used for germination experiments and the rationale behind each treatment.

Treatment	Method	Rationale
Aerosol smoke	Seeds were placed in a tent connected to a metal drum via a	
	pipe. Smoke from burning clean straw passed through the pipe into the tent for 15 min.	germination in some species that are fire responsive.
After Ripening (AR)	Seeds were placed in Petri dishes with dry washed sterile sand	Storing seeds at different temperatures in a dry environment
	and incubated in ovens or incubators set to specified	is known as after ripening. This treatment has been shown to
	temperatures for a period of time.	alleviate dormancy in some species.
Constant temperature	Incubator set at constant temperature with a 12 h	Used as an alternative to diurnal cycling, embryos may grow
incubator	photoperiod	faster at one optimal temperature.
Control	No treatment.	The control shows the germination response of untreated
		seeds.
Dry Heat	Dry seeds were placed in a temperature controlled oven for	Used to mimic extreme hot conditions that is required by
	a set period of time.	some species to germinate eg, baking sand or bushfire.
Fruit removal	The fruit portion was removed from Exocarpos seeds in some	Fruit removal reduces the chance of fungal contamination of
	experiments.	seeds and mimics part of the process of animal ingestion.
Gibberellic Acid (GA)	Seeds soaked in a solution of GA dissolved in water.	GA is a plant hormone and is available as a powder or liquid
	Concentration and duration of soaking may vary for	solution. GA is used to alleviate physiological dormancy
	different species.	and promote germination in seeds.
	Continuous application of GA was delivered by adding GA to	
	agar before pouring into plates.	
Hydrogen Peroxide	Seeds soaked in hydrogen peroxide 30% (v/v) for 15 mins	Hydrogen peroxide is a strong oxidizer and is often used as a
(H_2O_2)	with gentle agitation, then rinsed 3 times with water.	bleach or cleaning agent to sterilize the seed coat of any
		fungus or bacterial agents. The treatment may also
		breakdown chemicals in the seed coat that inhibit
		germination.
Leaching	Seeds were placed into a solution of water with gentle	Leaching is used to mimic conditions where seeds are
	agitation to continuously mix the solution. Water was	soaked by flooding or heavy rains. This process may leach
	refreshed daily.	out inhibitors present within the seed or seed coat which
		prevent or delay germination.
Nicked seed coat	The outer layer of the seed coat was carefully nicked using	This process alleviates physical dormancy by allowing

Treatment	Method	Rationale
	a sharp scalpel to disrupt the water impermeable layers	water to enter the seed. Another method to break
	surrounding seeds with physical dormancy.	physical dormancy is to pour boiling water onto seeds
		and let it cool. This is easier for bulk treating seeds.
Pectinase treatment	Seeds were soaked in a solution of Pectinase (1%) for several	Pectinase is an enzyme which breaks down the cell walls in
	hours then fruit tissue was cleaned away by gentle rubbing	fruits and is used to soften the fruit tissue so it can be washed
	through a sieve.	off the seeds. This process removes material that may
		promote fungal growth on the seeds and also mimics the seed
		cleaning that occurs through animal ingestion.
Potassium nitrate	Seeds were soaked in a solution of Potassium Nitrate	Potassium Nitrate is used to stimulate germination of seeds
(KNO ₃)	prepared by dissolving in water to a concentration of 100	with physiological dormancy. The increased amount of
	mg/L. Soaking times may vary for different species.	nitrate signals a lack of plant competition for soil nutrients
	Continuous application of KNO ₃ was delivered by adding	e.g., conditions after a fire. This mechanism of 'gap sensing'
	KNO₃ (100 mg/L) to agar plates.	can indicate a positive germination response to other fire
		cues such as heat and smoke treatments.
Smoke water	Smoke water was prepared by connecting a container of	Chemicals present in smoke have been shown to trigger
	water to a metal drum via a pipe. The smoke from burning	germination in some species that are fire responsive. Smoke-
	clean straw was piped through water for 15-30 mins. This	water is available commercially.
	concentrated smoke water was stored at -20 °C until use and	
	was diluted before treating seeds.	
Spring/autumn	Incubator set to 10°C for 12 h followed by 22°C for 12 h	Used to mimic temperature and day light hours of an
incubator	with 12 h photoperiod	average South Australian spring/autumn.
Stratification (STRAT)	Seeds were incubated in moist conditions in incubators set to	Storing seeds at different temperatures in a moist
	specified temperatures for a period of time.	environment is known as stratification. This treatment has
		been shown to alleviate dormancy in some species.
Summer incubator	Incubator set to 15°C for 10 h followed by 30°C for 14 h	Used to mimic temperature and day light hours of an
	with a 14 h photoperiod	average South Australian summer.
Wet heat	Seeds were placed in a tea strainer and exposed to hot water.	Hot water treatments may alleviate physical dormancy by
	Temperatures and times may vary for each species.	disrupting the water impermeable outer layers of the seed
		coat.
Wet/Dry cycling	Seeds were placed in Petri dishes with sterile sand at a	Wetting and drying simulates the soil seed bank environment

Treatment	Method	Rationale
	specified temperature. During incubation seeds were wet on a	as episodes of rainfall will cause the seeds to undergo several
	weekly basis for 6 hours then allowed to dry out.	wetting and drying cycles before germination.
Winter incubator	Incubator set to 5°C for 4 h followed by 15°C for 20 h with	Used to mimic temperature and day light hours of an
	a 10 h photoperiod	average South Australian winter.

Vegetative Propagation

Vegetative propagation methods were tested for the *Astroloma* species that had very low germination results to date.

An experiment was set up at the Mount Lofty Botanic Gardens Nursery on the 15th April 2014. Fresh cuttings were taken from Naracoorte caves National Park on the 14th April 2014. A total of 100 cuttings from each species were dipped into purple Clonex and placed into a media of Perlite: cocopeat at a ratio of 90:10. Cuttings were kept in a misting tent with bottom heat applied for approximately 7 months before they were examined for root growth. A similar experiment was set up at the Adelaide Botanic Gardens Nursery in a shade house. The cuttings were dipped into Clonex purple and placed into the same media and the pots were put into foam boxes (with drainage holes) and covered with white shade cloth. Cuttings were misted daily but no bottom heat was applied.

Information Sharing

The data gathered for each species will be summarised in a species sheet and posted on the Seeds of South Australia website (www.saseedbank.com.au). The data compiled on this website is freely available to the public. The website will provide the following information for each species:

- Seed collection time
- Regions where the species has been recorded
- Latin name derivation
- Distribution and habitat
- Status
- Plant description
- Fruit type
- Seed type
- Embryo type
- Seed collecting notes
- Seed cleaning notes
- Germination results

Results

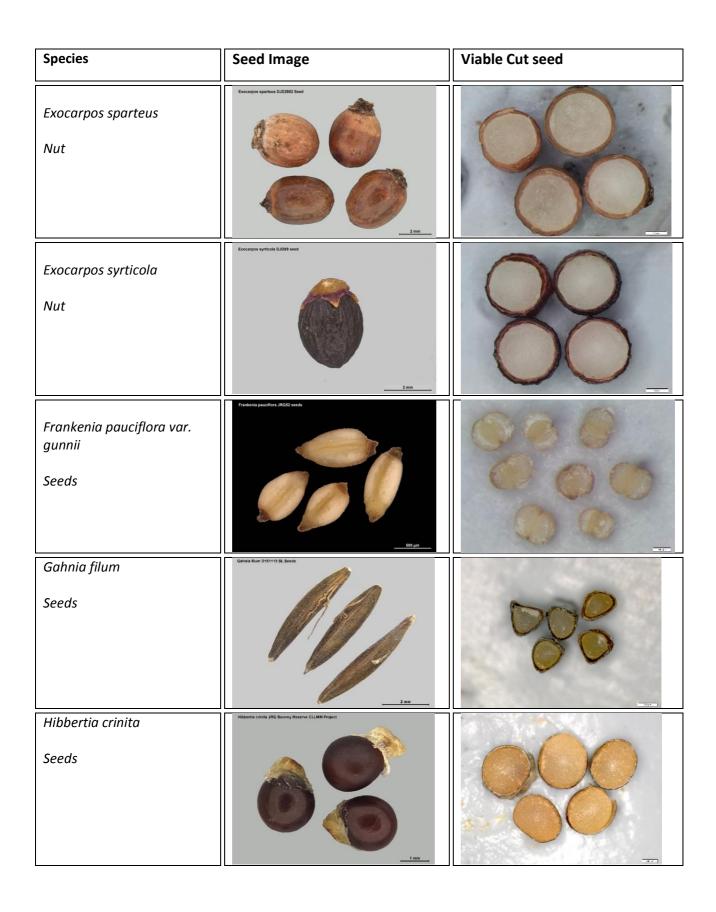
Seed Collections and Seed Viability

Table 2 shows the list of seed collections for target species. Sufficient quantities of seed for germination testing were collected from 25 out of the 28 species listed. Poor seed numbers were obtained from three species of *Pimelea*. The seeds of these plants are rapidly shed at maturity making the timing of seed collection critical. A different collection strategy will be used next season.

The number of seeds per gram is included in this table as an indication of seed size and also to use as a guide for estimating the amount of seeds required for revegetation.

Figure 1 shows microscopic detail of viable seeds for the species that have been tested for germination. An image of the whole seed or fruit is shown as well as a viable cut seed. These images can be used as a guide during seed collection as a visual reference for what viable seed looks like. It is recommended that seeds are cut and examined prior to collection to ensure that viable seed is collected. The seed inside should contain a healthy endosperm and embryo that fills the seed with a creamy or white starchy matrix. Nonviable seeds are often shrivelled or discoloured inside or may have been predated which leaves holes in the seeds. These seeds will not germinate.

Table 2. Seed collection data and viability testing results.


No	Family	Genus	Species	Date seed collected	Location	Seed number	Number seeds/g	Viability
1	Chenopodiaceae	Tecticornia	indica ssp. leiostachya	21-Feb-13	Salt Creek	4700	909	49%
2	Cyperaceae	Gahnia	filum	15-Nov-13		1500	725	80%
3	Dilleniaceae	Hibbertia	crinita	20- Oct-14	Bonney Reserve	1040	400	56%
4	Dilleniaceae	Hibbertia	riparia	27-Oct-14	Scott CP	1200	756	86%
5	Epacridaceae	Astroloma	conostephioides	4-Oct-12	Naracoorte Caves NP	1912	22	95%
6	Epacridaceae	Astroloma	humifusum	7-Nov-13	Frahns scrub	2960	14	92%
7	Epacridaceae	Leucopogon	parviflorus	30-Jan-13	Princess Hwy, Coorong	2876	54	30%
8	Euphorbiaceae	Adriana	quadripartita	30-Jan-13	Woods well	860	37	78%
9	Frankeniaceae	Frankenia	pauciflora var. gunnii	21-Feb-13	Salt Creek	66000	7692	92%
10	Liliaceae	Lomandra	densiflora	20-Nov-13	Frahns scrub	1500	74	100%
11	Liliaceae	Lomandra	effusa	22-Nov-13	Frahns scrub	2425	42	100%

No	Family	Genus	Species	Date seed collected	Location	Seed number	Number seeds/g	Viability
12	Liliaceae	Lomandra	juncea	20-Nov-13	Monarto CP	1220	81	100%
13	Liliaceae	Lomandra	leucocephala	12-Dec-11	Langhorne Creek	5000	50	100%
14	Liliaceae	Lomandra	multiflora ssp dura	8-Jan-14	Finniss Oval	2964	60	100%
15	Myrtaceae	Calytrix	tetragona	20-Nov-13	Monarto CP	5660	602	18%
16	Polygonaceae	Muehlenbeckia	gunnii	23-Oct-13	Finniss - Milang Road	1140	73	100%
17	Rhamnaceae	Spyridium	fontis-woodii	30-Jan-13	Woods well	750	2230	74%
18	Rhamnaceae	Spyridium	subochreatum	7-Nov-13	Monarto CP	4100	2778	70%
19	Rhamnaceae	Pomaderris	paniculosa	10-Dec-14	Tailem bend – Karoonda Rd	5800	895	95%
20	Rutaceae	Boronia	corulescens	10-Oct-14	Cox Scrub	1040	339	62%
21	Santalaceae	Exocarpos	sparteus	5-Feb-14	Ngarkat CP	1470	45	10%
22	Santalaceae	Exocarpos	syrticola	6-Feb-14	Salt Creek	944	41	83%
23	Sterculiaceae	Lasiopetalum	baueri	7-Nov-13	Ferries Macdonald CP	1300	685	52%

No	Family	Genus	Species	Date seed collected	Location	Seed number	Number seeds/g	Viability
24	Sterculiaceae	Thomasia	petalocalyx	11-Nov-13	Naracoorte Caves NP	900	722	16%
25	Thymelaeaceae	Pimelea	glauca	Low seed numbers	Strathalbyn Cemetery	To be collected		
26	Thymelaeaceae	Pimelea	octophylla	Low seed numbers	Cox Scrub	To be collected		
27	Thymelaeaceae	Pimelea	humilis	Low seed numbers	Cox Scrub	To be collected		
28	Zygophyllaceae	Nitraria	billardierei	28-Feb-13	Langhorne Ck - Wellington Rd	6200	16	96%

Figure 1. Images of seeds and fruits taken through a microscope and viable seeds cut open to show the inside of a healthy seed.

Species	Seed Image	Viable Cut seed
Adriana quadripartita Seeds	Adrians quadripartis JRD149 seeds	
Astroloma conostephioides Woody drupe	Astroloma Concetephiolists 0.102824 seeds	
Astroloma humifusum Woody drupe	Astroloma humifusum JROS1 seeds	
Boronia coerulescens Seeds	Borona coordeacens RJB74282 seed	
Calytrix tetragona Fruit with awns	Calymir Introgram JRO71 seeds	

Species	Seed Image	Viable Cut seed
Hibbertia riparia Seeds	Milbertia riparia By00014 Seed	
Lasiopetalum baueri Seeds	Lasioptalum basen JRG 079 seeds	
Leucopogon parviflorus Woody drupe	Leucopogon parvifforus MJT77 Friit	
Lomandra densiflora Seeds	Lomandra demsifica a JRGS) Seeds	
Lomandra effusa Seeds	Lomandra offices JRG647 Beeds	

Species	Seed Image	Viable Cut seed
Lomandra muliflora ssp dura Seeds	Lomandra multifora say, dura Seeds	
Lomandra leucocephala ssp robusta Seeds	Lomandre Inuccephala D121211MM Seeds	
Lomandra juncea	Lomandra junces JRGAD Seeds	
Maireana brevifolia Fruit	Maintena providora IMCJIO Secos	Ty.
Muehlenbeckia gunnii Seeds	Muchientockia gunni MJT70 med	

Species	Seed Image	Viable Cut seed
Nitraria billardierei Woody drupe	Nitraria billardirere D.U.D108 Seeds	
Spyridium fontis-woodsii Seeds	Spyridum fotte-erocals seeds 5,002612	100 A
Spyridium subochreatum Seeds	Spyridium subcchreatum DJD609 seed	
Tecticornia indica ssp. leiostachya Seeds	Tecticornia indica ssp. leiostachya MJT423 Seeds 1 mm	
Thomasia petalocalyx Seeds	Thomasia potatocallys Sand care Seeds	

Germination Experiments

The results from germination experiments for 21 species have been compiled in Appendix 1. Several methods were tested for some species and the reasons behind different treatment strategies are outlined in Table 1. The germination levels for 16 species were greater than 40% for at least one treatment which shows that successful methods of propagation through seed could be developed following the methods described. Experiments for four species, *Boronia coerulescens*, *Gahnia filum*, *Hibbertia crinita* and *H. riparia* commenced on the 17th of May and the final results will not be available for a few more weeks.

Five of the species had germination levels below 40%. These included the two species belonging to the genus *Astroloma*, two species of *Lomandra* and *Exocarpos sparteus*. All of these species have underdeveloped embryos and display morphophysiological dormancy which can be complex and difficult to alleviate. Methods to overcome this type of dormancy include stratification at warm or cool temperatures, cycling between seasonal temperatures and the use of chemical compounds such as smoke water and gibberellic acid. Different combinations of treatments will be tested in the next phase of the project to try and increase of germination rates for these species.

Interpretation of Germination Results

A summary of the most effective treatments used in the germination experiments and general advice regarding common problems with propagation for each species is shown in Table 3. These guidelines are a good starting point for growers to consider before commencing germination of these species. Results will vary depending on the initial seed viability, seed storage conditions, temperatures used for germination and concentration of chemicals applied to the seeds.

Table 3. Summary table of the seed germination data and advice for collection and/or germination of each species.

Species	Best treatment for germination	Advice for this species
Adriana quadripartita	Treat seeds with GA for increased germination results. Germinate seeds in spring through to autumn.	Germination increased with application of GA and warmer temperatures, spring/autumn and summer.
Astroloma conostephioides	Germination rates were very slow for this species. Some germination was observed during winter in a nursery experiment where seeds were placed in potting soil in the previous summer. Laboratory results have been poor. Tests are on-going for this species.	Germination rates have been low, however, this species responded well to propagation through cuttings using a very light propagation mix and application of rooting hormone.
Astroloma humifusum	Germination has been very slow for this species. Some germination was observed during winter in a nursery experiment where seeds were placed in potting soil during the summer of the year before. Laboratory results have been poor. Tests are on-going for this species.	Germination rates have been low, however, this species responded well to propagation through cuttings, using a very light propagation mix and application of rooting hormone.
Boronia coerulescens	Tests are in progress for this species.	
Calytrix tetragona	Germination responds to fire cues in this species. Dry heat (15 min; 90 °C) and diluted smoke water in combination with GA increased the level of germination. Germination rates were slow with 50 % of seeds germinating after 79 days.	Viability is a likely issue for this species. The seeds collected had low viability mainly due to predation. Seeds with drill holes will be nonviable.
Exocarpos sparteus	Treat seeds with GA for increased germination results. Seeds are most likely to germinate during winter.	Viability is a likely issue for this species. Collect shiny brown nuts that are filled with endosperm, check by cutting open some seeds. Viable seeds were collected from emu scats.
Exocarpos syrticola	Treat seeds with GA for increased germination results. Seeds are most likely to germinate during winter.	Viability is a likely issue for this species. Collect shiny dark coloured nuts that are filled with endosperm, check by cutting open some seeds.
Frankenia pauciflora var. gunnii	No treatment is required for this species. High levels of germination (100%) were observed in the control test incubated in a winter environment.	Using a hand lens, check that viable seeds are present in the capsules during collection.

Species	Best treatment for germination	Advice for this species
Gahnia filum	Tests are in progress for this species.	
Hibbertia crinita	Tests are in progress for this species.	
Hibbertia riparia	Tests are in progress for this species.	
Lasiopetalum baueri	Break physical dormancy by nicking the seed coat or try hot water treatment before sowing.	Predation is a likely issue for this species. Avoid collecting fruit with evidence of predation. These seeds have physical dormancy, the seed coat requires modification by abrasion, nicking or heat shock to disrupt the water impermeable layers.
Leucopogon parviflorus	Treat fruits with GA and use in combination with diluted smoke water and/or dry heat (100°C) for 2 min for increased germination results.	Viability is likely to be a problem for this species. Collect large white fruits and check that the seeds inside are filled by cutting open the fruits.
Lomandra densiflora	Treat seeds with hydrogen peroxide (30%) and diluted smoke water for increased germination results. 69% of seeds germinated after this pretreatment after incubation at 15°C.	Be sure that the seed is ripe. Collect when fruits have begun to split open. Immature seed will not germinate.
Lomandra effusa	A reasonable level of germination (44%) was observed in the control test incubated at 15 °C. Treatment with GA will increase germination levels (up to ~90%).	Be sure that the seed is ripe. Collect when fruits have begun to split open. Immature seed will not germinate. After ripening appears to increase seed germination.
Lomandra muliflora ssp dura	No treatment is required for this species, high levels of germination (75%) were observed in the control test incubated at 15 °C. Germination level was increased after treatment with diluted smoke water (93%).	Be sure to collect ripe seed when fruits have begun to split open. Immature seed will not germinate.
Lomandra leucocephala	Germination levels have been reasonably low (maximum 32%) for this species. Further experiments will be conducted in the next phase of the project.	Be sure to collect ripe seed when fruits have begun to split open. Immature seed will not germinate.

Species	Best treatment for germination	Advice for this species
Lomandra juncea	Germination levels have been reasonably low (maximum 35%) for this species. Further experiments will be conducted in the next phase of the project.	Be sure to collect ripe seed when fruits have begun to split open. Immature seed will not germinate.
Muehlenbeckia gunnii	No treatment is required for this species, high levels of germination (94%) were observed in the control test incubated in a spring/autumn temperatures.	Collect yellow fruits containing black seeds. Remove fruit flesh by wetting and rubbing through a sieve before storage.
Nitraria billardierei	Germination of 28% of seeds was observed after leaching seeds in water for 2 weeks. Germination increased to 48% after treatment with GA and dry heat 120°C for ~2 mins.	The woody fruit surrounding the seed may inhibit germination. Leaching with water, treatment with GA and heat shock increased germination.
Pomaderris paniculosa ssp paniculosa	Break physical dormancy with hot water treatment before sowing. Best germination rate (72%) was observed in winter conditions.	These seeds have physical dormancy, the seed coat requires modification by abrasion, nicking or heat shock to disrupt the water impermeable layers.
Spyridium fontis- woodsii	Break physical dormancy with hot water treatment before sowing. 70% of seeds germinated in spring conditions.	These seeds have physical dormancy and the seed coat requires modification by abrasion, nicking or heat shock to disrupt the water impermeable layers.
Spyridium subochreatum	Break physical dormancy with hot water treatment or nicking the seed. Best germination rate (46%) was observed in winter conditions.	These seeds have physical dormancy, the seed coat requires modification by abrasion, nicking or heat shock to disrupt the water impermeable layers.
Tecticornia indica ssp. leiostachya	No treatment is required for this species, high levels of germination (72%) were observed in the control incubated in a winter environment.	Check that viable seed has been collected. The seed sits within wedge shaped fruits in between segments of the fruiting spike.
Thomasia petalocalyx	Break physical dormancy by nicking the seed coat or try hot water treatment before sowing.	Predation in this species can cause low viability. Avoid collecting fruits with evidence of predation. These seeds have physical dormancy, the seed coat requires modification by abrasion, nicking or heat shock to disrupt the water impermeable layers.

Vegetative Propagation of Astroloma conostephioides and A. humifusum

The results from the *Astroloma* propagation experiment showed that good root development had occurred after 7 months of cuttings being maintained on a heat bed in a moist environment. The strike rates from both species are shown below:

Nursery conditions	Astroloma conostephioides	Astroloma humifusum
With bottom heat	33%	20%
No bottom heat	44 %	10%

The rooted cuttings were potted into tube-stock pots and remain in good condition, however, they have been slow to put on new growth. A new experiment will be trialled this year using a range of different potting mixes to test whether the vigour of the rooted cuttings could be improved.

Discussion

Seed Viability

The importance of testing seed viability is fundamental but is often overlooked. The problem with non-viable seed is that, if not checked it can be collected, cleaned, stored, seeded and monitored for seedling emergence when the reality is that very little viable seed was collected in the first place. The poor seedling emergence results may then be put down to lack of germination for a variety of other reasons. This amounts to a waste of resources and the opportunity to establish plants in that year could be missed. It is therefore encouraged that seed viability is checked on collection and quantified after the seed is cleaned.

Germination

The results from the project so far indicate that the majority of the target species are able to be propagated through seed for the purpose of revegetation. The experiments have been conducted under laboratory conditions and results will vary from germination tests done in other (nursery/garden/field) conditions, especially with different seed collections from that species. The information provided should be used as a guide when collecting and germinating seeds for the bioremediation and revegetation projects.

Propagation

Striking cuttings can be an effective method of propagation where seed germination is difficult. The propagation of *Astroloma* species through cuttings had a reasonable success rate, especially with *Astroloma conostephiodes*. The cuttings were taken in autumn and the propagation mix had a high percent of perlite (90%), and therefore good drainage. These may be important factors for success with striking cuttings. To provide a good representation of genetic diversity cuttings should be sourced from a large number (> 50) of individuals. The genetic diversity of populations established from cutting material will increase through sexual reproduction between individuals once the plants are mature.

Information Sharing

The information compiled on the Seeds of South Australia website will be an ongoing resource that will continue to facilitate the propagation of these and other species from the CLLMM region. The data and images will continue to be updated as new information is obtained by the SASCC.

Future Work

For the last phase of this project we will focus on experimenting with the species that have been difficult to germinate. In particular the *Astroloma* species as they have had very low germination levels throughout the project so far. The other main objective is to make collections with sufficient viable seed of species from the genus *Pimelea* to test for germination efficiency.

Acknowledgements

Thanks to Phil Druce of Blackwood Seeds for collecting seeds from *Pomaderris paniculosa* ssp *paniculosa*.

Thanks to Thai Te for adding data to the seeds of South Australia website and for advice throughout the project.

We gratefully acknowledge the support of the Native Vegetation Council for funding the propagation of *Astroloma* species presented in this report.

Appendix 1. Methods and results from germination experiments conducted for the target species. Treatments are described in Table 1. The treatment with the highest level of germination for that species is shown in bold.

No	Species	Treatment	Germination % (Average)	T ₀	T ₅₀
1	Adriana quadripartita	Control; spring/autumn	0	N/A	N/A
	quauripartitu	GA (250 mg/L) continuous; spring/autumn	48	14	N/A
		KNO₃ (100 mg/L) continuous; spring/autumn	8	28	N/A
		Wet heat (100 °C) for 1 min; spring/autumn	0	N/A	N/A
		Nicked seed coat; spring/autumn	20	28	N/A
		GA (500 mg/L) continuous; 20 °C constant temperature	16	15	N/A
		GA (1000 mg/L) continuous; 20 °C constant temperature	8	8	N/A
		GA (500 mg/L) continuous; spring/autumn	48	22	N/A
		GA (1000 mg/L) continuous; spring/autumn	60	15	46
		GA (500mg/L) continuous; summer	48	15	N/A
		GA (1000mg/L) continuous; summer	60	15	36

2	Astroloma conostephioides	Hydrogen Peroxide; spring/autumn	4	119	N/A
	conostephiolaes	Hydrogen Peroxide; GA (1000 mg/L) for 72 h; spring/autumn	0	N/A	N/A
		Leaching (13 d); Hydrogen Peroxide; GA (1000 mg/L) for 72 h; spring/autumn	0	N/A	N/A
		Hydrogen Peroxide; Smoke Water (10% (v/v))for 24 h; GA (1000 mg/L) for 72 h; spring/autumn	0	N/A	N/A
		Aerosol smoke (15mins); Hydrogen Peroxide; GA (1000 mg/L) for 72hrs; spring/autumn	0	N/A	N/A
		Hydrogen Peroxide; winter		21.42	
		Hydrogen Peroxide; AR 35 °C for 6 weeks; winter	0	N/A	N/A
		Hydrogen Peroxide; AR 35 °C for 6 weeks; GA (1000 mg/L) with Smoke Water (33 %	0	N/A	N/A
		(v/v) for 48 h; winter	0	N/A	N/A
		Hydrogen Peroxide; Wet/dry 35 °C for 6 weeks; winter			
		Hydrogen Peroxide; Wet/dry 35 °C for 6 weeks; GA (1000 mg/L) with Smoke Water (33	0	N/A	N/A
		% (v/v) for 48 h; winter	0	N/A	N/A
		Hydrogen Peroxide; AR summer for 8 weeks; winter			
		Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 %	0	N/A	N/A
		(v/v)) for 48 h; winter	2	160	N/A
		Hydrogen Peroxide; AR summer for 8 weeks; spring/autumn			
		Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 %	0	N/A	N/A
		(v/v)) for 48 h; spring/autumn	0	N/A	N/A
		Hydrogen Peroxide; AR summer for 8 weeks; STRAT spring/autumn 10 weeks; winter			

		0	N/A	N/A
	Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v) for 48 h; STRAT spring/autumn 10 weeks; winter	4	160	N/A
Astroloma humifusum	Hydrogen Peroxide; winter	0	N/A	N/A
, manning as a m	Hydrogen Peroxide; AR 35 °C for 6 weeks; winter	0	N/A	N/A
	Hydrogen Peroxide; AR 35 °C for 6 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; winter	6	63	N/A
	Hydrogen Peroxide; Wet/dry 35 °C for 6 weeks; winter	6	63	N/A
	Hydrogen Peroxide; Wet/dry 35 °C for 6 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; winter	2	140	N/A
	Hydrogen Peroxide; AR summer for 8 weeks; winter	0	N/A	N/A
	Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; winter	6	140	N/A
	Hydrogen Peroxide; AR summer for 8 weeks; spring/autumn	0	N/A	N/A
	Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; spring/autumn	0	N/A	N/A
	Hydrogen Peroxide; AR summer for 8 weeks; STRAT spring/autumn 10 weeks; winter	0	N/A	N/A
	Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v) for 48 h; STRAT spring/autumn 10 weeks; winter	6	84	N/A
	Astroloma humifusum	Astroloma humifusum Hydrogen Peroxide; winter Hydrogen Peroxide; AR 35 °C for 6 weeks; winter Hydrogen Peroxide; AR 35 °C for 6 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; winter Hydrogen Peroxide; Wet/dry 35 °C for 6 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; winter Hydrogen Peroxide; Wet/dry 35 °C for 6 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; winter Hydrogen Peroxide; AR summer for 8 weeks; winter Hydrogen Peroxide; AR summer for 8 weeks; Spring/autumn Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; spring/autumn Hydrogen Peroxide; AR summer for 8 weeks; STRAT spring/autumn 10 weeks; winter Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; spring/autumn	Astroloma humifusum Hydrogen Peroxide; winter Hydrogen Peroxide; AR 35 °C for 6 weeks; winter Hydrogen Peroxide; AR 35 °C for 6 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; winter Hydrogen Peroxide; Wet/dry 35 °C for 6 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; winter Hydrogen Peroxide; Wet/dry 35 °C for 6 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; winter Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; winter Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; spring/autumn Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; spring/autumn Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % 6 Hydrogen Peroxide; AR summer for 8 weeks; STRAT spring/autumn 10 weeks; winter Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % 6 Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % 6 Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % 6 Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % 6 Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % 6 Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % 6 Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % 6 Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % 6 Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % 6 Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % 6 Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % 6 Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % 6 Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % 6 Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Wa	Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v) for 48 h; STRAT spring/autumn 10 weeks; winter Hydrogen Peroxide; winter Hydrogen Peroxide; AR 35 °C for 6 weeks; winter Hydrogen Peroxide; AR 35 °C for 6 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; winter Hydrogen Peroxide; Wet/dry 35 °C for 6 weeks; winter Hydrogen Peroxide; Wet/dry 35 °C for 6 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; winter Hydrogen Peroxide; Wet/dry 35 °C for 6 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; winter Hydrogen Peroxide; AR summer for 8 weeks; winter Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; winter Hydrogen Peroxide; AR summer for 8 weeks; SFRAT spring/autumn Hydrogen Peroxide; AR summer for 8 weeks; STRAT spring/autumn 10 weeks; winter Hydrogen Peroxide; AR summer for 8 weeks; STRAT spring/autumn 10 weeks; winter Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; spring/autumn Hydrogen Peroxide; AR summer for 8 weeks; STRAT spring/autumn 10 weeks; winter 0 N/A Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % 6 84

4	Boronia coerulescens	Control; winter Leaching (48 h); GA (500 mg/L) with Smoke Water (10 % (v/v)) for 24 h; winter Control; spring/autumn Leaching (48 h); GA (500 mg/L) with Smoke Water (10 % (v/v)) for 24 h; spring/autumn	In progress In progress In progress In progress		
5	Calytrix tetragona	Control; spring/autumn GA (250 mg/L) for 24 h; spring/autumn GA (250 mg/L) with Smoke Water (10 % (v/v)) for 24 h; spring/autumn Dry heat (90 °C for 15 min); GA (250 mg/L) with Smoke Water (10% (v/v)) for 24 h; spring/autumn	0 0 28 62	N/A N/A 57 41	N/A N/A N/A 79
6	Exocarpos sparteus	Leaching (48 h); winter GA (400 mg/L) for 48 h; winter GA (400 mg/L) with Smoke Water (20% (v/v)) for 48 h; winter Dry heat (120 °C) for 4 min; GA (400 mg/L) with Smoke Water (20% (v/v)) for 48 h; winter	0 36 18 15	N/A 42 49 49	N/A N/A N/A

7	Exocarpos syrticola	Fruit removal; GA (400mg/L) for 48hrs; AR 20°C for 3 weeks; winter	20	49	N/A
	Syrticola	GA (400 mg/L) for 48 h; AR 20 °C for 3 weeks; winter	72	40	93
		Aerosol smoke (15min); GA (400mg/L) for 48 h; AR 20 °C for 3 weeks; winter	32	49	N/A
		Leaching (48 h); winter	0	N/A	N/A
		GA (400 mg/L) for 48 h; winter	62	28	70
		GA (400 mg/L) with Smoke Water (20 % (v/v)) for 48 h; winter	68	28	63
		Dry heat (120 °C) for 4 min; GA (400 mg/L) with Smoke Water (20% (v/v)) for 48 h; winter	28	42	N/A
8	Frankenia pauciflora var.	Control; winter	96	7	14
	gunnii	GA (250 mg/L) continuous; winter	100	7	14
		Control; spring/autumn	72	7	21
		GA (250 mg/L) continuous; spring/autumn	78	7	21
9	Gahnia filum	Control; spring/autumn	In progress		
		Nicked seed coat; spring/autumn	In progress		
		Nicked seed coat; Leaching (7 d), spring/autumn	In progress		
		GA (250 mg/L) with Smoke Water (10% (v/v)) for 24 h; spring/autumn	In progress		

10	Hibbertia crinita	Control; winter	In progress		
		Nicked seed coat; winter	In progress		
		GA (500 mg/L) for 24 h; winter	In progress		
		GA (500 mg/L) with Smoke Water (10% (v/v)) for 24 h; spring/autumn	In progress		
11	Hibbertia riparia	Control; winter	In progress		
		Nicked seed coat; winter	In progress		
		GA (500 mg/L) for 24 h; winter	In progress		
		GA (500 mg/L) with Smoke Water (10% (v/v)) for 24 h; spring/autumn	In progress		
12	Lasiopetalum baueri	Nicked seed coat; winter	100	7	7

	1				
13	Leucopogon parviflorus	Fruit removed; Control; sown 14/3/13	9	91	N/A
	parvijiorus	Fruit removed; Smoke Water; sown 14/2/13	8	N/A	N/A
		Hydrogen Peroxide; spring/autumn	0	N/A	N/A
		Hydrogen Peroxide; GA (1000 mg/L) for 72hrs; spring/autumn	60	49	116
		Dry heat (100 °C) for 2 min; Hydrogen Peroxide; GA (1000 mg/L) for 72 h; spring/autumn	100	63	77
		Leaching (13 days); Hydrogen Peroxide; GA (1000 mg/L) for 72hrs; spring/autumn	40	70	N/A
		Hydrogen Peroxide; Smoke Water (10% (v/v)) for 24 h; GA (1000 mg/L) for 72hrs; spring/autumn	100	49	77
14	Lomandra densiflora	Control; 15 °C constant temperature	16	61	N/A
	uensijioru	GA (1000 mg/L) for 24 h; 15 °C constant temperature 12 h photoperiod	32	61	N/A
		Hydrogen Peroxide; 15 °C constant temperature 12 h photoperiod	28	35	N/A
		Hydrogen peroxide; GA (1000 mg/L) for 72 h; 15 °C constant 12 h photoperiod	23	28	N/A
		Hydrogen peroxide; Smoke Water (10% (v/v)) for 24 h; 15 °C constant 12 h photoperiod	69	28	49
		Hydrogen peroxide; GA (1000 mg/L) for 72 h; Smoke Water (10% (v/v)) for 24 h; 15 °C constant 12 h photoperiod	14	28	N/A

15	Lomandra effusa	Control; 15 °C constant temperature 12 h photoperiod	62	61	75
		GA (1000 mg/L) for 24 h; 15 °C constant temperature 12 h photoperiod	74	28	71
		Hydrogen Peroxide; 15 °C constant temperature 12 h photoperiod	44	28	N/A
		Hydrogen peroxide; GA (1000 mg/L) for 72 h; 15 °C constant 12 h photoperiod	92	21	35
		Hydrogen peroxide; Smoke Water (10% (v/v)) for 24 h; 15 °C constant 12 h photoperiod	48	28	N/A
		Hydrogen peroxide; GA (1000 mg/L) for 72 h; Smoke Water (10% (v/v)) for 24 h; 15 °C constant 12 h photoperiod	65	35	56
16	Lomandra muliflora ssp dura	Control; 15 °C constant temperature 12 h photoperiod	78	28	64
	munjiora ssp aara	GA (1000 mg/L) for 24 h; 15 °C constant temperature 12 h photoperiod	10	28	N/A
		Hydrogen Peroxide; 15 °C constant temperature 12 h photoperiod	75	28	42
		Hydrogen peroxide; GA (1000 mg/L) for 72 h; 15 °C constant 12 h photoperiod	12	28	N/A
		Hydrogen peroxide; Smoke Water (10% (v/v)) for 24 h; 15 °C constant 12 h photoperiod	93	28	42
		Hydrogen peroxide; GA (1000 mg/L) for 72 h; Smoke Water (10% (v/v)) for 24 h; 15 °C constant 12 h photoperiod	13	28	N/A

17	Lomandra leucocephala	Control; 15 °C constant temperature 12 h photoperiod	0	N/A	N/A
	Гейсосерпина	GA (1000 mg/L) for 24 h; 15 °C constant temperature 12 h photoperiod	2	56	N/A
		Hydrogen Peroxide; 15 °C constant temperature 12 h photoperiod	1	28	N/A
		Hydrogen peroxide; GA (1000 mg/L) for 72 h; 15 °C constant 12 h photoperiod	32	28	N/A
		Hydrogen peroxide; Smoke Water (10% (v/v)) for 24 h; 15 °C constant 12 h photoperiod	0	N/A	N/A
		Hydrogen peroxide; GA (1000 mg/L) for 72 h; Smoke Water (10% (v/v)) for 24 h; 15 °C constant 12 h photoperiod	12	28	N/A
18	Lomandra juncea	Control; 15 °C constant temperature	6	28	N/A
		GA (1000 mg/L) for 24 h; 15 °C constant temperature 12 h photoperiod	12	28	N/A
		Hydrogen Peroxide; 15 °C constant temperature 12 h photoperiod	7	28	N/A
		Hydrogen peroxide; GA (1000 mg/L) for 72 h; 15 °C constant 12 h photoperiod	35	35	N/A
		Hydrogen peroxide; Smoke Water (10% (v/v)) for 24 h; 15 °C constant 12 h photoperiod	7	28	N/A
		Hydrogen peroxide; GA (1000 mg/L) for 72 h; Smoke Water (10% (v/v)) for 24 h; 15 °C constant 12 h photoperiod	35	28	N/A

19	Muehlenbeckia gunnii	Control; spring/autumn STRAT 6 weeks spring/autumn; winter	81 94	31 21	41
		STRAT & weeks spring/autumn, winter	94	21	41
		GA (250 mg/L) for 48 h; spring/autumn	92	14	31
20	Nitraria billardierei	Leaching (15 d); spring/autumn	28	25	N/A
	<i>biliaralerei</i>	Leaching (15 d); dry heat (120 °C) for 2min; spring/autumn	16	8	N/A
		Leaching (15 d); GA (1000 mg/L) for 72 h; spring/autumn	38	8	N/A
		Leaching (15 d); Dry heat (120 °C) for 2min; GA (1000 mg/L) for 72 h; spring/autumn	48	8	N/A
21	Pomaderris paniculosa ssp	Control; winter	4	35	N/A
	paniculosa	Wet heat (100 °C) for 30 sec; winter	72	20	35
		Leaching (3 days); winter	6	20	N/A
		Dry Heat (120°C) 5 min; winter	38	20	N/A
		Control; spring/autumn	0	N/A	N/A
		Wet heat (100 °C) for 30 sec; spring/autumn	36	28	N/A
		Leaching (3 days); spring/autumn	4	62	N/A
		Dry Heat (120°C) 5 min; spring/autumn	34	28	N/A
_					

22	Spyridium fontis- woodsii	Wet heat (95 °C) for 30 sec; spring/autumn	70	25	53
23	Spyridium subochreatum	Control; spring/autumn 4 weeks then transferred to winter Nicked seed coat; spring/autumn 4 weeks then transferred to winter Wet heat (100 °C) for 30 sec; spring/autumn 4 weeks then transferred to winter	0 46 24	N/A 10 61	N/A N/A N/A
24	Tecticornia indica ssp. leiostachya	Control; spring/autumn GA (250mg/L) continuous; spring/autumn	72 70	4 11	18 18
25	Thomasia petalocalyx	Nicked seed coat; winter	94	14	14