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A B S T R A C T   

With a wide distribution range including Europe and Asia, Lotus (Leguminosae) represents the largest genus 
within Loteae. It is particularly diverse in the Mediterreanean region and in the five archipelagos of Macaronesia 
(Atlantic Ocean). However, little is known about the relationships among the 14 sections currently recognized 
within Lotus and about the timing and patterns of its colonization in the Macaronesian region. In this investi-
gation, we use four DNA regions (nuclear ribosomal ITS plus three plastid regions) in the most comprehensive 
sampling of Lotus species to date (some endemic species within the Canary Islands were poorly represented in 
previous phylogenetic analyses) to infer relationships within this genus and to establish patterns of colonization 
in Macaronesia. Divergence time estimates and habitat reconstruction analyses indicate that Lotus likely diverged 
about 7.86 Ma from its sister group, but all colonization events to Macaronesia occurred more recently (ranging 
from the last 0.23 to 2.70 Ma). The diversification of Lotus in Macaronesia involved between four and six in-
dependent colonization events from four sections currently distributed in Africa and Europe. A major aspect 
shaping the current distribution of taxa involved intra-island colonization of mainly new habitats and inter-island 
colonization of mostly similar habitats, with Gran Canaria and Tenerife as the major sources of diversification 
and of further colonization events. Section Pedrosia is the most diverse in terms of colonization events, number of 
species, and habitat heterogeneity, including a back-colonization event to the continent. Subsections within 
Pedrosia radiated into diverse habitat types recently (late Pleistocene, ca 0.23–0.29 Ma) and additional molecular 
markers and sampling would be necessary to understand the most recent dispersal events of this group within the 
Canary Islands and Cape Verde.   

1. Introduction 

Lotus represents the largest and most widely distributed genus of 
tribe Loteae (about 123 species divided in 14 sections, Degtjareva et al., 
2006). Its main centres of species diversity are the Mediterranean and 
Macaronesia, the latter with ca. 52 taxa (plus three undescribed new 
species, Ojeda et al., 2012); both areas are considered as hotspots of 
biodiversity (Medail and Quezel, 1997). Lotus is taxonomically complex 
and therefore different classifications, especially at sectional and genus 
level, have been used through time (for example: Arambarri et al., 2005; 
Gillett, 1958; Kramina and Sokoloff, 1999; Degtjareva et al., 2006 or 
Sandral et al., 2010). The taxonomic classification of the Macaronesian 
taxa has also been problematic (e.g. Arambarri et al., 2005; Sokoloff 
et al., 2007; Brouillet, 2008; Sandral et al., 2010). In particular, there 
has been extensive debate about the classification of the three species 

endemic to the Canary Islands that were included in the past within the 
genus Dorycnium (i.e. Tournefort, 1700; Linnaeus, 1753; Taubert, 1894; 
Rikli, 1901), and more recently in their own section (Canaria) within 
genus Lotus (i.e. Polhill, 1981; Lassen, 1986). 

The Macaronesian Lotus species are currently classified into four 
sections: Pedrosia (including Rhyncholotus), Chamaelotus, Lotus, and 
Canaria that comprise about 44 taxa distributed in 29 islands of the five 
Macaronesian archipelagos (see Table 1). 

Section Pedrosia is distributed in the Mediterranean region and 
mainland Africa, with its centre of diversification in the Macaronesian 
archipelagos (Azores, Madeira, Selvagens, Canary Islands and Cape 
Verde), and in ‘the continental Macaronesian enclave’, a small mainland 
region in Morocco in North-western Africa (Peltier, 1973; Sunding, 
1979). It includes about 35 species that are mostly perennial and 
encompass a wide range of ecological conditions, with some rare or 
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endangered taxa in the Canary Islands (Bramwell and Bramwell, 2001). 
Within the Canarian archipelago, Gran Canaria and Tenerife harbour 
most of the Lotus species, followed by the western island of La Palma 
(Table 1). All these three islands are characterized by higher habitat 
heterogeneity (from coastal and lowland scrub to montane and in Ten-
erife to high montane elevations). 

Although clear morphological adaptations for long distance dispersal 
(LDD) of diaspores are not present in Lotus, probably the wind, the sea 
and even granivorous passerine birds (endozoochorous) may have 
played a role in the success of this genus to colonize Macaronesia (Allan 

et al., 2004; Vargas et al., 2015). Especially the Rhyncholotus group 
shows several floral traits that can favour both bird and even lizard 
pollination (Ojeda et al., 2013; Siverio and Rodríguez-Rodríguez, 2012), 
and further dispersal through endozoochory. Data from several oceanic 
archipelagos have proven the importance of LDD syndromes on shaping 
inter-island plant distribution (Vargas et al., 2015); in the Canary 
Islands, the relationship between the presence of LDD syndromes and 
more widespread distributions was statistically strongly supported 
(Arjona et al., 2018). 

Most of the Macaronesian endemic plant groups are restricted to one 
archipelago (Reyes Betancort et al., 2008) and there are few examples of 
genera with taxa that have radiated in three of the five Macaronesian 
archipelagos (Williams et al., 2015). The genus Lotus is an exceptional 
case since it is distributed in all five archipelagos and in the Maca-
ronesian continental enclave. 

Therefore, this study may provide further insights into the bioge-
ography of this hotspot of island biodiversity (Whittaker and Fernández- 
Palacios, 2007), and may help to address important questions on the 
Macaronesian endemic plant diversity to better understand six general 
patterns identified by molecular studies on the evolutionary history of 
the Macaronesian flora:  

(1) Single colonizations seem to have been common in some lineages, 
but also multiple independent events and subsequent secondary 
contact among genotypes previously confined to the mainland or 
to other insular regions, likely triggered evolution and radiation 
in many groups (see Caujapé-Castells et al., 2017),  

(2) The opportunity for Macaronesian colonization may have been 
during limited periods of time (“Colonisation Window Hypothe-
sis”, Carine et al., 2004), 

(3) Rapid radiation within islands to distinct habitats and diversifi-
cation between islands in similar ecological zones are prominent 
in the evolution of Canarian endemic plants (Francisco-Ortega 
et al., 1996; Kim et al., 1996; Bohle et al., 1996),  

(4) The surfing syngameon hypothesis (Caujapé-Castells et al., 2017) 
explains the origins of the high genetic diversity detected in the 
Canarian endemic flora as the dynamic result of admixture, 
introgression, and hybridization, and also incorporates the role of 
island ontogeny in the generation of the genetic diversity 
patterns, 

(5) Back-colonization has occurred from Macaronesia to the main-
land (Allan et al., 2004; Caujapé-Castells, 2004; Jaén-Molina 
et al., 2009) and  

(6) Some areas (i.e. Moroccan area and palaeo-islands of Tenerife) 
have served as refuge of biodiversity within Macaronesia 
(Désamoré et al., 2011; García-Aloy et al., 2017; Mairal et al., 
2015). 

Since the last decade, phylogeography and dated molecular phy-
logenies have allowed to infer temporal colonization events and ances-
tral area(s) of many Macaronesian Angiosperm lineages (i.e. Curto et al., 
2017; Jones et al., 2014; Mairal et al., 2015; Menezes et al., 2018; 
Valtueña et al., 2016). Also, divergence times that range from the 
Miocene and the late Miocene-Pleistocene were established for the five 
plant groups compared in Kim et al. (2008). In contrast, very recent time 
frames have been established for the origin of Lactuca palmensis (ca. 1.3 
Ma, Dias et al., 2018), Euphorbia lamarckii (1.93 ± 0.98 Ma, Sun et al., 
2016) or several species from Cheirolophus (less than 2 Ma, Vitales et al., 
2014). Several studies of lineages distributed in the Canary Islands (i.e. 
Kondraskov et al.,2015), support the ‘relict hypothesis series’ (Cronk, 
1992) . Thus, palaeo and neo-endemism (taxa with different ages, i.e 
paleo-endemics that arrived recently to the Canary islands, and after-
wards became extinct in the continent, remaining only in the Canary 
Islands) coexist in the current Canarian Flora (Vargas, 2007; Fernán-
dez-Palacios et al., 2011); however, it is still necessary to conduct 
exhaustive sampling to obtain a more comprehensive understanding of 

Table 1 
Sections and taxa of the genus Lotus native in Macaronesia.  

Archipelago Section Species Islands of distribution 

Azores Pedrosia L. azoricus FL, PI, JO, SM, MA 
L. creticus TE 

Lotus L. pedunculatus CO, FA, TE, FL, PI, GR, 
JO, SM, MA 

Salvage 
Islands 

Pedrosia L. glaucus SE 
L. salvagensis SE 

Madeira Pedrosia L. argyrodes MD, PS & D 
L. glaucus MD, PS & D 
L. macranthus MD, PS 
L. lancerottensis MD 
L. loweanus PS 

Lotus L. pedunculatus MD 
Cape Verde Pedrosia L. arborescens N 

L. bollei V 
L. brunneri A, V, N, S, B, M, ST, FO, 

Br 
L. jacobaeus A, V, N, S, B, M, ST, FO 
L. latifolius A 
L. purpureus A, V, N, B, M, ST, FO, Br 

Lotus L. alianus A & V 
Canary 

Islands 
Pedrosia L. arinagensis C 

L. berthelotii T 
L. callis-viridis C, T? 
L. campylocladus T, P? 
L. dumetorum T 
L. emeroides G 
L. eremiticus P 
L. erythrohizus F 
L. genistoides (nom 
nud.) 

C 

l. glaucus F, GRA 
L. hillebrandii P, H 
L. gomerythus G 
L. holosericeus C 
L. kunkelii C 
L. lancerottensis L, F, GRA 
L. leptophyllus C 
L. maculatus T 
L. mascaensis T 
L. pyranthus P 
L. sessilifolius T, P, G 
L. sessilifolius var. 
pentaphyllus 

T 

L. sessilifolius ssp. 
villosissimus 

H 

L. spartioides C 
L. tenellus C, T 
Lotus sp. nov. 1 T 
Lotus sp. nov.2 T 

Canaria L. broussonetii C, T 
L. eriopththalmus T, P, G, H 
L. spectabilis T 

Chamaelotus L. glinoides F, L, C, T, G, H, GRA 

Abbreviations for the islands of each archipelago are: Azores: CO = Corvo, FL =
Flores, FA = Faial, TE = Terceira, PI = Pico, GR = Graciosa, JO = São Jorge, SM 
= São Miguel, MA ¼ Santa Maria; Salvage Islands: SE = Selvagens; Madeira: 
MD = Madeira, PS = Porto Santo, D = Desertas; Cape Verde: A = Santo Antão, 
V = São Vicente, N = São Nicolau, S = Sal, B = Boavista, M = Maio, ST =
Santiago, FO = Fogo, Br = Brava; Canary Islands: C = Gran Canaria, T =
Tenerife, P = La Palma, H = El Hierro, G = La Gomera, L = Lanzarote, F =
Fuerteventura, GRA = La Graciosa. 
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diversification in exceptionally species rich lineages like Lotus. 
Here, we used various combinations of four DNA regions (ITS, trnH- 

psbA, matK and CYB6) in the most comprehensive sampling of Lotus 
species to date in order to: 1) establish the timing of the diversification of 
the genus Lotus and the sequence of colonization events in Macaronesia, 
2) infer the number of colonization events and the global biogeographic 
patterns of Lotus in the five Macaronesian archipelagos, 3) understand 
habitat shift within section Pedrosia, a speciose group covering much of 
the ecological habitats in Macaronesia, and 4) determine the relation-
ships among the three Canarian endemic species currently included in 
section Canaria since it has been the matter of much taxonomic debate. 

2. Materials and methods 

2.1. Taxon sampling and choice of DNA regions 

We analysed a total of 116 taxa (species and subspecies) of Lotus, five 
genera (Hammatolobium, Cytisopsis, Ornithopus, Coronilla and Anthyllis) 
within Loteae and two species of Sesbania (Sesbanieae) as outgroups. In 
this study we increased the numbers of both species and populations 
sampled within species, and molecular markers analysed for previous 
studies. We selected nrITS, trnH-psbA, matK and CYB6, which contain 
DNA regions with higher representation of taxa within Lotus (nrITS, 
trnH-psbA, matkK) and are very polymorphic even in closely related 
genera and species (Babineau et al., 2013), providing also variable sites 
within Lotus section Pedrosia (trnH-psbA and CYB6). Our sampling 
included all the species currently reported on the Macaronesian region 
(Table 1) except L. gomerythus, which it is only known from a single 
specimen from La Gomera (Portero et al., 2019). Also, it is important to 
mention that the samples of L. pedunculatus (sect. Lotus) included in this 
study were not collected in Macaronesia. 

We first performed a comprehensive phylogenetic analysis with 
maximum likelihood using only nrITS (partial sequence ITS1, complete 
5.8S ribosomal, and partial sequence of ITS2), including all available 
sequences (published and newly generated in this study) from Lotus and 
the outgroup taxa (Table S1). This analysis was based on 305 specimens 
(294 specimens from Lotus species, 94% of the species), with multiple 
accessions for some Lotus species. We selected this gene region as it is the 
one with the highest representation of Lotus taxa. This analysis allowed 
to identify the position of the Macaronesian species into the Lotus phy-
logeny and later concentrate further analyses including the most 
appropriate specimens representing each species. After this analysis 
(data not shown), we selected one specimen to represent each Lotus 
species for the subsequent analyses, except for the species within section 
Canaria, where we included multiple accessions (see below). Overall, 
our analyses covered four gene regions (Table S1) with 232 newly 
generated sequences and 326 sequences downloaded from GenBank. 

2.2. DNA extraction, amplification and sequencing 

DNA was extracted from silica gel dried material, fresh leaves and 
herbarium specimens according to the CTAB procedure (Doyle and 
Doyle, 1987). Primers and PCR conditions for the nuclear and the three 
plastid regions followed previous publications (Ojeda et al., 2014; Ojeda 
et al., 2012). The analyses in this study were performed on three 
datasets. 

Dataset 1: ITS. This dataset contained available nrITS sequences of 
135 specimens representing 116 described Lotus species (94% species). 
It also included 9 species from five closely related genera within Loteae 
and two species from Sesbania as outgroups. This dataset was used to 
date the phylogeny, to establish the time frame of the colonization 
events of Lotus in the five Macaronesian archipelagos, and back colo-
nization events to the continent. In addition, this analysis was used to 
explore the taxonomic position of the species of the sect. Canaria (with 
multiple accessions of the three currently accepted taxa and covering all 
its present geographic range). 

Dataset 2: ITS þ trnH-psbA. This dataset comprised sequences of 
103 specimens where both gene regions were available, representing 92 
species of Lotus (74% species). We used the same five genera within 
Loteae as outgroup but excluding the two Sesbania species. The two gene 
regions were analyzed separately (to evaluate congruence) and in 
combination (to increase levels of resolution). This data set was used to 
identify with higher support the closest relatives of the lineages that 
colonizes Macaronesia. 

Dataset 3: Four regions combined. This dataset consisted of four 
DNA regions (ITS, trnH-psbA, matK, and CYB6) from 47 specimens (38 
species) and it was used to study habitat evolution within sect. Pedrosia. 

2.3. Alignment, selection of models and phylogenetic analyses 

Sequences for each of the four DNA regions were aligned using mafft 
(–genafpair –maxiterate 1000) (Katoh and Kuma, 2002). Each matrix 
was manually edited with AliView (Larsson, 2014) and summary sta-
tistics were obtained with AMAS (Borowiec, 2016). Indels were not 
included in the analyses. The best fitting model of sequence evolution 
for each gene was obtained with ModelFinder ver. 1.6.12 (Kalyaana-
moorthy et al., 2017). Each matrix was analyzed with maximum like-
lihood (ML) with IQ-TREE (Nguyen, et al., 2015), using the best model 
for each region and 200 bootstrap replicates. We also performed a 
Bayesian analysis as implemented in MrBayes 3.2.6 (Huelsenbeck and 
Ronquist, 2001; Ronquist et al., 2012) using four chains, two runs of 20 
million generations with the invgamma rate of variation, the GTR+Г 
model of nucleotide substitution and a sample frequency of 1000. The 
performance of the Bayesian analysis was assessed with Tracer 1.7 
(Rambaut et al., 2018) to verify whether effective samples sizes (ESS 
values) were higher than 200 for all parameters. ML and Bayesian an-
alyses were performed on separate, as well as using the concatenated 
DNA regions (datasets 2 and 3). We used Sesbania as outgroup and five 
closely related genera (Hammatolobium, Cytisopsis, Ornithopus, Coronilla 
and Anthyllis) as part of the ingroup together with the genus Lotus. This 
outgroup and closely related genera were selected based on a previous 
analysis (Kramina et al., 2016). The obtained trees were visualized and 
formatted using FigTree (A. Rambaut, 2016) and iTOL ver. 3 (Letunic 
and Bork, 2016). Congruence among results from the trnH-psbA and 
nrITS was tested by comparing clade support values and level of reso-
lution for individual clades obtained from each dataset. Details of all 
four DNA regions and data sets are available in Table 2. 

2.4. Dating the colonization events in Macaronesia 

We used the dataset 1 for dating the Lotus phylogeny with Beast v. 
1.10.3 (Bouckaert et al., 2014; Suchard et al., 2018). An exploratory 
analysis was performed to assess the reliability of our date estimates 
with reference to the different settings (strict clock vs. uncorrelated 
lognormal, Yule vs. Birth-death). Choice of the best priors (clock and tree 
model) for our dataset was based on Bayes Factor using the Marginal 
Likelihood Estimation (MLE) implemented in Beast (Baele et al., 2012) 
that allows the comparison of Path Sampling (PS) and Stepping Stone 
(SS) sampling methods for alternative runs with different combinations 
of settings. The highest likelihood corresponded to a Birth-death tree 
prior with uncorrelated lognormal molecular clock (Table 3). Thus, we 
analyzed dataset 1 using the GTR substitution model with gamma dis-
tribution, a Birth-death speciation prior and considering the uncorre-
lated relaxed-clock model (UCLD, Drummond et al., 2012) with a log- 
normal distribution. Also, the clock model was set to accommodate 
the change in mutation rate from species to populations, with a uniform 
distribution for the ucld.mean (10-4-10-1) and a default exponential 
distribution for the ucld.stdev. Two MCMC chains were run for 20 
million generations, sampling trees and parameters every 10,000 gen-
erations and a final burn in of 10%. Tracer ver. 1.7.1 was used to assess 
the effective sample sizes (ESS > above 200) (Rambaut et al., 2018). 
Tribe Loteae, particularly Lotus, lacks available fossils for calibrations 
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(Koenen et al, 2019), and the closest group with available fossils belongs 
to the tribe Robinieae (Robinia L. wood fossil, 34 Ma) (Lavin et al., 
2005). This fossil has been previously used in molecular dating analyses 
that included Lotus taxa (Farruggia et al., 2018). Here, we carried out 
two calibration approaches, (1) using a fossil-derived secondary age 
from the calibrated phylogeny included in Lavin et al. (2005), and 
applying a normal distribution to calibrate the root node of the clade 
including all Loteae taxa (mean = 14.4 Ma, SD = 1.3, 95% HPD =
11.7–18.6 Ma, node 73 in Lavin et al., 2005); (2) using again the fossil- 
derived secondary age estimated in Lavin et al. (2005), as calibration for 
the crown node of Loteae, together with an additional calibration point 
base on the age of La Palma (1.77 Ma, Ancochea et al., 1994), that was 
assigned to calibrate the node including L. eremiticus and L. pyranthus, 
two endemics that are distributed only in La Palma (uniform distribution 
with minimum age = 0 Ma and maximum age = 1.77 Ma). Therefore, the 
use of these two taxa as calibration points is a way to reduce the error 
that results from a potential time gap between the emergence and 
colonization of an island. The time of colonization of each lineage to 
Macaronesia was based on the divergence time from the sister clade. 

2.5. Geographic range distribution, patterns of colonization and ancestral 
area reconstruction in Macaronesia 

The distribution of the included species was based on the taxonomic 
treatments of Lotus in this geographic region (Sandral et al., 2006; 
Santos-Guerra, 2007), from records in the herbarium LPA at the Jardín 
Botánico Canario ‘Viera y Clavijo’-UA CSIC, and from previous studies in 
Lotus (Degtjareva et al., 2006; Kramina et al., 2016). We considered 
Lotus species as native in Macaronesia when they were recorded in the 
different catalogues and checklists of Macaronesian Flora (i.e. Acebes 
et al., 2010; Silva et al., 2010; Sequeira et al., 2011 or Sánchez-Pinto 
et al., 2005), and when enough evidence existed that their colonization 
was not aided by humans. We only excluded L. ornithopodioides (re-
ported in Madeira) because available evidence suggests it most likely 
represents a recent human introduction. The reconstructions were made 
using the dispersal-extinction-cladogenesis (DEC) on the consensus tree 
(out of 20,000 trees) derived from the post-burnin analysis with Beast 
using the secondary calibration (dataset 1). In addition, to account for 
phylogenetic uncertainty, we also performed an statistical dispersal- 
extinction-cladogenesis (S-DEC) method (Beaulieu et al., 2013; Ree 
and Smith, 2008) using 1000 random trees obtained from the post- 
burnin analysis with Beast (dataset 1). We constrained the analyses to 
consider the geological history of the islands using the current distri-
bution of the species and the age of the islands to account for historical 

connections. We also considered the proximity of the islands and 
archipelagos to restrict the analyses. Both analyses (DEC and S-DEC) 
were inferred using RASP v.4.2 (Yu et al., 2015) and allowing only a 
maximum of two areas during the inference. 

2.6. Habitat types shifts in section Pedrosia 

We codified three habitat types (coastal and lowland scrub, montane, 
and high Canarian Mountain) within Pedrosia as discrete characters, 
following information from our own collections and previous studies 
(Ojeda et al., 2012; Allan et al., 2004; Sandral et al., 2006). Habitat types 
were mapped on the 1000 trees (to account for phylogenetic uncer-
tainty) obtained from the ML analysis of IQ-TREE using the concate-
nated dataset of four gene regions (dataset 3), with maximum likelihood 
and the model Mk1 of trait evolution (which allows multiple characters 
and equal probability of change among the habitat types scored) as 
implemented in Mesquite ver. 3.6.1(Maddison and Maddison, 2015). 

3. Results 

3.1. Phylogenetic analyses and position of section Canaria 

Similar topologies were obtained with dataset 1 based on ML and 
Bayesian, with high support values for the four Lotus sections distributed 
in Macaronesia (Figure Supplementary figures 1 and 2). Overall, we 
recovered similar topologies with ITS and trnH-psbA on separate ana-
lyses of dataset 2 (Figure Supplementary figures 3–7), but with more 
resolved and better supported clades (>80% bootstrap) with ITS (13 
sections/clades with ITS vs. only five with trnH-psbA). The differences on 
topology between ITS and trnH-psbA were mainly due to lack of reso-
lution on the latter gene region, with most sections/clades poorly sup-
ported (Figure Supplementary figures 3–7). Our individual and 
combined analyses based on datasets 1 and 2 consistently recovered 
sect. Canaria (with three species) as monophyletic and with good sup-
port (Figure Supplementary figures 3–8). We found that this section is 
more closely related to the clades encompassing sects. Chamaelotus, 
Heinekea, Lotea and Pedrosia than to the clades comprising sects. Bon-
jeanea and Dorycnium (Figure 1). Previous analyses (Allan et al., 2004; 
Sandral et al., 2010; Kramina et al., 2016) have used only one specimen 
of L. broussonetii (cultivated in Kew Gardens) to represent sect. Canaria. 
We included the sequence of this specimen and our results indicate that 
this specimen is a misidentification, as it clustered with all 
L. eriophthalmus specimens analyzed (data not shown). Both the separate 
and the combined analyses indicate that L. eriophthalmus is the earliest- 
diverging species within sect. Canaria (Figure Supplementary figures 
3–7). 

The combined analyses of dataset 3 (four gene regions) recovered 
similar topologies from previous studies in Lotus sect. Pedrosia (Allan 
et al., 2004; Ojeda et al., 2012). With this dataset we recovered four 
major clades within this section, three of them exclusive to Macaronesia 
and the remaining to Africa (Figure 4 and Figure Supplementary figures 
8 and 9). A higher number of informative sites were obtained with ITS 
than the plastid regions. Details and statistics of the three data sets and 
all gene regions are summarized in Table 3. 

Table 2 
Variable and parsimony informative sites on the four data sets used on the different analyses.  

DATASETS 1 2 3 

One marker Two markers (concatenated) Separate analyses  Four markers (concatenated) 

ITS ITS+trnH-psbA ITS trnH-psbA ITS trnH-psbA matK CYB6 Combined 

No. specimens 135 103 103 103 47 45 45 46 47 
Alignment bp 719 1139 701 453 603 344 898 183 2028 
Missing % 16.19 18.06 14.13 26.84 0.39 5.28 2.94 0.45 5.06 
Variable sites 319 (52.7) 493 (43.3) 341 (48.6) 147 (32.5) 42 (7.0) 13 (3.8) 14 (1.6) 1 (0.5) 70 (3.5) 
Parsimony inf. sites (%) 309 43) 323 28.4) 246 (35.1) 79 (17.4) 16 (2.7) 7 2.0) 10 (1.1) 1 (0.5) 34 (1.7)  

Table 3 
Beast model comparison. Marginal likelihood estimates (MLE) for the dataset 1 
under different clock models (Strict/Uncorrelated Lognormal = “Relaxed”) and 
speciation processes (Yule/Birth-Death = “Birth”) based on path sampling (PS) 
and stepping-stone (SS) methods implemented in BEAST v. 1.10.3.   

Strict-Yule Strict-Birth Relaxed_Yule Relaxed_Birth 

Path sampling − 8616.13 − 8574.62 − 8546.46 − 8515.45 
Stepping stone − 8616.98 − 8575.73 − 8547.32 − 8515.49  
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Fig. 1. Maximum likelihood phylogenetic tree (ML) of Lotus inferred using concatenated sequences of nrDNA and cpDNA regions (dataset 2, ITS + trnH-psbA). Values 
next to the branches represent bootstrap support. Names of the sections within genus Lotus are indicated, and also the nodes of the clades containing taxa of each 
section are showed with filled circles. Sections that colonized Macaronesia are indicated in bold and the main subclades within section Pedrosia are shown with 
dotted lines. 
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3.2. Tempo of the colonization events in Macaronesia 

Our results suggest that Lotus likely diverged about 7.86 Ma (95% 
HPD: 5.00–11.28), with all the colonization events to Macaronesia 
occurring relatively recently (Pleistocene), between 2.70 Ma (95% HPD: 
1.43–4.26) and 0.23 Ma (95% HPD: 0.06–0.51) (Figure 2, Table 4). 
Similar age estimates were obtained when using the secondary cali-
bration of the split between Sesbania and Loteae together with the ages 
of the endemic species of one of the youngest islands of the Canary 
Islands (Figure Supplementary figure 10). Also, congruent topologies 
and similar ages were recovered under the birth-death or Yule model 
(data not shown). Our data indicate that sect. Canaria most likely rep-
resents the earliest colonization event of Lotus to the Canary Islands (ca 
2.16 Ma). 

Kramina et al. (2016), pointed to a very close relationship between 
sect. Chamaelotus and L. alianus based on morphological and molecular 
similarities but also because they share biogeography. Therefore, since 
our results are in concordance with those of Kramina, from now on we 
are considering L. alianus as another species from sect. Chamaelotus. 
Consequently, our results showed that sect. Chamaelotus (L. glinoides and 
L. alianus) seems to represent one of the most recent events (ca 0.32 Ma, 
Figure 2). Lotus sect. Pedrosia diverged within the last 1.28 Ma (95% 
HPD: 0.68–2.14) and two African lineages seem to have colonized 
Macaronesia region within the same time frame, the lineage of L. erio-
solen colonized Cape Verde (ca 0.23 Ma, subclade A) and L. jolyi, the 
Canary Islands (ca 0.27 and 0.29 Ma, subclades B and C, respectively). 
All the diversification and colonization events of the two sect. Pedrosia 
most species-rich subclades likely occurred within the last 0.42 Ma (95% 
HPD: 0.22–0.69), when all islands within this archipelago were already 
established (Figure 2). The back-colonization event(s) to the continent 
from sect. Pedrosia occurred relatively recently (about 0.04 Ma). 

3.3. Patterns of colonization and ancestral area reconstruction in 
Macaronesia 

Our analyses based on S-DEC and DEC indicate that Macaronesia was 
colonized between 4 and 6 independent occasions (Figure 3) from four 
sections of Lotus: Pedrosia (including Rhyncholotus), Chamaelotus, Lotus 
and Canaria. Our ancestral reconstruction analyses suggest two likely 
sources for these colonization events, Africa (sects. Pedrosia and Cana-
ria) and Europe (sects. Chamaelotus and Lotus) (Figure 3 and Supple-
mentary figure 11). Sect. Pedrosia has the broadest distribution in all five 
Macaronesian archipelagos and our analyses suggest a minimum of two 
independent colonization events from two different African lineages. 
One lineage colonized only Cape Verde and diversified into at least six 
species (subclade A) (Figure 3). The second lineage most likely colonized 
Tenerife first, and later diversified into two main lineages: one that 
diversified further mainly in Tenerife and rapidly colonized Madeira and 
Azores (subclade C), and another that diversified in Gran Canaria 
(subclade B). In addition to sect. Pedrosia, sect. Chamaelotus is likely the 
result of two colonization events, one to Cape Verde (L. alianus) and the 
other to six of the seven major islands in the Canaries (L. glinoides). Sect. 
Canaria represents a single colonization event to the Canaries, and 
Tenerife was inferred as the most likely ancestral area for this lineage. 
We recovered two well supported lineages within sect. Canaria; one of 
them diversified within Tenerife and Gran Canaria (L. broussoneti and 
L. spectabilis), and the other (L. eriophthalmus) was restricted to Tenerife 
and then colonized La Gomera and the youngest islands of El Hierro and 
La Palma (Figures 2, 3, Figure Supplementary figures 10 and 11). 

We recovered three species within sect. Pedrosia with distribution in 
Africa (L. assakensis and L. pseudocreticus) and in Africa/Europe 
(L. creticus) that were nested within recently diverged lineages and that 
most likely represent back-colonization events to the continent (Fig-
ures 1 and 3); however, our analyses could not completely determine the 
number of independent back-colonization events due to low level of 
support, even with the four gene regions combined of dataset 3 

(Figure Supplementary figures 8 and 9). 

3.4. Habitat shifts in section Pedrosia 

We inferred the coastal and lowland scrub as the ancestral habitat, 
with at least nine independent transitions to montane habitats in only 
subclades B and C, and one transition to high Canarian Mountain in 
subclade C. Our results also indicate that after the colonization of the 
Canarian archipelago, each of the three main lineages (subclades A-C) 
diversified and colonized new habitats on their respective islands 
(Figure 4). Later, as new habitats became available, the most recent 
colonization events from species of subclades B and C seems to have 
involved colonization events to similar habitat types to other islands. 

4. Discussion 

4.1. Tempo and colonization patterns of Lotus in Macaronesia 

Lotus is considered a Mediterranean taxon with the extant diversity 
concentrated in Morocco, where 25% of the species are distributed, 
including representative species of nine sections (Degtjareva et al., 
2006; Kramina et al., 2016). Our results suggest that four sections of 
Lotus colonized Macaronesia in four or six independent instances, al-
ways giving rise to monophyletic lineages that are currently distributed 
in Africa and in Europe (Figure 3). Previous investigations in other 
Macaronesian plant groups also indicate the existence of multiple 
colonization events, ranging from two in Lavatera (Fuertes-Aguilar et al., 
2002), Convolvulus (Carine et al., 2004), Matthiola (Jaén-Molina et al., 
2009), three events in Festuca (Díaz-Pérez et al., 2008), four coloniza-
tions in Limonium (Koutroumpa et al., 2018) and a maximum of five 
independent colonizations events in Scrophularia (Navarro-Pérez et al., 
2015). 

Sections Chamaelotus and Pedrosia seem to have colonized Maca-
ronesia from diverse lineages in Africa (Saharo-Arabian and Sudano- 
Zambesian floristic regions) (Kramina et al., 2016). L. alianus is an 
endemic species from the northern-most islands of Cape Verde (Santo 
Antão and São Vicente) (Kirkbride, 2010), while L. glinoides, the other 
species from sect. Chamaelotus that is currently present in Macaronesia, 
is distributed on all islands (except La Palma, of the Canary Island ar-
chipelago), northern Africa and the Arabian Peninsula. These two taxa 
are recovered as sister species in previous phylogenetic analyses (Kra-
mina et al., 2016), and our dating analyses indicate that the ancestor of 
these taxa colonized Macaronesia relatively recently (0.32 Ma) 
(Figure 2). Two possible scenarios could explain their current distribu-
tion: a) two independent colonization events, one to Cape Verde and 
another to the Canary Islands (Figure 3), and b) one independent colo-
nization event, first to the Canary Islands and then from there to Cape 
Verde. 

Denser sampling and the inclusion of faster evolving regions will be 
necessary to discern the most likely scenario in sect. Chamaelotus. 

Section Pedrosia seems to have colonized Macaronesia in two inde-
pendent instances. One involved a long-distance colonization event from 
West Africa to the Cape Verde archipelago at about 0.23 Ma (Subclade 
A). This lineage colonized all islands within this archipelago and 
diversified into at least six species (Sandral et al., 2006) (Figure 2). An 
alternative explanation is that this lineage had a wider distribution in 
Africa in the past, especially during the periods when the Sahara was 
moister than at present (Désamoré et al., 2011; Jolly et al., 1998; Mairal 
et al., 2015; Prentice and Jolly, 2000), and therefore the dispersion to 
Cape Verde probably was from a closer continental source area. The 
second sect. Pedrosia lineage colonized the Canary Island archipelago 
about 0.27–0.29 Ma and diversified into two main lineages (subclades B 
and C) (Figures 1 and 2). This lineage most likely colonized first the 
easternmost islands of this archipelago, Fuerteventura and Lanzarote, 
and then the westernmost islands. Our results suggest that the largest 
and most diverse islands (Gran Canaria and Tenerife) seem to have 
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Fig. 2. Bayesian dated Lotus phylogeny from the relaxed molecular-clock analysis of dataset 1 (ITS, 135 accessions representing the genus Lotus and six genera as 
outgroup). The analysis was calibrated with the age estimates from Lavin et al. (2005) (mean 14.4 Ma, SD = 1.3) implemented on the crown node of Loteae. Time 
scale is in million years (Ma). Numbers near branches correspond to the average divergence time estimates, and the 95% posterior credibility intervals are repre-
sented by the blue bars. Green colour signals the ages of the independent events of colonization in Macaronesia from four sections within Lotus (Chamaelotus, Lotus, 
Pedrosia, and Canaria). Circles denote the nodes of the main divergence events. Names in red indicate species that are distributed in the continent (possible back- 
colonization events). On the left of the tree are included insets depict the patterns of emergence and formation of the islands up to the present time (adapted from 
Caujapé-Castells et al., 2017). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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played a major role during the diversification of this lineage, in accor-
dance to a previous biogeographic pattern detected for several Canarian 
plant lineages (i.e. Aeonium, Cheirolophus or Micromeria, Mort et al., 
2002; Vitales et al., 2014; Puppo et al., 2015; Curto et al., 2017), which 
suggests that the central Canaries were the centers of diversification to 
both the older easternmost islands and to the younger westernmost 
islands (Sanmartín et al., 2008, 2010). In line with the fact that the 
complex geological history of the islands played an important role in 
generating patterns of genetic diversity (Marrero and Francisco Ortega, 
2001; Caujapé-Castells et al. 2017), these two islands also host a higher 
variety of habitats at present, most of which must have been formed 
during the last 2 Ma due to volcanic activity (García-Talavera, 1999). 
Two sect. Pedrosia lineages (subclades B and C) diversified in these two 
islands exploiting new available habitats, and we inferred between 2 and 
4 shifts from coastal scrubland and lowland to higher elevations habitat 
types (montane and high Canarian mountain) on each of these subclades 
(Figure 4). After occupying available habitats within their correspond-
ing islands, these two lineages (subclades B and C) colonized mainly 
similar habitat types that became available during the most recent 
volcanic activity and the emergence of new islands (La Palma and El 
Hierro). Thus, it seems that the exploitation of new habitats within 
subclades B and C was achieved only early during the colonization 
process. For instance, the most recently diverged L. sessilifolius pop-
ulations are distributed in the coastal and lowland scrub habitats in 
Tenerife, La Palma, La Gomera and El Hierro (Yang et al., 2018; Ojeda 
et al., 2012). Also, other dated phylogenies of Macaronesian plants (Kim 
et al., 2008; Guzmán and Vargas, 2009; Curto et al., 2017; Menezes 
et al., 2018) reveal different evolutionary processes underlying lineage 
diversification. Habitat shifts from a generalist habitat to laurel forest 
and subsequently to sclerophyllous zones, and geographic isolation have 
been reported as important on the diversification of Pericallis in the 
Canary Islands (Jones et al., 2014). In Cheirolophus, ecological adapta-
tion has allowed the diversification into different habitats within the 
same island and into similar habitats in different islands (Vitales et al., 
2014). 

The other source area of colonization events to Macaronesia is 
related to lineages currently distributed in mainland Europe. Lotus 
pedunculatus is widely distributed in Europe and it has been introduced 
to other temperate regions in the world. The current distribution of this 
species restricted to Madeira and Azores (while absent in other islands 
within Macaronesia), might indicate that it colonized these two 

archipelagos without human aid. However, because in this study we did 
not include samples from these islands (only samples collected in the 
mainland of Spain and Canada), we can neither determine the time 
frame of its colonization, nor completely rule out human intervention on 
its current distribution in Macaronesia. 

4.2. Phylogenetic position and colonization patterns of section Canaria 

All our analyses support this Canarian endemic lineage as mono-
phyletic (Figure 1, Figure Supplementary figures 3–7), and support the 
previously reported relationships of sect. Canaria to the CHZ (Canaria, 
Heinekenia, Zygocalix) clade within Lotus clade based on a single 
specimen (Kramina et al., 2016). Thus, sect. Canaria is more closely 
related to sects. Heinekenia, Lotea, and Pedrosia than to sects. Dorycnium 
or Bonjeana (Kramina et al., 2016). This section seems to represent the 
oldest colonization event of Lotus, which our estimates suggest at about 
2.16 Ma (Figure 2 and Table 4); however, this group seems to have 
diversified in the Canary Islands ca 0.19 Ma, more recently than the 
diversification in sect. Pedrosia subclades B and C (ca 0.27 and 0.29 Ma, 
respectively, Figure 2). Our extensive sampling indicates that the most 
recent colonization within sect. Canaria occurred by L. broussonetii that 
in a period less than 0.20 Ma ago (Figure 2), diversifyed from 
L. spectabilis (only present in the most recently formed areas of Tenerife) 
and L. eriophthalmus (distributed in the youngest islands, La Palma and 
El Hierro) But unlike sect. Pedrosia, sect. Canaria either experienced 
higher extinction rates (there is a large gap between the stem age and the 
crown age of the current endemics of this section) and/or had lower 
diversification rates or lacked the adaptive traits to exploit the avail-
ability of new habitats. 

4.3. Back-colonization events to the continent 

The geographical proximity between the Canary Islands and the 
continent has facilitated the interchange of biodiversity, especially in 
the past when the sea level was lower (García-Talavera, 1999; Rijsdijk 
et al., 2014). Back-colonization from the Canaries to the continent 
(‘‘boomerang effect”, Caujapé-Castells, 2004) has been suggested for 
several taxa distributed in both Macaronesia and mainland areas (i.e. 
Aeonium, Androcymbium, Convolvulus or Matthiola, see Jaén-Molina 
et al., 2009). More recently, Sun et al. (2016) and Gruenstaeudl et al. 
(2017) concluded that Euphorbia and Tolpis are examples of Maca-
ronesian plant lineages that have experienced back-dispersal events to 
the continent (North Africa and Mediterranean Europe). Our results 
suggest that three species within subclade B (L. creticus, L. pseudocreticus 
and L. assakensis) are nested within recent diverged lineages, indicating 
back colonization events from this group to the continent. Although we 
have support for a back-colonization event, we do have enough support 
to determine the number of independent events (Figure Supplementary 
figures 8 and 9). Lotus creticus is widely distributed in mainland Europe, 
Africa and the Mediterranean region, while L. pseudocreticus and 
L. assakensis are restricted to Africa (Sandral et al., 2006). Considering 
the recent age of this event (within the last 0.04 Ma), and that all three 
species are grouped within the same lineage, the most plausible scenario 
is a single colonization event to Africa, and further dispersion of 
L. creticus. A denser sampling within L. creticus and faster evolving re-
gions will be necessary to fully determine the number of back- 
colonization events in Lotus. In the absence of evidence for dispersal 
vectors in Lotus, palaeowinds (the ‘Westerlies’, Rognon and Coude- 
Gaussen, 1996) are the more likely option to explain this pattern (see 
Caujapé-Castells, 2011 for a more general context), that has been also 
observed for L. lancerottensis (endemic from Fuerteventura and Lanzar-
ote), possibly involved in the “boomerang’ between the Canaries and 
mainland north Africa that gave rise to the Moroccan L. assakensis (Allan 
et al., 2004). 

Table 4 
Estimated divergence times of the major sections within Lotus (and subclades 
within Pedrosia) that colonized Macaronesia, based on two calibration strategies, 
under a Birth-death speciation process and an uncorrelated lognormal model of 
clock evolution.  

Genus Lotus Secondary age calibration Secondary + islands age 
calibration 

mean 
age 
(Ma) 

CI values (95% 
HPD) 

mean age 
(Ma) 

CI values (95% 
HPD) 

Sect. Canaria 2.16  2.27  
Sect. Pedrosia 1.28 0.68–2.14 1.37 0.67–2.07 
subclade A 0.23 0.06–0.51 0.30 0.07–0.50 
subclade B 0.27 0.13–0.47 0.35 0.14–0.47 
subclade C 0.29 0.12–0.48 0.36 0.22–0.68 
subclade D 0.26 0.05–0.57 0.34 0.05–0.56 
Sect. 

Chamaelotus** 
0.32 0.08–0.75 0.40 0.07–0.76 

Sect. Lotus * 2.70 1.43–4.26 2.84 1.51–4.27 

*The only representative of these sections that are distributed in Macaronesia is 
L. pedunculatus. 
** Although when this species was described it was included in section Lotus 
(Kirkbride, 2010), due to its close relationship with L. glinoides, which is strongly 
supported by Kramina et al. (2016) and the present study, we considered this 
species as included in sect. Chamaelotus. 
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Fig. 3. Inference of the colonization events of Lotus sections (Pedrosia, Canaria, Chamaelotus, and Lotus) in the Macaronesia region using the S-DEC as implemented in 
RASP. Colonization events to Macaronesia are indicated with black circles where the number indicates the likely chronological order (see Figure 2). Red circles 
indicate the likely number of back-colonization events from Macaronesia to the continent (Africa and Europe). Colors indicate species distribution in the major areas 
(see legend). Color of the arrows corresponds to the four Lotus sections and the hypothesized routes of colonization. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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5. Conclusions 

Our analyses highlight Lotus as a genus with a very complex and 
dynamic evolution in Macaronesia. At least four Lotus lineages (sections) 
seem to have colonized Macaronesia in between four to six independent 
occasions since the Pleistocene. Both Africa and Europe seem to have 
been important sources of these colonization events. We recovered 
distinctive patterns of colonization, with some lineages colonizing only 
one archipelago (sect. Canaria), while other lineages where able to 
colonize more than one archipelago (sect. Pedrosia and sect. Chamaelo-
tus), although we cannot rule out that extinction processes could have 
taken place (Marrero, 2004) and that in the past, e. g. sect. Canaria, was 
also present in other archipelagos. Section Pedrosia represents the most 
successful of the lineages distributed in Macaronesia, comprising the 
larger number of species, habitat diversity and distribution range. Our 
results highlight the importance of Tenerife and Canaria in the diversi-
fication of sects. Pedrosia and Canaria and further colonization of adja-
cent archipelagos (except Cape Verde). Faster evolving regions and a 
denser sampling will be necessary to further determine the relationships 
and colonization patterns within the most recently diversified lineages 
of sects. Lotus, Chamaelotus and Pedrosia, including the number of in-
dependent back-colonization to the Africa and Europe in the latter 
section. 
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Fig. 4. Reconstruction of habitat types in section Pedrosia using the 1000 maximum likelihood (ML) trees obtained from the four genes combined (dataset 3, 
ITS+trnH-psbA+matK+CYB6). Color circle at the tip of the phylogenetic tree indicates current habitat types. Pie charts on the nodes represent the probability of the 
ancestral state for each node. Values next to the branches indicate bootstrap/Bayes support. Photographs of the three habitat types are depicted for selected species. 
Photo credits: D. I. Ojeda and G. García Casanova. 
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translation of Élémens de botanique). 
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