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Abstract: In the last decade, the impact of needle blight fungal pathogens on the health status
of forests in northern Spain has marked a turning point in forest production systems based on
Pinus radiata species. Dothistroma needle blight caused by Dothistroma septosporum and D. pini, and
brown spot needle blight caused by Lecanosticta acicola, coexist in these ecosystems. There is a clear
dominance of L. acicola with respect to the other two pathogens and evidence of sexual reproduction
in the area. Understanding L. acicola spore dispersal dynamics within climatic determinants is
necessary to establish more efficient management strategies to increase the sustainability of forest
ecosystems. In this study, spore counts of 15 spore traps placed in Pinus ecosystems were recorded in
2019 and spore abundance dependency on weather data was analysed using generalised additive
models. During the collection period, the model that best fit the number of trapped spores included
the daily maximum temperature and daily cumulative precipitation, which was associated to higher
spore counts. The presence of conidia was detected from January and maximum peaks of spore
dispersal were generally observed from September to November.

Keywords: Lecanosticta acicola; conidiospores; weather variables; generalized additive models

1. Introduction

Needle blights are some of the most seriously damaging diseases affecting the health
of Pinus radiata in Spain. The largest outbreak of needle diseases in the recorded history
of P. radiata in northern Spain began in 2018 and has led to a significant modification of
the landscape from a serious reconsideration of silviculture in the forestry sector. Needle
blights identified in the study area include Dothistroma needle blight (DNB) caused by
Dothistroma septosporum (Dorogin) Morelet and D. pini Hulbary, and brown spot needle
blight caused by Lecanosticta acicola (Thümen) Sydow. The latter is by far the most frequent
and abundant in P. radiata plantations [1]. In the last two decades, reports of L. acicola
expansion in the northern hemisphere have increased, and also the number of host species
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and the climatic conditions in which this pathogen is detected [2]. Changes in the climate
were associated with its spreading in the northeastern United States and Canada [3–5].

Conidia release of L. acicola mainly occurs by rain splash, a characteristic of fungi
with a mucilaginous spore matrix [2]. Thus, conidiospore dispersal aligns with the rainfall
season of the specific region being studied and depends on related factors such as rainfall
occurrence and relative humidity [2,5]. Another variable that can directly or indirectly
affect spore dispersal is temperature. The temperature range for conidia dispersion is
−5.5 ◦C to 28 ◦C [2]. Temperatures above 30 ◦C negatively influence the germination,
growth, and sporulation of L. acicola [5]. Conidia presence in forest ecosystems has been
detected from spring to winter, with peaks in spore detection occurring from early summer
to late autumn in one or two maximum time periods [5–7]. The capture of conidia is limited
to short distances. For example, Wyka et al. [5] rarely detected spores at distances more
than 3.05 m from the source tree, while, in another study, dispersion to adjacent trees
resulted in the rapid spread of disease in forest stands [2]. Long-distance dispersal of L.
acicola conidiospores has been linked to strong winds during rain, insects and especially
silviculture practices involving the movement of infected plant material and tools [4,7].
Avoiding the new introduction of plant material is even more important because the
increase in genetic diversity of the pathogen can enhance its potential aggressiveness or
virulence [8].

Lecanosticta acicola ascospores are considered airborne and, thus, can be dispersed over
long distances mainly by air currents [9]. However, their presence is less frequent. For
instance, in Europe, although there is evidence indicating that sexual reproduction exists
when both mating-type idiomorphs are present [2,10], the sexual stage was only recently
confirmed [11].

Control of L. acicola is difficult because it can survive in both dead and living needles
in forest ecosystems [9]. In addition, the infectious success of this pathogen increases
due to a better adaptation to different temperature ranges [2] of southern and northern
L. acicola lineages. Severe infection caused by L. acicola has a serious impact on growth and,
in extreme cases, causes tree mortality [12,13]. Several measures have been suggested to
minimise and prevent needle blight during plantation establishment and management.
These include the use of healthy and good quality propagation material in areas far from
infected pines [7,14,15] and the application of thinning treatments [16]. Thinning in winter
was reportedly effective in reducing the severity of the disease in native stands of P. strobus
in the United States [16]. However, local silvicultural management, including pruning and
thinning, performed mainly in P. radiata plantations in the Atlantic area of Spain, did not
result in the expected improvement [1]. In this region, 84% of the plantations are situated
in an area with the highest climate risk factors for disease development, which might
has impaired the effect of these management techniques [1]. The periods during which
pruning activities of infected pines are executed are also relevant because conidiospores
are discharged during rainy or wet periods and can adhere to the pruning saw blades,
constituting a disease pathway from infected to healthy trees [7].

To minimise the infection of L. acicola through forest activities, it is important to
understand the dynamics of spore dispersal and the favourable environmental conditions
for the infection within a determined area. Activities that can reduce the disease impact may
be implemented at times in which their effects could be more efficient against the disease.

The objective of this study was to monitor the production and dispersal of conid-
iospores of L. acicola in P. radiata ecosystems, representative of the Atlantic climate, with the
aim of modeling spore abundance as influenced by the weather.
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2. Materials and Methods
2.1. Spore Traps Location

A total of 15 spore traps were placed in P. radiata plantations in the Basque Country
(Figure 1). The stands were selected because of their high levels of defoliation caused by
L. acicola (confirmed by tree symptoms and identification of the pathogen by molecular
methods and fungal morphology) [1] and because their locations covered different climatic
regions. Levels of defoliation were quantified by the 5% intervals method [17].

Traps were placed in the interior of the plot, avoiding the edges at a distance from
the closest trees of approximately 1.5 m. Traps were diagonally located in the transect
following the distribution of P. radiata towards the coast. Two were located in the province
of Araba, two in the province of Gipuzkoa, and 11 in the province of Bizkaia (Figure 1). The
characteristics related to each trap location are listed in Table 1. The traps corresponding to
the locations of Albina, Oleta, Lezama, Unbe, Pagatza and Elorrio were set on the sites on 7
January 2019. The traps corresponding to the locations of Mallabia, Muxika, Igorre, Güeñes
and Karrantza were set on 31 January 2019, and those located on Idiazabal-Larraegi and
Azpeitia-Igarate were set on 4 February 2019.
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Table 1. Locations of spore traps and stand characteristics.

Trap ID Province X
Coordinates

Y
Coordinates Orientation Slope (%) Age Defoliation

Level of Site (%)

Albina Araba 531,468 4,762,368 Southeast 5 to 10 13 25
Oleta Araba 531,448 4,765,973 Southwest 20 to 30 9 30
Idiazabal Larraegi Gipuzkoa 563,439 4,760,042 Southwest 30 to 50 4 30
Azpeitia Igarate Gipuzkoa 557,840 4,777,305 Northwest 30 to 50 9 70
Mallabia Bizkaia 535,952 4,785,234 Northeast 20 to 30 <15 >30
Muxika Bizkaia 523,110 4,787,806 Northeast 30 to 50 <15 >30
Igorre Bizkaia 516,044 4,780,811 South 30 to 50 <15 >30
Güeñes Bizkaia 493,228 4,783,097 Northeast 50 to 100 <15 >30
Karrantza Bizkaia 475,875 4,785,737 West 10 to 20 <15 >30
Elorrio Bizkaia 539,801 4,778,037 Northwest 10 to 20 4 50
Pagatza Gipuzkoa 540,597 4,776,579 North 10 to 20 12 55
Lezama1 Bizkaia 515,746 4,793,192 South 20 to 30 5 55
Lezama2 Bizkaia 515,746 4,793,192 South 20 to 30 5 55
Umbe1 Bizkaia 506,024 4,799,627 North 5 to 10 14 50
Umbe2 Bizkaia 506,024 4,799,627 North 5 to 10 14 50

2.2. Design and Measurements of Spore Traps

The passive impact spore traps were based on the design of Iturritxa and Ganley [18].
Four microscope slides were positioned vertically on an expanded polystyrene disk, ap-
proximately 6 cm thick and 9 cm in diameter, and covered by a Petri plate 9 cm in diameter.
Four gaps were carved in the polystyrene base, thus that the slides formed a cross shape.
To support the Petri plate, a hole was drilled in its centre, and a 9 cm nail was inserted. The
nail point was affixed to the polystyrene disk. One side of each slide was covered with a
thin layer of technical grade soft Vaseline (Panreac Applichem, Barcelona, Spain) before
being placed in the base. Each trap was attached to the end of a 1.70 m post.

Microscope slides were collected approximately every 2 weeks, and spores were
counted with a microscope using a 40× objective. Conidia were identified based on the
morphological description of L. acicola described previously and were easily distinguished
from other spores because of their slight crescent shape and olive colour [5,12]. The
measured area on the slide was calculated by dividing the length of the measurement on
the slide by the field of view (FOV). The FOV is the ratio of the microscope field number
(22 mm) to the objective magnification [19]. The length of the measurement was set as the
length of the cover slip. Once the area was determined, the number of spores per m2 was
calculated and the spore concentration of the four slides was totalled. This measurement
was normalised to the days elapsed since the change in the slides until their collection.
Differences in the average number of spores trapped in different months were compared
using the Kruskal–Wallis test in IBM SPSS (version 27.0.; IBM Corp. Armonk, NY) [20,21].

2.3. Meteorological Data

To determine the effects of environmental conditions on spore abundance, 10 variables
were included for model parameterisation, which measured 5 different meteorological pa-
rameters. The parameters and corresponding variables were temperature (daily maximum,
daily minimum, daily mean in ◦C), rainfall (daily cumulative precipitation in mm, number
of days with >1 mm cumulative precipitation), irradiance (daily maximum and daily mean
in W/m2), relative humidity (daily maximum and daily mean), and wind speed (daily
average speed, in km/h).

Although historical weather reanalysis datasets with a fine geographical resolution
exist, we chose to use observed meteorological data from the network of weather stations
of Euskalmet, the Basque Country Public Meteorological Institute [22]. This was con-
ducted in order to incorporate direct measurements and, thus, avoid potential confounding
intermediate effects in the statistical models. Another reason for this is that the conclu-
sions obtained from the models will be readily available for the surveillance teams and
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decision-makers on-site. Meteorological data were assigned to traps by selecting variables
from the closest station and completing missing variables by proximity in cases where
relevant variables were missing, up to a maximum distance of 10 km. After checking
for erratic values and filtering, meteorological variables were calculated for the period of
spore trapping. The supplied information had a 10-minute frequency that was aggregated
accordingly to compute daily values, and then aggregated again to compute summary
variables for the time periods between each spore count (sum of the number of days with
>1 mm3 cumulative precipitation, mean for the rest of the variables). All extraction and
transformation of the data were performed in R version 4.0.3 [23].

2.4. Statistical Analysis

We used a generalised additive model (GAM) [24] to analyse spore abundance depen-
dency on weather data. GAMs assume a combination of linear and nonlinear (smooth)
effects of the explanatory variables in the dependent variables. The nonlinear effects are
smooth functions constructed as linear combinations of a fixed set of basis functions. A
higher number of basis functions used in the construction of a smooth function accounts
for the more complex effect of the corresponding variable. All statistical analyses were
performed in R, version 4.0.3 using the ‘mgcv’ package [24].

A preliminary analysis revealed strong correlations among the meteorological vari-
ables that measured the same parameters. In particular, the variables within each group
(temperature, rainfall, humidity and irradiance) had pair-to-pair correlations >0.8. To
select the best variables within each group with these highly correlated variables, we fitted
several GAMs and selected the best among them as follows (all models shared the same
common structure):

spore count = s (time) + re (trap) + temp + rainfall + humidity + irrad + wind

where s (time) represents a smooth function of time that accounts for the temporal evolution
of the response variable, and re (trap) models the location of each observation as a random
effect. The remaining variables represent the linear effects of any of the variables measuring
the corresponding parameter. That is, the temp can model daily maximum, mean, or
minimum temperature; rainfall denotes daily cumulative precipitation or days with >1 mm;
humidity represents the daily maximum or mean relative humidity; irrad denotes daily
maximum or mean irradiance; and wind always corresponds to daily average wind speed.
We considered each possible combination of variables to measure each of the parameters
and fit 4 models for each combination. These 4 models have a different number of basis
functions in the construction of the temporal component s (time) (k = 6, 8, 10, 12), and were
included in the model selection process to seek an equilibrium between less precise and
over-fitted models. We then chose the model with the lowest Akaike Information Criterion
(AIC) score among all the fitted models (4 × 3 × 2 × 2 × 2 = 96 total) and inspected the
meteorological variables used in this model, as well as those with the closest AIC scores.

As a check for the contribution of the weather variables to the estimation, we chose the
statistically significant variables of the best model in the AIC score and fitted a model that
only included these as linear covariates. We then compared its precision (% of deviance
explained) to a null model with no weather covariates and to a full model, including the
10 weather variables under analysis.

We also tested the robustness of the best model upon changes in the input data in
the following manner. We fit the same model to the dataset resulting from leaving out
the measurements from one trap and compared the precision of this model to that of
the original one (% of deviance explained) to search for a significant improvement or
loss in precision. We repeated this process and removed further traps until the largest
improvement in deviance explained by the removal of a single trap was <2%.
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3. Results
3.1. Measures of Spore Dispersal

All 15 locations showed positive detection of L. acicola, although the number of cap-
tured spores varied significantly among locations and time periods. During the collection
period, maximum peaks of spore presence were observed from September to November
in 7 of the 15 traps (Unbe, Lezama, Igorre, Muxika, Elorrio, Mallabia and Olaeta). In
most of them, a small increase in spore concentration occurred in May and July, except in
Elorrio, where the peak detected in May was almost as high as that detected in Septem-
ber, and in Olaeta, which presented a high peak in early August. In two of the traps
(Azpeitia and Idiazabal), although a high spore concentration was observed in the fall,
the maximum values were detected from the end of May to the beginning of June. Three
of the traps did not register spore concentration maximum periods as the others, with
their peaks evident in February (Pagatza) or April (Güeñes and Karrantza). In these last
three locations, only a small increase in spore concentration was observed during the
fall. In Albina, the maximum spore concentration was detected in April, and high spore
peaks appeared in February and November (Table 2). When comparing spore abundance
measurements among all the locations, the maximum amounts were detected in the traps
of Lezama 1 (1,446,791 spores/m2/day), Pagatza (582,592 spores/m2/day), Lezama 2
(578,716 spores/m2/day) and Unbe 1 (504,439 spores/m2/day).

In all traps, spores were detected from the first measurement in January or February,
except in Karrantza and Güeñes, where they started at the end of February (in the third
measurement). Spore counts were significantly affected by the month of the year, according
to the Kruskal–Wallis test (H(11) = 35.7, p < 0.001) (Figure 2). The average number of spores
trapped in October was significantly larger than those in the rest of the months. Although
there were periods in which spore presence was unnoticeable in all the locations, the minimum
values for all the traps collectively occurred in March and December (Figure 2).

Table 2. Number of spores per square meter per day for each trap in the assay period. Maximum spore values for each
location are represented by bold letters. ND: no data.

Idiazabal Azpeitia Karrantza Güeñes Igorre Muxika Mallabia Unbe1 Unbe2 Lezama1 Lezama2 Elorrio Pagatza Olaeta Albina

07/01/2019 ND ND ND ND ND ND ND 50,295 6035 ND ND 18,106 42,247 4024 2012

21/01/2019 ND ND ND ND ND ND ND 116,683 54,318 261,532 74,436 114,672 86,507 21,906 0

04/02/2019 ND ND 0 0 18,505 14,235 39,858 26,746 10,698 77,564 40,119 18,722 2675 21,906 0

18/02/2019 6404 6404 0 0 0 0 0 0 0 35,524 0 0 582,592 19,824 88,105

04/03/2019 0 0 2496 0 17,474 7489 24,963 28,419 7105 10,657 17,762 28,419 3552 7105 0

18/03/2019 1949 1949 23,793 1322 7931 10,574 15,862 17,762 7105 0 0 0 0 0 0

01/04/2019 8966 0 7931 1322 5287 6609 6609 202,020 15,151 75,757 35,354 10,101 0 0 0

15/04/2019 0 25,617 52,459 34,973 31,475 13,989 13,989 202,020 15,152 75,758 35,354 10,101 0 0 102,973

29/04/2019 25,617 6404 3264 3264 11,424 8160 8160 9946 2486 134,280 14,920 37,300 12,433 12,433 7460

13/05/2019 2989 13,185 5649 0 7533 5649 1883 31,971 3552 142,096 120,781 284,191 28,419 0 0

27/05/2019 44,830 110,036 22,732 3497 110,164 66,448 57,705 14,210 63,943 92,362 81,705 138,543 56,838 31,971 0

10/06/2019 50,104 5274 5649 0 28,247 5649 7533 29,840 6631 46,418 72,942 66,311 0 46,181 0

24/06/2019 16,302 0 0 0 36,721 40,219 0 0 11,477 3826 7651. 0 0 92,362 3552

08/07/2019 0 0 4080 0 134,645 96,564 28,561 0 7105 39,076 85,257 3552 49,733 23,272 18,864

22/07/2019 3202 0 4080 0 134,645 96,564 28,561 53,049 33,156 102,782 62,996 62,996 43,102 23,272 18,864

05/08/2019 3202 0 0 0 54,837 75,401 67,567 9947 4973 39,787 34,813 74,600 0 169,094 29,840

19/08/2019 0 0 0 0 54,837 75,401 67,567 46,807 4973 32,180 1755 32,180 1170 2925 2925

02/09/2019 10,345 0 1749 0 117,159 138,142 96,175 144,679 226,061 1,446,791 578,716 149,200 9042 60,391 10,657

16/09/2019 0 0 0 0 132,896 78,689 36,721 418,346 198,934 854,245 424,197 359,836 17,553 7105 0

30/09/2019 0 0 0 0 342,733 35,780 11,299 294,848 63,943 291,296 209,591 191,829 60,391 177,619 10,657

14/10/2019 35,864 65,750 0 0 172,998 127,301 200,744 195,381 39,076 255,772 209,591 269,982 14,210 134,991 40,260

28/10/2019 32,021 64,754 0 1748 125,902 253,552 103,169 504,439 195,381 319,715 298,401 127,886 14,210 134,991 40,260

11/11/2019 22,415 84,678 0 0 131,820 86,625 122,405 165,778 175,725 62,996 16,578 179,040 3316 71,048 60,391

25/11/2019 6897 32,875 1632 0 29,377 44,066 26,113 0 0 95,914 49,733 110,124 7105 29,840 6631

09/12/2019 0 4981 0 0 5246 13,989 1749 8913 0 41,592 77,243 8913 0 17,825 0

23/12/2019 4483 16,302 0 1632 27,745 8160 37,537 17,361 0 14,205 6313 17,361 1578 2185 0
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Figure 2. Mean of the number of spores per square meter per day in all trap locations during the assay period. Error bars
indicate the standard error. The months marked with the same letters are not significantly different (p > 0.05).

3.2. Statistical Analysis

The model that best explained spore load included daily maximum temperature,
daily cumulative precipitation, daily maximum relative humidity, daily mean irradiance
and average wind speed as meteorological variables. Of these, only daily maximum
temperature and cumulative precipitation were statistically significant (Table 3).

Table 3. Summary of the linear effects of the meteorological variables in the best model in the Akaike Information Criterion
(AIC) score when fitting data from all the traps, and in the same model fitted to data from all traps except those of Pagatza
and Lezama 1.

Data from All Traps Leaving out Pagatza and Lezama 1

Variable Coefficient Std. Error Coefficient Std. Error

Daily maximum temperature * 78,002 38,497 83,075 27,376

Daily cumulative precipitation * 47,580 26,445 44,785 19,572

Daily maximum relative humidity 12,280 19,662 10,527 13,340

Daily mean irradiance −2106 2386 −1811 1650

Daily average wind speed −41,958 100,710 −11,860 74,291

Statistically significant variables (with a significance value of 0.1) are marked with an asterisk (*).

Moreover, while the number of basis functions and the variables measuring rela-
tive humidity and irradiance varied among the best models, maximum temperature and
cumulative precipitation consistently appeared in the top fitted models and showed a
statistically significant and positive effect on the spore count. In particular, when sorting
the models based on differences in the AIC score with the best model (∆i) and selecting
those with ∆i < 2 (the usual rule of thumb for models with substantial support [25]), the
daily maximum temperature and daily cumulative precipitation were included in all of
these models (Table 4).
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Table 4. Weather variables and number of basis functions of the top 8 fitted models, ranked by ascending difference in AIC
score with the best model (∆i). k denotes the number of basis functions used in the construction of the smooth temporal
component.

Model Temp Rainfull Humidity Irrad Wind k ∆i

1 Daily maximum * Cumulative
precipitation * Daily maximum Daily mean Average speed 8 0

2 Daily maximum * Cumulative
precipitation * Daily mean Daily mean Average speed 8 0.683

3 Daily maximum * Cumulative
precipitation * Daily maximum Daily maximum Average speed 8 0.725

4 Daily maximum * Cumulative
precipitation * Daily maximum Daily mean Average speed 10 1.163

5 Daily maximum * Cumulative
precipitation * Daily maximum Daily mean Average speed 12 1.373

6 Daily maximum * Cumulative
precipitation * Daily mean Daily maximum Average speed 8 1.41

7 Daily maximum * Cumulative
precipitation * Daily mean Daily mean Average speed 10 1.795

8 Daily maximum * Cumulative
precipitation * Daily maximum Daily maximum Average speed 10 1.897

Statistically significant variables are marked with an asterisk (*).

The model including only daily maximum temperature and cumulative precipitation
as meteorological covariates yielded a 31.9% of explained deviance, with both variables
being statistically significant (coefficients 76,027 and 55,281, respectively). The full model
that included the 10 available variables showed a 1.4% improvement in deviance explained,
in contrast to the 18.1% decrease yielded by the null without meteorological covariates.

When leaving out one of the traps from the dataset, there was an average change of
0.9% in the deviance explained in the model selected in the fitting process. Leaving out
the measurements from a particular trap (Pagatza) increased the precision of the model
to a 36.6% deviance explained. Leaving out the data from an additional trap (Lezama 1)
yielded a further increase to 42.1% in deviance explained (Table 3).

In view of the above results, we summarise the final model of our analysis in Table 5.
This includes daily maximum temperature and cumulative precipitation as linear covariates
(as these were the most, and only, significant variables for the estimation of spore load in
the previous models) and fits them to data from all the traps, except Pagatza and Lezama 1
(as these seem to decrease the precision of the estimates). This model represents the most
precise approximation of the effect of weather covariates on the number of spores. Thus, it
is the one that should be used for surveillance and predictions upon further development
and validation with future data collection.

Table 5. Summary of the final model of the analysis.

Final Model Deviance Explained = 41.5% k = 8 Basis Functions

Variable Coefficient Std. error

Daily maximum temperature * 77,652 26,153

Cumulative precipitation * 50,438 18,987
Statistically significant variables are marked with an asterisk (*).
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4. Discussion

In this study, we modeled the dependency of spore abundance on weather data, as
analysed by GAMs, based on the dispersal patterns of conidiospores of L. acicola in P. radiata
ecosystems that are representative of the Atlantic climate during 2019.

Our analysis suggests that both high temperatures and precipitation contribute signif-
icantly to the appearance of L. acicola spores. More precisely, the maximum temperature
and cumulative daily precipitation seem to be the best available indicators for an increase
in spore count. Indeed, these variables provided a notable improvement to our statistical
model. Adding more variables, up to a total of 10, only slightly changed the precision of
the estimates. While the overall precision of the statistical model can still be improved (see
below), we found a robust behaviour when restricting its input data (<1% average change
in precision when leaving out measurements from one trap).

The observations at two particular traps, Pagatza and Lezama 1 seemed to have a
confounding effect on the model, as removing them from the fitting process significantly
improved the model’s precision. This could be due to a global limitation of our analysis,
which is the fact that the trap locations and their associated weather stations do not
coincide. We addressed this constraint by incorporating the trap location as a random
effect in the model and by using the robustness controls included in the model fitting
and selection process (see Methods). Nevertheless, the large distances between traps and
stations (average distance to closest station 3.88 km, distance from Lezama 1 to closest
station 5.47 km) and the local geography (weather station closest to Pagatza sits beside a
large body of water) may still restrict the scope of our approach. In addition, the lack of
precision for Lezama 1 could be due to the high number of spores, not because it is high
per se, but because of the lack of more traps for these characteristics, the model does not
achieve statistical solidity for these ranges of values.

We arrived at a ‘final’ model, incorporating the evidence obtained in our model
selection process, as summarised in Table 3. While it provides our best guess for the effect
of the available meteorological data on the spore count at the selected locations, it should
be understood as an estimation tool for the moment. Another relevant constraint in our
analysis is that the time series of spore counts consists of either 24 or 25 observations at each
of the traps, a relatively small number that may prevent statistically robust conclusions from
being drawn from the data. We hope to incorporate further measurements to corroborate
our findings in future work and to develop a reliable predictive model based on the results
of this investigation. A reliable prediction requires model validation to ensure a degree of
agreement between the output of the model and any new record.

Conidiospore presence was detected in all traps from January or February to mid-
November (Unbe 2) or December. In contrast, Wyka et al. [5] did not capture spores
until the end of May in traps located in Maine. In Wisconsin and Minnesota, Skilling
and Nicholls [7] did not observe conidiospores from December to the end of April. In
the Shimane Prefecture (Japan), Suto [6] detected conidiospores from late March to late
December. Dothistroma septosporum causes DNB and has similar symptomatology and
spreading mechanisms to L. acicola. Dvorak et al. [26] detected the start of D. septosporum
sporulation in April and May, which finished at the end of October in South Moravia
(Czech Republic).

During the collection period, the general pattern of spore dispersal peaked from
September to November, with a small increase in spore concentration in May and July.
There are a few exceptions where this second peak was almost as high as that detected in
September (Elorrio, Azpeitia and Idiazabal) or in early August (Olaeta). Three locations did
not register maximum spore amounts at those times, except in February (Pagatza) or April
(Albina, Güeñes and Karrantza). In other studies, maximum peaks were detected in June
and July [4,7]. These differences in spore dispersal starting points and maximum spore
concentration peaks may be related to local precipitation and temperature patterns that
are different in our study area. Additionally, different strains of the pathogen can exhibit a
certain degree of adaptability to local conditions [10]. In our study, the southern lineage
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of L. acicola is predominant and southern isolates have been reported to be more virulent
to Pinus spp. than northern ones, except for P. sylvestris. Southern isolates have also been
reported to be better adapted to higher temperatures [27,28]. Thus, the importance of local
studies in the proper management of forest diseases is of great importance.

This study focused on the quantification of L. acicola conidiospores, although the
presence of the sexual form was recently confirmed in the area, the infrequent ascocarp
detection and the nature of the traps used may be the reason for the absence of ascospores
during the screening. Passive impact spore traps often result in ineffective capture of
airborne sexual spores of L. acicola, even in regions where their presence is expected [4].
The ratio of the presence of the sexual form to the asexual form was greatly inferior in
needle samples collected in the area of study [11].

This study will be extended for several years, giving us the opportunity to apply
predictive models and evaluate how this spread behaviour could change within this
time. Because Spain is one of the regions most vulnerable to the direct impacts of climate
change, it is experiencing rises in temperature, floods and droughts. Spore production
and discharge seem to be favoured by warm conditions and rainy or wet periods, which
may have implications for future climate scenarios. In northern Spain, spring temperatures
have increased over the past decades [28]. According to the Intergovernmental Panel on
Climate Change, climate change could increase average temperatures, by 2–4 ◦C, in Europe
over the next 50 years and cause considerable changes in regional and seasonal patterns
of precipitation. In the study area, a 15% reduction in annual precipitation is expected
by 2100 and a rise in atmospheric temperature by 1.5 ◦C to 5 ◦C [29]. Current projections
from regional climate models indicate the warming of surface air over the Basque Country.
In particular, heatwave episodes will increase in duration, and the 90th percentile of
daily maximum temperature is expected to increase during summer by 3 ± 0.9 ◦C [29].
Monitoring the spore-spreading capacity of forest diseases could be a good indicator for
studies of climate change impact and for evaluating the adaptation capacity of forest fungal
species and hosts to new climate scenarios. Spore traps, in addition to being an efficient
method to carry out this type of study, are easy to build and inexpensive, which gives them
greater versatility to solve disease management issues [5].

The generation of disease databases at local and global scales in regional climate
change scenarios is a fundamental starting point in assessing impacts, vulnerability and
future needs with respect to adaptation to these outbreaks of forest disease [5].

5. Conclusions

Knowledge of pathogens dispersal dynamics related to climate variables is important
when forest management strategies need to be implemented. In this study, the abundance
of L. acicola conidiospores was measured in the Spanish Atlantic region during 2019, and
the dependency of observations to weather determinants was analysed by GMAs. The
analysis suggests that the maximum daily temperature and cumulative daily precipitation
are the best available indicators for an increase in spore captures. These variables pro-
vided a notable improvement to our statistical model. In the future, further spore count
measurements for different years will be included to develop a reliable predictive model.
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