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Summary. Phyllosticta ampelicida causes grapevine black rot, a potentially damag-
ing disease for grape production. This paper reports the draft genome sequence of P. 
ampelicida PA1 Galicia CBS 148563, which is 30.55 Mb and encodes 10,691 predicted 
protein-coding genes. This is the first sequence genome assembly of P. ampelicida, and 
this information is a valuable resource to support genomic attributes for determining 
pathogenic behaviour and comparative genomic analyses of grapevine black rot fungi.
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Phyllosticta ampelicida (Engelm.) Aa (syn. Guignardia bidwellii, follow-
ing the recommendation of the International Commission on the Taxonomy 
of Fungi, Rossman et al., 2015) is the causal agent of black rot of grapevine. 
Phyllosticta ampelicida (Ascomycota, Dothideomycetes, Botryosphaeriales, 
Phyllostictaceae) causes Black rot, which is an economically important dis-
ease, especially in grape producing regions characterised by humid growing 
seasons (Ramsdell and Milholland, 1988). In epidemic years, black rot can 
cause crop losses between 5 and 80% (Ramsdell and Milholland, 1988), and 
in severely affected vineyards virtually complete crop loss if not effectively 
managed (Rinaldi et al., 2013). All Vitis vinifera cultivars are highly suscep-
tible to black rot (Wilcox and Hoffman, 2019). Chemical treatments against 
downy and powdery mildews are sufficient to prevent black rot, although in 
recent years, especially because of the adoption of downy mildew V. vinifera 
resistant varieties and the increased use of active ingredients specific against 
Oomycetes, black rot is of increasing importance (Pertot et al., 2017).

All herbaceous tissues of grapevine plants are susceptible to infection 
by the pathogen, including leaves, shoots, tendrils, petioles and berries, with 
young leaves and fruit being extremely susceptible (Vezzulli et al., 2022) 
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(Figure 1). Black rot is a polycyclic disease with repeat-
ed cycles of primary and secondary infections. Three 
formae speciales (f. sp.) of “G. bidwellii”, with different 
host specificities, have been described (Luttrell, 1946; 
Luttrell, 1948). These are: “G. bidwellii” f. sp. euvitis, 
which is pathogenic to V. vinifera and to the American 
bunch grape species of the section Vitis; “G. bidwellii” 
f. sp. muscadinii, which is pathogenic to V. rotundifolia 
and V. vinifera; and “G. bidwellii” f. sp. parthenocissi, 
which is pathogenic to Parthenocissus spp. High genetic 
variability has been found among P. ampelicida isolates 
collected from different geographic areas (Narduzzi-
Wicht et al., 2014; Rinaldi et al., 2017). Describing the 
P. ampelicida genome sequence is an important step 
toward enhancing understanding of the grapevine and 
P. ampelicida interaction, and will provide a basis for 
pathogenicity mechanism studies and development of 
disease management strategies.

We report the genome sequencing and assembly of 
the P. ampelicida PA1 Galicia CBS 148563, which was 
isolated from diseased leaves of 25-year-old V. vinifera 
‘Mencia’, in Leiro-Ourense (Galicia, Spain). The strain 
was purified by single-spore isolation and maintained 
on potato dextrose agar (PDA) medium at 25ºC in the 
darkness. DNA was extracted with NucleoSpin Tissue 

(Macherey-Nagel), following the manufacturer’s pro-
tocol. Firstly, the ITS regions, including the 5.8S gene, 
were amplified with ITS1/ITS4 (White et al., 1990), the 
amplicon was then sequenced according to Eichmeier et 
al. (2010), and the sequence was submitted to GenBank 
(Accession No. MZ914563).

The same DNA was used for genome library con-
struction using the Nextera XT DNA Library Prepa-
ration Kit (Illumina Inc.). The library was sequenced 
using MiniSeq High Output Reagent Kit (300-cycles) 
(Illumina Inc.) with 2 × 150PE read option. A total 
of 14,796,001 high-quality reads passed the filter. The 
sequence quality was checked using the FastQC-0.10.1 
program (Andrews, 2010). A FASTX-Toolkit Clipper 
(http://hannonlab.cshl.edu/fastx_toolkit/), specifying the 
Q33 parameter, was used to remove the adaptors, and 
low-quality reads were discarded. Contigs of individual 
reads were assembled de novo using the SPAdes genome 
assembler v. 3.15.2 (Prjibelski et al., 2020) with default 
settings. De novo assembly of P. ampelicida PA1 Galicia 
CBS 148563 resulted in a genome size of 30,547,631 bp, 
G+C content of 54.49%, and 6,675 contigs, with a scaf-
fold length at which 50% of the total assembly length 
is covered (N50) value of 20,626 bp and the number of 
contigs whose summed length is N50 (L50) of 428.
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Figure 1. Symptoms on grapevine tissues caused by Phyllosticta ampelicida. Reddish-brown circular lesions on infected leaves, with pycnidia 
in the lesion centres (A), necrotic spots on the rachis (B), and brown to black spots on berries (C). 
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The ab initio gene prediction using Augustus (Kel-
ler et al., 2011) (-species = botrytis_cinerea -strand = both 
-gene model = complete) for the assembled genome of P. 
ampelicida PA1 Galicia resulted in 31,876 exons and 10,691 
predicted coding sequences. Using BUSCO 5.2.2 (Manni et 
al., 2021), 745 complete single-copy proteins were identi-
fied with known functions (Supplementary Data).

Carbohydrate-active enzymes (CAZymes) that play 
vital roles in breakdown of host cell wall components 
establish successful infections were predicted, using 
CAT and dbCAN servers (Yin et al., 2012). Fifty-eight 
signal peptides were detected by HMMER (Zhang and 
Wood, 2003) using dbCAN (Supplementary data). Sig-
nal peptides act as zip codes marking the protein secre-
tion pathway as well as the protein target location. In 
addition to protein targeting, a number of critical func-
tions with or without regard to the passenger proteins 
have been attributed to signal peptides (Owji et al., 
2018). A total of 43,636 translated amino acid sequenc-
es was predicted by FragGeneScan (Rho et al., 2010). 
Using Hotpep analysis (Busk et al., 2017), 4,914 hits of 
CAZyme sequences were detected. The most represent-
ed CAZymes belonged to two groups (GT41 and GT48) 
of glycosyl transferases. Fungal glycosyl transferases 
may facilitate pathogenesis of plants by enabling hyphal 
growth on solid surfaces, a phenomenon previously 
reported by King et al. (2017). Further classification 
of CAZymes based on their catalytic activity showed 
a high proportion of glycosyl hydrolases (39.4%),  fol-
lowed by glycoside transferases (31.2%), auxiliary activi-
ties (12.8%), carbohydrate-binding modules (12.8%), 
carbohydrate esterases (2.1%) and polysaccharide lyases 
(1.7%). Using MicroStation Reader BioTek ELx808BLG 
(Biolog Inc.) and carbon sources (CS) in FF MicroPlate 
(Biolog Inc. USA), consumption was detected of 72 CS 
by P. ampelicida PA1 Galicia CBS 148563 (Supplemen-
tary Data). This fungus is not included in any database 
of Biolog Inc.

Secondary metabolites are essential for fungal 
growth and development, providing protection against 
various environmental stresses (Calvo et al., 2002). The 
search for secondary metabolite clusters using anti-
SMASH fungal version (Blin et al., 2017) revealed the 
presence of 17 clusters (10 NRPS and NRPS-like, 3 
T1PKS, 3 terpene and 1 betalactone).

The draft genome of P. ampelicida PA1 Galicia CBS 
148563 reported here are of high-quality genome assem-
blies, which can serve as reference genomes for other 
species or strains within the family Phyllostictaceae. The 
genome of P. ampelicida PA1 Galicia CBS 148563 report-
ed here has been deposited in GenBank under Acc. No. 
JAIFKG000000000.1 (BioProject No. PRJNA753299).
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