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Grapevine is regarded as a highly profitable culture, being well spread

worldwide and mostly directed to the wine-producing industry. Practices to

maintain the vineyard in healthy conditions are tenuous and are exacerbated

due to abiotic and biotic stresses, where fungal grapevine trunk diseases

(GTDs) play a major role. The abolishment of chemical treatments and

the intensification of several management practices led to an uprise in

GTD outbreaks. Symptomatology of GTDs is very similar among diseases,

leading to underdevelopment of the vines and death in extreme scenarios.

Disease progression is widely affected by biotic and abiotic factors, and the

prevalence of the pathogens varies with country and region. In this review,

the state-of-the-art regarding identification and detection of GTDs is vastly

analyzed. Methods and protocols used for the identification of GTDs, which

are currently rather limited, are highlighted. The main conclusion is the utter

need for the development of new technologies to easily and precisely detect

the presence of the pathogens related to GTDs, allowing to readily take

phytosanitary measures and/or proceed to plant removal in order to establish

better vineyard management practices. Moreover, new practices and methods

of detection, identification, and quantification of infectious material would

allow imposing greater control on nurseries and plant exportation, limiting

the movement of infected vines and thus avoiding the propagation of fungal

inoculum throughout wine regions.
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Abbreviations: GTD, grapevine trunk disease; PCR, polymerase chain reaction; qPCR, quantitative
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Grapevine biodiversity and cultural
and economic value worldwide

Grapevine (Vitis vinifera L.) is distributed worldwide
(Figure 1A) mainly due to its high adaptation capability. The
genetic diversity found among grapevine varieties is very high,
with around 10,000 estimated cultivars available in germplasm
banks (This et al., 2006). This genetic diversity has been
obtained through fast mutation events or by slow selection
through sexual and asexual reproduction, with no particular
emphasis on which has been the most prevalent (This et al.,
2006). The selection of the most desirable traits has led to an
economic and cultural impact on the wine-producing countries
(This et al., 2006). In the interest to preserve this variability,
wide germplasm collections have been established, containing
several autochthonous cultivars of each country (This et al.,
2006). The Mediterranean countries detain a big part of the
biodiversity available within this species (Figures 1B,C), since
currently, the grapevine has a huge cultural heritage apart from
being economically very important for these wine-producing
countries (This et al., 2006).

Wine production mobilizes high monetary values, with
the global market reaching over 29 billion euros in 2020,
mostly in the form of bottled wine (OIV, 2020). Grapevine
is regarded as the most cultivated fruit crop worldwide, with
nearly 7 million hectares planted (Figure 1A) and with yield
values of more than 77 million tons (FAOSTAT, 2019). Most
of the grape production is directed to the wine industry, where
wine value increases with the implementation of traceability
systems linked to regions with a denomination of origin systems
(Pereira et al., 2018).

In this perspective, any factor that leads to yield decrease,
quality loss, or vine disruption, combined with increased costs
associated with vineyards maintenance, will greatly affect the
economic comeback of producers. One of the main causes of
productivity loss in grapevines is the occurrence of grape trunk
diseases (GTDs), which can lead to vine death (Gramaje et al.,
2018). The incidence of the disease has been increasing in
the last few years due to new constraints imposed in vineyard
management, e.g., the ban on sodium arsenate and cultural
practices in vineyards with poor training and pruning systems,
among others (Rubio and Garzón, 2011).

Effects of grapevine trunk diseases

Grapevine trunk diseases include an extensive group
of symptomatic fungal infections that affect vineyards with
damaging economic effects (Gramaje et al., 2018; Mundy et al.,
2018). Several distinctive diseases have already been vastly
reported with detailed symptomatology description (Figure 2).
However, several conditions, such as climate and grape vineyard

management, may lead to differences in the symptomology
patterns of GTDs. According to the age of grapevines, some
GTDs are more likely to be detrimental to others (e.g.,
black foot disease and Petri Disease affect mainly young
vines, in contrast to Eutypa dieback, Phomopsis dieback, and
esca that affect mature vines). Additionally, some specific
characteristics associated with the grapevine genotype may
influence the susceptibility of the grapevine cultivar to certain
GTDs (Mondello et al., 2018). Furthermore, grapevines can be
affected simultaneously by several GTDs, thus hampering their
identification and vineyard management (Agustí-Brisach and
Armengol, 2013; Gramaje et al., 2018).

Several mechanisms have been used by the fungal agents
of GTDs for disease dispersion; among them, dispersion by
fungal spores is easily achieved among vines as a result of rain
splash, wind, insects, or due to the presence of pathogenic
fungal inoculum in the soil (Cloete et al., 2011; Trouillas et al.,
2011; Gramaje et al., 2018; Moyo et al., 2019; Nerva et al.,
2019). Vine colonization by soil microorganisms is a recurring
effect that can affect the expression of grapevine trunk disease;
therefore, soil microbiome analysis also provides several clues
for GTD expression, mostly for pathogens belonging to Esca
and black foot disease (Giménez-Jaime et al., 2006; Nerva et al.,
2019). However, each GTD pathogen has a preferential method
for overall transmission. Furthermore, the debris left on the
vineyard, mechanical and human actions, and even host species
in the proximity of vineyards increase the risk of outbreaks
(Cloete et al., 2011; Trouillas et al., 2011; Elena and Luque,
2016; Moyo et al., 2019). These transmission and infection
mechanisms are highly dependent on external conditions, such
as the season of the year and the edapho-climatic conditions
(Songy et al., 2019; Hrycan et al., 2020).

Such a destructive complex of diseases has a considerable
impact on fruit yield and quality and hence on the economic
value of the product, leading to great economic losses in
wine-producing regions and countries (Gramaje et al., 2018).
Lately, due to new practices and abolishment of some chemical
treatments, the number of outbreaks has increased, as has GTD-
associated damage in the vineyards, which seem to be transversal
to all the GTDs further mentioned.

Grapevine trunk disease
(GTD)-associated pathogens and
related symptomology

Esca complex and Petri disease

Esca is a complex disease that englobes several syndromes
previously identified as GTDs, such as esca (as a disease),
grapevine leaf and stripe disease, apoplexy, black measles, white
rot, and Petri disease (Bertsch et al., 2013; Choueiri et al., 2014;
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FIGURE 1

Geographical identification of vineyards (in kha) (A) and in permille (h) (B,C), comparing the dedicated grape production area to the total area
of each country, with a visible cluster in European, Middle Eastern, and North African countries, mainly countries close to the Mediterranean Sea
(FAOSTAT, 2019), where higher values are represented by darker tones.

Frontiers in Plant Science 03 frontiersin.org

https://doi.org/10.3389/fpls.2022.960289
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-960289 August 22, 2022 Time: 19:26 # 4

Azevedo-Nogueira et al. 10.3389/fpls.2022.960289

FIGURE 2

Schematic representation of the commonly known symptomology regarding grapevine trunk diseases (GTDs), based on the description of the
reviewed literature. Generally, the main effect caused by GTDs is stunted development of the vines and necrosis, partially or completely, which
can lead to the decay of the plant and consequently production loss. Esca (Es), Petri disease (belonging to Esca complex) (PeD), Botryosphaeria
dieback (BD), Eutypa dieback (ED), Phomopsis dieback (PD), and black foot disease (BF).

Cloete et al., 2015; Gramaje et al., 2018; Claverie et al.,
2020). The causal agents of the esca disease are mainly
the same within syndromes, with some exceptions further
enlightened. To date, fungal species belonging to genera
Phaeoacremonium and Phaeomoniella have been recognized as
causal agents of every disease within the esca complex through
classic and molecular marker approaches. Several species
of Phaeoacremonium that are pathogenic to grapevine have
been reported so far (Supplementary Information 1). Fungal
pathogens Phaeoacremonium minimum and Phaeomoniella
chlamydospora are considered to be the most prevalent esca
pathogens in the wine-producing countries, where esca has
been reported in several vineyards worldwide. However,
several other fungal pathogens were found to have a negative
impact on grapevines with symptoms associated with esca.
However, they are considered as secondary pathogens, as they
normally produce fewer symptoms. Additionally, microbial
interactions between pathogenic fungal species and these
secondary pathogenic species may lead to symptom aggravation
or imbalance reducing plant vigor (del Frari et al., 2021;
Haidar et al., 2021). Some of the secondary pathogens are
related to every Esca-related syndrome with the exception of
Petri disease, and therefore are found only in mature vines
(Supplementary Information 1). On the other hand, there are
putative secondary pathogens that are, at this point, uniquely
related to Petri disease (Supplementary Information 1), thus
affecting only young vines (Gramaje et al., 2018; Raimondo

et al., 2019; Mondello et al., 2020). However, it can potentially
lead to slow decay of the vine over the years, and thus might
also affect mature vines simultaneously as other Esca pathogens
(Travadon et al., 2015).

The ultimate outcome of this disease, whether occurring
rapidly or not (Almendros et al., 2019), is the decline of
apoplexy of grapevine, either partially or completely, leading
to the removal of the plant as a sanitary measure (Mondello
et al., 2018). These symptoms appear mostly during the summer
months, leading to a seemingly unavoidable decay of the
vine. The symptoms might be perceptible for years and slow
acting, and manifest as the chronic form of the esca disease
or grapevine leaf and stripe disease, which starts normally
at an earlier developmental stage of the vine. However, the
acute and apoplectic form of esca is a fast attacking form,
leading to a sudden vine decay, and is largely influenced by the
meteorological conditions during the spring and early summer
months (van Niekerk et al., 2011; Arzanlou et al., 2013a; Guérin-
Dubrana et al., 2013, 2019). Berry and foliar symptoms can be
caused by phytotoxins, which are produced by fungal pathogens
or due to the blockage of systemic vessels (Brown et al., 2020).
The notion that “esca proper” only infects mature vines is widely
accepted; however, young grapevines have also been reported to
be targeted by esca pathogens (Edwards and Pascoe, 2004).

Petri disease affects young vines, usually under 5–8 years
old (Gramaje and Armengol, 2011; Cloete et al., 2015; Baranek
et al., 2018; Hrycan et al., 2020). Its symptoms are close to
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black foot symptoms, and they lead the vine to a stunted
growth with short aerial organs and delayed budding, which,
in severe cases, ends up in apoplectic events of the plant
(Edwards and Pascoe, 2004; Sosnowski et al., 2007a; Arzanlou
et al., 2013a; Almendros et al., 2019). Also, symptoms observed
in young vines affected by Petri disease might be due to
malnourishment of the aerial parts due to the blockage of the
systemic vessels (Castillo-Pando et al., 2001; Arzanlou et al.,
2013a) and/or due to poor development of the host, which
further influences the parenchyma density and host anatomy
leading to a diminished innate immunity (Claverie et al.,
2020). Moreover, the accumulation of toxins and secondary
metabolites produced by the pathogens has a fundamental role
in pathogenicity (Andolfi et al., 2011; Arzanlou et al., 2013a).
The etiology of Petri disease is considered to be shared with
the esca complex and its syndromes, whereas several wood
pathogenic fungal species are correlated with the appearance
of both these GTDs (Edwards and Pascoe, 2004; da Silva et al.,
2017; González-Domínguez et al., 2020).

Black foot disease

Black foot disease commonly affects grapevines at an
early age and infects new cuttings or grafts (Agustí-Brisach
and Armengol, 2013). The symptoms of this pathology are
well-established and used for its identification. It is mostly
characterized by the infection of the roots and rootstocks
(Gramaje and Armengol, 2011), affecting the vascular system
development of young grapevines and leading to reduced
plant vigor and sometimes plant death as a result of reduced
structures, such as internodes and leaves, and chlorosis. Also,
the affected wood tissue becomes dark brown to black colored,
which further gives the plant a dark and necrotic appearance
immediately above the soil (Halleen et al., 2006; Gramaje et al.,
2018). It disturbs, devastatingly, new grapevines under 8 years
old, leading rapidly to their death, and black foot also ravages
through older plants, although at a slower rate (Halleen et al.,
2006), causing economic damages when vineyards are affected
by the causal pathogens of black foot disease (Pathrose et al.,
2014; Mondello et al., 2018).

According to the current knowledge, the causal agents
of this disease belong to the genera Campylocarpon,
Cylindrocladiella, Ilyonectria, Dactylonectria, Neonectria,
Thelonectria, and Pleiocarpon (Supplementary Information 1)
and its anamorphic appearances (Halleen et al., 2006), most
of them being previously reported as belonging to the genus
“Cylindrocarpon” with further classification into Ilyonectria,
Neonectria, and Dactylonectria genera, as shown in Mycobank
(2021) (www.mycobank.org).

The most pathogenic status has been associated with the
species Dactylonectria macrodydima (Alaniz et al., 2009) and
Dactylonectria novozelandica (Berlanas et al., 2020), which are

found in the Spanish vineyards. However, such classifications
may be dependent on environmental conditions that are
believed to affect fungal development and the lack of analyses
which have limited the search to a few species, thought to be the
most prevalent and the easiest to be isolated in the studied areas.

So far, there are some reports which demonstrate several
fungi as causal agents of black foot in grapevine. All these
fungi are considered to be saprophytes, maintaining a lifecycle
where infectious particles can be attached to grapevine debris
and/or be present in the soil (Agustí-Brisach and Armengol,
2013; Carlucci et al., 2017) and thus affecting newly planted
specimens. Also, nurseries can be focal points for black foot
infection (Halleen et al., 2006).

Despite not being deeply studied, reports show the
worldwide distribution of this genus (Agustí-Brisach and
Armengol, 2013) with the distinct prevalence of some of these
pathogens in distinct locations: Dactylonectria macrodydima in
South Africa (Langenhoven et al., 2018), and Dactylonectria
torresensis in Italy (Carlucci et al., 2017), Portugal (Reis et al.,
2013), and Spain (Berlanas et al., 2017, 2020), which seems to be
the most prevalent species.

Eutypa dieback

The appearance of cankers in grapevines is a symptom
that shows that the vine might be affected by Eutypa dieback;
nevertheless, it occurs in the late stage of this disease (Gramaje
et al., 2018). Previous symptoms include the appearance
of necrotic tissue in shoots, spurs, and at the margin of
wedge-shaped cankers affecting vine trunks and cordons;
wood streaking and discoloration; and decorticated bark and
wood (Trouillas and Gubler, 2010b). Overall, Eutypa dieback-
related pathogens colonize the vascular system of the vine
(Sosnowski et al., 2008), reducing the vegetative growth and
eventually leading to vine death (Baranek et al., 2018). Infection
occurs in vines that have open and fresh wounds, mostly
related to pruning types or vine management with symptoms
appearing in older vines (Sosnowski et al., 2008; Gramaje
et al., 2018). Spore dispersal occurs through wind and favorable
conditions of high humidity and low temperature (Sosnowski
et al., 2007b), with more prevalence in autumn and winter.
However, rain is not mandatory for spore release (Úrbez-
Torres et al., 2020). Inoculum sources of Eutypa dieback
pathogenic fungi can be among other economically interesting
plant species, such as apricot, maple, willow, and wild species
(Tilia and Lonicera), where Eutypa lata is the most reported.
Thus, cases of cross-contamination are observed, without any
decrease in pathogenicity and no host specificity (Travadon
et al., 2012; Travadon and Baumgartner, 2015; Moyo et al.,
2019).

The first struggle for identification and control of this
disease is due to the late appearance of the symptoms, which
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are delayed for 1–8 years after the infection, hence affecting
mature vines (Sosnowski et al., 2007a), and additionally,
they are influenced by the climatic conditions (Sosnowski
et al., 2007b). Identification of other pathogens and their
classification has been tenuous and hard work, since several
distinct genera are involved in Eutypa dieback in grapevine
(Trouillas and Gubler, 2010a; Mehrabi et al., 2016). Eutypa
lata is considered as the most prevalent pathogenic fungus
that causes Eutypa dieback; however, other Diatrypaceae species
have a greater role than previously thought (Úrbez-Torres
et al., 2020). Also, Eutypa lata is considered as the only
species within all Eutypa dieback pathogenic fungi that cause
foliar symptoms (Sosnowski et al., 2007a). It is responsible
for the production of phytotoxins and secondary metabolites
that are harmful to grapevine growth (Tey-Rulh et al., 1991;
Molyneux et al., 2002; Mahoney et al., 2003) and is indicated
as the main reason for the appearance of foliar symptoms
(Sosnowski et al., 2007a).

Even though the most common and primarily recognized
as causal agent worldwide is Eutypa lata, there are several
other fungal species that are less prevalent in Eutypa
dieback disease, and they belong to the genera Eutypa,
Eutypella, Diatrype, Diatrypella, Cryptosphaeria, Cryptovalsa,
Anthostoma, and Peroneutypa (Supplementary Information 1).
Although some studies indicate that some of these other
pathogenic species have similar virulence (Trouillas and Gubler,
2010b), so far, several fungal species that are associated
with Eutypa dieback in grapevine have been discovered in
grapevine tissues (Supplementary Information 1). However,
some are not associated with symptoms in grapevine, despite
being isolated from grapevine wounds and cankers, such
as Diatrype oregonensis and Diatrype whitmanensis (Trouillas
and Gubler, 2010b). Additionally, other unidentified species
within the Eutypa, Diatrype, Diatrypella, Cryptosphaeria, and
Peroneutypa genera were also identified as pathogenic for
grapevine (Luque et al., 2012; Pitt et al., 2013; Rolshausen
et al., 2014; Paolinelli-Alfonso et al., 2015; Moyo et al.,
2019). Nevertheless, even when molecular markers were used
for fungal discrimination, a reliable identification was not
possible. At best, it is only possible to assert a relation
of proximity to other species, such as Eutypa sp. that was
somewhat closer to Eutypa tetragona (Luque et al., 2012);
Eutypella sp. group 1 is closely related to Eutypella scoparia;
Eutypella sp. group 2 is closely related to Eutypella vitis;
and Eutypella sp. group 4 is closely related to Eutypella
leprosa and several Diatrypella sp. which conjugate closely as
a putative single species complex which englobes Diatrypella
verrucaeformis (Trouillas et al., 2010). Further studies are
needed to fully unravel the fungal pathogens of Eutypa dieback
and its relatedness, since some species might not be well
identified, as it happens with some isolates of Cryptovalsa
rabenhorstii that seem to be closely related to Eutypella species
(Paolinelli-Alfonso et al., 2015).

Botryosphaeria dieback

Botryosphaeria dieback is another GTD that is related to
mature vines, e.g., over 8 years old (van Niekerk et al., 2004;
Gramaje et al., 2018), which also infects young vines and
nurseries (Giménez-Jaime et al., 2006; Ammad et al., 2014;
Billones-Baaijens et al., 2015), showing few (bud mortality and
failed graft junctions) to no symptoms (van Niekerk et al.,
2006; Billones-Baaijens et al., 2015). Classified as a disease
of interest in the early 21st century (Billones-Baaijens and
Savocchia, 2018), Botryosphaeria dieback was initially mistaken
as Eutypa dieback and Phomopsis dieback due to the similarity
of symptoms, such as cankers, wood staining, and wilting of
plant structures in mature vines (Phillips, 1998; van Niekerk
et al., 2004; Billones-Baaijens and Savocchia, 2018; Gramaje
et al., 2018). Misclassification of Botryosphaeria dieback, as
other known GTDs, was also due to several difficulties related
to the fungal identification, since morphologic markers are
limited and shared between several fungal species, and sexual
morph stages are seldom discovered in natural conditions
and hardly obtained in culture (van Niekerk et al., 2004).
Molecular technologies helped to unravel this fungal family, as
explained further.

Currently, considered as one of the fungal diseases in
the GTD complex, several fungal species associated with
Botryosphaeria dieback are considered to be pathogens
for grapevines, all belonging to Botryosphaeriaceae
family (Billones-Baaijens and Savocchia, 2018), including
Botryosphaeria, Diplodia, Lasiodiplodia, Neofusicoccum,
Neoscytalidium, Phaeobotryosphaeria, and Dothiorella genera
(Supplementary Information 1), the most prevalent being
Botryosphaeria dothidea, Diplodia seriata, Lasiodiplodia
theobromae, and Neofusicoccum parvum (Kovács et al., 2017;
Billones-Baaijens and Savocchia, 2018). The last two species are
highly pathogenic toward grapevine with some variance due to
edapho-climatic conditions (Úrbez-Torres and Gubler, 2009).
So far, Neofusicoccum genus is considered to be more pathogenic
when compared to Diplodia species (Amponsah et al., 2011),
although some Botryosphaeriaceae fungal species may affect
grapevine more extensively than others (Ramírez et al., 2018).

Potential inoculum sources are prevenient of other plant
species that are in the proximity of the vineyard, for
instance, blueberry, broom, willow, cherry, oak, plum, apple,
pine, olive, and lemon wood (Amponsah et al., 2011).
However, nursery infections of vine cuttings and grafting
procedures of the plants also occur extensively, adding to
another level of difficulty to overcome Botryosphaeria dieback
(Billones-Baaijens et al., 2013b).

Additionally, severe environmental conditions affect fungal
development and disease progression. For example, when
grapevines are subjected to drought conditions, there is an
enhancement of Botryosphaeria dieback symptoms caused by
Neofusicoccum parvum, as suggested by Galarneau et al. (2019).
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Also, the pathogenic status of Botryosphaeria dieback pathogens
may be related to the production of phytotoxins and secondary
metabolites, as demonstrated in the isolates of Diplodia seriata,
Neofusicoccum parvum, Neofusicoccum luteum, Dothioriella
viticola, and Botryosphaeria dothidea (Martos et al., 2008).

Phomopsis dieback

The genus Diaporthe [formerly known by its asexual
morph Phomopsis (Úrbez-Torres et al., 2013)] is responsible
for a well-known GTD, commonly identified as Phomopsis
dieback (Gramaje et al., 2018). Initial etiology can be prone
to misidentifications, due to several ambiguous classifications
of the causal pathogens, mainly due to morphological
characteristics, such as plasticity, host association, and asexual
morph/sexual morph distinction (Udayanga et al., 2012; Úrbez-
Torres et al., 2013). The main causal agent of Phomopsis
dieback is Diaporthe ampelina (formerly Phomopsis viticola)
(Dissanayake et al., 2015; Lawrence et al., 2015). Now, due
to the advent of molecular technologies, several causal agents
of Phomopsis dieback have been described and reported
(Supplementary Information 1). However,Diaporthe perjuncta
has been reported to be non-pathogenic for grapevines in
Australia (Rawnsley et al., 2004), in contrast with pathogenic
isolates obtained in Portuguese vineyards (Phillips, 1998). Still,
phylogeny studies have reported closely related species, which
are grouped in species complexes accordingly, i.e., D. eres
complex which englobes several Diaporthe spp. being, so
far, only D. eres species associated with a grapevine (Yang
et al., 2018). Also, other Diaporthe spp. can be endophytic
and isolated from grapevine without apparent symptomology
associated, such as Diaporthe bohemiae (Guarnaccia et al.,
2018). Despite not being found, D. bohemiae can have an
opportunistic behavior toward grapevine, like other Diaporthe
spp. have toward herbaceous weeds and fruit trees, e.g.,
D. foeniculina (Lesuthu et al., 2019; Manawasinghe et al.,
2019).

This disease affects mature grapevine wood and presents
clear symptoms which are related to the appearance of perennial
cankers in the vine, which is one of its main characteristic
symptoms, as described by several authors (Nita et al., 2006a;
Gramaje et al., 2018; Úrbez-Torres et al., 2013; Manawasinghe
et al., 2019). Additionally, it leads to a budding reduction and
withering when infected (Úrbez-Torres et al., 2013). Infection
is simplified with the existence of open and fresh wounds,
mostly related to pruning practices (Travadon et al., 2013).
Nita et al. (2008) showed that Phomopsis dieback has distinct
incidences between plant structures with lower variation caused
by environmental conditions and location.

Phomopsis cane and leaf spot (also Excoriosis) is a
classification for a syndrome caused by the same fungal agents
that are responsible for Phomopsis dieback, being the symptoms

distinctive between these two syndromes, where D. ampelina
has a particular incidence (Baumgartner et al., 2013). Some
authors englobe both syndromes under the same disease
(Manawasinghe et al., 2019). Plants with preceding Phomopsis
cane and leaf spot symptoms are more susceptible to Phomopsis
dieback (Baumgartner et al., 2013).

Phomopsis dieback is considered as a monocyclic disease,
since mostly the primary inoculum causes the infection, and
symptoms appear during the growing season under favorable
environmental conditions (Anco et al., 2012). Inoculum
dispersal is produced by rain (Nita et al., 2006a,b), dispersing
conidia from infected plant organs (Travadon et al., 2013) and
debris (Anco et al., 2012) to healthy ones, possibly with a limited
and short range of dispersal (Nita et al., 2006a).

Similar to other GTDs, Phomopsis dieback has a worldwide
distribution with a high negative economic effect, and is
caused by several fungi. To attest this occurrence, reports show
that Diaporthe eres is more prevalent in Europe and Israel
(Guarnaccia et al., 2018), as well as in China (Manawasinghe
et al., 2019). In contrast, in Spain, the occurrence rates
of D. ampelina and D. baccae are similar to that of
D. eres (Guarnaccia et al., 2018). These differences may
be explained by climacteric and environmental conditions.
However, presently, there are no reports that confirm any
explanation regarding this subject.

Cytospora canker

Cytospora genus is further regarded as a causal agent of
another canker-causing GTD; however, in this review, we only
mention it as a GTD-causing pathogen, since there are few
studies reporting it (Tomoiaga et al., 2009). Despite being under-
studied in grapevine, some species belonging to Cytospora genus
have already been identified, being of major significance in
grapevine, since they might be pathogenic, thus reducing the
yield and viability of the vines (Supplementary Information 1)
(Lawrence et al., 2017). The most characteristic symptoms of this
disease are the appearance of cankers in vines and its decline
(Lawrence et al., 2017).

Fungal interactions with grapevine
trunk disease (GTD) pathogens

The identification of fungal pathogens is not fully
representative of the disease. Recent studies performed
on symptomatic grapevines samples, where pathogens
have been identified, revealed the presence of other fungal
species, not considered common saprophytes, that affected
disease progression (Supplementary Information 1), such
as Schizophyllum commune in affected vines co-inoculated
with Lasiodiplodia theobromae and Neofusicoccum parvum
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(Rezgui et al., 2018); Neopestalotiopsis, Pestalotiopsis, and
Truncatella genus in vines affected either by Botryosphaeria
dieback, Phomopsis dieback, or Esca (Maharachchikumbura
et al., 2016); and Roesleria, and Sphaeropsis in GTD-affected
vines (Tomoiaga et al., 2009). These fungal species create
a complex pathogenic microbiome that can be relevant to
the deeper understanding of the GTD complex, even as the
causal or secondary infection agents of GTDs, as seems to
occur with Seimatosporium vitis in symptomatic vines affected
by Phaeoacremonium spp. and Fomitiporia mediterranea
(Amarloo et al., 2020); Schizophyllum commune in vines
infected with Lasiodiplodia theobromae and Neofusicoccum
parvum (Rezgui et al., 2018); and other Seimatosporium
spp. (Seimatosporium vitifusiforme and Seimatosporium
luteosporum) in co-inoculations with other GTD pathogens
in vines (Lawrence et al., 2018). However, most of these
interactions between fungi and grapevine are not well-
documented, as in the case of Sporocadus, Pestalotiopsis,
Dendrothyrium, and Truncatella, among other genera, whose
role in the GTD process and/or infection is still not clarified
(Arzanlou et al., 2013b; Abed-Ashtiani et al., 2019; Mundy
et al., 2020). Additionally, studies performed in Hungary
showed that fungi genera are emerging continuously, affecting
canonically other woody hosts, such as apple and pear, that may
cause symptoms similar to those observed in GTDs, namely,
Pseudofabraea, Phlyctema, Parafabraea, and Neofabraea, thus
increasing the intricacy of this disease complex (Lengyel et al.,
2020). Furthermore, fungal identification from wounded
tissues may show activity from saprobic or endophytic fungi
upon tissues with less integrity that might have no role in the
infectious and colonization processes (e.g., Trametes versicolor
in necrotic tissue of GTD-affected vines) (Mundy et al., 2020).

Methods for grapevine trunk
disease (GTD) assessment

Classical methods

Grapevine trunk diseases are detectable when grapevines
show visible symptoms, and GTD identification is based on
symptom detection in live plants with further morphological
identification of the isolates in culture (Andolfi et al., 2011).
However, they lead to misconceptions and misclassifications due
to morphological plasticity and overlapping (Acero et al., 2004;
Mehrabi et al., 2016).

Therefore, due to the nature of such pathologies, the setting
of symptoms is a signal of an intermediate to the advanced
stage of the disease, and economic losses are therefore already
unavoidable (Almeida et al., 2020).

Methods that rely on fungal culture have several
drawbacks, which include the time and costs associated,
the need for experienced technicians, the destructive sample
collection methods, and the incapability to perform wide and

high-throughput analysis. Also, fungal identification is not
easily accomplished just by culture, since several characteristics
overlap within fungal species and genera (Gramaje and
Armengol, 2011; Eichmeier et al., 2018; Morales-Cruz et al.,
2018b). So far, methods suitable for early detection are scarcely
used to the detriment of classical identification, posing a delay
in the early mitigation practices required to control and contain
GTDs. Hence, resourcing other methods, such as chemical,
serological, and DNA-based methodologies, would help to
avoid classification errors and further allow a more rapid
and accurate diagnosis of the pathogens affecting grapevines.
Nonetheless, some technological limitations are persistent in
some situations (Lecomte et al., 2000; Rolshausen et al., 2004;
Lardner et al., 2005).

Nevertheless, microorganism culture also brings new tools
to understand microbial interactions as well as new ways to
control pathogens, thus leading to a lighter or inexistent GTD
symptomology by having an antagonistic role against GTD
causal agents (Niem et al., 2020).

Chemical approaches

The manifestation of the symptoms may be due to the
secondary metabolites or toxins produced by the pathogens.
Phytotoxin production by GTD-related pathogens has already
been reported in infected vines, which are as follows:

- Diaporthe eres produces 4-hydroxybenzaldehyde, 4-
hydroxybenzoic acid, nectriapyrone, p-cresol, and tyrosol,
which induce Phomopsis dieback symptoms in grapevine
(Reveglia et al., 2019);

- Neofusicoccum parvum, in plate culture, produced several
metabolites and most of them (-)-terremutin, (+)-
epi-sphaeropsidon, (+)-(6R,7S)-dia-asperlin, (-)-(3R,4S)-
trans-4-hidroxymellein, (-)-(3R,4S)-cis-4-hidroxymellein,
(-)-(R)-3-hidroxymellein, and (-)-mellein) seem to have
phytotoxic activities against grapevine in leaf disk assay
(Abou-Mansour et al., 2015), whereas (-)-mellein is also
produced by other Botryosphaeriaceae fungal species,
namely, Diplodia mutila, Diplodia seriata, Neofusicoccum
australe, and Neofusicoccum luteum (Masi et al., 2020b);

- Neofusicoccum luteum produces luteopyroxin,
neoanthraquinone, luteoxepinone, and tyrosol with
potential phytotoxic activities (Masi et al., 2020a);

- isolates of Phaeomoniella and Phaeoacremonium genera
produce several metabolites that have a nefarious impact
on grapevine growth and development, such as isosclerone
and scytalone (Andolfi et al., 2011; Bertsch et al., 2013);

- Fomitiporia mediterranea produces metabolites with
nefarious effect on grapevine structures, and, at least,
4-hydroxybenzaldehyde is shared between the genera
Phaeoacremonium and Phaeomoniella (Andolfi et al.,
2011).
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FIGURE 3

Schematic representation of the accepted grapevine trunk disease (GTD)-causing fungal families, indicating the loci that are usually used for
species identification within each fungal family (Cabral et al., 2012; Arzanlou et al., 2013a; Yan et al., 2013; Rolshausen et al., 2014; Travadon
et al., 2015; Lawrence et al., 2017; Dissanayake et al., 2018; Guarnaccia et al., 2018; Gramaje et al., 2019) in those in which these are applicable.
Several families need multi-loci analysis to accurately identify species. Esca (Es), Petri disease (belonging to Esca complex) (PeD), Botryosphaeria
dieback (BD), Eutypa dieback (ED), Phomopsis dieback (PD), black foot disease (BF), and Cytospora Canker (CC). Cadophora is a fungal genus
and is therefore indicated (*) for easier comparison to other fungal families. Families/genera which are not recognized to be involved in Petri
disease, and therefore do not affect young vines, but have a role in esca-affected mature vines are indicated (Es§).

Even though several metabolites have been identified,
this may not be sufficiently reliable to stand alone as a
pathogen identification method, since the metabolic profile
obtained consists of interactions between plant/pathogens and
endophytic microorganisms (Amponsah et al., 2011; Azevedo-
Nogueira et al., 2020), and thus may not be exclusive of the
pathogen itself. Also, variation in the secreted metabolites and
proteins can also be related to differential pathogenicity, as
verified in the proteomic analysis of Neofusicoccum parvum and
Diplodia seriata isolates, whose proteomic profiles are distinct
and seem to influence the aggressiveness of these pathogens
against Vitis vinifera cv. Chardonnay calli, with Diplodia
seriata being less aggressive (Benard-Gellon et al., 2015). In
addition, the metabolites produced can also be affected by
the edapho-climatic conditions (Azevedo-Nogueira et al., 2020;
Hrycan et al., 2020). Furthermore, secondary toxic metabolites
are shared between several fungal pathogens of distinct
GTDs, such as tyrosol, isosclerone, and 4-hydroxybenzaldehyde
(Andolfi et al., 2011; Masi et al., 2018). Hence, molecular
diagnostic methods, using DNA amplification (polymerase
chain reaction (PCR)-based), are the most indicated to
attain such objectives, since they are able to overcome
the several difficulties found when using more standard

techniques, such as morphological- and chemical-based ones
(Azevedo-Nogueira et al., 2020).

Endpoint polymerase chain reaction
(PCR) and PCR-based techniques

So far, the identification of several fungi related to GTDs is
made by amplification and sequencing of genomic fragments,
mainly ITS and rDNA (large ribosomal subunit and small
ribosomal subunit) (Lecomte et al., 2000; Armengol et al.,
2001; Acero et al., 2004; Taylor et al., 2005; van Niekerk
et al., 2005; Cunnington et al., 2007; Martin and Cobos, 2007;
Abreo et al., 2010; O’Gorman et al., 2010; Pitt et al., 2010;
Amponsah et al., 2011; Qiu et al., 2011; Wunderlich et al.,
2011; Arzanlou et al., 2013b; Ammad et al., 2014; Mehrabi
et al., 2016; Chebil et al., 2017; Kovács et al., 2017; Rezgui et al.,
2018; Narmani and Arzanlou, 2019; Mondello et al., 2020;
Salazar et al., 2020) and others. In order to obtain a greater
definition, other markers, such as Tub2, His3, Act, and Tef1
(van Niekerk et al., 2004; Schilder et al., 2005; Mohammadi
et al., 2009; Besoain et al., 2013; Berlanas et al., 2017; da
Silva et al., 2017; Lawrence et al., 2017; Baranek et al., 2018;
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FIGURE 4

Diagram indicating the most used technics for grapevine trunk disease (GTD) assessment. These technics can have several outcomes, however,
can be used simultaneously to overcome the limitations of the individual techniques. Nonetheless, more protocols have been developed aiming
at more reliable and sensitive GTD assessment and studies, where species can be rapidly detected and interactions between fungal pathogens,
grapevine and grapevine varieties, microbiome (fungi, bacteria, and virus), and environmental conditions can be easily assessed.

Amarloo et al., 2020), have been used. Some fungal families
(Hymenochaetaceae and Phaeomoniellaceae) related to
Esca disease can be correctly identified by just using the
ITS fragment sequencing analysis (Fischer and Kassemeyer,
2003). However, to ensure a more reliable identification,
the simultaneous analysis of several genomic regions is
made, bringing a higher resolution capacity to problematic
and difficult identifications, as in the cases of black foot
disease (Cabral et al., 2012), Eutypa dieback (Rolshausen
et al., 2014), Botryosphaeria dieback (Yan et al., 2013), and
Phomopsis dieback (Guarnaccia et al., 2018). To a lesser
extent, other molecular methods are also used to detect and
identify fungal pathogens, such as nested PCR for black foot
disease in soils, plants, and grafted cuttings (Nascimento
et al., 2001; Agustí-Brisach et al., 2013, 2014), Botryosphaeria
dieback pathogens in planta (Spagnolo et al., 2011), and
Eutypa dieback pathogens from infected vines (Catal et al.,
2007); microsatellite analysis for identification of fungal
isolates of Eutypa lata (Baumgartner et al., 2009); inter-simple
sequence repeats and/or random amplified polymorphic DNA

amplification for black foot pathogens from pure fungal isolates
(Alaniz et al., 2009; Reis et al., 2013) and Kalmusia variispora
(Abed-Ashtiani et al., 2019); restriction fragment length
polymorphism for the identification of Botryosphaeriaceae
fungi (Billones-Baaijens et al., 2013a), Eutypa lata (Rolshausen
et al., 2004), and several fungi (Martin and Cobos, 2007)
from pure cultured isolates; and single-strand conformation
polymorphism for Botryosphaeria fungal identification
(Billones-Baaijens et al., 2013b).

Nowadays, sequencing a panel of several genomic regions
is required to achieve a clear taxonomic identification at
the species level for several GTDs (Figure 3). These results
are obtained by means of pure culture isolates of the
infecting fungi, which are more reliable and accurate than the
analysis of purely morphological characteristics. Nevertheless,
culture isolation is biased, as microorganisms that have slower
growth rates, smaller inoculum, less competitive behavior,
and biotrophic lifestyles are harder to isolate, leading to
an identification bias and leaving several fungal taxa left
unidentified (Dissanayake et al., 2018).
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Quantitative polymerase chain
reaction (PCR) and droplet digital PCR

Methods that are more robust with a wider and faster
sample analysis are also used to obtain reliable results, as
demonstrated in Eutypa lata and Diplodia spp. detection
by quantitative PCR (qPCR) in pruning wounds (Pouzoulet
et al., 2017); in Eutypa lata detection and quantification
in grapevine wood samples (Moisy et al., 2017); black foot
disease pathogen in nursery soil samples by qPCR (Agustí-
Brisach et al., 2014; Langenhoven et al., 2018); Cadophora
luteo-olivacea from vineyard soils and nursery vine stocks by
qPCR and TaqMan R©-based assay with droplet digital PCR
(ddPCR) (Maldonado-González et al., 2020); Phaeomoniella
chlamydospora, an Esca-related pathogen, in several steps of
the nursery propagation process, by a TaqMan R© qPCR assay
(Edwards et al., 2007); and quantification and monitoring of
the field samples throughout the year by qPCR (González-
Domínguez et al., 2020); other Esca-related pathogen
(Phaeomoniella chlamydospora and Phaeoacremonium
aleophilum) quantitation by qPCR in wood samples (Pouzoulet
et al., 2013); Botryosphaeriaceae family fungi identification
and quantification by hydrolysis qPCR (Billones-Baaijens et al.,
2018); and Ilyonectria liriodendri by qPCR and ddPCR (del
Pilar Martínez-Diz et al., 2020). Also, the identification and
quantification of the microbiomes of roots are conceivable,
making it possible to associate soil characteristics and vine
rootstocks with the prevalence of some microbial agents
(Berlanas et al., 2019).

These methodologies are limited to the knowledge obtained
from loci sequencing, since several GTD-related fungal species
are identified by several loci, such as with endpoint PCR.
Nonetheless, qPCR and ddPCR are incrementally more
sensitive, allowing to detect lower quantity of inoculum
(Pouzoulet et al., 2013, 2017; Agustí-Brisach et al., 2014;
Maldonado-González et al., 2020), proving to be an excellent
and accurate tool to be used, and retrieving highly satisfactory
results when compared to other technologies (Figure 4), e.g.,
next-generation sequencing (Morales-Cruz et al., 2018b; Saccà
et al., 2019).

Next-generation sequencing

Modern technologies, based on massive next-generation
sequencing (NGS) analysis (Gramaje et al., 2018), lead to
faster and more reliable identifications, surpassing struggles that
first existed and increasing our knowledge by bypassing the
culture step and leading to the advent of culture-independent
techniques. The main benefit of such methods is the wide
microbiome analysis in each sample, allowing it to be applied
in several samples simultaneously without the need to isolate
the detected agents. These methodologies also allow to identify

and relatively quantify the presence of each microbial agent
(Eichmeier et al., 2018; Morales-Cruz et al., 2018b; Nerva et al.,
2022). Additionally, distinct NGS approaches can have several
outcomes, such as the perception of the role of the genes in
the infectious process by RNA sequencing (Morales-Cruz et al.,
2015, 2018a; Paolinelli et al., 2022), the prevalence of certain
pathogens in distinct environments and grapevine cultivars by
environmental microbiome metasequencing (Maree et al., 2012;
Eichmeier et al., 2018; del Frari et al., 2019; Azevedo-Silva
et al., 2021), and the role of other microbial agents toward
GTD-causing fungal pathogens (Berlanas et al., 2019; Saccà
et al., 2019; Niem et al., 2020; Bekris et al., 2021; Cobos et al.,
2022).

It is also of great relevance that pathogen detection
and identification can be performed without destroying and
endangering the sampled vines. Despite the usefulness of the
most modern technologies (Figure 4), we still have a tough
time sampling vines without the destructive effect. Therefore,
new methods should address the maintenance of the sample
analyzed. Hence, biosensors, resourcing to DNA hybridization,
can further resolve some of the disadvantages associated with
PCR-based methods, such as the need for smaller sampling,
specialized handling, and expensive equipment, with the
advantages of a fast response, cost-effectiveness, and portability
for in situ measurements (Barrias et al., 2019). The use of specific
biosensors can be an appropriate measure to help in the crusade
against GTDs and even other vine-affecting diseases.

Conclusion and future
perspectives

The colonization of new areas by grapevine brought new
and extensive sources of economic revenue due to the increased
production of grapes and processed products, mostly wine.
However, the lack of knowledge and the increased exportation
of grapevine plants led to the widespread of several diseases,
predominantly being GTDs. Since these pathogens can stay
dormant, due to their endophytic lifestyle in planta for years,
there is a pressing need for the development of fast detection
methods that can be employed in the early stages in order to
mitigate economic losses.

The main goal, so far, for vineyard protection and related
economic aspects is the swift development of methods for
precocious detection of GTD-involved inoculum capable of
giving rise to outbreaks. Also, precocious detection of black
foot and Petri disease pathogens in nurseries could diminish
its propagation to fields. Several methods and protocols have
been implemented to help mitigate and reduce the nefarious
effects of GTDs, which range from controlled nursery practices
during plant processes to field control using chemical agents,
antagonistic microbiota, new methods of vine management,
and disposal of the infected plants (Graniti et al., 2000;
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Agustí-Brisach and Armengol, 2013; Mondello et al., 2018).
However, these are not fully effective, due to the ubiquitous
character of the fungal pathogens, increased resistance to
chemicals, and badly timed applications of these safety practices,
leading to a partial reduction of the causal GTD agents and
hence a less effective protection of the vineyards, as thoroughly
explained by Gramaje et al. (2018).

Thus, it is mandatory that early pathogen detection in
the vineyard and nurseries is achieved, and other possible
inoculum sources are avoided in order to maintain grape
yield and quality. Additionally, fungal detection in nurseries
is also an urgent demand to be met, since undiagnosed vines
pose another threat level to healthy vineyard implementation.
The early pathogen detection and identification would allow
the definition of manageable and focused actions against the
targeted pathogen, thus enhancing mitigation measures. Also,
molecular tools would allow to control the plant material
exchange among countries and the transport of asymptomatic
infected vines which could further avoid the human-mediated
dispersion of pathogenic fungi to healthy vineyards (Travadon
et al., 2012). Therefore, directives should also be updated to
englobe potentially grapevine affecting fungal species, as is the
case of grapevine trunk diseases.

Currently, the techniques available are limited, since they
only allow a reactionary response, lack preventive measures, and
do not act on early reduction of these pathogens, which remain
“hidden” in the absence of external symptoms of a presumable
healthy plant. Hence, early and fast detection of these pathogens
is mandatory for integrated vineyard protection, allowing to
protect the cultural and genetic patrimonies and economic
interests of several grape-producing countries.

Detection of GTDs based on more classical approaches
has proven to be insufficient to detect the actual problem,
and hence methods for early detection of the pathogens
should be widely implemented, which would allow more
precise mitigation measures. Overall, fungal pathogen detection
and identification in planta in the early stages of infection
are more easily obtained by molecular-based technologies,
namely, DNA detection. Furthermore, new insights are needed,
since several aspects are not well-established for GTDs,
such as the possibility of co-infection by other fungal
species or adjuvants that may help manifest the disease
faster or more aggressively (e.g., the pathogenic effect of
Seimatosporum vitifusiforme when co-inoculated with Diplodia
seriata, with Seimatosporum luteosporum in co-infections with
Diplodia ambigua in vines of Vitis vinifera cv. Pinot Noir)
(Lawrence et al., 2018) and the worldwide prevalence of the
pathogens in distinct locations, since these diseases have a
worldwide distribution with variation in the causal agents
(Agustí-Brisach and Armengol, 2013).

Additionally, implementation of new technologies of
metagenomic protocols will allow not only for pathogen

detection and identification, thus helping in vineyard
management, but also with the definition of GTD etiology
by assessing microbiota in the vineyards and in the
environment, hence unveiling new interactions between
several microorganisms and new possible sources of biocontrol
agents (Marraschi et al., 2019; Trotel-Aziz et al., 2019; Almeida
et al., 2020; Niem et al., 2020; Russi et al., 2020; del Pilar
Martinez-Diz et al., 2021; Cobos et al., 2022). Recently,
mycovirus has been described as a causal agent of GTD;
nevertheless, further studies are necessary to fully understand
their role in symptom manifestation and their link to a specific
GTD pathogen (Nerva et al., 2019). Also, implementation
of mRNA analysis in pathogen–Vitis interactions, genome-
wide sequencing, and metabolome-wide analysis of GTD
pathogens enables the possibility of finding new answers
related to dissemination, infection, and colonization pathways,
hence helping to develop new alternative methods to tackle
this problem (Cobos et al., 2010; Blanco-Ulate et al., 2013;
Morales-Cruz et al., 2015; Paolinelli-Alfonso et al., 2016; Xing
et al., 2019). Furthermore, methods that detect and identify
the presence of pathogens, either by DNA amplification or
DNA sensing, in vineyards before the appearance of symptoms
would allow for more precise and early measures to diminish
the pathogenicity of fungal inoculum (Pouzoulet et al., 2017;
Billones-Baaijens et al., 2018; Dissanayake et al., 2018),
thereafter complementing the actions needed to avoid extensive
yield and vine losses.
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SUPPLEMENTARY INFORMATION 1

Current knowledge of fungal species related to GTDs (Phillips, 1998;
Fischer and Kassemeyer, 2003; van Niekerk et al., 2004; Halleen et al.,
2007; Alaniz et al., 2009; Tomoiaga et al., 2009; Úrbez-Torres and
Gubler, 2009; Trouillas and Gubler, 2010b; Luque et al., 2012;
Agustí-Brisach and Armengol, 2013; Arzanlou et al., 2013a,b;
Úrbez-Torres et al., 2013; Linaldeddu et al., 2014; Rolshausen et al.,
2014; Arzanlou and Narmani, 2015; Cloete et al., 2015; Travadon et al.,
2015; Maharachchikumbura et al., 2016; Carlucci et al., 2017; da Silva
et al., 2017; Lawrence et al., 2017, 2018, Halleen et al., 2007; Pouzoulet
et al., 2017; Váczy et al., 2017; Billones-Baaijens and Savocchia, 2018;
Guarnaccia et al., 2018; Moyo et al., 2018, 2019; Pintos et al., 2018;
Rezgui et al., 2018; Abed-Ashtiani et al., 2019; Akgül et al., 2019; Lesuthu
et al., 2019; Manawasinghe et al., 2019; Raimondo et al., 2019; Amarloo
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2020; Mundy et al., 2020). Taxonomic synonyms of interest were
obtained from Mycobank (2021) database (www.mycobank.org). Esca
(Es), Petri disease (belonging to Esca complex) (PeD), Botryosphaeria
dieback (BD), Eutypa dieback (ED), Phomopsis dieback (PD), black foot
disease (BF), and Cytospora Canker (CC). Families/genera which are not
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which are considered to enhance GTD development as infections
adjuvants (IA) are also indicated.
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