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Abstract: Microbial interactions in agricultural soils can play important roles in the control of soil-
borne phytopathogenic diseases. Yields from blueberry plantations from southern Spain have been
impacted by the pathogenic fungus, Macrophomina phaseolina. The use of chemical fungicides has
been the common method for preventing fungal infections, but due to their high environmental
impact, legislation is increasingly restricting its use. Biocontrol alternatives based on the use of
microorganisms is becoming increasingly important. Using the metabarcoding technique, fungi
and bacteria were characterized (via 16S and ITS regions, respectively) from rhizosphere soils of
healthy and dead blueberry plants infected by M. phaseolina, and which had undergone three different
treatments: two biocontrol strategies—one of them a mix of Pseudomonas aeruginosa and Bacillus
velezensis and the other one with Bacillus amyloliquefaciens—and a third treatment consisting of the
application of a nutrient solution. The treatments produced changes in the bacterial microbiota
and, to a lesser extent, in the fungi. The abundance of Fusarium was correlated with dead plants,
likely favoring the infection by M. phaseolina. The presence of other microorganisms in the soil,
such as the fungi Archaeorhizomyces or the bacteria Actinospica, were correlated with healthy plants
and could promote their survival. The different genera detected between dead and healthy plants
opens the possibility of studying new targets that can act against infection and identify potential
microorganisms that can be used in biocontrol strategies.
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1. Introduction

Blueberry (Vaccinium corymbosum) is one of the most consumed berries around the
world, with increasing trends in production and sales [1]. Spain is ranked the third-highest
country worldwide in terms of blueberry production, with 50,000 tons of berries—with
production concentrated in the southwest of its territory [2].

Stem blight is a major disease in blueberries. This fungal disease leads to the fast degra-
dation of the vascular system, thereby causing foliage death and brown discoloration of
internal vascular stem tissues, which eventually provoke plant death [3,4]. It is produced by
fungi, principally members of the Botryosphaeriacerae family, and can lead to plant death [5];
there is ample biogeographic variability. For example, in Florida, Lasiodiplodia theobromae
and Neofusicoccum ribisson are the main fungi responsible for stem blight [6], meanwhile
in Chile, N. arburi and N. parvum have the greatest impact [7]. In the past, N. parvum,
N. australe, L. theobromae, and N. clavispora were considered the major infection-causing
fungi pathogens in Huelva [7]. However, between 2015 and 2017, the phytopathogenic
fungus, Macrophomina phaseolina—the principal cause of strawberry crop losses—was also
reported [3,8]. This fungus is plastic and has a wide range of targets [9]. Furthermore,
M. phaseolina can persist in soil for many months by adopting resistance forms called
sclerotia [10].
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M. phaseolina is an anamorphic ascomycete belonging to the Botryosphaeriaceae family
and is the cause of the stem blight and charcoal rot in red fruits, as well as other illnesses
in a diversity of plants [11]. It is an endophytic fungus that enters the plant by using
two methods, one physical and the other mechanical. Through the mechanical method, it
enters the plant by exerting pressure on the roots that are proximal to the growing germ
tubes. For the chemical method, the fungus dissolves the cell wall through the secretion
of toxins (botryodiplodin toxin) and enzymes (cellulases and polyglacturonase) [10–12].
The infection can be favored by biotic and abiotic stresses, as well as high temperatures
(29–35 ◦C) [13], hydric stress [14], damage to the cell wall, or the presence of nematodes [15]
and other fungi, such as Fusarium [16].

There are chemical methods that can prevent the infection caused by M. phaseolina. In
strawberries, for example, treating the soil with methyl bromide or Dazomet prior to cultiva-
tion have been a common practice. Both were recently banned due to their high environmen-
tal impact [17,18]. Other synthetic phytochemicals, such as 1,3-dichloropropene:chloropicrin,
are being used, but legislation is becoming stricter in Europe, and a ban is probable [19].
Therefore, farmers are increasingly demanding alternative environmentally friendly meth-
ods to combat this as well as other pathogens. Disinfection by biosolarization (a technique
that combines biofumigation with soil solarization), the use of plastics covers, the selec-
tion of pathogen-resistant plants, or the use of microorganisms for biocontrol are starting
to be used [20]. Bacteria with PGP (Plant Growth Promoting) activities promote plant
growth through various mechanisms, such as iron and phosphorus solubilisation, nitro-
gen fixation, or phytohormone production. Some of these can act directly or indirectly
against crop pathogens. When acting directly, they can secrete antibiotics or produce
metabolites that suppress other metabolites, such as siderophores, hydrolytic enzymes, or
hydrogen cyanide. When acting indirectly, they can activate the plant’s molecular defense
mechanisms (induced systemic resistance), thereby triggering the plant’s resistance to in-
fection [21]. Previous studies have shown the efficacy of using this type of bacteria against
M. phaseolina in strawberries crops [22,23].

Most fungal phytopathogenic diseases affecting berries are soil-borne. The persistence
of resistance latent structures in the soil can boost these fungal diseases, while the native mi-
crobiota in agricultural soils can have a suppressive effect [24–26]. Thus, studying the soil’s
microbiota from an agriculture perspective is becoming increasingly important [27]. The
traditional way of characterizing microbiota is through the culture-isolation of strains from
soil samples in the lab. This technique does not provide a full spectrum of the microbial
diversity in the soil since many microorganisms cannot be cultured under laboratory condi-
tions. The advent of NGS (Next Generation Sequencing) allows for the characterization
of the microbial diversity from complex soil samples [28]. This fact has led to great ad-
vances in the study of plant-associated microbiomes [29]. Specifically, the “metabarcoding”
technique permits the characterization of biological communities through a gene region
that serves as a “barcode”. For the soil microbiota, the Internal Transcribed Spacer (ITS)
intergenic region is often used for fungi and the 16S rRNA coding region of the ribosome
is used for bacteria [30]. The taxonomic classification of these sequences against curated
databases has allowed for the taxonomic characterization of the samples [31].

The aim of this work was to study the changes in the microbial community of rhizo-
spheric soils in blueberries suffering from infection—and death—by M. phaseolina compared
to healthy plants. We also evaluated the effect of three proposed environmentally friendly
prevention strategies for fungi disease control on the soil microbiota; two of them were
based on bacteria-mediated biocontrol, and the third one was based on a nutrient solu-
tion. We expect to find differences in the microbial composition of the rhizosphere of
healthy and dead plants, including a higher proportion of M. phaseolina in the dead ones.
As for the treatments, we expect that they will modify the soil microbiota by decreasing
the presence of pathogens and increasing the microorganisms with PGP and pathogen
antagonistic properties.
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2. Materials and Methods
2.1. Treatments

Trials were carried out at the IFAPA institute experimental farm, El Cebollar—which
is located at Moguer (Huelva, 37◦14′25.4” N 6◦48′09.2” W)—in two 50 m long high plastic
tunnels with 2 beds each. Three soil treatments based on environmentally friendly strategies
for controlling fungal disease were assayed: the first consisted of two bacteria belonging
to the IFAPA collection, which had shown in vitro inhibition of M. phaseolina growth (A),
the second contained a commercial strain of Bacillus amyloliquefaciens (B), and the third
one contained a nutrient solution (C). We also included a control plot. Each treatment was
tested on four beds inside two different high plastic tunnels. Each of the beds was divided
into six sections of equal length. The end sections were not planted since they were least
homogeneous in terms of irrigation and exposure to climatic conditions. The treatments
were applied to the remaining four sections.

Treatment A consisted of bacterial strains AC17 and ACH16, which correspond to Pseu-
domonas aeruginosa and Bacillus velezensis, respectively. Both strains had been isolated from
blueberry rhizospheric soil and shown to inhibit the growth of M. phaseolina in vitro [32].
Treatment B was a commercial biological fungicide containing Bacillus amyloliquefaciens.
This product had been shown to be effective against a wide range of both biotrophic and
necrotrophic pathogens [33]. Treatment C was a commercial nutrient solution containing
nitrogen, phosphate, potassium, and amino acids. These minerals promote plant develop-
ment, and the amino acids should stimulate the formation of new absorbing hairs, thereby
enhancing the assimilation of water and minerals. The treatments were applied every
21 days by drip irrigation. In treatments A and B, 2 × 1010 cfu were applied to each plant,
and C was treated as established in the technical data sheet of the product. The bacte-
rial application started on 2 July 2020—after pruning—and was repeated 4 more times
until 24 September 2020 with the following application dates: 2 July, 23 July, 13 August,
3 September, and 24 September. At that time, application was ceased for harvesting.

2.2. Sampling

A stratified sampling was carried out in February 2021 by taking soil samples that
were adjacent to the blueberry plants in the bed. In each treatment, we selected a dead
blueberry plant affected by M. phaseolina and a healthy plant. The samples were taken
with an auger with a 4 cm diameter and up to a 20 cm depth at 4 different points in the
vicinity of the plant within the section corresponding to the treatment in question, and then
they were poured into a plastic bag and homogenized by manual shaking. The samples
were stored and transported at 4 ◦C to the laboratory where they were frozen at −80 ◦C
until handling.

2.3. DNA Extraction

Prior to DNA extraction, samples were freeze-dried in the Telstar® LyoQuest freeze-
dryer. Lyophilisation took place in 2–15 mL tubes with a perforated parafilm covering
the mouth of the tube for a minimum of 8 hr at 0.1 mbar at −80 ◦C, which ensured the
complete dehydration of the sample. Dehydration paralyzes all microbial activity and
ensures that the microbiota remains unchanged during processing [34], and standardises
the subsequent DNA content to a comparable dry weight between samples.

DNA was then extracted from approximately 0.25 g of freeze-dried soil using the
Qiagen® DNeasy PowerSoil kit according to the manufacturer’s instructions. The negative
controls were included in each extraction batch of 13 soil samples—in addition to 2 technical
replicates. We included a positive control (ZymoBIOMICS™ Microbial Community DNA
Standard II, Log Distribution, #D6311) consisting of genomic DNA from a known mock
community with decreasing concentrations of different bacterial strains and two fungi,
Cryptococcus neoformans and Saccharomyces cerevisiae. All soil samples were inoculated
with a known amount of an internal control of bacteria and fungi known as spike-in. For
bacteria, a commercial control (ZymoBIOMICS™ Spike-in Control I # D6320) containing
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the halophilic bacteria, Imtechella halotolerans and Allobacillus halotolerans, was used. The
Yarrowia lipolytica strain, CECT 1240, was chosen as the fungus, which was grown in our
laboratory at high concentrations and quantified in Petri dishes. The internal control and
the mock community allowed us to validate the downstream methodological flow and
the sensitivity of the method. The amount of extracted DNA was determined using a UV
spectrophotometer (NanoDrop2000 ThermoFisher).

2.4. DNA Metabarcoding Library Preparation and Sequencing of Samples

The genetic characterization by metabarcoding of the bacterial and fungal communities
was carried out based on target amplicon libraries that were sequenced in Illumina. For
bacteria, primers 515-F [35] and 806-P [36], which are specific to the V3-V4 region of bacterial
16S rRNA—and were recommended in the Earth Microbiome Project protocol [37]—were
used, thereby generating a product of about 292 bp. For fungi, primers ITS3 and ITS4,
which are specific to the ITS2 regions of the fungal genome and produce an amplicon of
about 330 bp [38], were used (Table 1). All primers contained Illumina tails at their 3′ ends
that were complementary to the Illumina adaptors, which were added in a second PCR.

Table 1. Locus-specific primer sequences.

Primers SEQUENCE (5′–3′)

Bacterial 16S
515F-Y GTGYCAGCMGCCGCGGTAA
806R GGACTACNVGGGTWTCTAAT

Fungal ITS2 ITS3 GCATCGATGAAGAACGCAGC
ITS4R TCCTCCGCTTATTGATATGC

PCRs were carried out at a final volume of 12.5 µL containing 4–20 ng of DNA, 0.5 µM
of oligonucleotides, 6.25 µL of Supreme NZYTaq 2x Green master mix (NYZTech), and
ultrapure water. The PCR reaction consisted of a preliminary denaturation step at 95 ◦C for
5 min, followed by 25 cycles of a denaturation step at 95 ◦C for 30 s, annealing at 46/50 ◦C
(16S/ITS, respectively) for 30 s, and then elongation at 72 ◦C for 45 s, with a final extension
for 7 min at 72 ◦C. A negative control with the reaction reagents and no DNA was included
in all PCR reactions. Libraries were run on a 2% agarose gel with GreenSafe (NYZTech)
and visualised under UV light.

The oligonucleotide indices required in the multiplexed libraries were added in a
second PCR with the same PCR conditions as above, but with 5 cycles and an annealing
temperature of 60 ◦C. Library preparation was carried out following the process described
by Vierna et al. [39]. They were purified using Mag-Bind RXNPure Plus magnetic beads
(Omega Biotek) by following the supplier’s instructions. The libraries were combined in
equimolar concentrations following Qubit dsDNAHS assay quantification (ThermoFisher
Scientific) and sequenced on a fraction of an Illumina NovaSeq PE250 lane by AllGenetics
& Biology SL (La Coruña, Spain).

2.5. Bioinformatics Analysis

The primers that were used for library preparation and sequences with unidenti-
fied nucleotides (“N”) were removed with Cutadapt 3.6.9 [40]. The rest of the sequence
processing was carried out in R 4.1.2 [41] using dada2 [42], with some modifications to
accommodate the quality encoding of the NovaSeq system [43]. The sequences were classi-
fied into ASVs (Amplicon Sequence Variants), thereby treating each variant individually,
as opposed to the traditional OTU (Operational Taxonomic Unit) classification system
in which sequences within a similarity threshold (often 97%) are clustered together. The
OTU-related system ignores the variation that can occur from just a single nucleotide
between close taxa (within genus or species). ASVs provide higher resolution, sensitivity,
specificity, and reproducibility [44]. The SILVA database for bacteria [45] and UNITE for
fungi [46] were used for taxonomic classification.

For the rest of the analysis, the R package, phyloseq [47], was used. The internal controls
(spike-in and ZymoResearch mock community), ASVs that were not classified at the phy-
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lum level, low prevalence (presence in only one sample) with the phyloseq_filter_prevalence
function of the MetagMisc package [48], and low relative abundance (less than 1.5 × 10−6

in bacteria and less than 4 × 10−6 in fungi) were removed. In addition, sequences that
corresponded to eukaryotic sequences (chloroplasts and mitochondria) and contamina-
tions present in controls were removed with the isContaminant function of the decontam
package [49].

2.6. Alpha and Beta Diversity

For statistical analyses, R was used. The alpha diversity was estimated with the
observed diversity (number of different ASVs) and Shannon and Simpson index using
the estimate_richness function and plotted with plot_richness from the phyloseq package [50].
The observed diversity only considers the number of different taxa in the samples, and
the other two indices also measure the evenness and dominance [51]. The relationship
between alpha diversity and the different treatments was tested with an ANOVA test using
the stat package of R. Subsequently, pairwise comparisons were made with Tukey’s test.
The relationship between the alpha diversity and plant condition (healthy/dead plant) was
determined with the generalised linear model from the lme4 package, assuming that the
data follow a binomial distribution (healthy = 1; death = 0) [52].

To evaluate the effect of the treatments and plant condition on the microbiota structure,
the beta diversity was explored based on the Bray–Curtis distance [53]. Then, it was
visualized in a Principal Coordinate Analysis (PCoA) that was run with the ordinate function
in the phyloseq package. A PERMANOVA (Permutational Analysis of Variance) test using
the adonis function of the vegan package allowed us to partition the variance of the observed
dissimilarity between the treatments and plant condition, and test its significance after
999 permutations [54].

To characterize the relationship between the treatments and plant death/survival in
the presence of specific genera, the DESeq package was used. This package calculates the
normalised change in abundance (fold change) and the associated statistical significance
(p-value). To this end, we contrasted the differences between the treatments and plant
condition. The negative fold change values indicated a higher presence of the genus in
dead plants or control soils and the positive values indicated a higher presence in healthy
plants and after a given treatment. DESeq performed an internal normalisation of the data
in which it detected the possible outliers and reduced the dispersion of the data, which
provided stability to the model [55].

For relative abundance plots, the microbiome package was used [56], whereas ggplot2
was chosen for the other representations [57].

3. Results

A total of 2,436,437 fungal sequence reads were produced, which yielded 237 ASVs
and detected 91 genera across all samples. For bacteria, 2,748,369 reads were analyzed,
identifying 2291 ASVs and 215 different genera.

3.1. Sensitivity of the Method

The detection of the microorganisms of the mock community allowed us to establish
the sensitivity of the method. In the case of bacteria, Lactobacillus fermentum was detected,
but not those bacteria found in lower concentrations, which means that the detection limit
for bacteria was at least 0.012%. In the case of fungi, Cryptococcus neoformans was detected,
so the sensitivity for fungi is at least 0.0014%.

3.2. Alpha Diversity

The observed diversity for fungi was low (around 50–70) (Figure 1A). The one-way
ANOVA test for the comparison of the effect of the treatments on the alpha diversity
pointed to non-significant differences (F(3,27) = 1.931, p = 0.267).
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All diversity indices had higher values for bacteria than for fungi (Figure 1B). In all
cases, the values close to unity for the Simpson’s diversity indicate dominance within the
community. The observed and Shannon’s diversity indicate a higher diversity in the control
and for treatment A (P. aeruginosa + B. velezensis) than in the other two treatments. Further-
more, the differences in diversity between healthy and dead plants were studied, and the
Shannon diversity was observed to be 0.16 points higher in healthy plants (PrChisq = 0.066).
The one-way ANOVA used to study the relationship between the alpha diversity and the
treatments revealed a significant effect (F(3,24) = 6.41, p = 0.002). Tukey’s HSD test revealed
that the alpha diversity differed between treatments B (B. amyloliquefaciens) and C (nutrient
solution) with respect to the control (PB-control = 0.006 and PC-control = 0.004). There were
differences between the alpha diversity and the rest of the treatments (PA-control = 0.06,
PB-A = 0.74, PC-A = 0.41 and PC-B = 0.90).

3.3. Diversity between Conditions

The Adonis test indicated that the differences in diversity due to the treatments or plant
condition were not significant for fungi (R2

treatments = 0.36, Ptreatments = 0.21, R2
condition = 0.40,

Pcondition = 0.32) (Figure 2A). In bacteria, there was no evidence of the state of the plant
(healthy/dead) influencing the community (R2

condition = 0.03, Pcondition = 0.51). However,
the treatments did seem to exert some influence (R2

treatment = 0.17, Ptreatment = 0.011) given
that treatments B (B. amyloliquefaciens) and C (nutrient solution) were the ones that produced
the greatest changes (Figure 2B).

3.4. Rhizosphere Microbiota of Blueberry Crops

In fungi, the orders, Pleosporales and Hypocreales, were more abundant in dead plants
and the order, Capnodiales, was more abundant in the healthy ones. The treatments pro-
duced changes at the order level, thereby increasing the presence of Capnodiales in all cases,
especially in treatment A (P. aeruginosa + B. velezensis). This treatment also produced an
increase in the orders Eurotiales and Pleosporales, and treatment B produced an increase
in Hypocreales, which showed a decreased concentration in samples from treatment C
(nutrient solution) (Figure 3A,B). The phyla, Actinobacteria and Proteobacteria, were the
most abundant in healthy plants, while in dead plants we found a higher proportion of
Firmicutes (Figure 3C). Regarding treatments, the phyla, Myxococcota, Acidobacteria, and
Proteobacteria, were the most abundant in the control, while Actinobacteriota dominated the
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soil from treated plants. Furthermore, the phylum, Firmicutes, was increased in soils from
treatments B (B. amyloliquefaciens) and C (nutrient solution) (Figure 3D).
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The genera, Archaeorhizomyces and Fusarium, varied in abundance depending on the plant
condition: Archaeorhizomyces prevailed on healthy plants (p < 0.001, log2FoldChange = 5.1)
while Fusarium did well on dead plants (p = 0.01, log2FoldChange= −2.43) (Figure 4A). For
bacteria, the sole significant differences were found in the genera, Actinospica and Nocardioides,
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given that the former is more abundant in healthy plants (p = 0.028, Log2FoldChange = 1.51)
and the latter is more abundant in dead plants (p = 0.029, log2FoldChange = −2.95)
(Figure 4B).
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The soil microbiota was affected by the treatment. There were three genera of fungi
and eight genera of bacteria that differed from the samples from treatment A (P. aerug-
inosa + B. velezensis) with respect to the control. In fungi, the genera, Talaromyces and
Archaeorhizomyces, were more abundant in the treated samples, while Rasamsonia prevailed
in the control (Figure 5A). In bacteria, eight genera changed abundances significantly,
with two of them being found in greater abundances in the control than in the treated
samples (Pedomicrobium, and Nocardioides) and the other six being the opposite case (No-
cardia, Pedosphaera, Roseiarcus. Anaeromyxobacter, FCPS473, and Burkholderia-Caballeronia-
Paraburkholderia) (Figure 6A).
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For treatment B (B.amyloliquefaciens), two genera of fungi differed with respect to the
control: Polyschema, given that it was more abundant in the control than in the treated
plants, and Fusarium, given that it was more abundant in the treated plants than in the
control (Figure 5B). For bacteria there were 18 associated genera for all of the treatments.
In the treated samples, the taxa Conexibacter, Tumebacillus, Pullulanibacillus, Mycobacterium,
FCPS473, Nocardia, Paenibacillus, Alicyclobacillus, and Acidothermus were at higher pro-
portions; while Koribacter, Hyphomicrobium, Pedomicrobium, Sphingomonas, Gemmatimonas,
Solirubrobacter, and Actinomadura were more abundant in the control samples (Figure 6B).

Treatment C (nutrient solution) produced changes in 2 fungal and 21 bacterial taxa.
In fungi, Archaeorhizomyces was more abundant in the treated plants and Rasamsonia was
more abundant in the control ones (Figure 5C). In bacteria, the less abundant genera,
with respect to the control, were Gemmatimonas, Solirubrobacter, Nocardioides, MND1, Ro-
seisolibacter, Candidatus Koribacter, Sphingomonas, Pedomicrobium, Hyphomicrobium, Candidatus
Nitrososphaera, and Geodermatophilus; while the most abundant taxa in the treated samples
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were Tumebacillus, Anaeromyxobacter, Ammoniphilus, Nocardia, Conexibacter, Burkholderia-
Caballeronia-Paraburkholderia, Mycobacterium, Acidibacter, Acidothermus, and Pullulanibacillus
(Figure 6C).
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4. Discussion

The pathogens that are present in soil can cause crop losses, but other microorganisms,
such as PGP bacteria, can exert a suppressive effect. A better knowledge of the microbiota
interactions in the soil can help to inform sustainable strategies for pathogen control. The
use of metabarcoding allowed us to identify the differences in soil microbiota between
healthy and dead plants that were infected with M. phaseolina, and to evaluate the changes
in the soil microbiota that were associated with the different control strategies assayed.

High soil microbial diversity has been associated with increased crop yield and re-
sistance to pathogen attacks [58,59]. The higher diversity observed in live plants with
respect to dead plants supports this hypothesis. Fungal diversity was low, and it was
not influenced by either plant condition or treatment (Figure 1), meanwhile the bacterial
microbiota was responsive to treatments (Figure 2).
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Healthy and dead plants differed in their microbiota composition. The fungal order,
Capnodiales, was more abundant around healthy plants; it includes diverse fungi with
different lifestyles and nutrition pathways [60] (Figure 3A). The bacterial phyla, Proteobac-
teria and Actinobacteria, were predominant in healthy plants (Figure 3C). Many groups
within these phyla have been associated with PGP activities and are related to plant de-
velopment [61]. In dead plants, the fungal orders, Pleosporales, which contains parasites,
epiphytes, or endophytes, and Hypocreales, which harbours genera that have been em-
ployed for biocontrol [62,63] (Figure 3A), were the most abundant. The bacterial phylum,
Firmicutes, was slightly more abundant in dead plants (Figure 3C). That fact could contrast
with the PGP activities associated with some of the strains that belong to this phylum,
which are well known and have been used as biocontrol microorganisms [64].

At the genus level, Fusarium, a blueberry pathogen [65], was the most abundant in dead
plants, and Archaeorhizomyces, a non-pathogen ubiquitous fungus commonly associated
with plant roots [66], was most common in healthy plants (Figure 4A). The high presence
of Fusarium in dead plants is cohesive with the positive interaction that this pathogen
establishes with M. phaseolina; the latter could enhance the severity of the former [16].
We did not report a larger abundance of M. phaseolina in dead plants, contrary to our
expectations. Perhaps, it could be explained by the fact that this pathogen is an endophyte
and the studied samples were collected from soil [10]. For bacteria, the genus Nocardioides,
which is most abundant in dead plants, is related to mineral fixation and organic material
degradation [67]. It has also been associated with the resistance of Fusarium oxysporum and
M. phaseolina since it contains strains with PGP activities and antifungal producers [68,69].
The larger presence of this genus in dead plants seems contradictory to what is known
about this genus, although there may be undescribed functions that could explain this fact.
On the contrary, the genus Actinospica, which has been used as a biocontrol [70], was the
most abundant in healthy plants (Figure 4B).

The treatments produced changes in the soil microbial composition, especially treat-
ments B (B. amyloliquefaciens) and C (nutrient solution) (Figure 2B). Biocontrol approaches
have been described as effective strategies for the prevention of pathogen infections in many
crops, and other studies support the use of the microorganisms employed in treatments
A and B. Pseudomonas aeruginosa, the microorganism employed in treatment A, has been
shown to have PGP activities and a strong antagonism against worldwide pathogens, such
as M. phaseolina and F. oxysporum [71]. Furthermore, the genus Bacillus, which was used in
treatments A and B, has been employed as a biocontrol against M. phaseolina, Fusarium spp.,
and Rhizoctonia solani, and has had good results in other crops [72].

At the fungal level, all treatments led to an increase in Capnodiales, which predominated
in healthy plants. Soils under treatment A (P. aeruginosa + B. velezensis) were also abundant
in the orders, Eurotiales and Pleosporales, given that the latter was very abundant in dead
plants. Eurotiales harbors species from Penicillium or Aspergillus, which contain strains
used in biocontrol [73–75]. Treatment B (B. amyloliquefaciens) increased the abundance
of Hypocreales, which was also very abundant in dead plants (Figure 3B). At the genus
level, treatment A (P. aeruginosa + B. velezensis) produced an increase in Talaromyces, which
contains strains with PGP and biocontrol activities [76–78], and in Archaeorhizomyces, which
was the most abundant in healthy plants (Figure 5A). Archaeorhizomyces was also increased
in soils under treatment C (nutrient solution) (Figure 5C). Treatment B (B. amyloliquefaciens)
led to a remarkable increase in Fusarium, whose presence was also higher in dead plants
(Figure 5B).

The bacterial soil composition was also modified after the treatments employed. In all
treated soils, Actinobacteriota were observed in larger abundances (Figure 3D). The abun-
dance of Actinobacteriota was also greater in healthy plants, so some of their strains could
have favorable properties for plant development or resistance. In treatment A (P. aerugi-
nosa + B. velezensis), Pedomicrobium—which contains strains related to nitrogen fixation [79]—
and Nocardioides reduced their presence with respect to the control soils. Six genera were
increased in soils under treatment A, two of them (Roseiarcus and Anaeromyxobacter) with
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strains related to nitrogen fixation [79,80], two FCPS473 and Pedosphaera) with strains able
to degrade xenobiotics or organic material [81,82], and two with strains that could act as
pathogen antagonists: Nocardia, which can inhibit Fusarium and also has PGP activities [83],
and Burkholderia-Caballeronia-Paraburkholderia, which can act against other pathogens [84]
(Figure 6A). Treatment C significantly reduced the abundance of five genera with strains
implicated in N-fixation (MND1, Roseisolibacter, Pedomicrobium, Hyphomicrobium, Candidatus
Nitrososphaera, and Geodermatophilus) [79,85–87], three with strains that could act as PGP
(Gemmatimonas, Solirubrobacter, and Sphingomonas) [88–90], and one that could act as a
pathogen antagonist (Nocardioides). On the contrary, in treated soils there were two gen-
era with strains implicated in nitrogen fixation (Anaeromyxobacter and Acidothermus) [79],
two strains that could act as PGP (Conexibacter and Acidibacter) [91,92], two that contain
potential pathogen antagonists (Nocardia and Burkholderia-Caballeronia-Paraburkholderia),
one with strains that could degrade xenobiotics (Mycobacterium) [93], a genus that contains
extremophiles (Pullulanibacillus) [94], and another with strains that can use oxalacetate
(Ammoniphilus) [95] (Figure 6C).

The presence of bacteria that degrade xenobiotics in any of the treatments compared to
the control and the disappearance of bacteria with functions involved in nitrogen fixation
in the case of treatment C (nutrient solution) is striking. This treatment contains assimilable
nitrogen in its composition, which may be related to the displacement of nitrogen fixers in
the treated samples. As indicated by the β-diversity, treatments B (B. amyloliquefaciens) and
C (nutrient solution) were the ones that modified bacterial composition the most. Given
the changes and the characteristics attributed to the genera, it seems that treatment A
(P. aeruginosa + B. velezensis) is the most favorable at both predicted fungal and bacterial
activities. The results presented here indicate the short-term effect of the treatments.
To know the true effect of the tested treatments, we should extend the trial over time,
as it has only been applied during one season, and the blueberry is a perennial crop.
Furthermore, this study has shown the positive relation between M. phaseolina and Fusarium.
The biochemical fundamentals of this relation should be studied for developing a better
understanding and for establishing good methods for the control of both infections.

5. Conclusions

A higher diversity was observed in healthy plants when compared with dead ones.
Dead plants, all of which were infected with M. phaseolina, had a larger abundance of
Fusarium spp., another blueberry pathogen, suggesting a synergy of both pathogens in
plant infection. Some taxa changed in abundance according to the health state of the
plant, although the treatments had the strongest effect on the microbiota, especially bio-
control treatment A. Our work has revealed the fungal and bacterial diversity patterns
associated with blueberry crop soils. Future steps could be directed at elucidating the
biocontrol mechanisms of some of the proposed bacteria or from newly screened bacte-
ria, and could also contribute to understanding the complex microbial interactions that
occur in the rhizosphere and in the interior of the plant tissues by using metagenomics
or metatranscriptomics.
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