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Abstract
This April, in Cambridge (UK), principal investigators from the Mathematical
Biology Group of the Medical Research Council’s National Institute of Medical
Research organized a workshop in structural bioinformatics at the Centre for
Mathematical Sciences. Bioinformatics researchers of several nationalities from
labs around the country presented and discussed their computational work in
biomolecular structure prediction and analysis, and in protein evolution. The meeting
was intensive and lively and gave attendees an overview of the healthy state of protein
bioinformatics in the UK. Copyright  2004 John Wiley & Sons, Ltd.
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This workshop was organized by members of
the Computational Biology Group at the UK
Medical Research Council’s National Institute for
Medical Research (http://mb2.nimr.mrc.ac.uk/),
Franca Fraternali, Richard Goldstein and Willie
Taylor. It was a low-key affair, organized late, yet it
was probably the best scientific meeting I have ever
attended; I was interested in advance in the content
of practically every session. Most of the seminars
were well-prepared, clear, relevant and refreshingly
concise. Even allowing for usually well-informed
questions and interruptions, sessions rarely over-
ran (or if they did, it didn’t feel that way). Unfor-
tunately, because I heard about the meeting only
shortly before it took place, I was unable to attend
every presentation in full. Although the speakers
and attendees were of many nationalities, they are
all currently working in the UK.

After Willie Taylor’s introduction it was appro-
priate that Cyrus Chothia (Laboratory of Molec-
ular Biology, Cambridge, UK; http://www.mrc-
lmb.cam.ac.uk/genomes/Cyrus.html), one of the
most prominent and longstanding researchers in
the field of protein structure bioinformatics in

Cambridge, should open proceedings. In his talk,
‘Structural constraints on protein mutations’, he
described his work with Rajkumar Sasidharan
(http://www.mrc-lmb.cam.ac.uk/genomes/sraj/).
It was good for the rest of the meeting that, regard-
less of Chothia’s standing, there was no reluctance
to challenge his arguments and his contribution
provoked the first of many stimulating discussions
that took place both during and after presenta-
tions.

When questioned, Chothia admitted to an inten-
tional looseness with the term ‘positive selection’
in his description of the degree and type of residue
type conservation in different locations in protein
structures. He outlined how residue conservation
varied with degree of site exposure and summa-
rized the residue properties most likely to be shared
in the same sites across homologues. Among the
intriguing statistics he presented, Chothia noted
that the normalized frequency of changes in sur-
face residues was five to six times higher than core
residues. The most ‘selected’ (conserved) residue
positions were least likely to vary in their size
first, followed by their physicochemical character.
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For the least ‘selected’ positions, the priorities were
reversed.

In summary: average selectivity values for given
sites in proteins are calculable, the frequency of
variation can be explained in terms of the prop-
erties and locations of the analysed sites, and the
frequency with which residues vary at given sites
had a medium correlation with the overall under-
lying frequency of random mutations. Richard
Goldstein asked if Sasidharan and Chothia’s study
showed that proteins tended towards robustness
and Chothia admitted not. Willie Taylor asked
about possible resemblances between the substitu-
tion matrix derived from Chothia’s structure-based
alignments and the Dayhoff matrix. Chothia said
that the two were similar.

Juan Fernandez-Recio (Crystallography and
Biocomputing Unit, Department of Biochemistry,
University of Cambridge; http://www-cryst.bioc.
cam.ac.uk/∼juan/) next presented ‘Protein
–protein docking by global energy minimization’,
work that he began in Ruben Abagyan’s lab at the
Scripps Institute [9]. He aims to find general meth-
ods for predicting the structures of protein–protein
complexes based solely on the structures of the
members of those complexes. Useful because struc-
tures of complexes are hard to determine, these
have increased in importance as lower-resolution
structure determination methods have become more
powerful and generated more data.

While cheaper analyses treating docking part-
ners as rigid bodies are easier to calculate, they
produce unrealistic energy landscapes, unlikely to
lead to even approximately correct solutions. Mod-
els including fully flexible protein structure require
the exploration of huge conformational spaces.
Fernandez-Recio and co-workers seek a compro-
mise: the first step is to treat structures as rigid
bodies with ‘soft’ van der Waals’ radii permitting
atomic overlap; the second step is to permit flex-
ibility elsewhere. Other efficiencies come through
representing molecules in terms of their internal,
rather than Cartesian, coordinates. This combina-
tion resulted in one of the top ‘blind’ performers in
the (CASP-like) CAPRI protein docking prediction
competition (http://capri.ebi.ac.uk/). Unlike many
reviews of bioinformatics methods by their devel-
opers, Fernandez-Recio went on to give examples
of both the successful and unsuccessful applica-
tions of his approach. He also discussed some of

the other uses for the output of his docking sim-
ulations — they can be used, for example, in the
prediction of binding patches on proteins.

Everyone I spoke to was especially impressed
with the volume and depth of analysis that had been
performed by Sanne Abeln (http://www.stats.ox.
ac.uk/people/students.htm), still a first-year stu-
dent in Charlotte Deane’s bioinformatics group in
the Statistics Department at Oxford University. In
‘Fold usage on genomes and protein structure evo-
lution‘ she described her huge survey of protein
structures across species. She compared the num-
ber of distinct folds with genome size, examined
the number of occurrences of folds, ‘duplications’
of folds, and families per fold and related them.
She had asked what these data could say about
the ‘ages’ of folds, evolutionary mechanisms and
evolutionary relationships between folds. By tak-
ing large sequence sets (150 + genomes from all
kingdoms) and widely used bioinformatics tools
(PSI-BLAST and SCOP), and applying them on
a large scale, she not only made too many interest-
ing observations to list here, but had already begun
to devise plausible explanations for many of the
phenomena she observed.

It seems that distributions of the popularity of
folds are often described by power laws. Some
folds at least appear to be missing in certain
genomes. The data she collected for αβ proteins
are different from folds in the other fold classes
(similar comparisons against αβ proteins were
made at several points over the course of the
meeting). Abeln cautioned that it is very difficult
to make phylogenetic trees from this kind of data
since:

• There are no clear relations between the different
measures of fold usage (i.e. occurrences of
folds across genomes, duplications of folds on
a genome, and families per fold).

• When a fold diverges to a new fold on one
genome, occurrence and duplications are set
back to one, and it is therefore difficult to obtain
evolutionary relations between folds from these
measures.

Interesting power law-based relations also emer-
ged from their analyses of fold distributions across
families and superfamilies. Just as there had been
discussion of Chothia’s use of the term ‘positive
selection’, there was some debate over Abeln’s
allusions to ‘old folds’ in her discussion of the
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possible evolution of folds. The idea of ‘trapped
folds’ having difficulty evolving was another theme
which re-emerged later in the week, when Ben
Blackburne described his hugely simplified in silico
minimal proteins.

The second day was chaired by Richard Gold-
stein and the first speaker, Kenji Mizuguchi
(Department of Biochemistry, University of Cam-
bridge, UK, http://www-cryst.bioc.cam.ac.uk/∼
kenji/), addressed ‘Sequence–structure homology
recognition’. Mizuguchi first clearly described the
central problems of homology modelling: identify-
ing the best structural templates against which to
model the sequence of an unknown fold and find-
ing the best alignment between that sequence and
its target. He was classically biological in his use of
terminology, distinguishing between the identifica-
tion of analogous (corresponding, but not related)
and truly homologous (corresponding and related)
folds.

After an overview of existing methods for fold
recognition and alignment, he outlined FUGUE
(http://www-cryst.bioc.cam.ac.uk/fugue/), a sys-
tem he developed along with Jiye Shi and Tom
Blundell [18]. FUGUE exploits structural data
in the form of environment-specific substitution
tables — 64 of them — and gap penalties. These
are applied alongside modern sequence align-
ment techniques and refined by testing to see
how the environment definitions affect perfor-
mance. Mizuguchi claimed 70–100 hits/day on
the FUGUE Website and that the method out-
performs other blind prediction servers in align-
ment/assignment. Unfortunately, Mizuguchi’s clear
explanation of the problems and approach didn’t
leave him time to discuss other applications, but
I look forward to reading about them elsewhere
[19,20,22]. It was also satisfying during question-
ing afterwards to hear him be sensibly dismissive of
any attempt to attach statistical confidence values
to FUGUE’s output, given the absence of an under-
lying mathematical model. For a wider view of the
importance of fold recognition, he recommended
his review in Drug Discovery Today [17].

Franca Fraternali (http://mathbio.nimr.mrc.
ac.uk/taylor/members/ffranca/) was the first of
the organizers to lead a seminar. She described the
parametrization of a simple and easy-to-derive ana-
lytical formula for taking account of solvent effects
in molecular dynamics simulations, using acces-
sible surface areas. The method, parametrically

optimised surfaces (POPS) [10], has already been
integrated into GROMOS96, and demonstrated to
be only about 30% slower than vacuum meth-
ods — orders of magnitude cheaper than explicit
water molecular dynamic simulations.

In order to obtain an energy term to add the sol-
vent contribution to the force field, one needs to
have solvation parameters that, multiplied with the
surface terms, give the free energy of solvation.
So far, theoreticians have used experimentally-
obtained solvation energies of transfer of atoms
from water to vapour. Fraternali sketched out a
new approach to the calculation of these param-
eters that makes use of explicit water simulations
on a selected number of conformations of differ-
ent peptides and proteins. From solute-restrained
MD simulations of these conformers, calculated
in explicit water, it is possible to obtain distribu-
tions of the atomic forces exerted by that water and
thereby parametrize the POPS forces accordingly.

For the second part of her talk, Fraternali con-
centrated on more bioinformatic analysis of struc-
tural data using POPS. The method has been
parametrized in order to reproduce solvent accessi-
bilities at atomic level (POPSA) and at the residue
level (POPSR), based on a training set of about
100 proteins of different sizes and topologies. The
formula reproduces accessibilities calculated with
the program NACESS with less than 10% error.

Fraternali has shown how the formula proved
useful in identifying protein–protein and pro-
tein–RNA interactions in large macromolecular
assemblies like the ribosome — even based on low
resolution structures (C-α and P atoms only) like
the 70S ribosome. Differences between the 30S as
a separate subunit and as part of the 70S complex
(with the 50S subunit) have been highlighted in
this way. Because of the presence of the P-tRNA
in the 70S ribosome, localized conformational rear-
rangements occurring within the subunits, exposing
Arg and Lys residues to negatively charged binding
sites of P-tRNA, can be identified. POPSR can also
be used to estimate the loss of free energy of sol-
vation upon complex formation, particularly useful
in designing new protein–RNA complexes and in
suggesting more focused experimental work.

Like many of the most effective bioinformatic
approaches, POPS is an approximation to make
large-scale problems tractable. In this case, Frater-
nali used it to tackle the problem of the large multi-
component ribosome structures and to produce
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illuminating data. A POPS web server has been
made available at http://ibivu.cs.vu.nl/programs/
popswww/ [6].

Michele Vendruscolo’s (http://www.ch.cam.ac.
uk/CUCL/staff/mv.html) group, in Cambridge’s
Chemistry Department, studies non-native struc-
tures of proteins and uses molecular dynamics
to translate experimental measurements into struc-
tures. Vendruscolo made the important point that
we know far less about the cellular states of pro-
teins than about their crystal states, as determined
by X-ray crystallography. We urgently need to
understand the forms proteins take when they form
aggregates, intermediates, assemblies, or when they
are the nuclei of misfolded forms.

Vendruscolo outlined his group’s use of rest-
rained simulations to investigate such problems.
The approach generates an ensemble of struc-
tures for study for which specific experimentally-
measured restraints are satisfied. Various exper-
imental techniques can be used to obtain the
restraints. Vendruscolo outlined the technique with
an example of three amino acids for which a dozen
or so interactions and specific bonds had to be satis-
fied. Once an experimental technique and a struc-
tural interpretation of the derived data have been
chosen, the model for the interactions emerges and
a pseudo-energy function penalizes deviations from
the experimentally derived restraints. Vendruscolo
argued that these were essential because molecu-
lar dynamics simulations cannot entirely replace
experiments in structure determination problems.

He then detailed some specific case studies of
published applications of the restrained simula-
tion technique, beginning with a 2004 JACS paper
[15] using data from site-directed spin-labelling
of acyl co-enzyme A binding protein (ACBP)
to investigate the residual structure present in
the unfolded protein. Restraints were imposed
on the average over a set of copies (replicas)
of the molecule and the technique was imple-
mented through 25 different non-interacting models
of the molecule — multiple simulations increased
the accuracy of the back-calculation of non-
restrained values. Not all of several hundred pos-
sible restraints are used in any given model, but
those used have to be mutually consistent.

Vendruscolo showed contact maps of the native
and denatured states, maps of the average dis-
tances between pairs of residues (these were, in
fact, based on the probabilities of the interactions

between pairs of residues). Although denatured
ACBP molecules are highly heterogeneous, Ven-
druscolo claimed that the sensitivity of the compu-
tational technique allowed him and his co-workers
to identify long-range conformational tendencies.

He also gave other example applications: the
identification of rare (e.g. once a day) but large
structural fluctuations from the native state [26],
based on hydrogen exchange with solvent; the
investigation of transition states too short-lived to
be investigated properly experimentally; and the
modelling of amyloid fibres using solid-state NMR-
derived distance restraints.

José Saldanha (http://mathbio.nimr.mrc.ac.
uk/taylor/members/jsaldan/) of Willie Taylor’s
lab then led us through a rich case history of the
application of comparative modelling to the anal-
ysis of a therapeutic target molecule. Although a
useful technique, comparative modelling can be
difficult to present scientifically because its applica-
tion rarely makes a good ‘story’. It is often a step
in a larger process or a door to a wider biologi-
cal question. Saldanha had worked in collaboration
with Daruka Mahadevan, a consultant oncologist at
the University of Arizona. Saldanha did bioinfor-
matics to analyse targets proposed by his collabo-
rator; Mahadevan performed expression studies.

Saldanha first provided some background on
prostate cancer, the second most common form of
death in males, and on prostate-specific membrane
antigen (PSMA), the main target for his investi-
gations, giving reasons why it might well be a
better marker for prostate disease than the widely-
known prostate-specific antigen (PSA). PSMA is
a 750 amino acid protein, implicated in many
body functions — questions were later asked about
the wisdom of choosing such a widely-used tar-
get. Saldanha’s choice rested on several bases:
there are several isoforms of PSMA, and the form
expressed in prostate cancer is distinct from the
others; tumour endothelial cells express it, but
not normal endothelial cells; and other researchers
are targeting PSMA in prostate cancer. There
is also good clinical evidence from early trials
that PSMA can be manipulated specifically and
safely.

Saldanha ran through the range of bioinformatics
programs that were applied to the problem, includ-
ing BLAST (sequence search), PSIPRED (sec-
ondary structure prediction), THREADER (fold
recognition), SAP (a structure-based sequence
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alignment program) and QUANTA (a commer-
cial modelling suite). This process of bioin-
formatic characterization ran from determining
domain boundaries to alignment to structure predic-
tion. It turned out that the transferrin receptor was
likely to be the best template. Although distantly
related to PSMA, it has a similar domain structure.
The two molecules may share similar properties
of dimerization and a similar binding–recycling
model.

Saldanha’s model(s) proved consistent with mut-
agenesis data and suggested an apical domain that
might be involved in substrate binding. Docking of
the natural dipeptide substrate, NAAG, hinted that
the specificity pocket might be distinctive enough
to help in the design of inhibitors, but a full 3-D
structure is yet to be experimentally determined.

Workers in Janet Thornton’s large group at
the European Bioinformatics Institute (EBI) have
been seeking to infer function from structural
information for some time now. James Watson
(http://www.ebi.ac.uk/Information/Staff/person
maint.php?person id=345) outlined their efforts
to obtain functional assignments within struc-
tural genomics work, particularly in collaboration
with the Midwest Center for Structural Genomics
(http://www.mcsg.anl.gov/).

Watson pointed out that, when it works, func-
tional assignment from three-dimensional structure
is more appropriate to the identification of bio-
chemical rather than biological function. Currently
sequence methods are the most successful way to
assign function, but structure-based methods can
provide additional functional information. There
are still plenty of occasions when no bioinformatic
methods work and function can only be identified
by direct experiment.

Watson described ProFunc, a bioinformatics
pipeline combining a variety of methods [13].
The structural contributions come from match-
ing homologous folds, a variety of 3-D template
methods, binding site identification and structure
motif (for example helix–turn–helix) conservation.
Databases of 3-D templates describe enzyme active
sites, ligand binding sites and DNA binding sites.
Hits to these templates are ranked by comparing
the surrounding environment of the match and cal-
culating a similarity score. He also described the
use of ‘nests’, small structural motifs involving

protein backbones that are commonly found to sta-
bilize some secondary structures and can also stabi-
lize ligand binding. The structural alignments come
from firstly centring on the 3-D template match
(e.g. enzyme active site) then expanding the align-
ment based on sections considered ‘fittable’ (within
an RMSD cut-off) that consist of at least seven
consecutive residues.

Sadly, I was only able to catch the end of David
Burke’s (http://www-cryst.bioc.cam.ac.uk/∼
dave/) presentation, ‘Ab initio structure predic-
tion’ [2,4], and the subsequent discussion. When
I arrived, Burke was addressing the question of
how to filter tens of thousands of models of loops.
Currently, van der Waals’ overlap was the main cri-
terion, but he suggested that molecular dynamics
force fields, solvent accessibility and comparison
with known structures could all be applied to win-
now the output from modelling programs. Burke
also summarized the questions that still concerned
him — and concern many structural bioinformati-
cians:

• Is it best to separate the selection of the models
from the generation of models?

• Has the majority of the reasonable peptide con-
formations in the protein universe been observed
in the structures deposited in the PDB to date?

• How can distantly related molecules be mod-
elled?

Many of us had heard Willie Taylor (http://math
bio.nimr.mrc.ac.uk/taylor/members/wtaylor/)
talk before, but he promised us that ‘Folds, knots
and tangles’ would include both ‘something old
and something new’ amongst a collection of meth-
ods which, although apparently disconnected, all
could contribute towards ab initio structure pre-
diction. He began by describing the universe of
non-redundant folds by type (α, αβ and β) and
pointed out that this division of foldspace, while
superficially illuminating, says less about deep sim-
ilarities between fold classes, than about how we
look at proteins.

Now that Taylor and his co-workers are actively
interested in model ‘proteins’ (i.e. non-biological
structures devised in silico), he has found that they
are difficult to classify by eye and they have used
Ptitisyn and Finkelstein’s concept of structural
layers to find a way to compare them without the
perennial problems of using, say, RMS deviations
between α and β proteins.
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Taylor’s talks benefit from being supported by
live demos of actual programs running on a
Linux laptop, rather than static computer slides.
He first used RasMol to show the cell matrices
he plots from the distribution of his fold types
along axes of complexity, and ‘curl and stag-
ger’. He has described this classification and its
sub-classifications as a ‘Periodic Table’ of protein
structures [25]. In his demonstration this repre-
sentation was completely dynamic, with individual
spheres being clickable to give the SAP represen-
tation of each protein fold’s superimposed struc-
tures — colour-coded by their strength of mutual
correspondence [23].

He now uses this scheme for the classification
of model proteins. When asked about the RasMol
renderings of such elements, Taylor pointed out
that these projections represent the architecture of
the protein, failing to discriminate, for example,
between parallel and anti-parallel β-strands, but
the full topology for each protein is recorded in
a ‘topology-string’ and can be used if needed
[11]. Taylor then moved on to questions of ab
initio protein structure prediction and contrasted
his whole-structure interests with the loop-focused
work of David Burke, who had preceded him.

Taylor used a constrained random walk to gen-
erate structures, along the way occasionally gen-
erating secondary structure elements — sometimes
domains. A random walk combined with a sys-
tem for the generation of layers produces struc-
tures which are more protein-like. Occasionally
this approach results in the production of knots.
This behaviour had to be suppressed with ‘smooth-
ing’. Some real proteins in the PDB could not be
smoothed down to a line. It turned out that these
special cases are knotted. This curious, almost-
incidental discovery led to a publication in Nature
[24].

Smoothing can be used to compare the complex-
ity of proteins. According to the number of self-hits
of smoothed proteins, TIM barrels are simpler than
Rossman folds, for example. It is possible to grow
protein traces in silico through the building of local
contacts and plot the ease of building a given fold
making only local connections from a specified
point in its structure.

Finally, Taylor ran through some of the elements
used in his ab initio folding experiments:

• Secondary structure predicted with PSI-PRED.

• Random walks generated with RAMBLE.
• Filtering performed using radius of gyration.
• Filtering for knots.
• Filtering for complexity.
• Folds scored (of the order of 105 in number) with

CAO (Contact Accepted MutatiOn) [14].
• POPS (the solvent accessibility algorithm des-

cribed by Fraternali) and SPREK.

Alternative structures produced using his group’s
ab initio methods can be ranked in order by fold
and clustered. He hoped to have a comprehensive
system using these or similar techniques up and
running in time for the next CASP meeting.

Another local speaker, Vijayalakshmi Chelliah
of Cambridge University’s Biochemistry Depart-
ment, moved us on from protein structure determi-
nation to protein function determination with her
talk on ‘The identification of interacting sites in
protein families’. She started from the reasonable
premise that critically important residues tend to
be conserved by the members of protein fami-
lies. She had used HOMSTRAD to generate 96
environment-specific substitution tables for pro-
tein residues and taken these as a background
against which to detect important sites, those where
residues are more conserved in families than would
be expected from the tables.

The method is simple and logical:

• Make a structure-based alignment of family
members.

• Compare the observed and expected substitution
patterns.

• Measure the informational difference between
the two.

The higher the score, the more distant the two
distributions are. High-scoring positions identified
in this way are those considered most likely to be
functional. These scores can then be mapped onto
structures to find high-scoring clusters. For this last
stage, Chelliah used Kin3Dcont, part of the kin-
contour program (http://kinemage.biochem.duke.
edu/index.php) produced by the Richardson Lab
at Duke University, North Carolina.

Chelliah was careful to ignore large gaps when
making alignments and to restrict her analysis
to sequences with less than 80% mutual identity
in order to minimize the noise from ‘briefly’
conserved, but functionally unimportant, residues.
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In most of around 250 families the ‘averaged
out’ active site predicted was between 0 Å and 9 Å
from the true active site, but the method missed
functional sites that were indirectly involved in
the activity of proteins and sites that were buried.
Along the way to these results she made some
interesting observations:

• Critical residues that were also structurally
important did not score as highly as might have
been expected by this method.

• Even inaccessible residues turned out to be very
highly conserved — Chelliah put this down to
their being important to the structural integrity
of active sites in the molecule.

• She felt that this might have been countered by
looking for sites retained in both orthologues
and paralogues and tested this by adding in
phylogenetic information. As it turned out, the
addition of close homologues generated more
noise.

She observed, as people often do with methods
like this, that the predictions were best when
residues were in truly equivalent positions within
similar structures.

Returning to structure prediction, ‘Conforma-
tional sampling for protein structure determination
and prediction’ was the title of Mark DePristo’s
talk. DePristo is another member of Cambridge’s
Biochemistry Department (http://raven.bioc.cam.
ac.uk/∼mdepristo/). He described a method devel-
oped (and now used) to check protein models,
but which turns out to have a range of useful
structure-related applications. He introduced his
hybrid approach by summarizing the problem in
a series of simple figures. If the solution of a pro-
tein structure is a global minimum on an energy
(or other scoring function) landscape, then our aim
should be to smooth out that landscape to avoid
local minima and sample enough of it to find the
true minimum. Since there is no definitive solu-
tion, we must carefully choose heuristics. DePristo
explained the advantages of molecular dynam-
ics/simulated annealing approaches over conjugate
gradient/steepest descent ones.

His framework for such investigations, RAP-
PER, avoids optimizing a non-linear function.
Instead it chooses many starting points and applies
local minimum-finding methods. Once a general
class of structures has been specified, the poten-
tial energies of those structures can be compared.

Because small deviations from ideal geometry are
allowed in the real world and flexibility comes at
computational cost, RAPPER fixes many param-
eters (bond lengths, angles) and samples residue-
specific propensity tables and hand-curated con-
formation libraries. The algorithm constructs rea-
sonable 3-D models consistent with prior structural
constraints and additional arbitrary ones, and pro-
gresses from the N- to C-terminus of a structure,
pruning additions in the wrong conformation.

RAPPER has been applied to loop modelling [2],
(re)construction of native ensembles [7], compar-
ative modelling, and crystallographic model gen-
eration [8]. More details of the program and its
variants are available from the RAPPER Website:
http://raven.bioc.cam.ac.uk/index.php

David Jones (Department of Computer Sci-
ence, Bioinformatics Unit, University College Lon-
don, http://www.cs.ucl.ac.uk/staff/D.Jones/index.
html) spoke on the ‘Detection of native disorder
in proteins’. To begin, he joked about the irony of
his spending years trying to predict structure from
sequence before trying to predict ‘non-structure’
from sequence. He also graciously credited
Jon Ward (http://www.cs.ucl.ac.uk/staff/J.Ward/)
with having done most of the work. After running
through the basic assumptions of sequence–stru-
cture interdependency, he discussed the various
kinds of disordered proteins that were known to
exist. Some proteins are partially or completely
unfolded yet remain functional, and we assume that
this is because their molecules form an ensemble of
states, rather than a unique structure. These disor-
dered states could be compact or extended molten
globules or random coils and, interestingly, can
fold fully on binding.

Jones talked about the blurry line between true
disorder and experimental uncertainty in determin-
ing protein structures as well as the experimental
methods that can be used to detect disorder. He pro-
posed functional classes of disordered regions in
proteins: ‘springs and linkers’, modification sites,
regions important to the timing of complex assem-
bly, and molecular recognition sites. Functional
importance is often assumed to correlate with evo-
lutionary conservation and the work on predicting
disorder seems to produce results consistent with
this. He also outlined some previous work to iden-
tify signals of disorder in proteins.

Ward and Jones had trained a support vec-
tor machine (SVM) on a non-redundant set of
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crystal structures and found that they could use
it to identify 40% of disordered residues with a
1% error rate. The performance was better for
longer regions — over 30 amino acid residues
in length — for which the detection fraction and
error rates were 80% and 0.1%, respectively. The
SVM was then applied across genomes and detec-
tion rates compared with biological function (as
assigned by gene ontology classifications) [27].
He believed other workers’ predictions of dis-
order in prokaryotic proteins were likely to be
overestimates. In eukaryotes, molecules associ-
ated with the actin cytoskeleton scored highly,
while the bacteria-like environment of mitochon-
dria seemed to contain few disordered protein
components. There was also high correlation with
DNA-transposition and development and mor-
phogenesis. Molecular functions more likely to
be associated with protein disorder predictions
included transcription regulators, protein kinases
and transcription factors. Metabolic and biosyn-
thetic protein functions scored low. The disor-
der prediction server, DISOPRED, is available at
http://bioinf.cs.ucl.ac.uk/disopred/disopred.html

Another Chothia group member, Martin Mad-
era (http://stash.mrc-lmb.cam.ac.uk/mm238/)
talked about his work on ‘Comparisons of sequence
families’ and his responsibility for the Chothia
group’s ‘Superfamily’ database at the LMB [16].
This is a library of HMM models for all proteins
of known 3-D structure. He recounted a history
of protein sequence comparison methods, of the
problems of characterizing more distantly related
protein groupings, and he detailed more recent
improvements in this resource. He gave a clear
overview of pairwise vs. sequence profile vs. HMM
methods and, having made the case for HMMs, he
discussed the refinements implemented in Super-
family, which relies on the segmentation of PDB
structures into domains and the combination of
multiple HMMs to represent its groupings. The
domain-based analysis of Superfamily can now be
used to compare whole genomes for their domain
composition.

We moved from better models of real, stable,
folded proteins, to predictions of disordered pro-
teins to completely imaginary proteins. Benjamin
Blackburne (http://slater.chem.nott.ac.uk/∼
bpb/), formerly of Jonathan Hirst’s group at Not-
tingham University and now a member of Richard
Goldstein’s group, talked about the properties of his

phylogenies of minimalist proteins [3]. Blackburne
had explored the relationships between hypotheti-
cal 2-D proteins catalogued in the sort of protein
database the inhabitants of ‘Flatland’ [1] might rec-
ognize. In Blackburne’s planar protein universe,
residues are of only two types, hydrophobic or
hydrophilic. Proteins fold when strings of such
residues arranged on a square or tetrahedral lat-
tice of available points turn in on themselves in
a plausible way. Folds that arrange those residues
with the lowest energy are ‘native’. A ‘fit’ pro-
tein is one which has a pocket — i.e. two external
residues around a hole that could be ‘functional’.

With so few degrees of freedom, all sequences
of given short lengths and all structures derived
from them can be known. The proteins can be
arranged in families, where a family is a group
in which all the possible relatives can be generated
from another by mutation and yet still meet the
rules for the formation of viable structures; the
relationships between the model structures can be
visualized in graphs, whose nodes are the structures
and whose edges are point mutations between
them. There are outliers, and some families are
more weakly connected to related families than
others. There are ‘bottlenecks’ where there are few
evolutionary routes from one family to another.
‘Hubs’ bridge multiple families. ‘Funnels’ form
when the structures are arranged such that the
nodes radiate out to variants of decreasing stability.

Some phenomena can be compared in an illu-
minating way with the evolution of real proteins.
For example, in Blackburne’s world neutral evo-
lution seems necessary for minimal proteins to
reach functional states and longer chains offer more
potential for such noisy change. Other characteris-
tics of these artificial proteins are more problem-
atic: their sequences are not directional and inser-
tions and deletions cannot have the same meaning
when there are so few residue types.

The subsequent discussion addressed the rele-
vance of such evolutionary landscapes to real pro-
teins, whether the graphs had scale-free properties,
other aspects of real protein behaviour which ought
to be modelled (Cyrus Chothia), and the corre-
spondence between Blackburne’s neutral mutation-
tolerant proteins and Chothia’s stable-to-mutation
proteins (Willie Taylor).

Richard Goldstein’s (http://mathbio.nimr.
mrc.ac.uk/goldstein/members/rgoldstein/) talk,
‘Modelling molecular evolution’, covered an area
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of growing interest, the effort to combine sequence
and structural analysis to investigate the evolution
and function of proteins. He described methods
aimed at increasing our understanding of the struc-
tural basis for variations in amino acid residue
substitution rates, identifying functional sites and,
in particular, for characterizing members of the
large and pharmacologically important family of
G protein-coupled receptors (GPCRs).

First, he highlighted a central flaw in com-
parative sequence analysis: most approaches are
based on a model that assumes positions in
sequences represent independent samplings from
all possible sequences and ignore the phyloge-
netic relationships between related proteins. He
also reminded us — as molecular phylogeneticists
often have to remind biochemists and molecu-
lar biologists — that residues ‘conserved’ between
closely related sequences are not as significant as
investigators often believe.

Rather than ignore these problems or devise
ad hoc fixes, Goldstein, Goldman and others have
more recently attempted to model evolution explic-
itly. To begin, Goldstein developed substitution
matrices for different types of local structure, but
has since devised a more general approach. Each
protein can be divided up into zones, without mak-
ing assumptions about which models apply where;
the probability of any given location belonging
to a particular site class is a parameter which is
itself optimized by an expectation maximization
algorithm.

Once a set of environment categories has emer-
ged, Goldstein and co-workers assign qualitative
labels to them (e.g. ‘hydrophilic’), and the a pos-
teriori probabilities of each position belonging to
class can be estimated. By applying this approach
to large enough families of aligned sequences with
structural information, he claimed, it is possible to
identify locations where different types of selective
pressure have been operating and obtain insights
into the underlying basis of such selective pres-
sure, e.g. how physicochemical properties such as
size and hydrophobicity are differentially important
in different classes of site.

This approach can be used to identify function-
ally important locations — sites belonging to the
slowest evolving rate classes — and different over-
all probabilities that a position is involved in gen-
eral function, stabilization, dimerization, packing,

structure, or the extent to which a position con-
strained [21].

Goldstein then focused on the application of
this general approach to the specific question of
the GPCRs. Despite representing only 1% of the
genome, they are estimated to be the target of
almost half all drugs and only one signalling
process does not involve a member of this family.
Although only one known high-resolution structure
is available, Goldstein’s group worked with a
dataset of about 200 GPCRs, and analysed them
to produce patchworks of model assignments along
the lengths of sequences.

Some properties of these molecules gave a strong
signal. It is harder, for example, to identify the
inner and outer surface of transmembrane (TM)
helices, such as those in the 7-TM structure of
the GPCRs, than it is to identify the inner and
outer faces of ‘normal’ protein structure helices.
Goldstein et al.’s site classes correlate with the
‘innerness’ and ‘outerness’ of these helices. Also,
a propensity to involvement in dimerization seems
to correlate with slowly varying sites.

The European Bioinformatics Institute’s Hugh
Shanahan (http://www.biochem.ucl.ac.uk/∼
shanahan/) described more function-from-structure
work, this time targeted at predicting DNA-binding
proteins from 3-D motifs and electrostatic infor-
mation. There is no shortage of important DNA-
binding proteins and a huge and growing inter-
est in the regulation of transcription. Shanahan
quoted estimates of up to 7% of eukaryotic and
3% of prokaryotic genes coding for DNA bind-
ing proteins. Equally, structural genomics projects
will generate many uncharacterized structures.
Although he acknowledged the importance and
utility of sequence-based approaches, he argued
that function varies significantly as sequence iden-
tity between unknown and known (template) pro-
tein sequences falls below 40%. He pointed out
that, although at least one neural net-based method
exists for identifying DNA binding proteins, it
has a high false-positive rate and requires high-
resolution atomic data, and claimed that homology-
based modelling produces lower false-positive
scores.

Shanahan further contended that, of the four
main known classes of structural motif:

• Helix–turn–helix.
• Helix–hairpin–helix.
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• Helix–loop–helix.
• Zinc finger.

the middle two are more easily identified with
Hidden Markov Model (HMM) methods; zinc fin-
ger proteins are too structurally variable. Shanahan
concentrated on the first, helix–turn–helix (H–T-
H) structures. He began by summarizing the pro-
cedure to identify structural templates:

• Search the literature for H-T-H motifs.
• Identify HMMs in Pfam or SMART.
• Identify structural templates from domains using

the CATH super-structural family (the H-level of
that database).

• Scan the Protein DataBank with templates.
• Add any new H–T–H DNA-binding proteins to

the list.
• Repeat until no other structures are found.

The group obtained 90 non-redundant structures
in the PDB and generated seven structural tem-
plates to cover that set, applying an accessibility
criterion. At first the results didn’t seem much bet-
ter than those obtained with HMMs: 0.5% false
positives. Then they refined the method by inte-
grating the potential over a region close to the
accessible surface of motifs and tested this by using
the electrostatic data to attempt to identify the bind-
ing region in known DNA-binding proteins [12].

A method to detect DNA-binding sites on the
surface of a protein structure is important for func-
tional annotation. They analysed residue patches
on the surface of DNA-binding proteins and pre-
dicted DNA-binding sites using a single feature
of these surface patches. They first surveyed sur-
face patches and DNA-binding sites for accessi-
bility, electrostatic potential, residue propensity,
hydrophobicity and residue conservation. From
this, they observed that the DNA-binding sites usu-
ally fell in the top 10% of patches with the largest
positive electrostatic scores. This knowledge led to
their development of a prediction method in which
patches of surface residues were selected such that
they excluded residues with negative electrostatic
scores.

They used this method to make predictions for a
dataset of 56 non-homologous DNA-binding pro-
teins and identified 68% of the dataset correctly.
Using this data, they improved the false-positive
score to 0.02%. Shanahan added that the hybrid
method involves fewer parameters than sequence

homology, might in future not require full electro-
static calculations to be performed and that it might
be possible to use data from homology models to
provide a cross-check for HMM searches.

The final talk of the meeting rounded the
event off perfectly. Chris Calladine (http://www-
civ.eng.cam.ac.uk/crc/crc web.htm), who retired
only a couple of years ago from the Cambridge
University Department of Structural Engineering,
dazzled us with a multidisciplinary, multimedia
presentation on the ‘Mechanics of interfaces in α-
helical supercoils’. He used overheads, animation
and a succession of cork-and-cardboard models to
show how juxtaposed helices could abut in diverse
ways, interlocking the ‘knobs’ of their respective
sidechains. The knobs of one helix fit into the
‘holes’ between the knobs of the other when they
pack. For simple superhelices and four-helix bun-
dles — as distinct from the helix-built cylinders
Calladine later touched on [5] — there were three
standard modes of knobs-into-holes packing, which
he illustrated with overlaid interface figures pro-
duced as overheads, as simple figures and as clev-
erly constructed three-dimensional models.

One of the most pleasing things about structural
bioinformatics is that its practitioners collaborate
across specialisms to tackle difficult, interesting
and messy problems out of both curiosity and
necessity — not merely to meet the conditions of
interdisciplinary funding programmes. Calladine’s
work exemplified this beautifully. He has worked
in this area in collaboration with Charlie Laughton
(molecular dynamics) at Nottingham University
and Ben Luisi and Venkatash Pratap (structural
biology) at Cambridge. Pratap wrote software that
finds α-helices and their neighbours, identifies the
local superhelical angle of their arrangement and
categorizes those arrangements according to those
angles. Pratap’s animation of a bistable ‘switch’ in
the packing of a right-handed, four-helix bundle
of α-helices in one of the three main classes
of arrangement formed the finale of Calladine’s
presentation.

Acknowledgements

I would like to thank the speakers-especially Franca
Fraternali- for their contributions, clarifications, and cor-
rections to this article.

Copyright  2004 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 480–490.



490 D. Counsell

References

1. Abbott EA. 1884. Flatland: A Romance of Many Dimensions.
Shambhala: Boston, MA.

2. de Bakker PI, DePristo MA, Burke DF, Blundell TL. 2003.
Ab initio construction of polypeptide fragments: accuracy of
loop decoy discrimination by an all-atom statistical potential
and the AMBER force field with the Generalized Born
solvation model. Proteins 51: 21–40.

3. Blackburne BP, Hirst JD. 2001. Evolution of functional model
proteins. J Chem Phys 115: 1935–1942.

4. Burke DF, Deane CM. 2001. Improved protein loop prediction
from sequence alone. Protein Eng 14: 473–478.

5. Calladine CR, Sharff A, Luisi BF. 2001. How to untwist an
α-helix: structural principles of an α-helical barrel. J Mol Biol
305: 603–618.

6. Cavallo L, Kleinjung J, Fraternali F. 2003. POPS: a fast
algorithm for solvent accessible surface areas at atomic and
residue level. Nucleic Acids Res 31: 3364–3366.

7. DePristo MA, de Bakker PIW, Lovell SC, Blundell TL. 2002.
Ab initio construction of polypeptide fragments: efficient
generation of accurate, representative ensembles. Proteins
Struct Funct Genet 51: 41–55.

8. DePristo MA, de Bakker PIW, Lovell SC, Blundell TL. 2004.
Heterogeneity and inaccuracy in protein structures solved by
X-ray crystallography. Structure 12: 831–838.

9. Fernandez-Recio J, Totrov M, Abagyan R. 2004. Identifica-
tion of protein–protein interaction sites from docking energy
landscapes. J Mol Biol 335: 843–865.

10. Fraternali F, Cavallo L. 2002. Parameter optimized surfaces
(POPS): analysis of key interactions and conformational
changes in the ribosome. Nucleic Acids Res 30: 2950–2960.

11. Johannissen LO, Taylor WR. 2004. Protein fold comparison
by the alignment of topological strings. Protein Eng 16:
949–955.

12. Jones S, Shanahan HP, Berman HM, Thornton JM. 2003.
Using electrostatic potentials to predict DNA-binding sites on
DNA-binding proteins. Nucleic Acids Res 31: 7189–7198.

13. Laskowski RA, Watson JD, Thornton JM. 2003. From protein
structure to biochemical function? J Struct Funct Genomics 4:
167–177.

14. Lin K, Kleinjung J, Taylor WR, Heringa J. 2003. Testing
homology with Contact Accepted mutatiOn (CAO): a contact-

based Markov model of protein evolution. Comput Biol Chem
27: 93–102.

15. Lindorff-Larsen K, Kristjansdottir S, Teilum K, et al. 2004.
Determination of an ensemble of structures representing the
denatured state of ACBP. J Am Chem Soc 126: 3291–3299.

16. Madera M, Vogel C, Kummerfeld SK, Chothia C, Gough J.
2004. The SUPERFAMILY database in 2004: additions
and improvements. Nucleic Acids Res 32: (Database issue):
D235–239.

17. Mizuguchi K. 2004. Fold recognition for drug discovery. Drug
Discovery Today: Targets 3: 18–23.

18. Shi J, Blundell TL, Mizuguchi K. 2001. FUGUE:
sequence–structure homology recognition using environment-
specific substitution tables and structure-dependent gap
penalties. J Mol Biol 310: 243–257.

19. Shirai H, Blundell TL, Mizuguchi K. 2001. A novel super-
family of enzymes that catalyze the modification of guanidino
groups. Trends Biochem Sci 26: 465–468.

20. Shirai H, Mizuguchi K. 2003. Prediction of the structure and
function of AstA and AstB, the first two enzymes of the
arginine succinyltransferase pathway of arginine catabolism.
FEBS Lett 555: 505–510.

21. Soyer OS, Dimmic MW, Neubig RR, Goldstein RA. 2003.
Dimerization in aminergic G-protein-coupled receptors:
application of a hidden-site class model of evolution.
Biochemistry 42: 14 522–14 531.

22. Stebbings LA, Mizuguchi K. 2004. HOMSTRAD: recent
developments of the Homologous Protein Structure Alignment
Database. Nucleic Acids Res 32: (Database issue): D203–207.

23. Taylor WR. 2000. Protein structure comparison using SAP.
Methods Mol Biol 416: 657–660.

24. Taylor WR. 2000. A deeply knotted protein structure and how
it might fold. Nature 406: 916–919.

25. Taylor WR. 2002. A ‘periodic table’ for protein structures.
Nature 416: 657–660.

26. Vendruscolo M, Paci E, Dobson CM, Karplus M. 2003. Rare
fluctuations of native proteins sampled during equilibrium
hydrogen exchange. J Am Chem Soc 125: 15 686–15 687.

27. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT. 2004.
Prediction and functional analysis of native disorder in
proteins from the three kingdoms of life. J Mol Biol 337:
635–645.

Copyright  2004 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 480–490.


