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This article experimentally and statistically reports the convective heat transfer performance of a cylindrical mesh-type heat pipe
apparatus filled with ZrO2-CeO2/water-ethylene glycol nanofluids. In this regard, ZrO2-CeO2 nanoparticles were synthesized and
characterized through the Scanning Electron Microscope and Powder X-ray diffraction methods followed by the preparation of
hybrid ZrO2-CeO2 nanofluids of various concentrations ranging from 0.025 to 0.1%. The heat transfer features of a tubular
heat pipe with a mixture of the ZrO2-CeO2 nanofluid were evaluated. A 5.33% decrease in thermal resistance value and a
41.16% increase in heat transfer ability with increased power input were observed. The potent regression models were
proposed to estimate heat transfer features of the heat pipe. The ANOVA statistical method has been employed to determine
the P value and the F value of the models towards enhancing the reliability and accuracy of the developed models. The
outcome revealed that the proposed models are reliable and have the best fit with the experimental data for 30–60W power.
The correlations’ results were validated against the experimental data and showed high accuracy. Moreover, the accuracy of the
developed models was ensured through R-squared and adjusted R-squared values.

1. Introduction

Choi [1] introduced the dispersion of 1–100nm particles
into the base fluid, called the nanofluid. These nanofluids
have distinct thermal and hydrodynamic properties [2–4].

Nanofluids reduce energy consumption in the industries
by decreasing the heat losses within the heat exchangers.
Therefore, nanofluids attracted the attention of many
researchers in the latest years because of their enhanced
hydrodynamic and heat exchanging phenomenon. A heat
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pipe device is one of the modest heat exchangers that
work on the capillary action and phase change principle.
It transfers a massive quantity of heat [5]. The nanofluid
is a potential fluid with a high thermal conductivity and
stability compared to other fluids like water, EG, oils,
and microfluids [6, 7]. Hence, nanofluids are used as heat
transfer liquids in various heat exchanging systems, such
as computers, solar collectors, cooling electronic devices,
and microelectronics [8].

Chien et al. [9] first analyzed the heat pipe efficiency
using nanofluids, followed by many experimental studies to
estimate the heat transfer proficiency on various heat pipes
[10–14]. Solomon et al. [15] determined that adding 0.1%
Cu/W nanoliquid increased the heat transferring ability by
about 20%. Akbari and Saidi [16] examined the pulsating
type heat pipe’s thermal performance and flow regimes
using graphene and titania nanofluids, reporting that the
nanofluid improved thermal performance by 70% flow
regimes at 70W. A two-phase thermosyphon’s heat transfer
behavior charged with Ag/W nanofluid had shown the aug-
mented result by applying a strong magnetic field [17].
Ghanbarpour et al. [18] performed experimentation with a
silicon carbide nanofluid in a tubular heat pipe and origi-
nated the thermal resistivity value of 30% for 1.0% particle
weight concentrations. Zeinali Heris et al. [19, 20] tested
the heat transfer proficiency of the thermosyphon and car
radiator with oxidized CNT/water and CuO/EG-W nano-
fluids. It is noticed from the literature that high heat transfer
appearances with nanoparticles in aqueous EG deliver sig-
nificant outcomes over the traditional base liquids [21–24].
Keshavarz Moraveji and Razvarz [25] found that the sin-
tered wick pipe’s heat transferring characteristics were
improved when using an alumina nanofluid, especially at
3% particle concentration. Noie et al. [26] analyzed the alu-
mina nanofluids in the thermosyphon, resulting in enhanced
system efficiency with respect to power and particle weight
concentration. Using TiO2-SiO2/W-EG hybrid nanofluids,
Nabil et al. [21] observed 22.8% enrichment in thermal con-
ductivity at 3% weight concentration as the weight concen-
tration increases. Akilu et al. [22] achieved the augmented
thermophysical properties 1.15 times and 26.9% higher with
the SiO2–G/EG nanofluid than the base fluid.

Ghalambaz et al. [27] demonstrated the increment in the
thermal performance of the double-pipe heat exchanger
using alumina nanoparticles. They have also observed the
enhancement in the Nusselt number for alumina nanoparti-
cles and twisted tape inserts with the help of a two-phase
nanofluid model. Due to the enhanced thermal features of
nanofluids, nanocoolants have been utilized to transfer a
large quantity of heat more efficiently in car radiators [28,
29]. A great part of the literature is devoted to the investiga-
tion of nanofluid-based nonconcentrating collectors. The
analysis of nanofluids based nonconcentrating solar systems
especially in solar collectors has been found to increase ther-
mal efficiency [30–32]. The researchers also recommended
that nanofluids in mechanical operations such as cutting
and drilling reduce the production of excessive heat during
the machining operations [33, 34]. Nanofluids hold great
significance in biomedical industries such as antibacterial

cases, cryopreservation, dressing of wounds, and drug deliv-
ery also [35, 36].

Based on the above literature, additional investigation is
required on the potential applications of the hybrid nano-
fluids as the working medium in heat pipes. We chose zirco-
nia nanofluids because they have significant thermophysical
features and have recently been used for various heat trans-
fer applications [37–39]. Ceria nanofluids also exhibited
improved efficiency in flat-type solar collectors [40]. Mary
et al. [41] evaluated the improved transport properties with
cerium oxide/ethylene glycol nanofluids. However, the ther-
mal transfer performance of ZrO2-CeO2 nanofluids dis-
persed in the W-EG fluid in a screen mesh heat pipe has
not been examined so far. In addition, it is expected that
anomalous thermal features can be accomplished by apply-
ing the heat transfer of a hybrid ZrO2-CeO2 fluid with a
wick-structured heat pipe. Therefore, in the current
research, an investigation is conducted for estimating the
thermal resistance attributes of the tubular heat pipe filled
with a ZrO2-CeO2 nanofluid for the first time.

Recently, many researchers experimentally and statisti-
cally focused on investigating the thermophysical properties
of nanofluids and their heat transfer behavior [42–45].
Response surface methodology (RSM) is a more suitable
technique than the genetic algorithms (GA) and artificial
neural networks (ANN) to obtain all information among
input variables from minimum experimental data [46].
Moreover, RSM provides acceptable precision compared to
GA and ANN algorithms [47, 48].

The present study analyzes the experimental and statisti-
cal thermal resistance and heat transfer coefficient of a tubu-
lar heat pipe filled with ZrO2-CeO2/W-EG nanofluids. RSM
with the ANOVA technique was engaged to examine the
influence of input variables on thermal resistance and heat
transfer coefficient properties. In addition, two new regres-
sion correlations on considered responses were proposed
with the regression analysis.

2. Methodology

The first part of this section explains the nanofluid prepara-
tion, and the second one deals with the experimental
arrangement used for measurements.

2.1. Synthesis and Characterization of ZrO2-CeO2
Nanoparticles. In this ZrO2 (zirconia) nanoparticle prepara-
tion, zirconium oxychloride was used as the precursor solu-
tion via the sol-gel method. 0.6M of aqueous ammonia
solution was slowly added to the precursor solution (0.7M)
for 30 minutes under constant stirring. Then, a slurry gel
with white color was procured. Finally, it was calcinated
for five hours at the temperature of 750°C in a muffle furnace
to obtain the zirconia nanoparticles.

In the CeO2 (ceria) nanopowder synthesis, an aqueous
ammonia solution (0.8M) was slowly added to the ceric
nitrate solution (0.8M) for 30 minutes at ambient temper-
ature under constant stirring. The colloidal suspension was
heated up to 100°C overnight and then washed thrice with
EG and distilled water to remove the contaminants. The
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precipitate obtained was calcinated at the temperature of
650°C using a muffle furnace for four hours and finally
powdered using a mortar and pestle. The pale yellow
CeO2 powder was stored in an airtight vial for further
investigation.

The structural characterizations of synthesized ZrO2 and
CeO2 nanoparticles were carried out through the Powder X-
ray diffraction (PXRD) method and surface morphology
through a Scanning Electron Microscope (SEM). SEM anal-
ysis is used to identify the surface structure of the nanopar-
ticles. The SEM pictures of zirconia and ceria nanoparticles
recorded with the JEOL, JSM 6390 instrument, are depicted
in Figures 1(a) and 1(b), correspondingly. SEM pictures
show that both ZrO2 and CeO2 nanoparticles have a spher-
ical shape, white color, and slight agglomeration with the
neighboring nanoparticles. ImageJ software is used to deter-
mine the nanoparticle size, and it was found as 80 nm for
ZrO2 and 70nm for CeO2 particles.

X-ray diffraction results of zirconia and ceria nanopar-
ticles are displayed in Figures 2(a) and 2(b) with the help
of the X’pert Pro instrument. The scattering angle (2θ)
identification procedure has been tuned between 80° and
10° at 0.05° intervals. It clearly shows that the strong peaks
at the scattering angle of 30.10°, 35.22°, 50.42°, and 60.04°

correspond to (0 1 1), (1 1 1), (0 3 1), and (1 4 0), respec-
tively, well matched with the JCPDS card no: 83–0810.
These planes reveal the formation of the orthorhombic
structure of ZrO2 nanoparticles. The XRD pattern shows
a high intense (0 1 1) positioning peak, denoting a high
crystallinity of the synthesized sample. Similarly, the dif-
fraction peaks in Figure 2(b) at 28.53°, 33.07°, 47.56°,
56.32°, 59.15°, 69.4°, and 79.04° scattering angles are asso-
ciated with (1 1 1), (2 0 0), (2 2 0), (3 1 1), (2 2 2), (4 0
0), and (4 2 0) planes, respectively. The CeO2 particles
with a cubic structure have been observed from XRD
results, which agree with JCPDS: 65-2975. The average size
of ZrO2 and CeO2 crystallites (D) is measured using the
following Debye–Scherrer equation:

D =
Kλ

β cos θ
, ð1Þ

where K stands for the constant shape factor (1.9), β
states Full Width at Half Maximum, λ is the wavelength
(1.5405Å) of the X-ray source, and θ denotes the diffrac-
tion angle. From the XRD results, ZrO2 and CeO2 crystal-
lites’ average size was found as 2.2 nm and 7.07nm,
respectively. Since the crystallites are very small in dimen-
sion, they will render a superior efficiency in heat transfer
characteristics [49].

2.2. Synthesis of ZrO2-CeO2 Nanofluids. The synthesis of
ZrO2-CeO2 hybrid nanofluids has been made through a
two-step approach with the prepared ZrO2 and CeO2 nano-
particles. ZrO2 and CeO2 nanoparticles (50 : 50) were sus-
pended in the W-EG fluid (60/40%) in the first step. A
60 : 40 proportion of the W-EG mixture exhibited superior
and significant performance with regard to the thermal char-
acteristics of nanofluid production [21–24]. A small amount
(2.5 g) of cetyltrimethylammonium bromide surfactant
(CTAB) was added to the above combination with the prep-
aration of the nanofluids of all particle weight concentra-
tions to attain the stability of the fluids [25, 26]. An
ultrasonicator (50Hz, 170VAC-270VAC, 50Hz) was uti-
lized to prepare all volume concentrations of nanoparticles
to avoid nanoparticle settlement in the base fluid [22]. Thus,
hybrid ZrO2-CeO2 nanofluids for various volume
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Figure 1: SEM picture of (a) ZrO2 and (b) CeO2 nanoparticles.
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Figure 2: Powder X-ray diffraction structure of (a) zirconia and (b)
ceria samples.
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concentrations (φ) of a range from 0.0125 to 0.1% were
made in room temperature using the following equation:

ϕ =
wnp/ρnp

wnp/ρnp +wbf /ρbf
∗ 100, ð2Þ

where wnp and ρnp indicate the wnp mass and density of
ZrO2 and CeO2 particles, respectively, and wbf and ρnp rep-
resent the mass and density of the suspension (W-EG),
respectively.

2.3. Experimental Apparatus and Process. The schematic and
working principle of a cylindrical heat pipe device fabricated
for inspecting heat transfer operation was reported earlier in
our previous work [50]. The six various particle weight con-
centrations (0%, 0.0125%, 0.025%, 0.05%, 0.075%, and 0.1%)
of ZrO2-CeO2 hybrid nanofluids were utilized for experi-
mentation with the heat pipe. The experiment was con-
ducted initially with a base fluid, followed by ZrO2, CeO2,
and ZrO2-CeO2 hybrid nanofluids. The position of the heat
pipe was set up at 45° orientation since the efficiency of the
heat pipe is enriched at this position [51, 52]. The heat trans-
fer rates were calculated for the three heat power inputs in
the range of 30–90W. The following equations (3) and (4)
are utilized to determine the heat pipe’s heat transfer charac-
teristics.

Thermal resistance Rð Þ = Te − Tc

Q
, ð3Þ

Heat transfer coefficient hð Þ = Q
A Te − Tcð Þ , ð4Þ

where Te and Tc stand for the temperature of the evaporator
and condenser sections, respectively. Q = I ∗V represents

the input heat power and A = πdl (d: internal diameter; l:
overall length of tubular heat pipe device).

Uncertainty of all the quantities used in this heat pipe
experimentation was estimated using standard procedure
[53]. The current, area, and voltage uncertainty values were
found as ±0.2, ±0.25%, and ±0.25%, respectively. The maxi-
mum uncertainty value of power (Q), thermal resistivity (R),
and heat transfer coefficient (h) was determined as ±2.76%,
± 2.76%, and± 2.91%, respectively, using the following equa-
tions:

ΔQ
Q

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔV
V

� �2
+

ΔI
I

� �2
s

  = ±2:76%, ð5Þ
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R
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Figure 4: Heat power input and volume concentration effects on
the heat transfer coefficient by using ZrO2-CeO2 nanofluids.

Table 1: Heat transfer coefficient comparative study on nanofluids
at 0.1% volume concentration.

Nanofluid Base fluid proportion
Increase % of heat
transfer coefficient
30W 60W 90W

ZrO2/W-EG
W-60%
EG-40%

25.11 26.18 27.19

CeO2/W-EG
W-60%
EG-40%

26.83 27.13 36.18

ZrO2-CeO2/W-EG
W-60%
EG-40%

27.19 28.11 38.16
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Figure 3: Thermal resistance variation of ZrO2-CeO2 nanofluids
with respect to volume concentrations and at different heat power
input values.
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3. Response Surface Methodology (RSM)

RSM remains a powerful method to recognize the impacts of
input factors on the measured outcomes coupled with the
mathematical and statistical methods [25]. In general, the
RSM approach is widely utilized in engineering, especially

in nanofluids’ heat and mass transfer applications [54–56].
This study develops a regression model using the experi-
mental data acquired from the heat pipe to assess the
response parameters combined with RSM. Variance analysis
denotes such substantial values amongst the various input
factors and responses. To evaluate the consistency between
recommended RSM models and measured data, it is impor-
tant to inspect the statistical elements, i.e., R-squared (R2),
adjacent R-squared (Adj. R2), probability value (P value),
and Fisher’s test (F test) value.

4. Results and Discussion

4.1. Experimental Results of the Heat Transfer Properties of
Heat Pipe. The volume concentration of nanofluids, heat
power input, and positioning of the heat pipe are the signif-
icant factors inducing the features of heat transfer. To assess
such factors, it is necessary to examine heat transfer charac-
teristics. Figure 3 represents the values of thermal resistance
against different volume concentrations at 30, 60, and 90W
heat powers. As evident, adding ZrO2 and CeO2 nanoparti-
cles into W-EG diminishes the thermal resistance values
intensely. When the surface wettability rises, fluid resistance
decreases due to the settlement of ZrO2 and CeO2 nanopar-
ticles on the wick structure of the evaporation section.

Table 2: Developed regression model outline.

Quadratic model Standard deviation R-squared Adj. R-squared Predicted R-squared Adequate precision

Thermal resistance 0.063 0.9997 0.9996 0.99923 203.273 Suggested

Heat transfer coefficient 2.26 0.9859 0.9801 0.9622 34.722 Suggested

Table 3: Thermal resistance and heat transfer coefficient variance analysis.

Source Sum of squares Degrees of freedom Mean square F value P value prob > F

Thermal resistance

Model 165.42 5 33.08 8249.02 <0.0001
A: power 147.69 1 147.69 36824.82 <0.0001
B: volume concentration 0.12 1 0.12 29.90 0.0001

AB 0.023 1 0.023 5.81 0.0329

A2 12.20 1 12.20 3043.05 <0.0001
B2 0.043 1 0.043 10.64 0.0068

Residual 0.048 12 4.011E-003

Total 165.4717

Heat transfer coefficient

Model 4289.64 5 857.93 168.13 < 0.0001

A: power 4050.35 1 4050.35 793.78 < 0.0001

B: volume concentration 131.34 1 131.34 25.74 0.0003

AB 19.35 1 19.35 3.79 0.0752

A2 12.19 1 12.19 2.39 0.1482

B2 45.13 1 45.13 8.84 0.0116

Residual 61.23 12 5.10

Total 4350.87 17
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Figure 5: Validation of the RSM model of thermal resistance
against the empirical data.
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Similarly, thermal resistance decreases with the rise of heat
power input. The minimum resistance value of 3.51K/W is
detected for 0.1% concentration at the heat input of 90W,
which shows a 4.8% reduction in the thermal resistance
value over the base fluid. This demonstrates the augmented
efficiency of heat pipes using ZrO2-CeO2 hybrid nanofluids.

Figure 4 depicts the heat transfer coefficient values as a
function of volume concentrations and heat input. The max-
imum and minimum heat transfer coefficient values are
14.88 and 61.15W/m2K for 0.0125% and 0.1% particle
weight concentrations. At 90W, a supreme enhancement is
observed that is 41.16% more than the base fluid mixture.

This enhancement (41.16%) is better than the W-EG fluid
mixture and better than other reported nanofluids [30].
Table 1 represents the heat transfer value comparison
between hybrid ZrO2-CeO2 nanofluids and other fluids.
The maximum of 38.16% rise in heat transfer coefficient
value is obtained for the 90W input heat power at 0.1% vol-
ume concentration over the single-component fluids (0%
concentration) [57–61].

4.2. RSM Approach with ANOVA Technique. In the response
surface method, the empirical data obtained through the
experimentation are fixed as input variables. For analyzing
the empirical data, the Design-Expert software is utilized in
this study. RSM with regression analysis would be the best-
suited combination to straightforward predict the output
parameters [62–67]. Therefore, the present research work
has utilized the RSM method with statistical ANOVA.
Table 2 denotes the model summary of the suggested qua-
dratic models.

In this work, the quadratic model is the suggested model
in both R and h, and the developed models also have good
predictability because the quadratic models have a signifi-
cantly closer R-squared value as 1. As it is clear from
Table 2, R-squared values of the resistance and heat transfer
coefficient are 0.9997 and 0.9859, respectively, showing the
developed models’ precision. R-squared values indicate that
99% of the experimental data confirm the responses fore-
casted by both models. The matching of “predicted R
-squared” values 0.9622 and 0.9992 with “Adj. R-squared”
values 0.9801 and 0.9996, respectively, is almost good with
each other. “Adequate precision” is described as the ratio

Table 4: Validation of proposed regression models with experimental data.

Exp.
no.

Volume
concentration

(%)

Power
(W)

Experimental
values of R
(K/W)

Regression model
values of R (K/W)

Experimental
values of h
(W/m2K)

Regression model
values of h (W/m2K)

% of
deviation
in R

% of
deviation

in h

1 0 30 11.06 10.92984 14.8816 14.49894 1.17689 2.571405

2 0 60 5.57 5.557304 28.5514 29.60766 0.227935 -3.69966

3 0 90 3.71 3.678284 43.3209 48.20766 0.854879 -11.2803

4 0.0125 30 10.71 10.79815 18.1475 16.81907 -0.8231 7.320428

5 0.0125 60 5.41 5.409967 33.9082 32.37916 0.000614 4.509315

6 0.0125 90 3.56 3.515292 55.5937 51.43053 1.255852 7.488492

7 0.025 30 10.7 10.68239 18.223 18.62172 0.164613 -2.18798

8 0.025 60 5.4 5.278544 34.2393 34.63318 2.249182 -1.15031

9 0.025 90 3.55 3.368214 56.3079 54.13592 5.120734 3.857366

10 0.05 30 10.64 10.4986 18.9724 20.67459 1.328992 -8.97169

11 0.05 60 5.33 5.063443 37.299 37.58878 5.001075 -0.7769

12 0.05 90 3.54 3.121802 57.54 57.99426 11.8135 -0.78939

13 0.075 30 10.58 10.37846 19.7416 20.65753 1.904892 -4.63966

14 0.075 60 5.33 4.912 37.6192 38.47447 7.842408 -2.27357

15 0.075 90 3.53 2.939049 58.696 59.78268 16.74082 -1.8514

16 0.1 30 10.57 10.32199 19.8759 18.57056 2.346377 6.56737

17 0.1 60 5.31 4.824215 38.4441 37.29023 9.148495 3.001538

18 0.1 90 3.51 2.819954 61.153 59.50118 19.65943 2.701152

Mean 4.778533 0.022009
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Figure 6: Validation of the RSM model of heat transfer coefficient
against the empirical data.
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of signal and noise factors that should be greater than 4
[68–72]. According to Table 2, the ratio of both models is
203.273 and 34.722, indicating satisfactory signals.

Table 3 summarizes the variance analysis responses of
the thermal resistance quadratic model and heat transfer
coefficient quadratic model. It is identified that the models
are significant as the F value is 8249.02 and 168.13 for the
thermal resistance and heat transfer coefficient, respectively.
The F values of 8249.02 and 168.13 denote the significance
of the models. If “Prob > F” falls below 0.05 and above 0.1,
then the model terms are supposed to be substantial terms.
All responses acquired with these models are closer to stan-
dard values representing the models’ high accuracy and con-
sistency with the experimental responses [73–76].

4.3. Developing Mathematical Models Using Regression
Analysis. Regression models are formulated based on

ANOVA table output. Experimental results of thermal resis-
tance (R) and heat transfer coefficient (h) values were com-
pared to the developed regression models in order to
establish a correlation. The obtained third-order polynomial
models depict the interactions between the input parameters
volume concentration (A) and power (B). The R and h qua-
dratic models are correlated by the following equations.

R = 19:79588 − 0:35376 ∗ P − 9:91874 ∗ ϕ

− 0:041747 ∗ ϕP + 50:92669 ∗ ϕ2

+ 1:94084E − 003 ∗ P2,
ð8Þ

h = 2:88150 + 191:95901 ∗ ϕ + 0:32906 ∗ P

+ 1:20365 ∗ ϕP‐1655:93390 ∗ ϕ2

+ 1:93960E − 003 ∗ P2:

ð9Þ
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Figure 7: Response surface chart of thermal resistance. Red dots are the experimental data, while the surface is the proposed model results.
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4.4. RSM Model Validation with the Empirical Data. The
assessment of error between the proposed model values
and the experimental data of ZrO2-CeO2 hybrid nanofluids
are essential to estimate the accuracy of the RSM model.
The validation of empirical and predicted RSM model
results is displayed in Figures 5 and 6. Table 4 lists the vali-
dation results of the RSM regression model and experimen-
tal values with the percentage of deviation. The mean
originality of models from the experimental data is esti-
mated to be 4.8% and -0.02% for thermal resistance and heat
transfer coefficient, respectively, which is minor. The vali-
dated percentage of deviation assured the high predictability
of both of the proposed models. These low margins of devi-
ation prove that the proposed RSM models have higher pre-
dictability on the responses of heat pipes using ZrO2-CeO2/
W-EG hybrid nanofluids.

The 3-D graphs of a response surface for heat transfer
experimental measurements are shown in Figures 7 and 8.
It can be seen that the surface formed with the new regres-
sion correlations and the collected data from the experimen-
tal setup on R and h values (of ZrO2-CeO2 hybrid
nanofluids) are closely taking place, demonstrating an excel-
lent agreement of the proposed models with the experimen-
tal data. These results recommend that the RSM correlations
accurately evaluate heat transfer characteristics of heat pipes
that use ZrO2-CeO2/W-EG hybrid nanofluids.

5. Conclusion

The present study examined the synthesis, structural, and
surface characterizations of ZrO2 and CeO2 nanoparticles
produced by sol-gel and coprecipitation methods. The ther-
mal transfer behavior on a cylindrical mesh-type heat pipe
using ZrO2-CeO2 nanoparticles in W-EG suspension was
investigated. Further, the RSM technique was employed to
design experiments, model process variables, and validate
the results. The following major conclusions have been
drawn through this examination.

The average sizes of ZrO2 and CeO2 nanoparticles were
found to be 80nm and 70nm, respectively, and the shapes
of the particles were found to be spherical for both samples
through the SEM studies. From the XRD pattern of ZrO2
and CeO2 samples, the crystallite sizes were determined to
be 2.2 nm and 7.07 nm, respectively.

A statistical approach using a response surface method-
ology combined with ANOVA was engaged to predict the
heat transfer attributes (R: thermal resistance; h: heat trans-
fer coefficient) of the heat pipe of ZrO2-CeO2/W-EG hybrid
nanofluids. A cylindrical heat pipe experiment has been per-
formed using ZrO2-CeO2/W-EG hybrid nanofluids at differ-
ent particle weight concentrations for various temperatures.
It showed 5.33% and 41.16% enhancement in thermal resis-
tance and heat transfer coefficient, respectively, over the base
fluid mixture. The developed regression models for R and h
can predict the heat transfer performance with the average
deviation of 4.8% and 0.02% over the experimental data at
a heat input power in the range of 30–90W and volume con-
centrations in the range of 0.0125–0.1%. The validation of
both the modeling results is well matched with the experi-

mental data. In addition, the values of R2 (0.9997 and
0.9859) and Adj:R2 (0.9801 and 0.9996) demonstrated the
accuracy of the proposed RSM models vs. the experimental
data. Moreover, the ANOVA technique showed significant
results with the developed correlations. Hence, it is empha-
sized that these proposed mathematical models can be uti-
lized for prediction of heat transfer coefficient and thermal
resistivity of ZrO2-CeO2/W-EG hybrid nanofluids with a
cylindrical screen mesh heat pipe. it has been concluded that
the hybrid ZrO2-CeO2/W-EG nanofluid has superior poten-
tial for thermal performance and is highly suitable for heat
transfer applications in various heat exchanging systems.
In this work, major investigations had been carried out on
the most commonly used cylindrical-shaped screen mesh
heat pipe in industrial applications due to simplicity in con-
struction, handling, filling, and refilling of the working fluid.
Future research direction may focus on the study on varia-
tion of heat pipe performance using different types of wick
structure, different cross-sections of heat pipe such as square
and triangle, various hybrid nanofluids, etc. A heat pipe with
enhanced thermal performance has major applications in
the field of refrigeration and air conditioning system, satel-
lite equipment, electronic component cooling, automobile
radiator, high power LED cooling, microreactors, phase
change materials (PCM), etc. These are some of the probable
directions on which work can be performed on hybrid nano-
fluids by researchers in the future for dissemination of their
use in different applications.
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