WRKY this way: a new approach to tackling biotic and abiotic stresses in crops

Alison Bentley¹ & Ari Sadanandom²

 The John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 OLE, UK.
Durham University School of Biological and Biomedical Sciences, South Road, Durham, DH1 3LE, UK. Contact: <u>Alison.Bentley@niab.com</u> <u>ari.sadanandom@durham.ac.uk</u>

The challenge

- Crop yield gains throughout the 20th century have been driven by the application of synthetic nitrogen (N) fertiliser.
- High N promotes yield and product quality, necessary for securing livelihoods and staple food supplies.
- However, both its over- and under-use have significant implications for pest & pathogen prevalence, farmer incomes and for the environment.

The opportunity

- Our work is targeting the link between N fertiliser inputs and foliar disease resistance in the major food security crop wheat (*Triticum aestivum*) through manipulation of WRKY gene family transcription factors (a component of the plant immunity signalling cascade).
- WRKY transcription factors have been shown to play a key role in wheat response to the foliar pathogen *Zymoseptoria tritici*, the causal agent of Septoria leaf blotch disease.
- This is a short- to medium term opportunity to manipulate the link between high yielding N dependent cereals and foliar disease pressure.

Our idea

- We are creating a transgenic wheat series to determine if it is feasible to exploit endogenous defence mechanisms driven by WRKY that do not rely on fungicides as a method to control foliar diseases.
- In parallel, we have developed an experimental approach for assessing N fluxes (right) capturing variation in remobilisation & post-anthesis uptake.

Our current work addresses the key timings, dynamics & drivers of crop N demand.

We propose that understanding how and why N nutrient level and disease resistance are linked will to lead to strategies enabling exploitation of

endogenous defence whilst maintaining high crop yields and product quality.

Supported by Grand Challenges, an initiative of:

BILL& MELINDA GATES foundation