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General introduction




Chapter 1

Plant biosecurity in Australia

Australia has remained free of many serious plant pests and diseases of agriculture and forestry
that are found in many other parts of the world. This has been due in a large part to Australia’s
geographical isolation as well as more than a century of effective plant quarantine measures
(Plant Health Australia 2017). The Australian plant biosecurity system is one of the most
effective and visible in the world, supporting the access of Australian crop and horticultural
products to overseas markets, and further protecting the Australian economy and environment
from the impacts of unwanted pests and diseases.

A sophisticated diagnostic and surveillance system, which relies on close collaboration between
plant pathologists and entomologists across Australia, underpins the national plant biosecurity
system (Craik etal. 2017). The Australian biosecurity system is multilayered, with protective and
complementary measures applied offshore, at the border and onshore. The biosecurity system
is enforced by a broad range of participants, covering all Australian governments (national,
State, territory and local), industry bodies, exporters and importers, farmers, miners, tourists,
researchers and the broader community. This strong and effective biosecurity system is possible
because of contributions from, and cooperation between, all participants across a wide range of
biosecurity activities (Craik et al. 2017).

Underpinning the Australian biosecurity system is the National Plant Biosecurity Diagnostic
Network, which is a nationally integrated network for plant diagnosticians in Australia (http://
plantbiosecuritydiagnostics.net.au/). The activities supported by this network enable the
efficient and effective diagnosis of plant pests by Australian plant diagnosticians. However, the
ability to successfully diagnose unwanted and threatening plant diseases relies heavily on sound
knowledge about the pathogens that are already present and established in Australia. Much of
this information is currently sourced from outdated published host-pathogen checklists that were
compiled, in part, from surveys conducted over many years by Federal and State government
programs (Noble 1936, Talbot 1964, Simmonds 1966, Shivas 1989, Hyde and Alcorn 1993,
Shivas 1995, Shivas and Alcorn 1996). These checklists have become outdated as new records
of plant diseases are discovered and reported. Online databases have replaced these checklists,
with the advantage that these can be regularly updated and made accessible, either freely (e.g.
Atlas of Living Australia https://www.ala.org.au/, U.S. National Fungus Collections https://
nt.ars-grin.gov/fungaldatabases/) or restricted (e.g. Australian Plant Pest Database https://appd.
ala.org.au/appd-hub/index).

Host-pathogen checklists and online databases are only reliable if the records are specimen-
based, which enables validation of the pathogenic microorganism and plant host against
reference material that may be either herbarium specimens, living cultures or DNA accessions.
This standard of reliability is evidenced by the requirement that most scientific journals will
only publish papers, including first records, that reference specimens lodged in internationally
recognised culture collections or herbaria, such as those listed in Index Herbariorum (Thiers
2018, http://sweetgum.nybg.org/science/ih/) and the World Federation for Culture Collections
(http://www.wfcc.info/).

Prior to the availability of DNA sequence data, the identification of plant pathogenic fungi
was primarily based on morphology, with herbarium specimens and their associated cultures
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serving as proof of identity for future reference. The application of molecular-based methods,
in particular the phylogenetic analysis of DNA sequence data, to species classification and
identification has revealed that many traditionally accepted species are actually complexes
of multiple species (Crous and Groenewald 2005), and has led to a subsequent taxonomic
revolution that has accelerated fungal species discovery (Hawksworth and Liicking 2017).
Nowadays, molecular methods using DNA sequences are routinely used by plant pathologists
and mycologists to identify and classify fungal plant pathogens. Over the past decade, several
well-known and important plant pathogenic species have been shown to be complexes of cryptic
species, i.e. morphologically similar yet phylogenetically distinct. For example, Colletotrichum
acutatum and C. gloeosporioides were each considered pathogens of a wide range of host plants
for the better part of the last 50 years, until taxonomic reassessment by multilocus molecular
phylogenetic analyses divided the two taxa into 31 and 22 species, respectively (Shivas and Tan
2009, Damm et al. 2012, Weir et al. 2012), each with comparatively narrow host ranges and
geographic distribution. It is difficult, and sometimes impossible, to extract DNA of sufficient
quality for multilocus sequence analysis (MLSA) from herbarium specimens, especially old
specimens or ones that have been maintained in suboptimal conditions (Telle and Thines 2008).
As MLSA is often necessary to verify many of the records of plant pathogens in the plant
pathology literature, this has rendered many of those records unreliable. Verification of many
plant disease records will require specimens to be recollected, re-isolated and subjected to DNA
sequence analysis (Hyde et al. 2010).

The molecular-based method of fungal identification has short-term consequences and long-
term benefits for Australian plant biosecurity. It is apparent that many, if not most, of the names
applied to specimens in Australian reference collections, as well as names used in the plant
pathology literature, are either incorrect or applied to sensu lato concepts (literally broadly
defined).

Most specimens in the majority of reference collections were collected over a decade ago, when
pathogen identifications were based almost entirely on morphology and/or with host identity.
Identifications based on morphology were often difficult as most fungi are pleomorphic, and
may occur as either sexual, asexual or synasexual morphs. Throughout the 20™ century, different
names were applied to different morphs, a practice known as dual nomenclature (Briquet 1905),
which meant that the same fungus could legitimately have different generic and sometimes
different species names for each morph. Sometimes these names were based on the same type
specimens (nomenclatural synonyms), and sometimes on different type specimens (taxonomic
synonyms). The dual nomenclature system was abolished at the 18th International Botanical
Congress (Hawksworth et al. 2011, McNeil et al. 2012), and the application of single names for
phytopathogenic fungi has become entrenched in the International Code of Nomenclature for
algae, fungi and plants (Turland et al. 2018). This change has had a positive and progressive effect
on plant pathology and plant biosecurity as DNA sequence comparisons have made it possible
to reliably connect the different morphological morphs, and to place a fungus in its appropriate
phylogenetic position, even if sterile (Wingfield et al. 2012, Crous et al. 2015, 2016).

Records of plant pathogens in Australia

Currently records of plant pathogenic fungi in Australia, whether published or available online,
were mostly derived from herbarium specimens, which are pressed, dried and non-viable
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(Shivas et al. 2006). Relatively few records of plant pathogens have been substantiated by
living cultures of microorganisms, whether fungi, oomycetes or bacteria. There are several
reasons for this, notably, (1) many large groups of plant pathogens are obligate and cannot be
cultured, such as downy mildews (Peronosporaceae), powdery mildews (Erysiphales), tar spots
(Phyllachoraceae), rusts (Pucciniales), smuts (Ustilaginomycetes); (2) many identifications
of pathogens were based on morphology and cultures were not necessary for diagnosis; (3)
living cultures are often difficult to preserve, especially over time and may lose their ability to
sporulate or retain pathogenicity or other physiological properties; (4) long-term maintenance
of living cultures is relatively costly; and (5) isolation of a presumptive causal organism does
not demonstrate pathogenicity unless Koch’s postulates are fulfilled. For example, consider that
records of plant pathogenic fungi in remote parts of northern Australia (Hyde and Alcorn 1993,
Shivas 1995, Shivas and Alcorn 1996), and in the neighbouring countries of Papua New Guinea
(Hyde & Philemon 1994) and Indonesia (Shivas et al. 1996), were mostly based on microscopic
examination of herbarium specimens. The remoteness of many locations in northern Australia
has meant that facilities were not immediately available to isolate and preserve living cultures of
plant pathogenic fungi. Furthermore, the Australian biosecurity system prohibits movement of
specimens that might harbour living and exotic pathogens, unless accompanied by a biological
import permit issued by the Australian Department of Agriculture and Water Resources. These
permits invariably stipulate that the herbarium specimens must not be used for in vitro studies.

The importance of maintaining accurate records of pathogens in Australia is essential for a
process known as pest risk analysis (Plant Health Australia 2013). Pest risk analysis is a form
of risk analysis conducted by regulatory plant health authorities to identify the appropriate
phytosanitary measures needed to protect plant or plant products from new or emerging pests
and diseases. The process of pest risk analysis also determines whether exotic pathogens are
a potential threat to agriculture or the environment. The aim of the plant biosecurity system
in Australia is to prevent the entry of exotic pests, diseases and weeds that could have serious
environmental and economic consequences if introduced and allowed to establish (Craik et al.
2016).

Specimen-based records of most of the plant pathogens in Australia can be accessed through
the Australian Plant Pest Database (APPD) (Shivas et al. 2006, https://appd.ala.org.au/appd-
hub/index). Access to this database is currently restricted by username and password, which
limits its accessibility. The APPD includes records of specimens from the three largest herbaria
of plant pathogens in Australia, namely the Queensland Plant Pathology Herbarium (BRIP,
http://collections.daff.qld.gov.au/), the New South Wales Plant Pathology and Mycology
Herbarium (DAR, https://www.dpi.nsw.gov.au/about-us/services/collections/herbarium), the
and the Victorian Plant Pathology Herbarium (VPRI). For several of these records, the herbaria
maintain associated living cultures. With over 18 000 isolates, BRIP holds Australia’s largest
collection of cultures of plant pathogenic fungi. These records are critical resources for the
resolution of biosecurity issues and underpin the pest risk analysis process in Australia.

Molecular phylogenetic methods are now routinely used in most diagnostics laboratories in
Australia. Many commonly encountered groups of plant pathogenic fungi have been shown
to include complexes of cryptic species, such as Mycosphaerellaceae (including Cercospora,
Cladosporium,  Pseudocercospora),  Botryosphaeriaceae  (including  Lasiodiplodia,
Neofusicoccum), as well as the genera Calonectria, Colletotrichum, Diaporthe, Fusarium, and
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Phyllosticta (Crous et al. 2006a—e, Alves et al. 2008, Cai et al. 2009, Hyde et al. 2009a, Lombard
et al. 2010, Bensch et al. 2012, Cannon et al. 2012, Damm et al. 2012a, 2012b, Gomes et al.
2012, Udayanga et al. 2012, Weir et al. 2012, Groenewald et al. 2013, Wikee et al. 2013, Aoki et
al. 2014, Damm et al. 2014, Laurence et al. 2014, Liu et al. 2014, Damm et al. 2019). Many of
these studies have included some Australian isolates, but for the most part, the extent of fungal
diversity in Australia is poorly known. This knowledge gap, as far as it pertains to fungal plant
pathogens, poses a risk to the Australian biosecurity system as checklists and databases of fungi
associated with plant diseases in Australia are outdated.

The purpose of the studies described in this thesis was to demonstrate that there is hidden
diversity in the Australian plant pathogen culture collections. A re-inventory of these culture
collections will allow checklists and databases to be updated. Accurate and updated lists of
Australian plant pathogens are essential to ensure that the Australian plant biosecurity system
remains strong and effective.

Important plant pathogenic fungal genera that are poorly resolved in Australia
Botryosphaeriaceae

The Botryosphaeriaceae, with over 2000 names, represents a large, well-studied group of fungi
that cause canker diseases on woody plant hosts around the world (Yang et al. 2017, http://
www.indexfungorum.org/). Until recently, there was very little reliable baseline data about the
species of Botryosphaeriaceae that were present in Australia (Tan et al. 2018, Burgess et al.
2018). There have been many taxonomic changes in this fungal family over the past decade,
with the establishment of several new genera and species, as well as the reclassification of many
species (Dissanayake et al. 2016, Slippers et al. 2017, Yang et al. 2017).

There are currently 24 genera containing 222 species in the Botryosphaeriaceae worldwide; with
9 genera and 62 species represented in Australia (Tan et al. 2018, Burgess et al. 2018). Some
species have a wide host range with many records worldwide, such as Botryosphaeria dothidea,
Lasiodiplodia theobromae and Neofusicoccum parvum (Marsberg et al. 2017, Slippers et al.
2017), while for some recently described species, such as Macrophomina pseudophaseolina, and
Eutiarosporella spp., the distribution appears to be limited (Sarr et al. 2014, Thynne et al. 2015).

Systematic collection of species in the Botryosphaeriaceae is needed to support biosecurity
decision making and provide a foundation for future taxonomic and diagnostic studies into
this group of important pathogens. Australian plant pathology herbaria and culture collections
contain many specimen-based records of Botryosphaeriaceae (Plant Health Australia 2001).
However, most of these records need revision as they predate the application of molecular
phylogenetic methods. Morphological characters alone are inadequate to define genera or
identify species of Botryosphaeriaceae. Phillips et al. (2013) suggested that many taxa linked
to the Botryosphaeriaceae, for which cultures or DNA sequence data were not available, will
have to be disregarded unless they were epitypified. Molecular studies have shown that species
of Botryosphaeria such as B. dothidea and L. theobromae are species complexes (Alves et al.
2008, Phillips et al. 2008, Abdollahzadeh et al. 2010). Botryosphaeria dothidea was shown to
be a complex comprising several species (Smith et al. 2001, Denman et al. 2003), necessitating
its epitypification with a specimen from Prunus sp., collected near the Italian-Swiss border
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(Slippers et al. 2004). Subsequently, several other species of Botryosphaeria have been
epitypified, which has advanced the taxonomic resolution of this genus (Crous et al. 2006d,
Alves et al. 2008, Phillips et al. 2008). The epitypification of these taxa has stabilised many
names by removing uncertainty about their application.

Diaporthe

The genus Diaporthe includes over 800 species, with approximately 900 species names available
in the synonymous genus Phomopsis (http://www.indexfungorum.org/). However, only 213 of
these species are supported by DNA sequences from ex-type cultures (Dissanayake et al. 2017,
Marin-Felix et al. 2019). Diaporthe includes species reported as pathogens, endophytes and
saprobes, which are widespread in both temperate and tropical regions (Santos and Phillips
2009, Santos et al. 2011, Udayanga et al. 2011, 2012, Gomes et al. 2013, Hyde et al. 2014,
Dissanayake et al. 2017, Marin-Felix et al. 2019).

Plant pathogenic species of Diaporthe cause serious diseases of many cultivated plants
worldwide, including grapevines (van Niekerk et al. 2005), soybean (Li et al. 2010), strawberry
(Maas 1998), and sunflower (Muntanola-Cvetkovic et al. 1981, Thompson et al. 2011, 2015). In
Australia, several exotic species of Diaporthe have been recognised by the regulatory agencies
or by the agricultural or horticultural industry as potential biosecurity threats, including D.
amygdali on almonds; D. eres and D. tanakae on apples and pears; D. melonis on cucurbits;
D. helianthi on sunflowers; D. vaccini on blueberries and small cranberries; and D. viticola on
grapes (Plant Health Australia 2006, 2007, 2010, 2018, DPIRD 2018)

In Australia, there are over 1 300 specimens of Diaporthe (including Phomopsis) deposited
in the major plant pathology herbaria (Plant Health Australia 2001). Most of the specimens
have not been identified to species level, or require revision as they predate the application of
molecular phylogenetic methods. Cryptic diversification, phenotypic plasticity and extensive
host associations have long complicated accurate identifications of Diaporthe species (Udayanga
et al. 2012). Species recognition in Diaporthe was based on morphological characters and
host associations (Wehmeyer 1933). Molecular phylogenetic studies have demonstrated that
morphological characters were often unreliable for species identification due to variability in
environmental conditions (Gomes et al. 2013). Host associations are also unreliable as a single
species can be found on diverse hosts, or more than one Diaporthe species may be reported
as causative agents of the same disease (Thompson et al. 2011, Guarnaccia et al. 2016, 2018).
Identification and description of Diaporthe species are now based on multilocus phylogenetic
inferences (Santos et al. 2011, Thompson et al. 2011, Udayanga et al. 2012, Gomes et al. 2013;
Tan et al. 2013; Udayanga et al. 2014, Lombard et al. 2014, Thompson et al. 2015, Udayanga et
al. 2014a, 2014b, 2015, Du et al. 2016, Gao et al. 2015, Senanayake et al. 2017). However, the
creation of a stable taxonomy for Diaporthe has been hindered by the lack of ex-type cultures
for many species.

Bipolaris and Curvularia
The genus Bipolaris (Shoemaker 1959) includes over 100 species, and Curvularia (Boefijn

1933) includes over 170 species. In addition, there are approximately 50 species names
available in Cochliobolus (Drechslera 1934) that have mostly been synonymised into Bipolaris
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or Curvularia. Species of Bipolaris and Curvularia include phytopathogens, particularly of
grasses (Poaceae), but are also associated with human, and non-living substrates such as air,
fresh water, and soil (Sivanesan 1987, Manamgoda et al. 2011, Rangaswamy et al. 2013, Verma
et al. 2013, Manamgoda et al. 2014, 2015, Marin-Felix et al. 2018).

In Australia, there are over 1 200 specimens of Bipolaris and over 800 specimens of Curvularia
deposited in the major plant pathology herbaria (Plant Health Australia 2001). Most of the
specimens have not been identified to species level, or require revisions as they predate the
application of molecular phylogenetic methods. In the past, identification and classification
of Bipolaris and Curvularia species were entirely based on morphological characters. In
particular, Curvularia species were considered to have curved conidia (or disproportionate
swelling of at least one of the conidial cells) with true septa, whereas Bipolaris species had
straight conidia with pseudosepta (Sivanesan 1987). Bipolaris and Curvularia species share
many similar and overlapping asexual morphological characteristics, and share similar sexual
morphs (previously classified as Cochliobolus), which led to debates as to whether the two
genera should be synonymised (von Arx and Luttrell 1979, Sivanesan 1987).

Molecular phylogenetic analyses have demonstrated that Bipolaris and Curvularia were broadly
monophyletic and separated into two well resolved clades (Berbee et al. 1999, Manamgoda et
al. 2012). To stabilise the taxonomy, there have been attempts to source the ex-type cultures of
existing species and apply molecular phylogenetic methods to resolve or confirm the taxonomy
of 41 Bipolaris and 73 Curvularia species (Manamgoda et al. 2012, 2014, Tan et al. 2014,
Manamgoda et al. 2015). This has resulted in the reassignment of 26 Bipolaris species to
Curvularia, and the introduction of the monotypic genus, Johnalcornia, to accommodate an
aberrant Bipolaris species (Manamgoda et al. 2012, 2014, Tan et al. 2014).

Outline of the thesis

The research presented in this thesis is mainly related to the taxonomy and biodiversity of
cultures from the Queensland Plant Pathology Herbarium (BRIP), Australia’s largest collection
of phytopathogenic fungi. The new insights gained from this thesis will influence future
research into the taxonomy and biodiversity of other underrepresented microfungi in Australia,
and provide a firm foundation for plant biosecurity in Australia.

Thesis chapters
Chapter 1: An overview of plant biosecurity in Australia.

Chapter 2: Six new species of Diaporthe, D. beilharziae on Indigofera australis, D. fraxini-
angustifoliae on Fraxinus angustifolia subsp. oxycarpa, D. litchicola on Litchi chinensis, D.
nothofagi on Nothofagus cunninghamii, D. pascoei on Persea americana and D. salicicola
on Salix purpurea from Australia are described and illustrated based on morphological
characteristics and molecular analyses. Three of the new species no longer produced sporulating
structures in culture and two of these were morphologically described from voucher specimens.
Phylogenetic relationships of the new species with other Diaporthe species are revealed by DNA
sequence analyses based on the internal transcribed spacer (ITS) region, and partial regions of
the B-tubulin (fub2) and translation elongation factor 1-alpha (tefla).

13
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Chapter 3: An examination of ex-type and authentic cultures of 34 species of Bipolaris and
Curvularia by phylogenetic analysis of four loci (gapdh, ITS, LSU and tefla) resulted in nine
new combinations in Curvularia, as well as new synonymies for some species of Bipolaris and
Curvularia. Lectotypes are designated for Bipolaris secalis and Curvularia richardiae, and
an epitype is designated for Curvularia crustacea. A new monotypic genus, Johnalcornia, is
introduced to accommodate Bipolaris aberrans, which clusters sister to the newly described
Porocercospora. Johnalcornia differs morphologically from this taxon by producing distinctive
conidia-like chlamydospores as well as comparatively thick-walled, geniculate conidiophores,
with conidiogenous cells that have conspicuous scars. Johnalcornia further differs from related
genera by the second conidial septum forming distally to delimit the apical cell.

Chapter 4: Several unidentified specimens of Bipolaris deposited in the Queensland Plant
Pathology Herbarium (BRIP) from 1976-1988 and recognised by Dr. John L. Alcorn as
taxonomically interesting were re-examined. The morphology of conidia and conidiophores, as
well as phylogenetic inference from the analyses of three loci (ITS, gapdh and tefl o) supported
the classification of eight novel Bipolaris species, which were originally isolated from leaf
spots on grasses (Poaceae).

Chapter 5: Several unidentified specimens of Curvularia deposited in the Queensland Plant
Pathology Herbarium were re-examined. Phylogenetic analyses based on sequence data of
the internal transcribed spacer region, partial fragments of the glyceraldehyde-3-phosphate
dehydrogenase and the translation elongation factor 1-a genes, supported the introduction
of 13 novel Curvularia species. Eight of the species described, namely, C. beasleyi, C.
beerburrumensis, C. eragrosticola, C. kenpeggii, C. mebaldsii, C. petersonii, C. platzii and
C. warraberensis, were isolated from grasses (Poaceae) exotic to Australia. Only two species,
C. lamingtonensis and C. sporobolicola, were described from native Australian grasses. Two
species were described from hosts in other families, namely, C. coatsiae from Litchi chinensis
(Sapindaceae) and C. colbranii from Crinum zeylanicum (Amaryllidaceae). Curvularia reesii
was described from an isolate obtained from an air sample. Furthermore, DNA sequences from
ex-type cultures supported the generic placement of C. neoindica and the transfer of Drechslera
boeremae to Curvularia.

Chapter 6: The Botryosphaeriaceae is one of the most widespread and cosmopolitan endophytic
groups of fungi. However, the species of this family can cause severe disease when the hosts are
exposed to stressful conditions. The aim of this study was to identify living cultures from the
Botryosphaeriaceae preserved in the Queensland and Victorian Plant Pathology Herbaria using
DNA sequence analyses. The 51 isolates examined were collected between 1971 and 2017
from 35 different host genera, with the dominant host genera being Mangifera (11 isolates),
Acacia (10), and Persea (5). Multilocus sequence analyses resulted in the re-identification of 41
isolates to the genera Botryosphaeria (2 isolates), Diplodia (4), Dothiorella (1), Lasiodiplodia
(19), and Neofusicoccum (15), as well as some that belonged to genera outside of the
Botryosphaeriaceae (10). New records for Australia were Botryosphaeria sinensis, Diplodia
alatafructa, Lasiodiplodia gonubiensis, Neofusicoccum cryptoaustrale, and N. mangroviorum.
These taxa were identified as a result of a workshop organised by the Subcommittee on Plant
Health Diagnostics. The results of this study provide fundamental information regarding the
diversity of Botryosphaeriaceae species present in Australia.

14
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Chapter 7: The taxonomic decisions presented in this thesis and their implications for plant
biosecurity in Australia are discussed. The impact of identification and resolution of species
complexes has important benefits for the pest risk analysis process and the exclusion of exotic
plant pathogens from Australia. The Queensland Plant Pathology Herbarium holds the largest
culture collection of plant pathogenic fungi in Australia, with over 23 000 strains. This collection
is an essential asset for plant biosecurity in Australia. An English and Dutch summary of the
results and conclusions of this thesis are provided in the Appendix.
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Chapter 2

Abstract

Six new species of Diaporthe, D. beilharziae on Indigofera australis, D. fraxini-angustifoliae
on Fraxinus angustifolia subsp. oxycarpa, D. litchicola on Litchi chinensis, D. nothofagi on
Nothofagus cunninghamii, D. pascoei on Persea americana and D. salicicola on Salix purpurea
from Australia are described and illustrated based on morphological characteristics and molecular
analyses. Three of the new species no longer produced sporulating structures in culture and two
of these were morphologically described from voucher specimens. Phylogenetic relationships
of the new species with other Diaporthe species are revealed by DNA sequence analyses based
on the internal transcribed spacer (ITS) region, and partial regions of the B-tubulin (tub2) and
translation elongation factor 1-alpha (zefla).

INTRODUCTION

Diaporthe species (including their asexual Phomopsis states) are found worldwide on a diverse
range of host plants as endophytes, pathogens and saprobes (Uecker 1988). Previously, host
association was often the basis for species classification and identification in Diaporthe and
Phomopsis, as morphological and cultural characteristics were often inadequate or unreliable
(van der Aa et al. 1990, van Rensburg et al. 2006). In recent studies, species of Diaporthe were
distinguished mainly by their molecular phylogenies, especially those derived from analyses of
the internal transcribed spacer (ITS) region of the nuclear ribosomal RNA (Mostert et al. 2001,
van Niekerk et al. 2005, van Rensburg et al. 2006, Santos and Phillips 2009, Ash et al. 2010,
Crous et al. 2011). Some authors have also used other gene regions as markers for phylogenetic
analysis in Diaporthe and Phomopsis, such as actin, B-tubulin (fub2), calmodulin, histone,
mating type genes, and translation elongation factor 1-alpha (fefla) (van Rensburg et al. 2006,
Santos et al. 2010, Udayanga et al. 2011, 2012a, 2012b, Gomes et al. 2013).

DNA sequencing has enabled the link between anamorphic (Phomopsis) and teleomorphic
(Diaporthe) states irrespective of whether the taxon under study produces asexual or sexual
structures (Udayanga et al. 2012b). Recent changes to the rules that govern fungal nomenclature
require that only one name for a single species should be used instead of different names for
different sexual stages (Hawksworth 2011). The earlier generic name Diaporthe (Nitschke
1870) has priority over Phomopsis (Saccardo and Roumeguéere 1884) and has been adopted
as the generic name for these taxa in recent studies in Australia (Thompson et al. 2011) and
overseas (Santos et al. 2010, 2011, Crous et al. 2011, 2012, Udayanga et al. 2012a, 2012b,
Gomes et al. 2013). In this study, six new species of Diaporthe from Australia are described
based on morphological characters and phylogenies derived from ITS, fefla and tub2 gene
sequences.

MATERIALS AND METHODS

Isolates

Unidentified isolates of Phomopsis were sourced from the culture collections at the Queensland
Plant Pathology Herbarium (BRIP, Dutton Park, Queensland, Australia) and the Victorian Plant

Pathology Herbarium (VPRI, Bundoora, Victoria, Australia). All isolates were deposited in
BRIP as both living and dried cultures (Table 1).
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Morphology

For fungal morphological studies, isolates were grown on potato dextrose agar (PDA) (Oxoid),
oatmeal agar (OMA) (Oxoid), and water agar (WA) with sterile pieces of wheat stems, and
incubated under 12 h near ultraviolet light/12 h dark (Smith 2002) at room temperature (approx.
23-25 °C). Fungal structures were mounted on glass slides in 100 % lactic acid for microscopic
examination after 28 days of incubation. Ranges were expressed as either min.—max. or as
(min.—) mean-SD—-mean+SD (—max.) with values rounded to 0.5 pm. Means and standard
deviations (SD) were made from at least 20 measurements. Images were captured with a
Leica DFC 500 camera attached to a Leica DM5500B compound microscope with Nomarski
differential interference contrast.

For colony morphology, 3-d-old cultures on 9 cm diam. plates of PDA and OMA that had
been grown in the dark at room temperature were grown for a further 7 days under 12 h near
ultraviolet light/12 h dark. Colony colours (surface and reverse) were matched and described
according to the colour charts of Rayner (1970).

DNA isolation, amplification and analyses

Mycelia were scraped off PDA cultures and macerated with 0.5 mm glass beads (Daintree
Scientific) in a Tissue Lyser (QIAGEN). Genomic DNA was then extracted with the Gentra
Puregene DNA Extraction kit (QIAGEN) according to the manufacturer’s instructions.

The primers V9G (de Hoog and Gerrits van den Ende 1998) and ITS4 (White et al. 1990) were
used to amplify the ITS region of the ribosome genes. The primers EF1-728 F (Carbone and
Kohn 1999) and EF2 (O’Donnell et al. 1998) were used to amplify part of the fefla gene, and
the primers T1 (O’Donnell and Cigelnik 1997) and Bt2b (Glass and Donaldson 1995) were
used to amplify part of the fub2 gene. All gene regions were amplified with the Phusion High-
Fidelity PCR Master Mix (Finnzymes). The PCR products were purified with the QIAquick
PCR Purification Kit (QIAGEN), and sequenced by Macrogen Incorporated (Seoul, Korea) on
the 3730xI DNA Analyzer (Applied Biosystems) using the amplifying primers.

All sequences generated in this study were assembled using Vector NTi Advance 11.0
(Invitrogen). The ITS sequences were initially aligned with representative Diaporthe spp. using
ClustalW in MEGA 5.2 (Tamura et al. 2011). Diaporthella corylina was selected as the outgroup
taxon. ANeighbour-Joining (NJ) analysis using the Kimura-2 parameter with Gamma distribution
was applied (data not shown; TreeBASE study S13424), and the closest phylogenetic neighbours
were selected for a combined analyses using ITS, fefla and tub2 genes. The sequences of each
gene were aligned separately and manually adjusted where needed. Alignment gaps were treated
as missing character states, and all characters were unordered and of equal weight. Suitable
Maximum Likelihood (ML) nucleotide substitution model for each gene was determined using
the model test function in MEGA 5.2, and then used for the phylogenetic analysis of the ITS,
tefla and tub2 sequences individually, as well as for the combined dataset. A ML tree using
the combined dataset was generated in MEGA 5.2 using the Tamura-Nei substitution model
with Gamma distribution. Bootstrap support values with 1000 replications were calculated for
tree branches. The newly generated sequences were deposited into GenBank (Table 1) and the
concatenated alignment in TreeBASE (Study S13424). Nomenclatural novelties were deposited
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Table 1. (Ctd).

GenBank accession numbers®

tefla tub2

ITS

Locality

Host

Isolate no.?

Species

KC343941 KC344183

Brazil KC343215

Tabebuia sp.

CBS 100547
CBS 534.937

D. tecomae

KC343946 KC344188

KC343220

Australia

Lupinus angustifolius

Vitis Vinifera

D. toxica

KC343960 KC344202

KC343234

Portugal

CBS 1132017
CBS 115584

D. viticola

KC343934 KC344176

KC343208

Hong Kong

China

Maesa perlarius

Diaporthe sp. 6

KC343730 KC343972

KC343004

@ BRIP: Plant Pathology Herbarium, Dutton Park, Queensland, Australia; CBS: Westerdijke Fungal Biodiversity Institute, Utrecht, The Netherlands;

CPC: Collection Pedro Crous, housed at CBS; VPRI: National Collection of Fungi, Knoxfield, Victoria, Australia.

Corylus sp.
°ITS: internal transcribed spacer; tefla: translation elongation factor 1-alpha; fub2: B-tubulin

CBS 121124

Diaporthella corylina

Newly deposited sequences are in bold. All other sequences were downloaded from GenBank and published in Gomes et al. (2013).

T Ex-type culture.

Novel Australian Diaporthe

in MycoBank (www.MycoBank.org) (Crous et
al. 2004).

Unique fixed nucleotides positions are used to
characterise and describe three sterile species.
For each sterile species that was described, the
closest phylogenetic neighbour was selected
and this focused dataset was subjected to single
nucleotide polymorphisms (SNPs) analyses.
These SNPs were determined for each aligned
data partition using DnaSP 5.10.01 (Librado
and Rozas 2009).

RESULTS
Phylogenetic analysis

Approximately 600 bases of the ITS region
were sequenced from the isolates in this study
and added to the alignment (TreeBASE study
S13424). The alignment included 118 sequences
from 51 Diaporthe (including Phomopsis) spp.,
most of which were from ex-type cultures. The
evolutionary relationships of these sequences
were analysed using NJ method based on
a Kimura-2 parameter model with Gamma
distribution (data not shown; TreeBASE study
S13424). From this NJ phylogenetic tree, 18
taxa closest to the isolates in this study were
select for a combined analyses using the ITS,
teflo and tub2 genes.

The combined (ITS, fefla and fub2) alignment
for the ML analysis contained 25 isolates
(including the outgroup) and 1956 characters
were used in the phylogenetic analysis.

The combined phylogenetic tree showed that
three of the newly described species in this study
clustered closely with each other as well as to
Diaporthe musigena (Fig. 1). The phylogenetic
tree also showed that one of the new species
clustered close to Diaporthe cynaroidis (Fig.
1). Comparison of the ITS, teflo. and tub?2
sequences between D. cynaroidis and the new
taxon identified fixed nucleotide differences
which accurately delineate between the two.
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40— Diaporthe musigena CPC 17025

41 (L Diaporthe fraxini-augustifoliae BRIP 54781
asll___ Diaporthe pascoei BRIP 54847
Diaporthe litchicola BRIP 54900
Diaporthe arengae CBS 114979

38
Diaporthe eugeniae CBS 444.82

L Diaporthe pseudomangiferae CBS 101339
Diaporthe perseae CBS 151.73

76— Diaporthe sp. 6 CBS 115584

38| L Diaporthe oncostoma CBS 589.78

Diaporthe pustulata CBS 109742

Diaporthe toxica CBS 534.93

46

L —— Diaporthe nothofagi BRIP 54801
Diaporthe beckhausii CBS 138.27

100
—i—l— Diaporthe australafricana CBS 111886

43 Diaporthe viticola CBS 113201
2H_|— Diaporthe cynaroidis CBS 122676
100L Diaporthe salicicola BRIP 54825

100 Diaporthe ganjae CBS 180.91
L Diaporthe manihotia CBS 505.76

100 Diaporthe infecunda CBS 133812
L Diaporthe beilharziae BRIP 54792

44 Diaporthe schini CBS 133181
99 I_— Diaporthe tecomae CBS 100547

o7

Diaporthella corylina CBS 121124

—
0.05
Fig. 1. Maximum likelihood tree inferred from analysis of three combined three genes (ITS, tefla and
tub2). The percentages of replicate trees in which the associated taxa clustered together in the bootstrap
test (1000 replicates) are shown next to the branches. The tree was rooted to Diaporthella corylina. The
alignment and tree are deposited in TreeBASE (S13424). Species described in this study are in bold.

Taxonomy

Six undescribed species of Diaporthe were recognised based on DNA sequence analysis,
together with cultural morphology, and sometimes a description of anamorphic structures.
Although none of the new fungi produced a teleomorphic stage in culture, all have been
described in Diaporthe according to rules in the International Code of Nomenclature for algae,
fungi and plants (Hawksworth 2011) on the basis that Diaporthe was established 14 years
before Phomopsis in accordance with previous studies (Santos and Phillips 2009, Santos et al.
2010, 2011, Thompson et al. 2011, Udayanga et al. 2012a, 2012b).
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Diaporthe beilharziae R.G. Shivas, J. Edwards & Y.P. Tan, sp. nov. — MycoBank MB802383.
Fig. 2a—e

Etymology: In recognition of Dr. Vyrna Beilharz, a highly respected Australian mycologist who
first collected and isolated this fungus.

Conidiomata pycnidial, solitary, scattered or aggregated in small groups, abundant on PDA,
OMA, and wheat straw pieces on WA after 4 weeks, solitary and immersed in WA after 4 weeks,
subglobose, up to 250 pum diam., ostiolate, beaks absent or less than 300 pm, abundant pale yellow to
salmon conidial droplets exuded from ostioles; walls thin, composed of an inner layer of yellowish
brown textura angularis and an outer layer of darker yellowish brown textura epidermoidea.
Conidiophores formed from the inner layer of the locular wall, reduced to conidiogenous cells
or 1-septate, hyaline to pale yellowish brown, ampulliform to cylindrical, 5-15 x 1.5-3.5 pm,
Conidiogenous cells cylindrical to flexuous, tapered towards the apex, hyaline, 5-20 x 1.5-3.0
um. Alpha conidia abundant, oval to cylindrical, rounded at the apex, obconically truncate at base,
mostly biguttulate, hyaline, (5.5-) 6.5-9 (=10) x 2-2.5 (=3) um. Beta conidia scarce amongst the
alpha conidia, flexuous, hyaline, 15-25 x 1.0-1.5 um. Perithecia not seen.

Culture characteristics: Colonies on PDA covering entire plate after 10 days, adpressed to
slightly ropey with pycnidia visible as hundreds of small black dots, transparent becoming pale
greyish sepia towards the centre; reverse similar to the surface. On OMA covering the entire
plate after 10 days, adpressed, transparent to pale mouse grey with pycnidia apparent as small
black dots or irregular patches less than 200 um diam.; reverse similar to the surface.

Specimen examined: AUSTRALIA, New South Wales, Mittagong, on Indigofera australis,
30 Apr. 1991, V.C. Beilharz (VPRI 16602 holotype, includes ex-type culture), (BRIP 54792
isotype, includes ex-type culture).

Notes: Diaporthe beilharziae was isolated from a leaf spot on /ndigofera australis. Two other
species, Diaporthe indigoferae on dead branches of 1. gerardiana in Pakistan (Miiller and Ahmad
1958) and Phomopsis indigoferae on stems of 1. dosua and I. dalea from Europe (Uecker 1988),
have been reported on Indigofera. Conidia were not described for D. indigoferae. Phomopsis
indigoferae has larger alpha conidia (8 x 3—4 pum) than D. beilharziae (5.5-10 x 2-3 um). The
role of all of these fungi as pathogens is not known.

The phylogenetic inference from the combined sequence data showed D. beilharziae clustered
close to D. infecunda (Gomes et al. 2013) (Fig. 1). In culture, D. beilharzae produced abundant
pycnidia on PDA and OMA, compared to D. infecunda, which was sterile.

Diaporthe fraxini-angustifoliae R.G. Shivas, J. Edwards & Y.P. Tan, sp. nov. — MycoBank
MB802384. Fig. 2f+j

Etymology: Named after the host genus and species from which it was collected, Fraxinus
angustifolius.

Conidiomata pycnidial, solitary or aggregated in groups up to 2 mm diam. and abundant on PDA,
OMA and wheat straw pieces on WA after 4 weeks, solitary and scarce on WA after 4 weeks,
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Fig. 2. Diaporthe beilharziae (ex-type BRIP 54792) after 4 weeks, a culture on PDA, b pycnidia on
sterilised wheat straw, ¢ conidial ooze, d conidiophores, e alpha conidia and a solitary beta conidium.
Diaporthe fraxini-angustifoliae (ex-type BRIP 54781) after 4 weeks, f culture on PDA, g pycnidia on
sterilised wheat straw, h conidial ooze, i alpha conidia, j beta conidia. Diaporthe litchicola (ex-type
BRIP 54900) after 4 weeks, k culture on PDA, 1 pycnidia on sterilised wheat straw, m conidiophores, n
alpha conidia, o alpha and beta conidia. Scale bars: a, f, k = 1 cm; b—c, g-h, | = 1 mm; d—e, i—j, m—o =
10 pm.

subglobose, with tan to white conidial droplets exuded from ostioles, ostiolar beaks mostly
absent or rarely up to 100 um high; walls thick, composed of inner layers of olivaceous brown
textura angularis and an outer layer of reddish brown textura epidermoidea. Conidiophores
formed from the inner layer of the locular wall, reduced to conidiogenous cell or 1-septate,
hyaline to pale brown, cylindrical to lageniform, straight to sinuous, 5-30 % 1.5-4.0 um.
Conidiogenous cells phialidic, terminal, cylindrical, 5-15 x 1-2 pm, tapered towards the apex,
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hyaline. Alpha conidia scarce, cylindrical to oval, attenuated at the ends, hyaline to subhyaline,
(4-) 5-8.5 (—=10) x 2-3 um. Beta conidia abundant, flexuous to lunate, hyaline, (16—) 17-21
(—22) x 1.0 um, truncate at the base, narrowed towards the acute apex, mostly curved through
45°-180° in the apical third. Perithecia not seen.

Culture characteristics: Colonies on PDA covering entire plate after 10 days, mouse grey,
adpressed with scant aerial mycelium; reverse fuscous black. On OMA covering the entire plate
after 10 days, with numerous confluent scattered tufts of mouse grey mycelium, adpressed in
the centre with a 2 cm diam.; reverse mouse grey becoming fuscous black after 4 weeks.

Specimen examined: AUSTRALIA, Victoria, on Fraxinus angustifolia subsp. oxycarpa cv.
Claret Ash, 31 Oct. 1979, L. Smith (VPRI 10911 holotype, includes ex-type culture), (BRIP
54781 isotype, includes ex-type culture).

Notes: Eight species of Diaporthe (Wehmeyer 1933) and five of Phomopsis (Uecker 1988) have
been reported on Fraxinus. Wehmeyer (1933) placed all of these names in synonymy with D.
eres, which he considered a large species complex that could not be separated by morphology.
Some of these taxa have been linked as anamorph-teleomorph connections but these should be
considered tentative as most connections in Diaporthe and Phomopsis are unproven (Uecker
1988). The taxa and presumed connections (in brackets) that have been reported on Fraxinus are
D. ciliaris, D. controversa (P. controversa), D. fraxini, D. obscurans, D. priva, D. samaricola
(P. pterophila, P. samarorum), D. scobina (P. scobina), D. scobinoides and P. scobinella
(Wehmeyer 1933, Uecker 1988). Each of these species was reported from Europe, where stem
necrosis on European ash (Fraxinus excelsior) is widely distributed in some countries (Przybt
2002). The role of these Diaporthe species in dieback of European ash is unclear (MacDonald
and Russell 1937).

Diaporthe fraxini-angustifoliae was isolated from stems of Fraxinus sp. exhibiting dieback. Its
role as a pathogen is not proven and uncertain. A massive occurrence of dieback of European
ash in Austria in 2007 was attributed to Hymenoscyphus pseudoalbidus (syn. Chalara fraxinea)
(KeBler et al. 2012). Diaporthe fraxini-angustifoliae produces copious amounts of beta conidia
that measure 15-25 pum, a character that separates it from all other species except P. scobinella.
Diaporthe fraxini-angustifoliae has much shorter alpha conidia (4-10 um) than P. scobinella
(8-12 pum).

The phylogenetic inference from the combined sequence data showed D. fraxini-angustifoliae
clustered closely with D. litchicola and D. pascoei, which are newly described below, as well as
with D. musigena (Fig. 1). Diaporthe fraxini-angustifoliae differs from D. pascoei in three loci:
ITS positions 422 (G) and 424 (G); tefla 93 % match (Identities 533/574 (93 %), Gaps 6/574
(1 %)); tub2 97 % match (Identities 649/666 (97 %), Gaps 1/666 (0 %)). Diaporthe fraxini-
angustifoliae has longer and wider alpha conidia (4-10 x 2-3 pum) than D. pascoei (3.5-5%1-2
um); and shorter beta conida (16-22 um) than D. litchicola (17-37 um). Diaporthe fraxini-
angustifoliae cannot be differentiated from D. musigena (7-12 x 2-3 um) by conidial size.

Diaporthe litchicola R.G. Shivas, K.R.E. Grice & Y.P. Tan, sp. nov. — MycoBank MB802385.
Fig. 2k—o
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Etymology: Named after the host genus from which it was collected, Litchi.

Pycnidia formed abundantly on OMA, PDA and wheat stems on WA after 4 weeks, solitary or
in groups of up to 20 on a dark stroma with a sharp slightly raised and blackened margin, with
black cylindrical ostiolate necks up to 1.5 mm. subglobose, up to 400 um diam., Conidiophores
reduced to conidiogenous cells, formed from the inner layer of the locular wall, hyaline, smooth,
cylindrical, straight to sinuous, tapered towards the apex, 2045 x 1.5-2.0 um. Alpha conidia
hyaline, smooth, guttulate, fusiform to oval, tapered at both ends, cylindrical to ellipsoidal, (5-)
6.5-9.5 (—10) x 1.5-2 (—2.5) um. Beta conidia scattered amongst the alpha conidia, flexuous to
lunate, (17-) 20-32 (—37) x 1.0-1.5 um.

Culture characteristics: Colonies on PDA covering the entire plate after 10 days, ropey with
abundant tufted white aerial mycelium, buff, numerous black conidiomata less than 0.5 mm
diam. form in the mycelium mostly towards the edge of the colony; reverse buff with darker
zonate and irregular lines corresponding to embedded conidiomata. On OMA covering the
entire plate after 10 days, adpressed with scant white aerial mycelium and numerous scattered
black conidiomata less than 1.0 mm diam.; reverse buff with numerous black conidiomata less
than 1.0 mm diam. and ochreous irregular patches up to 6 mm diam., becoming rosy buff after
4 weeks. On WA covering the entire plate after 4 weeks, transparent, agar tinted rosy vinaceous.

Specimen examined: AUSTRALIA, Queensland, Mareeba, on Litchi chinensis, 22 Nov. 2011,
K.R.E. Grice (BRIP 54900 holotype, includes ex-type culture).

Notes: Diaporthe litchicola was isolated from dieback of lychee (Litchi chinensis) in northern
Queensland. One other species has been reported from lychee, namely P. litchichinensis, which
was described from dark brown leaf spots in India (Prameela and Chowdhry 2004). Diaporthe
litchicola has shorter and narrower alpha conidia (5-10x1.5-2.5 pum) than P. litchi-chinensis
(10-12%3-5 um) for which there is no DNA sequence data available. A culture of was P. litchi-
chinensis was deposited in the Indian Type Culture Collection (ITCC 5420), which will facilitate
future comparative study.

The phylogenetic inference from the combined sequence data showed D. litchicola cluster
closely with D. fraxini-angustifoliae and D. pascoei (Fig. 1). Unique nucleotide differences are
relied upon to differentiate D. litchicola from D. pascoei. Diaporthe litchicola differs from D.
pascoei in three loci: ITS positions 92 (C), 421 (G) and 424 (G); tefla 92 % match (Identities
558/609 (92 %), Gaps 7/609 (1 %)); tub2 96 % match (Identities 641/667(96 %), Gaps 2/667
(0 %)). Morphologically D. litchicola has narrower alpha conidia that D. fraxini-angustifoliae
(2-3 pm) and longer alpha conidia than D. pascoei (3.5-5 pm).

Diaporthe nothofagi R.G. Shivas, J. Edwards & Y.P. Tan, sp. nov. — MycoBank MB802386.
Fig. 3h—i

Etymology: Named after the host genus from which it was collected, Nothofagus.
Hyphae on PDA after 4 weeks septate, smooth, mostly hyaline 1-3 um wide, scarcely brown

3-8 um wide. Perithecia and pycnidia not produced on PDA, OMA or wheat straw pieces on
WA after 4 weeks.
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Fig. 3. Diaporthe pascoei (ex-type VPRI 16058) after 4 weeks, p on PDA, q pycnidia on dried plate of
PDA, r alpha conidia, s conidiophores and beta conidia. Diaporthe salicicola (ex-type VPRI 32789) after
4 weeks, t on PDA, u alpha conidia from dried voucher specimen, v dried culture on PDA; Diaporthe
nothofagi (ex-type VPRI 22429) after 4 weeks w dried culture on PDA, x on PDA. Scale bars: a, e, 1=
1 cm; b=100 pm; c—d, f= 10 um; g-h = 1 mm.

Culture characteristics: Colonies on PDA reaching 6 cm diam. after 10 days, adpressed, white
to pale grey becoming amber in the centre, lighter towards the margin, after 4 weeks reaching
7 cm diam., becoming flesh coloured in the centre; reverse amber, darker towards the centre.
On OMA covering the entire plate after 10 days, adpressed, transparent with scant white aerial
mycelium, rosy buff towards the central 2 cm diam. with scant grey aerial mycelium, after
4 weeks covering entire plate, salmon towards the margins and flesh coloured in the centre;
reverse salmon in the central part becoming lighter and transparent towards the margin.

Specimen examined: AUSTRALIA, Victoria, Carlton, on Nothofagus cunninghamii, 31 Oct.
2000, C. Brenchley (VPRI 224290 holotype, includes ex-type culture), (BRIP 54801 isotype,
includes ex-type culture).

Notes: Diaporthe nothofagi was isolated from brown streaks at the base of the trunk of Nothofagus
cunninghamii. There are no apparent literature records of Diaporthe or Phomopsis species on
Nothofagus. 1t is not known whether D. nothofagi is a pathogen, saprobe or endophyte.

The Victorian voucher specimen of D. nothofagi comprised a dried culture on PDA in a 9

cm Petri dish. The specimen had numerous scattered immature pycnidia without beaks and
with empty locules. The associated living culture was sterile. The phylogenetic inference from
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combined dataset show a very strong bootstrap value at the node (100 %), thus supporting the
introduction of D. nothofagi as a new taxon.

Diaporthe pascoei R.G. Shivas, J. Edwards & Y.P. Tan, sp. nov. — MycoBank MB802387. Fig.
3a—d

Etymology: In recognition of Ian Pascoe, an excellent mycologist and plant pathologist, mentor
and friend who collected and isolated the fungus.

Conidiomata pycnidial, scattered, solitary or aggregated in groups up to 6 mm diam.on PDA, with
conidial droplets exuded from ostioles, ostiolar beaksmostly up to 1.5mm high. Conidiophores
formed from the inner layer of the locular wall, 1-2-septate near the base, hyaline, cylindrical,
straight, unbranched, 540 x 2-3 um. Conidiogenous cells phialidic, terminal, cylindrical, 5-30
x 2-3 um, tapered towards the apex, hyaline. Alpha conidia scarce, cylindrical, rounded at the
apex, slightly attenuated at the base, hyaline, (3.5-) 4-5 x 1-2 um. Beta conidia abundant,
flexuous to lunate, hyaline, (15-) 19-31 (=39) x 1.0-1.5 um, truncate at the base, narrowed
towards the apex, often curved up to 90° in the apical part. Perithecia and pycnidia not produced
on PDA, OMA or wheat straw pieces on WA after 4 weeks.

Culture characteristics: Colonies on PDA covering the entire plate after 10 days, pale luteous
with abundant white compact aerial mycelium; reverse pale luteous becoming umber towards
the centre. OnOMA covering the entire plate after 10 days, adpressed, honey with abundant
white aerial mycelium towards the margin; reverse honey with three zonate isabelline rings.

Specimen examined: AUSTRALIA, Victoria, on Persea americana, 29 Nov. 1988, I.G. Pascoe
(VPRI 16058 holotype, includes ex-type culture), (BRIP 54847 isotype, includes ex-type
culture).

Notes: The ex-type culture of D. pascoei had lost its ability to sporulate. The morphological
description given above is based on the holotype, which comprised three dried cultures grown
on PDA supplemented with aureomycin in 9 cm diam. Petri dishes. Diaporthe pascoei was
isolated from fruit rot of avocado (Persea americana). A note with the holotype specimen
states that the fungus was isolated from pocket rot of the stem end with severe discoloration of
vascular throughout the fruit. Uecker (1988) lists one species, P. perseae, on dying branches
of avocado. Phomopsis perseae was part of the complex of fungi that caused stem-end rot of
avocado in Australia (Peterson 1978) and South Africa (Darvas and Kotzé 1987). Diaporthe
pascoei has much smaller alpha conidia (3.5-5 X 1-2 um), than those of P. perseae, which
Uecker (1988) listed as 7-10.2 x 2.3-2.5 pum.

There are no DNA sequences available for any ex-type culture of P. perseae, although Gomes
et al. (2013) provided sequence data for a strain (CBS 151.73) they considered authentic when
transferring P. perseae to Diaporthe. The MegaBLAST comparison of the ITS sequence of D.
pascoei against the three available sequences of P. perseae showed a 92 % match to an isolate
from South Africa (GU967697) (Identities=489/534 (92 %), Gaps=9/534 (9 %)), a 87 % match
to the ITS1 sequence of an Australian isolate BRIP 5513 (AY705859) (Identities 155/179 (87
%), Gaps 7/179 (4 %)), and a 91 % match to the ITS2 sequence of BRIP 5513 (AY705860)
(Identities 147/161 (91 %), Gaps 2/161 (1 %)) (data not shown).
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The phylogenetic inference from the combined sequence data showed D. pascoei clustered close
to D. fraxini-angustifoliae, D. litchicola and D. musigena (Fig. 1). Diaporthe pascoei differs
from D. musigena in three loci: ITS positions 92 (T) and 541 (T); tefla 92 % match (Identities
280/303 (92 %), Gaps 4/303(1 %)); tub2 97 % match (Identities 645/666 (97 %), Gaps 1/666
(0 %)). Refer to the discussion under the earlier description of D. fraxini-angustifoliae for
morphological differentiation of these three species.

Diaporthe salicicola R.G. Shivas, J. Edwards & Y.P. Tan, sp. nov. — MycoBank MB803338;
Fig. 3e—¢g

Etymology: Named after the host genus from which it was collected, Salix.

Mycelium on PDA after 4 weeks adpressed, forming a pellicle on the surface. Conidiomata
pycnidial, solitary, scattered, with ostiolar beaks mostly up to 400 um high on PDA.
Conidiophores formed from the inner layer of the locular wall, hyaline, cylindrical, straight,
1-3-septate, unbranched, 10-25 x 2-3 um. Conidiogenous cells phialidic, terminal, cylindrical,
1020 x 2-3 um, tapered towards the apex, hyaline. Alpha conidia abundant, cylindrical to
oval, rounded at the apex, slightly attenuated at the base, hyaline, (4—) 5-7 (—8) x 1.5-2.5 um.
Beta conidia not seen. Perithecia and pycnidia not produced on PDA, OMA or wheat straw
pieces on WA after 4 weeks.

Culture characteristics: Colonies on PDA reaching 7 cm diam. after 10 days, adpressed towards
the centre with abundant white aerial mycelium towards the margin, ochreous towards the
centre, zonate; reverse umber at the centre becoming ochreous and then transparent towards the
margin, zonate. On OMA reaching 6 cm after 10 days, adpressed, transparent to buff with scant
white aerial mycelium; reverse transparent to faintly buff.

Specimens examined: AUSTRALIA, Tasmania, Blackfish Creek, on Salix purpurea, 31 Jul.
2007, K. Finlay & R. Adair (VPRI 32789 holotype, includes ex-type culture), (BRIP 54825
isotype, includes ex-type culture).

Notes: Diaporthe salicicola has conidia that are similar in size to Phomopsis salicina, which
was originally described as Phoma salicina from branches and bark of Salix in France and
Germany (Saccardo 1884, Diedicke 1911). The morphological description of D. salicicola was
based on two dried cultures grown on PDA in 9 cm diam. Petri dishes that formed part of the
voucher specimen. Diaporthe salicicola was associated with a leaf spot of Salix purpurea,
which is native to Europe and an invasive weedy shrub or small tree in southern Australia
(Parsons and Cuthbertson 2001). We have chosen to describe the Australian isolate as a new
species of Diaporthe rather than identify it as Phomopsis salicina, which occurs in Europe. This
approach creates a more stable taxonomy, especially if it was later learnt that there is a complex
of small-spored cryptic Diaporthe species associated with Salix.

At least five species of Diaporthe (Wehmeyer 1933) and four species of Phomopsis (Uecker
1988) have been reported on Salix. Some of these taxa have been linked as anamorph-teleomorph
connections but these should be considered tentative as most connections in Diaporthe and
Phomopsis are unproven (Uecker 1988). The taxa and presumed connections (in brackets)
that have been reported on Salix are D. glyptica, D. mucronata, D. spina (P. leucostoma as
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‘leucostemum’), D. tessella (P. systema-solare), D. tessellata, P. pallida, P. salicina and P.
salicina f. longipes (Wehmeyer 1933, Uecker 1988). The role of these Diaporthe species in
diseases of Salix is unclear. Phomopsis salicina was listed as a potential biological control
agent for Salix spp. in Australia based on its association with leaf and stem spots in Lithuania
(Adair et al. 2006).

The phylogenetic inference from combined sequence data show that D. salicicola clustered
close to D. cynaroidis (Fig. 1). Diaporthe salicicola differs from D. cynaroidis in three loci:
ITS positions 124 (G), 459 (T), 512 (C) and 533 (T); tefla positions 1 (G) and 548 (C); tub2
positions 7 (G), 112 (C), 113 (A), 129 (C), 143 (A), 534 (C), 637 (T) 673 (G) and 719 (T).

DISCUSSION

In this study, six new species have been described in Diaporthe, on the basis of morphological
and molecular characteristics. Three of the species, D. nothofagi, D. pascoei, and D. salicicola,
were sterile under the conditions that they were grown and did not produce any sporocarps.
Voucher specimens of D. pascoei and D. salicicola from the original collections dating back to
1988 and 2007, respectively, had pycnidia and conidia that allowed morphological descriptions
to be completed.

A phylogenetic tree derived from an alignment of ITS sequences is useful as a guide for
identification of isolates of Diaporthe species (Udayanga et al. 2012b). ITS sequences provide
persuasive evidence for species delineation where a few taxa are analysed, such as species
associated with the same host (Santos and Phillips 2009; Santos et al. 2011; Thompson et al.
2011), although confusion arises when a large number of species from a wide range of host
species are analysed. Santos et al. (2010) suggested that tef/a is a better phylogenetic marker
in Diaporthe than ITS, and has been widely used as a secondary locus for phylogenetic studies
(Santos et al. 2011, Udayanga et al. 2012a, 2012b). Gomes et al. (2013) examined five loci from
95 species. They found that tef7a poorly discriminated species, and suggested that histone and
BT were the better candidates as secondary phylogenetic markers to accompany the official
fungi barcode, ITS. In this study, a combined three gene analysis of ITS, tefla and tub2 was
used to support the introduction of six new Diaporthe species.
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Abstract

An examination of ex-type and authentic cultures of 34 species of Bipolaris and Curvularia
by phylogenetic analysis of four loci (gapdh, ITS, LSU and tefla) resulted in nine new
combinations in Curvularia, as well as new synonymies for some species of Bipolaris and
Curvularia. Lectotypes are designated for Bipolaris secalis and Curvularia richardiae, and
an epitype is designated for Curvularia crustacea. A new monotypic genus, Johnalcornia, is
introduced to accommodate Bipolaris aberrans, which clusters sister to the newly described
Porocercospora. Johnalcornia differs morphologically from this taxon by producing distinctive
conidia-like chlamydospores as well as comparatively thick-walled, geniculate conidiophores,
with conidiogenous cells that have conspicuous scars. Johnalcornia further differs from related
genera by forming the second conidial septum in the apical cell.

INTRODUCTION

The helminthosporioid genera Bipolaris (Shoemaker 1959) and Curvularia (Boedijn 1933)
include many important plant pathogens, particularly of grasses (Poaceae). These fungi are
associated with diseases on more than 60 host plant genera (Sivanesan 1987, Manamgoda et
al. 2011). In the past, the classification of Bipolaris and Curvularia spp. was entirely based
on morphological characteristics. Index Fungorum lists 116 species of Bipolaris and 120
of Curvularia, of which 96 and 85 %, respectively, were originally described solely from
morphology. As Bipolaris and Curvularia share many similar morphological characteristics,
this approach has been unreliable for the allocation of new taxa to either genus. In the last
decade, molecular phylogenetic approaches have provided additional reliable criteria that have
allowed the development of a more stable taxonomy for these genera (Manamgoda et al. 2012b).

Bipolaris and Curvularia have morphologically similar sexual morphs, which were often
classified in Cochliobolus (Drechsler 1934), although sexual morphs are not known for all
species of Bipolaris and Curvularia (Sivanesan 1987). Berbee et al. (1999) investigated the
phylogenetic relationships between Bipolaris, Cochliobolus and Curvularia by comparison of
DNA sequences from the internal transcribed spacer (ITS) region of the nuclear ribosomal
DNA (nrDNA), and a fragment of the glyceraldehyde-3-phosphate dehydrogenase (gapdh)
gene. They observed that species of Bipolaris and Curvularia, with and without known sexual
morphs, were monophyletic in the broad sense, yet clustered into two well resolved groups.
Berbee et al. (1999), were reluctant to separate these two groups into formal taxonomic ranks,
i.e. genera, as this required the transfer of Cochliobolus hawaiiensis (asexual morph: B.
hawaiiensis) and Cochliobolus ravenelii (asexual morph: B. ravenelii), which have straight
conidia, into Curvularia that typically has curved conidia. Such a taxonomic decision would
have been in contrast to the original morphological concepts accepted for these genera.

Manamgoda et al. (2012b) also showed that species of Bipolaris and Curvularia separated
into two well-defined groups based on phylogenetic analyses of either two genetic loci
(ITS and gapdh) or four loci (ITS, 28S large subunit ntDNA (LSU), gapdh, and translation
elongation factor-1a (tefla)). They subsequently transferred B. hawaiiensis, B. ravenellii and
four other Bipolaris species to Curvularia on the basis of phylogenetic analysis that included
DNA sequences from a designated neotype of Curvularia lunata, which is the type species of
Curvularia.
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Manamgoda et al. (2012b) noted that there remained 95 Bipolaris spp., 30 Cochliobolus
spp., and 101 Curvularia spp. whose ex-type cultures, if available, had not been sequenced.
Consequently, these species could not be assigned to either of the newly circumscribed genera
Bipolaris or Curvularia. In this paper, we applied molecular phylogenetic methods to 50
taxa (including the outgroup) to resolve or confirm the taxonomy of 34 species of Bipolaris
and Curvularia, by examining selected regions of genomic DNA extracted from ex-type and
reference cultures.

MATERIALS AND METHODS
Isolates and morphology

Allisolates examined, including 45 isolates located at the Queensland Plant Pathology Herbarium
(BRIP, Dutton Park, Australia), are listed in Table 1. Isolates from both BRIP and the Westerdijk
Fungal Biodiversity Centre (CBS) are retained as living cultures in a metabolically inactive
state (deep-frozen), which renders them acceptable as types according to Art. 8.4 of the current
edition of the International Code of Nomenclature for Algae, Fungi, and Plants (Melbourne
Code). The images presented in Figs. 2—4 were taken from dried specimens mounted on glass
slides in lactic acid (100 % v/v), and captured with a Leica DFC 500 camera attached to a Leica
DMS5500B compound microscope with Nomarski differential interference contrast illumination.

DNA isolation, amplification, and phylogenetic analyses

The isolates were grown on potato dextrose agar (PDA) (Becton Dickinson) for 7 days at room
temperature (approx. 23-25 °C). Mycelia were scraped off the PDA cultures and macerated
with 0.5 mm glass beads (Daintree Scientific) in a Tissue Lyser (QIAGEN). Genomic DNA
was extracted with the Gentra Puregene DNA Extraction Kit (QIAGEN) according to the
manufacturer’s instructions.

The primers V9G (de Hoog and Gerits van den Ende 1998) and ITS4 (White et al. 1990) were
used to amplify the ITS region of the nrDNA. The primers gpd1 and gpd2 (Berbee et al. 1999)
were used to amplify part of the gapdh gene. Partial regions of the LSU and tefl/a loci were
amplified using the primers LROR/LRS5 and EF1983/EF12218R, respectively (Schoch et al.
2009). All loci were amplified with the Phusion High-Fidelity PCR Master Mix (New England
Biolabs). The PCR products were purified and sequenced by Macrogen Incorporated (Seoul,
Korea) on the 3730x] DNA Analyzer (Applied Biosystems) using the amplifying primers.

All sequences generated were assembled using Vector NTi Advance v. 11.0 (Invitrogen), and
deposited in GenBank (Table 1, in bold). These sequences were aligned with sequences of
Bipolaris and Curvularia spp. obtained from GenBank (Table 1) using the MAFFT alignment
algorithm (Katoh et al. 2009) in the software Geneious (Biomatters Ltd). Alternaria alternata
(CBS 916.96) was included as the outgroup (Table 1). The sequences of each locus were
aligned separately and manually adjusted as necessary. Alignment gaps were treated as missing
character states, and all characters were unordered and of equal weight. The alignments were
uploaded to Gblocks Server (http://molevol.cmima.csic.es/castresana/Gblocks_server.html),
and curated to remove poorly aligned positions and divergent regions (Talavera and Castresana
2007). The alignments were trimmed as follows: ITS from 423 nucleotides, including gaps, to
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317 with no gaps; and gapdh from 513, including gaps, to 386 with no gaps. The alignments
of LSU and tefla did not require trimming. Bayesian analysis was performed with MrBayes
v. 3.2.1 (Huelsenbeck and Ronquist 2001, Ronquist and Huelsenbeck 2003) in Geneious. The
Markov Chain Monte Carlo (MCMC) analysis used four chains and started from a random
tree topology. The sample frequency was set at 200 and the temperature of the heated chain
was 0.3. Burn-in was set at 25 % after which the likelihood values were stationary. Maximum
Likelihood (ML) analysis including 1 000 bootstrap replicates was run using RAXML v. 7.2.8
(Stamatakis and Alchiotis 2010) in Geneious. The nucleotide substitution model used was
General Time Reversible (GTR) with a gamma-distributed rate variation. The concatenated
alignment and resulting tree were deposited in TreeBASE (Study S15335), and nomenclatural
novelties were deposited in MycoBank (www.MycoBank.org, Crous et al. 2004).

RESULTS
Phylogenetic analysis

The combined (ITS, gapdh, LSU and tefla) alignment is composed of 59 isolates (including the
outgroup) and 2 303 characters. The inferred phylogenetic tree validated the generic placement
of 12 species of Bipolaris and eight species of Curvularia (Fig. 1). A further nine species of
Bipolaris appeared in the clade that include the type species of Curvularia (Fig. 1). Consequently,
these species of Bipolaris are transferred to Curvularia and listed below as novel combinations,
alongside species of Curvularia that have not been previously validated by DNA sequences.

The phylogenetic tree indicates that B. aberrans does not belong to either Bipolaris or Curvularia
(Fig. 1). It is sister to the recently described monotypic genus, Porocercospora (Amaradasa et al.
2014). Bipolaris aberrans differs morphologically from P. seminalis, which has comparatively
thin-walled, non-geniculate conidiophores, with conidiogenous cells that have unthickened and
inconspicuous scars. Based on multilocus sequence analysis (Fig. 1) and morphology (Fig. 2),
B. aberrans is assigned to a new genus.

Taxonomy
Johnalcornia Y.P. Tan & R.G. Shivas, gen. nov. — MycoBank MB807731. Fig. 2

Etymology: Named after the Australian mycologist, John Leonard Alcorn, in recognition of
his substantial contributions towards the taxonomy of helminthosporioid fungi, including the
original description of Bipolaris aberrans.

Conidiophores solitary or in fascicles, simple or branched, straight to flexuous, apically
geniculate, cylindrical, smooth. Conidiogenous cells integrated, cylindrical, proliferating
sympodially, smooth to verruculose, with thickened and conspicuous scars. Conidia solitary,
straight to curved, smooth, hilum inconspicuous, distoseptate, germinating from both polar
cells, first conidial septum median or submedian, second conidial septum delimiting the apical
cell, third septum basal. Ascomata globose with a short neck. Asci cylindrical to fusoid, straight
or curved. Ascospores hyaline, filiform, tightly coiled.

Type species: Johnalcornia aberrans (Alcorn) Y.P. Tan & R.G. Shivas
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Fig. 1. Phylogenetic tree based on the combined multilocus alignment. Bayesian posterior probabilities
(pp) and RAXML bootstrap values (bs) are given at the nodes (pp/bs). Species transferred from Bipolaris
to Curvularia are shown in bold violet, and Johnalcornia aberrans gen. et. comb. nov. is shown in bold
blue. The Bipolaris, Curvularia and Johnalcornia clades are highlighted by coloured boxes. Species that

are validated in this study are in bold. Ex-type isolates of the currently accepted names are marked with
an asterisk (*). The tree is rooted to Alternaria alternata (see Table 1).
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Fig. 2. Johnalcornia aberrans (holotype, BRIP 16281). a Leaf spots on Eragrostis parviflora, b
conidiophores, ¢ conidia, d chlamydospores, e bipolar conidial germination, f-g second formed conidial
septum (arrowed) delimiting the apical cell, h conidiophores and conidia on wheat straw, i conidia.
Scale bars: a=1 mm; b—g, 1= 10 um, h =100 pm.

Johnalcornia aberrans (Alcorn) Y.P. Tan & R.G. Shivas, comb. nov. — MycoBank MB807732.
Fig. 2
Basionym: Bipolaris aberrans Alcorn, Mycotaxon 39: 364. 1990.

= Cochliobolus aberrans Alcorn, Mycotaxon 39: 362. 1990

Leaf spots elongated, about 0.5 mm wide and up to 1 cm long, with pale brown to grey centres
and darker brown margins (Fig. 2a). Conidiophores single or in loose fascicles, arising from
a swollen basal cell, simple or rarely once branched apically, olivaceous brown below, paler
at apex, straight and smooth in the sterile part, becoming geniculate and smooth to finely
verruculose towards the apex, sympodial, thick-walled, multiseptate, 75-270 um long, swollen
to 9—15 um wide at base, 6-7.5 um wide just above base and 3.5-5 um at apex. Conidiogenous
cells enteroblastic, cylindrical, integrated, terminal, proliferating sympodially, smooth to finely
verruculose, (Figs. 2b—c, h). Conidia pale to mid olivaceous brown, slightly paler apically,
obclavate, mostly straight, smooth, base rounded to slightly truncate, 3—7 septate, 25-60 x
9-12.5 um; hilum inconspicuous, 2—3 pum wide (Figs. 2e—i). Chlamydospores (holoblastic
conidia sensu Alcorn 1990) resemble conidiophores with conidia-like apices, terminal,
olivaceous brown, straight, fusiform, 55-95 x 7-14 um (Fig. 2d); sometimes producing at the
apex either a secondary chlamydospore or a conidiophore that bears conidia normally through
pores. Conidial germination bipolar, with apical germ tube axial and the basal germ tube semi-
axial and often displacing the hilum. Ascomata black, up to 620 um high, with a globose body
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205410 pm diam., ostiolar neck 50—155 um high, the body bearing hyphal hairs and short
blunt setae, beak glabrous. Asci bitunicate, cylindrical to fusoid, straight or curved, tapered,
sometimes sinuate at the base, occasionally pedicellate, 98—188%12.5-19 um. Ascospores
hyaline, filiform, (105-) 135-260 x 3.5-4.5 um, 5-13-septate, tightly coiled over much of
ascus length, slightly less so apically, generally tapered slightly to apex and base, widest in
median or upper part, base narrower (1.5-2.5 pm) than apex (2-3 pm).

Specimen examined: AUSTRALIA, Queensland, Wivenhoe Dam, from leaf spot of Eragrostis
parviflora, 22 Mar. 1988, J.L. Alcorn 8868 (BRIP 16281, B. aberrans holotype, includes the
ex-type culture), (IMI 335210 isotype), (ex-isotype culture CBS 510.91).

Notes: This description is based on Alcorn (1990) and examination of the holotype specimen of
B. aberrans, together with microscope slides of this specimen prepared by John Alcorn in 1989.
This specimen only contains an asexual morph, which Alcorn (1990) described as B. aberrans.
The sexual morph of this fungus was described by Alcorn (1990) as Cochliobolus aberrans.
Bipolaris aberrans was described by Alcorn (1990) as producing holoblastic conidia that did
not secede from the conidiophores. We prefer to use the term chlamydospores to describe these
structures (Seifert et al. 2011), which are illustrated here for the first time (Fig. 2).

Johnalcornia is introduced as a monotypic genus for Bipolaris aberrans. It is phylogenetically
close to Bipolaris, Curvularia, and Porocercospora (Fig. 1). All of these genera produce tretic
(poroblastic) conidiogenous cells and distoseptate conidia. In Johnalcornia, the second conidial
septum forms distally delimiting the apical cell (Figs. 2f, g), which differs from species of
Bipolaris and Curvularia that form the second conidial septum proximally to delimit the basal
cell (Alcorn 1990). Alcorn (1990) reported that paired cultures of single-spored isolates from
the ex-type culture of B. aberrans produced a sexual morph with filiform ascospores. This
differentiates Johnalcornia from the sexual state of Exserohilum, which has fusoid ascospores
(Sivanesan 1987). The ascospores of Cochliobolus abberans were originally described as often
bearing hyaline, obovoid to dumbbell-shaped or irregularly moniliform protrusions, which
Alcorn (1990) considered as cellular appendages. Such structures have not been reported in
sexual stages of Bipolaris or Curvularia (Sivanesan 1987). We suspect that these protrusions
are malformed germ tubes, rather than appendages.

Bipolaris Shoemaker, Can. J. Bot. 37(5): 882. 1959.
Type species: Bipolaris maydis (Y. Nisik. & C. Miyake) Shoemaker, Can. J. Bot. 37: 882. 1959.
Descriptions: Shoemaker (1959), Alcorn (1983a), Sivanesan (1987), Manamgoda et al. (2012b).

Conidiophores solitary or in loose fascicles, simple or branched, straight to flexuous, often
geniculate, sometimes nodose, cylindrical, smooth. Conidiogenous cells integrated, terminal
and intercalary, cylindrical, proliferating sympodially, smooth to verruculose, with thickened
scars. Conidia solitary, straight to curved, variable in shape from fusiform to oval, brown,
mostly smooth or rarely echinulate to rough-walled, two or more distoseptate, septa sometimes
thickened and dark brown, germinating from one or both polar cells, first conidial septum
median or sub-median, second conidial septum delimiting the basal cell, third septum distal.
Ascomata up to 700 um wide, brown or black, immersed, erumpent, partially embedded or
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superficial, free or on flat stroma, mostly globose to ellipsoidal, sometimes ampulliform or
flattened, smooth or covered with vegetative hyphae, ostiole central, often papillate or with
a sub-conical, conical, paraboloid or cylindrical neck. Peridium of pseudoparenchymatous
cells of equal thickness or slightly thickened at the apex. Hamathecium of septate, filiform,
and branched pseudoparaphyses. Asci 2—8-spored, clavate, cylindrical-clavate or broadly
fusoid, straight or slightly curved, thin-walled, bitunicate, fissitunicate, often distended prior to
dehiscence, short pedicellate, rounded at the apex. Ascospores filiform, hyaline to pale brown at
maturity, transversely multiseptate, loosely to strongly coiled in a helix within the ascus, often
with a thin mucilaginous sheath.

Note: Twelve species of Bipolaris are validated by multilocus analysis of ex-type or reference
isolates (Fig. 1).

Bipolaris chloridis (Alcorn) Alcorn, Mycotaxon 16: 373. 1983.
Basionym: Drechslera chloridis Alcorn, Trans. Br. mycol. Soc. 67: 148. 1976.
= Cochliobolus chloridis Alcorn, Trans Br. mycol. Soc. 70: 61. 1978.

Specimen examined: AUSTRALIA, Queensland, Booie, from leaf lesion on Chloris gayana,
12 Dec. 1972, J.L. Alcorn 20338 (BRIP 10965, holotype of D. chloridis, includes the ex-type
culture), (IMI 181067 isotype).

Notes: Bipolaris chloridis is sister to B. clavata (Fig. 1), which differs by the ITS and fef1a loci
(Table 1). Cochliobolus chloridis was described from paired cultures of isolates collected from
Kalbar, Queensland, Australia. Alcorn (1983b) transferred D. chloridis to B. chloridis as it had
a sexual morph that had been described in Cochliobolus. Bipolaris chloridis causes leaf spot or
leaf blight on C. gayana worldwide (Sivanesan 1987).

Bipolaris clavata Alcorn, Mycotaxon 15: 15. 1982.

Specimen examined: AUSTRALIA, Queensland, Goondiwindi, from leafspot on Dactyloctenium
radulans, 12 May 1977, J.L. Alcorn 77144c (BRIP 12530 holotype, includes the ex-type
culture), (IMI 264352 isotype, includes the ex-type culture).

Note: Bipolaris clavata is known only from the type specimen on D. radulans in Queensland,
Australia.

Bipolaris coffeana Sivan., Trans. Br. mycol. Soc. 84: 404. 1985.

Specimen examined: KENYA, from leaf of Coffea arabica, 31 Oct. 1969, I. Furtado 23 (IMI
144159 holotype), (ex-isotype culture BRIP 14845).

Note: Bipolaris coffeana is known only from the type specimen on Coffea arabica.
Bipolaris crotonis Sivan., Trans. Br. mycol. Soc. 84: 404. 1985.
= Bipolaris eleusines Alcorn & R.G. Shivas, in Alcorn, Mycotaxon 39: 369. 1990 (nom.

inval. Art. 53.1), non Bipolaris eleusines J.H. Peng & J.Y. Lu [as ‘eleusinea’], Journal of
Nanjing Agricultural University 12(4): 47. 1989.
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= Cochliobolus eleusines Alcorn, Mycotaxon 39: 367. 1990.

Specimens examined: AUSTRALIA, Queensland, Goldsborough, from leaf spot of Eleusine
indica, 1 May 1987, J.L. Alcorn 8786a (BRIP 15875, holotype of B. eleusines, includes the
ex-type culture), (IMI 335212 isotype), (ex-isotype culture CBS 274.91). SAMOA, from leaf
of Croton sp., 21 Nov. 1977, G.F. Laundon LEV12488 (IMI 223682, holotype of B. crotonis),
(ex-isotype culture BRIP 14838).

Notes: The phylogenetic tree inferred from the combined multilocus alignment shows that the
ex-isotype isolate of B. crotonis (BRIP 14838) and the ex-type isolate of B. eleusines (BRIP
15875) (Alcorn 1990) are identical (Fig. 1). The morphology of these two taxa as given in
the original descriptions are also very similar as both have slightly protruding and truncated
hila, and similar conidial measurements, 80—-110 x 18-29 pm for B. crotonis compared with
75-170 x 15-26 um for B. eleusines. However the name B. eleusines Alcorn & R.G. Shivas in
Alcorn (1990) is illegitimate as the epithet is a homonym of B. eleusines J.H. Peng & J.Y. Lu
(as ‘eleusinea’), which was isolated from a leaf of Eleusine indica collected Jiangsu Province,
China, and described one year earlier (Peng and Lu 1989). Bipolaris crotonis is sister to B.
pluriseptata (Fig. 1), which differs by the ITS, gapdh, LSU and teflo loci (Table 1).

Bipolaris gossypina Sivan., Trans. Br. mycol. Soc. 84: 404. 1985.

Specimen examined: KENYA, from seed of Gossypium sp., M.H. White (IMI 123377 holotype),
(ex-isotype culture BRIP 14840).

Note: Bipolaris gossypina is known only from the type specimen on Gossypium sp.

Bipolaris heliconiae Alcorn, Aust. Syst. Bot. 9: 8§14. 1996.
= Cochliobolus heliconiae Alcorn, Aust. Syst. Bot. 9: 813. 1996.

Specimens examined: AUSTRALIA, Northern Territory, Batchelor, from inflorescence of
Heliconia psittacorum cv. ‘Parakeet’, July 1990, J.D. Duff NT17605 (BRIP 17186, holotype of
B. heliconiae, includes the ex-type culture); same location, from leaf of Heliconia chartacea,
July 1990, J.D. Duff NT17610 (ex-paratype culture BRIP 17189.

Notes: Bipolaris heliconiae is sister to B. maydis (Fig. 1), which differs by the ITS, gapdh
and teflo loci (Table 1). Bipolaris heliconiae has only been reported on species of Heliconia
in Australia (Alcorn 1996). Single-spored isolates in paired cultures from the ex-holotype
culture of B. heliconiae produced a sexual morph described as Cochliobolus heliconiae
(Alcorn 1996).

Bipolaris luttrellii Alcorn, Mycotaxon 39: 378. 1990.
= Cochliobolus luttrellii Alcorn, Mycotaxon 39: 377. 1990.

Specimen examined: AUSTRALIA, Northern Territory, Manbulloo, from leaf of Dactyloctenium

aegyptium, 31 Mar. 1985, R.A. Peterson (BRIP 14643, holotype of B. luttrelii, includes the ex-
type culture), (IMI 335216 isotype).
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Notes: Bipolaris luttrellii is sister to B. peregianensis (Fig. 1), which differs by the ITS, gapdh,
LSU and fefla loci (Table 1). Bipolaris luttrelii is only known from the type specimen on D.
aegyptium. A single-spored isolate from the ex-holotype culture of B. [uttrellii was used to
produce a sexual morph described as Cochliobolus luttrellii (Alcorn 1996).

Bipolaris maydis (Y. Nisik. & C. Miyake) Shoemaker, Can. J. Bot. 37: 882. 1959.
Basionym: Helminthosporium maydis Y. Nisik & C. Miyake, Sci. Res. Alumni Assoc. Mirioka
agric. Col. Japan 3: 46. 1926.

= Drechslera maydis (Y. Nisik. & C. Miyake) Subram. & Jain, Curr. Sci. 35: 354. 1966.

= Ophiobolus heterostrophus Drechsler, J. agric. Res. 31: 723. 1925.

= Cochliobolus heterostrophus (Drechsler) Drechsler, Phytopathology 24: 973. 1934.

Specimen examined: JAPAN, from Zea mays, Nov. 1929, Y. Nisikado (Helminthosporium
maydis ex-paratype culture CBS 136.29).

Notes: Bipolaris maydis is an economically important fungal pathogen that causes southern
leaf blight of maize around the world (Sivanesan 1987). Bipolaris maydis and Cochliobolus
heterostrophus are the asexual and sexual morphs, as well as the generic types, respectively, of
the same biological species (Manamgoda et al. 2012b).

Bipolaris panici-miliacei (Y. Nisik.) Shoemaker, Can. J. Bot. 37: 884. 1959.
Basionym: Helminthosporium panici-miliacei Y. Nisik., Ber. Ohara Inst. Landwirt. Fursch. 4:
120. 1929.

= Drechslera panici-miliacei (Y. Nisik.) Subram. & B.L. Jain, Curr. Sci. 35: 354. 1966.

Specimen examined: JAPAN, Kurashiki, from Panicum miliaceum, Nov. 1929, Y. Nisikado (ex-
syntype culture CBS 199.29), (ex-isosyntype culture BRIP 12282).

Notes: Bipolaris panici-miliacei is a leaf pathogen on P. miliaceum. It has also been recorded on
other grasses in Australia, India and Papua New Guinea (Sivanesan 1987).

Bipolaris pluriseptata (Khetarpal, R. Nath & S.P. Lal) Alcorn, Mycotaxon 41: 329. 1991.
Basionym: Drechslera pluriseptata Khetarpal, R. Nath & S.P. Lal, Indian Phytopath. 37: 320.
1984.

Specimen examined: ZAMBIA, from seeds of Eleusine coracana, Feb. 1981, R.K. Khetarpal,
S.P. Lal and R. Nath (ITCC 3131 holotype), (IMI 259810 isotype, includes the extype culture),
(ex-isotype culture BRIP 14839).

Notes: Sivanesan (1987) considered that B. curvispora and B. melinidis were synonyms of B.
pluriseptata. Alcorn (1991) maintained B. pluriseptata as a distinct species by comparison of
the cultures of each species grown under identical conditions. The phylogenetic tree inferred
from the combined multilocus alignment supports B. pluriseptata as a distinct taxon (Fig. 1).

Bipolaris salviniae (J.J. Muchovej) Alcorn, Mycotaxon 41: 331. 1991.

Basionym: Drechslera salviniae J.J. Muchovej, Trans. Br. mycol. Soc. 72: 331. 1979.
= Drechslera curvispora El Shafie, Trans. Br. mycol. Soc. 78: 545. 1982.
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= Bipolaris curvispora (El Shafie) Sivan., Mycol. Pap. 158: 47. 1987.
= Cochliobolus melinidis Alcorn, Mycotaxon 15: 5. 1982.
= Bipolaris melinidis Alcorn, Mycotaxon 15: 7. 1982.

Specimens examined: AUSTRALIA, Queensland, Kuranda, from leaf spot of Melinis
minutiflora, 04 Jul. 1977, K.G. Pegg (culture BRIP 12312); Maleny (near Mary Cairncross
Park), from leaf spot of Melinis minutiflora, 24 May 1979, J.L. Alcorn 7965, (BRIP 12898,
holotype of B. melinidis, includes the ex-type culture), (IMI 264354 isotype, includes the ex-
isotype culture); Julatten, 20 Jul. 1987, J.L. Alcorn 8795 (BRIP 15895, holotype of C. melinidis,
includes the ex-type culture). BRAZIL, Minas Gerais, Vicosa, from Salvinia auriculata, 16
May 1978, J.J. Muchovej, (IMI 228224, lectotype of D. salviniae, includes the ex-type culture),
(ex-isolectotype culture BRIP 16571). PARAGUAY, from seed of Triticum aestivum, Aug.
1982, A.E. El Shafie (IMI 253986, isotype of D. curvispora), (ex-isotype culture BRIP 13795).

Notes: Alcorn (1991) showed that the ex-type cultures of D. curvispora (BRIP 13795) and
D. salviniae (BRIP 16571) formed fertile ascomata when paired with a reference isolate of
B. melinidis (BRIP 12312) as well as with single-ascospore isolates of C. melinidis (BRIP
15931). Alcorn (1991) proposed a new combination based on the earliest epithet, D. salviniae.
This combination was not recognised in the recent taxonomic re-evaluation of Bipolaris and
Curvularia (Manamgoda et al. 2012b). The multilocus phylogenetic analysis of the ex-type
cultures of B. melinidis, C. melinidis, D. curvispora, and D. salviniae confirm the synonymies
proposed by Alcorn (1991) (Fig. 1).

Bipolaris secalis Sisterna, P1. Path. 38:98. 1989.

Specimen examined: ARGENTINA, Buenos Aires, Los Hornos, from seed of Secale cereale,
Aug. 1984, M.N. Sisterna, (IMI 286591, lectotype designated here, MBT177161), (BRIP 14453
isolectotype, includes the ex-type culture).

Notes: Sisterna (1989) designated the holotype as “IMI1 286591 = BRIP 14453.” As the specimens
are in different herbaria, the name may be considered nom. inval. by virtue of Article 40.2,
Melbourne Code, which states that a type specimen must refer to a single specimen. Although,
both specimens are part of the same collection, for taxonomic clarity, IMI 286591 is designated
as the lectotype for B. secalis, and BRIP 14453 becomes the isolectotype. Bipolaris secalis is
sister fo B. zeae (Fig. 1), which differs by the gapdh and tefla loci (Table 1).

Bipolaris zeae Sivan., Trans. Br. mycol. Soc. 84: 418. 1985.

Specimen examined: AUSTRALIA, Queensland, Kingaroy, from leaf spot of Zea mays, 18 Jan.
1973, P.E. Mayers 20424, IMI 202084 (paratype), BRIP 11512 (ex-isoparatype).

Notes: Bipolaris zeae was first isolated from Zea mays in Australia, but has since been recorded on
multiple grasses worldwide (Sivanesan 1987). A sexual morph was later described as Cochliobolus
zeae, from paired cultures isolated from Pennisetum clandestinum in central Taiwan (Chang
1992). The synonymy of B. zeae and C. zeae cannot be assumed at this point as the mating studies
were not undertaken with the ex-type culture or a reference isolate of B. zeae. The type culture of
C. zeae needs to be examined to determine whether it represents the same species.
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Curvularia Boedijn, Bull. Jard. bot. Buitenz, 3 Sér. 13(1): 123. 1933.
= Curvusporium Corbetta [as ‘Curvosporium’], Riso 12(3): 28, 30. 1963.
= Malustela Bat. & J.A. Lima, Publicagoes Inst. Micol. Recife 263: 5. 1960.

Type species: Curvularia lunata (Wakker) Boedijn, Bull. Jard. bot. Buitenz, 3 Sér. 13(1): 127.
1933.

Descriptions: Ellis (1971), Alcorn (1983a), Sivanesan (1987), Manamgoda et al. (2012b).

Notes: Although several species have recently been transferred from Bipolaris to Curvularia
(Manamgoda et al. 2012b), both genera can still be recognised morphologically. As observed
by Madrid et al. (2014), Bipolaris the conidia are fusiform, straight to slightly curved, smooth
and typically long, sometimes up to 225 um, whereas in Curvularia the conidia tend to be
shorter (usually less than 130 pum) and more variable in shape and ornamentation, appearing
clavate, ellipsoid, subcylindrical or more or less curved at a swollen intermediate cell, smooth
to strongly verrucose. A strongly protruding hilum is produced by some species of Curvularia
(e.g. C. harveyi and C. heteropogonicola) but has not been reported in Bipolaris. Nine species
of Bipolaris are transferred to Curvularia on the basis of a combined multilocus phylogenetic
analysis, and are listed below as novel combinations. A further eight species of Curvularia are
herein validated by analysis of ex-type or reference isolates (Fig. 1)

Curvularia akaiiensis Sivan., Mycol. Pap. 158: 110. 1987.
= Cochliobolus akaiiensis Sivan., Mycol. Pap. 158: 110. 1987.

Specimen examined. INDIA, Maharashtra, Dhulia, 10 Dec. 1972, M.S. Rane J90 (IMI 172167
holotype), (ex-isotype culture BRIP 16080).

Notes: Curvularia akaiiensis is sister to C. bothriochloae (Fig. 1), which differs by the ITS,
gapdh and tefla loci (Table 1). Both the asexual and sexual morphs of this species were
described from the same specimen.

Curvularia australis (Alcorn) Y.P. Tan & R.G. Shivas, comb. nov. — MycoBank MB807749.
Fig. 3a
Basionym: Bipolaris australis Alcorn, Mycotaxon 15: 38. 1982.

Specimen examined: AUSTRALIA, Queensland, Goondiwindi, from inflorescence of
Sporobolus caroli, 12 May 1977, J.L. Alcorn 77134 (BRIP 12521 holotype, includes the ex-type
culture), (IMI 261917 isotype, includes the ex-type culture), (ex-isotype culture CBS 309.90).

Notes: This species is transferred from Bipolaris to Curvularia as a result of the phylogenetic
analysis (Fig. 1). Curvularia australis is mostly found as a pathogen on the inflorescences of
Sporobolus spp., and has only been recorded in Australia (Sivanesan 1987). Curvularia australis
is sister to C. ovariicola (Fig. 1), which differs by the ITS, gapdh and tefia loci (Table 1).
Curvularia ovariicola infects inflorescences of Eragrostis spp., and is morphologically similar
to C. australis. However, C. australis has narrower conidia (8.5-15 um) than C. ovariicola
(12.5-20 um) (Alcorn 1982, Sivanesan 1987).
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Fig. 3. Conidia and conidiophores of Curvularia species transferred from Bipolaris in this paper. a
Curvularia australis (holotype BRIP 12521), b Curvularia dactylotenii (holotype, BRIP 12846), ¢—d
Curvularia crustacea (epitype, BRIP 13524), e—f Curvularia neergaardii (isotype, BRIP 12919). Scale
bars = 10 pm.

Curvularia bannonii Morgan-Jones, Mycotaxon 33: 407. 1988.

Specimen examined: USA, Louisiana, Ruston, from leaf of Jacquemontia tamnifolia, Jun. 1986,
J.S. Bannon (AUAM 2602 holotype), (ex-isotype culture BRIP 16732).
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Notes: Curvularia bannonii is sister to C. graminicola (Fig. 1), which differs by the ITS, gapdh,
LSU and tefla loci (Table 1). Curvularia bannonii is known only from the type specimen on J.
tamnifolia.

Curvularia bothriochloae Sivan., Alcorn & R.G. Shivas, Aust. Syst. Bot. 16: 275. 2003.

Specimen examined: AUSTRALIA, Queensland, Goondiwindi, from leaf of Bothriochloa
baldhii, 12 May 1977, J.L. Alcorn 77135 (BRIP 12522 holotype, includes the ex-type culture).

Note: Curvularia bothriochloae is known only from the type specimen on B. baldhii.

Curvularia crustacea (Henn.) Y.P. Tan & R.G. Shivas, comb. nov. — MycoBank MB807750.
Figs. 3c—d
Basionym: Helminthosporium crustaceum Henn., Hedwigia 41: 147. 1902.

= Bipolaris crustacea (Henn.) Alcorn, Mycotaxon 15: 27. 1982.

Type specimen: INDONESIA, Java, Bogor (formerly Buitenzorg), from Sporobolus sp., 1901,
Zimmermann, (BRIP 12435 isotype).

Specimen examined: INDONESIA, Java, Yogyakarta, from inflorescence of Sporobolus sp., 25
Feb. 1982, J.K. Somodiryo 8207, (BRIP 13524, epitype designated here, MBT177162, includes
the ex-type culture).

Notes: An ex-type culture of B. crustaceae does not exist. For this reason it is necessary to
designate an epitype, with a living culture and DNA sequence data, to stabilise its taxonomy and
aid in future phylogenetic studies. Ideally, an epitype should be derived from the same locality
and host as the holotype (Cannon et al. 2012). A search of culture collection databases (ATCC,
BRIP, CBS, IMI) found isolate BRIP 13524 as the most suitable candidate for epitypification of
B. crustaceae, as it shared a similar host (Sporobolus sp.) and locality (central Java, Indonesia)
to those of the holotype. The ex-epitype culture was sequenced and the phylogenetic analysis
supported the transfer of B. crustaceae to Curvularia (Fig. 1).

Curvularia dactyloctenii (Alcorn) Y.P. Tan & R.G. Shivas, comb. nov. — MycoBank MB807751.
Fig. 3b
Basionym: Bipolaris dactyloctenii Alcorn, Mycotaxon 15: 3. 1982.

= Cochliobolus dactyloctenii Alcorn, Mycotaxon 15: 3. 1982.

Specimen examined: AUSTRALIA, Queensland, Goondiwindi, from leaf of Dactyloctenium
radulans, 15 Mar. 1979, J.L. Alcorn 7909 (BRIP 12846, holotype of B. dactyloctenii, includes
the ex-type culture), (isotype IMI 264353).

Notes: A single-spored isolate from the ex-holotype culture of B. dactyloctenii (BRIP 12846)
was used in paired cultures to produce the sexual morph that was named Cochiobolus
dactyloctenii (Alcorn 1996). This species is transferred from Bipolaris to Curvularia based on
the phylogenetic analysis (Fig. 1). Curvularia dactyloctenii infects the leaves of D. radulans and
the seeds of Melinis sp. (Sivanesan 1987). Curvularia dactyloctenii is sister to C. hawaiiensis
(Fig. 1), which differs by the gapdh and tefla loci (Table 1).
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Curvularia harveyi Shipton, Trans. Br. mycol. Soc. 49: 523. 1966.

Specimen examined: AUSTRALIA, Western Australia, Goomalling, from seed of Triticum sp.,
16 Jul. 1965 (IMI 114257 holotype, includes the ex-type culture), (ex-isotype culture BRIP
57412).

Notes: Curvularia harveyi is sister to C. richardiae (Fig. 1), which differs by the ITS, gapdh
and teflo loci (Table 1). Curvularia harveyi has only been reported on 7riticum in Australia
(Shipton 1966), and on Zea mays in Bangladesh (Shamsi and Yasmin 2007).

Curvularia hawaiiensis (Bugnic.) Manamgoda, L. Cai & K.D. Hyde, Fungal Diversity 56: 141.
2012.
Basionym: Drechslera hawaiiensis Bugnic. ex M.B. Ellis, Dematiaceous Hyphomycetes (Kew):
415.1971.
= Helminthosporium hawaiiensis Bugnic., [as ‘hawaiiense’] Rev. gén. Bot. 62: 238. 1955
(nom. inval., Art. 39.1 Melbourne Code).
= Drechslera hawaiiensis Bugnic. ex Subram. & B.L. Jain [as ‘hawaiiense’], Curr. Sci. 35:
354. 1966 (nom. inval., Art. 39.1).
= Bipolaris hawaiiensis (M.B. Ellis) J.Y. Uchida & Aragaki, Phytopathology 69: 1115. 1979
= Bipolaris hawaiiensis (M.B. Ellis) Tsuda & Ueyama, Mycologia 73: 89. 1981 (nom. inval.
Art. 53).
= Cochliobolus hawaiiensis Alcorn, Trans. Br. mycol. Soc. 70: 64. 1978.
= Pseudocochliobolus hawaiiensis (Alcorn) Tsuda & Ueyama, Mycologia 73: 92. 1981.

Specimen examined: USA, Hawaii, Honolulu, from Oryza sativa, Apr. 1950, F. Bugnicourt
(IMI 53993, lectotype of D. hawaiiensis), (ex-isolectotype culture BRIP 11987).

Notes: This taxon was transferred into Curvularia on the basis of a combined phylogenetic
analysis of ITS and gapdh sequences of an ex-syntype of H. hawaiiensis (CBS 173.57)
collected by F. Bugnicourt from Oryza sativa in Vietnam (Manamgoda et al. 2012b). Ellis
(1971) designated a lectotype (IMI 53993) when adding a Latin diagnosis for H. hawaiiensis.
For our multilocus phylogenetic analysis, we elected to use the ex-isolectotype culture (BRIP
11987). Curvularia hawaiiensis has been found worldwide on many Poaceae hosts, but also on
a wide variety of other plant hosts and non-plant substrates, e.g. air, soil, (Sivanesan 1987). It is
also a known agent of opportunistic infections in humans (McGinnis et al. 1986).

Curvularia heteropogonicola (Sivan.) Alcorn, Mycotaxon 41: 332. 1991.
Basionym: Exserohilum heteropogonicola Sivan., Trans. Br. mycol. Soc. 83: 321. 1984.

Specimen examined: INDIA, West Himalaya, Uttaranchal, Pithoragarh, from leaf of Heteropogon
contortus, 27 Jun. 1982, R.S. Adhikari (IMI 268958 holotype, includes the ex-type culture), (ex-
isotype culture BRIP 14579).

Notes: Goh et al. (1998) used restriction analysis of the ITS/28S regions derived from the ex-
type culture (IMI 268958) to support Alcorn’s (1991) transfer of this species from Exserohilum
into Curvularia. In the phylogenetic analysis, C. heteropogonicola is sister to C. tripogonis
(Fig. 1), which differs by the ITS, gapdh, LSU and tefla loci (Table 1). Additionally, C.
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heteropogonicola has a distinctly protuberant hilum compared to C. tripogonis, which has a
flush hilum.

Curvularia homomorpha (Luttr. & Rogerson) Y.P. Tan & R.G. Shivas, comb. nov. — MycoBank
MB807752.
Basionym: Helminthosporium homomorphus Luttr. & Rogerson [as ‘homomorphus’],
Mycologia 51: 195. 1959.
= Cochliobolus homomorphus Luttr. & Rogerson, Mycologia 51: 195. 1959.
= Drechslera homomorpha (Luttr. & Rogerson) Sivan., Bitunicate Ascomycetes and their
Anamorphs (Vaduz): 375. 1984.
= Bipolaris homomorpha (Luttr. & Rogerson) Subram. ex Alcorn [as ‘homomorphus’],
Mycotaxon 16: 374. 1983.

Specimen examined: USA, Kansas, Kansas State College, from air, C.7. Rogerson B227-14, 11
Jun. 1957, (ex-holotype culture CBS 156.60), (ex-isotype culture BRIP 59391).

Notes: In a combined ITS and gapdh phylogeny by Berbee et al. (1999), the ex-type culture of
Cochliobolus homomorphus did not cluster either with Bipolaris or Curvularia. Manamgoda et
al. (2012b) excluded this taxon from their analyses but remarked that its conidial morphology is
similar to Curvularia. The phylogenetic tree inferred from our combined multilocus alignment
showed that B. homomorpha resided in the Curvularia clade (Fig. 1). Both the asexual and
sexual morphs of Curvularia homomopha were described from the same specimen (Luttrell
and Rogerson 1959).

Curvularia neergaardii (Danquah) Y.P. Tan & R.G. Shivas, comb. nov. — MycoBank
MB&807753. Figs. 3e—f
Basionym: Drechslera neergaardii Danquah, Trans. Br. mycol. Soc. 64: 545. 1975.

= Bipolaris neergaardii (Danquah) Alcorn, Mycotaxon 17: 68. 1983.

= Cochliobolus neergaardii Alcorn, Mycotaxon 39: 385. 1990.

Specimen examined: GHANA, from seed of Oryza sativa, 1973, O.A. Danquah (IMI 174949
holotype), (D. neergaardii ex-holotype culture DAOM 15428), (ex-isotype culture BRIP
12919).

Notes: Alcorn (1990) showed that single-spored isolates paired in cultures from the ex-holotype
culture of D. neergaardii (DAOM 154282) produced a sexual morph, which he described as
Cochliobolus neergaardii (Alcorn 1990). This species is transferred from Bipolaris to Curvularia
based on the phylogenetic analysis (Fig. 1). Curvularia neergaardii is sister to C. ellisii (Fig. 1),
which differs by the gapdh and fefla loci (Table 1).

Curvularia nicotiae (Mouch.) Y.P. Tan & R.G. Shivas, comb. nov. — MycoBank MB807754.
Fig. 4e
Basionym: Drechslera nicotiae Mouch., Revue Mycol., Paris 38: 108. 1973.

= Bipolaris nicotiae (Mouch.) Alcorn, Mycotaxon 17: 68. 1983.

Specimen examined: ALGERIA, Tamanrasset, Tassili Plateau, from soil, 1974, J. Nicot PC2230),
(ex-isotype cultures CBS 655.74, BRIP 11983).
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Fig. 4. Conidia and conidiophores of Curvularia species transferred from Bipolaris in this paper.
a-b Curvularia ryleyi (holotype, BRIP 12554), ¢ Curvularia portulacea (isotype, BRIP 14541), d,

Curvularia tropicalis (isotype, BRIP 14834), e Curvularia nicotiae (isotype, BRIP 11983). Scale bars
=10 pm.
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Notes: This species is transferred from Bipolaris to Curvularia based on the phylogenetic
analysis (Fig. 1). Curvularia nicotiae is sister to C. portulacae (Fig. 1), which differs by the
ITS, gapdh, LSU and tefla loci (Table 1). These two species differ in that C. nicotiae has
broadly ellipsoidal conidia up to 50 um long (Fig. 4¢), compared to C. portulaceae, that has
cylindrical conidia up to 180 um long (Fig. 4c).

Curvularia papendorfii Aa, Persoonia 5(1): 45. 1967.
= Drechslera papendorfii (Aa) M.B. Ellis, Dematiaceous Hyphomycetes (Kew): 413. 1971.
= Bipolaris papendorfii (Aa) Alcorn, Mycotaxon 17: 68. 1983.
= Curvularia siddiquii S.I. Ahmed & M. Qureshi [as ‘siddiqui’], Pakist. J. scient. ind. Res.
3:177. 1960 (nom. inval., Art. 39.1 Melbourne Code).

Specimen examined: SOUTH AFRICA, Transvaal, Potchefstroom, from leaf litter composed
of Acacia karroo, 1967, M.C. Papendorf Aal021 (D. papendorfii ex-holotype culture CBS
308.67), (ex-isotype culture BRIP 57608).

Note: Curvularia papendorfii is recognised as a distinct species on the basis of the phylogenetic
analysis (Fig. 1), despite having been transferred to Drechslera and Bipolaris.

Curvularia portulacae (Rader) Y.P. Tan & R.G. Shivas, comb. nov. — MycoBank MB807755.
Fig. 4c
Basionym: Helminthosporium portulacae Rader, Mycologia 40: 344. 1948.
= Drechslera portulacae (Rader) de Hoog & Oorschot, Proc. K. Ned. Akad. Wet., Ser. C,
Biol. Med. Sci. 86: 59. 1983.
= Bipolaris portulacae (Rader) Strider & Chi, Plant Diseases 68: 826. 1984 (nom. inval. Art.
35.2 Melbourne Code).
= Bipolaris portulacae (Rader) Alcorn, Mycotaxon 41: 330. 1991.
= Drechslera helianthi Hulea, Proc. 6th Int. Sunflower Conf. (Bucharest): 665. 1974 1975
(nom. inval., Art. 39.1 Melbourne Code).
= Drechslera helianthi lliescu, Hulea & Bunescu, Proc. 6™ Internat. Sunflower Conf. (1974)
Bucharest, p. 665. 1975 (nom. inval., Art. 39.1 Melbourne Code).
= Bipolaris novae-zelandiae Sivan., Trans. Br. mycol. Soc. 84: 406. 1985.

Specimens examined: New Zealand, Nelson, Mouteka, from soil, 25 Oct. 1977, K.N. Brunette
12347 (IMI 222864, holotype of B. novae-zelandiae, includes the ex-type culture), (BRIP 14837
isotype, includes ex-type culture). USA, New York, Watkins Glen, from Portulaca oleracea,
1947, W.E. Rader (H. portulacae ex-isotype cultures CBS 239.48, BRIP 14541).

Notes: Alcorn (1991) synonymised B. novae-zelandiae with B. portulacae based on conidial
morphology. The phylogenetic tree inferred from the combined multilocus sequence
alignment showed that the two ex-isotype isolates of H. portulacae (BRIP 14541) and B.
novae-zealandiae (BRIP 14837) are identical, thereby supporting Alcorn’s synonymy (Fig.
1). This species is transferred from Bipolaris to Curvularia based on multilocus phylogenetic
analysis (Fig. 1).

Curvularia richardiae Alcorn, Trans. Br. mycol. Soc. 56: 155. 1971.
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Specimen examined: AUSTRALIA, Queensland, Cleveland, Redlands Horticulture Research
Station, from leaf of Richardia brasiliensis, 02 May 1969, J.L. Alcorn 18390-2 (DAR
19772, lectotype designated here, MBT177193, includes the ex-type culture), (IMI 150233
isolectotype), (ex-isolectotype culture BRIP 4371).

Notes: Alcorn (1971) referred to both DAR 19772 and IMI 150233 as the type specimens, but
did not specify which one was the holotype. As the specimens are in different herbaria, the
name may be considered nom. inval. by virtue of Article 40.3, Melbourne Code, which states a
type specimen must refer to a single specimen. Although, both specimens are part of the same
collection, for taxonomic clarity we designate DAR 19772 as the lectotype for C. richardiae,
and IMI 150233 and BRIP 4371 as the isolectotypes.

Curvularia ryleyi (Alcorn) Y.P. Tan & R.G. Shivas, comb. et nom. nov. — MycoBank
MB807756. Figs. 4a—b
Replaced synonym: Bipolaris cylindrica Alcorn, Mycotaxon 15: 42. 1982.

# Curvularia cylindrica Meng Zhang & T.Y. Zhang, Mycosystema 24(4): [473] 2005.

Etymology: Named after Dr. Malcolm J. Ryley, an eminent Australian plant pathologist and
mycologist.

Specimens examined: AUSTRALIA, New South Wales, Yetman, from inflorescence of
Sporobolus creber, 12 May 1977, J.L. Alcorn 77154 (BRIP 12554 holotype, includes the ex-
type culture), (IMI 261918 isotype, includes the ex-type culture); Queensland, Warrill View,
from inflorescence of Sporobolus elongatus, 11 May 1978, M.J. Ryley 7824 (culture BRIP
12637).

Notes: Bipolaris cylindrica is transferred from Bipolaris to Curvularia based on phylogenetic
analysis (Fig. 1). A nom. nov. is introduced to avoid creating a homonym with C. cylindrica
Meng Zhang & T.Y. Zhang, which was isolated from the leaves of A//ium fistulosum, in Xinjiang,
China (Zhang and Zhang 2005). Curvularia ryleyi has longer conidiophores (up to 350 pm) and
larger conidia (on the host, 45—-100 um x 10—17.5 um) than C. cylindrica (conidiophores less
than 120 um long, conidia 30—49 um x 7.5—12 pum). Curvularia ryleyi is sister to C. crustacea
(Fig. 1), which differs by the ITS, LSU and fefla loci (Table 1).

Curvularia sorghina R.G. Shivas & Sivan., Trans. Br. mycol. Soc. 88: 269. 1987.

Specimen examined: AUSTRALIA, Western Australia, Kununurra, from leaf of Sorghum
bicolor, Apr. 1984, R.G. Shivas WA 2279 (IMI 289262 holotype, includes the ex-type culture),
(ex-isotype culture BRIP 15900).

Notes: In the phylogenetic analysis, C. sorghina is sister to C. lunata (Fig. 1), which differs by
the gapdh and teflo loci (Table 1). Curvularia sorghina has also been identified by morphology
on sorghum in Canada (Funnell-Harris et al. 2013).

Curvularia tropicalis (Sivan.) Y.P. Tan & R.G. Shivas, comb. nov. — MycoBank MB807757.

Figs. 4d, f
Basionym: Bipolaris tropicalis Sivan., Trans. Br. mycol. Soc. 84: 411. 1985.
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Specimen examined: INDIA, Karnataka, Central Coffee Research Station, from leaf of Coffea
arabica, 6 Feb. 1979, B.N. Muthappa 39 (IMI 235542 holotype, includes the ex-type culture),
(ex-isotype culture BRIP 14834).

Notes: This species is transferred from Bipolaris to Curvularia based on the phylogenetic
analysis (Fig. 1). Curvularia tropicalis is known only from the type specimen on Coffea arabica
in India (Sivanesan 1985).

DISCUSSION

It has long been recognised that species of Bipolaris and Curvularia are morphologically similar
(Ellis 1971, Luttrell 1979, Sivanesan 1987, Goh et al. 1998, Manamgoda et al. 2012b). The first
to suggest that Bipolaris and Curvularia should be synonymised were von Arx and Luttrell
(1979). Differentiation between Bipolaris and Curvularia has been predominantly based on
conidial morphology (Ellis 1971, Sivanesan 1987, Manamgoda et al. 2012b), particularly
their size, number of septa, degree of curvature, presence of a flush or protuberant conidial
hilum, and the presence or absence of a disproportionately swollen intermediate cell. Generic
assignment based on these characters is often difficult (if not impossible) as the conidia of
many Bipolaris and Curvularia species share similar characteristics. Analysis of Bipolaris and
Curvularia species using DNA gene sequences (Berbee et al. 1999, Manamgoda et al. 2011,
2012b) and restriction fragment length polymorphism (Goh et al. 1998) has also raised doubts
as to the utility of conidial morphology in differentiating the two genera.

Previous studies have shown that phylogenetic analyses based on ITS and gapdh sequences,
either individually or in combination, provide sufficient resolution for delimiting taxa within
Bipolaris and Curvularia (Berbee et al. 1999, Manamgoda et al. 2012b). However, a four-
loci dataset, including ITS, gapdh, LSU and tefla., provided a better resolution at the terminal
clades, and are able to provide stronger support for the description of new species (Manamgoda
et al. 2012a, b). We used a similar combined multilocus dataset and phylogenetic analyses to
resolve the taxonomic status of 34 species of Bipolaris and Curvularia, resulting in the transfer
of nine species from Bipolaris to Curvularia, the synonymy of four species, and fixing the
generic application of a further 20 species names.

The generic placement of B. homomorpha has been considered problematic based on morphology
(Berbee et al. 1999). It has been excluded from previous phylogenetic analyses because of this
ambiguity (Berbee et al. 1999, Manamgoda et al. 2012b). The combined multilocus analyses in
our study showed B. homomorpha clustered in the Curvularia clade, and taxonomic uncertainty
is resolved with its transfer.

A new monotypic genus, Johnalcornia, has been introduced to accommodate B. aberrans, which
is characterised by forming the second conidial septum in the apical cell. The combined multilocus
phylogenetic analysis showed that J. aberrans did not belong to either the Bipolaris or Curvularia,
as currently circumscribed (Manamgoda et al. 2012b), although all three genera are morphologically
similar in that they have conidiophores that are often thick-walled and geniculate, with conidiogenous
cells that have thickened scars, and distoseptate conidia. Johnalcornia aberrans is phylogenetically
close to the recently described monotypic genus, Porocercospora (Amaradasa et al. 2014) that was
established to accommodate Cercospora seminalis (on seeds of Buchloé dactyloides, USA).
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Further studies are required to phylogenetically resolve remaining taxa into either Bipolaris or
Curvularia. This work should be based upon ex-type or epitype cultures and the application
of multilocus analyses. We recommend that future descriptions of new taxon be accompanied
by at least sequence data for the ITS region, which is the official fungal barcode (Schoch et al.
2012). Additional sequences from other loci (e.g. gapdh, LSU and tefla) are valuable for in
silico identification and analyses. We are currently using this approach to study the phylogenetic
relationships of 100 unidentified isolates of Bipolaris and Curvularia maintained in the BRIP
collection (unpubl. data).
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Chapter 4

Abstract

Several unidentified specimens of Bipolaris deposited in the Queensland Plant Pathology
Herbarium (BRIP) that were previously recognised by Dr. John L. Alcorn as taxonomically
interesting were re-examined. The morphology of conidia and conidiophores, as well as
phylogenetic inference from the analyses of three loci (ITS, gapdh and tefla) supported the
classification of eight novel Bipolaris species, which were originally isolated from leaf spots
on grasses (Poaceae).

INTRODUCTION

The genus Bipolaris (Shoemaker 1959) has traditionally been treated as part of the
helminthosporioid complex, so-called because the conidia and conidiophores morphologically
resemble species of Helminthosporium (Link 1809). Bipolaris was originally established to
accommodate species that formed fusoid conidia with two or more septa that exhibited bipolar

germination, but also included some species with curved conidia and hyaline apical cells
(Shoemaker 1959).

Until the late 1990s, the classification and identification of Bipolaris species was based entirely
on morphological characteristics (Sivanesan 1987). This proved problematic, as conidia and
conidiophores are highly variable within species. In recent years, the generic limits for the
helminthosporioid fungi (including Curvularia, Drechslera, Exserohilum, Johnalcornia and
Porocercospora) have been more clearly defined with the aid of molecular sequence data
(Ahmadpour et al. 2012, da Cunha et al. 2012, Madrid et al. 2014, Manamgoda et al. 2012, 2014,
Tan et al. 2014). Subsequent analyses of DNA sequence data have established the synonymy
between Bipolaris (typified by B. maydis) and its sexual morph, Cochliobolus Drechsler (1934)
(typified by C. heterostrophus) (Manamgoda et al. 2012, Rossman et al. 2013). The rules of
nomenclature for fungi only allow one name for each genus, instead of different names for
different morphs in the fungal life cycle (McNeill et al. 2012). Although Cochliobolus is the
older name, Bipolaris is more frequently used by plant pathologists in disease reports and
widely applied in the taxonomic literature. The name Bipolaris was subsequently proposed for
conservation against the earlier name Cochliobolus (Rossman et al. 2013).

Species of Bipolaris are commonly associated with leaf spots, leaf blights and root rots on hosts
in the Poaceae (Ellis 1971, Sivanesan 1987, Manamgoda et al. 2011, 2014). Some species that
are considered serious pathogens are those on high-value commodity cereal crops, such as B.
maydis on maize, B. oryzae on rice (Sunder et al. 2014) and B. sorokiniana on wheat (Acharya
et al. 2011). Several species have multiple grass hosts, including other cereals and weeds, which
presents additional problems related to crop rotation and disease management (Strange and Scott
2005, Iftikhar et al. 2009, Sunder et al. 2014). Furthermore, many Bipolaris species are saprobes or
pathogens on hosts in the families Anacardiaceae, Araceae, Euphorbiaceae, Fabaceae, Malvaceae,
Rutaceae and Zingiberaceae (Ellis 1971, Manamgoda et al. 2011, 2014). There are approximately
47 species of Bipolaris (Manamgoda et al. 2014), of which 29 occur in Australia (Alcorn 1982,
Sivanesan 1985, 1987, Alcorn 1990, 1996, DAF Biological Collections 2016). Most of these
species were associated with hosts in the Poaceae, with the exceptions of B. cactivora and B.
incurvata, which were only recorded on hosts in the families Cactaceae and Arecaceae, respectively
(Forsberg 1985, Shivas 1995, Frohlich et al. 1997, DAF Biological Collections 2016).
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Accurate identification of Bipolaris species based on DNA sequences is dependent on the
availability of ex-type cultures. In recent years, many DNA sequences from ex-type or reference
cultures of Bipolaris species have been made available in GenBank (Manamgoda et al. 2012,
2014, Tan et al. 2014). In this study, 13 unidentified isolates of Bipolaris held in the Queensland
Plant Pathology Herbarium (BRIP) were examined by molecular and morphological methods,
and compared with ex-type and reference isolates. Most of the fungi were collected and isolated
by Dr. John L. Alcorn as curator of the BRIP from the early 1960s through to the late 1990s. Ten
new species of Bipolaris were revealed from the combined data analyses and morphological
studies, and are herein introduced and described.

MATERIALS AND METHODS
Isolates and morphology

All isolates examined are listed in Table 1. The unidentified isolates of Bipolaris were obtained
from BRIP, which retains cultures in a metabolically inactive state at -80 °C in a sterile solution
of 15 % v/v glycerol. In order to observe conidia and conidiophores, living cultures were grown
on sterilised leaf pieces of Zea mays placed on modified Sachs agar or sterilised wheat straws
on water agar, incubated at room temperature (approx. 23-25 °C) for 4 weeks, and exposed to
near ultraviolet light source on a 12-h light / dark diurnal cycle (Sivanesan 1987). Conidia and
conidiophores were mounted on glass slides in lactic acid (100 % v/v) and images captured with
a Leica DFC500 camera attached to a Leica DM5500 B compound microscope with Nomarski
differential interference contrast illumination. The images presented in Fig. 3d—e were taken
from dried cultures, and Figs. 2e, 1 and 3a were taken from dried herbarium specimens. Conidial
widths were measured at the widest part of each conidium. Means and standard deviations
(SDs) were calculated from at least 20 measurements. Ranges were expressed as (min.—) mean-
SD-mean+SD (—max.), with values rounded to 0.5 um. Images of the herbarium specimens
were captured by an Epson Perfection V700 scanner at 300 dpi resolution.

DNA isolation, amplification, and phylogenetic analyses

The isolates were grown on potato dextrose agar (PDA) (Oxoid) for 7 days at room temperature.
Mycelia were scraped off the PDA cultures and macerated with 0.5 mm glass beads (Daintree
Scientific) in a TissueLyser (QIAGEN). Genomic DNA was extracted with the Gentra Puregene
DNA Extraction Kit (QIAGEN), according to the manufacturer’s instructions.

The primers V9G (de Hoog and Gerits van den Ende 1998) and ITS4 (White et al. 1990) were
used to amplify the internal transcribed spacer (ITS) region of the ntrDNA. The primers gpdl
and gpd2 (Berbee et al. 1999) were used to amplify part of the glyceraldehyde-3-phosphate
dehydrogenase (gapdh) gene. A partial region of the translation elongation factor 1-a (tefla)
locus was amplified using the primers EF1983/EF12218R (Schoch et al. 2009). All loci were
amplified with the Phusion High-Fidelity PCR Master Mix (New England Biolabs). The PCR
products were purified and sequenced by Macrogen Incorporated (Seoul, Korea).

All sequences generated were assembled using Geneious v. 9.1.5 (Biomatters Ltd.) and deposited

in GenBank (Table 1, inbold). These sequences were aligned with selected sequences of Bipolaris
species obtained from GenBank (Table 1) using the MAFFT alignment algorithm (Katoh et al.
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2009) in Geneious. Curvularia lunata CBS 730.96 was included as the outgroup (Table 1). The
sequences of each locus were aligned separately and manually adjusted as necessary. Alignment
gaps were treated as missing character states, and all characters were unordered and of equal
weight. The Markov chain Monte Carlo (MCMC) algorithm was used to create a phylogenetic
tree based on Bayesian probabilities using MrBayes v. 3.2.1 (Huelsenbeck and Ronquist 2001,
Ronquist and Huelsenbeck 2003) in Geneious. To remove the need for a priori model testing,
the MCMC analysis was set to sample across the entire general time-reversible (GTR) model
space with a gamma-distributed rate variation across the sites. Ten million random trees were
generated using the MCMC procedure with four chains. The sample frequency was set at 100
and the temperature of the heated chain was 0.1. Burn-in was set at 25 %, after which the
likelihood values were stationary. Maximum likelihood (ML) analysis was run using RAXxML
v. 7.2.8 (Stamatakis and Alachiotis 2010) in Geneious and started from a random tree topology.
The nucleotide substitution model used was GTR with a gamma-distributed rate variation. The
concatenated alignment was deposited in TreeBASE (Study 19483). All novel sequences were
deposited in GenBank (Table 1).

In order to determine the species limits, the criterion of genealogical concordance phylogenetic
species recognition (GCPSR) was applied to the molecular data (Taylor et al. 2000). A
combined analysis of three genes was used to determine the final species boundaries with
the support of all single gene trees inferred. Unique fixed nucleotides are used to characterise
genetic differences in the new species. For each species description, the closest phylogenetic
neighbour was selected and these alignments were subject to single nucleotide polymorphism
(SNP) analyses. These SNPs were determined for each aligned locus using the Find Variation/
SNPs feature in Geneious. SNPs were determined based on a minimum variant frequency of
0.2. Taxonomic novelties were registered in MycoBank (http://www.mycobank.org, Crous et
al. 2004).

RESULTS
Phylogenetic analysis

On average, 860 bp of the ITS region, 551 bp of the gapdh gene and 876 bp of the tefla gene
were sequenced from the BRIP isolates. For the phylogenetic analyses, the ITS and gapdh were
trimmed to 474 and 445 bp, respectively. The combined alignment deposited in TreeBASE is
composed of 1733 characters from 46 isolates, of which 96 bp (20.3 %), 156 bp (35.1 %) and 99
bp (11.3 %) were variable for ITS, gapdh and teflo., respectively. The ITS alignment was able
to resolve 19 out of 38 Bipolaris species, including four of the new species (data not shown).
Individually, both the gapdh and tefla alignments were able to resolve 36 out of 38 Bipolaris
species, including the ten new species described here (data not shown). None of the ITS, gapdh
or the tefla alignments were able to differentiate between the ex-holotype strain of B. coffeana
and the recently designated ex-epitype strain of B. cynodontis (Manamgoda et al. 2014). A
pairwise comparison of the unannotated sequences of B. coffeana and B. cynodontis showed
100 % identity in the ITS and tefla loci, and one SNP in the gapdh locus, indicating a potential
synonymy. Morphologically, B. coffeana can have conidiophores longer than B. cynodontis
(up to 260 pum versus 170 um), although the conidial dimensions of B. coffeana (32-75 x
11-14 pm) falls within the range described for B. cynodontis (30—75 x 10—16 pm). To avoid
duplication, the novel taxa described below are, therefore, compared to B. cynodontis. The
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Fig. 1. Phylogenetic tree based on maximum likelihood analysis of the combined multilocus alignment.
RAXxML bootstrap values (bs) greater than 70 % and Bayesian posterior probabilities (pp) greater than
0.9 are given at the nodes (bs/pp). Novel species are in bold and highlighted in blue. Ex-type isolates are

marked with a superscript T. The outgroup is Curvularia lunata.
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inferred phylogenetic tree based on the concatenated alignment resolved the 17 BRIP isolates
into ten well-supported and unique clades, which are accepted in this study as novel species

(Fig. 1).

Taxonomy

Bipolaris austrostipae Y.P. Tan & R.G. Shivas, sp. nov. — MycoBank MB817461. Fig. 2a-b
Etymology: Named after Austrostipa, the grass genus from which it was isolated.

Conidiophores mononematous, erect, straight to flexuous, rarely branched, geniculate towards
the apex, uniformly brown to dark brown, smooth, septate, up to 260 pm x 5—-6 um; basal cell
swollen and darker than the other cells, up to 10 um diam. Conidiogenous cells integrated,
terminal or intercalary, with sympodial proliferation, pale brown to brown, smooth, mono-
or polytretic. Conidiogenous nodes darkening and becoming verruculose. Conidia fusiform,
straight to slightly curved, (55-) 70-77 (-86) x (11-) 14-15.5 (=20) um, brown to dark brown,
6-9-distoseptate. Hilum thick and darkened.

Specimen examined: AUSTRALIA, Queensland, Leyburn, from Austrostipa verticillata (Nees
ex Spreng.) S.W.L. Jacobs & J. Everett, 11 May 1977, J.L. Alcorn (BRIP 12490 holotype,
includes ex-type culture).

Notes: Bipolaris austrostipae is only known from the type specimen on Austrostipa verticillata,
which is an Australian perennial grass found predominantly in Queensland and New South Wales
(Simon and Alfonso 2011). Bipolaris austrostipae is phylogenetically close to B. cynodontis
(Fig. 1), and its conidial size falls within the range given for B. cynodontis (30-75 x 10—-16 um)
(Sivanesan 1987). Bipolaris austrostipae difters from the ex-type culture of B. cynodontis in
two loci: gapdh 98 % match (Identities 432/443, Gaps 0/443); teflo positions 225 (C), 266 (G)
and 717 (T).

Bipolaris axonopicola Y.P. Tan & R.G. Shivas, sp. nov. — MycoBank MB817462. Fig. 2e—f
Etymology: Named after Axonopus, the grass genus from which it was isolated.

Leaf spots on Axonopus fissifolius, narrowly ellipsoidal, up to 1 x 0.5 mm, reddish brown,
larger spots with grey centres. Conidiophores mononematous, erect, straight to flexuous, rarely
branched, geniculate towards the apex, uniformly pale brown to brown, smooth, septate, up
to 250 pm % 5-9 pum; basal cell swollen and darker than the other cells, up to 18 um diam.
Conidiogenous cells integrated, terminal or intercalary, with sympodial proliferation, pale brown
to brown, smooth, mono- or polytretic with undarkened circular scars. Conidiogenous nodes
distinct, slightly verruculose below the node. Conidia fusiform to subcylindrical or obclavate,
(40-) 55-60 (=71) x (10-) 11.5-12.5 (—14) um, pale brown with the end cells slightly paler
than the central cells, smooth, 5—-10-distoseptate, apex rounded, base obconically truncate or
rounded. Hilum darkened and sometimes thickened. Germination bipolar.

Culture characteristics: Colonies on PDA cover the entire plate; surface grey olivaceous with
smoky grey patches, velutinous with abundant aerial mycelium.
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Specimen examined: AUSTRALIA, Queensland, Peregian Beach, from leaf spot on Axonopus
fissifolius, 6 June 1976, J.L. Alcorn (BRIP 11740 holotype, includes ex-type culture).

Notes: Bipolaris axonopicola is only known from a single specimen on Axonopus fissifolius
in south-east Queensland. Axonopus fissifolius is native to the Americas and was introduced
to Australia as a pasture grass (Simon and Alfonso 2011). The conidial dimensions of B.
axonopicola overlap with those of B. cynodontis (30-75 x 10-16 pum). Marignoni (1909)
described Helminthosporium cynodontis (synonym of B. cynodontis) as having conidia 60—
75 um long and also illustrated them as slightly curved. Subsequently, many morphologically
similar isolates with slightly curved conidia have been assigned to B. cynodontis from a wide
range of hosts (Manamgoda et al. 2014), including A. fissifolius (Sivanesan 1987). Bipolaris
axonopicola has straight conidia, which distinguishes it from B. cynodontis.

Bipolaris axonopicola is phylogenetically close to B. cynodontis and B. austrostipae (Fig. 1).
Bipolaris axonopicola differs from B. cynodontis in three loci: ITS 99 % match (Identities
451/457, Gaps 2/457); gapdh 97 % match (Identities 427/441, Gaps 0/441); and teflo 99 %
match (Identities 865/873, Gaps 0/873). The straight conidia of B. axonopicola distinguishes
it from the slightly curved conidia of B. austrostipae, in addition to differences in three loci:
ITS 98 % match (Identities 450/457, Gaps 2/457); gapdh 98 % match (Identities 431/441, Gaps
0/441); and teflo. 99 % match (Identities 866/875, Gaps 0/875).

Bipolaris bamagaensis Y.P. Tan & R.G. Shivas, sp. nov. — MycoBank MB817463. Fig. 3a—
Etymology: Named after the locality, Bamaga, from where it was collected.

Conidiophores mononematous, erect, straight to flexuous, rarely branched, geniculate towards
the apex, pale brown to brown to subhyaline at the apex, smooth, septate, up to 370 um x 4 um,
base sometimes swollen (7-9 um). Conidiogenous cells integrated, terminal or intercalary, with
sympodial proliferation, pale brown to brown, smooth, mono- or polytretic with undarkened
circular scars. Conidiogenous nodes dark, distinct and slightly verruculose. Conidia ellipsoidal,
fusiform, straight to slightly curved, (40—) 50-55 (-70) x (10-) 12—13 (-17) pwm, uniformly
pale brown to brown, smooth, 3—7 (usually 5)-distoseptate. Hilum darkened and sometimes
thickened.

Specimens examined: AUSTRALIA, Queensland, Bamaga, from necrotic leaf on Urochloa
subquadripara, 28 May 1981, J.L. Alcorn (BRIP 13577 holotype, includes ex-type culture);
from leaf on Dactyloctenium aegyptium, 29 May 1981, J.L. Alcorn (culture BRIP 10711);
culture formed in vitro by crossing isolates BRIP 13577 and BRIP 10711, 26 June 1985, J.L.
Alcorn (culture BRIP 14847); on Yarrabah Road, Mackey Creek (near Gordonvale), from leaf

Fig. 2. Bipolaris austrostipae (ex-holotype BRIP 12490) a conidiophore with conidia, b conidiophore
with conidium. Bipolaris shoemakeri (ex-holotype BRIP 15929) ¢ conidiophore with a conidium, d
conidia. Bipolaris axonopicola (ex-holotype BRIP 11740) e leaf spots on A. fissifolius, f conidiophores
and conidia. Bipolaris subramanianii (ex-holotype BRIP 16226) g conidiophore, h conidia, i leaf spots
on S. sphacelata. Bipolaris woodii (ex-holotype 12239) j conidiophore and conidia. Scale bars: e, i =1
cm; a—d, f, h, j =20 pm; g= 10 pm.
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blight on D. aegyptium, 1 May 1987, J.L. Alcorn (culture BRIP 15879); culture formed in vitro
by single-spored isolates of BRIP 15897, June 1987, J.L. Alcorn (culture BRIP 15934).

Notes: Bipolaris bamagaensis is known from specimens on Dactyloctenium aegyptium and
Urochloa subquadripara with leaf necrosis. Although both grass hosts are found across
Australia, B. bamagaensis has only been found in northern Queensland. Many Bipolaris species
have been associated with Dactyloctenium, including B. clavata, B. cynodontis, B. luttrellii and
B. maydis (Sivanesan 1987, Manamgoda et al. 2014), while only one species, B. urochloae,
has been recorded on Urochloa (Sivanesan 1987, Manamgoda et al. 2014). There may be other
records in the literature of Bipolaris species on Urochloa, as many Brachiaria species were
transferred to Urochloa (Webster 1987).

Bipolaris bamagaensis formed its sexual morph in culture (BRIP 14847) when single-spored
isolates from different cultures (ex-holotype BRIP 13577 and BRIP 10711), as well as from
the same culture (BRIP 15879), were crossed (J.L. Alcorn herbarium notes). The sexual
morph was not observed during this study, and, therefore, a description could not be provided.
Morphologically, the conidiophores of B. bamagaensis in culture are much shorter than that
observed for B. chloridis (up to 1.2 mm long), and the dimensions of the typically straight
to slightly curved conidia fall within the range described for the mostly curved conidia of B.
chloridis (30-100 x 10-20 um). Bipolaris bamagaensis differs from B. chloridis in two loci:
gapdh positions 20 (C) and 62 (T); tefla positions 307 (A) and 312 (G).

Bipolaris shoemakeri Y.P. Tan & R.G. Shivas, sp. nov. — MycoBank MB817466. Fig. 2c—d

Etymology: Named after Professor Robert Alan Shoemaker, an internationally respected
mycologist and plant pathologist, who established Bipolaris for helminthosporioid species
with fusoid conidia and bipolar germination, thereby differentiating it from Drechslera and
Helminthosporium (Shoemaker 1959).

Conidiophores mononematous, erect, straight to flexuous, rarely branched, uniformly pale
brown to brown, smooth, septate, up to 1.8 mmx 6 um. Conidiogenous cells integrated, terminal
or intercalary, with sympodial proliferation, pale to subhyaline, smooth, mono- or polytretic
with undarkened circular scars. Conidiogenous nodes distinct and slightly verruculose. Conidia
fusiform, straight to slightly curved, (60—) 70—80 (—100) % (10—) 13.5-15 (~19) um, pale brown
to brown, smooth, 4-10 (usually 8)-distoseptate. Hilum darkened.

Specimens examined: AUSTRALIA, Queensland, Mount Molloy, from leaf spot on Ischaemum
rugosum var. segetum, culture formed in vitro by crossing single-spored isolates, June 1987,
J.L. Alcorn (BRIP 15929 holotype, includes ex-type culture); Mount Molloy, from leaf spot on
Ischaemum rugosum var. segetum, 30 Apr. 1987, J.L. Alcorn (culture BRIP 15806).

Notes: Bipolaris shoemakeri was isolated from Ischaemum rugosum var. segetum, which is
found mainly in the northern coastal region of Australia, and extends from India to Taiwan
(Simon and Alfonso 2011). The ex-holotype culture (BRIP 15929) produced ascospores and
was derived in vitro from self-crossed single-spored isolates of BRIP 15806 (J.L. Alcorn
herbarium notes). The sexual morph was not observed during this study, and, therefore, a
description could not be provided. Other species recorded on /. rugosum are B. cynodontis,
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B. oryzae and B. setariae (Sivanesan 1987, Manamgoda et al. 2014, Farr and Rossman 2016,
Herbarium Catalogue 2016). Bipolaris shoemakeri has longer conidiophores (up to 1.8 mm)
than B. cynodontis (up to 170 um), B. oryzae (up to 600 pm) and B. setariae (200 um). Bipolaris
shoemakeri is phylogenetically close to B. secalis (Fig. 1). Morphologically, the very long,
straight to flexuous conidiophores of B. shoemakeri difter from the shorter (up to 300 pm) and
apically geniculate conidiophores of B. secalis. Bipolaris shoemakeri differs from B. secalis in
three loci: ITS positions 103 (G) and 339 (indel); gapdh positions 209 (T) and 446 (C); teflo
positions 453 (C) and 816 (T).

Bipolaris simmondsii Y.P. Tan & R.G. Shivas, sp. nov. — MycoBank MB817467. Fig. 3d—¢

Etymology: Named after the Australian plant pathologist Dr. John Howard (Jack) Simmonds
MBE, who listed the first helminthosporioid fungi found in Queensland (Simmonds 1966).

Conidiophores mononematous, erect, straight to flexuous, rarely branched, sometimes
geniculate towards the apex, uniformly yellowish brown, paler at the apex, smooth, septate,
up to 240 um x 8 um, basal cell swollen, up to 18 um diam. Conidiogenous cells integrated,
terminal or intercalary, with sympodial proliferation, pale brown to brown, smooth, monoor
polytretic with circular scars. Conidiogenous nodes distinct and darkened. Conidia fusiform,
straight or slightly curved, (70—) 78—116 (-=130) x (12—) 13—-17 (—18) wm, widest at the middle,
yellowish brown to pale yellowish brown, paler at the ends, 7-10-distoseptate. Hilum darkened.

Specimen examined: AUSTRALIA, Queensland, Peregian Beach, on leaf spot on Zoysia
macrantha, 14 Nov. 1976, J.L. Alcorn (BRIP 12030 holotype, includes ex-type culture).

Notes: Bipolaris simmondsii is only known from the type specimen on Zoysia macrantha,
an endemic temperate Australian grass. The ex-type isolate was sterile under the conditions
it was grown. Fortunately, dried culture specimens from the original collection in 1976 had
conidiophores and conidia that allowed morphological descriptions to be made. Bipolaris
simmondsii is phylogenetically close to B. heveae, which has been associated with leaf spots on
Zoysia japonica in Japan (Tsukiboshi et al. 2005). Bipolaris heveae has conidia that sometimes
have a slightly protuberant hilum (3—4 pm), while B. simmondsii has an inconspicuous hilum.
Bipolaris simmondsii differs from B. heveae in three loci: ITS positions

452 (indel), 453 (C) and 456 (T); gapdh 98 % match (Identities 435/443, Gaps 0/443); teflo
positions 9 (T), 102 (C), 307 (G), 453 (C), 655 (G), 735 (C) and 771 (C).

Bipolaris sivanesaniana Y.P. Tan & R.G. Shivas, sp. nov. — MycoBank MB817468. Fig. 3f—g

Etymology: Named after Dr. Asaipillai Sivanesan, in recognition of his contributions to mycology
and plant pathology, especially his seminal monograph on graminicolous helminthosporioid
fungi (Sivanesan 1987).

Conidiophores mononematous, erect, straight to flexuous, rarely branched, uniformly pale
brown to brown, smooth, septate, up to 600 um x 4—6 um; basal cell swollen and darker than
the other cells, up to 18 um diam. Conidiogenous cells integrated, terminal or intercalary, with
sympodial proliferation, pale brown to subhyaline, smooth, mono- or polytretic with undarkened
circular scars. Conidiogenous nodes distinct and swollen. Conidia fusiform, straight to slightly
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Fig. 3. Bipolaris bamagaensis (ex-holotype BRIP 16634) a necrotic leaves from U. subquadripara, b
conidiophore, ¢ conidia. Bipolaris simmondsii (ex-holotype BRIP 12030) d conidiophore, e conidia.
Bipolaris sivanesaniana (ex-holotype BRIP 15847) f conidiophores, g conidia. Scale bars: a = 1 cm;
b—g=10 um.

curved, (60—) 70-77 (-86) x (11-) 14-15.5 (-20) um, pale brown to brown, 5—8-distoseptate.
Hilum darkened and sometimes thickened.

Specimens examined: AUSTRALIA, Queensland, Atherton, from Paspalidium distans, 1 May
1987, J.L. Alcorn (BRIP 15847 holotype, includes ex-type culture); Julatten, from Setaria
sphacelata, 30 Apr. 1987, J.L. Alcorn (culture BRIP 15822).

Notes: Bipolaris sivanesaniana is known from Paspalidium distans and Setaria sphacelata

in Queensland. This hints at a co-evolutionary relationship as the grass hosts, Setaria and
Paspalidium, are closely related (Kellogg et al. 2009, Morrone et al. 2012). Bipolaris
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sivanesaniana is the only species described on P. distans, a native Australian perennial grass
found in temperate and tropical regions of Asia and the Pacific. One other species, B. setariae,
has been recorded on P. flavidum (Farr and Rossman 2016). Bipolaris sivanesaniana has longer
conidiophores (up to 600 pm) than B. setariae (up to 200 um long). Molecular phylogenetic
comparison with B. setariae cannot be reliably made, as there are no available sequences for a
type or authentic strain. Other Bipolaris species recorded on Setaria are B. bicolor, B. cynodontis,
B. leersiae, B. maydis, B. oryzae, B. panici-milacei, B. sacchari, B. salviniae, B. setariae, B.
sorokiniana, B. victoriae, B. yamadae and B. zeicola (Sivanesan 1987, Manamgoda et al. 2014,
Farr and Rossman 2016, Herbarium Catalogue 2016), although some of these identifications
have not been verified by DNA sequencing analyses.

Bipolaris sivanesaniana is phylogenetically close to B. oryzae and B. panici-milacei (Fig. 1).
Morphologically, B. sivanesaniana has shorter conidia (60-86 pum) than B. oryzae (63—153
um), and fewer septa (up to 8 versus 14). Bipolaris sivanesaniana has longer conidiophores
than B. panici-milacei (up to 255 um long). Bipolaris sivanesaniana differs from B. oryzae in
two loci: ITS position 97 (C); tefla position 381 (C). Bipolaris sivanesaniana differs from B.
panici-milacei in three loci: ITS position 97 (C); gapdh position 182 (A); tefla position 342
(©).

Bipolaris subramanianii Y.P. Tan & R.G. Shivas, sp. nov. — MycoBank MB817469. Fig. 2g—i

Etymology: Named after Professor C.V. Subramanian, in recognition of his contributions to
mycology and plant pathology, especially his widely referenced monograph on hyphomycetes
(Subramanian 1983).

Leaf spots on Setaria sphacelata, narrowly ellipsoidal, grey spots with brown margins, at first 1
x 0.5 mm, then expanding up to 5 cm in length with water-soaked appearance. Conidiophores
mononematous, erect, straight to flexuous, never branched, uniformly brown to pale brown at
the apex, smooth, septate, up to 830 pm x 5 um; basal cell swollen and darker than the other
cells, up to 13 um diam. Conidiogenous nodes distinct and slightly swollen. Conidiogenous
cells integrated, terminal or intercalary, with sympodial proliferation, pale brown to brown,
smooth, mono- or polytretic with undarkened circular scars. Conidia straight to fusiform
to subcylindrical, (70-) 90-99 (-130) x (9—) 11-12.5 (—15) pum, uniformly pale brown to
subhyaline, smooth, 5-8-distoseptate, apex rounded, base obconically truncate. Hilum distinct
and protuberant.

Specimen examined: AUSTRALIA, Queensland, Maclean Bridge, from leaf spot on Setaria
sphacelata, 17 Mar. 1988, J.L. Alcorn (BRIP 16226 holotype, includes ex-type culture).

Notes: Bipolaris subramanianii is only known from the type specimen on Setaria sphacelata,
which is a perennial African grass that has a worldwide distribution (Simon and Alfonso 2011).
Other species recorded on S. sphaecelata are B. cynodontis, B. maydis and B. zeicola (DAF
Biological Collections 2016; Farr and Rossman 2016; Herbarium Catalogue 2016); however,
some of these records require verification by molecular methods. Bipolaris subramanianii has
longer conidiophores (up to 830 um) than B. cynodontis (up to 170 um) and B. zeicola (up to
250 pm). Bipolaris subramanianii has longer conidia (70-130 um) than B. cynodontis (30—
75 um). The conidia of B. subramanianii are typically straight to subcylindrical, whereas B.
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cynodontis and B. zeicola have slightly curved conidia that are broadest in the middle and taper
towards the rounded ends. Bipolaris maydis has conidia that are distinctly curved.

Bipolaris subramanianii is phylogenetically close to B. shoemakeri and B. secalis (Fig. 1). The
conidiophores of B. subramanianii are shorter than B. shoemakeri (up to 1.8 mm), but longer
than B. secalis (up to 300 um). The typically straight conidia of B. subramanianii are slightly
longer and thinner than the slightly curved conidia of B. shoemakeri (70-80 x 13.5-15 pm).
The conidia of B. subramanianii are uniformly paler in colour and have fewer septa than the
conidia of B. secalis, which are mostly 10-distoseptate. Bipolaris subramanianii differs from
B. shoemakeri by three loci: ITS 98 % match (Identities 452/461, Gaps 3/461); gapdh positions
26 (T), 55 (T), 77 (G) and 209 (C); TEF1a positions 30 (G), 255 (C), 266 (G), 450 (A), 816
(C) and 843 (C). Bipolaris subramanianii differs from B. secalis by three loci: ITS 98 % match
(Identities 453/460, Gaps 2/460); gapdh positions 26 (T), 55 (T), 77 (G) and 446 (T); tefla
positions 30 (G), 255 (C), 266 (G), 450 (A), 453 (C) and 843 (C).

Bipolaris woodii Y.P. Tan & R.G. Shivas, sp. nov. — MycoBank MB817470. Fig. 2j

Etymology: Named after Dr. Peter Wood, in recognition of his mentorship of microbiologists at
the Queensland University of Technology, including the lead author.

Conidiophores mononematous, erect, straight to flexuous, rarely branched, geniculate
towards the apex, uniformly pale brown to brown, smooth, septate, up to 250 um x 5-10 pm.
Conidiogenous cells integrated, terminal or intercalary, with sympodial proliferation, pale
brown to brown, smooth, monoor polytretic with darkened circular scars. Conidiogenous nodes
distinct, darkened and verruculose. Conidia fusiform, straight to slightly curved, (60—) 69—76
(-86) x (10-) 12.5-13.5 (=15) pum, brown, smooth, 7-10-distoseptate. Hilum darkened and
sometimes thickened.

Specimen examined: AUSTRALIA, Queensland, Goondiwindi, from Paspalidium caespitosum,
25 Apr. 1977, J. Brouwer (BRIP 12239 holotype, includes ex-type culture).

Notes: Bipolaris woodii is only known from a single specimen on Paspalidium caespitosum.
This grass is a native species widely distributed across inland regions of eastern Australia
(Simon and Alfonso 2011). Two other species recorded on Paspalidium are B. setariae on P.
flavidum (Farr and Rossman 2016) and B. sivanesaniana described in this study from P. distans.
Bipolaris woodii has shorter conidiophores (up to 250 um) than B. sivanesaniana (up to 600
um). Molecular phylogenetic comparison with B. sefariae cannot be reliably made at this point
in time as there are no available sequences for an ex-type or authentic strain of B. setariae.

Bipolaris woodii is phylogenetically close to B. microstegii, B. victoriae and B. zeicola (Fig.
1). Bipolaris woodii differs from B. microstegii in three loci: ITS 98 % match (Identities
452/461, Gap 4/461); gapdh positions 83 (T), 111 (T) and 383 (T); tefla positions 138 (T),
265 (T) and 572 (C). Bipolaris woodii also differs in morphology, with shorter conidiophores
than B. microstegii (up to 750 um). Bipolaris woodii differs from B. victoriae in three loci:
ITS 98 % match (Identities 454/461, Gaps 4/461); gapdh positions 83 (T), 98 (T), 111 (T)
and 383 (T); tefla positions 333 (C) and 573 (C). Bipolaris woodii has slightly smaller and
darker conidia than B. victoriae (40-120 x 12—19 pm) (Sivanesan 1987). Bipolaris woodii
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differs from B. zeicola in three loci: ITS 98 % match (Identities 452/462, Gaps 5/462); gapdh
positions 83 (T), 111 (T), 383 (T) and 425 (C); tefla position 573 (C). Bipolaris woodii
has a darkened and conspicuous hilum, and, thereby, differs from B. zeicola, which has an
inconspicuous hilum.

DISCUSSION

Phylogenetic analyses based on ITS and gapdh sequences, either individually or concatenated,
provided sufficient resolution for delimiting taxa within Bipolaris (Berbee et al. 1999,
Manamgoda et al. 2012, 2014, Tan et al. 2014). Further, a four-locus dataset (ITS, gapdh, LSU
and teflo) provided stronger support for the description of new helminthosporioid species
(Manamgoda et al. 2012, Tan et al. 2014). In this study, 13 isolates from the BRIP collection,
recognised by Dr. John L. Alcorn as taxonomically interesting and potentially distinct, were
analysed against reference sequences of cultures available from currently accepted Bipolaris
species based on three loci, ITS, gapdh and tefla. Analyses with LSU were omitted in the
dataset as they provided little information to warrant inclusion. Nonetheless, LSU sequences
have been deposited in GenBank to facilitate future studies (Table 1). The phylogenetic
analyses of the combined three locus dataset resolved the 13 BRIP isolates into eight novel
Bipolaris species. It is not known whether the species are pathogens, endophytes or saprobes.
The description of these species provides a foundation upon which additional sampling and
accumulation of molecular data will improve knowledge of their host ranges and ecological
roles.

The ITS locus is the universal barcode marker for fungi (Schoch et al. 2012). The ITS
alignment used in this study was able to resolve 19 out of 36 Bipolaris species, including
four of the new species. However, some studies have used only ITS to identify and describe
Bipolaris species (Ahmadpour et al. 2012, da Cunha et al. 2012). Most recently, taxonomists
have accepted that a secondary locus is essential for the accurate identification of many taxa
(Madrid et al. 2014, Manamgoda et al. 2012, Tan et al. 2014, Manamgoda et al. 2015, Sticlow
et al. 2015). The protein-coding loci of gapdh, tefla and RNA polymerase Il second largest
subunit (rpb2) have been reported to be phylogenetically informative in the analyses of
helminthosporioid species, and complement species identification and classification studies
(Crous et al. 2012, 2013, Manamgoda et al. 2012, 2014, 2015, Madrid et al. 2014, Tan et
al. 2014). The gapdh and teflo alignments used in this study were able to resolve 34 out
of 36 Bipolaris species, including the eight new species described here. None of the ITS,
gapdh or the tefla alignments were able to differentiate between the ex-holotype strain of B.
coffeana and the recently designated ex-epitype strain of B. cynodontis (Manamgoda et al.
2014). A comparison of the sequences of B. coffeana and B. cynodontis indicates a potential
synonymy, which is supported by shared conidial characteristics. The loci gapdh and teflo
were determined to be the most suitable single locus marker for species-level identification
within Bipolaris. Madrid et al. (2014) found rpb2, followed by gapdh, to be the most
informative loci for helminthosporioid phylogeny. Analyses with rpb2could not be included
in this study as sequences were only available for ex-type isolates of three Bipolaris species.
It is strongly suggested that the classification of new taxa in Bipolaris be accompanied by the
official fungal barcode, ITS and a secondary locus, gapdh, tefla or rpb2.
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Chapter 5

Abstract

Several unidentified specimens of Curvularia deposited in the Queensland Plant Pathology
Herbarium were re-examined. Phylogenetic analyses based on sequence data of the internal
transcribed spacer region, partial fragments of the glyceraldehyde-3-phosphate dehydrogenase
and the translation elongation factor 1-a genes, supported the introduction of 13 novel Curvularia
species. Eight of the species described, namely, C. beasleyi sp. nov., C. beerburrumensis sp.
nov., C. eragrosticola sp. nov., C. kenpeggii sp. nov., C. mebaldsii sp. nov., C. petersonii sp.
nov., C. platzii sp. nov. and C. warraberensis sp. nov., were isolated from grasses (Poaceae)
exotic to Australia. Only two species, C. lamingtonensis sp. nov. and C. sporobolicola sp. nov.,
were described from native Australian grasses. Two species were described from hosts in other
families, namely, C. coatsiae sp. nov. from Litchi chinensis (Sapindaceae) and C. colbranii sp.
nov. from Crinum zeylanicum (Amaryllidaceae). Curvularia reesii sp. nov. was described from
an isolate obtained from an air sample. Furthermore, DNA sequences from ex-type cultures
supported the generic placement of C. neoindica and the transfer of Drechslera boeremae to
Curvularia.

INTRODUCTION

Curvularia is a species-rich genus of pathogens and saprobes associated with plant, human
and animals worldwide (Sivanesan 1987, Hyde et al. 2014, Madrid et al. 2014, Manamgoda et
al. 2015, Marin-Felix et al. 2017a, 2017b). Curvularia species have also been reported from
substrates such as air (Almaguer et al. 2012, Hargreaves et al. 2013), aquatic environments
(Verma et al. 2013, Su et al. 2015, Sharma et al. 2016) and soil (Manamgoda et al. 2011, Marin-
Felix et al. 2017a).

Species delimitation within Curvularia based solely on morphology is difficult as many species
share similar characters and have overlapping conidial dimensions. Currently, there are 131
species of Curvularia (excluding varieties) listed in Index Fungorum (accessed on 4 January
2018). Phylogenetic studies based on multilocus sequence analyses of ex-type or reference
cultures have recently delimited many cryptic species (Deng et al. 2014, Manamgoda et al.
2014, Tan et al. 2014, Manamgoda et al. 2015, Marin-Felix et al. 2017a, 2017b). Presently,
there are 81 accepted species for which taxonomic placement has been established by DNA
barcodes to allow accurate identification and comparison (Marin-Felix et al. 2017a, 2017b).

In Australia, 64 species of Curvularia have been reported (DAF Biological Collections 2018,
Farr and Rossman 2018). Of these, 17 species were described from Australia, namely C.
australiensis, C. australis, C. bothriochloae, C. crustacea, C. dactyloctenii, C. graminicola,
C. harveyi, C. heteropogonis, C. micrairae, C. ovariicola, C. perotidis, C. queenslandica,
C. ravenelii, C. richardiae, C. ryleyi, C. sorghina and C. tripogonis. Eight of the Australian
Curvularia species were originally placed in the closely related genus, Bipolaris, before transfer
to Curvularia based on molecular studies (Manamgoda et al. 2012, 2014, Tan et al. 2014).

In this study, 17 unidentified isolates of Curvularia maintained in the culture collection held in
the Queensland Plant Pathology Herbarium (BRIP) were compared with ex-type and reference
isolates. Thirteen new species of Curvularia were revealed based on multilocus phylogenetic
analyses and are formally described here. In addition, phylogenetic analyses of ex-type cultures
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have confirmed the placement of a Curvularia species, as well as the introduction of a new
combination.

MATERIALS AND METHODS
Isolates and morphology

Unidentified isolates of Curvularia were obtained from BRIP (Table 1), which retains cultures
in a metabolically inactive state at -80 °C in a sterile solution of 15 % v/v glycerol. In order
to observe conidia and conidiophores, living cultures were grown on sterilised leaf pieces of
Zea mays on modified Sachs agar and on sterilised wheat straws on water agar, incubated at
room temperature (approx. 25 °C) for seven days and exposed to near ultraviolet light on a
12 h light/dark diurnal cycle (Sivanesan 1987). Conidia and conidiophores were mounted on
glass slides in lactic acid (100 % v/v). Images were captured with a Leica DFC 500 camera
attached to a Leica DM5500B compound microscope with Nomarski differential interference
contrast illumination. Conidial widths were measured at the widest part of each conidium.
Means and standard deviations (SD) were calculated from at least 20 measurements. Ranges
were expressed as (minimum value—) mean-SD—mean+SD (—maximum value) with values
rounded to 0.5 pm.

Colonies were described from 7-d-old cultures grown on potato dextrose agar (PDA) (Becton
Dickinson), incubated at room temperature (approx. 25°C) and exposed to near-ultraviolet light
on a diurnal cycle. Images of the colonies and herbarium specimens were captured by an Epson
Perfection V700 scanner at a 300 dpi resolution. Colour of the colonies was rated according
to Rayner (1970). Taxonomic novelties were deposited in MycoBank (www.MycoBank.org;
Crous et al. 2004).

DNA isolation, amplification, and phylogenetic analyses

Isolates were grown on PDA for 7 d at room temperature (approx. 25 °C). Mycelium was
scraped off the PDA cultures and macerated with 0.5 mm glass beads (Daintree Scientific) in a
Tissue Lyser (Qiagen). Genomic DNA was extracted with the Gentra Puregene DNA Extraction
Kit (Qiagen) according to the manufacturer’s instructions. Amplification and sequencing of the
internal transcribed spacer (ITS) region, glyceraldehyde-3-phosphate dehydrogenase (gapdh)
and the translation elongation factor 1-alpha (zefla) loci followed the methods by Tan et al.
(2014). All sequences generated were assembled using Geneious v. 9.1.8 (Biomatters Ltd) and
deposited in GenBank (Table 1, in bold). Sequences were aligned with selected sequences of
Curvularia species obtained from GenBank (Table 1) using the MAFFT alignment algorithm
(Katoh et al. 2009) in Geneious. Bipolaris maydis (CBS 136.29) was included as the outgroup.
The sequences of each locus were aligned separately and manually adjusted where necessary.
The alignment included sequences from ex-type cultures of 63 species of Curvularia and from
the reference cultures of 16 species. The Maximum-Likelihood (ML) and Bayesian Inference
(BI) methods were used in phylogenetic analyses as described by Tan et al. (2016). Briefly,
the ML analysis was run using RAXML v. 7.2.8 (Stamatakis and Alachiotis 2010) in Geneious
and started from a random tree topology. The nucleotide substitution model used was GTR
with a gamma-distributed rate variation. The Markov chain Monte Carlo (MCMC) algorithm
was used to create a phylogenetic tree based on Bayesian probabilities using MrBayes v. 3.2.1
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(Huelsenbeck and Ronquist 2001, Ronquist and Huelsenbeck 2003) in Geneious. To remove
the need for a priori model testing, the MCMC analysis was set to sample across the entire
general time-reversible (GTR) model space with a gamma-distributed rate variation across the
sites. Ten million random trees were generated using the MCMC procedure with four chains.
The sample frequency was set at 100 and the temperature of the heated chain was 0.1. Burn-in
was set at 25 %, after which the likelihood values were stationary. The concatenated alignment
was deposited in TreeBASE (S22563).

Unique fixed nucleotide positions were used to characterise and describe two cryptic species
(see applicable species notes). For each of the cryptic species that was described, the closest
phylogenetic neighbour was selected (Fig. 1) and this focused dataset was subjected to single
nucleotide polymorphism (SNP) analysis. These SNPs were determined for each aligned locus
using the Find Variation / SNPs feature in Geneious. The SNPs were determined based on a
minimum variant frequency of 0.2.

RESULTS
Molecular phylogeny

Approximately 800 bp of the ITS region, 598 bp of the partial region of the gapdh gene and
969 bp of the partial region of the tefl/a gene were sequenced from the BRIP isolates. After
removing ambiguously aligned regions, the ITS, gapdh and teflo alignments were trimmed
to 474 bp, 544 bp and 867 bp, respectively. The ITS phylogeny was able to resolve 53 of 79
Curvularia species, including 10 of the new species (data not shown). The gapdh phylogeny
inferred 12 new species and the fef/a phylogeny resolved all 13 of the new species (data not
shown). As the topologies of the single locus phylogenies for the tree datasets did not show any
conflicts, they were analysed in a concatenated alignment. The phylogenetic tree based on the
concatenated alignment resolved the 17 BRIP isolates into 13 well-supported and unique clades
(Fig. 1), which are described in this study as novel species.

Taxonomy

Curvularia beasleyi Y.P. Tan & R.G. Shivas, sp. nov. — MycoBank MB825449. Fig. 2a—d
Etymology: In recognition of Dr. Dean R. Beasley, an Australian plant pathologist, for
his dedication and numerous innovative contributions to the curation and promotion of the

Queensland Plant Pathology Herbarium (BRIP).

Colonies on PDA approx. 4 cm diam. after 7 d at 25 °C, surface funiculose, margin fimbriate,
olivaceous black. Hyphae subhyaline, smooth to branched, septate, up to 3 um in width.

Fig. 1. Phylogenetic tree based on maximum likelihood analysis of the combined multilocus alignment.
RAxML bootstrap values (bs) greater than 70 % and Bayesian posterior probabilities (pp) greater than
0.7 are given at the nodes (bs/pp). Novel species names are highlighted in blue. Ex-type isolates are
marked with a T. The outgroup is Bipolaris maydis ex-type strain CBS 136.29.
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Conidiophores branched, erect, straight to flexuous, geniculate towards apex, brown, paler
towards apex, smooth, septate, up to 110 um long, 4 um wide; basal cell swollen and darker
than the other cells, up to 6 um diam. Conidiogenous cells integrated, terminal or intercalary,
sympodial, pale brown, smooth, with darkened scars. Conidia fusiform, straight to slightly
curved, rounded at the apex, (14—) 26-29 (-34) x (5-) 6.5-7.5 (-9) um, brown to dark brown,
3—7 (mostly 5)-distoseptate. Hila conspicuous, slightly protuberant, thickened and darkened,
1-1.5 um wide.

Specimens examined: AUSTRALIA, Queensland, Beaudesert, from leaf spot on Chloris
gayana, 9 Jan. 1974, J.L. Alcorn (BRIP 10972 holotype, includes ex-type culture); Atherton,
from leaf spot on Leersia hexandra, 1 May 1987, J.L. Alcorn (BRIP 15854, includes culture).

Notes: Curvularia beasleyi is placed in the same clade as C. dactyloctenii, C. hawaiiensis and
C. nodosa (Fig. 1). Curvularia dactyloctenii and C. hawaiiensis have been recorded in Australia
(Sivanesan 1987, Tan et al. 2014), but the recently described C. nodosa has only been reported
from Thailand (Marin-Felix et al. 2017b). Curvularia beasleyi is distinguished in two loci from
the ex-type cultures of C. dactyloctenii (99 % in gapdh and 99 % in tefla), C. hawaiiensis
(98 % in gapdh and 99 % in tefla) and C. nodosa (99 % in gapdh and 99 % in tefla). The
conidia of C. beasleyi are longer than those of C. nodosa (12-25 pm, Marin-Felix et al. 2017b)
and shorter than those of C. dactyloctenii (3255 um, Sivanesan 1987). Curvularia beasleyi is
morphologically similar to C. hawaiiensis, however the later species has never been recorded
on Leersia (Farr and Rossman 2018).

Curvularia beasleyi is only known from Queensland on two unrelated grasses, the introduced
host Chloris gayana and the native Leersia hexandra. There are many Curvularia species
reported as associated with Chloris spp. (C. australiensis, C. australis, C. hawaiiensis, C.
lunata, C. nodosa, C. pallescens, C. tsudae, C. variabilis, C. verruculosa) (Sivanesan 1987,
Deng et al. 2014, Manamgoda et al. 2014, Marin-Felix et al. 2017b) and Leersia spp. (C.
australiensis, C. geniculata, and C. heteropogonicola) (DAF Biological Collections 2018, Farr
and Rossman 2018, Herbarium Catalogue 2018), although not all of the reports have been
verified by molecular phylogenetic analyses.

Curvularia beerburrumensis Y.P. Tan & R.G. Shivas, sp. nov. — MycoBank MB825450. Fig.
2e—i

Etymology: Named after the town Beerburrum, where the holotype was collected.
Colonies on PDA approx. 2 cm diam. after 7 d at 25 °C, surface funiculose, margin fimbrillate,

olivaceous black. Hyphae subhyaline, smooth to asperulate, branched, septate, 3—4 pum in
width; chlamydospores intercalary in chains, 4-9 um, smooth, thick-walled. Conidiophores

Fig. 2. Curvularia beasleyi (ex-holotype BRIP 10972): a colony on PDA b—c¢ conidiophores and
conidia d conidia. Curvularia beerburrumensis (ex-holotype BRIP 12942) e colony on PDA f
chlamydospores g conidiophore h—i conidia. Curvularia boeremae (ex-holotype IMI 164633) j colony
on PDA k conidiophores 1 conidia. Curvularia coatesiae (ex-holotype BRIP 24261) m colony on PDA
n conidiophores o conidia. Scale bars: 1 cm (a, e, j, m); all others — 10 pum.
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erect, straight to flexuous, geniculate towards apex, subhyaline to pale brown, smooth, septate,
up to 500 um long, 5—6 pm wide. Conidiogenous cells integrated, terminal or intercalary, with
sympodial proliferation, pale brown to brown, smooth, mono- or polytretic, with darkened
scars. Conidia fusiform to subcylindrical or clavate, straight to slightly curved, rounded at the
apex, (40-) 51-56 (-71) x (10—) 12—13 (—14) um, subhyaline to pale yellowish-brown, 2—4
(mostly 3)-distoseptate. Hila mostly inconspicuous or minutely thickened and darkened.

Specimens examined: AUSTRALIA, Queensland, Beerburrum, from blackened inflorescence
of Eragrostis bahiensis, 24 May 1979, J.L. Alcorn (BRIP 12942 holotype, includes ex-type
culture); New South Wales, Yetman, blackened inflorescence of Eragrostis sororia, 12 May
1977, J.L. Alcorn (BRIP 12555, includes culture).

Notes: Curvularia beerburrumensis is phylogenetically sister to C. australis and C. ovariicola
(Fig. 1), which have both been recorded in Australia on Eragrostis (Sivanesan 1987, Tan et al.
2014). Curvularia beerburrumensis is distinguished from the ex-type culture of C. australis in
three loci (98 % in ITS, 96 % in gapdh and 98 % in tefla). Furthermore, C. beerburrumensis
has larger conidia than C. australis (25—48 % 9.0—12.5 pum, Sivanesan 1987). Curvularia
beerburrumensis differs from the ex-type culture of C. ovariicola in three loci (99 % in ITS,
99 % in gapdh and 99 % in tefla). Curvularia beerburrumensis has longer conidiophores than
C. ovariicola (up to 325 pum, Sivanesan 1987). Curvularia beerburrumensis also produced
chlamydospores in culture, which are not known for C. australis and C. ovariicola.

Curvularia beerburrumensis is only known from inflorescences of the invasive South American
grass Eragrostis bahiensis, as well as the Australian native E. sororia (Simon and Alfonso 2011).
Other Curvularia associated with Eragrostis include C. australis, C. clavata, C. crustacea,
C. ellisii, C. eragrostidis, C. geniculata, C. kusanoi, C. lunata, C. miyakei, C. nodulosa, C.
ovariicola, C. perotidis, C. protuberata, C. ravenelii and C. verrucosa, (Sivanesan 1987, Farr
and Rossman 2018, Herbarium Catalogue 2018), although many of these reports are yet to be
verified by molecular phylogenetic analyses.

Curvularia boeremae (A.S. Patil & V.G. Rao) Y.P. Tan & R.G. Shivas, comb. nov. — MycoBank
MB825451. Fig. 2j-1

Basionym: Drechslera boeremae A.S. Patil & V.G. Rao, Antonie van Leeuwenhoek 42: 129.
1976.

Colonies on PDA approx. 3 cm diam. after 7 d at 25 °C, surface funiculose, margin fimbriate,
olivaceous green to citrine, velutinous with aerial mycelium. Hyphae subhyaline, smooth to
asperulate, branched, septate, 2-3 um in width. Conidiophores straight to flexuous, slightly
geniculate towards apex, uniformly subhyaline to pale brown, smooth, septate, up to 110 um long,
4 um wide. Conidiogenous cells integrated, terminal or intercalary, with sympodial proliferation,
pale brown to brown, smooth, mono- or polytretic, with darkened scars. Conidia broadly ellipsoidal
to oval, brown to dark brown, smooth, (42—) 4652 (-55) % (17-) 20-23 (-25) um, brown to dark
brown, 4—6-distoseptate. Hila protuberant, thickened and darkened, 23 um wide.

Specimen examined: INDIA, Poona, from leaves of Portulaca oleracea, 28 Apr. 1970, A.S.

Patil (IMI 164633 holotype, includes ex-type culture), (BRIP 13934 isotype, includes ex-type
culture).

98



Cryptic Curvularia species in Australia

Notes: Multilocus phylogenetic analyses placed the ex-type culture of D. boeremae within the
clade that includes C. lunata, the type species of the genus (Fig. 1). Curvularia boeremae differs
from C. neoindica in one locus (98 % identities in gapdh). Furthermore, C. boeremae has shorter
conidia than C. neoindica (27-65 pm, Manamgoda et al. 2014). Sivanesan’s (1987) synonymy
of Dreschlera boeremae with Bipolaris indica was based on similar conidial morphology and
is not supported by the phylogenetic analyses in this study.

Curvularia boeremae is only known from the type specimen on P. oleraceae and has not been
recorded in Australia. Curvularia portulacae is the only other species recorded on P. oleraceae
(Farr and Rossman 2018). Curvularia boeremae is morphologically distinct from C. portulacae,
which has comparatively long, cylindrical conidia (average 110 x 13 um, Rader 1948).

Curvularia coatesiae Y.P. Tan & R.G. Shivas, sp. nov. — MycoBank MB825452. Fig. 2m—o

Etymology: Named after Dr. Lindel (Lindy) M. Coates, an Australian plant pathologist in
recognition of her contributions to the study of post-harvest fruit pathology.

Colonies on PDA 6-7 cm diam. after 7 d at 25 °C, surface funiculose, floccose, olivaceous
black at the centre, olivaceous to grey olivaceous towards the edge, margin fimbriate. Hyphae
subhyaline, smooth to asperulate, septate, up to 3 um in width. Conidiophores erect, flexuous,
geniculate in the top half, uniformly brown, sometimes pale towards apex, septate, up to 190
um long, 4 um wide; basal cell sometimes swollen, up to 8 um diam. Conidiogenous cells
integrated, terminal or intercalary, with sympodial proliferation, pale brown, mono- or polytretic,
with darkened nodes. Conidia ellipsoidal to obovoid, asymmetrical, sometimes the third cell
from base is unequally enlarged, intermediate cells dark brown and usually verruculose, end
cells paler and less ornamented than central cells, (20—) 23-26 (-30) x (7-) 89 (-10) pm,
3-distoseptate. Hila protuberant, thickened and darkened, 1-2 pm wide.

Specimens examined: AUSTRALIA, Queensland, Eudlo, from rotted fruit of Litchi chinensis,
28 Jan. 1992, L. M. Coates (BRIP 24261 holotype, includes ex-type culture); New South Wales,
Alstonville, isolated from the air in a mango orchard, 11 Mar. 1991, G.1. Johnson (BRIP 24170,
includes culture).

Notes: Curvularia coatesiae is morphologically similar and phylogenetically related to a
reference culture of C. borreriae and the ex-type culture of C. pallescens (Fig. 1). Curvularia
coatesiae differs from the ex-type culture of C. pallescens in three loci: ITS position 439 (T);
gapdh positions 219 (C), 287 (C); tefla positions 43 (C), 257 (C), 259 (C). Although C. borreriae
and C. pallescens have been recorded in Australia, these have not been verified by molecular
phylogenetic analyses and there have been no additional records beyond the 1980s (Sivanesan
1987, Shivas 1989). Other species recorded from L. chinensis are C. geniculata, C. hawaiiensis,
C. lunata and C. pallescens (DAF Biological Collections 2018, Herbarium Catalogue 2018),
although not all the reports have been verified by molecular phylogenetic analyses.
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Curvularia colbranii Y.P. Tan & R.G. Shivas, sp. nov. — MycoBank MB825453. Fig. 3a—d

Etymology: Named after Dr. Robert (Bob) Chester Colbran (1926-2010), an Australian
nematologist and Director of the Plant Pathology Branch, Queensland Department of Primary
Industries, in recognition of his significant contributions to Australian plant pathology.

Colonies on PDA approx. 5 cm diam. after 7 d at 25 °C, surface funiculose, margin fimbriate,
olivaceous black, aerial mycelium white. Hyphae subhyaline, smooth, septate, up to 3 pm in width.
Conidiophores erect, flexuous, geniculate, uniformly pale brown to brown, smooth, septate, up to
145 um long, 4-6 pm wide, basal cell sometimes swollen, up to 8 pm diam. Conidiogenous cells
integrated, terminal or intercalary, with sympodial proliferation, pale brown to brown, smooth,
mono- or polytretic, with darkened scars. Conidia fusiform to subcylindrical with rounded apex and
obconical at the base, brown, end cells pale, (54-) 83-92 (—110) x (13—) 14-16 (—17) pm, brown
to dark brown, 6-9-distoseptate. Hila slightly protuberant, thickened and darkened, 1-2 pm wide.

Specimen examined: AUSTRALIA, Queensland, Brisbane, from leaf spot on Crinum zeylanicum,
11 Oct. 1976, R.C. Colbran (BRIP 13066 holotype, includes ex-type culture).

Notes: Curvularia colbranii is sister to C. boeremae, C. lamingtonensis (see this paper), C.
neoindica and C. portulacae, although separated by a considerable genetic distance (Fig. 1).
Curvularia colbranii has fusiform to subcylindrical conidia that are distinct from the ellipsoidal
to oval conidia of C. boeremae (42-55 x 17-25 um, this study) and C. neoindica (27-65 x
17-27 pm, Manamgoda et al. 2014) and longer than those of C. lamingtonensis (45-76 x 11-14
um, this study). Curvularia colbranii has conidia that are 6-9-distoseptate, while C. portulacae
has conidia reported as 3—15 celled (Rader 1948).

Only one other species, C. trifolii, has been reported on Crinum sp. (Shaw 1984), but this
record has not been verified by phylogenetic analyses. Curvularia colbranii is morphologically
distinct from C. trifolii, which has curved conidia.

Curvularia eragrosticola Y.P. Tan & R.G. Shivas, sp. nov. — MycoBank MB825454. Fig. 3e-h
Etymology: Named after Eragrostis, the grass genus from which this fungus was isolated.

Colonies on PDA approx. 2 cm diam. after 7 d at 25 °C, surface funiculose, margin fimbriate,
dark olive with white patches, velutinous with some aerial mycelium. Hyphae subhyaline,
smooth, branched, septate, 4—5 um wide; chlamydospores abundant, subglobose to ellipsoidal
or irregular, terminal and intercalary, 5—20 um diam. Conidiophores erect, straight to flexuous,
slightly geniculate, pale brown to brown, paler towards apex smooth, septate, up to 145 pm long,
4-5 um wide. Conidiogenous cells integrated, terminal or intercalary, sympodial, pale brown to

Fig. 3. Curvularia colbranii (ex-holotype BRIP 13066): a colony on PDA b conidiophore c¢—d
conidia. Curvularia eragrosticola (ex-holotype BRIP 12538) e colony on PDA f conidiophore g
chlamydosphores h conidia. Curvularia kenpeggii (ex-holotype BRIP 14530) i colony on PDA j
conidiophores and conidium k conidia. Curvularia lamingtonensis (ex-holotype BRIP 12259) 1 colony
on PDA n conidiophore n conidia. Scale bars: 1 cm (a, e, i, 1); all others — 10 um.
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brown, smooth, with darkened scars. Conidia hemi-ellipsoidal, curved, asymmetrical, brown to
dark brown, end cells slightly paler, (25—-) 26-30 (—34) % (9—) 13—15 (-19) um, 3-distoseptate
with a faint narrow median septum. Hila non-protuberant, minutely thickened and darkened.

Specimen examined: AUSTRALIA, New South Wales, Yetman, from inflorescence on
Eragrostis pilosa, 12 May 1977, J.L. Alcorn (holotype BRIP 12538, includes ex-type culture).

Notes: Curvularia eragrosticola is phylogenetically close to C. papendorfii and C. sporobolicola
(see this paper) (Fig. 1). Curvularia eragrosticola is distinguished in three loci from the ex-type
culture of C. papendorfii (97 % in ITS, 92 % in gapdh and 98 % in tefla) and C. sporobolicola
(98 % in ITS, 92 % in gapdh and 98 % in tefla). Curvularia eragrosticola has conidia that are
smaller than C. papendorfii (30-50 x 17-30 um, Sivanesan 1987) and C. sporobolicola (3445
X 14-23 pm, this study).

Curvularia eragrosticola is only known from the type specimen on Eragrostis pilosa, which
is native to Eurasia and Africa and is considered a troublesome weed in Australia (Simon &
Alfonso 2011). Neither C. papendorfii nor C. sporobolicola have been reported on Eragrostis.
Other Curvularia spp. associated with Eragrostis are listed in the notes for C. beerburrumensis.

Curvularia kenpeggii Y.P. Tan & R.G. Shivas, sp. nov. — MycoBank MB825455. Fig. 3i—k

Etymology: Named after Dr. Kenneth G. Pegg AM (member of the Order of Australia), in
celebration of his 60 years of dedication to plant pathology in Australia and to thank him for his
generous mentorship.

Colonies on PDA 3—4 cm diam. after 7 d at 25 °C, surface funiculose, margin fimbriate, floccose
and olivaceous black at the centre with white patches, velutinous with some aerial mycelium.
Hyphae hyaline, asperulate, branched, septate, 4—5 um in width. Conidiophores erect, straight
to flexuous, slightly geniculate in the upper part, pale brown to brown, sometimes paler towards
the apex, verrucose, septate, up to 360 um long, 4—5 um wide, basal cell sometimes swollen, up
to 8 um. Conidiogenous cells integrated, terminal or intercalary, with sympodial proliferation,
pale brown to brown, smooth, mono- or polytretic, with darkened scars. Conidia ellipsoidal
to clavate to obovoid, asymmetrical, third cell from the base is unequally enlarged, brown,
end cells paler, verruculose, (31-) 35-39 (-42) x (10-) 13—14 (—15) um, 3-distoseptate. Hila
protuberant, thickened and darkened, 1-2 pm wide.

Specimen examined: AUSTRALIA, Queensland, from mouldy grain of Triticum aestivum, 26
Oct. 1984, J.L. Alcorn (BRIP 14530 holotype, includes ex-type culture), (IMI 290719 isotype).

Notes: Curvularia kenpeggii is only known from the holotype specimen and is genetically
distinct from all other Curvularia species (Fig. 1). Curvularia kenpeggii is basal to a clade
comprised of C. australis, C. beerburrumensis, C. crustaceae, C. miyakei, C. ovariicola, C.
ravenellii and C. ryleyi. These species are mostly reported as pathogens of Eragrostis and
Sporobolus spp. and not known to be associated with wheat (7riticum aestivum). Curvularia
species associated with 7. aestivum in Australia are C. brachyspora, C. harveyi, C. hawaiiensis,
C. lunata, C. perotidis, C. ramosa and C. spicifera, (Shivas 1989, Farr and Rossman 2018),
although not all the reports have been verified by molecular phylogenetic analyses.
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Curvularia lamingtonensis Y.P. Tan & R.G. Shivas, sp. nov. — MycoBank MB825456. Fig.
3l-n

Etymology: Named after the locality, Lamington National Park, where the holotype was
collected.

Colonies on PDA cover the whole plate after 7 d at 25 °C, surface funiculose, margin fimbriate,
olivaceous green, velutinous with some aerial mycelium. Hyphae hyaline, branched, septate, 4
um in width. Conidiophores erect, straight to flexuous, geniculate towards apex, pale brown to
dark brown on wheat straw agar, septate, up to 160 pm long, 3—4 um wide. Conidiogenous cells
integrated, terminal or intercalary, sympodial, pale brown to brown, smooth, with darkened
scars. Conidia ellipsoidal to fusiform, straight, pale brown, (45—) 59—66 (-=76) x (11-) 11.5-13
(-=14) pm, 4-11-distoseptate with inconspicuous transverse septa. Hila protuberant, thickened
and darkened, 1-2 pum wide.

Specimen examined: AUSTRALIA, Queensland, Lamington National Park, from Microlaena
stipoides, 9 May 1977, J.L. Alcorn (BRIP 12259 holotype, includes ex-type culture).

Notes: Curvularia lamingtonensis is phylogenetically closely related to C. boeremae and C.
neoindica. Curvularia lamingtonensis is distinguished from the ex-type culture of C. boeremae
in two loci (96 % in ITS and 98 % in gapdh) and from the ex-type culture of C. neoindica in
three loci (95 % in ITS, 98 % in gapdh and 99 % in tefla). Curvularia lamingtonensis has
longer and straighter conidia than C. boeremae and C. neoindica, both of which have broad,
ellipsoidal conidia (42-55 x 20-23 pum, and 27-65 x 17-27 um, respectively). Curvularia
lamingtonensis is only known from the type specimen on Microlaena stipoides. This is the first
record of a Curvularia species associated with Microlaena.

Curvularia mebaldsii Y.P. Tan & R.G. Shivas, sp. nov. — MycoBank MB825457. Fig. 4a—c

Etymology: Named after the collector, Martin Mebalds, in recognition of his contributions to
Australian plant pathology and biosecurity.

Colonies on PDA approx. 5 cm diam. after 7 d at 25 °C, surface funiculose, margin fimbriate,
olivaceous black with white patches, velutinous with some aerial mycelium. Hyphae hyaline
to subhyaline, smooth to asperulate, septate, 3—4 um wide. Conidiophores erect, straight to
flexuous, sometimes slightly geniculate towards apex, branched, uniformly brown, paler at
apex, smooth to asperulate, septate, up to 180 um long, 4-5 um wide. Conidiogenous cells
integrated, terminal or intercalary, with sympodial proliferation, subhyaline to pale brown,
smooth, mono- or polytretic, with darkened scars. Conidia ellipsoidal to obovoid, sometimes
straight to slightly curved, rounded at the apex, (22—) 25-28 (-30) x (7-) 89 (-10) pm, pale
brown to brown, 3-distoseptate. Hila protuberant, thickened and darkened, 1-2 um wide.

Specimens examined: AUSTRALIA, Victoria, Hopetoun, from Cynodon transvaalensis, Apr.
1979, M. Mebalds (BRIP 12900 holotype, includes ex-type culture); New South Wales, Tweed
Heads, from necrotic leaf on Cynodon dactylon % transvaalensis, 10 Jun. 1983, G. Thomas
(BRIP 13983, includes culture).
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Fig. 4. Curvularia mebaldsii (ex-holotype BRIP 12900): a colony on PDA b conidiophores and conidium
¢ conidia. Curvularia petersonii (ex-holotype BRIP 14642) d colony on PDA e—f conidiophores and
conidium g conidia. Curvularia platzii (ex-holotype BRIP 27703b) h colony on PDA i conidiophores
j—k conidia. Scale bars: 1 cm (a, d, h); all others — 10 um.

Notes: The multilocus phylogenetic analyses showed that C. mebaldsii was sister to C. tsudae,
although separated by a considerable genetic distance (Fig. 1). Curvularia mebaldsii is
distinguished from the ex-type culture of C. tsudae in three loci (98 % in ITS, 97 % in gapdh
and 99 % in tefla). Morphologically, C. mebaldsii cannot be reliably separated from C. tsudae.
Curvularia mebaldsii is known from two specimens on Cynodon spp. Several Curvularia species
have been associated with Cynodon, including C. aeria, C. australiensis, C. brachyspora,
C. clavata, C. fallax, C. geniculata, C. hawaiiensis, C. inaequalis, C. lunata, C. pallescens,
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C. ramosa, C. senegalensis, C. spicata, C. spicifera and C. verruculosa (DAF Biological
Collections 2018, Farr and Rossman 2018, Herbarium Catalogue 2018), although these records
have not been verified by phylogenetic analyses.

Curvularia petersonii Y.P. Tan & R.G. Shivas, sp. nov. — MycoBank MB825458. Fig. 4d—g

Etymology: Named after Ron A. Peterson, an Australian plant pathologist, in recognition of his
contributions to tropical plant pathology.

Colonies on PDA approx. 5 cm diam. after 7 d at 25 °C, surface funiculose, olivaceous
black, velutinous with some aerial mycelium, margin fimbriate. Hyphae subhyaline, smooth
to asperulate, septate, up to 3 um in width. Conidiophores erect, straight to flexuous, rarely
branched, slightly geniculate, uniformly brown, sometimes pale brown at apex, smooth,
septate, up to 110 um long, 4 um wide. Conidiogenous cells integrated, terminal or intercalary,
with sympodial proliferation, pale brown to brown, smooth, mono- or polytretic, with darkened
scars. Conidia obovoid to ellipsoidal, straight to slightly curved, (15-) 17-19 (-21) x (5-) 5.5—
6 (—=7) um, brown, end cells pale, 3-distoseptate. Hila non-protuberant, thickened and darkened.

Specimen examined: AUSTRALIA, Northern Territory, Daly Waters, from leaf spot on
Dactyloctenium aegyptium, 20 Mar. 1985, R.A. Peterson (BRIP 14642 holotype, includes ex-
type culture).

Notes: The multilocus phylogenetic analyses placed C. petersonii sister to C. americana
and C. verruculosa, although separated by a considerable genetic distance (Fig. 1). Both C.
americana and C. verruculosa have been found in Australia (DAF Biological Collections 2018,
Herbarium Catalogue 2018). Curvularia petersonii is distinguished from the ex-type culture
of C. americana in two loci (94 % in ITS and 92 % in gapdh) and from a reference culture
of C. verruculosa in three loci (92 % in ITS, 92 % in gapdh and 98 % in tefla). Curvularia
petersonii has smaller conidia than C. americana (13-28 x 7-15 um, Madrid et al. 2014) and
C. verruculosa (20—40 x 12—17 pm, Sivanesan 1987).

Curvularia petersonii is only known from a single specimen on Dactyloctenium aegyptium in
the Northern Territory. Many Curvularia species have been associated with Dactyloctenium,
including C. clavata, C. dactyloctenicola, C. dactyloctenii, C. eragrostidis, C. lunata, C.
neergaardii, C. pallenscens and C. verruculosa (Sivanesan 1987, Manamgoda et al. 2014,
Farr and Rossman 2018, Herbarium Catalogue 2018, Marin-Felix et al. 2017b), although these
records have not been verified by phylogenetic analyses.

Curvularia platzii Y.P. Tan & R.G. Shivas, sp. nov. — MycoBank MB825459. Fig. 4h-k
Etymology: Named after Gregory (Greg) J. Platz, in recognition of his contributions to Australian
cereal plant pathology for the past 30 years, as well as his prowess as an international and
Queensland rugby league footballer.

Colonies on PDA approx. 2 cm diam. after 7 d at 25 °C, surface dark olivaceous green. Hyphae

subhyaline, smooth, septate, up to 3 um wide. Conidiophores erect, straight to flexuous,
geniculate towards apex, uniformly brown, sometimes pale brown towards apex, septate, up to
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75 um long, 5-6 pm wide, swollen at base, 8—10 pm. Conidiogenous cells integrated, terminal
or intercalary, with sympodial proliferation, pale brown to brown, smooth, mono- or polytretic,
with darkened scars. Conidia fusiform to narrowly clavate, brown, end cells sometimes paler,
(65-) 94-105 (—115) x (11-) 12.5-13.5 (-14) pum, 9-13-distoseptate. Hila non-protuberant,
thickened and darkened.

Specimen examined: AUSTRALIA, Queensland, Warwick, from leaf spot on Cenchrus
clandestinus, 24 Jan. 2001, G.J. Platz (BRIP 27703b holotype, includes ex-type culture).

Notes: The multilocus phylogenetic analyses indicated C. platzii was sister to C. hominis, C.
meuhlenbeckiae and C. pisi (Fig. 1). Curvularia platzii is distinguished in one locus from the
ex-type culture of C. hominis (97 % in tefla) and in two loci from the reference culture of C.
meuhlenbeckiae (99 % in gapdh and 99 % in tefla) and the ex-type culture of C. pisi (98 % in
gapdh and 99 % in tefla). Curvularia platzii differs from C. hominis, C. meuhlenbeckiae and
C. pisi, which have much shorter asymmetrical conidia with fewer septa (Madrid et al. 2014,
Marin-Felix et al. 2017a).

Curvularia platzii is only known from the holotype. The host, Cenchrus clandestinus (syn.
Pennisetum clandestinum), is a perennial grass with a worldwide distribution (Simon & Alfonso
2011). Other Curvularia species associated with C. clandestinus are C. lunata, C. nodulosa and
C. trifolii (Farr and Rossman 2018, Herbarium Catalogue 2017), although these records have
not been verified by phylogenetic analyses.

Curvularia reesii Y.P. Tan & R.G. Shivas, sp. nov. — MycoBank MB825460. Fig. Sa—c

Etymology: Named after Dr. Robert (Bob) G. Rees, an Australian plant pathologist, in recognition
of his extensive contributions to cereal pathology.

Colonies on PDA approx. 6—7 cm diam. after 7 d at 25 °C, surface funiculose, greenish-grey,
velutinous with some aerial mycelium, margin fimbriate. Hyphae hyaline, branched, septate,
3—4 pum in width. Conidiophores erect, straight to flexuous, slightly geniculate towards apex,
pale brown to brown, sometimes paler towards the apex, septate, up to 200 um long, 4-5
um wide. Conidiogenous cells integrated, terminal or intercalary, with sympodial proliferation,
pale brown to brown, smooth, mono- or polytretic, with darkened scars. Conidia ellipsoidal to
obclavate, straight, third cell from pore swollen, brown, end cells paler, smooth, (28—) 31-35
(=39) x (10-) 12—13 (-14) um, mostly 3 septate. Hila inconspicuous, sometimes darkened.

Specimen examined: AUSTRALIA, Queensland, Brisbane, isolated from air, 22 Jun. 1963,
R.G. Rees (BRIP 4358 holotype, includes ex-type culture).

Notes: The multilocus phylogenetic analyses indicated C. reesii was sister to C. oryzae and
C. tuberculata. Curvularia reesii is distinguished in two loci from the ex-type cultures of C.
oryzae (98 % in gapdh and 99 % in tefla) and C. tuberculata (96 % in gapdh and 99 % in
tefla). Morphologically, C. reesii has conidia similar in size to C. oryzae (2440 x 12-22 um,
Sivanesan 1987) and C. tuberculata (23—52 % 13-20 pum, Sivanesan 1987). The isolate of C.
reesii examined in this study had become sterile.
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Fig. 5. Curvularia reesii (holotype BRIP 4358): a colony on PDA b conidiophore ¢ conidia. Curvularia
sporobolicola (ex-holotype BRIP 23040b) d colony on PDA e conidiophores f conidia. Curvularia
warraberensis (ex-holotype BRIP 14817) g colony on PDA h conidiophore i conidia. Scale bars: 1 cm
(a, d, g); all others — 10 um.

Curvularia sporobolicola Y.P. Tan & R.G. Shivas, sp. nov. — MycoBank MB825461. Fig. 5d—f
Etymology: Named after Sporobolus, the grass genus from which it was isolated.
Colonies on PDA approx. 6 cm diam. after 7 d at 25 °C, surface funiculose, margin fimbriate,

olivaceous black, velutinous. Hyphae subhyaline, smooth, branched, septate, 3 um wide.
Conidiophores erect, straight to flexuous, geniculate, pale yellowish-brown, septate, up to 55
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um long, 4-5 um wide, basal cell swollen, 6—10 um diam. Conidiogenous cells cylindrical,
slightly flared at the apex, integrated, sympodial, pale brown, smooth, with darkened and
thickened scars. Conidia hemi-ellipsoidal, curved, 4-distoseptate with a faint narrow median
septum, (34-) 37-41 (-45) x (14-) 17-20 (-23) um, brown to dark brown, end cells rounded
and paler. Hila non-protuberant, sometimes darkened.

Specimen examined: AUSTRALIA, Queensland, Musselbrook Reserve, leaf of Sporobolus
australasicus, 2 May 1995, J.L. Alcorn (BRIP 23040b holotype, includes ex-type culture).

Notes: Based on multilocus phylogenetic analyses, C. sporobolicola clustered sister to C.
papendorfii, which are both sister to C. eragrosticola (Fig. 1). Curvularia sporobolicola is
distinguished in three loci from the ex-type cultures of C. papendorfii (99 % in ITS, 96 % in
gapdh and 98 % in tefla) and C. eragrosticola (98 % in ITS, 92 % in gapdh and 98 % in tefla.).
These three species are similar in having dark brown, hemi-ellipsoidal, curved, conidia, which
makes identification by morphology difficult. The conidia of C. sporobolicola tend to be wider
than those of C. eragrosticola (25-35 x 9—19 pm, this study) and C. papendorfii (30-50 x 9—19
um, Sivanesan 1987).

Curvularia sporobolicola is only known from the type specimen on S. australasicus, which
is a native Australian grass with a broad distribution in the tropics and subtropics (Simon &
Alfonso 2011). Other Curvularia species associated with Sporobolus include C. australis, C.
crustacea, C. eragrostis, C. geniculata, C. lunata, C. ovariicola, C. pallescens, C. ravenelli and
C. ryleyi (Sivanesan 1987, Farr and Rossman 2018), although this is the first Curvularia species
associated with S. australasicus.

Curvularia warraberensis Y.P. Tan & R.G. Shivas, sp. nov. —- MycoBank MB825462. Fig. 5g—i

Etymology: Named after the locality, Warraber Island in the Torres Straits, where the specimen
was collected.

Colonies on PDA 6—7 mm diam. after 7 d at 25 °C, surface funiculose, margin fimbriate,
olivaceous green, velutinous with some aerial mycelium. Hyphae subhyaline, smooth, septate,
up to 3 um wide. Conidiophores erect, flexuous, geniculate towards apex, uniformly pale
brown to brown, septate, up to 360 um long, 4-5 um wide, basal cell sometimes swollen, 6—8
um diam. Conidiogenous cells integrated, terminal or intercalary, with sympodial proliferation,
pale brown to brown, smooth, mono- or polytretic, with darkened scars. Conidia ellipsoidal,
curved, the third cell from base swollen, end cells paler, smooth, (20-) 23-26 (-28) x (8-) 9.5—
11 pm, pale brown to brown, 3-distoseptate. Hila conspicuous, sometimes slightly protuberant,
thickened and darkened.

Specimen examined: AUSTRALIA, Queensland, Torres Strait, Warraber Island, from leaf spot
on Dactyloctenium aegyptium, 2 Jun. 1985, R.A. Peterson (BRIP 14817 holotype, includes ex-
type culture).

Notes: Multilocus phylogenetic analyses placed C. warraberensis sister to C. caricae-papayae

and C. prasadii (Fig. 1). Curvularia warraberensis differs from the ex-type culture of C. caricae-
papayae in gapdh positions 40 (C), 102 (C), 230 (A), 233 (C) and 321 (A) and from the ex-type
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culture of C. prasadii in two loci, gapdh positions 102 (C), 131 (C), 230 (A), 233 (C), 321 (A)
and teflo positions 214 (C), 337 (C), 542 (A), 543 (C), 685 (C). These three species belong
to the /unata-clade sensu Madrid et al. (2014), which also includes C. aeria, C. brachyspora,
C. chlamydospora, C. lunata and C. pseudolunata. All the species in the lunata-clade sensu
Madrid et al. (2014) have 4-celled conidia in which the third cell from the base is often swollen
(unequally sided and larger) and darker than the other cells. Curvularia warraberensis has
longer conidiophores than C. caricae-papayae (up to 100 um long, Srivastava and Bilgrami
1963) and longer conidia than C. caricae-papayae (12.8—18.0 x 6—8 um) and C. prasadii (12.8—
18.0 x 68 um, Mathur and Mathur 1959).

Curvularia warraberensis is only known from the holotype. Curvularia species associated with
Dactyloctenium are listed in the notes for C. petersonii.

DISCUSSION

Although the ITS locus is the universal barcode marker for fungi (Schoch et al. 2012),
secondary loci are often essential for the accurate identification of many helminthosporioid
species (Manamgoda et al. 2012, 2015, Madrid et al. 2014, Tan et al. 2014, 2016, Stielow et
al. 2015. Hernandez-Restrepo et al. 2018). The protein-coding loci of gapdh, teflo. and RNA
polymerase Il second largest subunit (rpb2) have been reported as phylogenetically informative
in the phylogenetic analyses of sequence data from species of Curvularia (Hernandez-Restrepo
et al. 2018, Manamgoda et al. 2014, Marin-Felix et al. 2017a, 2017b). In this study, sequences
of three loci (ITS, gapdh and tefla) from 17 cultures in BRIP were compared with those from
ex-type cultures as well as published reference cultures for species of Bipolaris and Curvularia.
The phylogenetic analyses of the concatenated three-locus dataset resolved the 17 BRIP isolates
into 13 novel Curvularia species.

Eight Curvularia species are described here from grasses (Poaceae) exotic to Australia, namely,
C. beasleyi on Chloris gayana, C. beerburrumensis on Eragrostis bahiensis, C. eragrosticola
on E. pilosa, C. kenpeggii on Triticum aestivum, C. mebaldsii on Cynodon dactylon x
transvaalensis, C. petersonii and C. warraberensis on Dactyloctenium aegyptium and C. platzii
on Cenchrus clandestinus. Only two species were described from native Australian grasses,
C. lamingtonensis on Microlaena stipoides and C. sporobolicola on Sporobolus australasicus.
Two species were described from other hosts, C. coatesiae from Litchi chinensis (Sapindaceae)
and C. colbranii from Crinum zeylanicum (Amaryllidaceae). One species, C. reesii, was
described from an isolate obtained from an air sample. Furthermore, DNA sequences derived
from ex-type cultures have supported the generic placement of C. neoindica and the transfer of
Drechslera boeremae to Curvularia.

It is not known whether the species described here are pathogens, endophytes or saprobes. It
is also unclear as to whether these species are native or introduced. Curvularia beasleyi and
C. beerburrumensis were both isolated from a native Australian grass species, as well as an
exotic host. Some grass species have been reported to be associated with multiple Curvularia
species, such as Chloris and Cynodon, with nine and 15 species, respectively. Many of the
published records on Chloris and Cynodon have not been verified by molecular analyses. The
number of new species described from non-Australian grasses indicates a need for a molecular-
based reassessment of previous host-species records. The description of these species provides
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a foundation upon which additional sampling and accumulation of molecular data will improve
knowledge of the host ranges and ecological roles of helminthosporioid fungi in Australia and
overseas.
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Chapter 6

Abstract

The Botryosphaeriaceae is one of the most widespread and cosmopolitan endophytic group
of fungi. However, the species of this group can cause severe disease when the hosts are
under stressful conditions. The aim of this study was to identify living cultures from the
Botryosphaeriaceae family preserved in the Queensland and Victorian Plant Pathology
Herbaria using DNA sequence analyses. The 51 isolates were collected between 1971 and 2017,
from 35 different host genera, with the dominant host genera being Mangifera (11 isolates),
Acacia (10), and Persea (5). Multilocus sequence analyses resulted in the re-identification of 41
isolates to the genera Botryosphaeria (2 isolates), Diplodia (4), Dothiorella (1), Lasiodiplodia
(19), and Neofusicoccum (15), as well as some that belonged to genera outside of the
Botryosphaeriaceae (10). New records for Australia were Botryosphaeria sinensis, Diplodia
alatafructa, Lasiodiplodia gonubiensis, Neofusicoccum cryptoaustrale, and N. mangroviorum.
These were identified as a result of a workshop organised by the Subcommittee on Plant Health
Diagnostics. The results of this study provide the fundamental information regarding the
diversity of Botryosphaeriaceae species present in Australian.

INTRODUCTION

The Botryosphaeriaceae (Dothideomycetes: Botryosphaeriales) includes 24 genera of
ecologically diverse fungi that occur as saprobes, endophytes or plant pathogens (Slippers et al.
2017, Yang et al. 2017). Some of these fungi are important pathogens of woody plant species,
causing dieback and stem cankers, especially in the tropics and subtropics. Several species
of Botryosphaeriaceae can remain as latent pathogens in localised infections for many years,
facilitating their global spread through trade in agricultural and forestry products (Burgess et al.
2016, Crous et al. 2016).

The accurate identification of Botryosphaeriaceae by DNA sequence data rather than relying
on morphological descriptions, provides the best means to halt their spread and reduce
the threat of these fungi. Recent taxonomic changes and the recognition of cryptic species
have made the identification of species in the Botryosphaeriaceae challenging. Phillips et
al. (2013) recommended that at least two loci, the internal transcribed spacer (ITS) region,
and the translation elongation factor 1-alpha (tefla), be used for species separation within
Botryosphaeriaceae. However, Slippers et al. (2013) recommended the use of four loci,
including the ITS region, tefla, beta-tubulin (fub), and the RNA polymerase II (rpb?2), as these
loci will provide sufficient resolution to distinguish cryptic species. The amplification of rpb2
is challenging and subsequently there is lack of data for comparisons (Slippers et al. 2013).

Recent research into grapevine trunk diseases has identified at least 14 Botryosphaeriaceae
species that impact Australian viticulture (Pitt et al. 2010, Wunderlich et al. 2011, Pitt et al.
2013, 2015,). Similarly, in Western Australia, many fungi that belong to Botryosphaeriaceae
have been associated with dieback of mango and forest trees (Sakalidis et al. 2011a, 2011b,
2013). Further information about the species of Botryosphaeriaceae elsewhere in Australia
must be treated with caution as it predates the recent molecular focussed taxonomic revisions.

Australian plant biosecurity is underpinned by the ability to accurately determine what pathogens
are present and established in Australia, in order to recognise pathogens that are exotic. National
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plant pest reference collections, such as the Queensland and Victorian Plant Pathology Herbaria
(BRIP and VPRI, respectively), play a crucial role in diagnostics by providing specimen-based
records of Australia’s plant pathogens. This information can be rapidly accessed by Australian
biosecurity practitioners through the Australian Plant Pathogen Database (Plant Health Australia
2001). In light of ongoing taxonomic revisions, there is a need for specimens in Australian
reference collections to be verified, as well as for the continued professional development of
Australian plant biosecurity diagnosticians. To this end, a workshop was held at the University
of Southern Queensland (2630 June, 2017) to provide training for 23 professional plant
pathologists on the latest developments in morphological and molecular methods for the
identification and classification of fungi in the Botryosphaeriaceae.

Materials and methods
Specimens and species identification

Living cultures of 51 specimens were sourced from the Queensland Plant Pathology Herbarium
(BRIP) and Victorian Plant Pathology Herbarium (VPRI) (Tables 1 and 2). Identification of the
specimens to species level required unambiguous DNA sequence reads that matched data from
the ex-type reference specimens on GenBank (Table 3).

DNA extraction, PCR amplification and phylogenetic analyses

Mycelia were collected from cultures grown on potato dextrose agar (Difco™, Becton, Dickinson
and Company) and macerated with 0.5 mm glass beads (Daintree Scientific) in a Tissue Lyser
(QIAGEN). Genomic DNA was extracted with the DNeasy Plant Mini Kit (QIAGEN) according
to the manufacturer’s instructions.

The primers V9G (de Hoog and Gerits van den Ende 1998) and ITS4 (White et al. 1990) were
used to amplify the ITS region of the ntDNA, and the amplification of the partial region of the
tefla locus was achieved by either the primer sets EF1-728F (Carbone & Kohn 1999) and EF2
(O’Donnell et al. 1998) or EF1-688F and EF1-1251R (Alves et al. 2008). All loci were amplified
with the Phusion High-Fidelity PCR Master Mix with HF Buffer (New England Biolabs). The
PCR mix included: 12.5 pL of Phusion Master Mix, 0.5 uL of 10 mM of each primer, and 1 uL.
of DNA template. Sterile water was used as no-template control. The amplification conditions
were as follows: initial denaturation of 98 °C for 30 secs, followed by 30 cycles of 98 °C for
10 secs, 55 °C for 30 secs, and 72 °C for 30 secs, and a final extension at 72 °C for 5 mins. The
amplified products were purified and sequenced by Macrogen Incorporated (Seoul, Korea).

All sequences generated were assembled using Geneious v. 9.1.8 (Biomatters Ltd.) and
deposited in GenBank (Table 2). These sequences were aligned with selected sequences of
ex-type or authentic representative Botryosphaeriaceae genera (Table 3) using the MAFFT
alignment algorithm (Katoh et al. 2009) in Geneious. Pseudofusicoccum stromaticum strain
CBS 117448 was included as the outgroup (Table 3). The sequences of each locus were aligned
separately and manually adjusted as necessary. Alignment gaps were treated as missing character
states and all characters were unordered and of equal weight. The Markov chain Monte Carlo
(MCMC) algorithm was used to create a phylogenetic tree based on Bayesian probabilities
using MrBayes v. 3.2.1 (Huelensbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003)
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in Geneious. To remove the need for a priori model testing, the MCMC analysis was set to
sample across the entire general time-reversible (GTR) model space with a gamma-distributed
rate variation across the sites. Five million random trees were generated using the MCMC
procedure with four chains. The sample frequency was set at 1000 and the temperature of the
heated chain was 0.1. Burn-in was set at 25 %, after which the likelihood values were stationary.
Maximum likelihood (ML) analysis was run using RAXML v. 7.2.8 (Stamatakis and Alachiotis
2010) in Geneious and started from a random tree topology. The nucleotide substitution model
used was GTR with a gamma-distributed rate variation.

RESULTS

All 51 isolates were successfully amplified for both ITS and fef/a and their sequence datasets
were analysed individually and in combination. The dataset contained 650 bp for the ITS region
and 420 bp for the fefla locus. The ITS and fefla alignments were trimmed to 525 and 333 bp,
respectively, and combined for phylogenetic analyses. The combined alignment was composed
of 859 characters from 144 isolates, of which 99 bp (18.9 %), and 99 bp (29.4 %) were variable
for ITS and tefla, respectively. Species identification was confirmed through careful analyses
of the combined ITS and tef/a sequence data.

Ten isolates that had been deposited as Botryosphaeria (1 isolate), Diplodia (4), and
Fusicoccum (5), were identified as non-Botryosphaeriaceae based on BLASTn search results
of the ITS sequences against the GenBank database (Table 1). The remaining 41 isolates that
had been deposited as Botryosphaeria (5), Dothiorella (7), Fusicoccum (2), Lasiodiplodia (8),
Neofusicoccum (5), and undetermined (9) were re-identified based on analyses of the combined
ITS and tefla sequences (Table 2, Fig. 1).

Seven of these re-identified isolates represent five new species records for Australia. One isolate
(BRIP 19781) obtained from Mangifera indica (Anacardiaceae) in Ayr, Queensland (Qld), was
identified as Botryosphaeria sinensis based on 100 % identity in the ITS and in the fefla to
the ex-paratype strain CGMCC 3.17723. One isolate (BRIP 52819a) obtained from Acacia sp.
(Fabaceae) in Brisbane, Qld, was identified as Diplodia alatafructa based on 100 % identity in
the ITS, and 99 % (1 single nucleotide polymorphism) identity in the tef/a to the ex-holotype
strain CBS 124931 (Fig. 1). Three isolates (BRIP 54897c, 58861, and 54897) obtained from
dead branches of Acmena smithii (Myrtaceae) and Lenwebbia lasioclada (Myrtaceae) in
Brisbane, as well as from Camellia sinensis (Theaceae) in northern Qld were identified as
Lasiodiplodia gonubiensis (Fig. 1). All three BRIP isolates differed from the ex-holotype strain
CBS 115812 by 1 single nucleotide polymorphism (SNP) in the ITS region, while the isolates
from C. sinensis (BRIP 54897¢c) and L. lasioclada (BRIP 58861) differed by 1 SNP in the tefla
sequence. An isolate (BRIP 63679) from a leaf of M. indica in Western Australia was identified
as Neofusicoccum cryptoaustrale based on 99 % (1 SNP) identity in the ITS region, and 99 %
(1 SNP) identity in the fef1a to the ex-type strain CBS 122813 (Fig. 1). An isolate (BRIP 57901)
obtained from Helianthus annuus (Asteraceae) in a sunflower screening trial at Gatton, QId,
most likely as an endophyte, was identified as N. mangroviorum based on 99 % identity (1 SNP)
in the ITS, and 99 % (2 SNP) identity in the fefla to the ex-type strain CMW 41365 (Fig. 1).

Furthermore, four isolates were clustered in three distinct taxa in the current phylogenetic tree
(Fig. 1). These isolates will remain as undescribed species as they require more loci sequences
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to support their introduction as novel species. One isolate (BRIP 24140) is a sister clade to B.
dothidea and B. sinensis, and differs from both species by 4 bp in fefla. Two other isolates
(BRIP 58042b and 58969), Lasiodiplodia sp., is a sister clade to L. iraniensis, L. jatrophicola,
and L. thailandica. Lasiodiplodia sp. differs from L. iraniensis by 2 bp in ITS and 7 bp in
tefla, from L. jatrophicola by 3 bp in ITS and 5 bp in tefla, and from L. thailandica by an 8
bp deletion in tef/a. The isolate, VPRI 13932, represents a distinct taxon in Dothiorella, and
differs from the other species by a 26 bp deletion in tefla.

DISCUSSION

Multilocus sequence analyses re-identified 41 isolates from the two herbaria into five genera
and 20 species, including 18 known species and three unknown species in Botryosphaeriaceae.
Five of these species, Botryosphaeria sinensis, Diplodia alatafructa, Lasiodiplodia gonubiensis,
Neofusicoccum cryoptoaustrale, and N. mangroviorum, are reported for the first time in Australia.
New hosts are reported for 14 species, namely B. sinensis, D. africana, D. alatafructa, D. seriata,
L. brasiliensis, L. gonubiensis, L. iraniensis, L. mahajangana, N. australe, N. cryptoaustrale,
N. mangroviorum, N. occulatum, N. parvum, and N. vitifusiforme.

Two Botryosphaeria species were identified in this study, B. sinensis and an undescribed
Botryosphaeria sp. Botryosphaeria sinensis was recently described from Juglans regia
(Juglandaceae), Morus alba (Moraceae), and Populus sp. (Salicaceae) in China (Zhou et al.
2016), as a sister taxon to B. dothidea. The isolate, BRIP 19781, from M. indica represents a
new species record for Australia, and a new host association.

Three Diplodia species, including D. africana, D. alatafructa and D. seriata, were identified in
this study. Diplodia africana was first described as a potential pathogen on Prunus spp. in South
Africa (Damm et al. 2007), and has since been found on Juniperus phoenicea (Cupressaceae) in
Italy (Alves et al. 2014). In this study, D. africana was identified on Pinus muricata (Pinaceae)
and Scaevola taccada (Goodeniaceae). Diplodia alatafructa was first described from a stem
wound on Pterocarpus angolensis (Fabaceae) in South Africa (Mehl et al. 2011), and has been
shown to cause stem lesions and vascular discolouration on Eriobotrya japonica (Rosaceae) in
Spain (Gonzéalez-Dominguez et al. 2017). The isolate of D. alatafructa (BRIP 52819a) from
Acacia sp. represents a new species record for Australia. Diplodia seriata has over 300 host
associations and is found worldwide (Farr and Rossman 2017). Despite its plurivorous nature,
the identification of D. seriata on Araucaria heterophylla (Araucariaceae) in Australia represents
an extension of its host family. Results of this study not only expand the host associations for
these three species, but also a new geographical location for D. alatafructa.

Seven Lasiodiploda species were identified in this study, L. brasiliensis, L. gonubiensis, L.
iraniensis, L. mahajangana, L. pseudotheobromae, L. theobromae, and an undescribed
Lasiodiplodia sp. Lasiodiplodia brasiliensis was originally described as a minor pathogen

Fig. 1. Phylogenetic tree based on maximum likelihood analysis of the combined ITS and tefio
alignment. RAXML bootstrap values (bs) greater than 70 % and Bayesian posterior probabilities (pp)
greater than 0.8 are given at the nodes (bs/pp). The outgroup is Pseudofusicoccum stromaticum ex-type
strain CBS 117448. New species reported in Australia and new host records are in bold.
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associated with stem-end rot of Carica papaya (Caricaceae) and of M. indica in Brazil (Marques
etal. 201, Netto et al. 2014). Since then, it has been isolated from other hosts in Brazil, including
Anacardium occidentale (Anacardiaceae), Annona squamosa (Annonaceae), Cocos nucifera
(Arecaceae), Spondias purpurea (Anacardiaceae), and Vitis vinifera (Vitaceae) (Cardoso et al.
2017, Correia et al. 2016, Coutinho et al. 2017, Netto et al. 2017, Rosado et al. 2015). It has also
been reported from other countries, including in Madagascar from Adansonia madagascariensis
(Malvaceae), in Thailand from Tectona grandis (Lamiaceae) and in Turkey from Fragaria x
ananassa (Rosaceae) (Cruywagen et al. 2017, Doilom et al. 2015). The isolate, BRIP 60182e,
from Gossypium hirsutum (Malvaceae) represents an extension of its host range. Lasiodiplodia
gonubiensis was originally described as an endophyte from Syzygium cordatum (Myrtaceae)
in South Africa (Pavlic et al. 2004), where it has subsequently been isolated from healthy
and/or diseased Bruguiera gymnorrhiza (Rhizophoraceae), Ceriops tagal (Rhizophoraceae),
Sclerocarya birrea subsp. caffra (Anacardiaceae), and Vachellia karroo (Fabaceae) in South
Africa (Jami et al. 2015, 2017, Osorio et al. 2017, Mehl et al. 2017). Lasiodiplodia gonubiensis
has also been reported from Adansonia digitata (Malvaceae) in Mozambique, Anacardium
humile (Anacardiaceae) in Brazil, and Phyllanthus emblica (Phyllanthaceae) in Thailand
(Cruywagen et al. 2017, Netto et al. 2017, Trakunyingcharoen et al. 2015). The isolates in this
study represent the first record of L. gonubiensis in Australia, as well as new host associations
for this species. Lasiodiplodia iraniensis has been isolated from various hosts in Iran, namely
Citrus sp. (Rutaceae), Eucalyptus sp. (Myrtaceae), Juglans sp. (Jualandaceae), M. indica,
Salvadora persica (Salvadoraceae), and Terminalia catappa (Combretaceae) (Abdollahzadeh et
al. 2010, Mohammadi et al. 2013). It has also been reported from A. digitata throughout central
and southern Africa (Cruywagen et al. 2017), 4. occidentale in Brazil (Netto et al. 2017), M.
indica in Australia, Brazil and Peru (Netto et al. 2017, Rodriguez-Galvez et al. 2017, Sakalidis
etal. 2011b), S. persica in Colombia (Urbez-Torres et al. 2012b), and Sclerocarya birrea subsp.
caffra (Anacardiaceae) in South Africa (Mehl et al. 2017). The isolate, BRIP 63318, from
Vaccinium sp. (Ericaceae) represents a new host association for L. iraniensis. Lasiodiplodia
mahajangana is predominantly associated with woody hosts in the southern Africa continent
(Begoude et al. 2010, Jami et al. 2017, Mehl et al. 2017, Phillips et al. 2013). The isolates in
this study represents expansion of its host range to include Annona reticulata (Annonaceae) and
Persea americana (Lauraceae), and an herbaceous host, Musa sp. (Musaceae).

Seven Neofusicoccum species were identified in this study, including N. australe, N.
cryptoaustrale, N. luteum, N. mangroviorum, N. occulatu, N. parvum and N. vitifusiforme.
Neofusicoccum australe has been reported from 73 different hosts mainly from countries
located in the southern hemisphere (Farr and Rossman 2017). Despite its plurivorous nature, the
identification of N. australe on Juglans sp. in this study represents an extension of its host range.
Neofusicoccum cryptoaustrale was first described as an endophyte from branches and leaves of
Eucalyptus trees in South Africa (Pavlic-Zupanc et al. 2013), where it has subsequently been
isolated from healthy and/or diseased Avicennia marina (Acanthaceae), Barringtonia racemosa
(Lecythidaceae), Bruguiera gymnorrhiza (Rhizophoraceae), Ceriops tagal (Rhizophoraceae),
Eucalyptus spp., Lumnitzera racemose (Combretaceae), Podocarpus henkelii (Podocarpaceae),
P. latifolius (Podocarpaceae), and Rhizophora mucronata (Rhizophoraceae) (Osorio et al.
2017, Pavlic-Zupanc et al. 2017). The isolate in this study represents the first record of M.
cryptoaustrale in Australia, as well as a new host association. Neofusicoccum mangroviorum
was isolated from symptomless branches of four genera of mangrove (Avicennia, Bruguiera,
Lumnitzera, and Rhizophora) and Mimusops caffra (Sapotaceae) in South Africa (Osorio et
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al. 2017, Jami et al. unpublished). The identification of this species on H. annuus represents
a new species record for Australia, and a new host association. Neofusicoccum occulatum
was first described from Eucalyptus spp. (Myrtaceae) and Wollemia nobilis (Araucariaceae),
as pathogens on stems of E. globulus (Sakalidis et al. 2011a). Neofusicoccum occulatum has
since been isolated from other woody hosts, such as Blepharocalyx salicifolius (Myrtaceae) in
Uruguay, Grevillea sp. (Proteaceae) in Uganda, Eucalyptus spp. in Hawaii, and V. vinifera in
Australia (Sakalidis et al. 2013). The identification of N. occulatum on Vaccinium sp. represents
a host new host association. Neofusicoccum parvum has been reported globally from over 150
different hosts (Farr and Rossman 2017). Despite its plurivorous nature, the identification of
N. parvum on Xanthostemon sp., a tree endemic only to north eastern QIld, represents a new
host association. Neofusicoccum vitifusiforme has a wide host range having been found to
cause, or be associated with, grapevine dieback in South Africa (van Niekerk 2004, who first
described and named this species Fusicoccum vitifusiforme), Spain (Luque et al. 2009), Mexico
(Candolfi-Arballo et al. 2010), USA (Urbez-Torres 2011) and Italy (Mondello et al. 2013); olive
(Olea europaea) drupe rot in Italy (Lazzizera et al. 2008, Urbez-Torres et al. 2012a); dieback of
stone-fruit trees (Prunus spp.) (Damm et al. 2007) and pome fruit trees (Malus and Pyrus spp.)
in South Africa (Cloete et al. 2011), and blight of blueberry (Vaccinium corymbosum) in China
(Kong et al. 2010). In this study, N. vitifusiforme was identified on leaves of Geijera salicifolia
(Rutaceae), which is native to dry rainforests in eastern Australia, and represents a new host
association.

Species in the Botryosphaeriaceae are spreading around the world, likely facilitated by
movement of plant material, including fruits. These fungi are virtually impossible to detect in their
endophytic state (Burgess et al. 2016). Even where symptoms are visible, biosecurity measures,
including quarantining plant material, must no longer rely on morphological identifications
and outdated taxonomy for this group of fungi (Crous et al. 2016). The re-identification of 41
isolates in this study based on phylogenetic analyses of the ITS and fefl/a loci demonstrates
the inadequacy of morphological characters for species level identifications. Ten isolates were
identified as not belong to Botryosphaeriaceae, which also illustrates the difficulties faced by
plant pathologists and plant diagnosticians even at the generic level. This has also shown to be
the case for Colletotrichum (Shivas and Tan 2009, Shivas et al. 2016), Fusarium (Summerell
et al. 2011), Phytophthora (Burgess et al. 2009), downy mildew (Shivas et al. 2012), and
powdery mildew (Cunnington et al. 2003). Thus, laboratory capability to identify these fungi
must be maintained and extensive reference collections supported if effective surveillance and
monitoring of the family is to continue.
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In the past decade, there has been an upsurge in the discovery of cryptic species and species
complexes in many taxonomic groups of fungal plant pathogens from around the world. This has
led to major taxonomic revisions for many important groups of plant pathogenic fungi. Some
examples are Alternaria (Woudenberg et al. 2013, 2014, 2015), Botryosphaeriaceae (Phillips et al.
2013, Slippers et al. 2013, 2014, Dissanayake et al. 2016), Cercospora (Groenewald et al. 2013),
Cladosporium (Bensch et al. 2010, 2012, 2015, 2018), Colleotrichum (Damm et al. 2012a, 2012b,
Weir et al. 2012, Damm et al. 2013, Crouch 2014, Damm et al. 2014, Liu et al. 2014, Damm et
al. 2019), Diaporthe (Thompson et al. 2011, Udayanga et al. 2011, Gomes et al. 2012, Udayanga
et al. 2014a, 2014b, 2015, Dissanayake et al. 2017), Elsinoé (Miles et al. 2015, Fan et al. 2017),
Endoraecium (McTaggart et al. 2015), Erysiphe (Takamatsu et al. 2013, 2015, Pastir¢akova et al.
2016, Takamatsu et al. 2016), Exserohilum (Herndndez-Restrepo et al. 2018), Fusarium (Aoki et
al. 2014, O’Donnell et al. 2015, Maryani et al. 2017), Macalpinomyces (McTaggart et al. 2012),
Microdochium and Monographella (Hernandez-Restrepo et al. 2016), Nectriaceae (Lombard et
al. 2010, Lombard and Crous 2012, Lombard et al. 2012, 2014a, 2015), Nigrospora (Wang et
al. 2017), Phoma (Aveskamp et al. 2010, de Gruyter er al. 2010, Chen et al. 2015), Phyllosticta
(Wikee et al. 2013), Pseudocercospora (Crous et al. 2013a), and Ustilago (McTaggart et al. 2012).

The upsurge in the discovery and classification of cryptic species has been directly attributed to a
taxonomic revolution that was a consequence of the adoption of DNA sequence-based techniques
and phylogenetic analyses in most taxonomic and diagnostic plant pathology laboratories
worldwide. Symbolically, the revolution began with the Amsterdam Declaration on Fungal
Nomenclature agreed at an international symposium convened in Amsterdam, the Netherlands,
19-20 April 2011 under the auspices of the International Commission on the Taxonomy of
Fungi (ICTF; Hawksworth et al. 2011). The purpose of the symposium was to address the
issue of whether the current system of naming pleomorphic fungi should be maintained or
changed since molecular data were increasingly available. The issue was considered urgent
as mycologists were following different practices, and there was a lack of consensus from the
Special Committee appointed in 2005 by the International Botanical Congress to provide advice
on the problem. The Amsterdam Declaration on Fungal Nomenclature recognised the need
for an orderly transition to a single-name nomenclatural system for all fungi, and to provide
mechanisms to protect names that would otherwise become endangered. The revolution was
won on 1 January 2012, when the changes to the set of rules that cover fungal nomenclature, i.e.
the International Code of Nomenclature for algae, fungi, and plants (ICN, McNeill et al. 2012),
which had been approved by the 18th International Botanical Congress in Melbourne, Australia
in July 2011, came into effect (Hawskworth 2011). These rule changes included the abolishment
of the dual nomenclatural system for fungi and its replacement by a system whereby one fungus
can only have one name, regardless of its biological (morphological) state. Furthermore, online
publications of new fungal and plant species were allowed.

Since 2012, a significant decrease in costs and improved molecular methods have accelerated
the incorporation of DNA sequence-based phylogenetic methods and analyses in taxonomic
studies. The changes to the ICN together with the increased understanding of systematic
relationships among fungi based on molecular phylogenetic methods have resulted in a large
number of taxonomic revisions in recent years. Although these name changes might have caused
confusion for plant pathologists and biosecurity agencies in the short term, the more accurate
application of names based on DNA sequence-based data will ensure long-term stability in the
taxonomy of all biological organisms.
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As the cost of next generation sequencing technologies has decreased over the last decade,
the number of fungal genomes that have been sequenced and made available has increased
significantly (Spatafora 2011, Aylward et al. 2017). The availability and analysis of fungal
genomes has enabled in silico predictions that provide an insight into the pathogenicity and
life style of the organism (as reviewed by Aylward et al. 2017). The information gathered from
analyses of fungal genomes is likely to affect the way biosecurity agencies assess the ability of
plant pathogens to infect host plants, establish in new locations, and cause detrimental economic
and environmental consequences.

In traditional taxon-based approaches to biosecurity, the focus has been on known and named
pathogens to the exclusion of those that were unknown or undescribed. It has been suggested
that this traditional approach may complement or even be replaced by the genes-based
approach to biosecurity, where the risk is assessed based on regions of the genome related to the
pathogenicity and/or life style, i.e. mating genes, pathogenicity genes and transposons (Crous
et al. 2016, McTaggart et al. 2016). An example of a genes-based approach to biosecurity is
illustrated by species formerly classified as Fusarium oxysporum f.sp. cubense (Foc), the causal
agent of Panama disease on bananas (Stover 1962, Maryani et al. 2019). Foc was divided
into 24 genotypes called Vegetative Compatibility Groups (VCGs) (Kistler et al. 1998). Some
diverse VCGs that were able to infect cultivars of Gros Michel (Musa AAA) and Lady Finger
(Musa AAB) were labelled as Race 1 (Ploetz 2006, Ordonez et al. 2016). However, the main
strain of economic concern was VCG 01213/16, also known as Tropical Race 4 (TR4), which
infects Cavendish cultivars (Musa AAA) and all cultivars suspectible to Race 1. In Australia,
TR4 was detected in the Northern Territory in 1997 (Conde and Pikethley 2001), and in
northern Queensland in 2015 (O’Neill et al. 2016). A recent study into the genetic diversity of
Foc in Indonesia identified nine independent lineages and formally described these as novel
species (Maryani et al. 2019). TR4 was classified as F. odoratissimum based on pathogenicity
on Cavendish cultivars, while Race 1 was separated into six species (F. grosmichelii, F.
duoseptatum, F. hexaseptatum, F. purprascens, F. phialophorum, and F. tardichlamydosporum)
based on pathogenicity to cultivars of Gros Michel only (Maryani et al. 2019).

The re-classification of Foc into nine species has implications for biosecurity and diagnostics in
all banana-producing countries, especially Australia. Identification of the fungus is fundamental to
prevention and management of this soil-borne pathogen. The most widely used molecular-based test
was designed around the intergenic spacer region of a poorly-defined species complex (Dita et al.
2010). This test was recently abandoned by Australian diagnostic and biosecurity agencies as being
unreliable because it was susceptible to false positives (McKillop 2016, Zonca 2016). The diagnostic
test adopted by most biosecurity agencies for Foc has traditionally been the the time-consuming
VCG test, which can take up to four weeks for a result. Other methods are currently in the pipeline
to facilitate rapid detection of TR4 strains, such as a molecular test based on pathogenicity genes
(Fraser-Smith et al. 2014) or high-throughput genome analyses (Ordonez et al. 2016). However,
these tests need re-evaluation considering the taxonomic revision of Foc (Maryani et al. 2019).

The seven Fusarium species from the Foc complex classified by Maryani et al. (2019) were
isolated from Musa hosts. It is now imperative that the identity of all F. oxysporum isolates in
the Australian plant pathology herbaria are re-evaluated to determine if there are alternate host
plants species. It is not known which of the six Fusarium species that now represent Race 1
are present in Australia, although Race 1 strains have been in Australia since 1876 (Bancroft
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1876, Pegg et al. 1996). The Australian reference culture collections of Foc will help determine
the distribution of these Fusarium species in Australia. This information may have important
implications for biosecurity regulations around the movement of plant material and agricultural
equipment across the Australian continent. The genes-based approach to biosecurity for exotic
or novel fungal plant pathogens of concern is only in its infancy, and uptake by biosecurity
agencies is some years away. Until then, an accurate identification system that underpins the
taxon-based approach is still needed in Australia.

In many countries, particularly in Australia, the accurate identification of plant pathogenic fungi
is important to national biosecurity agencies, which have a mandate to prevent, detect or delay
the introduction of exotic pests and pathogens. Hyde et al. (2010) highlighted the urgent need
for a re-assessment of fungal plant pathogens in Australia in order to preserve the effectiveness
of biosecurity measures. Lists of plant pathogens recorded in Australia have become outdated as
molecular methods uncover many new cryptic species and species complexes. Future revision of
Australian plant pathogens checklists and databases must be supported by herbarium material,
living cultures and DNA libraries (Hyde et al. 2010). Recent studies have started to reassess
plant pathogens in the Australian context, such as Botryosphaeriaceae (Billones-Baaijens et
al. 2018, Burgess et al. 2018, Tan et al. 2018), Colletotrichum (Shivas et al. 2016), Fusarium
(Summerell et al. 2011, Liew et al. 2016), and Phytophthora (Burgess et al. 2017).

In Australia, the three largest culture collections of plant pathogenic fungi collectively contain
over 30 000 strains. The largest of these collections is housed at the Queensland Plant Pathology
Herbarium (BRIP), Dutton Park, Queensland, and contains about 18 000 living fungal cultures
permanently preserved in a metabolically inactive state at ultra low temperature (-70 °C) in
a sterile solution of 15 % v/v glycerol. These strains are extremely valuable to the Australian
biosecurity system that relies on them as reference isolates when making decisions about
potential exotic incursions. The accurate identification of these reference isolates is paramount
to the protection of Australian agriculture and the environment from new plant diseases. Most
of these reference isolates have been collected over the past 50 years and were identified based
on morphology. However, many of the names of these isolates are unverified or inaccurate
because of DNA-based phylogenetic methods.

The research aim of this thesis was to establish whether cultures of plant pathogens held in
the major Australian culture collections were accurately and reliably identified (Chapter 1).
The BRIP holds particulary rich collections of Diaporthe, helminthosporioid fungi and
Botryosphaeriaceae. These taxonomic groups contain both endemic and exotic species that
were assembled mostly by plant pathologists working for the Queensland Government in the
past 50 years or even longer. The helminthosporioid collection was assembled by the mycologist
Dr. John L. Alcorn (former Curator of BRIP) who had become, at the turn of the twentieth
century, one of the foremost experts with these fungi by discovering and describing many new
taxa. However, Alcorn worked mostly in the pre-molecular era and he did not have the tools by
which species complexes could be resolved. The collections of Diaporthe, helminthosporioid
fungi and Botryosphaeriaceae held in the Queensland Plant Pathology Herbarium were chosen
for molecular taxonomic reassessment because of both the diversity and agricultural importance
(Chapters 2, 3, 4, 5 and 6). Molecular, morphological and phylogenetic methods were used to
determine and taxonomically resolve cryptic species and species complexes in these fungal
groups. The implication of these studies for Australia plant biosecurity are discussed below.
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Diaporthe

Diaporthe species (Sordariomycetes, Diaporthales, Diaporthaceae) are known as pathogens,
endophytes or saprobes on a wide range of host plants (Udayanga et al. 2011, Gomes et al.
2013, Udayanga et al. 2015, Dissanyake et al. 2017, Marin-Felix et al. 2019). More than one
Diaporthe species may be causal agents of the same disease (Thompson et al. 2011, Guarnaccia
et al. 2017, 2018), and a single Diaporthe species can be found on diverse hosts (Dissanayake
et al. 2017). Consequently, the identification of Diaporthe species based on host association and
morphology is not reliable. Recent studies have provided a multilocus backbone tree for species
delimination and inference (Dissanayake et al. 2017, Marin-Felix et al. 2019).

In Chapter 2, isolates that had been identified as belonging to Diaporthe sp. (syn. Phomopsis)
in the BRIP and the Victorian Plant Pathology Herbarium (Bundaroo, Vic, Australia) were
examined. Multilocus phylogenetic analyses revealed that the Australian isolates represented
six unique taxa (Tan et al. 2013). Diaporthe beilharziae, D. fraxini-angustifoliae and D.
litchicola, were described based on morphological and molecular characteristics. The other
three species, D. nothofagi, D. pascoei, and D. salicicola, were sterile under the conditions that
they were grown and did not produce any fruiting structures. Voucher specimens of D. pascoei
and D. salicicola from the original collections dating back to 1988 and 2007, respectively,
had pycnidia and conidia that allowed the completion of morphological descriptions. Strong
phylogenetic evidence based on multilocus sequence analyses supported the establishment of
D. nothofagi as a unique taxon, despite the absence of morphological characteristics.

The genus Diaporthe now includes 213 species that are supported by ex-type cultures and
DNA barcodes (Marin-Felix et al. 2019). Only 50 species of Diaporthe have been reported
in Australia, of which 26 were described from Australian specimens (Fig. 1) (Williamson et
al. 1994, van Niekerk et al. 2005, Crous et al. 2011, Thompson et al. 2011, Crous et al. 2012,
Gomes et al. 2013, Tan et al. 2013, Crous et al. 2015, Thompson et al. 2015). Two of the
species described in Chapter 2 have been subsequently reported outside of Australia, namely
Diaporthe fraxini-angustifoliae from Persea americana in Florida, USA (Shetty et al. 2016),
and D. litchicola from Cinchona calisaya in Indonesia (Radiastuti et al. 2016).

The data from Chapter 2 provided an insight into the hidden diversity of Diaporthe species
in Australian plant pathology herbaria. This apparent diversity is neither suprising nor unique
to Australia. The application of a multilocus phylogenetic approach has resulted in a rapid
increase in the description of novel species. Recent studies have uncovered multiple species
of Diaporthe from the same host plant species (Thompson et al. 2011, 2015, Santos et al.
2011, Huang et al. 2013, Lombard et al. 2014b, Gao et al. 2015, 2016, Udayanga et al. 2015,
Guarnaccia et al. 2016, 2017, 2018). In each of those studies, established species were identified
as well as novel species described. Some species appeared to be opportunistic pathogens found
on multiple hosts, such as D. foeniculina and D. novem (Santos et al. 2011, Gomes et al. 2013,
Udayanga et al. 2014b, Guarnaccia et al. 2017, Thompson et al. 2018).

The association of multiple species of Diaporthe with the same plant disease symptoms highlights
the importance of accurate, molecular-based identification of species of Diaporthe for plant
biosecurity. For example, stem canker on sunflower (Helianthus annuus) (Fig. 2a—b) caused by
D. helianthi has never been recorded in Australia. Diaporthe helianthi was first reported in the
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Diversity of plant pathogenic fungi
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Fig. 1. Species diversity of Bipolaris, Curvularia, Diaporthe and Botryosphaeriaceae. This graph
shows the total number of accepted species of each plant pathogenic fungal groups examined in this
thesis (blue column). Of this total number, the number of species reported in Australia (orange), and the
number of species described from Australian specimens (green).

former Yugoslavia in the early 1980s (Muntafiola-Cvetkovic” et al. 1981). A study of Diaporthe
isolates from sunflower stem canker in Australia revealed three novel species, including one,
D. gulyae, that caused sysmptoms of equal severity as the exotic D. helianthi (Thompson et al.
2011). Diaporthe gulyae has since been reported in North America from sunflower (Mathew
et al. 2015a, 2015b) and Glycine max (Mathew et al. 2018a). The existence of two species of
Diaporthe, one exotic and one established in Australia, that cause a severe sunflower stem
canker disease has implications for biosecurity and sunflower disease management (Mathew et
al. 2018b). The biosecurity implications are that an outbreak of sunflower stem canker disease
in Australia does not necessarily indicate an exotic incursion, and that molecular-based methods
must be used to determine the causal fungus. An implication for the management of sunflower
stem canker in Australia is that breeding programs that select resistant sunflower varieties must
ensure that plants are challenged with accurately identified Diaporthe species. It is not yet
known whether D. gulyae and D. helianthi have similar virulence profiles towards differential
sets of sunflower varieties. More recently, a third species, D. novem, has been reported to cause
sunflower stem canker in Australia (Thompson et al. 2018). This is significant as D. novem has
a broad host range and overwinters on plant debris (Gomes et al. 2013, Thompson et al. 2015,
Dissanayake et al. 2017).

Recent studies on the diversity of Diaporthe isolated from economically significant plants have
recognised several species including taxonomic novelties (Huang et al. 2013, Lombard et al.
2014b, Gao et al. 2015, 2016, Udayanga et al. 2015, Guarnaccia et al. 2016, 2017, 2018). For
example, D. citri was described as the cause of citrus melanose and stem-end rot (Fawcett
1912). The species concept of D. citri was resolved based on multilocus phylogenetic analysis
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Fig. 2. Disease symptoms. Stem canker on Helianthus annuus: a Diaporthe canker lesion on sunflower
stalk, b lodging of mature plants due to severe infection. Helminthosporioid infection on Poaceae: ¢
leaf spot on Arundinella sp., near Toowoomba, Queensland, d mouldy inflorescence on Sporobolus
sp., south-east Queensland, e leaf spot on Panicum sp., near Mareeba, Queensland. Botryospheriaceae
dieback of an Australian native plant: f Acacia harpophylla, near Marburg, Queensland.

Images supplied by S.M. Thompson (a—b), R.G. Shivas (c—¢), and D.J. Tree (f).

(Udayanga et al. 2014b) that enabled subsequent studies to determine the diversity of Diaporthe
on Citrus. A study from China identified D. citri and two novel species, D. citriasiana and D.
citrichinensis (Huang et al. 2013). A similar study in Europe identified three novel species (D.
infertilis, D. limonicola and D. melitensis), three known species (D. baccae, D. foeniculina
and D. novem), but did not find D. citri (Guarnaccia et al. 2017). Diaporthe citri is reported in
Australia (Simmonds 1966, Hyde and Alcorn 1993), although this does not appear to have been
verified by molecular methods. The Diaporthe species that are present on Cifrus in Australia
needs to be determined and verified in order to determine the exotic species. Once this is
done, the biosecurity risks that exotic species of Diaporthe pose to the Australian Citrus-based
industries can be assessed.

Helminthosporioid genera

In Chapters 3,4 and 5, the helminthosporioid genera Bipolaris and Curvularia (Dothideomycetes,
Pleosporales, Pleosporaceae) were taxonomically revised through the examination of cultures
held in the Queensland Plant Pathology Herbarium. Species of Bipolaris and Curvularia have
been associated with diseases on more than 60 host plant genera, mostly grasses (Poaceae)
(Fig. 2c—e) (Sivanesan 1987, Manamgoda et al. 2011, 2014, 2015, Marin-Felix et al. 2017a). In
the past, the identification of Bipolaris and Curvularia in Australia was based on the extensive
morphological studies by the Australian taxonomic mycologist Dr. John L. Alcorn, who was
the curator of the Queensland Plant Pathology Herbarium from 1960-1999. Most of the
helminthosporioid fungal isolates examined in these chapters had been collected and studied
by Alcorn (see Alcorn 1971, 1982a, 1982b, 1983, 1990, 1996, 1998, Sivanesan et al. 2003). As
Bipolaris and Curvularia share overlapping morphological characters, this approach has been
unreliable, and consequently many of Alcorn’s specimens remained undescribed.

In the past decade, molecular phylogenetic approaches have provided additional criteria that have
allowed the development of a stable taxonomy for the helminthosporioid genera (Manamgoda
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et al. 2012b). In Chapter 3, a molecular phylogenetic approach was applied to ex-type cultures
of 34 species Bipolaris and Curvularia to resolve or confirm their taxonomic status (Tan et
al. 2014). The phylogenetic analyses supported the transfer of nine species of Bipolaris to
Curvularia; the synonymy of four species; and linked the names of a further 20 species to
DNA barcodes. A new monotypic genus, Johnalcornia, was also introduced to accommodate
Bipolaris aberrans, as it did not belong to either Bipolaris or Curvularia as circumscribed
by Manamgoda et al. (2012b). The results from Chapter 3 stabilised the genera Bipolaris and
Curvularia by providing a multilocus backbone tree based on ex-type cultures. This was the
basis for the analyses of unidentified Bipolaris and Curvularia isolates in Chapters 4 and 5,
respectively.

In Chapter 4, 13 Bipolaris isolates from Australia were examined from BRIP. These had
been recognised by Alcorn as taxonomically interesting and potentially distinct according to
herbarium label annotations. The multilocus phylogenetic analyses supported the introduction
of eight new species of Bipolaris (Tan etal. 2016). Species of Bipolaris are commonly associated
with leaf spots, leaf blights and root rots on hosts in the Poaceae (grasses), and can also be
pathogens or saprobes on hosts from Anacardiaceae, Araceae, Euphorbiaceae, Fabaceae,
Malvaceae, Rutaceae and Zingiberaceae (Ellis 1971, Manamgoda et al. 2011, 2014). The eight
species of Bipolaris described by Tan et al. (2016) were all associated with grasses, although
it is unclear whether the fungal species were pathogens, endophytes or saprobes. Four of the
species, B. austrostipae, B. simmondsii, B. sivanesaniana, and B. woodii, were described from
native Australian grasses, while the other four, B. axonopicola, B. bamagaensis, B. shoemakeri,
and B. subramanianii, were described from introduced grass hosts.

In Chapter 5, 17 Curvularia isolates were examined from BRIP. The multilocus phylogenetic
analyses supported the introduction of 13 new species of Curvularia (Tan et al. 2018).
Curvularia is a species-rich genus of pathogens and saprobes associated with plants and
animals worldwide (Sivanesan 1987, Madrid et al. 2014, Manamgoda et al. 2015, Marin-
Felix et al. 2017a, b). Curvularia species have also been reported from substrates including air
(Almaguer et al. 2012, Hargreaves et al. 2013), aquatic environment (Verma et al. 2013, Sharma
et al. 2016) and soil (Manamgoda et al. 2011, Marin-Felix et al. 2017a). Eight of the species,
C. beasleyi, C. beerburrumensis, C. eragrosticola, C. kenpeggii, C. mebaldsii, C. petersonii,
C. platzii and C. warraberensis, were isolated from grass hosts exotic to Australia. Only two
species, C. lamingtonensis and C. sporobolicola, were described from native Australian grasses.
Two species were described from hosts in other families, C. coatesiae from Litchi chinensis
(Sapindaceae) and C. colbranii from Crinum zeylanicum (Amaryllidaceae). Curvularia reesii
was described from an isolate obtained from an air sample.

The genera Bipolaris and Curvularia now comprise of 38 and 77 accepted species, respectively,
which are supported by ex-type cultures and DNA barcodes (Hyde et al. 2017, Marin-Felix et
al. 2017a, b, Heidari et al. 2018, Hernandez-Restrepo et al. 2018, Liang et al. 2018, Tan et al.
2018). Thirty-four species of Bipolaris and 70 species of Curvularia have been reported in
Australia (Fig. 1) (Sivanesan 1987, Manamgoda et al. 2014). Of these, 17 species of Bipolaris
and 28 species of Curvularia were described from Australian specimens (Fig. 1, Table 1). This
represents the greatest number of Bipolaris and Curvularia species described from a single
country, followed by the USA (Table 1). The number of Australian taxa described may be
attributed to the intense taxonomic treatment by Alcorn (Alcorn 1982a, 1982b, 1983a, 1983b,
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Table 1. Accepted species of Bipolaris and Curvularia, summary of host and country of type specimens.

Taxon Host genus (type)  Poaceae host subfamily  Country
Bipolaris austrostipae Austrostipa Pooideae Australia
B. axonopicola Axonopus Panicoideae Australia
B. bamagaensis Dactyloctenium Chloridoideae Australia
B. bicolor Triticum Pooideae India

B. chloridis Chloris Chloridoideae Australia
B. clavata Dactyloctenium Chloridoideae Australia
B. coffeana Coffea Kenya
B. cookei Sorghum Panicoideae USA

B. crotonis Eleusine Chloridoideae Australia
B. cynodontis Cynodon Chloridoideae Italy

B. drechsleri Microstegium Panicoideae USA

B. gossypina Gossypium Kenyta
B. heliconiae Heliconia Australia
B. heaveae Hevea Sri Lanka
B. leersiae Leersia Oryzoidea USA

B. luttrellii Dactyloctenium Chloridoideae Australia
B. microlaena Microlaena Oryzoideae Australia
B. microstegii Microstegium USA

B. oryzae Oryza Oryzoidea Japan

B. panici-miliacei Panicum Panicoideae Japan

B. peregianensis Cynodon Chloridoideae Australia
B. pluriseptata Eleusine Chloridoideae Zambia
B. sacchari Saccharum Panicoideae India

B. saccharicola Saccharum Panicoideae unknown
B. salkadehensis Sparganium Orthoteliinae Iran

B. salviniae Melinis Panicoideae Australia
B. secalis Secale Pooideae Argentina
B. setariae Setaria Panicoideae Denmakr
B. shoemakeri Ischaemum Panicoideae Australia
B. simmondsii Zoysia Chloridoideae Australia
B. sivanesaniana Paspalidium Panicoideae Australia
B. sorokiniana (=B. multiformis)  Tribulus South Africa
B. stenospila Saccharum Panicoideae USA

B. subramanianii Setaria Panicoideae Australia
B. urochloae Urochloa Panicoideae UK
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Table 1. (Ctd).

Taxon Host genus (type)  Poaceae host subfamily  Country
B. variabilis Pennisetum Panicoideae Argentina
B. victoriae Avena Pooideae USA

B. woodii Paspalidium Panicoideae Australia
B. zeae Zea Panicoideae Australia
B. zeicola Zea Panicoideae USA
Curvularia aeria air Brazil

C. affinis unknown Indonesia
C. akaii unknown Japan

C. akaiiensis unknown India

C. alcornii Zea Panicoideae Thailand
C. americana Homo USA

C. asiatica Panicum Panicoideae Thailand
C. australiensis Oryza Oryzoidea Australia
C. australis Sporobolus Chloridoideae Australia
C. bannonii Jacquemontia USA

C. beasleyi Chloris Chloridoideae Australia
C. beerburrumensis Eragrostis Chloridoideae Australia
C. borreriae unknown Poaceae Thailand
C. bothriochloae Bothriochloa Panicoideae Australia
C. brachyspora soil India

C. buchloes Bouteloua Chloridoideae USA

C. carica-papayae Carica India

C. chiangmaiensis Zea Panicoideae Thailand
C. chlamydospora Homo USA

C. clavata Tripogonis Chloridoideae India

C. coatesiae Litchi Australia
C. coicis Coix Panicoideae Japan

C. colbranii Crinum Australia
C. crustacea Sporobolus Chloridoideae

C. cymbopogonis Cymbopogon Panicoideae Guatemala
C. dactyloctenicola Dactyloctenium Chloridoideae Thailand
C. dactyloctenii Dactyloctenium Chloridoideae Australia
C. ellisii air Pakistan
C. eragrosticola Eragrostis Chloridoideae Australia
C. eragrostidis Eragrostis Chloridoideae Congo
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Table 1. (Ctd).

Taxon Host genus (type)  Poaceae host subfamily  Country

C. geniculata Eragrostis Chloridoideae USA

C. gladioli Gladiolus Canada

C. graminicola Aristida Aristidoideae Australia

C. gudauskasii Zea Panicoideae USA

C. harveyi Triticum Pooideae Australia

C. hawaiiensis Oryza Oryzoidea USA

C. heteropogonicola Heteropogon Panicoideae India

C. heteropogonis Heteropogon Panicoideae Australia

C. hominis Homo USA

C. homomorpha Hordeum Pooideae USA

C. inequalis air France

C. intermedia Avena Pooideae USA

C. ischaemi Ischaemum Panicoideae Solomon
Islands

C. kenpeggii Triticum Pooideae Australia

C. kusanoi Eragrostis Chloridoideae Japan

C. lamingtonensis Microlaena Ehrhartoideae Australia

C. lunata Saccharum Panicoideae Indonesia

C. malina Zoysia Chloridoideae USA

C. mebaldsii Cynodon Chloridoideae Australia

C. micrairae Micraira Micrairoideae Australia

C. miyakei Eragrostis Chloridoideae Japan

C. muehlenbeckiae Sorghum Panicoideae USA

C. neergaardii Oryza Oryzoidea Ghana

C. neoindica Brassica India

C. nicotiae soil Algeria

C. nodosa Digitaria Panicoideae Thailand

C. nodulosa Eleusine Chloridoideae USA

C. oryzae Oryza Oryzoidea Vietnam

C. ovariicola Eragrostis Chloridoideae Australia

C. pallescens air Indonesia

C. papendorfii Acacia South Africa

C. perotidis Perotis Chloridoideae Australia

C. petersonii Dactyloctenium Chloridoideae Australia

C. pisi Pisum Canada
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Table 1. (Ctd).

Taxon Host genus (type)  Poaceae host subfamily  Country

C. platzii Cenchrus Panicoideae Australia

C. portulacae Portulaca USA

C. prasadii Jasminum India

C. protuberata Deschampsia Pooideae UK

C.pseudobrachyspora Eleusine Thailand

C. pseudolunata Homo USA

C. pseudorobusta Homo USA

C. ravenelii Sporobolus Chloridoideae Australia

C. reesii air Australia

C. richardiae Richardia Australia

C. robusta Dichanthium Panicoideae USA

C. ryleyi Sporobolus Chloridoideae Australia

C. sengalensis unknown Nigera

C. soli soil Papua New
Guinea

C. sorghina Sorghum Panicoideae Australia

C. spicifera unknown unknown

C. sporobolicola Sporobolus Chloridoideae Australia

C. subpapendorfii soil Egypt

C. trifolii Trifolium USA

C. tripogonis Tripogon Chloridoideae Australia

C. tropicalis Coffea India

C. tsudae Chloris Chloridoideae Japan

C. tuberculata Zea India

C. uncinata Oryza Vietnam

C. variabilis Chloris Chloridoideae Thailand

C. verruciformis Triticum Pooideae India

C. verruculosa Cycas India

C. warraberensis Dactyloctenium Chloridoideae Australia

Table compiled from Manamgoda et al. 2012, 2014, Marin-Felix et al. (2017a, 2017b), and Tan et al.

2018.
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1988, 1990, 1991) and Sivanesan (Sivanesan 1985, 1987, 1992, Sivanesan et al. 2003) over
decades. However, recent studies from the USA and Thailand have not uncovered as many
taxonomic novelties (Manamgoda et al. 2012a, 2014, Marin-Felix et al. 2017b). Most of the
Bipolaris and Curvularia species described from Australian specimens were associated with
native and exotic grasses from Chloridoideae and Panicoidea (Table 1), which contains most
of the grasses found in Australia (Simons and Alfonso 2011, Grass Phylogeny Working Group
I12012).

There is limited information about the host range and distribution of Australian Bipolaris and
Curvularia species. Some appear to be restricted to specific hosts, such as B. heliconiae on
Heliconia spp. (Alcorn 1996), and C. micrairae on Micraira subulifolia (Sivanesan et al. 2003).
The former species, B. heliconiae, is likely introduced and established as is its host plant species,
whilst the latter, C. micrairae, is certainly endemic. Other species found in Australia appear to
be more cosmopolitan, such as B. zeae and C. australiensis (Farr and Rossman 2018). It may be
that species of helminthosporioid fungi with restricted host range and distribution co-evolved
with their hosts. Alternatively, these species may have been simply overlooked or misidentified
because their morphological characters are indistinct. Given the unreliability of morphology as a
means to identify species of Bipolaris and Curvularia, DNA barcodes linked to ex-type cultures
are needed for accurate and reliable identification. Most information about the host range and
distribution of Bipolaris and Curvularia species from the literature and databases should be
considered doubtful unless they have been verified by molecular phylogenetic analysis. Chapters
4 and 5 uncovered novel taxa from historic collections, and it is likely that more taxonomic
novelties await discovery amongst the remaining 700 unexamined specimens of Bipolaris and
500 of Curvularia in Australian plant pathology herbaria and culture collections.

The descriptions of the newly recognised helminthosporioid species from Chapters 4 and 5 provide
a foundation upon which to base additional specimen sampling and accumulation of molecular
data. This will improve knowledge about host ranges and the ecological roles of helminthosporioid
fungi in Australia and overseas. This information will allow Australian biosecurity agencies to
better assess the risk that these fungi pose to agriculture and natural ecosystems.

Botryosphaeriaceae

The Botryosphaeriaceae (Dothideomycetes: Botryosphaeriales) has received little attention
from a plant biosecurity perspective in Australia and globally. Despite the on-going calls for better
regulation of the international trade in live plants to prevent the inadvertent introduction of pests
and pathogens (Hantula et al. 2014, Wingfield et al. 2015, Rouget et al. 2016), microorganisms
hidden within plants, seeds and soil are largely ignored (Burgess et al. 2016). Recent taxonomic
changes and the recognition of cryptic species have made the identification of species in the
Botryosphaeriaceae challenging (Phillips et al. 2013, Dou et al. 2017, Slippers et al. 2017). The
Botryosphaeriaceae comprises 24 genera of ecologically diverse fungi that occur as saprobes,
endophytes or plant pathogens (Slippers et al. 2017, Yang et al. 2017). Several of these fungi are
important pathogens of woody plant species, causing dieback and stem cankers, especially in
the tropics and subtropics (Fig. 2f). The accurate identification of Botryosphaeriaceae by DNA
sequence data rather than relying on morphological descriptions provides the best means to
identify these fungi and thereby halt their spread into new agricultural and natural ecosystems
(Burgess et al. 2016, Crous et al. 2016).
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In Chapter 6, 51 isolates from Botryosphaeriaceae preserved in BRIP and the Victorian Plant
Pathology Herbarium were examined. These isolates were collected from 1971-2017 from 35
different host genera. Priorto 2017, all of these isolates had been identified only by morphological
characters. Of these isolates, 41 isolates were re-identified based on multilocus phylogenetic
analyses, which demonstrated the inadequacy of morphological characters for species level
identifications. Ten isolates were identified as not belonging to Botryosphaeriaceae, which
also illustrates the difficulties faced by plant pathologists and plant diagnosticians even at
the generic level. Five of the species identified represented new records for Australia, namely
Botryosphaeria sinensis, Diplodia alatafructa, Lasiodiplodia gonubiensis, Neofusicoccum
cryptoaustrale and N. mangroviorum.

Only nine genera and 64 species of Botryosphaeriaceae have been recorded in Australia, of which
eight genera and 27 species were described from Australian specimens (Fig 1) (Dissanayake
et al. 2016, Burgess et al. 2018). This leaves 24 genera that contain 195 known exotic species
of cryptic Botryosphaeriaceae that pose a major challenge for biosecurity agencies. Several
species of Botryosphaeriaceae can remain within host plant tissues as latent pathogens. This
makes their detection particularly difficult as they can reside as benign endophytes or in localised
infections for many years, until casuing serious diseases when the plants are stressed (Slippers
and Wingfield 2007).

The spread of Botryosphaeriaceae has been facilitated in part by (i) the global demand in the
trade of live plants (Liebhold et al. 2012), (ii) the introduction of infected non-native plants
in novel environments (Burgess et al. 2016), and (iii) an ability to spread across a wide host
range (Slippers and Wingfield 2007, Slippers et al. 2017). Botryosphaeriaceae are not typically
transmitted by seed, but are mostly acquired from the environment as seedlings emerge
(Burgess and Wingfield 2002, Bihon et al. 2011). Current biosecurity measures in Australia for
the Botryosphaeriaceae, including the quarantine of plant material, rely on visual inspection
for disease symptoms, morphological identifications and outdated taxonomy. The application
of molecular-based methods for their detection will lead to better biosecurity decisions and
improved border protection. Current molecular-based and data aggregation technologies
already exist but are not widely used for biosecurity purposes, due to the lack of human capacity
development within the biosecurity framework (Gao and Zhang 2013, Crous et al. 2016,
Billones-Baaijens et al. 2018).

Conclusions and future directions

In this thesis, living cultures of isolates from four fungal groups, Bipolaris, Curvularia,
Diaporthe and Botryosphaeriaceae, were examined. In each case, it was shown that many
of the collection names used for these fungi were incongruent with modern taxonomy. In the

case of Bipolaris, Curvularia and Diaporthe, 21 novel species were uncovered and formally
described.

There are other genera of fungi that have recently been shown to contain species complexes
as well as containing species of biosecurity importance to Australia. These genera include
Alternaria (Woudenberg et al. 2013, 2014, 2015), Cladosporium (Bensch et al. 2010, 2012),
Pestalotiopsis (Maharachchikumbura et al. 2014), Phoma (Aveskamp et al. 2010, de Gruyter et
al. 2010), Phyllosticta (Wikee et al. 2013, Wong et al. 2013), and Mycosphaerellaceae (Videira
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Specimens in Australian Plant Pathology Herbaria
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Fig. 3. Specimens held in Australian plant pathogy herbaria. This graph shows the number of specimens
from six plant pathogenic genera held in five plant pathology herbaria across Australia. BRIP: Queensland
Plant Pathology Herbarium, Ecosciences Precinct, Queensland; DAR: New South Wales Plant Pathology
Herbarium, Orange, New South Wales; VPRI: Victorian Plant Pathology Herbarium, Bundoora, Victoria;
DNAP: Northern Territoriy Plant Pathology Herbarium, Berrimah, Northern Territory; WAC: Western
Australia Plant Pathology Reference Culture Collection, South Perth, Western Australia.

et al. 2017). Some of the agriculturally and environmentally important fungal species of
biosecurity concern in Australia include Alternatria humicola on field peas, Cladosporium allii
on onion, Pestalotiopsis palmarum on palms, Phoma tracheiphila on Citrus spp., Phyllosticta
cavendishii on Musa spp., Phyllosticta citrichinanensis on Citrus spp., and Pseudocercospora
fijiensis on Musa spp. These genera also require taxonomic reassessment in Australia, similar
to the studies reported in this thesis. Most of the specimens from these genera held in the major
plant pathology herbaria in Australia are unreliably identified or undetermined at the species
level (Figs. 3 and 4) (Plant Health Australia 2001). It is likely that all these specimens will
require re-assessment considering the recent taxonomic studies within these genera.

This thesis has provided a glimpse into the unique biodiversity of microfungi in Australia. It
has demonstrated that the collections of plant pathogenic fungi held in the major Australian
herbaria hold a high diversity of unique taxa at both the generic and species level. There is
still a need to re-identify and taxonomically re-assess the specimens held in these collections,
which are mostly unidentified, or unreliably identified, at the species level (Figs. 3 and 4). The
reference specimens in these collections underpin the Australian biosecurity system, which
currently relies on accurate and rapid identification of new incursions. It is only through the
combination of molecular and morphological approaches that plant pathogens in Australia
will be reliably identified. This in turn will preserve the effective role that biosecurity plays in
keeping unwanted plant pathogens out of Australia.
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Fig. 4. Distribution of specimens held in Australian plant pathology herbaria. This figure shows the
specimens that are undetermined at the species level from the five herbaria listed in Fig. 3.
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The internal transcribed spacer (ITS) region of the nuclear DNA was proposed as the primary
DNA barcode marker for fungi (Schoch et al. 2012). This gene region is now accepted by the
mycology community as the barcode marker for most fungal species (Vu et al. 2016, 2019),
with a few notable exceptions, including Fusarium (O’Donnell and Cigelnik 1997, O’Donnell
et al. 1998) and the Uredinales (Aime 2006). For some cryptic fungal groups, such as those
studied in this thesis, the ITS region is considered less than optimal for resolution of closely
related species, and a combination of ITS with secondary or tertiary, ‘group-specific’ DNA
barcodes is currently the most practical solution (Manamgoda et al. 2012b, Gomes et al. 2013,
Phillips et al. 2013, Stielow et al. 2015, Marin-Felix et al. 2017a, 2019).

Alhtough fungal DNA barcodes are currently useful for species identification, the real value
of these data collections will emerge once the complete genomes are obtained and analysed.
Genomic data has the potential to unlock information about function, such as secondary
metabolites, inference about ecological niche, the identification of pathogenicity factors,
transposable elements, as well as life cycle and population structure (McTaggart et al. 2016,
Aylward et al. 2017). In the future, biosecurity and plant health management systems may
rely on genomic information to identify pathogens of risk rather than the names of organisms
at species level (Crous et al. 2016, McTaggart et al. 2016). If the success of Australia’s plant
biosecurity is to continue to protect the economy and the environment from the impacts of
unwanted pests and diseases, then it must cease to rely on antiquated identification methods and
outdated taxonomy. Rather, it needs to employ current technologies based on modern taxonomic
revisions. Furthermore, the human capcity within biosecurity structures need continual
professional development to utilise this information. Above all else, for the Australian plant
biosecurity system to remain effective, it must elevate its gaze to the horizon for both potential
exotic invaders as well as to develop new methods in fungal classification and detection.
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Summary

Chapter one provides an insight into the multilayered Australian biosecurity system. One of the
layers of biosecurity activity is the ability to successfully diagnose unwanted and threatening
plant diseases. As such it relies heavily on knowing what pathogens are already present and
established in Australia. Much of what is present in Australia has yet to be resolved in light of
new molecular methods, particularly of important plant pathogenic fungal genera. The research
presented in thesis examines the taxonomy and biodiversity of some important plant pathogenic
fungi in the Queensland Plant Pathology Herbarium, which holds Australia’s largest collection
of fungal cultures.

In Chapter two of this thesis, six isolates identified as Diaporthe sp. (syn. Phomopsis sp.)
from the Queensland Plant Pathology Herbarium and the Victorian Plant Pathology Herbarium
were examined. The multilocus (ITS, tef/a and tub2) phylogenetic analysis revealed each of
these six isolates represented a unique taxon. Diaporthe beilharziae, D. fraxini-angustifoliae
and D. litchicola, were described on the basis of morphological and molecular characteristics.
The other three species, D. nothofagi, D. pascoei, and D. salicicola, were sterile under the
conditions that they were grown and did not produce any fruiting structures. Voucher specimens
from the original collections displayed pycnidia and conidia that allowed the completion of
morphological descriptions. Strong phylogenetic evidence based on multilocus sequence
analyses supported the description and establishment of D. nothofagi as a unique taxon, despite
the absence of morphological characteristics.

In Chapter three of this thesis, 45 isolates representing 34 species of Bipolaris and Curvularia
maintained in the Queensland Plant Pathology Herbarium and the Westerdijk Fungal Biodiversity
Centre were examined. The multilocus (ITS, gapdh, LSU, and fefla) phylogenetic analysis
validated the generic placement of 12 Bipolaris species, namely B. chloridis, B. clavata, B.
coffeana, B. crotonis, B. gossypina, B. heliconiae, B. luttrellii, B. panici-milacei, B. pluriseptata,
B. salvinae, B. secalis and B. zeae. The phylogenetic analysis also showed B. eleusines sensu
Alcorn and R.G. Shivas as a synonym of B. crotonis, and verified Dr. John L. Alcorn’s synonymy
of B. melinidis and Drechslera curvispora with B. salviniae. Eight species of Curvularia
were validated and supported by multilocus sequence analysis of ex-type cultures, namely C.
akaiiensis, C. bannonii, C. bothriochloae, C. harveyi, C. heteropogonicola, C. papendorfii,
C. richardiae and C. sorghina. Nine Bipolaris species were transferred to Curvularia, namely
C. australis, C. crustacea, C. dactyloctenii, C. homomorpha, C. neergaardii, C. nicotiae, C.
portulacae, C. ryleyi and C. tropicalis. To fix the application of the names, lectotypes were
designated for B. secalis and C. richardiae, and an epitype was designated for C. crustacea.
The phylogenetic tree showed that B. aberrans did not belong to either Bipolaris or Curvularia.
Therefore, a monotypic genus Johnalcornia, was introduced to accommodate it.

In Chapter four of this thesis, 13 unidentified Bipolaris isolates from the Queensland Plant
Pathology Herbarium were examined. These isolates, which were recognised by Dr. Alcorn
as taxonomically interesting and potentially distinct, were analysed against sequences of ex-
type or reference cultures available from currently accepted Bipolaris species based on three
loci, ITS, gapdh and tefla. The phylogenetic analyses of the combined three locus dataset
resolved the 13 BRIP isolates into eight novel Bipolaris species. The eight Bipolaris species
were all associated with grasses as hosts. Four of the species, B. austrostipae, B. simmondsii,
B. sivanesaniana and B. woodii, were described from native Australian grasses, while the other
four, B. axonopicola, B. bamagaensis, B. shoemakeri and B. subramanianii, were described
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from introduced grass hosts. The description of these species provides a foundation upon which
additional sampling and accumulation of molecular data will improve knowledge of their host
ranges and ecological roles.

In Chapter five of this thesis, 17 unidentified Curvularia isolates from the Queensland
Plant Pathology Herbarium were examined. These isolates were analysed against sequences
of ex-type or reference cultures available from currently accepted Curvularia species based
on three loci, ITS, gapdh and teflo. The phylogenetic analyses of the combined three-locus-
dataset resolved the 17 isolates into 13 novel Curvularia species. Eight species were described
from grasses exotic to Australia, namely C. beasleyi on Chloris gayana, C. beerburrumensis
on Eragrostis bahiensis, C. eragrosticola on E. pilosa, C. kenpeggii on Triticum aestivum,
C. mebaldsii on Cynodon dactylon % transvaalensis, C. petersonii and C. warraberensis on
Dactyloctenium aegyptium and C. platzii on Cenchrus clandestinus. Only two species were
described from native Australian grasses, C. lamingtonensis on Microlaena stipoides and C.
sporobolicola on Sporobolus australasicus. Two species were described from other hosts,
C. coatesiae from Litchi chinensis (Sapindaceae) and C. colbranii from Crinum zeylanicum
(Amaryllidaceae). One species, C. reesii, was described from an isolate obtained from an air
sample. Furthermore, the phylogenetic analysis of the ex-type culture of Drechslera boeremae
supported the transfer to Curvularia as a unique taxon, and rejects previous synonymy with B.
indica based on morphology.

In Chapter six of this thesis, 51 isolates identified as Botryosphaeriaceae preserved in the
Queensland Plant Pathology Herbarium and the Victorian Plant Pathology Herbarium were
examined. The 51 isolates were collected between 1971 and 2017, from 35 different host genera,
with the dominant host genera being Mangifera (11 isolates), Acacia (10), and Persea (5).
Multilocus sequence analyses re-identification 41 isolates into the genera Botryosphaeria (2
isolates), Diplodia (4), Dothiorella (1), Lasiodiplodia (19), and Neofusicoccum (15). Ten isolates
that had been identified as Botryosphaeria, Diplodia and Fusicoccum were identified as not
belonging to Botryosphaeriaceae, which illustrated the difficultures faced by plant pathologists
and plant diagnosticians even at the generic level. Five species are reported for the first time in
Australia, namely Botryosphaeria sinensis, Diplodia alatafructa, Lasiodiplodia gonubiensis,
Neofusicoccum cryptoaustrale, and N. mangroviorum. New plant host associations are reported
for 14 species, namely B. sinensis, D. africana, D. alatafructa, D. seriata, L. brasiliensis, L.
gonubiensis, L. iraniensis, L. mahajangana, N. australe, N. cryptoaustrale, N. mangroviorum,
N. occulatum, N. parvum and N. vitifusiforme. Furthermore, the multilocus phylogenetic tree
revealed a distinct taxon in each of the genera Botryosphaeria, Dothiorella and Lasiodiplodia.
These isolates remained undescribed as further DNA sequences were required to support
their introduction as novel species. The results of this study provide fundamental information
regarding the diversity of Botryosphaeriaceae species present in Australia.
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Samenvatting

Hoofdstuk één geeft inzicht in het meerlagige Australische bioveiligheidssysteem. Een van
de lagen van activiteit binnen dat bioveiligheidssysteem is het vermogen om met succes een
diagnose te stellen van ongewenste en bedreigende plantenziekten. Hierin is het sterk athankelijk
van de kennis van welke ziekteverwekkers reeds aanwezig en gevestigd zijn in Australi€. Over
veel van wat in Australié aanwezig is, moet nog uitsluitsel worden gegeven in het licht van
nieuwe moleculaire methoden, met name van belangrijke plantpathogene schimmelsoorten. Dit
proefschrift heeft getracht de taxonomie en biodiversiteit te beoordelen van culturen van enkele
van deze belangrijke plantenpathogene schimmels van Queensland Plant Pathology Herbarium,
de grootste verzameling van fytopathogene schimmels in Australié.

In Hoofdstuk twee van dit proefschrift worden zes isolaten, geidentificeerd als Diaporthe sp.
(syn. Phomopsis sp.) door het Queensland Plant Pathology Herbarium en het Victorian Plant
Pathology Herbarium, onderzocht. Uit de multilocus (ITS, tef1a en tub?2) fylogenetische analyse
bleek dat elk van deze zes isolaten een uniek taxon vertegenwoordigde. Diaporthe beilharziae,
D. fraxini-angustifoliae en D. litchicola, werden beschreven op basis van morfologische en
moleculaire kenmerken. De andere drie soorten, D. nothofagi, D. pascoei en D. salicicola,
waren steriel onder de omstandigheden waarin ze werden gekweekt en ze produceerden geen
vruchtstructuren. Voucher exemplaren uit de originele collecties vertoonden pycnidia en conidia
waarmee de voltooiing van morfologische beschrijvingen mogelijk was. Sterk fylogenetisch
bewijs, gebaseerd op multilocus sequentie-analyses, ondersteunde de beschrijving en de
vaststelling van D. nothofagi als een uniek taxon, ondanks de afwezigheid van morfologische
kenmerken.

In Hoofdstuk drie van dit proefschrift werden 45 isolaten onderzocht die 34 soorten Bipolaris
en Curvularia vertegenwoordigen die werden bewaard in het Queensland Plant Pathology
Herbarium en het Westerdijk Fungal Biodiversity Centre. De multilocus (ITS, gapdh, LSU
en tefla) fylogenetische analyse valideerde de generieke plaatsing van 12 Bipolaris soorten,
namelijk B. chloridis, B. clavata, B. coffeana, B. crotonis, B. gossypina, B. heliconiae, B. luttrellii,
B. panici-milacei, B. pluriseptata, B. salvinae, B. secalis en B. zeae. De fylogenetische analyse
toonde ook aan dat B. eleusines sensu Alcorn en R.G. Shivas synoniem zijn voor B. crotonis, en
dat dr. John L. Alcorn’s synonymie van B. melinidis en Drechslera curvispora met B. salviniae
klopte. Acht soorten Curvularia werden gevalideerd en ondersteund door multilocus sequentie-
analyse van ex-type culturen, namelijk C. akaiiensis, C. bannonii, C. bothriochloae, C. harveyi,
C. heteropogonicola, C. papendorfii, C. richardiae en C. sorghina. Negen Bipolaris-soorten
werden overgebracht naar Curvularia, namelijk C. australis, C. crustacea, C. dactyloctenii,
C. homomorpha, C. neergaardii, C. nicotiae, C. portulacae, C. ryleyi en C. tropicalis. Om de
toepassing van de namen definitief te maken, werden lectotypes aangewezen voor B. secalis
en C. richardiae, en een epitype werd aangewezen voor C. crustacea. De fylogenetische
boom liet zien dat B. aberrans niet tot Bipolaris noch tot Curvularia behoorde. Daarom is een
monotypisch geslacht geintroduceerd, Johnalcornia, om het een plaats te geven.

In Hoofdstuk vier van dit proefschrift werden 13 ongeidentificeerde Bipolaris-isolaten van
het Queensland Plant Pathology Herbarium onderzocht. Deze isolaten, die door dr. Alcorn als
taxonomisch interessant en potentieel afwijkend werden aangemerkt, werden geanalyseerd
tegen sequenties van ex-type of referentickweken die beschikbaar zijn van de momenteel
geaccepteerde Bipolaris-soorten op basis van drie loci, ITS, gapdh en tefla. De fylogenetische
analyses van de gecombineerde drie locus-gegevensverzamelingen plaatsten de 13 BRIP-isolaten
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in acht nieuwe Bipolaris-soorten. De acht Bipolaris-soorten werden allemaal geassocieerd met
grassen als gastheren. Vier van de soorten, B. austrostipae, B. simmondsii, B. sivanesaniana
en B. woodii, werden beschreven van inheemse Australische grassen, terwijl de andere vier,
B. axonopicola, B. bamagaensis, B. shoemakeri en B. subramanianii, werden beschreven van
geintroduceerde grasgastheren. De beschrijving van deze soorten vormt een basis waarmee,
met aanvullende monstering en accumulatie van moleculaire gegevens, de kennis over de
verscheidenheid van gastheren en ecologische rollen verbeterd kan worden.

In Hoofdstuk vijf van dit proefschrift werden 17 ongeidentificeerde Curvularia-isolaten
uit het Queensland Plant Pathology Herbarium onderzocht. Er zijn isolaten geanalyseerd
tegen sequenties van ex-type of referentickweken verkrijgbaar bij momenteel geaccepteerde
Curvularia-soorten op basis van drie loci, ITS, gapdh en teflo. De fylogenetische analyses
van de gecombineerde drie locus-datasets plaatsten de 17 isolaten in 13 nieuwe Curvularia-
soorten. Acht soorten werden beschreven van in Australi€ uitheemse grassen, namelijk C.
beasley op Chloris gayana, C. beerburrumensis op Eragrostis bahiensis, C. eragrosticola op E.
pilosa, C. kenpeggii op Triticum aestivum, C. mebaldsii op Cynodon dactylon x transvaalensis,
C petersonii en C. warraberensis op Dactyloctenium aegyptium, en C. platzii op Cenchrus
clandestinus. Slechts twee soorten werden beschreven van inheemse Australische grassen,
C. lamingtonensis op Microlaena stipoides en C. sporobolicola op Sporobolus australasicus.
Twee soorten werden beschreven van andere gastheren, C. coatesiae van Litchi chinensis
(Sapindaceae) en C. colbranii van Crinum zeylanicum (Amaryllidaceae). Eén soort, C. reesii,
werd beschreven uit een isolaat verkregen uit een luchtmonster. Bovendien ondersteunde de
fylogenetische analyse van de ex-type cultuur van Drechslera boeremae de overdracht naar
Curvularia als een uniek taxon en verwierp de vorige synonymie met B. indica op basis van
morfologie.

In Hoofdstuk zes van dit proefschrift werden 51 isolaten, geidentificeerd als Botryosphaeriaceae
en geconserveerd in het Queensland Plant Pathology Herbarium en het Victorian Plant
Pathology Herbarium, onderzocht. De 51 isolaten werden tussen 1971 en 2017 verzameld uit 35
verschillende gastheersoorten, waarbij de dominante gastheersoorten Mangifera (11 isolaten),
Acacia (10) en Persea (5) waren. De multilocus-sequentie analyses heridentificeren 41 isolaten
naar de genera Botryosphaeria (2 isolaten), Diplodia (4), Dothiorella (1), Lasiodiplodia (19)
en Neofusicoccum (15). Tien isolaten die waren geidentificeerd als Botryosphaeria, Diplodia
en Fusicoccum werden geidentificeerd als niet behorend tot Botryosphaeriaceae, wat de
moeilijkheden illustreert waarmee plantenpathologen en plantendiagnostici geconfronteerd
worden, zelfs op generiek niveau. Vijf soorten worden voor de eerste keer in Australié
gemeld, namelijk Botryosphaeria sinensis, Diplodia alatafructa, Lasiodiplodia gonubiensis,
Neofusicoccum cryptoaustrale en N. mangroviorum. Nieuwe plant-gastheer-associaties worden
gerapporteerd voor 14 soorten, namelijk B. sinensis, D. africana, D. alatafructa, D. seriata, L.
brasiliensis, L. gonubiensis, L. iraniensis, L. mahajangana, N. australe, N. cryptoaustrale , N.
mangroviorum, N. occulatum, N. parvum en N. vitifusiforme. Bovendien onthulde de multilocus
fylogenetische boom een duidelijk separaat taxon in elk van de genera Botryosphaeria,
Dothiorella en Lasiodiplodia. Deze isolaten blijven vooralsnog onbeschreven omdat verdere
DNA-sequenties nodig zijn om hun introductie als nieuwe soort te ondersteunen. De resultaten
van deze studie bieden fundamentele informatie over de diversiteit van Botryosphaeriaceae
soorten aanwezig in Australi€.
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