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Abstract 

Historically centred in the European and Asiatic countries, the ornamental stone 

production is currently one of the most important sectors for the Portuguese economy. In 

fact, Portugal is today one of the leaders in the production of natural stone worldwide, 

namely in the limestone and marble exploitation. The production increment over the last 

several years is related with the high quality of the carbonated stones existing in the 

Portuguese territory together with the Portuguese experience in stone manufacture, 

acquired since ancient times. 

In this context, colour is one of the most important visible aspects of natural stone, for 

the construction/restoration of new buildings and/or for Cultural Heritage preservation. 

Therefore, colour and discolouration of stone is currently an important research topic for 

the scientific community, where the association stone-colour-microorganism is still 

unexploited. 

This PhD aimed to determine the causes that affect the colour of Portuguese marbles 

and limestones. Therefore, several lithotypes of natural stone with high relevance for the 

Portuguese natural stone industry and for Cultural Heritage assets were selected and 

studied. In order to characterise discolouration phenomena, the processes of natural 

stones’ weathering were assessed, and the microbiota thriving on the stones was 

determined. The microorganisms’ contribution for the stone discolouration phenomena 

was evaluated through the execution of artificial ageing assays, under controlled 

environment. 

The results obtained allowed to identify the main chromophore components of the 

Portuguese carbonated stones studied. It was also finding and determined that the colour 

change occurred on the blue limestone is achieved through the natural weathering of 

pyrite, and this mechanism is accelerated when microorganisms are present. Regarding 

the cultural heritage assets study, it was finding that colour alterations of the stone are 

caused mainly by chemical and biogenic actions. 
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STONECOLOR: Cor de mármores e calcários comerciais – causas e alterações 

Resumo 

Tradicionalmente centrada nos países Europeus e Asiáticos, a produção de Pedra 

Ornamental tem-se tornado num dos mais importantes setores da economia Portuguesa. 

Portugal é hoje, de facto, um dos líderes ao nível mundial na produção de Pedra Natural, 

nomeadamente de calcários e mármores. O aumento na produção ao longo destes últimos 

anos está relacionada não só com a elevada qualidade das rochas carbonatadas que aqui 

se encontram, mas também com a experiência portuguesa no manuseamento da Pedra.  

A cor, neste contexto, é um dos aspetos visíveis mais importantes na Pedra Natural, 

tanto na construção/restauro de novos edifícios como na preservação de Património 

Cultural. Deste modo, a cor e a descoloração da Pedra tem-se tornado num dos 

importantes tópicos de investigação para a comunidade científica, onde uma das lacunas 

é a falta de associação pedra-cor-microorganismo. 

Com este projeto pretendeu-se contribuir para a compreensão das causas de cor em 

rochas carbonatadas portuguesas, como o calcário e o mármore, onde foram selecionados 

e estudados diversos litótipos de Pedra Natural com elevada relevância para a indústria 

da Pedra portuguesa e para o património cultural construído. Para caracterizar fenómenos 

de descoloração, foram estudados os processos de meteorização de rochas e foi 

determinado o estado de biocolonisação do material. O contributo dos microorganismos 

para o fenómeno de descoloração de Pedra foi avaliado através da execução de ensaios 

de envelhecimento artificial, sob ambiente controlado. 

Os resultados obtidos permitiram identificar os principais elementos cromóforos das 

rochas carbonatadas portuguesas estudadas. Foi ainda determinado que a alteração da cor 

no calcário azul é causada pela pela meteorização natural da pirite, e que este mecanismo 

é acelerado na presença de agentes microbianos. Relativamente ao estudo dos bens 

patrimoniais, foi determinado que as alterações cromáticas aqui presentes são sobretudo 

de origem química e biogénica. 

 

Palavras-chave:  

Pedra ornamental; Calcário; Mármore; Património Cultural; Cor; Alteração de cor; 

Meteorização natural; Biodeterioração; Agentes biodeteriogénicos; Diversidade 

microbiana; Microorganismos metabolicamente ativos.
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Aims and methodology 

Portuguese natural stone, namely limestone and marble, are currently very valuable in 

the national and international market. Since colour is one of the most important 

characteristics, it is necessary to develop new methodologies in order to keep the 

Portuguese natural stone at the forefront and, at the same time, to preserve and valorise 

the Cultural Heritage assets built of stone. 

The main goals of this PhD project comprise the determination of factors that can 

contribute to the colour acquisition in carbonated stones, the characterisation of colour 

change mechanisms in stone through inorganic and/or biogenic processes, and the 

association of colour change with microorganisms’ metabolic action. 

In this way, several types of Portuguese stone were selected, according with their 

importance for the Portuguese economy and Cultural Heritage. 

 

The methodology defined for this PhD intended: 

• To characterise limestones and marbles, in order to determine the causes for their 

colour and to understand and anticipate discolouration mechanisms through multi-

analytical approaches, using X-ray based methods like XRD, XRF and SEM-EDS; 

• To characterise colour change mechanisms on stone using X-ray based methods; 

• To identify alteration products in stones showing discolouration patterns, using X-

ray based methods and Raman spectrometry; 

• To assess the presence of metabolic active cells through the CVI determination (MTT 

cell viability); 

• To characterise the biocolonisers thriving on stones with discolouration patterns, 

using complementary methodologies, namely culture-dependent methods and 

molecular approaches; 

• To isolate the cultivable microbial population for further use in artificial ageing 

assays; 

• To evaluate the microbial proliferation capacity on stone, using SEM; 

• To evaluate the colour difference promoted on stone by natural weathering and 

biocolonisers; 

• To identify the main biodeteriogenic agents involved in stone deterioration and 

associate these agents with colour changes on stone. 
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This PhD thesis is composed by six chapters; an introductory chapter, four chapters 

dedicated to the results and discussion, and a final chapter presenting the main 

conclusions obtained during this project research. 

Chapter I describes the general aspects related to: a) the history of ornamental stone 

industry; b) the most important carbonated stones exploited in Portugal and their 

importance for the Portuguese economy; c) the typical mechanisms of weathering in 

ornamental stones; and d) the importance of colour and colour alteration for the 

ornamental stone industry and stone-built heritage. In Chapter II, the study of several 

limestones and marbles is presented with the aim to find the causes for their colour 

achievement using X-rays based analytical methods. Chapter III describes the colour 

alteration mechanism of a particular stone, which is actually one important lithotype for 

the Portuguese ornamental stone industry. Chapter IV is focused on the evaluation of the 

contribution of microbial contamination in the discolouration process of a particular stone 

lithotype, with the execution of ageing assays in stone slabs under controlled atmosphere. 

Chapter V presents two case studies in which stone is employed in artworks and 

monuments, and where the discolouration phenomena both by inorganic and biogenic 

ways were characterised. Finally, the concluding remarks and future perspectives are 

presented in Chapter VI, underlining the advantages of the methodologies used.
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1.1. Ornamental stones 

Stone is one of the oldest and more durable building materials used by humanity since 

ancient times (Göbekli Tepe, 10th-8th millennium BCE), being employed to construct 

impressive historic structures with the purpose to last for centuries or even thousands of 

years (Vasconcelos and Lourenço, 2009; Schmidt, 2011; Siegesmund and Snethlage, 

2011; Pereira and Marker, 2016). 

Until the 20th century, the availability of stone resources determined the appearance of 

entire cities. Without the transportation facilities that we have nowadays, nearby sources 

provided the stones to build important structures like castles, churches, and other 

buildings. Stones were transported over long distances only for exceptional cases 

(Siegesmund and Snethlage, 2011).  

The EN 12670 document (Natural Stone - Terminology, 2001) defined that natural 

building stones are natural resource rocks with a wide range of applications in the 

international market, such as construction, reconstruction and restoration of monuments 

and buildings. Properties like porosity, water absorption, flexural and compressive 

strength, and colour are the main characteristics of natural building stones (Siegesmund 

and Snethlage, 2011; Contrafatto and Cosenza, 2014; Kuprina et al., 2014), and these 

materials can be used for (Amaral et al., 2015) load bearing and floors (e.g. cladding 

panels) or for decorative purposes (e.g. sculptures).  

The exploitation of ornamental stone is done according with its purposes. Generally, 

the highest demands are required to produce decorative objects, where is expected a great 

homogeneity of stone’ characteristics, and as a result a very high price can be reached. 

On the other hand, gravestone sector generally requires a regular structural formation and 

petrography of the rock (Mosch, 2009). Over time, the methods of exploitation of natural 

stones have significantly changed. The quarrying techniques have been developed 

substantially during the industrialisation process, and nowadays drilling and cutting 

equipment is used in quarries on a daily basis. Thus, today it is possible to exploit very 

large blocks and further reduce the block size close to the quarry.  

Nevertheless, these materials can be differentiated into hard and soft rocks. Generally, 

soft rocks like sandstones or limestones are materials where mechanical processing is 

relatively easy, while hard rocks like granite or basalt are more difficult to process. 
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1.1.1. Types of ornamental stone 

Ornamental stones can be differentiated by their genesis conditions. Therefore, three 

main types of ornamental stone can be distinguished (Amaral et al., 2015) namely 

igneous, sedimentary and metamorphic. These three types of rock compose the geological 

rock cycle (Schon, 2015) which are interconnected (Fig. I-1). 

The igneous or magmatic rocks (granites for example) are formed in the mantle or 

at/near the surface, resulting from the cooling and solidification of magma deep in the 

earth’s crust. This type of rocks can be subdivided into plutonic (intrusive) and volcanic 

(extrusive) and are characterised by their texture, mineralogy and chemical composition 

(Bell and Pankhurst, 1979; Gill, 2010; Marks et al., 2011). On the other hand, sedimentary 

rocks are originated from weathering and erosion of original rocks. After transport the 

new sedimentary rocks are originated through the deposition of small particle or by 

precipitation of dissolved compounds from water through chemical and biological 

processes (Siegesmund and Snethlage, 2011; Schon, 2015). Finally, metamorphic rocks 

result from previously existing rocks (igneous, sedimentary or even metamorphic) that 

are subjected to high pressure and/or temperature that occur usually deep within the Earth 

(Bucher and Grapes, 2011). Metamorphism involves a change in the texture, mineralogy 

or chemical composition of the rock, that is caused by physical or/and chemical processes 

(Bucher and Grapes, 2011; Schon, 2015).  

 

 

Figure I-1. The geological rock cycle and the relationship between each type of rock (Siegesmund 

and Snethlage, 2011). 
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1.1.2. The international production of natural building stone 

The building stone industry is part of an important sector of the natural resource 

exploitation in several countries. The worldwide main exporters of natural stone are 

located in the Asian and European continents (Rana et al., 2016). About 92% of the 

natural stone world export is provided by 10 countries, which five are European (Fig. I-

2).  

 

Figure I-2. Leading countries on the world export of natural stones, in 2015. Source: Global 

Trade Atlas, processing by IMM. 

 

The main exporting countries of stone are able to sell more than 1 Mt/year of material 

in the international market. On the other hand, the list of importing countries is led by 

Germany, Italy, China and Spain (Rana et al., 2016). The process of globalisation enabled 

the availability of thousands of different kinds of natural building stone in the market 

(Duggal, 1998; Howe, 2001), and these numbers are still rising. 

The major European stone producers have direct connection with the Mediterranean 

Sea and have a long tradition in the use of this building material. 90% of the ornamental 

stone production in Europe is supported by southern European countries, including 

Portugal (Lo Vetro and Martini, 2016). Their regional geology and long tradition in the 

field of natural stone manufacture place these countries in a privileged position. 

Currently, Portugal is able to sell more than 2,5Mt/year of ornamental stone, which about 

1Mt is marble and limestone. However, in the last several years the European contribution 

for the worldwide natural building stone production has declined. This is mainly related 

with the enhancement of the stone processing capacities of countries like China, India, 

Brazil or South Korea, which are also characterised by distinctly lower labour costs 

(Terezopoulos, 2004; Zhou et al., 2015).  
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Over the last decades, the construction industry has started to replace some of these 

natural resources by other materials like concrete, steel, brick, glass or artificial stone. 

However, the natural building stone materials remain very popular all over the world. 

This is mostly due to their harmonious appearance, their variability of applications in the 

architecture (Fig. I-3) and their prestigious character, which is evident in many public 

buildings and sculptures (Fig. I-4). Even in modern architecture where other materials are 

dominant, it is the natural stones that will characterise the most emblematic and 

impressive buildings.  

 

 

Figure I-3. Applications of stones worldwide and their proportion (Siegesmund and Snethlage, 

2011). 

 

Regarding the several lithotypes existing, the calcareous stones are the most widely 

used, while other types such as siliceous stones exhibit less impact in the worldwide stone 

industry (Amaral et al., 2015; Careddu et al., 2018).  
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Figure I-4. Examples of several applications of stone: Temple made of limestone and marble, 

Évora, Portugal (a), marble sculpture, Vatican (b), marble sarcophagus, Lisbon, Portugal (c), 

limestone interior flooring, Vatican (d), and marble external cladding of a Roman Catholic 

basilica, Lucca, Italy (e).  

 

1.1.3. Portuguese ornamental stones 

Besides its relatively small territory, Portugal has a great geological diversity (Fig. I-

5). It is characterised by the presence of igneous, metamorphic and sedimentary rocks 

from the Neoproterozoic to the Cenozoic (Carvalho et al., 2012a). This diversity makes 

the country a notable place that offers a wide variety of geological resources, especially 

natural stone (Carvalho et al., 2012a; Barros et al., 2014; Emídio et al., 2014; Sousa, 2014; 

Silva and Leal, 2015).  
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Figure I-5. Main mining sites of Portuguese ornamental stones and their geologic units (Carvalho 

et al., 2012a). 

 

The continuous use of stone over the centuries allowed the acquisition of knowledge 

and experience that places Portugal within the main worldwide providers of stone-made 

work (Leite and da Silva, 2013; Lopes, 2016), including both contemporaneous 

architectonic productions and the manufacture and restoration of emblematic monuments. 

Recently, Lopes (2016) described some examples which demonstrate that Portuguese 

companies working with Portuguese stones are leaving footprints in monuments and 

buildings of worldwide reference, namely in Europe and Northern America. 
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1.1.3.1. Limestones 

In Portugal, limestones usually occur in coastal areas, namely in the Algarve and 

Lusitanian basins. The latter is where the main mining site for ornamental limestones is 

located (Carvalho and Lisboa, 2018) – the Estremenho Limestone Massif (“Maciço 

Calcário Estremenho” or MCE in Portuguese). This geomorphologic unit fits in the 

context of the Meso-Cenozoic Lusitanian Basin (Fig. I-6) and possesses a well-known 

lithostratigraphy that is composed by carbonated rocks tectonically upraised, dated to the 

Jurassic (Mesozoic) (Azerêdo, 2007; Carvalho et al., 2012b; Amaral et al., 2015). 

 

 

Figure I-6. Location of the Maciço Calcário Estremenho (MCE) in the context of the Meso-

Cenozoic Lusitanian Basin (adapted from Carvalho et al., 2012b). 

 

In this region, exploitation is carried out by several dozen quarries where limestones 

from two main lithostratigraphic units are exploited, the Moleanos and Pé da Pedreira 

Members, dated from the Middle Jurassic age. Nevertheless, limestones from other 

lithostratigraphic units, such as the Codaçal Member, and the Serra d’Aire and 

Montejunto Formations, are also exploited (Carvalho et al., 2012a; Carvalho et al., 2012b; 

Carvalho and Lisboa, 2018). In this region, the limestones’ exploitation had increased 

exponentially in the last decades of the last century, so its demand is relatively recent. 
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However, nowadays these stones are one of the most requested stones in Portugal, mainly 

by the Chinese market. The stratigraphic orientation and the simple geological structure 

make the exploitation of these materials very favourable. 

Most of limestones from the MCE are characterised by the presence of grains 

cemented by small amounts of translucid calcite, forming fine to coarse-grained 

calciclastic sparitic rocks (grainstones and rudstones). Its grains are composed of 

carbonate particles (intraclasts, ooliths or oncholiths) and skeletal fossil fragments of 

marine organisms. In the market, these materials are recognized by their high quality, 

conferred by their physical and mechanical properties (table I-1). Sintra, Pêro Pinheiro 

and Negrais are places where Cretaceous limestones are also extensively exploited for 

ornamental purposes, which the most traditional are Lioz, Amarelo Negrais, Encarnado 

Negrais, Encarnadão de Lameiras and Abancado (Carvalho et al., 2003). 

 

Table I-1. Main physical-mechanical properties of the most common Portuguese limestones 

exploited at the MCE (Carvalho et al., 2012a). 

 

Feature Variation range 

Compressive strength [MPa] 44 – 246 

Flexural strength under concentrated load [MPa] 4.4 – 23.4 

Apparent density [kg/m3] 2190 – 2710 

Open porosity [%] 0.1 – 16.5 

Water absorption at atmospheric pressure [%] 0.1 – 8.9 

Linear thermal expansion coefficient [x10-6/°C] 2.7 – 5.1 

Rupture energy [J] 2 – 5 

Abrasion resistance [mm] 17.5 – 28.0 

 

The exploitation of limestones in the Algarve region (Carvalho et al., 2012a) is done 

near the villages of Escarpão (Albufeira), Mesquita (S. Brás de Alportel) and Santo 

Estêvão (Tavira). The mining site of Escarpão is very strict and exploits a blueish grey 

limestone from the Late Jurassic that is used mainly for aggregates. Here, if some strata 

exhibit fewer fractures, the stone can be also mined for ornamental purposes. Around ten 

large exploitation centres are situated in the regions of Mesquita and Santo Estêvão, but 
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currently their activity is very limited. In these places, the variety of limestone exploited 

is known as Brecha Algarvia (Carvalho et al., 2013a), also dated from the Later Jurassic. 

Brecha Algarvia is a bioclastic and partially bio-edified limestone, and their breccia 

appearance is given by the presence of coarse elements and variations of greyish and 

reddish colourations (Carvalho et al., 2012a; Carvalho et al., 2013a). 

 

1.1.3.2. Marbles 

The major source of Portuguese marble is the famous geological structure known as 

Estremoz Anticline. The Estremoz Anticline, located in the Alentejo region within the 

Ossa-Morena Zone (Fig. I-7), is the main production centre of this material, displaying 

outcrop marbles with ornamental quality for over 27 km2 (Lopes, 2003; Brilha et al., 2005; 

da Fonseca et al., 2013; Lopes and Martins, 2014; Menningen et al., 2018). An anticline 

is characterised by the tectonic deformation of initially horizontal strata, forming an arch-

like shaped fold structure with the oldest rocks at its core. Along with MCE, the Estremoz 

Anticline shares the leading position in the production of ornamental stones in Portugal 

(Carvalho et al., 2003; da Fonseca et al., 2013; Carvalho and Lisboa, 2018).  

 

 

Figure I-7. The geographical location of the Estremoz Anticline, Portugal. 

 

The exploitation of marble here located is done since around 370 BC (Martins and 

Lopes, 2011; da Fonseca et al., 2013), and it is known that in the Roman Period the mined 

material had already been used for structural and decorative purposes. A great number of 

mining sites in the area provide phenomenal geological windows (Fig. I-8) that in some 

places can reach about 150 m in depth (Brilha et al., 2005; Carvalho et al., 2012a). 



State of the Art 

 

14 
 

Because of this historical and geological relevance, they are considered part of the 

Portuguese geological heritage (Brilha et al., 2005; Carvalho et al., 2012a).  

 

 

Figure I-8. Quarry located in the Estremoz Anticline. ®Nelson Cristo 

 

Despite the effects of the different Variscan Orogeny deformation phases (Lopes, 

2003; Carvalho et al., 2008) that strongly affect its exploitability, the importance of the 

production centre of the Estremoz Anticline is revealed by the existence of about 150 

quarries (Carvalho et al., 2012a). These quarries are distributed in 5 regions: Borba, 

Estremoz, Lagoa, Pardais, and Vigária. Lagoa, Pardais, and Vigária are in the 

municipality of Vila Viçosa. 

These marbles are characterised by fine to medium-grained texture and exhibit 

excellent mechanical and physical properties (Table I-2) and also unique aesthetic 

features. They exhibit a wide range of colours, from white to cream, pink, grey or black 

(Moura, 2007). The most valuable are the pure white and the pinkish varieties, whose 

large volumes can be exploited, thus placing Portugal at the forefront of the world marble 

production. 

Other regions such as Trigaches, Viana do Alentejo, Vila Verde de Ficalho and Serpa 

have small mining sites, where the potential of marble production is smaller when 

compared with those situated in the Estremoz Anticline. This is due to the higher degree 

of fracturation of the marble in these places (Carvalho et al., 2012a). The marble from 



Chapter I 

 

15 
 

Viana do Alentejo present a medium to coarse-grained texture and it is characterised by 

its green colour with typical dark green to brownish stripes. The marble from Trigaches 

present a very coarse-grained texture and have a grey colouration. Regardless of their 

importance, some of these mining sites are already out of service. 

 

Table I-2. Main physical and mechanical properties of the most common Portuguese ornamental 

marbles exploited at the Estremoz Anticline (Carvalho et al., 2012a). 

 

Feature Variation range 

Compressive strength [MPa] 52 – 141 

Flexural strength under concentrated load [MPa] 4.9 – 19.3 

Apparent density [kg/m3] 2710 – 2790 

Open porosity [%] 0.2 – 0.5 

Water absorption at atmospheric pressure [%] 0.0 – 0.2 

Linear thermal expansion coefficient [x10-6/°C] 4.1 – 14.0 

Rupture energy [J] 5 – 11 

Abrasion resistance [mm] 15.5 – 26.5 

 

 

1.2. Weathering and deterioration of natural stone 

Despite being considered one of the most resistant materials used in construction, 

stone, like any other building material, is also susceptible to deterioration processes 

(Franzoni et al., 2013; Sassoni and Franzoni, 2014; Rodrigues, 2015). There are several 

types of deterioration that can affect building stone, either mechanical, chemical or 

biochemical. In monuments and buildings, these processes are initiated and handled 

through the interaction between stone and exogenic factors like environmental conditions, 

pollution or organisms’ proliferation (Fitzner, 2004; Cutler and Viles, 2010; Graue et al., 

2013; Sassoni and Franzoni, 2014; Siedel and Siegsmund, 2014; Rodrigues, 2015). 
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1.2.1. Deterioration induced by mechanical processes 

In general, the mechanical damage in stone is the result of a strength that is above its 

mechanical resistance. Defective soil settlement, poor design of the buildings or 

catastrophic events are considered the main factors responsible for the strongest damages 

observed in buildings (Parisi and Augenti, 2013; Ozguven and Ozcelik, 2014; Saloustros 

et al., 2015). Other factors like growth of vegetation may result in the breaking of stone 

masonry, frequently seen in archaeological sites. 

Stone is not a good thermal conductor, which makes fire also a factor capable of 

inducing stress on it. In this case, the surface of the stone will expand causing a literal 

shattering, phenomenon also known as conchoidal fracture (Fig. I-9). The heat may also 

result in a change of the mineralogical composition that will increase the susceptibility of 

the material to deterioration (Dionísio et al., 2009; McCabe et al., 2010; Mendes et al., 

2012; Ozguven and Ozcelik, 2013; Kompaníková et al., 2014; Ozguven and Ozcelik, 

2014; Martinho et al., 2017; Martinho and Dionísio, 2018). 

 

 

Figure I-9. Examples of effects promoted by historic fires in stone-built structures. Granite 

pillars, Brazil (a), marble columns, Greece (b), church wall constructed with argillaceous 

sandstone, Argentina (c) (Siegesmund and Snethlage, 2011). 

 

Despite this, fire can also be used to finish stone, a process known as “flame-finish” 

that became popular in the 70’s because of its rustic appearance. This process may induce 

the formation of considerable fissures in the stone, increasing its capacity to absorb 

moisture (Grissom et al., 2000). 
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Vibrations can also induce mechanical stress in the stone that may be caused by traffic 

(e.g. airplanes and trains), machinery work, etc. These vibrations will induce alternating 

tensile and compressive forces in the building structures, and the effects will be higher 

for already cracked stones. Generally, vibration does not cause damage directly but 

certainly may increase the overall deterioration rate. 

Other factors must be considered for mechanical damage in stone, such as: 

a) thermal cycling (Yavuz et al., 2010; Smith et al., 2011; Shushakova et al., 2013; 

Andriani and Germinario, 2014; Ghobadi and Babazadeh, 2015), an abrupt modification 

of the stones’ temperature may result in its volume expansion/contraction when the 

temperature increases/decreases. This effect occurs commonly in calcite, dolomite, 

quartz, albite, gypsum, micas and clays, for example. Even without a wide variation in 

temperature, the repeated cycle of heating and cooling will eventually lead the 

deterioration of the stone over time. Regarding the common minerals that may compose 

stones, calcite is the only mineral that expands in one direction and contracts in the other 

(Winkler, 1994). Thus, limestones and marbles are the most susceptible to thermal 

cycling (Fig. I-10). This factor can lead to “sugaring”, a granular decohesion of the 

matrix, or to “bowing”, a deformation of stone slabs that is being studied more intensely 

due to the increasing use of stone for cladding (Siegesmund et al., 2008a; Siegesmund et 

al., 2008b; Menningen et al., 2018). Additionally, it is known that the presence of 

moisture enhances the deterioration effects caused by thermal cycling (Koch and 

Siegesmund, 2004); 

 

 

Figure I-10. Effects of thermal cycling for a calcite mineral. Calcite crystal composing the marble 

matrix (a), contraction and expansion upon heating (b) and cooling (c) (adapted from Siegesmund 

et al., 2004). 

 

b) Hygric and hydric swelling (Espinosa-Marzal et al., 2011; Berthonneau et al., 

2012; Charola and Wendler, 2015; Berthonneau et al., 2016), a change in the air relative 
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humidity, that affects more extensively the stones containing clays in its composition like 

sandstones and limestones, since their structure makes them particularly susceptible to 

retain moisture and to expand-contract processes. This phenomenon induces 

characteristic decay patterns like delamination parallel to the bedding layer and spalling 

(Rodriguez-Navarro et al., 1997; Sebastián et al., 2008). Different clay minerals have 

distinct capacities to adsorb water, and in some cases the crystalline swelling 

phenomenon can double its volume (Siegesmund and Snethlage, 2011). For the materials 

without clays or phyllosilicates in their composition, the hygric expansion results from 

the disjoining pressure. Nevertheless, it seems that thermal cycling can induce much 

stronger swelling than changes in relative humidity (Siegesmund and Snethlage, 2011); 

c) Crystal phase development (Gentilini et al., 2012; Vásquez et al., 2013; 

Serafeimidis and Anagnostou, 2014; Benavente et al., 2015), a formation and confined 

growth of new phases within empty spaces of building stones, that generates a pressure 

called “crystallisation pressure”. This could be considered the major mechanical damage 

mechanism in stones, having been first documented more than a century ago. Tensile 

stress within the solid matrix of the stone may be induced if these pressures are achieved 

in the pores of the stone and exceed the stone’s strength. Typical examples of this type of 

damage are the crystallisation of ice which may result from freeze-thaw cycles (Ruedrich 

et al., 2011; Freire-Lista et al., 2015; Martins et al., 2015) or the crystallisation of salts 

like sodium chloride (Desarnaud et al., 2016), calcium sulphates (Marszalek, 2016), etc. 

For many authors, the action of salts is considered the major threat that can cause 

deterioration of stone (Doehne, 2002; Rothert et al., 2007; Doehne and Price, 2010; 

Kramar et al., 2011; Ghobadi and Babazadeh, 2015), which can be reflected under 

deterioration patterns (Fig. I-11) like delamination, blistering, disintegration, scaling, 

alveolarisation and efflorescences. The alteration patterns will depend on the type of 

material and the conditions of the salt crystallisation, such as the amount of available 

water. 
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Figure I-11. Examples of effects of salt deterioration in buildings made of stone. Initial flaking 

(left block) and sanding following the bedding plane (right block) (a), scaling (b), alveolarisation 

(c) and salt efflorescence (d) (adapted from Siegesmund and Snethlage, 2011). 

 

The most important sources of salt enrichment in building materials are the deposition 

of salts from the atmosphere, namely sulphates and nitrates, anthropogenic air pollutants, 

sea spray from the marine environment, ground moisture and the use of alkaline materials 

(e.g. Portland cement, cleaning products or consolidation materials) (Vignati et al., 2010; 

Kloppmann et al., 2011; D’Agostino, 2013; Li et al., 2014). Sea salt particles, for some 

authors are considered the major cause of decay of monuments located in coastal sites 

(Zezza et al. 1995). This source can contribute with several ions, such as sodium, 

potassium, magnesium, chloride, calcium, and sulphate, where sodium and chloride are 

the major components, composing around 90 % of the sea salt spray (Kolev et al., 2013). 

On the other hand, ground moisture can contribute with potassium, sodium, magnesium, 

chloride, calcium, bicarbonate, sulphate and nitrate. When saturated groundwater is in 

hydraulic contact with stone, these ions are transported into the structure through capillary 

rise (Hall and Hoff, 2007; Karagiannis et al., 2016). After the water’s evaporation, 

efflorescence or subflorescence can be formed on the surface of the stone (Fig I-12) or 

within the pores of the stone, respectively. 
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Figure I-12. Ground moisture transported by rising capillary (a) and its practical effect in 

buildings (b) (adapted from Siegesmund and Snethlage, 2011). 

 

A wide number of salts can be formed in building stone, according to three different 

phase transitions (Fig I-13). These phase transitions are interconnected and are mostly 

dependent of their solubility in water, the porosity of the material, the relative humidity 

and temperature. 

 

 

Figure I-13. Different phase transitions of salts in building materials (adapted from Steiger, 

2005). 

 

In nature, the processes described above do not act alone, and the pathologies observed 

in a damaged stone are most probably a result of their interaction, which can occur 

simultaneously or sequentially. 

 

1.2.2. Deterioration induced by chemical processes 

Since many minerals present in building stones are thermodynamically unstable under 

the earth’s atmosphere (White and Buss, 2014; Earle, 2015), they may be subjected to 

chemical deterioration. The characteristics of the changes are highly conditioned by the 
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mineral and the environmental conditions. Generally, chemical weathering is greatest in 

warm and wet climates, and less significant in cold and dry climates. The most important 

components that contribute to chemical weathering are water (from the atmosphere or 

ground-water), oxygen and carbon dioxide (Earle, 2015). When combined with water, 

carbon dioxide produces weak carbonic acid (eq. 1) which after dissociation forms 

hydrogen and carbonate ions (eq. 2): 

(eq 1.) H2O(l) + CO2(g)        H2CO3(aq) 

(eq. 2) H2CO3(aq)       H
+

(aq) + HCO3
- 

(aq) 

which is fundamental for the most chemical weathering processes. 

 

1.2.2.1. Hydrolysis 

The hydrolysis process in stone occur when the minerals, especially silicate minerals 

(Earle, 2015), react with weakly acidic waters changing its chemical composition. Most 

natural waters at the surface are slightly acidic due to the carbon dioxide from the air or 

ground water, originating carbonic acid (Millero, 2009; Sánchez-España et al., 2014). 

As an example, the hydrolysis reaction of calcium plagioclase, a common feldspar 

found in igneous rock, contacting acidic waters will originate kaolinite, dissolved calcium 

and carbonate ions, according with the following reaction: 

CaAl2Si2O8(s) + H2CO3(aq) + ½O2(aq)       Al2Si2O5(OH)4(s) + Ca2+
(aq)

 + CO3
2-

(aq) 

where similar reactions could also be applied for sodium or potassium feldspars. 

Another examples of hydrolysis of silicate minerals is the transformation of pyroxene 

to clay minerals like chlorite or smectite, and conversion of olivine to the clay mineral 

serpentine. 

 

1.2.2.2. Dissolution 

Generally, the dissolution of the minerals composing building stones is related with 

the CO2 amount and atmosphere pollutants. One of the most relevant reactions that lead 

stone deterioration is the dissolution of carbonate minerals, namely calcite (eq. 1) and 

dolomite (eq. 2), associated with acid water: 

(eq. 1) CaCO3(s) + H2CO3(aq)  Ca2+
(aq) + 2HCO3

-
(aq) 

(eq. 2) CaMg(CO3)2(s) + 2H2CO3(aq)  Ca2+
(aq) + Mg2+

(aq) + 4HCO3
-
(aq) 

where irreversible damages can be induced in the stones, mainly for those with calcite 

and dolomite as the major minerals (Fig. I-14). 
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It is known that rainwater is the main source of liquid water in building stones (Rosso 

et al., 2016). Here, damages caused by dissolution may promote the appearance of distinct 

patterns that follow the exposure to direct rainfall, its flow and surface runoff (Vazquez 

et al., 2016). Although most of the minerals that compose rocks present a very low 

solubility in water, the exposure and infiltration of water over centuries are sufficiently 

long to impute significant damages in historic buildings. 

 

 

Figure I-14. Dissolution effect in marble, built in 1832. The carved details gradually become 

rounded (adapted from Abulude et al., 2018). 

 

Since the presence of H2CO3 enhances the solubility of carbonate materials, natural 

dissolution of carbonate materials occurs, known as karst effect (Cardell-Fernández et al., 

2002). However, “acid deposition” either by acid precipitation or dry deposition of 

particulates and gaseous pollutants like SO2, NO, and NO2, is the major source of H2CO3 

in building materials, which increases significantly the natural rates of mineral 

dissolution. In the recent years, it is known that the pH of rainwater is continuous 

decreasing, at least in North America, Europe and Asia (Yanxia and Qing, 2009; 

Gaddamwar, 2011; Sudalma et al., 2015, Earle, 2015), where pH values can reach 4. In 

acidic fogs even lower pH values can be registered, around 2 (Siegesmund and Snethlage, 

2011). 

After dissolution reactions, the major compounds that may be formed in carbonated 

stones like limestone and marble are calcium sulphate in the form of gypsum 

(CaSO4.2H2O), and calcium oxalate patinas (Charola et al., 2007; Corvo et al., 2010), like 

whewellite (CaC2O4.H2O) and weddellite (CaC2O4.2H2O). The genesis of these 

compounds may induce the formation of white or black crusts. The black colouration in 
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gypsum crusts is related with the embedding of pollutant particles that can be originated 

from several different sources (Schiavon, 1991; Mérillou et al., 2010; Sánchez et al., 

2011). 

 

1.2.2.3. Oxidation 

The phenomenon of oxidation in stone occurs commonly in those minerals containing 

iron (II), such as clays, sulphides and carbonates (Nordstrom, 2011). Since these minerals 

contact the Earth’s surface, they can react with oxygen in air, and consequently rusts. 

These reactions begin (Grafen et al., 2000) with the electrons transfer from iron (reducing 

agent) to oxygen (oxidising agent). With higher incidence in humid to semi humid 

climates, these reactions may be followed by hydration of the compounds released, 

making them more susceptible to physical weathering.  

As an example of mineral oxidation, olivine (Fe2SiO4) is converted into hematite 

(Fe2O3) due to the oxidation of the iron (eq. 2) after its dissolution (eq. 1), where silicic 

acid is released (Earle, 2015): 

(eq. 1) Fe2SiO4(s) + 4H2CO3(aq)         2Fe2+
(aq) + 4HCO3

-
(aq) + H4SiO4(aq) 

(eq. 2) 2Fe2+
(aq) + 4HCO3

-
(aq) + ½O2(g) + 2H2O(l)         Fe2O3(s) + 4H2CO3(aq) 

where the same mechanism can be applied to almost any other ferromagnesian silicate 

(e.g. biotite, pyroxene, amphibole).  

Another example is the oxidation of the iron in iron sulphides. Here the mineral (e.g. 

pyrite) may react with water and oxygen to form sulphuric acid (eq. 1) and then sulphates 

compounds will be formed. If salts are present in these mechanisms, the iron tends to rust 

more quickly, as a result of electrochemical reactions. 

(eq. 1) FeS2(s) + 3.5O2(g) + H20(l)  Fe2+
(aq) + 2SO4

2-
(aq) + 2H+

(aq) 

Some authors refer that the stability of the iron minerals as well as the minerals 

containing iron have a significant importance for the colour of the stone (Winkler, 1997), 

since the colour of iron oxides may range from yellow to brown hues. 

 

1.3. Biodeterioration of stone 

Hueck (1965) defined biodeterioration as “any undesirable change in the properties of 

a material caused by the vital activities of organisms”. Microorganisms are capable of 

growing all over the world. Despite being a poor nutrient material, stone provides 
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sufficient conditions for microbiota development (Fig. I-15a). Here, the microorganisms 

can be considered epilithic if they develop on the stone surface, or endolithic if they 

develop within the stone (McNamara et al., 2006; Cutler and Viles, 2010). 

Microorganisms may play a considerable role in the formation of rocks process, namely 

in the precipitation of carbonate sediments in seawater through CO2 uptake by bacteria 

and algae, for example. However, they also play a major role in the deterioration of rocks, 

a process called biodeterioration (Fig. I-15b). Some authors even consider that the 

weathering of stone in the presence of living organisms is some ten thousand times faster 

than without the biogenic agents’ presence (Gu et al., 2011; Siegesmund and Snethlage, 

2011; Gaylarde et al., 2012). 

 

 

Figure I-15. Environmental and substrate factors influencing the development of microbial 

communities in a building stone (a) and the main ways (b) in which microorganisms may affect 

stone (adapted from Cutler and Viles, 2010). 

 

Guillite (1995) defined bioreceptivity as “the ability of a material to be colonised by 

living organisms”. Considering that the most important factor for colonisation is the 

availability of water, porous stones that can retain high amounts of water have an higher 

bioreceptivity. It is known that bacteria communities generally need higher amounts of 

water than fungi, since fungi communities tolerate periods of complete dryness in a 

dormant state (Liu et al., 2006; Feofilova et al., 2012; Sterflinger et al., 2012). However, 
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bacteria tolerate salty environments on and inside the stone (Rivadeneyra et al., 2004; 

Jafari et al., 2012).  

As shown in figure I-16a, stones are good substrates for the interaction among several 

types of microorganisms, demonstrated by the complex composition of communities 

found in highly altered surfaces. This susceptibility, also known as bioreceptivity, will 

increase according to the physical and chemical properties of the stone, like water 

availability and circulation, surface roughness and mineralogical composition (Miller et 

al., 2009; Jim and Chen, 2011; Miller et al., 2012; Vázquez-Nion et al., 2018). 

 

1.3.1. Organisms involved in biodeterioration of stone 

1.3.1.1. Bacteria 

Bacteria are mostly single-cell organisms and, although they cannot be seen by the 

naked eye, they are capable of contributing to visible deterioration phenomena, such as 

sanding, etching and discolouration of stone (Warscheid and Braams, 2000; Scheerer et 

al., 2009). Different types of bacteria can intervene in the mechanisms of biodeterioration, 

such as chemoheterotrophic, chemolithotrophic, phototrophic, micro-algae, halophilic 

and archaea (Tomaselli et al., 2000; de Felice et al., 2010; Dakal and Cameotra, 2012; 

Kusumi et al., 2013; Li et al., 2016; Mihajlovski et al., 2017). 

Chemoheterotrophic bacteria need organic carbon to develop. In stone, organic carbon 

may be provided by airborne organic contamination, animal stools, dripping water, and 

organic compounds present in the original substrate or by metabolites of autotrophic 

bacteria. As their action produces organic pigments and organic acids, they are considered 

as important deteriogenic agents in the chromatic alteration and biogenic corrosion of 

stone (Banciu, 2013; Piñar et al., 2014a). On the other hand, the growth of 

chemolithotrophic bacteria is not dependent on the presence of organic carbon sources. 

These microorganisms are capable of developing through the oxidation of minerals 

containing sulphur, iron, ammonia or manganese present in the stones’ composition. 

Usually, the iron and manganese oxidation by bacteria result in the formation of a blackish 

stain that may cover the stone surface. In the ammonia oxidation, both nitrite and nitrate 

ions are released, which can lead the formation of nitrous and nitric acids promoting a 

further corrosion of the stone through dissolution. The same mechanism takes place with 

the sulphur oxidation, whose action will lead the formation of sulphuric and sulphurous 
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acids (Siegesmund and Snethlage, 2011; Hedrich and Johnson, 2013; Pokorna and 

Zabranska, 2015). 

If enough light and water are available in a stone, phototrophic bacteria can develop 

on it, since they are able to growth through sunlight absorption, using the well-known 

process called photosynthesis, where CO2 is also needed. Some strains need sulphur to 

develop in addition to sunlight, water, and CO2, performing an “anoxic” photosynthesis, 

since they do not produce oxygen. The most common groups of phototrophic bacteria are 

algae and cyanobacteria (formerly known as blue-green algae), since they are capable of 

colonising stone in all climate regions of the earth (Crispim and Gaylarde, 2004; 

Hallmann et al., 2013; Keshari and Adhikary, 2013; Gaylarde et al., 2017). Despite the 

fact algae are primarily aquatic organisms, they have managed to well adapt to terrestrial 

conditions, and nowadays are considered to be cosmopolitan organisms as they colonise 

all types of environments. Some authors stated their capacities to tolerate temperature 

changes in the range from 0 to 85ºC (Vojtková, 2017). Chlorophyll production by algae 

and cyanobacteria will induce the formation of green layers on the stones’ surface, but 

these organisms may also produce other compounds for photoprotection like carotenoids 

and scytonemin pigments. The production of these compounds may induce orange or 

brown colouration on the stone (Aires-Barros et al., 2001; Domonkos et al., 2013; 

Leverenz et al., 2015; Toth et al., 2015; Zavrel et al., 2015; Kirilovsky and Kerfeld, 2016). 

It has been also established that algae and cyanobacteria produce organic acids that 

disturb the building substrate and thus enable the development of other microorganisms 

responsible for biodegradation like bacteria and fungi (Vojtková, 2017). Cyanobacteria 

and algae are characterised by the high resistance to UV-radiation and desiccation, and 

on stone often develop in close association with lichens (Siegesmund and Snethlage, 

2011; Honegger et al., 2013; Rikkinen, 2013). In addition, algae may also precipitate in 

the formation of a crust as they produce the so-called extracellular polymer substances, 

which have been identified on the surfaces of a range of urban structures (El-Sheekh et 

al., 2012). 

Halophilic and archaea bacteria are characterised by their tolerance to very high 

temperature values and extreme salt stress levels. The salt crusts, as well as salt 

efflorescence, provide a proper environment for halophilic and halotolerant bacteria and 

archaea development. Their action may induce the formation of pink or purple pigments 

(Banciu, 2013; Ettenauer et al., 2014; Piñar et al., 2014b; Zanardini et al., 2016), leading 

to typical pinkish stain (Rosado et al., 2014a) on stone surfaces (Fig. I-16). Halobacillus, 
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Bacteroidetes, Rubrobacter and Salinisphaera are common moderately halophilic 

bacteria, while Haloccocus and Halobacterium are the most important genera of archaea. 

 

 

Figure I-16. Rosy stain on the salt damaged stone surface of a Medieval monument, Austria, 

promoted by halophilic bacteria and archaea (Siegesmund and Snethlage, 2011). 

 

1.3.1.2. Fungi 

Fungi are multicellular organisms, capable of forming hyphae (cell filaments) on and 

in stones. The development of these filaments enables fungi to spread over the stones’ 

surface and penetrate its pores. Fungi have high erosive effect in stone since they are 

capable of penetrate stone over 1 cm in depth. For this reason, for many authors fungi are 

considered the most important endoliths in building stone (Scheerer et al., 2009; Gaylarde 

et al., 2012; Hallmann et al., 2014; Municchia et al., 2014; Salvadori and Municchia, 

2016; Gleason et al., 2017). Additionally, more than 60 species have been identified and 

reported in building stone substrates around the world, including limestone and marble 

(Cutler and Viles, 2010; Cutler et al., 2013; Onofri et al., 2014; Gutarowska et al., 2015). 

On stone, hyphomycetes strains (Cladosporium, Alternaria, Epicoccum, Phoma and 

Aureobasidium) are dominant in moderate or humid climates (Isola et al., 2013; 

Sterflinger and Piñar, 2013; Gehlot and Singh, 2018) which have the capacity to form 

mycelia in the porous space. In semi-arid and arid environments, the fungal communities 

are mainly composed by the so-called black yeasts (Sarcinomyces, Hortaea, 

Trimmatostroma, Exophiala, Coniosporium, Knufia and Capnobotryella) which 

commonly develop in association with lichens (Marvasi et al., 2012; Sterflinger and 

Piñar, 2013; Martino, 2016; Gehlot and Singh, 2018). Fungi as well as green algae 

communities have been associated with biofouling and bioweathering, but also with 
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patination, dark staining and black crusts, promoting discolouration of stone surfaces 

(Cutler and Viles, 2010; Schiavon et al., 2013; Sazanova et al., 2014; Karaca et al., 2015; 

Ortega-Morales et al., 2016; Gadd, 2017; Kirtzel et al., 2017). Moreover, biopitting – a 

deterioration phenomenon promoted by both chemical and mechanical ways – can be 

caused by fungi communities. The pits diameter and depth can achieve up to 2 cm, 

predominantly in calcareous stone like marble and limestone (Sterflinger and Piñar, 2013; 

Mohammadi and Maghboli-Balasjin, 2014; Martino, 2016). 

The fungi communities develop thick walls, making them particularly resistant against 

heat (up to 80ºC) and mechanical or chemical attacks such as biocides and other anti-

microbial treatments (Silva, 2017). 

 

1.3.1.3. Lichens 

Lichen is an organism that is formed from the symbiosis of algae and cyanobacteria 

living among filaments of several fungi species. This synergism enables the lichen to live 

in a nutrient-poor environment and in stone surfaces inserted in arid habitats. Several 

kinds of lichens can be formed on rocks and stone, but crustose lichens are the most 

predominant ones (Fig. I-17). Moreover, these organisms are considered the most 

common colonisers of calcareous stone all over the world (Gaylarde and Gaylarde, 2005, 

de la Rosa et al., 2013; de la Rosa et al., 2014; Salvadori and Municchia, 2016; Sohrabi 

et al., 2017), and are especially dangerous for the integrity of stone since they develop a 

structure called thallus that penetrates inside the cracks and fissures. The lichens growth 

may create a pattern of pitting (de la Rosa et al., 2012), and the surface covering may also 

create a landscape effect coloured with several shades. 

 

 

Figure I-17. Crustose lichens developing on calcareous stone. 
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1.3.2. Biodeterioration effects 

1.3.2.1. Surface alteration 

All the organisms mentioned before produce a wide variety of organic pigments that 

may have different biochemical functions. However, these pigments can induce changes 

on the surface of the stone, like colour alteration through the formation of biopatinas. 

Siegesmund and Snethlage (2011) described some examples: 

a) Chlorophyll, released by cyanobacteria and algae, appears in different shades of 

green, and nearly black when the microbial layers become dry and cells are in a dormant 

state; 

b) Carotenoids, released to support the photosynthesis process or as a UV-radiation 

absorber, are produced by photosynthetic organisms and may display a wide variety of 

colourations such as brown, red, orange, yellow and purple; 

c)  Melanin, released for protection against UV-radiation, desiccation or 

radioactivity, is produced by many fungi strains, particularly by black fungi, and may be 

coloured of dark brown and black. 

Some of the organic pigments are excreted by the metabolically active organisms, 

while others are only released after cell death. It is known that organic pigments 

incorporated in calcareous rocks like limestone and marble, originate a biogenic stain 

(Saiz-Jimenez et al., 2012, Martin-Sanchez et al., 2013) that can remain visible for many 

decades. 

Biofilm formation may induce changes in the stones’ surface appearance. Biofilms are 

defined to be a layer of microorganisms whose thickness can range from several microns 

up to 5 mm or more. The formation of biofilms will favour the retention of dirt particles, 

pollen, dust and fly ash, which will feed the communities and further increase the biofilm 

development. This retention may result in an increasingly dirty appearance with the 

inherent aesthetical alteration (Cutler and Viles, 2010; McCabe et al., 2015). 

 

1.3.2.2. Chemical and mechanical alterations 

As mentioned above, microorganisms thriving on stone materials can penetrate them 

over several millimetres or even centimetres in depth. This capacity may influence 

considerably the chemical and physical properties of the stone and accelerates the 

deterioration process. It is known that lichens release organic acids or complexing agents 

capable of leaching out Na, Mg, Ca, K, Fe and other elements of the matrix of the stone. 
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However, some authors defend that intact lichen crusts might protect the stone from 

weathering agents like wind, rain, and sunlight, and their elimination will turn the surface 

of the stone rougher and therefore more susceptible to weathering (Warscheid and 

Braams, 2000; Llop et al., 2013; Pinna, 2014). 

Among the most important damage effects on stones caused by lichens and fungi is 

the micropitting – a formation of shallow cavities on the stone. This phenomenon is a 

consequence of a chemical dissolution achieved through the liberation of oxalic acid by 

these microorganisms, which further reacts with the calcareous stone and originate 

calcium oxalate crystals (Monte, 2003). Thus, crusts of calcium oxalates may have 

biogenic origin, and predominantly occur on the calcareous stone, namely limestone and 

marble (Rosado et al., 2013a; Gadd et al., 2014; Sturm et al., 2015; Unkovic et al., 2017). 

Due to their metabolic activity, fungi, cyanobacteria and heterotrophic bacteria 

produce several organic acids (oxalic, gluconic, succinic, malic, fumaric, acetic and 

citric). The production of these acids is significantly influenced by the available nutrients 

and minor elements such as Fe, Mg or Mn (Siegesmund and Snethlage, 2011). Therefore, 

an increment of environmental pollution will increase acid production and thus enhance 

stone decay through the dissolution of carbonates and other minerals. According to their 

composition, the acid attack may result in several damages for the stone, namely sugaring 

of marble (Fig. I-18) or sanding of limestone and sandstone. 

 

 

Figure I-18. Sugaring marble in the Monumental Cemetery of Bologna, Italy (adapted from 

Sassoni and Franzoni, 2014b). 
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On the other hand, chemolithotrophic bacteria produce inorganic acids like nitric, 

nitrous, sulphuric and sulphurous, through the oxidation of ammonium or reduced sulphur 

compounds (Gottschalk, 2012), which are considerably high corrosive for several 

materials, including natural stones. The metabolic activity of bacteria and fungi thriving 

in the stone porous will result in an increase of the concentration of CO2 (Uroz et al., 

2009) which, in the presence of water, carbonic acid might be formed. Even being 

considered a weak acid, the carbonic acid can contribute for the dissolution of calcite in 

limestone, marble and other stones. 

Nevertheless, there are some bacteria that has the ability to precipitate calcium 

carbonate in the form of calcite, a process called biomineralisation, which commonly 

occur in building stone. Moreover, some studies have emerged in order to improve the 

durability of stone through biomineralisation (Dhami et al., 2013; Andrei et al., 2017; Li 

et al., 2018a). 

 

In summary, deterioration and biodeterioration is the result of several interacting 

factors that cannot be clearly distinguished, from physical and chemical weathering, 

which both are part of stone decay. Therefore, weathering processes must always be 

regarded as a result of combined elements acting together. 

 

1.4.  The colour in natural stone 

Used since ancient times for architectural purposes, stone has generally been chosen 

considering aesthetic aspects such as colour and its symbolism (Jones, 1999). Nowadays, 

colour of building stones is still one of the most important characteristics that define their 

aesthetic characteristics (Fig. I-19), and one of the main macroscopic characteristics that 

leads to their appreciation and application as a building material. In conjunction with the 

mechanical properties of the stone, colour is considered very important for its 

marketability, since it is based on its appearance (Selonen et al., 2000; Benavente et al., 

2002).  
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Figure I-19. Examples of natural stone applications: the floor of the area next to “Padrão dos 

Descobrimentos” in Lisbon, Portugal (a) and interior floor of the Milano “Duomo”, Italy (b) 

(adapted from Amaral et al., 2015). 

 

Small variations in the stone and colour are tolerated, but uniformity in the production-

scale is highly required. According to Selonen et al. (2000), ornamental stones can be 

classified as one-coloured or multicoloured. The colour of one-coloured stones is 

homogeneous along the entire exploitation site, but flaws can appear in the form of 

inclusions, clusters or stripes of minerals. On the other hand, the multicoloured stones 

have higher variations, which is often the case for gneisses or gneissose granites. 

Generally, strong and unusual colours seem to be desirable in the global building stone 

market, but national preferences also exist, often related with the culture and the religion 

of a particular country. 

 

1.4.1.  The colour in carbonated natural stones 

Carbonated rocks, like marble and limestone, are essentially composed by calcite, 

which is one the most abundant minerals in the surface of the Earth. In the pure state, the 

mineral is colourless or white, but owing to the presence of several impurities can be of 

almost any colour, such as red, yellow, blue, green, pink, lavender, brown or black [1, 2]. 

Considering this, the colour of these carbonated rocks may be achieved by the 

modification of the colour of calcite minerals, or by incorporation of outlandish minerals 

in the rock. 

 
1 www.geology.com, accessed at March 2019; 
2 www.mindat.org, accessed at March 2019; 
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Previously, it has been demonstrated that the colouration of common colourless 

minerals can be achieved or changed through the incorporation of impurities, such as 

transition metals with the 3d orbitals partially occupied (Nassau, 2001; Cairncross and 

McCarthy, 2007). For calcite, it was found that several colourations as green, blue, purple, 

brown or pink can be originated through the incorporation of small amounts of iron, 

cobalt, manganese, nickel, copper or zinc. Additionally, like fluorite (CaF2), it was 

demonstrated that radiation can influence the colour of calcite, giving it tones of amber, 

light orange or even blue (Gaft et al., 2008; Kalita and Wary, 2014). This phenomenon 

can be achieved through luminescence, which is the return of an excited electron into the 

fundamental state, releasing energy in the form of a photon. The excitation state can be 

reached by gamma, UV or X-ray radiation, or by the presence of trace elements (Laanait 

et al., 2015; Costagliola et al., 2017; Kabacińska et al., 2017; Kabacińska et al, 2019). 

Despite this, carbonate rocks may have multiple minerals in their composition, that 

can interfere in the colouration of the rock. Some of them are considered evident, such as 

chlorites in marbles that can induce a strong green colouration. Iron oxides also seem to 

play an important role in the colouration of some carbonated rocks, due to their 

chromophore capacity (Gil et al., 2007; Yuanfeng et al., 2012; Grossi et al. 2015). The 

redox conditions occurring during the rocks’ formation will interfere with the chemical 

speciation of iron, which may originate distinct colours (Calogero et al., 2000). Clay 

minerals, phyllosilicates or organic matter may also confer colour, although some 

difficulty in their identification. For these cases, the colour of the stones may range from 

dark/black (rocks highly rich in organic matter) to amber. 

The colour of the most common limestones exploited in Portugal ranges from white-

cream in the MCE, to vivid yellowish or reddish colours at the Pêro Pinheiro region, and 

also reddish and greyish colours at the Algarve region (Fig. I-20). 
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Figure I-20. Examples of the most common limestones exploited in Portugal, their macroscopic 

appearance and their common commercial names. Provenance from the MCE (a-i), and Algarve 

(j-k) regions (Carvalho et al., 2012a). 

 

Regarding the colouration of the Portuguese marbles, they present a wide range that 

goes from white to dark grey (Moura, 2007). However, the most common varieties (Fig. 

I-21) are the white and light cream with more or less abundance of greyish to reddish 

stripes, while the most valuables are the pure white and the pinkish varieties. The 

commercial names may differ for the same lithotype, according to the quarry owner. 
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Figure I-21. Examples of the most common marbles exploited in Portugal, their macroscopic 

appearance and their common commercial names. Provenance from Alentejo region for all 

(Carvalho et al., 2012a). 

 

Colour change is considered one of the major problems facing the conservation of 

natural stone, with significant impact in their economic value, as well as in the cultural 

heritage context. Discolouration processes are responsible for the appearance of 

unaesthetic patterns that affect negatively the appreciation of the architectonic object or 

the artwork. As mentioned above, the original colour may be changed by either inorganic 

or organic pathways, which in most of the cases operate together. 

The inorganic weathering processes of rocks are well-known. Besides this, in the 

framework of ornamental stones where the aesthetic details are essential, factors like 

human activity (Viles, 2002; McAllister, 2016; Fatorić and Seekamp, 2017) and the 
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commercial finishing of the surface (Grissom et al., 2000; Urosevic et al., 2013) may 

originate discolouration patterns that are unpredictable.  

Nevertheless, chromatic changes can be related with the geochemical/mineralogical 

features of the stone. For example, reddish or yellowish appearance in carbonates after 

their dissolution can be originated by the presence of a great amount of iron or mineral 

inclusions in the rock (Valls del Barrio et al., 2002). Another example is the weathering 

of clay-limestones that may induce accumulation of clay minerals in the surface - which 

will give a different colour to the stone. Also, sulphides are known to corrode stone with 

time and can cause discolouration (Selonen et al., 2000). Probably the most common 

discolouration process is the weathering of stone in buildings and monuments that results 

in the formation of a thin patina (Fig. I-22) which gives a different colour to the stone. 

U.V. radiation is also known to be capable of induce colour alteration on stones through 

luminescence phenomena. Unfortunately, some of the conservation and restoration works 

(Fig. I-23), e.g. consolidants incorrectly applied, also result in a colour alteration for some 

stones (Grossi et al., 2007; Pouli et al., 2012; Grossi and Benavente, 2016). 

Furthermore, as previously mentioned in the biodeterioration section, the colonisation 

of external surfaces of the buildings and monuments can induce, apart from the 

mechanical damages, an aesthetically unacceptable appearance with a staining conferred 

by biogenic pigments (Rosado et al., 2014a; Mihajlovski et al., 2015; Morillas et al., 

2015). In the last years, the biodeterioration of stone monuments has been an important 

topic of research (St.Clair et al., 2004; Rosado et al., 2016; Salvadori and Municchia, 

2016; Pinheiro et al., 2019), although systematic studies that can associate stone-

microorganism-colour are still missing. The main reason for that is the extreme difficulty 

in the microorganism’s identification in non-controlled environments. Even so, the 

biotechnological investigation community has been developing new approaches and 

methodologies that allow the microorganisms’ identification (Schuster et, al., 2007) 

successfully applied in biodeterioration studies (Tan et al., 2015; Aguilar et al., 2016; 

Dias et al., 2018; Gallego et al., 2019). 
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Figure I-22. Examples of weathering in pieces of art made of limestone and marble. Patina 

formations (a, b and c) and a hardened crust formed after a past treatment (d), responsible for the 

detachment of a thin stone layer (adapted from Rodrigues, 2006). 

 

The colour and discolouration of natural stones for construction purposes is a very 

critical and important topic of study since these phenomena can lead to very costly 

conservation works in monuments, and high costs for building stone companies in the 

new buildings’ construction. It is important that our country continues to invest in new 

technologies, in order to maintain itself in the forefront of the building stone industry. 

The perspective of this PhD research project has been the development of strategies for 

the determination of the colour origin in carbonated ornamental stones. This was done in 

limestone and marbles, to therefore understand their chromatic alteration processes, with 

particularly attention on the microbial contribution. Several Portuguese limestones and 

marbles were selected and studied according with their importance for built-heritage and 

for the new buildings’ industry. Additionally, some heritage artworks and heritage 

building made of stone were selected as case studies under the framework of this PhD, 

representing different scenarios and conditions. 
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2.1.  Introduction 

As previously mentioned, Portugal has a great geological diversity in its territory and 

has a strong ornamental stone industry throughout all its history. Over the last centuries, 

the Portuguese stone has been used for several purposes such as public monuments, small 

works of art or in private houses. Some authors report that nowadays Portuguese stone is 

applied in hundreds of thousands of buildings (Lopes and Martins, 2014). The high-

quality Portuguese carbonated stones are characterised by the high proportion of calcite 

(CaCO3). These materials have been exploited since ancient times (Maciel and Coutinho, 

1990; Martins and Lopes, 2011; da Fonseca et al., 2013), placing the country in the 

forefront of natural stone production, as marble, limestone and granite. Therefore, 

Portugal is one of the leaders in the production of ornamental stone (Carvalho et al., 2000; 

Carvalho et al., 2013b), offering a wide variety of natural stone.  

Since the ornamental stone industry is an important sector for the Portuguese economy 

(Fig. II-1), having reached over than 400M€ in 2019[3], Portugal must continue to support 

technological development and offer new services/specifications, as after-sales services 

and material certification. Creation and implementation of manuals for the application of 

Portuguese carbonated stones is encouraged, to a greater valorisation of the Portuguese 

ornamental stone.  

 

 

Figure II-1. Evolution of the ornamental stone exportation in Portugal (DGEG, 2017). Values 

for marble and limestone reach to about 250M€. 

 

 
3 https://www.assimagra.pt/, acessed at December 2019; 

https://www.assimagra.pt/
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Colour is one of the main visible characteristics that lead to the appreciation of stone 

and its use as building material. Since the stone discolouration has become a critical issue 

with strong influence in its commercial value, the colour and discolouration of carbonated 

stones is one of the major challenges for the ornamental stone scientific community. 

Therefore, it is essential to understand how the colouration of each of these materials is 

achieved.  

This chapter aims to characterise Portuguese marbles and limestones based on their 

colour and their importance for the Portuguese market and cultural heritage, using X-ray 

based analytical methods. Therefore, it is expected that this work might be a contribution 

to determine the mineralogical and geochemical factors that can impute colouration in 

stone, and somehow, anticipate possible mechanisms of colour alteration.  
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2.2. Material and Methods 

2.2.1.  Selection of the stones 

Several limestones and marbles were selected considering their economic importance 

for the actual Portuguese market and for cultural heritage assets. The stones collected 

were cut to obtain several slabs of each lithotype. White, green and pink marbles, and red, 

yellow, orange and blue limestones were selected (Fig. II-2). 

 

 

Figure II-2. Stones selected for the study. White (a), green (b) and pink (c) marbles, and red (d), 

yellow (e), orange (f) and blue (g) limestones. 
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The white and pink marbles (Fig. II-2a and II-2c), varieties of a Heritage Stone Global 

Resource “Estremoz Marbles” (Lopes, 2020), are exploited in the Estremoz Anticline 

where, as previously mentioned, are located the largest Portuguese marble exploitations. 

These lithotypes are very popular natural stones with a fine grain. They were used to 

construct important buildings in the past, and currently, are mainly used for contemporary 

architecture projects, for interior design as staircases, floorings and façades, decorative 

objects and home decorations. The green marble (Fig. II-2b) has been exploited in 

southern Portugal, Serpa. Features a medium to thin grain, with several accessory 

greenish minerals and calcitic whitish patches. This marble has been commonly used for 

extensive interior flooring and wall cladding.  

The red and yellow limestones (Fig. II-2d and II-2e), varieties of “Lioz” a Heritage 

Stone Global Resource (Lopes, 2020), are exploited in the region of Pêro Pinheiro -  

Negrais, north of Lisbon. These two limestones are characterised by having some white 

fossils and patches in their composition, which currently are mainly used for internal and 

external claddings and pavements. On the other hand, the orange and the blue limestones 

(Fig. II-2f and II2g) are extracted in the MCE, where the largest Portuguese limestone 

exploitations are located. The blue limestone has a thin grain, a compact appearance, and 

it presents lighter and darker areas and dark blue spots. The orange limestone has a thin 

grain, compact appearance and it presents lighter and darker areas, dark red spots, as well 

as some occasional well defined dark brownish veins. Currently, these very popular 

limestones are mainly used for masonry, façades and interior and exterior flooring. In 

addition, due to their hardness, these stones have a considerable reputation and 

international demand. 

The stones were characterised by determining their colourimetric parameters, and their 

chemical and mineralogical composition using X-ray based methods. 

 

2.2.2.  Determination of the colour parameters 

The colour characterisation was carried out through the determination of the 

colourimetric parameters of the CIE L*a*b (CIELAB) space. This method was defined 

in 1976 as an international standard for colour measurement by the Commission 

Internationale d’Eclairage (CIE), and determines saturation, hue and lightness (Beck et 

al., 2016). According to this system, the colour of an object is determined by the three 

coordinates L*, a* and b* located in the colour space (Fig. II-3). The coordinate L* 
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corresponds to grades of lightness from 0 (black) to 100 (white). The coordinate a* is 

based on the green (negative values)/red (positive values) axis, and the coordinate b* 

refers to the blue (negative values)/yellow (positive values) axis. The data were collected 

on the surface of several slabs of each stone with a portable DataColor CheckPlusII 

spectrophotometer (Lawrenceville, NJ) equipped with an integrating sphere. The 

experimental conditions included diffuse illumination 8° (in agreement with CIE 

publication No15.2.Colorimetry), SCE, Standard Illuminant/Observe D65/10° and a 

measurement area of 5mm. The results are the mean value of nine measurements for each 

stone lithotype. 

 

 

Figure II-3. CIE Lab 1976 colour coordinates system (adapted from Beck et al., 2016). 

 

2.2.3.  Chemical and mineralogical composition 

2.2.3.1. X-ray Fluorescence Spectrometry (XRF) 

The XRF spectrometry allows to detect the major elements and some trace elements. 

The measurements were done with a handheld Bruker Tracer III/IV-SD operated with an 

XFlash® Silicon Drift Detector (SDD) with 145eV of resolution. The X-ray generator was 

operated at 40 kV and 30 µA current under low vacuum conditions, with an acquisition 

time of 120 s. The data were processed using the software ARTAX 7.4.0. The peak areas 

were calculated after data normalisation with the RhKα. 

The analyses were performed on stone without any previous preparation. The data 

presented are the mean value of nine spectra acquired for each lithotype. 
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2.2.3.2. X-ray Diffraction (XRD) 

The mineralogical composition of the stones was characterised through X-ray 

diffraction with a commercial Bruker D8 Discover diffractometer with CuKα radiation 

tube operating at 40 kV and 40 mA. The XRD patterns were measured between 3º to 75º 

2θ, using a step size and recording time per step of 0,05º and 1s, respectively. The 

crystalline phases were identified with the PDF-ICDD Powder Diffraction Database 

(International Centre for Diffraction Data), using the Bruker EVA software (version 3.0).  

The XRD experiments were carried out on powdered samples. 

 

2.2.3.3. Variable Pressure Scanning Electron Microscopy with Energy 

Dispersive Spectrometry (VP-SEM-EDS) 

The SEM-EDS analysis was performed with a scanning electron microscope 

HITACHI S3700N coupled to a microanalysis system QUANTAX EDS equipped with a 

BRUKER XFlash® Silicon Drift Energy Dispersive Detector, with 129 eV spectral 

resolution at the FWHM/Mn Kα. The EDS data was processed using standardless tools 

in the software Esprit1.9. The BSE detector was used to detect slight changes in the 

chemical composition of the material surfaces. When the surface was chemically 

heterogeneous, elemental compositional maps were acquired and punctual analyses were 

obtained. The microscope was operated with a 20 kV accelerating voltage and 40 Pa 

chamber atmosphere.  

The stones were analysed without any previous preparation. 
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2.3.  Results and discussion 

Several marble and limestone with different colourations were characterised using X-

ray based methods and colourimetry, in order to discriminate their composition and 

colour, representing a starting point for the main aim of this thesis, the comprehension of 

colour alteration. 

 

2.3.1.  Determination of the colour parameters 

In order to measure the colour of the stones, colourimetry technique was performed. 

The spectral reflection curves, which graphs the reflectance of the stone as a function of 

wavelengths, were obtained (Fig. II-4) and the parameters of the CIEL*a*b* system were 

determined (Table II-1). These data allowed to get the chrominance for the different 

stones, and show the heterogeneity existing among them. 

 

 

Figure II-4. Spectral reflection profiles obtained by colourimetry technique for the white (____), 

green (____), pink (____), yellow (____), red (____), orange (____) and blue (____) stones. 

 

This colourimetric characterisation is very useful, namely for the determination of 

changes in the spectral reflection profile in the future and, consequently, variation in the 

chrominance, using a non-invasive approach (Grossi et al., 2007).  
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Table II-1. Determination of the parameters L*a*b* for each stone, obtained through the 

CIEL*a*b* system. The mean value and standard deviation were calculated after 9 

measurements. 

Stone L* a* b* 

White marble 67.12 ± 3.39 -0.81 ± 0.09 -1.22 ± 0.32 

Green marble 62.72 ± 2.34 -2.6 ± 0.18 1.97 ± 0.97 

Pink marble 68.83 ± 0.97 2.26 ± 0.23 6.05 ± 1.01 

Red limestone 59.58 ± 0.95 15.29 ± 1.78 16.97 ± 1.81 

Yellow limestone 67.05 ± 0.37 6.19 ± 0.24 20.86 ± 0.57 

Orange limestone 56.62 ± 6.04 8.17 ± 0.53 20.95 ± 0.56 

Blue limestone 53.45 ± 1.19 0.05 ± 0.14 4.87  ± 0.24 

 

2.3.2.  Chemical and mineralogical characterisation 

In order to determine the major and some trace elements that can intervene in the 

stones’ colouration, X-ray fluorescence spectrometry was performed. The spectra 

obtained for the different stones are shown in the figures II-5 and II-6, which allowed to 

calculate the peak areas for each chemical element identified (Table II-2). 

 

 

Figure II-5. Spectra obtained by X-ray fluorescence for the white (____) and pink (____) marbles 

from Estremoz and green marble (____) from Serpa. 
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As expected, the white marble was the material that presented the purest calcium 

carbonate, since shows less elemental enrichment. On the other hand, the stones that 

presented the richest and wider diversity in their elemental composition were the green 

marble and blue limestone. In these stones, in addition to the major elements, it was 

possible to determine the presence of some trace elements like rubidium and zirconium. 

 

 

Figure II-6. Spectra obtained by X-ray fluorescence for the blue (____) and orange (____) limestones 

from MCE and for the yellow (____) and red (____) limestones from Negrais. 

 

In addition to calcium, some stones like the pink, green, orange and blue stones exhibit 

enrichment in aluminium, silicon, potassium and iron. This data may suggest that these 

stones have outlandish minerals – possibly micas or clays – incorporating the calcite 

during the formation processes of the rocks. Complementarily, the blue limestone 

revealed high amounts of sulphur and iron which prompted further investigation within 

this PhD. The red and yellow stones did not exhibit potassium and have a small quantity 

of major elements like aluminium, silicon, manganese and titanium, which can suggest 

that these stones exhibit less incorporation of outlandish minerals in the rocks. Special 

attention must be given to the presence of manganese in the pink and blue stones, since 

there are minerals that contain small quantities of ions like Mn2+ and Mn4+ that can be 

coloured (Cairncross and McCarthy, 2015) to pink or to black, respectively. 
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Table II-2. Determination of the peak areas (a. u.) for each element detected in the stones by X-

ray fluorescence spectrometry. The values were calculated after 9 spectra acquirements. 

Stone Al Si S K Ca Ti Mn Fe Cu Zn Cr Rb Sr Zr 

White marble 4 11 0 0 11204 13 0 43 7 2 1 0 36 4 

Green marble 43 398 7 525 3485 79 20 1193 9 6 6 30 49 41 

Pink marble 7 42 13 36 10471 25 6 212 14 0 3 0 58 8 

Yellow limestone 4 21 10 0 10787 13 2 119 10 2 1 0 65 6 

Red limestone 5 16 13 0 10957 11 1 48 10 3 1 0 91 7 

Orange limestone 24 141 288 167 7924 211 7 2183 6 4 6 10 34 12 

Blue limestone 12 71 9 80 11214 90 8 1713 9 4 1 0 32 7 

 

In order to identify the minerals composing the carbonated stones under crystalline 

form, XRD was performed (Fig. II-7 and II-8). The results were analysed and compared 

with the data obtained previously, from XRF spectrometry. 

 

 

Figure II-7. Significant diffractograms obtained and identification of crystalline phases on the 

powdered white (____) and pink (____) marbles from Estremoz and green marble (____) from Serpa. 

Abbreviations: m-muscovite; w-wollastonite; mc-microcline; q-quartz; a-albite; r-rutile; c-

calcite; czo-clinozoisite; d-diopside. 

 

The diffractograms of the powdered carbonated stones showed that all stones are 

essentially calcitic - since no dolomite was identified - and all of them exhibit some quartz 

(SiO2) in its composition. Additionally, it was possible to identify some minerals 

incorporating the calcite, such as: 
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- muscovite (KAl2(AlSi3O10)(F,OH)2) and rutile (TiO2) in the pink marble; 

- microcline (KAlSi3O8), diopside (CaMgSi2O6), albite (NaAlSi3O8) and clinozoisite 

(Ca2Al3(SiO4)3(OH) in the green marble; 

- birnessite (Na0.3Ca0.1K0.1)(Mn4+,Mn3+)2O4·1.5H2O), pyrite (FeS2) and marcasite (FeS2) 

in the blue limestone; 

- birnessite in the orange limestone.  

Table II-3 summarises the minerals identified for each stone. 

 

 

Figure II-8. Significant diffractograms obtained and identification of crystalline phases on the 

powdered blue (____) and orange (____) limestones from MCE and yellow (____) and red (____) 

limestones from Negrais. Abbreviations:  b-birnessite; c-calcite; p-pyrite; mrc-marcasite; q-

quartz. 

 

The presence of muscovite, a hydrated potassium aluminum silicate that belongs to the 

micas’ group, in the pink marble is compatible with the X-ray spectrum obtained for this 

stone that shows the presence of Al, Si and K. 

Regarding the green marble, the identification of microcline and albite is also 

compatible with the data obtained from the XRF analysis, since these minerals belong to 

the feldspars’ family. In addition to wollastonite and diopside, the clinozoisite, a mineral 

belonging to the epidote minerals’ family was also identified in this stone. The 

identification of pyrite and marcasite in the blue limestone is compatible with the high 

https://en.wikipedia.org/wiki/Potassium
https://en.wikipedia.org/wiki/Aluminium
https://en.wikipedia.org/wiki/Silicon
https://en.wikipedia.org/wiki/Oxygen
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amounts of sulphur and iron observed by XRF. The presence of the element manganese 

could in part be associated with the presence of birnessite in the stones. 

 

Table II-3. Minerals under crystalline form composing stones, identified by X-ray diffraction. 

Stone Minerals I.D. 

Estremoz white marble Calcite, quartz 

Estremoz pink marble Calcite, quartz, muscovite, rutile 

Serpa green marble 
Calcite, quartz, microcline, diopside, albite, 

wollastonite, clinozoisite 

Negrais yellow limestone Calcite, quartz, birnessite 

Negrais red limestone Calcite, quartz 

MCE orange limestone Calcite, quartz, birnessite 

MCE blue limestone Calcite, quartz, pyrite, marcasite, birnessite 

 

Besides XRD and XRF analyses, VP-SEM-EDS was also performed, since it allows 

to obtain information about the morphology, microstructure and it is a complementary 

tool for the determination of the chemical composition. It was possible to observe the 

higher porosity degree of the limestones in comparison with marbles. On the other hand, 

2D elemental mapping and point analyses allowed to determine how the major elements 

detected by the X-ray fluorescence spectrometry are distributed. 

On the white marble, it was possible to detect calcium carbonate (Fig. II-9) and few 

silicon oxides, while on the pink marble were identified some iron oxides, 

phyllosillicates, calcium titanium silicates (Fig. II-10) as well as calcium phosphates, 

zirconium silicates and silicon oxides. 
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Figure II-9. Microstructure, calcium distribution and point analysis obtained on the white marble 

from Estremoz. 

 

The pinkish colouration of this marble can be achieved by the incorporation of iron in 

the calcite or by the presence of iron oxides spread along the calcitic matrix (Fig. II-10). 

The presence of phyllosilicates like calcium titanium silicates (maybe sphena) in this pink 

marble can also be associated to the greenish vein’s, a visible characteristic of this stone 

(Fig. II-2c), since these minerals may exhibit a green colouration (Mazdab et al., 2007; 

Ospitali et al., 2008; Randive et al., 2015). 
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Figure II-10. Microstructure, distribution of the major elements and point/area analyses obtained 

on the pink marble from Estremoz (only cations was considered). 
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The green marble displays large areas containing what seems to be potassium 

feldspars. Complementing with the XRD results these areas may be associated with the 

microcline mineral. In this stone, it was also identified alkaline feldspars and possible 

epidote (Fig. II-11), silicon oxides, calcium phosphates, zirconium silicates, iron oxides 

and iron sulphides. Clinozoisite, a mineral of epidote group, is greenish which may 

contribute for the achievement of the greenish colour of this marble. 

 

 

Figure II-11. Microstructure, distribution of the major elements and point analyses obtained on 

the green marble from Serpa. 



Characterisation of Portuguese carbonated stones 

56 
 

The data obtained on the yellow (Fig. II-12), red and orange stones revealed the 

presence of calcium carbonates, silicon oxides, iron oxides and few clays. Iron oxides 

may have different colours [4] such as yellow, red, brown or orange, and their 

incorporation in the rocks can contribute actively for the colouration of these stones.  

 

 

Figure II-12. Microstructure, distribution of the major elements and point analysis obtained on 

the yellow limestone from Negrais. 

 

The EDS analysis of the blue limestone revealed the presence of some silicon oxides, 

and a great amount of iron sulphides (Fig. II-13), corroborating the XRF and XRD data. 

In part, the blue colour of this limestone can be achieved by the charge transfer of Fe2+ to 

Fe3+, since the colour of Fe2+ is green and Fe3+ is yellow. It is also known that this 

limestone has a great amount of organic matter content, that probably contributes for the 

blueish colour of these stones. 

 
4 www.webmineral.com, accessed at February 2019; 
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Figure II-13. Microstructure, distribution of the major elements and point analysis on the blue 

limestone from MCE. 

 

The X-ray based methods used in this study, namely XRF, XRD and SEM-EDS, 

showed to be an effective and useful approach to do a preliminary screening for 

limestones and marbles characterisation. The study contributes to better knowledge about 

the composition of Portuguese ornamental stones, namely limestones and marbles 

typically used in historic heritage and new buildings. Therefore, with this knowledge in 

mind, the implementation of methodologies for stone application (e.g. surface finishing, 

avoid particular places to do the installation, etc.) is encouraged, in order to predict and 

prevent changes in their phase composition and consequently, its colour alteration. This 

information could be available to the companies through independent laboratories. 

Currently, the blue limestone is vastly produced and used for both national and 

international applications. For this PhD, the blue limestone lithotype was selected in order 

to characterise its discolouration mechanism and study the influence of the microbial 

communities in this process. 
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This Chapter was written based on an article published with scientific peer review 

entitled “Limestone chromatic changes triggered by microbial activity” (Dias et al., 

2018). 

 

3.1. Introduction 

After the characterisation of some important Portuguese carbonated stones, a lithotype 

of building stone – the blue limestone – was selected in order to characterise its 

mechanism of colour alteration by spontaneous weathering. This stone is exploited in one 

of the most important regions for the Portuguese ornamental stone industry, the MCE, 

and have different geological ages. Currently, this product is widely used as building 

stone in major contemporaneous architecture projects, which its marketability and 

exportation levels have increased over the last years. Companies selling this lithotype 

have been losing millions in the replacement in the of the altered stone, especially in the 

stone that was exported. It has also been relevant in the past, in important monuments, 

and it is utmost importance to understand its deterioration mechanism. Its name came 

from the blueish dark-grey colour, apparently due to the charge transfer of Fe2+ to Fe3+ 

and the presence of organic matter. This ornamental stone coexists sometimes with a 

cream limestone, that may appear in the same outcrop (Fig. III-1).  

 

 

Figure III-1. Blue limestone with blueish dark-grey and cream colour in the same outcrop. ®Luís 

Lopes 
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Besides its economic and cultural importance, it is known that this limestone is 

susceptible to weathering processes that are still unknown, inducing its colour alteration 

and causing aesthetic patterns that are unacceptable (Fig. III-2). The alteration has been 

reported in both indoor and outdoor environment, causing costly repairs to the companies. 

 

 

Figure III-2. Building blue limestone with visible alteration (a), (b). ®Luís Lopes 

 

Despite the inorganic processes that intervene in the rocks’ weathering are generally 

well-known, it is necessary to study the colonisation effects of building surfaces by 

microorganisms that can cause discolouration. Moreover, the inorganic weathering can 

create the conditions to the biological colonisation that will increase the alterations rate, 

therefore the reinforcing mechanisms of inorganic-biological alteration must be stressed.  

This chapter intends to describe the inorganic processes of the natural weathering of 

the stone and, furthermore, perform the assessment of the biocolonisation of the material 

in previously applied stone with visible discolouration. The multi-analytical approach 

used allowed to describe the colour alteration mechanism of the stone, as well as to 

characterise the prokaryotic and eukaryotic population colonising this stone, which 

somehow might be related with its discolouration.  
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3.2.  Materials and methods 

3.2.1.  Sampling process 

Sampling was performed in building stone showing chromatic alterations. Two 

different sites containing applications of this lithotype were selected, which one is the 

area that surrounds the Mosteiro da Batalha building (39º 32’ 54’’ N 8º 58’ 48’’ O) (Fig. 

III-3 a, b) and the other is the waterfront of São Martinho do Porto village (39º 30’ 47’’ 

N 9º 8’ 8’’ O) (Fig. III-3 d). In both cases, the blue limestone was applied in the floor 

pavement. Generally, the sampling regions have a warm and temperate climate, as the 

yearly average temperature is 15.7ºC and the yearly average rainfall is 710 mm. 

 

 

Figure III-3. Sampling process of the building stone located at the floor pavements next to the 

Mosteiro da Batalha building (a), (b), (c) and in the waterfront of São Martinho do Porto village 

(d). ®Luís Lopes 

 

The stone applied in both places shows the pathology previously discriminated (Fig. 

III-2), where samples were collected using an electric core drill (annex A). Due to the 

rock heterogeneity and in order to avoid an excessive number of variables, sampling was 

performed in close altered and non-altered sections (table A-1), ensuring the 

representativeness.  
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Microfragments were also collected for biocontamination assessment in altered and 

non-altered sections. The collection of these microfragments was done under semi-aseptic 

conditions with sterile scalpels and microtubes. The microfragments were mechanically 

shaken with a Maximum Recovery Diluent (MRD) during 24 h, at 150 rpm, to promote 

the cell disaggregation from the stone. 

 

3.2.2.  Material characterisation 

3.2.2.1. XRF 

To determine the chemical composition, X-ray fluorescence spectrometry analyses 

were performed with a handled Bruker Tracer III-SD, using the same equipment and 

methodology described in the section 2.2.3.1. of the Chapter II. The analyses were 

performed directly on the collected samples. 

 

3.2.2.2. XRD 

To obtain the mineralogical composition, µ-XRD was performed with a Bruker D8 

Discover diffractometer equipped with a Goebel mirror and a linear detector Bruker 

Lynxeye. Diffraction were performed with a CuKα radiation tube operating at 40 kV and 

40 mA. The XRD patterns were measured between 3º to 75º 2θ, using a step size and 

recording time per step of 0,05º and 1s, respectively. A laser-video sample alignment 

system and a motorised XYZ stage were used. The crystalline phases were identified with 

the PDF-ICDD Powder Diffraction Database (International Centre for Diffraction Data), 

using the Bruker EVA software (version 3.0).  

The XRD experiments were carried out in the exposed surface of the stone, using a 1-

millimetre X-ray collimator. The data were taken from sections with and without 

alteration patterns. 

 

3.2.2.3. VP-SEM-EDS 

The SEM-EDS analyses were performed with a HITACHI S3700N interfaced with a 

QUANTAX EDS microanalysis system, using the same features and methodology 

described in the section 2.2.3.3. of the Chapter II. Additionally, the surface roughness 

parameters were determined through a Phenom ProX Desktop SEM equipped with the 

3D Roughness Reconstruction software. 
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3.2.3.  Biocontamination assessment 

3.2.3.1. Assessment of biological contamination on the building stone 

The stone microfragments collected were coated with a gold/palladium layer in an 

SCD030 Balzers Union sputter-coater, and the surface of the stone was carefully 

examined in the SEM HITACHI S3700N, using an accelerating voltage of 10 keV in 

secondary electrons mode, to assess the microbial communities’ presence. 

 

3.2.3.2. Cell viability index 

The cell viability index (CVI) of the biocontaminants present in the stone was assessed 

by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 

according to the method previously described by Mosmann (Mosmann, 1983) and 

adapted for cultural heritage materials (Rosado et al., 2013b). 

90 µL of each extracted suspension from stone with and without chromatic alteration 

were incubated with 300 µL of MTT stock solution (0.5 mg/mL) for 4 h, at 37ºC in the 

dark. After this, 350 µL of DMSO/ethanol (1:1) were added to promote the dissolution of 

the formazan crystals formed. The final suspension was centrifuged at 10.000 rpm for 15 

min and the absorbance of the supernatant was determined by spectrophotometry at 570 

nm.  

Each assay was performed in triplicate. 

 

3.2.3.3. Isolation and characterisation of the cultivable microbial community 

Each extracted solution was inoculated in different media (see the composition in 

Annex B), specific for each type of microorganism: NA (Nutrient Agar) for bacteria 

growth, MEA (Malt Extract Agar) and CRB (Cook Rose Bengal) for filamentous fungi. 

The cultures were incubated at 30ºC during 24-48h and at 28ºC during 4-5 days for the 

development of bacteria and fungi, respectively. After this period, the plates stayed in 

incubation at the same temperature to detect slow microbial development. The distinct 

single colonies obtained were sub-cultured onto Petri dish and maintained at 4ºC until 

processing. 
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3.2.3.3.1. Characterisation of the microbial isolates 

The distinct single colonies were characterised based on their macroscopic and 

microscopic features like texture, colour, hyphae morphology and, where applicable, their 

reproductive structures. The fungal isolates were stained with methylene blue and 

observed with a lens objective 50x, using an optical microscope Motic BA410E and 

digitally recorded by a MoticamPro 282B camera. On the other hand, the bacterial isolates 

were stained with Gram reagent and observed in the optical microscope with a lens 

objective 100x.  

Molecular charcacterisation of the isolates was performed by sequencing 16S rDNA 

or ITS region for bacterial or fungi isolates respectively. The samples’ preparation was 

performed as follows. 

The genomic DNA of the prokaryotic population was extracted using a methodology 

adapted from the method described by Rinta-Kanto et al. (Rinta-Kanto et al., 2005). The 

cells were collected onto filters and suspended in 100 µL of 1X TE lysis buffer solution 

and 15 µL of lysozyme (2 mg/mL) were added and vortexed. The samples were thereafter 

incubated in a bath at 37ºC for 20 min to promote the cells’ disruption. After that, 15 µL 

of α-chymotrypsin (4 mg/mL) in 10% SDS were added to the samples that therefore were 

incubated at 50ºC during 30 min. After this period, 100 µL of phenol/chloroform/isoamyl 

alcohol (25:24:1) were added and gently shaken for a few seconds. The aqueous phase 

was transferred to new tubes, and 200 µL of 100% ethanol + 30 µL of 3M sodium acetate 

were added. The DNA precipitated overnight at -20ºC. The preparations were centrifuged 

at 11900 g for 25 min. The supernatant was discarded, and the DNA pellets were left at 

air-dry, and therefore resuspended in 1X TE buffer, pH=8. The DNA samples were stored 

at -20°C until further utilisation. 

The genomic DNA of the eukaryotic population was extracted according with the 

method described by Sambrook et al. (Sambrook et al., 1989) and by Pitcher et al. (Pitcher 

et al., 1989). After the fungal isolates’ incubation, the colonies were macerated and 

transferred to microtubes containing 300 µL of microspheres. 700 µL of lysis buffer were 

added and the microtubes were vortexed for 30 s and placed in the ice for 30 s (3X). The 

microtubes were then incubated for 1h at 65ºC. After this period, the microtubes’ content 

was centrifuged at 13500 rpm for 10 min at 4ºC. Its supernatant was recovered to new 

microtubes and 700 µL RNase (100 µg/mL) were added and incubated at 37ºC for 1 h. 

After this period, 600 µL chloroform/isoamilic alcohol (24:1) were added, mixed by 
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inversion, and centrifuged at 10000 rpm for 10 min. The supernatant was recovered for 

new microtubes, which 50 µL of sodium acetate and 1250 µL of 100% ethanol were 

added. The microtubes were centrifuged at 13000 rpm for 15 min and the supernatant was 

discarded. The sediment was washed with 1 mL of 70% ethanol (2X) and the mixture was 

centrifuged at 10000 rpm for 10 min and the supernatant was therefore discarded. The 

microtubes were left at 37ºC to promote dryness, and thereafter the extracted DNA was 

resuspended with 100 µL of TE buffer and kept at 4ºC until processing. 

The genomic DNA extracted from prokaryotic and eukaryotic population was 

quantified by UV-Vis spectrophotometry, using a microplate reader Thermo Scientific 

MULTISKAN GO µDrop, with a quantification software coupled (SkanTY RE 

MultiScan 3.2.). This photometric method is based on the equation of Lambert-Beer, A = 

c x l x 𝜀, where the molar absorptivity constant (𝜀) of the DNA is 0,020 (µg/mL) cm-1 and 

the optical depth is 0,051 cm. 

The amplification of the DNA was done by polymerase chain reaction using the 

specific primers. For bacteria, 16S rDNA was amplified using the forward primer 5’-CCA 

GCA GCC GCG GTA ATA CG-3’, corresponding to nucleotides 518 to 537 of the E. 

coli 16S rRNA gene (Rahmani et al., 2006), and the reverse primer 785R with the 

sequence 5’-CTA CCA GGG TAT CTA ATC C (Amann et al., 1995). For eukaryotic, 

the region containing partial portions of the small subunit (18S), both internal transcribed 

spacers (ITS) and the 5.8S of the rDNA repeat unit was amplified using the 

oligonucleotides primers ITS1 (5’-TCCGTAGGTGAACCTGCGG-3’) and ITS4 (5’-

TCCTCCGCTTATTGATATGC-3’) (Anderson and Cairney, 2004). 

The reactional mixture was composing by: 17.6 µL of sample; 2.5 µL of H2O RNase 

free; 2.5 µL of reaction buffer (10X) + MgCl2 (25mM); 2.5 µL of dNTPs (2mM); 0.1 µL 

of Primer reverse (1 µM); 0.1 µL of Primer forward (1 µM); 0.2 µL of Taq DNA 

polymerase. The reactional mixtures were inserted in a thermal cycler MJ Mini Bio-Rad, 

and PCR reactions were carried out with initial denaturing at 95ºC for 5 min, followed by 

40 cycles at 94ºC for 60 s, 50ºC for 60 s, and 72ºC for 2 min, finishing with 1 cycle of 6 

min extension at 72ºC for the bacteria population. For fungi, PCR reactions were carried 

out with initial denaturing at 95ºC for 3 min followed by 36 cycles at 94ºC for 50 s, 56ºC 

for 50 s, and 72ºC for 60 s, finishing with 1 cycle of 10 min extension at 72ºC. PCR 

products were analysed through agarose gel (1%) electrophoresis. The electrophoresis 

was performed at 100 V and the gel was revealed in the UV transilluminator Bio Rad Gel 

DocTM XR+. NZYDNA Ladder VII was used as molecular weight marker. 
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The nucleotides’ sequences were aligned with those retrieved from the GenBank 

(NCBI) databases for the homology analysis using the BLASTN 2.8.0 program. The 

sequence alignment was performed using the BioEdit 7.0.5.3 program against the nearest 

neighbours. A neighbour-joining tree of the aligned sequences was constructed using the 

software MEGA V.7 (Tamura et al., 2011). 

 

3.2.3.4. Characterisation of the total microbial population 

The metagenomic DNA was extracted from the stone using QIAmp DNA Stool Mini 

Kit (Qiagen, Limburg, Netherlands), with slight modifications of the manufacturer' 

instructions. 

The bacterial and fungal communities were characterised by Illumina Sequencing for 

the 16S rRNA V3-V4 region and Internal Transcribed Spacer 2, respectively.  

The DNA was amplified for the hypervariable regions with specific primers and 

further reamplified in a limited-cycle PCR reaction to add sequencing adaptor and dual 

indexes. First, PCR reactions were performed for each sample using 2X KAPA HiFi 

HotStart Ready Mix. In a total volume of 25 μL, 12.5 ng of template DNA and 0.2 μM of 

each PCR primer. 

For bacteria the following primers were used: forward primer Bakt_341F 5′-

CCTACGGGNGGCWGCAG-3′ and reverse primer Bakt_805R 5′-

GACTACHVGGGTATCTAATCC-3’ (Herlemann et al., 2011; Klindworth et al., 2013). 

For fungi, a pool of forward primers was used: ITS3NGS1_F 5’-

CATCGATGAAGAACGCAG-3’, ITS3NGS2_F 5’-CAACGATGAAGAACGCAG-3’, 

ITS3NGS3_F 5’-CACCGATGAAGAACGCAG-3’, ITS3NGS4_F 5’-

CATCGATGAAGAACGTAG-3’, ITS3NGS5_F 5’-CATCGATGAAGAACGTGG-3’, 

and ITS3NGS10_F 5’-CATCGATGAAGAACGCTG-3’ with the reverse primer 

ITS3NGS001_R 5’-TCCTSCGCTTATTGATATGC-3’(Tedersoo et al., 2014).  

The PCR conditions involved 3 min of denaturation at 95ºC, followed by 25 cycles of 

98ºC for 20 s, 55ºC for 30 s and 72ºC for 30 s and a final extension at 72ºC for 5 min. 

Negative controls were included for all amplification reactions. Electrophoresis of the 

PCR products was undertaken in a 1% (w/v) agarose gel and the ~490 bp V3-V4 and 

~390 bp ITS2 amplified fragments were purified using AMPure XP beads (Agencourt, 

Beckman Coulter, USA) according to manufacturer instructions. Second PCR reactions 

added indexes and sequencing adaptors to both ends of the amplified target region by the 
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use of 2X KAPA HotStart Ready Mix, 5 μL of each index (i7 and i5) (Nextera XT Index 

Kit, Illumina, San Diego, CA) and 5 μL of the first PCR product in a total volume of 

50μL. The PCR conditions involved a 3 min denaturation at 95ºC, followed by 8 cycles 

of 95ºC for 30 s, 55ºC for 30 s and 72ºC for 30s and a final extension at 72ºC for 5 min. 

Electrophoresis of the PCR products was undertaken in a 1% (w/v) agarose gel and the 

amplified fragments were purified using AMPure XP beads (Agencourt, Beckman 

Coulter, USA) according to the manufacturer instructions.  

The amplicons were quantified by fluorimetry with PicoGreen dsDNA quantification 

kit (Invitrogen, Life Technologies, Carlsbad, California, USA), pooled at equimolar 

concentrations and paired-end sequenced with the V3 chemistry in the MiSeq® according 

to manufacturer instructions (Illumina, San Diego, CA, USA) at Genoinseq (Cantanhede, 

Portugal). They were multiplexed automatically by the Miseq® sequencer using the 

CASAVA package (Illumina, San Diego, CA, USA) and quality-filtered with PRINSEQ 

software (Schmieder and Edwards, 2011) using the following parameters: 1) bases with 

average quality lower than Q25 in a window of 5 bases were trimmed, and 2) reads with 

less than 220 bases were discarded for V3-V4 samples and less than 100 bases for ITS2 

samples.  

The forward and reverse reads were then merged by overlapping paired-end reads 

using the AdapterRemoval v2.1.5 (Schubert et al., 2016) software with default 

parameters.  

The QIIME package v1.8.0 (Caporaso et al., 2010) was used for Operational 

Taxonomic Units (OTU) generation, taxonomic identification and sample diversity and 

richness indexes calculation. 

Sample IDs were assigned to the merged reads and converted to FASTA format 

(split_libraries_fastq.py, QIIME). Chimeric merged reads were detected and removed 

using UCHIME (Edgar et al., 2011) against the Greengenes v13.8 database (DeSantis et 

al., 2006) for V3-V4 samples and UNITE/QIIME ITS v12.11 database (Abarenkov et 

al.,2010) for ITS2 samples (script identify_chimeric_seqs.py, QIIME).  

OTUs were selected at 97% similarity threshold using the open reference strategy. 

First, merged reads were pre-filtered by removing sequences with a similarity lower than 

60% against Greengenes v13.8 database for V3-V4 samples and UNITE/QIIME ITS 

v12.11 database for ITS2 samples. The remaining merged reads were then clustered at 

97% similarity against the same databases listed above. Merged reads that did not cluster 

in the previous step were again clustered into OTU at 97% similarity. OTUs with less 
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than two reads were removed from the OTU table. A representative sequence of each 

OTU was then selected for taxonomy assignment (pick_rep_set.py, assign_taxonomy.py; 

QIIME). 

 

3.3. Results and discussion 

In order to investigate the mechanism of colour alteration of the blue limestone and 

the relation between the biocolonisation state and weathering, a multidisciplinary 

approach was accomplished. This problem strongly affects the aspect and integrity of the 

stone, leading to costly conservation work, which answers are needed. Thus, 

complementary analytical methodologies contributed with relevant information to 

understand the process of the colour alteration and the association between inorganic 

alteration and biological colonisation of the stone surface. 

 

3.3.1.  Chemical composition 

The samples were firstly analysed by handheld X-Ray fluorescence, on stone with 

chromatic alteration and non-altered sections. The elements as Ca, Si, Al, K, Sr, Fe and 

Mn seem to be present in similar quantities for the areas with and without chromatic 

alteration. Nevertheless, in the spectrum obtained on the chromatic altered area stands out 

a clear enrichment in sulphur (Fig. III-4). 

 

 

Figure III-4. Compositional spectra obtained by X-ray fluorescence for the sample of building 

stone, on altered (----) and non-altered (____) areas. 
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3.3.2.  Mineralogical composition and superficial texture 

According to the section 2.3.2. of the previous chapter, the mineralogical study of the 

blue limestone without any alteration pattern revealed the presence of calcite, quartz, 

pyrite, marcasite and birnessite in its composition. The microdiffraction (Fig. III-5) 

performed on altered areas of the stone surface revealed an enrichment in gypsum 

(CaSO4.2H2O). 

 

 

Figure III-5. Micro diffractogram obtained on altered area of the building stone collected. 

Abbreviations: g-gypsum; c-calcite; q-quartz. 

 

The determination of gypsum on altered surface areas was corroborated with SEM-

EDS, with the coexistence of calcium and sulphur in the same regions, as demonstrated 

in the bi-dimensional elemental mapping and punctual analysis performed (Fig. III-6). 

The results are compatible with the data obtained through X-ray fluorescence, where 

altered sections show a large content in sulphur. 
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Figure III-6. Microstructure (a), punctual analysis (b) and element mapping of calcium (c) and 

sulphur (d) on the altered area of the stone, performed by SEM-EDS. 

 

The formation of calcium sulphates can be resulted by the weathering of iron sulphide 

minerals (Ritsema and Groenenberg, 1993; Móricz, et al., 2012), found in this stone in a 

large amount, according with the section 2.3.2. of the chapter II. Based on the 

geochemical and mineralogical data of many previous studies, the chemical oxidation 

mechanism of FeS2 has been proposed (Chen et al., 2014). Thus, when exposed to water 

and oxygen, FeS2 can react to form sulphuric acid, H2SO4 (eq1), and calcium sulphates 

may be formed after the reaction of sulphuric acid with available carbonates of the stone 

(Móricz, et al., 2012; Chen et al., 2014), according to the reaction present in eq2. This 

reaction (eq1) implies the sulphur oxidation and loss of sulphur atoms in the iron sulphide 

structure. 

eq1: 2FeS2(s) + 7O2(g) + 2H2O         2FeSO4(s) + 2H2SO4(aq)
 

 

eq2: CaCO3(s) + 2H3O
+

(aq) + SO4
2-

(aq)       CaSO4.2H2O(s) + CO2(g) + H2O(l) 

 

Additionally, SEM analyses allowed to observe differences in the surfaces’ 

microstructure, where the stone surface with chromatic alterations seems less compact 

(Fig. III-7), which can be attributed to the loss of the polishing effect, probably caused by 

the carbonates’ dissolution.  
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The roughness parameters were measured in the SEM Phenom, using the 3D 

Roughness Reconstruction software. The software provides the measurement of two 

roughness parameters, Ra and Rh. While Ra smooths all measurements into one average, 

Rz averages only the greatest deviations. The higher values of Ra and Rh (Fig. III-8) 

obtained for the altered surfaces are indicative of a greater roughness when compared 

with non-altered surfaces. 

 

 

Figure III-7. Stone microstructure of non-altered (a) and altered (b) surfaces, obtained 

by SEM-EDS. 

 

As suggested above, the oxidation of the iron sulphides originates an acidic solution 

that will induce the dissolution of the stone, creating micro-cavities in the stone surface, 

and consequently a change in its roughness. This may create favourable conditions to 

microbial proliferation on the surface of the stone (Muynck et al., 2011; Miller et al., 

2012; Korkanç and Savran, 2015), since the biocolonisers’ capacity of penetration and 

anchoring increases. 
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Figure III-8. Determination of surface roughness parameters on non-altered (a) and altered (b) 

surfaces of the stone, using the 3D Roughness Reconstruction software. The mean value and 

standard deviation were calculated after 20 measurements. 

 

3.3.3.  Biocontamination evaluation 

The SEM using the secondary electrons mode allowed a further insight into the 

presence of microbial communities thriving on the stones with chromatic alteration and 

their capacity to proliferate within the stone surface (Fig. III-9). The micrographs 

obtained show the presence of filamentous fungi and spores on these surfaces. Using this 

technique, no biocolonisation was observed on non-altered surfaces. 
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Figure III-9. SEM analysis on weathered sections, showing microbial contamination. 

 

Regarding the cell viability index (CVI), performed in seven different altered and non-

altered areas, the methodology adopted showed that the samples collected on chromatic 

altered areas seem to indicate higher levels, when compared with the non-altered areas 

(Fig. III-10), whose high CVI degree potentiate metabolic activity. This method was 

previously optimised to cultural heritage biodeterioration studies and demonstrates to be 

simple, fast, and very sensitive (Rosado et al., 2013b), giving an overview about the 

presence of biocolonisers and a preliminary screening of their metabolic activity. 

 

 

Figure III-10. Cell viability of the microbial population present on altered areas and non-altered 

areas of the stone. Error bar corresponds to ± standard deviation (n=21). 

 

Some of the conventional methods traditionally used to characterise microbial 

population were performed in this study. The culture-dependent methods revealed that 

the samples from the altered areas of the stone had predominantly a higher and wider 

microbial growth when compared with the non-altered areas (Annex C.1). The samples 
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presenting the higher and wider microbial growth were C1, C2 and C3. On the other hand, 

the samples C4 and C5 had a moderate microbial development, while the sample C6 had 

not any microbial development using the NA, MEA and CRB culture media. 

The cultivable population was characterised based on their macroscopic and 

microscopic features. Ten single-colonies of bacteria (Table III-1) and eight single-

colonies of fungi (Table III-2) were obtained. 

 

Table III-1. Characterisation of the bacteria isolated from the stone with chromatic alteration. 

Code Macroscopic features Microscopic features  

C1P_A 

  

Bacilli 

(Gram+) 

C1A_A 

 

 

Cyanobacteria 

1 

C1A_B 

 

 

Cocos 

(Gram+) 

C1NA_A 

  

Cocos 

(Gram+) 

C1NA_B 

 

 

Bacilli 

(Gram+) 
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Code Macroscopic features Microscopic features  

C3P_A 

 
 

Bacilli 

(Gram+) 

C3A_b1 

  

Bacilli 

(Gram+) 

C3A_b2 

 

 

Cocos 

(Gram-)  

C3A_b3 

  

Bacilli 

(Gram-) 

C4A_b1 

 

 

Cocos 

(Gram+) 

    

 

For the bacterial isolates, it was possible to distinguish them according to their 

morphology: cocos or bacilli. 

On the other hand, the cultivable fungi population is composed by several strains of 

yeast and filamentous fungi. 
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Table III-2. Characterisation of the fungi isolated from the stone with chromatic alteration. 

Code Macroscopic features Microscopic features  

C1A_a’ 

 

 

Sterile 

mycelium 

C1A_b 

 

 

Sterile 

mycelium 

C1A_c 

 

 

Cladosporium 

sp. 

C1A_d 

 

 

Sterile 

mycelium 

C2A_a 

 

 

Yeast 

C3_B 

 

 

Sterile 

mycelium 

C3_D 

 

 

Cladosporium 

sp. 
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Code Macroscopic features Microscopic features  

C5A_A 

  

Sterile 

mycelium 

 

Based on macroscopic and microscopic characteristics, it was possible to discriminate 

one yeast and two microorganisms from the genus Cladosporium in the fungi isolates. 

For the other isolates it was not possible to identify their reproductive structures, being 

denominated by sterile mycelium, the vegetative part of any fungus. 

Besides this, the isolates were identified by 16S, 18S and ITS sequencing. The DNA 

extracted was amplified (Annex C.2) through Polymerase Chain Reaction (PCR) with the 

specific primers previously described. 

 According with the best matches of the database used, the cultivable bacteria 

population (Table III-3) is essentially composed of bacteria belonging to the families 

Bacillaceae and Micrococcaceae. It is composed of four different microorganisms from 

the genus Bacillus, which two of them have high similarities with the species of 

Solibacillus silvestris and other has high similarity with the species Bacillus cereus. 

Moreover, it is composed of species of the genera Exiguobacterium, Arthrobacter, 

Micrococcus, and microorganisms with high similarity with the species Kocuria rosea 

and Microbacterium murale. 
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Table III-3. Identification of the microorganisms isolated from the cultivable population. 

Code 

Closest related 

type strain on 

basis of 16S and 

18S rRNA gene 

and ITS 

Similarity 

Accession 

Numbers 

(NCBI) 

Family Class Phylum 

C1P_A Bacillus cereus 96% EF195169 Bacillaceae Bacilli Firmicutes 

C1A_A Exiguobacterium 

sp. 

95.1% X86064 Bacillaceae Bacilli Firmicutes 

C1A_B Kocuria rosea 94.3% DQ060382 Micrococcaceae Actinobacteria Actinobacteria 

C1NA_A Micrococcus sp. 97% JN181252 Micrococcaceae Actinobacteria Actinobacteria 

C1NA_B 
Microbacterium 

murale 
93.9% KR476461 Microbacteriaceae Actinobacteria Actinobacteria 

C3P_A 
Solibacillus 

silvestris 
93.8% EU249562 Bacillaceae Bacilli Firmicutes 

C3A_b1 
Solibacillus 

silvestris 
93.6% AJ006086 Bacillaceae Bacilli Firmicutes 

C3A_b2 Arthrobacter sp. 95.1% AJ785761 Micrococcaceae Actinobacteria Actinobacteria 

C3A_b3 Bacillus sp. 95.2% KP728948 Bacillaceae Bacilli Firmicutes 

C4A_b1 
Exiguobacterium 

sp. 
96% JX945789 Bacillaceae Bacilli Firmicutes 

C2A_a 
Rhodotorula 

mucilaginosa 
99% MG020687.1 Sporidiobolaceae Pucciniomycetes Basidiomycota 

C1A_a’ Phoma sp. 99% MH029124.1 Didymellaceae Dothideomycetes Ascomycota 

C1A_b Phoma herbarum 99% LC085217.1 Didymellaceae Dothideomycetes Ascomycota 

C1A_c 
Cladosporium 

ramotenellum 

99% 
MG548565.1 Davidiellaceae Dothideomycetes Ascomycota 

C1A_d Phoma herbarum 98% MH858359.1 Didymellaceae Dothideomycetes Ascomycota 

C3_B Phoma sp. 96% KF411578.1 Didymellaceae Dothideomycetes Ascomycota 

C3_D Cladosporium sp. 100% MG975642.1 Davidiellaceae Dothideomycetes Ascomycota 

C5A_A 
Schizophyllum 

commune 
98% MF280930.1 Schizophyllaceae Agaricomycetes Basidiomycota 

 

The figure III-11 shows the phylogenetic tree constructed for the isolated bacteria and 

reveal two main clusters. One cluster with six microorganisms from the phylum 

Firmicutes (Bacillus sp, two Solibacillus silvestris, Bacillus cereus, and two 

https://en.wikipedia.org/wiki/Microbacteriaceae
https://www.ncbi.nlm.nih.gov/nucleotide/MG020687.1?report=genbank&log$=nucltop&blast_rank=1&RID=3YUB6JDF01R
https://en.wikipedia.org/wiki/Sporidiobolaceae
https://en.wikipedia.org/wiki/Pucciniomycetes
https://www.ncbi.nlm.nih.gov/nucleotide/MH029124.1?report=genbank&log$=nucltop&blast_rank=3&RID=3YR3XCKR014
https://en.wikipedia.org/wiki/Didymellaceae
https://en.wikipedia.org/wiki/Dothideomycetes
https://en.wikipedia.org/wiki/Ascomycota
https://www.ncbi.nlm.nih.gov/nucleotide/LC085217.1?report=genbank&log$=nucltop&blast_rank=1&RID=3YTXK0SZ015
https://en.wikipedia.org/wiki/Didymellaceae
https://en.wikipedia.org/wiki/Dothideomycetes
https://en.wikipedia.org/wiki/Ascomycota
https://www.ncbi.nlm.nih.gov/nucleotide/MG548565.1?report=genbank&log$=nucltop&blast_rank=3&RID=3YTZENRX01R
https://pt.wikipedia.org/w/index.php?title=Davidiellaceae&action=edit&redlink=1
https://pt.wikipedia.org/wiki/Dothideomycetes
https://en.wikipedia.org/wiki/Ascomycota
https://www.ncbi.nlm.nih.gov/nucleotide/MH858359.1?report=genbank&log$=nucltop&blast_rank=5&RID=4MPD0TU8015
https://en.wikipedia.org/wiki/Didymellaceae
https://en.wikipedia.org/wiki/Dothideomycetes
https://en.wikipedia.org/wiki/Ascomycota
https://www.ncbi.nlm.nih.gov/nucleotide/KF411578.1?report=genbank&log$=nucltop&blast_rank=5&RID=3YU3JEXV015
https://en.wikipedia.org/wiki/Didymellaceae
https://en.wikipedia.org/wiki/Dothideomycetes
https://en.wikipedia.org/wiki/Ascomycota
https://www.ncbi.nlm.nih.gov/nucleotide/MG975642.1?report=genbank&log$=nucltop&blast_rank=1&RID=3YU8AYME01R
https://pt.wikipedia.org/w/index.php?title=Davidiellaceae&action=edit&redlink=1
https://pt.wikipedia.org/wiki/Dothideomycetes
https://en.wikipedia.org/wiki/Ascomycota
https://www.ncbi.nlm.nih.gov/nucleotide/MF280930.1?report=genbank&log$=nucltop&blast_rank=1&RID=3YU9VMCW01R
https://en.wikipedia.org/wiki/Schizophyllaceae
https://en.wikipedia.org/wiki/Agaricomycetes
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Exiguobacterium sp.), and the other cluster is formed with Actinobacteria 

(Microbacterium murale, Kocuria rosea, Micrococcus sp. and Arthrobacter sp.).  

Previous studies showed that some of these microorganisms have already been found 

in limestone-built heritage showing signs of deterioration, such as Solibacillus silvestris 

(Skipper et al., 2016), Bacillus cereus (Sasso et al., 2013; Skipper et al., 2016) and other 

microorganisms belonging to the genera Bacillus (Banciu et al., 2013; Sasso et al., 2013; 

Skipper et al., 2016; Andrei et al., 2017), Exiguobacterium (Sasso et al., 2013; Andrei et 

al., 2017), Arthrobacter (Jroundi et al., 2010; Banciu et al., 2013; Sasso et al., 2013; 

Andrei et al., 2017) and Kocuria (Jroundi et al., 2010; Banciu et al., 2013). Besides this, 

some authors suggested the capability of some of these microorganisms to induce 

extracellular precipitation of calcium carbonates in decayed limestones (Orial et al., 1993; 

Castanier et al., 2000). 

 

 

Figure III-11. Phylogenetic relationship between the prokaryotic isolates. 

 

The fungi population isolated (Table III-3) belongs mainly to the class 

Dothideomycetes, and it is composed of different species of the genera Phoma and 

Cladosporium. The presence of a species with high similarity with Schizophyllum 

commune complete the composition of the isolated fungi population.  

Figure III-12 shows the phylogenetic tree for the eukaryotic isolates. The two major 

clusters are composed of four isolated sequences belonging to the genus Phoma, and two 

isolated sequences that belong to the genus Cladosporium. 

Some microorganisms of the genus Cladosporium has been associated with stone 

weathering, causing deterioration patterns as discolouration (Grbic and Vukojevic, 2009; 

https://pt.wikipedia.org/wiki/Dothideomycetes
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Hallmann et al., 2011) and is considered one of the most abundant genera found on 

calcareous stone of historic monuments (Miller et al., 2008). Schizophyllum commune not 

only has been related to the biodeterioration of stone but, moreover, has also been used 

as a model organism to study the role of filamentous basidiomycete fungi in black slate’ 

bioweathering (Kirtzel et al., 2017). 

Regarding the yeast population, a microorganism with high similarity with 

Rhodotorula mucilaginosa was isolated. This species has also been found previously on 

historic buildings and related to its biodeterioration (Páramo-Aguilera et al., 2012).  

 

Figure III-12. Phylogenetic relationship between the eukaryotic isolates. 

 

Most of the isolates obtained in this work have been related with stone weathering, in 

both ornamental stone and historic monuments made of stone. The isolated strains are 

deposited in the microbial collection of the Unity of Biodegradation and Biotechnology 

from the HERCULES Laboratory – Évora University, opening the possibility to its 

further use to assess their effects on colonisation of stones. 

It is thought that only less than 1% of the estimated microbial diversity are cultivable 

(Dupont et al., 2014). Thus, high-throughput sequencing (HTS) approaches allowed to 

characterise in detail the total microbial community present on the limestone altered areas, 

for both prokaryotic and eukaryotic population (Annex C.3). 

For the prokaryotic population the dominant phyla (Fig. III-13a) were Actinobacteria 

(87.2%) and Proteobacteria (7.1%), while the prevalent families (Fig. III-13b) were 

Geodermatophiliceae (36.8%), Micrococcaceae (19.4%) and Nocardioidaceae (10.9%). 

The most abundant genus is Modestobacter (25.3%), previously related with degradation 
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in cultural heritage made of limestone (Urzi et al., 2001). Other less representative genera 

were also identified, like Geodermatophilus, Agrococcus, Arthrobacter and Deinococcus. 

For eukaryotic population, the predominant genera identified were Coniosporium and 

Cladosporium (Fig. III-14). As referred above, species of Cladosporium has been related 

with stone weathering, but Coniosporium species may also have an important role (De 

Leo et al., 1999). This approach confirmed also the presence of microorganisms 

belonging to the genera Cladosporium and Phoma, previously isolated. 

 

 

Figure III-13. Characterisation of the prokaryotic population present on limestone altered areas 

at (a) phylum and (b) family levels. 

 

These results seem to indicate that the main biocolonisers of this limestone are 

bacterial communities, in particular Actinobacteria have the most important role in the 

colonisation of this material. 

 

 

Figure III-14. Characterisation of the eukaryotic population at genera level present on limestone 

altered areas. 
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Both conventional and HTS approaches encompassed and give useful information 

about the presence of biocontamination, allowing the characterisation of the microbial 

diversity. In this work, important and detailed description about the communities able to 

develop on the blue limestone was provided, and the possibility to use the isolated 

microorganisms for simulation assays. 

The results point out that these changes in the stone mineralogy through natural 

weathering may provide favourable conditions to microbial proliferation on the damaged 

surfaces, due to the increment of the surface roughness and further enhancement of the 

microorganisms’ capacity to penetrate and anchor within the damaged surface. Therefore, 

the inorganic initial surface alteration promotes the biocolonisation that will increase the 

degradation rate, creating a cause-effect cycle. 

This study constitutes an important contribution to understand the mechanism of 

colour alteration occurred on the blue limestone, and the results point out the possible 

influence of the communities in the natural degradation process (Fig. III-10) of the stones.
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4.1.  Introduction 

The conservation of natural stone applied in historic monuments or new buildings 

remains a challenge for the conservators-restorers. Although stone being a piece of 

cultural symbolism for many societies, the efforts of the scientific community have not 

been completely successful, in order to understand the complex issues of its deterioration. 

As previously mentioned, one of the most important characteristic and visible aspect that 

affects the features of natural stone is the colour, since discolouration creates 

unacceptable aesthetic patterns, and consequently a negative impact on their appreciation 

and economic value. There are too many factors that may induce weathering and 

subsequent discolouration of natural stone, and for many authors the main important ones 

are its composition, atmospheric conditions and biodeteriogenic agents (Polo et al., 2010; 

Orihuela et al., 2014). 

In this context, one of the main gaps of the scientific community is the lack of 

association stone-microorganisms-colour because, for many decades, chemical and 

physical deterioration with non-biogenic origin were believed to be the main causes of 

stone deterioration (Villa et al., 2016). Most of stone buildings and monuments are 

exposed to outdoor environment and, consequently, are subjected to biological 

colonisation through endolithic, chasmolithic and epilithic ways. The mineralogical 

composition, porosity and surface roughness are properties that define the susceptibility 

of the stone substrata to biological colonisation, through the settlement, anchorage and 

development of the biocolonisers (Tiano, 2002; Miller et al., 2009; Jim and Chen, 2011; 

Gómez-Cornelio, 2012; Miller et al., 2012; Vázquez-Nion et al., 2018). Nutritional 

characteristics and stone surface finishing can influence the spatial and temporal 

development of the colonisers able to grow on it (Tiano, 2002). Moreover, some stone 

lithotypes are more susceptible to colonisation, that is commonly the case for limestone, 

since its degree of porosity is higher when compared with other stones (Cuzman et al., 

2011; Miller et al., 2012; Pranjic et al., 2015). 

One typical and important case of natural discolouration occurs on the blue limestone. 

The weathering of this stone results in the formation of calcium sulphates on the stone 

surface and, as it was previously suggested in the Chapter III, this alteration can promote 

biocolonisation which will increase the deterioration rate, creating a cause-effect cycle. 

In this way, there is a possibility that the alteration of the surface roughness may 

potentiate the microorganisms’ ability to anchor and penetrate within the damaged 
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surface of the stone. This relationship needs to be fully investigated, and therefore 

demonstrate how the microbial proliferation influence the colour change rate on the blue 

limestone. 

With this need in mind, this work aims to determine how the biocolonisers contributes 

for the discolouration process occurred on the blue limestone. For this purpose, 

accelerated artificial ageing was performed under controlled environmental parameters, 

using slabs of blue limestone. The stone slabs were inoculated with microorganisms 

previously isolated from blue limestone showing colour alteration patterns, collected in a 

real context, according with the previous Chapter. The colour and the microbial 

proliferation were evaluated and determined for 180 days.  
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4.2.  Materials and methods 

In order to investigate the effect of microbial agents in the natural discolouration 

process of the blue limestone, accelerated ageing assays were performed for 180 days, 

using stone slabs. A polished surface was used to mimic a finished stone and the stone 

slabs were placed in a water-contact condition, thus providing the conditions described in 

the section 3.3.2. of the Chapter III in order to induce its natural weathering. The 

communities’ dynamic was studied for the inoculated and native communities of the 

stone. The microorganisms used for the inoculation of the slabs were those obtained from 

the blue limestone showing colour alteration patterns, previously described in the table 

III-3 of the previous Chapter. 

 

4.2.1.  Artificial ageing assay set-up 

To inoculate the stone slabs, six isolated bacteria and five isolated fungi with high 

genetic similarity with Arthrobacter sp., Bacillus sp., Exiguobacterium sp., Kocuria 

rosea, Microbacterium murale, Solibacillus silvestris, Phoma sp, Phoma herbarum, 

Cladosporium ramotenellum, Cladosporium sp. and Schizophyllum commune were 

selected. 

Fresh cultures of the bacteria and fungi isolates were inoculated in NA and MEA 

(Annex B), and incubated at 30ºC and 28ºC, during 2 and 7 days, respectively. After this, 

three different mixtures of microbial population were prepared, using sterile saline 

solution (NaCl 0.9%). One mixture is composed of six bacterial microorganisms 

(denominated mix of bacteria), another of five fungi microorganisms (denominated mix 

of fungi) and the last one is composed of the both previous mixtures (denominated mix 

of bacteria + fungi). 

The blue limestone was collected in a quarry located in the MCE and carried to the 

laboratory in sterile bags, where were placed at 4ºC until processing. Slabs were prepared 

(1,5 x 1,5 x 1,5 cm) in semi-aseptic conditions and inoculated with 1 mL of the different 

mixtures (mix of bacteria, mix of fungi, mix of bacteria + fungi) and incubated at 28°C 

and 30°C for 180 days. One slab was left without inoculation in order to study the native 

population of the stone. To maintain a high relative humidity, 1 mL of sterile water was 

periodically added (every 15 days) on the slabs. The assays were performed in triplicate.  
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The stone slabs were monitored under aseptic conditions at 0, 2, 7, 14, 30, 90 and 180 

days after the inoculation, in order to determine the colourimetric alterations and to 

evaluate the dynamics of the microbial population (Fig. IV-1).  

 

 

Figure IV-1. Scheme of the artificial ageing assays performed in lithotypes of blue limestone. 

 

4.2.2.  Macroscopic and microscopic monitoring 

The macroscopic appearance of the stone slabs during the assay was recorded using a 

camera Nikon D3100. 

At microscopic level, the slabs were observed using the stereoscopic microscope 

LEICA M205C, equipped with a digital camera Leica DFC295 (Leica Microsystems, 

Wetzlar, Germany), and a SEM coupled to an EDS spectrometer in order to get the 

particular details of each slab, using the same conditions described in the section 2.2.3.3. 

of the Chapter II. 

After the 180 days, the stone slabs were coated with an Au/Pd target during 60 s and 

carefully examined by SEM at high vacuum mode, using 10 kV accelerating voltage to 

assess the microbial proliferation with higher resolution. 

 

4.2.3.  Colour monitoring 

The colour of the stones’ surface was monitored using the colourimetric parameters of 

the CIELAB space, previously described in the section 2.2.2. of the Chapter II, and also 

through Fiber Optic Reflectance Spectroscopy (FORS). 

Using the CIELAB space, as previously mentioned, the L* value refers to the 

luminosity variable, while a* and b* are the chromaticity coordinates. According to 

Mokrzycki and Tatol (2011), the colour difference (ΔE) can be obtained with the 
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following equation: 

 

ΔE = ((ΔL)2 + (Δa)2 + (Δb)2)1/2  

Where ΔL = L*txdays – L*t0days; Δa = a*txdays – a*t0days; Δb = b*txdays – b*t0days. 

 

The measurement of the colourimetric parameters was performed in aseptic 

conditions. Five distinct points of each stone slab were studied, with three measurements 

per point. The results are an average of these measurements. 

The FORS spectroscopy analyses were performed using a portable spectrophotometer 

ASEQ LR1-T v.2, in the range of 300-1000 nm, with a spectral resolution of 1 nm, a time 

exposure of 100-200 ms, 5 scans during 5 s. The spectra were acquired using the software 

ASEQ CheckTR. Each slab was analysed in five distinct points, with three measurements 

per point. 

 

4.2.4.  Assessment of the microbial population dynamics 

The study of the microbial population dynamic was performed by high-throughput 

sequencing (HTS), using the methodology previously described in the section 3.2.3.4. of 

the Chapter III.  
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4.3. Results and discussion 

The action of biocolonisers on the blue limestone was investigated through artificial 

ageing tests, where the chromatic parameters and the proliferation capacity of the 

microbial community were evaluated, and its dynamics were characterised. 

The colour was determined by spectroscopy techniques, and the dynamic of the 

microbial population during the ageing period was monitored through microscopic and 

HTS approaches. The complementary data contributed with relevant information to 

associate the effect induced by the microbial proliferation on the natural discolouration 

of this lithotype. 

 

4.3.1.  Determination of chromatic changes 

To determine with accuracy the effects on its original colouration, the limestone slabs 

were analysed by non-invasive micro-analytical techniques. 

The parameters L*a*b* were determined during the artificial ageing assays. The 

measurement of the colour difference (ΔE) was performed using the formula described in 

the section 4.2.3. and the results obtained are shown in the table IV-1.  

 

Table IV-1. Measurement of the colourimetric parameters and determination of the colour 

difference for each slab. 

Slab stone 
Colourimetric parameters 

ΔE 
L* a* b* 

t0d 

C 54.36 ± 1.29 0.76 ± 0.24 5.19 ± 0.87 0 

B 53.75 ± 2.20 0.75 ± 0.21 4.85 ± 0.93 0 

F 55.74 ± 2.84 0.67 ± 0.23 4.98 ± 0.69 0 

B+F 54.16 ± 0.95 0.67 ± 0.18 4.88 ± 0.64 0 

t2d 

C 56.87 ± 1.86 0.67 ± 0.16 5.03 ± 0.68 2.52 

B 50.49 ± 2.83 0.82 ± 0.27 4.65 ± 0.96 3.27 

F 51.74 ± 3.06 0.69 ± 0.23 4.67 ± 0.75 4.03 

B+F 48.86 ± 3.13 0.95 ± 0.29 5.18 ± 1.05 5.33 

t7d 

C 56.12 ± 1.34 0.72 ± 0.20 5.11 ± 0.75 1.76 

B 50.92 ± 2.40 0.84 ± 0.27 4.57 ± 0.94 2.85 

F 51.40 ± 2.82 0.66 ± 0.24 4.44 ± 0.88 4.42 

B+F 48.96 ± 1.16 0.91 ± 0.22 5.06 ± 0.72 5.21 

t15d 

C 51.50 ± 1.95 0.93 ± 0.24 5.10 ± 1.01 2.17 

B 52.74 ± 2.62 0.86 ± 0.25 4.60 ±0.92 1.42 

F 53.47 ± 3.43 0.75 ± 0.21 4.54 ± 0.82 2.43 
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Slab stone 
Colourimetric parameters 

ΔE 
L* a* b* 

B+F 51.05 ± 0.95 0.96 ± 0.12 5.07 ± 0.52 5.22 

t30d 

C 55.37 ± 3.52 0.86 ± 0.27 5.07 ± 0.95 1.02 

B 54.99 ± 3.30 0.86 ± 0.21 4.73 ± 0.86 1.79 

F 53.92 ± 2.96 0.78 ± 0.24 4.32 ± 0.87 2.04 

B+F 51.53 ± 1.29 1.06 ± 0.26 5.04 ± 0.77 2.67 

t90d 

C 53.01 ± 4.17 0.98 ± 0.28 4.54 ± 0.79 1.51 

B 52.20 ± 2.73 1.07 ± 0.25 5.07 ± 0.77 1.94 

F 54.74 ± 2.87 0.77 ± 0.27 3.95 ± 0.96 1.71 

B+F 52.23 ± 1.58 1.03 ± 0.18 4.78 ± 0.57 1.98 

t180d 

C 54.13 ± 3.15 0.46 ± 0.22 3.54 ± 0.65 1.65 

B 52.79 ± 6.07 0.51 ± 0.30 3.65 ± 0.77 1.97 

F 53.15 ± 4.55 0.49 ± 0.19 3.33 ± 0.63 3.9 

B+F 48.36 ± 1.16 0.71 ± 0.16 4.04 ± 0.49 5.87 

C – slab without inoculation; B – slab inoculated with bacteria; F – slab inoculated with fungi; B+F – slab inoculated with bacteria + 

fungi. 

 

The results showed that the slabs inoculated with microorganisms exhibited always a 

higher ΔE, when compared with the slabs without inoculation (Fig. IV-2). Moreover, the 

slabs that presented the higher ΔE were those inoculated with a microbial population 

composed of the mixture of bacteria + fungi. On the other hand, the inoculated slabs that 

presented the lower ΔE values were those containing the mixture composed only of 

bacteria. After the 180 days, the ΔE was 1.64 for the slabs without inoculation, 1.97 for 

the slabs inoculated with bacteria, 3.90 for the slabs inoculated with fungi and 5.87 for 

the slabs inoculated with the mixture of bacteria + fungi.  
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Figure IV-2. Graphical representation of the difference in total colour (ΔE) during the artificial 

ageing assays for the slab without inoculation (  ), slab inoculated with bacteria (  ), slab inoculated 

with fungi (  ) and slab inoculated with bacteria + fungi (  ). 

 

Complementarily, FORS spectroscopy was performed on the stone slabs presenting 

the higher discolouration – the stone inoculated with the mixture of bacteria + fungi (Fig. 

IV-3). The results obtained showed a gradual change in the spectra along the ageing 

period, namely a vertical shift in the reflectance spectrum. The maximum shift is achieved 

for the spectrum obtained at the end of the artificial ageing, 180 days after the inoculation. 

Previous studies associated vertical shift of an reflectance spectrum with discolouration 

effects due to roughness modification of the substratum (Simonot and Elias, 2002). 

 

 
Figure IV-3. FORS spectroscopy spectra obtained for the slab stones inoculated with the mixture 

of bacteria + fungi, during the ageing assays. Spectra for the slab inoculated at t0d (
_____), t2d (

_____), 

t7d (
_____), t15d (

____), t30d (
_____), t90d (

_____) and t180d (
_____). 
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To validate these results, spectra at t0d and t180d were obtained from the slabs without 

any inoculation (Fig. IV-4), and the data collected revealed only slight differences 

between the two spectra since they nearly overlap. Therefore, the data obtained suggest 

that biocolonisation of this stone can increment the change of the stone surface. 

 

 

Figure IV-4. FORS spectroscopy spectra obtained for the slab without inoculation at t0d (
_____) 

and t180d (
_____). 

 

The FORS spectroscopy results combined with colourimetry data suggest that 

biocolonisation of this limestone may have an effective contribution in its discolouration, 

since higher surface discolouration occurs when inoculated colonisers are present. This 

effect was more evident in the slabs that were inoculated with the microbial population 

composed of bacteria + fungi. 

 

4.3.2.  Assessment of the microbial population 

The microscopic features and the proliferation capacity of the microbial communities 

in this material were assessed (Table IV-2). Progressive formation of gypsum crystals on 

the surface of the stone slabs was observed, as well as the continuous ability of biological 

communities to develop on the substratum during the period of the ageing assays, without 

any addition of nutrients. Also noteworthy is the slight discolouration detected on the 

stone slabs by stereoscopic microscopy after the 15th day of inoculation, corroborating 

the colourimetric and FORS data. 

The micrographs obtained by SEM revealed that this limestone seems to have a high 

susceptibility to biocolonisation, since that progressive development of microbial 

communities was observed throughout the artificial ageing (Fig. IV-5). After 30 days of 

inoculation, it was possible to observe already a considerable index of microbial agents’ 
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proliferation, as well as formation of calcium sulphates resulted from the natural 

weathering of this stone. 
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Table IV-2. Microscopic monitoring of the stone slabs, through stereoscopic and scanning electron microscopy.  

 

Inoculation 

time (days) 

Stereoscopic microscope SEM 

No inoculation B + F* No inoculation B + F* 

0 

    

2 

    

7 

    

15 
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Inoculation 

time (days) 

Stereoscopic microscope SEM 

No inoculation B + F* No inoculation B + F* 

30 

    

90 

    

180 

    
*B+F – stone slab inoculated with the mixture bacteria + fungi.
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Figure IV-5. Microbial proliferation on the slabs during the ageing.  Slabs without inoculation (a-d) and slabs inoculated with the mixture bacteria + fungi (e-

l).
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Using the EDS detector, it was possible to determine the presence of elements like 

carbon, nitrogen and oxygen, which are indicators of the presence of organic material, 

while sulphur and calcium reveals the formation of calcium sulphates (Fig. IV-6).  

 

 
Figure IV-6. Element mapping of calcium, sulphur, carbon, nitrogen and oxygen obtained by 

VP-SEM-EDS at t30d on the slab containing the mixture bacteria + fungi. 

 

The micrographs acquired after the 180 days of inoculation revealed that the microbial 

population was composed mainly by filamentous fungi, spores and bacteria that were 

proliferating around the calcite and gypsum crystals (Fig. IV-7). 

 

 

Figure IV-7. SEM micrographs on the stone slabs at t180d that indicate the presence of bacteria, 

hyphae of filamentous fungi and spores proliferating around the calcite and gypsum crystals. 
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The microbial population developed and its evolution during the assay were 

characterised through HTS using the Illumina® MiSeq platform. The stone slabs were 

inoculated with 3 different microbial mixtures, as described above in the section 4.2. The 

presence of native population on the stone and their evolution were also assessed. 

Regarding the inoculated bacteria (Fig. IV-8), after 15 days of inoculation the 

dominant genus was Solibacillus (3.4%), followed by the genera Arthrobacter (2.2%), 

Microbacterium (0.9 %) Exiguobacterium (0.9%), Bacillus (0.6%) and Kocuria (0.2%). 

After the 180 days of inoculation, microorganisms belonging to the genus Arthrobacter 

are the dominant (7.2%), followed by the genera Bacillus (2.6%), Exiguobacterium 

(1.8%), Microbacterium (1.4%) and Kocuria (0.7%). Microorganisms belonging to the 

genus Solibacillus were not identified at t90d and t180d. The results pointed out that the 

microorganisms belonging to the genus Arthrobacter revealed the ability to develop on 

this substratum, even when they are competing with microorganisms of other genera, 

since their relative percentage raised along the 180 days of the artificial ageing assays. 

 

 

Figure IV-8. Dynamic of the prokaryotic population inoculated on the stone slabs during the 

artificial ageing assays. 

 

Considering the total communities (namely inoculated and native population), the 

most representative prokaryotic population (Fig. IV-9) at the beginning of the inoculation 

is composed of microorganisms belonging to the genus Microbispora (17.3 %). The 

proliferation of these microorganisms remained stable along the time, as well as the 

microorganisms belonging to the genera Enterobacter and Exiguobacterium. The 
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microorganisms of the genus Solibacillus had a slight decrease over time, while the 

microorganisms of the genera Zhihengliuella and Arthrobacter had a slight increase.  At 

t2d, the genus Pseudomonas turned up into the dominant genus until the end of the 

artificial ageing, composing 38.9 % of the prokaryotic population.  The genus 

Lactococcus was part of the dominant genera until the 15 days of the inoculation. After 

the 180 days of inoculation, the prokaryotic population was mostly composed of 

microorganisms of the genus Pseudomonas (38.9%), followed by the genera 

Zhihengliuella (11.6%), Microbispora (9.5%), Arthrobacter (7.2%), Enterobacter 

(2.9%), Exiguobacterium (2.4%) and Solibacillus (1.6%). Previous studies indicate that 

microorganisms belonging to the genera Microbispora, Enterobacter, Exiguobacterium 

and Solibacillus have been found on ornamental stone and on historical limestone 

buildings in biodeterioration context (Piñar et al., 2010; Ettenauer et al., 2011; 

Niyomyong et al., 2012), while Pseudomonas were previously described as 

carbonatogenic microorganisms using ornamental stone as substratum (Piñar et al., 2010). 

 

 

Figure IV-9. Dynamic of the most representative inoculated and native prokaryotic population 

present on the stone slabs during the artificial ageing assay. 

 

Regarding the eukaryotic population (Fig. IV-10), at the beginning of the ageing assays 

the major microorganisms identified belong to the genera Mycosphaerella (38.3%), 

Didymella (33.9%) and Fusarium (6.5%). After 7 days of the inoculation, the 

microorganisms belonging to the genus Fusarium revealed a pronounced development 
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on the stone slabs, being the major genus identified in this period (24.7%), followed by 

the genera Hannaela (17.5%), Devriesia (9.3%), Dirina (4.7%), Chaetomium (3.1%) and 

Penicillium (3%). After 30 days of the inoculation, the major fungi population was 

equally composed of microorganisms belonging to the genera Penicillium (19.4%), 

Fusarium (18.5%), Chaetomium (18.2%) and Hannaella (17.4%). At the end of the 

ageing assays, the fungi population was mainly composed of Didymella (41.4%), 

Fusarium (34.8%) and Mycosphaerella (12%). 

 

 

Figure IV-10. Dynamic of the most representative inoculated and native eukaryotic population 

present on the stone slabs during the artificial ageing assays. 

 

Some of these microorganisms have already been associated or isolated from stone 

materials. For example, microorganisms of the genera Fusarium and Penicillium have the 

ability to form biofilms “in vitro” on limestone, sandstone and granite materials (de la 

Torre et al., 1993), and have also been related with biofilms’ formation on surfaces of 

historic buildings made of limestone (Mitchell and Gu, 2000; Rosa-García et al., 2011; 

Gómez-Cornelio et al., 2012), or even on concrete (Gu et al., 1988). Additionally, 

microorganisms of the genera Hannaela and Chaetomium has recently been reported to 

be a part of a patina formed on a weathered limestone (Li et al., 2018b), and 

microorganisms of the genera Chaetomium and Dirina were suggested to play an 

important role in the transformation of limestone minerals through their weathering 

(Burford et al., 2003; Llop et al., 2013; Seaward, 2014; Cañaveras et al., 2015). 
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The inoculated fungi population had an insignificant evolution when compared with 

the native fungi population, which can be another indicator that bacteria may play the 

major role in the biodeterioration of this stone. 

The execution of this methodology seems to be useful for the evaluation of the 

contribution of biogenic colonisation on the natural weathering of this important 

ornamental stone lithotype. The data obtained instrumentally revealed that the rates of the 

discolouration increased for the stone slabs inoculated with microorganisms, when 

compared with stone slabs without inoculation. This rate increment was particularly 

higher when the biocolonisers were composed of both fungi and bacteria population. 

Additionally, it was possible to evaluate the great capacity of microbial growth on this 

material, since that microbial development increased period after period (Fig. IV-6). As 

described in the previous Chapter, this is much probably related with the increase of the 

surface roughness of the stone and further microorganisms’ capacity to anchor and 

penetrate within it. 

On the other hand, it was possible to evaluate the dynamics of the microbial population 

that colonise this material during the artificial ageing assays, using HTS, a faster, reliable 

and precise technology. Thus, it was possible to identify the microorganisms that may 

play the major role in the biodeterioration of this lithotype. The most predominant 

microorganisms at the end of the artificial ageing belong to the genera Pseudomonas, 

Zhihengliuella, Microbispora, Arthrobacter, Enterobacter, Exiguobacterium and 

Solibacillus for the bacterial population, and Didymella, Fusarium and Mycosphaerella 

for the fungi population.
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Part of this Chapter was written based on an article published with scientific peer 

review entitled “A change in composition, a change in colour: The case of limestone 

sculptures from the Portuguese National Museum of Ancient Art” (Dias et al., 2019). 

 

5.1.  Introduction 

An important part of our cultural heritage assets is made of stone, since has always 

been a prime material of choice due to its beauty and properties (Eyssautier-Chuine et al., 

2015). Specifically, colour is a key-factor in selecting a particular stone. Like any other 

material, stone is subjected to deterioration mechanisms, that can be caused by external 

(temperature, humidity, air pollution, biogenic agents, etc) or internal (e.g. composition, 

bioreceptivity) factors (El-Gohary, 2007; Polo et al., 2010). It is known that the main 

harmful deterioration agents which commonly may affect carbonated stones are water, 

soluble salts and biodeteriogenic agents, that can induce physical and chemical 

deterioration (Pires et al., 2010; Polo et al., 2010).  

As previously mentioned in the Chapter I, water can disaggregate stone through the 

phenomenon of hygric and hydric swelling. Water may hydrate or hydrolyse minerals and 

can also transport compounds able to oxidise/reduce elements of minerals. Additionally, 

water may introduce soluble minerals in solution like hydrous and anhydrous forms of 

chlorides, carbonates, and sulphates of Ca, Na and Mg which, after precipitation, have a 

strong effect in limestone deterioration (Pires et al., 2010). 

Moreover, many biodeteriogens, organisms that are involved in deterioration 

processes like bacteria, fungi, algae, and lichens can be found in stone (Polo et al., 2010; 

Abdelhafez et al., 2012; Dakal and Cameotra, 2012). Usually, the composition of the 

microbial populations present on a stone is very complex, which is the result from a 

successive colonisation of different communities over several years (Abdelhafez et al., 

2012). In this case, the mechanical damage is mainly caused by the penetration of fungal 

structures into the stone and by the tallus expansion /contraction under environmental 

conditions’ changes such as humidity. Furthermore, as mentioned in the Chapter I, 

chemical dissolution can occur through the reaction between the carbonates and the acids 

secreted by the biodeteriogenic agents (Charola et al., 2007; Corvo et al., 2010; Doehne 

and Price, 2010).  Biodeteriogenic agents can also induce staining on stone, which is 

dependent of the compounds produced by the biodeteriogens (Polo et al., 2010). 

Carotenoids, which are mainly produced by filamentous fungi and yeasts, as well as by 
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some species of bacteria, algae and lichens (Rosado et al., 2014a) impart yellow to red 

hues to the stones. 

To predict or prevent the loss of our common heritage, it is necessary to be able to 

characterise the different lithotypes existing, describe its deterioration model and measure 

its extent. Only after, it is possible to comprehend the behaviour of a stone placed in a 

particular environment (Doehne and Price, 2010). There is an emergent need to preserve 

our cultural heritage, thus it is necessary to give the right indications to create the best 

opportunities for the conservator-restorers to do their work in the appropriate way.  

In this chapter, two types of calcareous stone applied in historic artworks and 

monuments – limestone and marble – were selected as case studies. These materials show 

diverse types of pathologies and are placed under different environment conditions. This 

work aims to characterise the stones and alteration products formed, and their main 

microbial colonisers, in order to determine the causes for the deterioration of these 

historical and cultural heritage assets. 

 

5.1.1.  Limestone-built sculptures 

Considered one of the major challenges for conservator-restorers, the deterioration of 

artworks may result in the decay of its matrix and, consequently, the loss of carved details 

and original intention of the sculptor (El-Gohary, 2007). It is known that the 

storage/exposure of our heritage to indoor environments does not mean that the artworks 

are protected against harmful levels of deterioration agents (Corvo et al., 2010).   

Four sculptures (Fig. V-1) from the Portuguese National Museum of Ancient Art 

(NMAA, Lisbon) (38º 42’ 16.654’’ N 9º 9’ 42.527’’ O) with aesthetic and structural 

damages were selected for this study, in order to characterise their chromatic alterations 

and some material loss. The sculptures St. John the Baptist, St. Paul and The Virgin and 

the Child are attributed to the sculptor João de Ruão and are dated to the 16th century. The 

other sculpture, Musician Angel, was created in the Workshop of the Portal of the 

Monastery of Batalha directed by Master Huguet and is dated to the 15th century. The 

sculptures have been maintained under indoor environment conditions but in different 

rooms (both with windows occasionally opened) and exhibit different types of 

pathologies. 
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Figure V-1. Limestone sculptures selected for the study, located at the NMAA. St. John the 

Baptist (a), The Virgin and the Child (b), St. Paul (c) and Musician Angel (d). 

 

5.1.2.  Heritage building made of marble 

Estremoz (Portugal) has been since antiquity one of the most exploited sources of 

marble in the Mediterranean. As mentioned before in the Chapter I, the Estremoz 

Anticline is the main centre of Portuguese marble exploitation and one of the most 

important at worldwide. In the Middle Ages, marbles from Estremoz were used for the 

construction of castles, palaces and other buildings (Lopes and Martins, 2012). Since the 

15th century, these marbles became used both nationally and internationally, having been 

exported to other continents by Portuguese explorers. After this period, these marbles 

began to be searched for ornamental purposes and are currently present in several national 

and international monuments (Lopes and Martins, 2012).  

One of the national building made of marble from Estremoz, the Convent of “São João 

da Penitência” (38º 50’ 44’’ N 7º 35’ 30’’ O) (Fig. V-2), was selected in order to 

understand the deterioration processes that are affecting the features of the stone, namely 

its colour and strength. This Convent, situated in Estremoz, in the eastern side of the main 

square of the village (Rossio Marquês de Pombal), was founded in 1501-02 by the King 
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Manuel I. Here, climate is wet and temperate, and the yearly average temperature and 

average rainfall are 15.6ºC and 699 mm, respectively. 

 

 

Figure V-2. The manueline architecture of the Convent of “São João da Penitência” [5]. 

 

The Convent was instituted in 1519, being the only Monastery of the Knights of 

Rhodes in Portugal and subsequently was incorporated into the Order of Malta. The 

church is contemporary of 16th century structural design, boasting of Manueline 

architecture. The area was enlarged in the 17th century with a second archway, supported 

by Tuscan pillars. Each wing has ten arches, subdivided into four twin arches and two 

simple ones (Crespo, 1949; Mandeiros, 2001). 

The main cloister, made of marble, has been subjected to deterioration, leading to 

appearance of unacceptable aesthetic patterns, namely staining and loss of cohesion (Fig. 

V-3). 

 

 
5 www.cm-estremoz.pt, accessed at February 2019; 
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Figure V-3. Some of the pathologies found in the main cloister of the Convent. Dark staining on 

column stems (a), reddish staining with detachment of the material (b and e), and patina 

formations on the Tuscan pillars (c) and on the stone walls (d). 

 

This study intends to characterise the stone, to detect the alteration products and assess 

the microbial colonisers, in order to determine the causes of the colour alteration and the 

loss of the cohesion in specific areas of the Convent. 
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5.2. Materials and methods 

The sculptures show two different types of pathologies, which are affecting their 

original colour and integrity (Fig. V-4). The St. John the Baptist and The Virgin and the 

Child sculptures show white stains for almost the entire surface, while the St. Paul and 

Musician Angel sculptures show red stains and loss of material. On average, the yearly 

temperature and relative humidity values of the floor where the sculptures are placed 

range between 18.5-23.5 °C and 40-65 %, respectively. 

 

 

Figure V-4. Limestone sculptures subjected for deterioration study and details of their 

pathologies. 
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On the other hand, the Convent of “São João da Penitência” has the main cloister made 

of marble. In the cloister, six areas were signalised by having a colour alteration on the 

stone surface, namely areas with white and yellow patinas, red stains and fissures, and 

areas with reddish and blackish biofilms (Fig. V-5). These areas were chosen for being 

representative of the diverse pathologies that are affecting the marble of this building. A 

non-altered surface of the stone was selected in order to use it as a control specimen. 

 

 

 

Figure V-5. Areas selected for the methodology approach. Areas CM1 and CM2 correspond to 

white and yellow patinas (a, b), areas CM3 and CM4 correspond to reddish stains and fissures 

(c, d), areas CM5 and CM6 correspond to formation of red and dark biofilms (e, f). 

 

 To study the marble from the Convent, an in-situ approach was initially performed 

using the methodologies following described. 

 

5.2.1.  In-situ approach 

Optical images were recorded using a digital microscope (Dinolite, 430 nm, Anmo 

Electronics Corporation) with a magnification between 45x-75x in the reflected visible 

and UV light. 

Colour measurement was performed using the same methodology described in the 

section 2.2.2. of the Chapter II, through the CIELAB chromatic space. The colour of each 
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area was measured on three different points. The data reported represent the mean value 

of these measurements. 

Elemental composition study was done in-situ, through X-ray fluorescence 

spectrometry analyses using a portable Bruker Tracer III-SD adopting the same 

methodology described in the section 2.2.3.1. of the Chapter II. In this study, no vacuum 

was applied. 

 

5.2.2.  Sampling processes 

The sampling processes for the sculptures and building were done under strict 

conservation requirements, in order to minimise the structural and aesthetic impact on the 

artworks, stone pillars and walls. This was closely monitored by the curators and 

conservator-restorers.  

The microfragments’ collection was done under semi-aseptic conditions using sterile 

scalpels, swabs, and microtubes. The samples collected for biocontamination assessment 

were placed in a suspension of transport MRD medium solution and conserved at 4°C 

until processing.  

 

5.2.3.  Characterisation of the material and detection of alteration products 

The mineralogical composition was characterised by X-ray microdiffraction using the 

methodology previously described in the section 3.2.2.2. of the Chapter III. The data were 

acquired on altered and non-altered areas, without any previous sample preparation. 

The elemental composition was determined through Variable Pressure Scanning 

Electron Microscopy with Energy Dispersive Spectrometry coupled (VP-SEM-EDS), 

with the features described previously in the section 2.2.3.3. of the Chapter II. The 

microfragments were analysed without any previous preparation. 

The microfragments were also analysed by Raman Spectroscopy, using a HORIBA 

Xplora Raman microscope, with a CCD (Charge Coupled Device) detector to assess the 

presence of metabolic activity indicators. A laser with a wavelength of 638 nm and a filter 

of 10% was applied. Raman spectra were calibrated using the 520.5 cm-1 band of a silicon 

wafer and were obtained by accumulating 10 acquisitions of 30 s, with a spectral 

resolution of 5 cm-1. The spectra deconvolution was performed using LabSpec and the 

identification was made using the software Spectral IDTM 13. No sample preparation 

was required. 



Chapter V 

115 
 

5.2.4.  Microbiological assessment 

5.2.4.1. Assessment of biological contamination 

The CVI for each sculpture was assessed as described previously in the section 3.2.3.2. 

of the Chapter III. The method was performed in three different areas of each sculpture, 

and each assay was performed in triplicate. 

Stone microfragments from both limestone sculptures and marble building were 

coated with Au/Pd target during 60 s and observed in the Scanning Electron Microscope 

at high vacuum mode, using 10kV accelerating voltage to assess the microbial 

communities’ presence. 

 

5.2.4.2. Characterisation of the microbial population 

Samples collected for biological assays were mechanically stirred during 24 h. After 

this period, 100 µL of each sample were inoculated in different culture media, using the 

methodology described in the section 3.2.3.3. of the Chapter III. The distinct single 

colonies obtained were sub-cultured onto Petri dish and maintained on slants at 4ºC until 

the DNA extraction. 

The genomic DNA of the isolates obtained was extracted and amplified using the 

methodology described in the section 3.2.3.3.1. of the Chapter III. The amplification of 

the DNA was done using the specific primers 518F/785R and ITS1/ITS4. The PCR 

products obtained from the microbial isolates were purified and sequenced. The 

nucleotides sequences were aligned with those retrieved from the GenBank (NCBI) 

databases for the homology analysis using the BLASTN 2.8.0 program. For the building 

marble, the isolated population were not characterised by molecular approach. 

HTS approach was performed using the methodology described in the section 3.2.3.4. 

of the Chapter III, where it was possible to determine the microbial population present on 

the sampled areas. 
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5.3. Results and discussion 

Limestone and marble have been some of the most appreciated materials since 

antiquity for construction and decorative purposes. In this study, Portuguese limestones 

and marble vastly used nationally and internationally were studied through the application 

of a multidisciplinary approach. Complementary analytical methodologies for the 

materials characterisation and detection of alteration products combined with the 

biocolonisation assessment, contributed with relevant information to comprehend the 

association between the chemical and mineralogical alteration and the biological 

colonisation of these historical and cultural heritage assets. 

 

5.3.1.  Case study of NMAA limestone sculptures 

5.3.1.1. Characterisation of the material and detection of alteration products 

Regarding the St. John the Baptist sculpture, the stone used to produce this sculpture 

is characterised by the association of blue with cream colour, particularly visible in the 

head section (Fig. V-4). In addition of calcite, the non-altered areas revealed the presence 

of quartz (SiO2) and large amounts of iron sulphide minerals (Fe2S) in the stone matrix 

(Fig. V-6 and V-7).  These results, and according with the lithological features of the 

stone, might indicate that this sculpture was produced with the blue limestone lithotype 

from the MCE, previously characterised in the Chapter II. 

 

 
Figure V-6. Micro-X-ray diffractograms obtained on non-altered (_____) and altered (_____) 

microsamples’ surface of the St. John the Baptist sculpture. Abbreviations: g-gypsum; c-calcite; 

q-quartz. 
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On the altered surfaces showing white stains, the formation of calcium sulphates was 

identified (Fig. V-6). As mentioned before in the Chapter III, the crystallisation of 

calcium sulphates is probably related with the natural weathering processes occurred in 

the iron sulphide minerals (Ritsema and Groenenberg, 1993; Móricz et al., 2012) that are 

present in the stone.  

 

 
Figure V-7. Iron sulphide minerals’ microstructure (a) and correspondent point analysis (b) on a 

microsample collected from the St. John the Baptist sculpture, obtained by VP-SEM-EDS. 

 

In previous studies, some authors highlighted the preponderance of salt crystallisation 

role in the deterioration of this type of materials (Rothert et al., 2007; Marzal and Scherer, 

2008; Doehne and Price, 2010; Kramar et al., 2011; Ghobadi and Babazadeh, 2015). 

Therefore, this phenomenon might be related with the calcite micro-cracking observed in 

this sculpture (Fig. V-8).  

 

 

 
Figure V-8. Microstructure (a) and element mapping of calcium and sulphur (b) on a damaged 

area of the St. John the Baptist sculpture’ surface, obtained by VP-SEM-EDS. 
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Formation of gypsum crystals, although in smaller amounts, was also observed on The 

Virgin and the Child sculpture. Furthermore, halite crystals were identified (Fig. V-9) 

which may also contribute for the deterioration of the calcite matrix (Fig. V-10). In this 

sculpture, no sulphide minerals were found in the stone. Thus, the formation of these 

efflorescence can be originated through the interaction of the material with the 

environment that surrounds the sculpture, given particular consideration to the pollutant 

SO2 (Saiz-Jimenez, 2004; Corvo et al., 2010) and sea spray (Slamova et al., 2012). As 

previously mentioned, the museum is situated in Lisbon, a city with intense traffic and 

close to the Atlantic Ocean, which may affect the indoor environment. In fact, some 

authors state that the outdoor/indoor air exchange, caused by open windows and doors, 

and museum ventilation systems, is the main contributing factor to indoor air pollution 

(Krupinska et al., 2013). Additionally, pollutants can also be transferred into museums 

by tourists or museum personnel (Krupinska et al., 2013). 

 

 
Figure V-9. Micro-X-ray diffractogram on Virgin and Child non-altered (_____) and altered (_____) 

microsamples’ surface. Abbreviations: c-calcite; s-sodalite; q-quartz; h-halite. 

 

It is known that the crystallisation of soluble salts, like gypsum and halite, can induce 

mechanical stress in the stone pores, causing irreversible damages for the material 

(Gázquez et al., 2015). In fact, the crystallisation pressure created by salts, for many 

authors, is considered one of the most severe threats to our common cultural heritage 

(Espinosa-Marzal and Scherer, 2010; Flatt et al., 2014; Gázquez et al., 2015; Desarnaud 

et al., 2016). 
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Figure V-10. Microstructure (a) and element mapping of calcium, chlorine and sodium (b) on a 

damaged area of The Virgin and the Child sculpture, obtained by VP-SEM-EDS. 

 

As previously mentioned, the St. Paul and Musician Angel sculptures exhibit red stains 

and occasional loss of material. The elemental and mineralogical study performed on the 

stained areas of the St Paul sculpture revealed high concentration of iron oxides (Fig. V-

11 and V-12), namely hematite (Fe2O3) and hydrohematite (FeO(OH)).  

 

 
Figure V-11. Micro-X-ray diffractogram performed on non-altered (_____) and altered (_____) 

microfragments’ surface from the St. Paul sculpture. Abbreviations: g-gypsum; hy-

hydrohematite; c-calcite; hm-hematite. 
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According to previous studies, the incorporation of these minerals as a secondary 

alteration product can stain the rock a red hue (Matero and Tagle, 1995; Weiss et al., 

2005; Bams and Dewaele, 2007; Thompson, 2012; Spile et al., 2016). For this case, 

biocontamination may have played an essential role (Mamet et al., 1997; Bose et al., 

2014), as some bacteria may catalyse the oxidation of Fe2+ to Fe3+, leading to precipitation 

and deposition of Fe3+ (Hedrich et al., 2011). Low quantities of iron oxides were also 

found in non-altered areas and identified using SEM-EDS, suggesting they are present in 

the stone matrix. Their absence in the X-ray diffractograms can be explained by their low 

crystallinity or by the use of copper radiation, causing an increased background, and 

limiting the identification of these minerals when present in small amounts (Mos et al., 

2018). 

 

 

 
Figure V-12. Microstructure (a), element mapping of calcium and iron (b) and point analysis (c, 

d) of iron oxides present on the microfragments’ surface with reddish stains collected from the 

Musician Angel sculpture, obtained by VP-SEM-EDS. 

 

Raman spectroscopy analyses allowed to detect carotenoids on the Musician Angel 

sculpture (Fig. V-13), a pigmented compound that can be produced by the metabolic 

activity of some microorganisms (Rosado et al., 2014a; Nupur et al., 2016) and may 
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display yellow to red hues (Rosado et al., 2014a). Besides it can be an indicative sign of 

biocontamination, the presence of these compounds in the sculpture surface probably 

contribute to the reddish stains observed on the Musician Angel sculpture. 

 

 

Figure V-13. Raman spectra of β-carotene standard (____), microfragment collected without 

alteration (____) and microfragment collected in the red coloured zone of the Musician Angel 

sculpture (____). The bands at 154, 282, 712 and 1086 can be attributed to calcite (Edwards et al., 

2000), while β-carotene can be identified based on bands at 1154 and 1514 (Rosado et al., 2014a). 

 

5.3.1.2. Biocontamination assessment 

VP-SEM-EDS analysis allowed a further insight into the presence of microbial 

communities thriving on these sculptures and their capacity to proliferate within the stone 

surface (Fig. V-14). The detection of elements like carbon, oxygen, and nitrogen by EDS 

are indicators of the presence of organic/biological material. 

Complementarily, SEM micrographs showed the presence of microbial agents like 

filamentous fungi on the surface of the sculptures (Fig. V-15), with a higher incidence in 

the Musician Angel sculpture. Furthermore, it was possible to observe the proliferation of 

these structures around the crystals of calcite. 
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Figure V-14. Microstructure (a) and element mapping of calcium, carbon, oxygen, and nitrogen 

(b) evidencing index of biocontamination on the surface of the St John the Baptist sculpture, 

obtained by VP-SEM-EDS. 

 

 
Figure V-15. SEM micrographs on the microfragments of the St. John The Baptist (a), The Virgin 

and the Child (b) and Musician Angel (c, d) sculptures, signalising hyphae of filamentous fungi 

proliferating around the crystals of calcite. 
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Regarding the cell viability index, the method used shows that the Musician Angel 

sculpture presents higher CVI levels when compared with the other sculptures (Fig. V-

16). This higher CVI degree indicates a greater potential for metabolic activity of the 

microbial agents for the Musician Angel sculpture. 

 

 
Figure V-16. Cell viability of the microbial population present in the samples collected on the 

sculptures’ surface. Abbreviations: SJB-John the Baptist, SP-St. Paul, VC-The Virgin and the 

Child and MA-Musician Angel. Error bar corresponds to ± standard deviation (n=9). 

 

CDM allowed the characterisation of cultivable isolated population, which it was 

proven to be mainly composed of prokaryotic microorganisms (Annex D.1). The samples 

that had the higher microbial development belong to the Musician Angel sculpture, thus 

corroborating the results described above (Fig. V-15 and V-16). 

The cultivable population was further characterised based on their macroscopic and 

microscopic features. Two single-colonies were obtained for the St. John the Baptist 

sculpture, one single-colony for the St. Paul sculpture, three single-colonies for the The 

Virgin and the Child sculpture and one single-colony for the Musician Angel sculpture 

(Table V-1). 
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Table V-1. Characterisation of the microbial population isolated from the limestone sculptures’ 

samples. 

Sculpture Macroscopic features Microscopic features  
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Some of the isolated population was sequenced. The DNA extracted was amplified by 

PCR and the PCR products were purified, quantified and sequenced. According to the 

best matches of the database used, was possible to identify microorganisms with high 

similarities with Staphylococcus aureus, Pseudomonas stutzeri, Bacillus licheniformis 

and Aureobasidium sp. (Table V-2). Previous studies referred that, in moderate or humid 

climates, some hyphomycetes strains (Alternaria, Cladosporium, Epicocum, 

Aureobasidium and Phoma) usually form mycelia in the porous space of stones 

(Sterflinger and Piñar, 2013; Martino, 2016), which consequentially will induce damages 

in the stone matrix. In addition, some authors emphasised the Pseudomonas stutzeri 

ability to reduce nitrates present in altered stone surfaces (Palla and Barresi, 2017), and 

related Staphylococcus aureus and Bacillus to limestone deterioration (Ekarim, 2017). 

 

Table V-2. Identification of microorganisms isolated from the limestone sculptures. 

Sculpture 

Closest related 

type strain on 

basis of 16 S and 

18S rRNA gene 

Similarity 

Accession 

number 

(NCBI) 

Familiy Class Phylum 

MA Aureobasidium sp. 100% KX611011.1 Dothioraceae Dothideomycetes Ascomycota 

VC 
Pseudomonas 

stutzeri 
100% KY770794.1 Pseudomonadaceae Gammaproteobacteria Proteobacteria 

SP 
Bacillus 

licheniformis 
99% JN998742.1 Bacillaceae Bacilli Firmicutes 

SJB 
Staphylococcus 

aureus 
100% GQ214333.1 Staphylococcaceae Bacilli Firmicutes 

MA – Musician Angel; VC – The Virgin and the Child; SP – St. Paul; SJB – St. John the Baptist. 

 

Considering that the main colonisers of the sculptures are majorly prokaryotic, HTS 

was performed allowing the detailed characterisation of the prokaryotic population 

thriving on the sculptures’ surface (Annex D.2). The results obtained demonstrate that the 

prokaryotic population thriving on the St. John the Baptist, The Virgin and the Child and 

St. Paul sculptures (Fig. V-17) is predominantly composed of Lactococcus sp. (around 

80%) and Lactococcus raffinolactis (around 8.5%). For the Musician Angel sculpture, the 

main prokaryotic population is composed of Lactococcus sp. (55.9%), Bacillus 

aryabhattai (20.2%) and Lactococcus raffinolactis (5.9%). 272 different species were 

identified on the Musician Angel sculpture, 232 on the St. John the Baptist sculpture, 212 

https://en.wikipedia.org/wiki/Pseudomonadaceae
https://en.wikipedia.org/wiki/Bacillaceae
https://en.wikipedia.org/wiki/Firmicutes
https://pt.wikipedia.org/wiki/Staphylococcaceae
https://pt.wikipedia.org/wiki/Bacilli
https://pt.wikipedia.org/wiki/Firmicutes
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on the St. Paul sculpture while 176 different species were identified on The Virgin and 

the Child sculpture. All the prokaryotic population identified on the sculptures belongs to 

the Bacilli class, except those that belong to the genus Pseudomonas. Particularly, 

microorganisms of Bacilli class have been identified on many limestone historical 

buildings with signs of deterioration (Sasso et al., 2013; Banciu, 2013; Skipper et al., 

2016). Besides their abundance on stone-built heritage located outdoor, the 

microorganisms of the Bacilli class have been also found on indoor stone-built artworks 

(Pangallo et al., 2009) where more extensive studies are missing. 

 

 
Figure V-17. Composition of the major prokaryotic population thriving on the limestone 

sculptures at genera and species levels. Abbreviations: MA – Musician Angel; SP – St. Paul; VC 

– The Virgin and the Child; SJB – St. John the Baptist. 

 

The similarities in the prokaryotic population colonising the St. John the Baptist, The 

Virgin and the Child and St. Paul sculptures is understandable given that these sculptures 

are kept in the same room, and therefore are subjected to the same micro-environment 

conditions. The fact that the Musician Angel sculpture, which is displayed in a different 

room inside the museum, revealed a wider variety of prokaryotic population further 

validates this hypothesis.  

The HTS results corroborate the determination of the CVI levels, since the St. John 

the Baptist, The Virgin and the Child and St. Paul sculptures showed similar levels of 

CVI, unlike the Musician Angel sculpture. The higher CVI level of this sculpture and its 
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wider microbial population variety can possibly be related with the different display 

location of the sculpture in the museum. 

The multi-analytical approach encompasses and give useful information about the 

composition of the material, detection of alteration products and the presence of 

microorganisms. The data obtained provided an important and detailed description of the 

communities able to develop in these materials, in an indoor environment. The results 

revealed that the aesthetical and structural damages in these sculptures might be related 

with the formation of efflorescence and iron oxides concentration, as well as with the 

microbial proliferation. These factors are making a practical contribution for the colour 

alteration and the detachment of the material.  
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5.3.2. Case study of the “São João da Penitência” Convent 

For this study, marble expoited in the Estremoz anticline, one of the most appreciated 

marbles worldwide, was selected to investigate the factors that are leading its 

deterioration. The marble is applied in the “São João da Penitência” Convent, situated in 

the main square of the Estremoz village. According with the pathologies found in the 

main cloister, three broad categories form the research work – patina formation, staining 

and biofilm formation. The areas CM1 and CM2 show formation of patinas on the surface 

of the stone, the areas CM3 and CM4 exhibit signs of staining, and the areas CM5 and 

CM6 show biofilms formation. These areas are distributed along the main cloister (Fig. 

V-18). 

 

Figure V-18. Aerial view of the Convent (a) and map of the main cloister with the location of 

the areas selected for the study (b). green squares represent the sampling areas. 

 

The pathologies present in the selected areas were observed in detail. Some areas 

exhibited fluorescence emission under the UV light, with higher intensity for the areas 

CM5 and CM6 (Table V-3), which is an indicative of organic material presence on the 

surface of the stones. 
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Table V-3. Digital microscopy analyses on the selected areas, under visible and UV light. 
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5.3.2.1. Measurement and characterisation of the colour 

Using the CIELAB system, the colourimetric parameters were measured and the ΔE 

was determined using a non-altered stone surface as reference (Table V-4). It is possible 

to state that colour of the damaged areas is seriously compromised, since the ΔE values 

are very high. The areas that exhibit the highest differences in colour are CM5 and CM6, 

corresponding to the areas that have biofilms formation on the stone surface.  

 

Table V-4. Measurement of the colourimetric parameters, using the CIELAB system. 

Area I.D. L*         a*                    b*                     E 

Non-altered 72.74 ± 4.64 0.6 ± 1.34 5.33 ± 3.01 - 

CM1 91.52 ± 2.41 1.84 ± 0.58 6.40 ± 2.04 18.85 

CM2 66.98 ± 3.95 8.69 ± 3.53 25.00 ± 6.03 22.02 

CM3 41.58 ± 8.57 10.94 ± 1.16 17.21 ± 2.69 34.31 

CM4 63.82 ± 5.49 8.77 ± 1.73 16.50 ± 2.13 16.46 

CM5 36.05 ± 4.33 13.46 ± 3.02 15.55 ± 2.21 40.19 

CM6 27.64 ± 1.68 1.82 ± 0.51 4.25 ± 1.34 45.12 

 

 

5.3.2.2. Characterisation of the material and alteration products 

Frequently, degradation of carbonated stones occurs in the presence of dust deposited 

on the rough stone surfaces. The deposits not only change the visual appearance of the 

stone but also increase the water retention, thus increasing the degradation processes. In 

the microfragments collected in the areas presenting patina formation (CM1 and CM2), 

calcium oxalates weddellite (CaC2O4·2H2O) and whewellite (CaC2O4·H2O) were 

detected (Fig. V-19). 
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Figure V-19. Micro-diffractograms obtained on the microfragments collected in the areas CM1 

(____) and CM2 (____). Abbreviations: c – calcite; wh – whewellite; q – quartz; w – weddellite. 

 

As previously mentioned in Chapter I, these compounds may result from the calcium 

dissolution, a common occurrence in the carbonated stones like limestone and marble 

(Charola et al., 2007; Corvo et al., 2010). Calcium oxalates formation can be originated 

from biological or chemical pathways. Despite some authors consider that these 

compounds can derive from past conservation treatments (Rampazzi, et al., 2004), these 

compounds have been used as strong indicator of the presence of microorganisms, since 

oxalic acid is a common metabolite resulted from microbial activity on stone (McNamara 

and Mitchell, 2005; Burford et al., 2006; Corvo et al., 2010; Frank-Kamemetskaya et al., 

2012). Additionally, some sulphates were identified on these areas as calcium sulphates 

(Fig. V-20), which can suggest that atmospheric SO2 also may play an important 

contribution (Siegesmund and Snethlage, 2011) for the degradation of this stone. 
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Figure V-20. Surface microstructure, elemental distribution of calcium and sulphur, and point 

analysis of calcium sulphates, obtained by SEM-EDS on the microfragment collected in the area 

CM1. 

 

The areas CM3 and CM4 show reddish stains. Besides the proximity of both areas, the 

staining seems to be achieved by two different ways. The stain observed in the area CM3 

is characterised as a red spot on a porous area, while the stain observed in the area CM4 

is characterised by the accumulation of red pigmentation in stone fissures (Fig. V-5). 

The data obtained reveal that the area CM3 has a larger enrichment in iron when 

compared with non-altered areas (Fig. V-21), which can indicate that this element is 

present as an impurity in the calcite, since the ion Fe3+ can replace Ca2+ or, more typically, 

enter directly in the CaCO3 matrix (Polikreti and Maniatis 2004). 
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Figure V-21. Spectra obtained by X-ray fluorescence on the CM3 (____), CM4 (____) and non-

altered (____) areas. 

 

Additionally, elemental mappings obtained for both areas showed the coexistence of 

iron, aluminium, silicon and potassium in the same particles (Fig. V-22) which is 

compatible with the presence of “Terra Rossa”. This is a relatively common material 

formed in calcareous stone, predominantly in areas with a Mediterranean climate (Foster 

et al., 2004; Haldar and Tisljar, 2014).  

 

 

Figure V-22. Microstructure and elemental distribution of calcium, aluminium, silicon, iron and 

potassium on the microfragment collected on the area CM3, obtained by SEM-EDS 
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“Terra Rossa” is a formation owing to chemical degradation of limestone which 

typically cover calcareous bedrock stones such as crystalline limestone or marble, or 

deposits of unconsolidated calcareous with terrestrial or marine origin (Foster et al., 2004; 

Vingiani et al., 2018). It marks the transition of brown earth to red laterite soil and is a 

reddish clay residue resulting from the dissolution of the carbonated stones (Olson et al., 

1980). It can form a discontinuous layer which varies between a few centimetres to a few 

meters (Durn, 2003; Vingiani et al., 2018). 

 

5.3.2.3. Microbiological assessment 

The areas CM5 and CM6 show red and black biofilms formation, respectively. These 

biofilms here formed cover all the surface of the stone. Therefore, the microbial 

communities thriving on it were assessed. It was possible to detect the coexistence of C, 

N and O in the same regions (Fig. V-23) which is an indicative of the presence of 

organic/biologic material over the calcium carbonate matrix. 

 

 

Figure V-23. Microstructure and elemental distribution of calcium, carbon, nitrogen and oxygen, 

obtained by SEM-EDS for the microfragment collected on the area CM5. 
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SEM micrographs allowed to determine how the biofilms have been developing and 

their impact on the surface of the stone. On the area CM5 (red biofilm) it was possible to 

observe the ability of filamentous fungi to surround and penetrate the porous of the stone 

(Fig. V-24). It was observed above the deleterious effects of the development of these 

organisms on this area (Fig. V-3b), where a relatively large piece of stone was completely 

detached from the rest of the structure. 

 

 

Figure V-24. Micrographs obtained on the microfragment collected on the area CM5 showing 

the ability of filamentous fungi to surround the calcitic matrix and penetrate the porous of the 

stone. 

 

On the other hand, the area CM6 (black biofilm) revealed the presence of diatoms, 

microalgae and filamentous fungi (Fig. V-25), which suggest a wider diversity of the 

microbial community here thriving, when compared with the area CM5. 
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Figure V-25. Micrographs obtained on the microfragment collected on the area CM6 showing 

the microscopic aspect of the biofilm (a and b), presence of microalgae (c) and some unidentified 

structures (d). 

 

For a more accurate characterisation of the population that is colonising the Convent, 

both culture-dependent methods and HTS approach were performed. The cultivable 

bacteria population is predominantly composed of microorganisms with the morphology 

Bacillus and Coccus (Table V-5).  

 

Table V-5. Characterisation of the isolated bacteria from the selected areas of the Convent. 

Code Macroscopic features Microscopic features  

CM1_A 

 

 

Coccus 

(Gram +) 

CM2_A 

  

Bacillus sp. 

(Gram +) 
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HTS approach allowed to complement the characterisation of the prokaryotic 

population (Annex E.1), which show that the population thriving in the stone of the 

Convent is mainly composed of microorganisms belonging to the phyla Proteobacteria, 

Actinobacteria and Cyanobacteria, while the most representative genera are 

Pseudomonas, Rubrobacter, Geodermatophilus, Erwinia and Anabaena. Previously, has 

CM3_A 

 

 

Bacillus sp. 

(Gram -) 

CM3_B 

 

 

Coccus 

(Gram +) 

CM4_A 

  

Bacillus sp. 

(Gram -) 

CM4_B 

  

Coccus 

(Gram +) 

CM5_A 

  

Coccus 

(Gram -) 

CM6_A 

  

Coccus 

(Gram +) 
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been reported that microorganisms belonging to the genera Rubrobacter and 

Geodermatophilus were already isolated from deteriorated stone monuments (Urzi et al., 

2001; Laiz et al., 2009; Li et al., 2016). 

On the other hand, the cultivable fungi population is composed of black yeasts and 

microorganisms belonging to the genera Rhodotorula, Aspergillus, Mucor, Penicillium, 

Alternaria, Cladosporium (Table V-6).  

 

Table V-6. Characterisation of the isolated fungi from the selected areas of the Convent. 

Code Macroscopic features Microscopic features  

CM1_1 

 

 

Yeast 

CM3_1 

  

Rhodotorula 

sp. 

CM3_2 

 

 

 

Cladosporium 

sp. 

 

 

CM3_3 

 

 

Aspergillus 

sp. 

CM3_4 

  

Mucor sp. 
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CM4_3 

 

 

Aspergillus 

sp. 

CM4_5 

 

 

Aspergillus 

sp. 

CM4_6 

  

 

 

Mycelium 

CM5_5 

  

 

 

Alternaria sp. 

CM6_1 

 
 

 

 

Black 

Yeast 
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Complemented by HTS approach (Annex E.2), the fungi population that are colonising 

the areas without formation of visible fungal biofilms is mainly composed of 

microorganisms that belong to the phyla Ascomycota and Basidiomycota, while the most 

representative genera are Cladosporium, Alternaria, Stagonosporopsis, Mycosphaerella, 

Stemphylium, Aureobasidium and Vishniacozyma (Fig. V-26). 

 

 

Figure V-26. Characterisation of the major eukaryotic population present on the areas of the 

Convent without visible fungal biofilms formation, at genera level. 

 

As mentioned before, fungi have the ability to excrete acids like oxalic, glyoxylic, 

citric, acetic, formic or fumaric which can react with the carbonates. The most commonly 

fungi found in cultural heritage materials are Penicillium sp. and Cladosporium sp. both 

responsible for soiling (Sterflinger, 2010). Additionally, Grote in 1986 has suggested that 

microorganisms of the genera Alternaria, Cladosporium, Fusarium and Penicillium have 

the ability to oxidise iron and manganese on stone (Sterflinger, 2000). Regarding the areas 

CM1 and CM2, calcium oxalates presence is a strong indicator of microbial activity on 

the stone of this Convent, namely through the proliferation of microbiota like bacteria, 

fungi, algae and lichens (Rosado et al., 2013a; Gadd et al., 2014; Sturm et al., 2015; 

Unkovic et al., 2017). As mentioned before, the oxalic acid excreted reacts with 

calcareous stone (Monte, 2003) which consequently can form a thin membrane of calcium 

oxalate (patina). 

The predominant population identified on the area CM5 (red coloured biofilm) belong 

to the phyla Ascomycota (76.48%) and Basidiomycota (7.56%), while the most 
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representative genera on this area are Sordaria, Cladosporium, Aureobasidium, 

Guehomyces, Mycosphaerella and Vishniacozyma (Fig. V-27a). For the area CM6 (black 

coloured biofilm) the predominant fungi population belong to the phyla Ascomycota 

(78.51%) and Basidiomycota (3.62%), while the most representative genera are 

Cladosporium, Thelebolus, Aureobasidium, Alternaria, Vishniacozyma, Neodevriesia 

and Gibberella (Fig. V-27b). 

 

 

Figure V-27. Characterisation of the major eukaryotic population present on the red (a) and black 

(b) biofilms, at genera level. 

 

The red colouration of the biofilm formed on the area CM5 is achieved due to the 

proliferation of microorganisms or/and excreted metabolites. These may include the 

microorganisms belonging to the genera Sordaria, since some phenotypes exhibit 

ascospores with a red colour (Lichtenstein, 2017), also Cladosporium since some colonies 

exhibit a vivid red pigmentation due to the excretion of large quantities of a 

perylenequinone metabolite (Robeson and Jalal, 1992), Aureobasidium since colonies 

belonging to this genus can have a red colour (Wickerham, 1975) or Rubrobacter since 

that has already been correlated with red pigmentation on stone (Rosado et al., 2019). 

On the other hand, strains belonging to the genera Cladosporium, Aureobasidium and 

Alternaria are also known to form black coloured biofilms (Zammit et al., 2009; 

Heinrichs et al., 2013). Specifically, the species Aureobasidium pollulans, identified on 

this area, is one of the so-called black yeast (Gao et al., 2013; Kemler et al., 2017), a 

group strongly associated to biofouling and bioweathering (Cutler and Viles, 2010). Thus, 

the results obtained suggest that microorganisms of the genera Aureobasidium, 

Cladosporium and Alternaria can be the main responsible for the biofilm colouration. 
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In this study, in-situ approach using non-invasive and non-destructive techniques, as 

well as analyses of microfragments were carried out to evaluate the deterioration of the 

marble applied in the Convent “São João da Penitência”. The detection and 

characterisation of its alteration products and the biocolonisers thriving on it were 

performed. The three different pathologies detected on the stone – patina formation, 

staining and biofilm formation – were correlated with geochemical or/and biogenic 

origin.  
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Currently, colour and discolouration of ornamental stones is an extremely important 

issue that needs to be fully understood. The companies that exploit and sell ornamental 

stones have been losing millions in the stone replacement in new buildings. The 

prediction and prevention of colour alteration processes on stone remains a task for the 

scientific community, while the preservation and safeguard of heritage artworks and 

buildings made of stone represent a challenge for the conservator-restorers. 

This research contributed for the characterisation of Portuguese carbonated stones 

based on their colour, in order to predict and prevent further alterations. It also allowed 

to describe the colour change mechanisms of some of the most important Portuguese 

ornamental stones, and of stones applied in heritage artworks and building. On the other 

hand, the study revealed the microbial population thriving on these stones. 

The results highlighted the effect of the microbial agents’ action in the deterioration 

processes of stone, that contribute for the stone discolouration and accelerate the 

deterioration rate. The methodology used in this project proved to be very effective in the 

characterisation of colour alteration mechanisms in stone and can be adapted to other 

stone lithotypes and other artworks for diagnostic and rehabilitation. In this way, it will 

be possible to contribute to maintain the Portuguese stone in the international market 

forefront and for the cultural heritage safeguard. 

The strategies outlined under the framework of this research has proven that: 

• The application of X-ray based methods is useful in stone characterisation and in 

finding the causes of its colour, using simple sample preparation methods or even 

without sample processing; 

• X-ray based methods and Raman spectroscopy are useful in the characterisation of 

alteration products resulted from the stone discolouration; 

• The application of MTT assays allowed to determine the cell viability index of these 

materials, giving an overview about the presence of biocontamination and its 

relationship with altered areas of the stone; 

• The combined application of CDM and HTS approaches is useful for microbiota 

identification on stone substrata to further may relate it with bioweathering; 

• The natural weathering and consequent discolouration of the blue limestone, one of 

the more important ornamental stone for the Portuguese industry, is due to FeS2 

oxidation whose is present in relatively high amounts. This weathering increases the 

surface roughness of the stone; 
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• Areas of the blue limestone showing colour alteration patterns are related with high 

levels of biocolonisation; 

• The roughness increment of the stone surface caused by its weathering, possibly 

contributes to an increasing capacity of microorganisms to anchor the substrata; 

• The main colonisers of the blue limestone lithotype are bacteria; 

• CDM allowed the obtention of high microbial cells’ concentration from stone with 

alteration patterns, for further use in artificial ageing assays; 

• The discolouration rate of the blue limestone was proven to be higher when both 

bacteria and fungi are present; 

• SEM allowed to monitor the microbial development on stone and its interaction with 

the material, during the artificial ageing assays; 

• The HTS approach allowed to determine the microbiota dynamics during the artificial 

ageing performed on the blue limestone lithotype. After 180 days the prokaryotic 

population was mostly composed of microorganisms of the genera Pseudomonas 

(38.9%), Zhihengliuella (11.6%), Microbispora (9.5%), Arthrobacter (7.2%), 

Enterobacter (2.9%), Exiguobacterium (2.4%) and Solibacillus (1.6%), and the 

eukaryotic population was mostly composed of microorganisms of the genera 

Didymella (41.4%), Fusarium (34.8%) and Mycosphaerella (12%); 

• The methodology adopted allowed to characterise the colour alteration mechanisms 

and the microbial population thriving on cultural heritage artworks and building made 

of stone, kept under indoor or outdoor environments; 

• The discolouration patterns observed on the limestone sculptures can be mostly 

attributed to the stone-environment interaction. The four sculptures studied are 

colonised mainly by prokaryotic population, whose microbial diversity was wider for 

the Musician Angel sculpture, where carotenoids were also detected.  

• The historic marble building shows colour alteration patterns that are mainly attributed 

to calcium oxalates formation (resulted from biogenic action), iron concentration in 

stone, and biofilms formation; 

• The biofilms formed in this marble are predominantly composed by eukaryotic 

colonisers. The presence of the microorganisms of the genera Sordaria, 

Aureobasidium and/or Rubrobacter can induce red-coloured biofilms formation, while 

the blackish-coloured biofilm can be achieved by the presence of microorganisms of 

the genera Cladosporium, Aureobasidium and Alternaria. 
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In the near future, discolouration mechanisms of other stone lithotypes must be 

investigated, in order to make Portuguese stone a more valuable finish and building 

material. This knowledge will be very useful for the ornamental stone industry, as well 

as for the preservation of cultural heritage artworks and buildings. Creation of databases 

containing these data for each type of Portuguese stone would be interesting. 

Regarding the blue limestone weathering, a solution should be found that would allow 

isolate the pyrite crystals to may prevent its oxidation. Several coating solutions have 

been tested for applied stone coating and this would be an interesting way forward with 

the application of, for example, phosphate/silicate solutions or nanopowders to 

microencapsulate the pyrite present in the stone. Alternatively, a full pyrite oxidation may 

be attempted prior to the application of stone, using oxidizing solutions. 

Cultural heritage artworks maintained under indoor environments are also a concern. 

The air quality and thermo-hygric conditions should be monitored to assess air 

composition and detect pollutant levels that surround the artworks, in order to improve 

better conditions for their preservation. Since the alterations are mostly irreversible, the 

conservator-restorers must act as soon as possible. It is also important to study the 

biodiversity present in a museum environment, since these places receive thousands of 

visitors every year.  

Biological contamination on stone under indoor or outdoor environments should be 

regularly monitored, as the environmental conditions can differ, and the presence of 

inactive microorganisms represents a potential risk.  Furthermore, mitigation strategies 

should be applied in these materials. There are new natural biocides emerging in the 

market, which makes their development and application an interesting alternative to the 

conventional products usually applied.
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Annex A. Samples obtained from the blue limestone 

 

Table A-1. Samples of stone collected and their location. 

Sample reference Location of the sampling  

C1 Next to Mosteiro da Batalha 

 

C2 Next to Mosteiro da Batalha 

 

C3 Next to Mosteiro da Batalha 

 

C4 Waterfront in São Martinho do Porto 

 

C5 Waterfront in São Martinho do Porto 

 

C6 Waterfront in São Martinho do Porto 
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Annex B. Culture media composition 

Table B-1. Composition of the culture media used for microbiological development. 

NA MEA CRB 

5 g/L Peptic digest animals 30 g/L Malt extract 5 g/L Peptone 

1.5 g/L Beef extract 5 g/L Peptone mycologic 10 g/L Glucose 

1.5 g/L Yeast extract 20 g/L Glucose 1 g/L K2HPO4 

5 g/L Sodium Chloride 

15 g/L Agar 

0.5 g/L MgSO4 

15 g/L Agar 

0.05 g/L Rose Bengal 

0.1 g/L Chloramphenicol 

15.5 g/L Agar 

NA – Nutrient Agar; MEA: Malt Extract Agar; CRB – Cook Rose Bengal. 

  



Annexes 

183 
 

Annex C. Characterisation of the microbial population thriving in the 

samples obtained from the blue limestone 

C.1. Microbial growth resulted from the inoculation of blue limestone samples using 

CDM 

Table C-1. Microbial colonies growth from the inoculated samples of building stone, with and 

without chromatic alteration. 

Sample 

Culture medium 

Nutrient Agar Malt Extract Agar Cooke Rose Bengal 

C1 non-

altered 

area 

   

C1 

altered 

area 

   

C2 non-

altered 

area 

   

C2 

altered 

area 

   

C3 non-

altered 

area 
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Sample 

Culture medium 

Nutrient Agar Malt Extract Agar Cooke Rose Bengal 

C3 

altered 

area 

   

C4 

altered 

area* 

   

C5 non-

altered 

area 

   

C5 

altered 

area 

   

C6 non-

altered 

area 

   

C6 

altered 

area 

   

*the samples collected only contained area with chromatic alteration. 



Annexes 

185 
 

C.2. Electrophoresis of the PCR products obtained from the isolated microbial 

population of the blue limestone 

 

 

Figure C-1. Electrophoresis of the PCR products performed with DNA extracted from bacteria 

isolates. 
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Figure C-2. Electrophoresis of the PCR products performed with DNA extracted from yeast 

isolates. 

 

 

Figure C-3. Electrophoresis of the PCR products performed with DNA extracted from fungi 

isolates. 
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C.3. HTS approach for the blue limestone samples 

Table C-2. Prokaryotic population present in the altered areas of the stone, identified through 

HTS approach. 

Phylum Class Order Family Genus 

Actinobacteria Actinobacteria Actinomycetales Geodermatophilaceae Modestobacter 

Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Arthrobacter 

Actinobacteria Actinobacteria Actinomycetales Other Other 

Actinobacteria Actinobacteria Actinomycetales Nocardioidaceae  - 

Actinobacteria Actinobacteria Actinomycetales Geodermatophilaceae Other 

Actinobacteria Actinobacteria Actinomycetales Micrococcaceae  - 

Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae Agrococcus 

Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae  - 

Actinobacteria Actinobacteria Actinomycetales Kineosporiaceae  - 

[Thermi] Deinococci Deinococcales Deinococcaceae Deinococcus 

Actinobacteria Actinobacteria Actinomycetales Geodermatophilaceae  - 

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 

Actinobacteria Actinobacteria Actinomycetales Propionibacteriaceae Propionibacterium 

Chloroflexi Thermomicrobia JG30-KF-CM45  -  - 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Paracoccus 

Actinobacteria Actinobacteria Actinomycetales Sporichthyaceae  - 

Actinobacteria Actinobacteria Actinomycetales Intrasporangiaceae  - 

Cyanobacteria Chloroplast Stramenopiles  -  - 

Chloroflexi Ktedonobacteria Thermogemmatisporales Thermogemmatisporaceae  - 

Actinobacteria Actinobacteria Actinomycetales Geodermatophilaceae Geodermatophilus 

Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Rhodoplanes 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 

Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Delftia 

Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae  - 

Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae  - 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae  - 

Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae  - 

Bacteroidetes Cytophagia Cytophagales Cytophagaceae  - 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Amaricoccus 

Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae  - 

Actinobacteria Actinobacteria Actinomycetales Nocardioidaceae Nocardioides 

Actinobacteria Actinobacteria Actinomycetales Streptomycetaceae Streptomyces 

Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas 

Actinobacteria Actinobacteria Actinomycetales Corynebacteriaceae Corynebacterium 

Bacteroidetes Cytophagia Cytophagales Cytophagaceae Hymenobacter 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus 

Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae Roseomonas 

Acidobacteria Solibacteres Solibacterales  -  - 
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Phylum Class Order Family Genus 

Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Stenotrophomonas 

Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Kaistobacter 

Actinobacteria Actinobacteria Actinomycetales  -  - 

Chloroflexi TK10 B07_WMSP1  -  - 

Proteobacteria Alphaproteobacteria Rhizobiales Methylobacteriaceae Methylobacterium 

Proteobacteria Deltaproteobacteria Bdellovibrionales Bdellovibrionaceae Bdellovibrio 

Actinobacteria Actinobacteria Actinomycetales Streptomycetaceae  - 

Bacteroidetes [Saprospirae] [Saprospirales] Chitinophagaceae  - 

AD3 ABS-6  -  -  - 

Acidobacteria DA052 Ellin6513  -  - 

Chloroflexi Ktedonobacteria JG30-KF-AS9  -  - 

Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae  - 

Acidobacteria Acidobacteriia Acidobacteriales Acidobacteriaceae  - 

Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Agrobacterium 

Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae  - 

Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus 

Firmicutes Bacilli Lactobacillales Leuconostocaceae Leuconostoc 

TM7 SC3  - - -  

Firmicutes Bacilli Bacillales [Exiguobacteraceae] Exiguobacterium 

Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 

Firmicutes Bacilli Bacillales Planococcaceae Lysinibacillus 

Firmicutes Clostridia Clostridiales [Tissierellaceae] Peptoniphilus 

Gemmatimonadetes Gemm-1  -  -  - 

OD1 ABY1  -  -  - 

Proteobacteria Alphaproteobacteria Rhizobiales Brucellaceae Ochrobactrum 

Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Rhizobium 

Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae  - 

Actinobacteria Thermoleophilia Solirubrobacterales Patulibacteraceae  - 

Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus 

Gemmatimonadetes Gemmatimonadetes Gemmatimonadales  - -  

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Other 

Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae  - 

Proteobacteria Gammaproteobacteria Oceanospirillales Alcanivoracaceae Alcanivorax 

Actinobacteria Actinobacteria Actinomycetales Frankiaceae Other 

Actinobacteria Actinobacteria Actinomycetales Frankiaceae  - 

Cyanobacteria Oscillatoriophycideae Chroococcales Xenococcaceae  - 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus 

OD2 ZB2  - - -  

Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae - 

Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae Prosthecobacter 
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Table C-3. Eukaryotic population present in the altered areas of the stone, identified through HTS 

approach. 

Phylum Class Order Family Genus 

Ascomycota Eurotiomycetes Chaetothyriales Incertae_sedis Coniosporium 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Cladosporium 

Ascomycota Saccharomycetes Saccharomycetales Incertae_sedis Candida 

Ascomycota unidentified unidentified unidentified unidentified 

Ascomycota Dothideomycetes Pleosporales unidentified unidentified 

Other Other Other Other Other 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria 

Basidiomycota Agaricomycetes Atheliales Atheliaceae Tylospora 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae Kluyveromyces 

Ascomycota Other Other Other Other 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae Debaryomyces 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Other 

Basidiomycota Agaricomycetes Boletales Rhizopogonaceae Rhizopogon 

Ascomycota Sordariomycetes Hypocreales Nectriaceae Fusarium 

Basidiomycota Agaricomycetes Russulales Russulaceae Russula 

Basidiomycota Tremellomycetes Tremellales Trichosporonaceae Trichosporon 

Ascomycota Dothideomycetes Pleosporales Other Other 

Basidiomycota Incertae_sedis Malasseziales Other Other 

Ascomycota Eurotiomycetes Eurotiales Trichocomaceae Penicillium 

Ascomycota Sordariomycetes Sordariales Chaetomiaceae Other 

Ascomycota Dothideomycetes Pleosporales Montagnulaceae Paraphaeosphaeria 

Basidiomycota Tremellomycetes Filobasidiales Filobasidiaceae Cryptococcus 

Ascomycota Saccharomycetes Saccharomycetales Debaryomycetaceae Meyerozyma 

Other Other Other Other Other 

Ascomycota Dothideomycetes Pleosporales Incertae_sedis Phoma 

Ascomycota Eurotiomycetes Eurotiales Trichocomaceae Aspergillus 

Ascomycota Dothideomycetes Incertae_sedis Myxotrichaceae Other 

Ascomycota Dothideomycetes Pleosporales Phaeosphaeriaceae Other 

Basidiomycota Agaricomycetes Cantharellales Clavulinaceae Clavulina 

Basidiomycota Incertae_sedis Malasseziales Incertae_sedis Malassezia 

Basidiomycota Agaricomycetes Russulales Russulaceae unidentified 

Zygomycota Incertae_sedis Mucorales Umbelopsidaceae Umbelopsis 

Ascomycota Leotiomycetes Helotiales Incertae_sedis Cadophora 

Basidiomycota Other Other Other Other 

Ascomycota Saccharomycetes Saccharomycetales Pichiaceae Pichia 

Ascomycota Sordariomycetes Hypocreales Nectriaceae Gibberella 

Basidiomycota Agaricomycetes Agaricales Tricholomataceae Other 
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Annex D. Characterisation of the microbial population thriving in the 

limestone sculptures from the Portuguese NMAA 

D.1. Microbial growth in the sculpture’s samples using CDM 

Table D-1. Cultivable microbial colonies present on the limestone sculptures. 

Sculpture 
Culture Medium 
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D.2. HTS approach for the sculptures’ samples 

Table D-2. Prokaryotic population present in the St. John the Baptist sculpture, identified through HTS approach. 

Phylum Class Order Family Genus Specie 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus sp. 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus raffinolactis 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus agalactiae 

Firmicutes Bacilli Lactobacillales Leuconostocaceae Leuconostoc Leuconostoc gasicomitatum 

Firmicutes Bacilli Lactobacillales Carnobacteriaceae Carnobacterium Carnobacterium maltaromaticum 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus sp. 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas lundensis 

Firmicutes Bacilli Lactobacillales Leuconostocaceae Leuconostoc Leuconostoc sp. 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus fujiensis 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus vestibularis 

Firmicutes Bacilli Lactobacillales - - - 

Firmicutes Bacilli Lactobacillales Leuconostocaceae Leuconostoc Leuconostoc carnosum 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus orisratti 

Firmicutes Bacilli Lactobacillales Carnobacteriaceae Carnobacterium Carnobacterium inhibens 
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Table D-3. Prokaryotic population present in The Virgin and the Child sculpture, identified through HTS approach. 

Phylum Class Order Family Genus Specie 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus sp. 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus raffinolactis 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus agalactiae 

Firmicutes Bacilli Lactobacillales Leuconostocaceae Leuconostoc Leuconostoc gasicomitatum 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus sp. 

Firmicutes Bacilli Lactobacillales Carnobacteriaceae Carnobacterium Carnobacterium maltaromaticum 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas lundensis 

Firmicutes Bacilli Lactobacillales Leuconostocaceae Leuconostoc Leuconostoc sp. 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus fujiensis 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus orisratti 

 

Table D-4. Prokaryotic population present in the St. Paul sculpture, identified through HTS approach. 

Phylum Class Order Family Genus Specie 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus sp. 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus raffinolactis 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus agalactiae 

Firmicutes Bacilli Lactobacillales Leuconostocaceae Leuconostoc Leuconostoc gasicomitatum 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus sp. 

Firmicutes Bacilli Lactobacillales Carnobacteriaceae Carnobacterium Carnobacterium maltaromaticum 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas lundensis 

Firmicutes Bacilli Lactobacillales Leuconostocaceae Leuconostoc Leuconostoc sp. 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus fujiensis 

Firmicutes Bacilli Lactobacillales - - - 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus vestibularis 
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Phylum Class Order Family Genus Specie 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus orisratti 

Firmicutes Bacilli Lactobacillales Leuconostocaceae Leuconostoc Leuconostoc carnosum 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas fragi 

 

Table D-5. Prokaryotic population present in the Musician Angel sculpture, identified through HTS approach. 

Phylum Class Order Family Genus Specie 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus sp. 

Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus aryabhattai 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus raffinolactis 

Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus sp. 

Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus flexus 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus agalactiae 

Firmicutes Bacilli Bacillales - - - 

Firmicutes Bacilli Lactobacillales Leuconostocaceae Leuconostoc Leuconostoc gasicomitatum 

Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus megaterium 

Firmicutes Bacilli Lactobacillales Carnobacteriaceae Carnobacterium Carnobacterium maltaromaticum 

Firmicutes Bacilli - - - - 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus sp. 

Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus ginsenggisoli 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas lundensis 

Firmicutes Bacilli Bacillales Planococcaceae Planococcus Planococcus maritimus 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus fujiensis 

Firmicutes Bacilli Lactobacillales Enterococcaceae - - 

Firmicutes Bacilli Lactobacillales Leuconostocaceae Leuconostoc Leuconostoc sp. 

Firmicutes Bacilli Bacillales Paenibacillaceae Paenibacillus Paenibacillus contaminans 
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Phylum Class Order Family Genus Specie 

Firmicutes Bacilli Lactobacillales - - - 

Firmicutes Bacilli Bacillales Bacillaceae - - 

Firmicutes Bacilli Lactobacillales Enterococcaceae Enterococcus Enterococcus sp. 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas fragi 

Firmicutes Bacilli Lactobacillales Carnobacteriaceae Carnobacterium Carnobacterium inhibens 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus vestibularis 
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Annex E. Microbial population thriving on the “São João da Penitência” Convent identified through HTS approach 

E.1. Prokaryotic population 

Table E-1. Prokaryotic population present in the area CM1 of the Convent, identified through HTS approach. 

Phylum Class Order Family Genus Specie 

Actinobacteria Rubrobacteria Rubrobacterales Rubrobacteraceae Rubrobacter Rubrobacter sp. 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas sp. 

Actinobacteria Actinobacteria Actinomycetales Geodermatophilaceae Geodermatophilus Geodermatophilus sp. 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas corrugata 

Actinobacteria Actinobacteria Actinomycetales Kineosporiaceae Kineosporia Kineosporia sp. 

Actinobacteria Actinobacteria Actinomycetales Kineosporiaceae Kineosporia Kineosporia rhizophila 

Proteobacteria - - - - - 

Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Ralstonia Ralstonia detusculanense 

Proteobacteria Alphaproteobacteria Rhizobiales Aurantimonadaceae Aurantimonas Aurantimonas litoralis 

Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Kaistobacter Kaistobacter sp. 

Actinobacteria Actinobacteria Actinomycetales Propionibacteriaceae Propionibacterium Propionibacterium humerusii 

Bacteroidetes Sphingobacteriia Sphingobacteriales Flexibacteraceae Hymenobacter Hymenobacter sp. 

Thermi Deinococci Deinococcales Deinococcaceae Deinococcus Deinococcus sp. 

Proteobacteria Gammaproteobacteria - - - - 

Actinobacteria Actinobacteria Actinomycetales Pseudonocardiaceae Pseudonocardia Pseudonocardia khuvsgulensis 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Jannaschia Jannaschia rubra 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas borealis 

Actinobacteria Actinobacteria Actinomycetales - - - 

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Erwinia Erwinia papayae 

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae - - 

Actinobacteria Actinobacteria Actinomycetales Geodermatophilaceae Modestobacter Modestobacter sp. 
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Phylum Class Order Family Genus Specie 

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Candidatus Blochmannia Candidatus Blochmannia sp. 

Cyanobacteria Oscillatoriophycideae Chroococcales Phormidiaceae Microcoleus Microcoleus antarcticus 

Actinobacteria Actinobacteria Actinomycetales Geodermatophilaceae Modestobacter Modestobacter marinus 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas lutea 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus sp. 

Proteobacteria Alphaproteobacteria Sphingomonadales Erythrobacteraceae Erythromicrobium Erythromicrobium ramosum 

Actinobacteria Actinobacteria Actinomycetales Geodermatophilaceae - - 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas abietaniphila 
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Table E-2. Prokaryotic population present in the area CM2 of the Convent, identified through HTS approach. 

Phylum Class Order Family Genus Specie 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas viridiflava 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas lutea 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas sp. 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas tremae 

Proteobacteria - - - - - 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas migulae 

Proteobacteria Alphaproteobacteria Rickettsiales Anaplasmataceae Ehrlichia Ehrlichia ovina 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus marimammalium 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas abietaniphila 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas lundensis 

 

Table E-3. Prokaryotic population present in the area CM3 of the Convent, identified through HTS approach. 

Phylum Class Order Family Genus Specie 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas viridiflava 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas sp. 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas lutea 

Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas leidyia 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus sp. 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas abietaniphila 

Actinobacteria Actinobacteria Actinomycetales Propionibacteriaceae Propionibacterium Propionibacterium acnes 

Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Phenylobacterium Phenylobacterium sp. 

Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Stenotrophomonas  Stenotrophomonas sp. 

Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. 

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Enterobacter Enterobacter hormaechei 
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Proteobacteria - - - - - 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas tremae 

Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Ralstonia Ralstonia pickettii 

Actinobacteria Actinobacteria Actinomycetales Corynebacteriaceae Corynebacterium Corynebacterium sp. 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Paracoccus Paracoccus sp. 

Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus Staphylococcus sp. 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus raffinolactis 

Proteobacteria Alphaproteobacteria Rhizobiales Phyllobacteriaceae Mesorhizobium Mesorhizobium sp. 

Proteobacteria Gammaproteobacteria - - - - 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas graminis 

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Plesiomonas Plesiomonas sp. 

 

Table E-4. Prokaryotic population present in the area CM4 of the Convent, identified through HTS approach. 

Phylum Class Order Family Genus Specie 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas sp. 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus sp. 

Proteobacteria - - - - - 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas abietaniphila 

Proteobacteria Gammaproteobacteria - - - - 

Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas leidyia 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus sp. 

Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Phenylobacterium Phenylobacterium sp. 

Actinobacteria Actinobacteria Actinomycetales Propionibacteriaceae Propionibacterium Propionibacterium acnes 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas viridiflava 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas moraviensis 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas lutea 
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Phylum Class Order Family Genus Specie 

Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas oligophenolica 

Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. 

Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Ralstonia Ralstonia detusculanense 

Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae Microbacterium Microbacterium sp. 

Firmicutes Bacilli Lactobacillales Streptococcaceae - - 

Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Moraxella Moraxella caviae 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus fujiensis 

Actinobacteria Actinobacteria Actinomycetales Corynebacteriaceae Corynebacterium Corynebacterium kroppenstedtii 

Actinobacteria Actinobacteria Actinomycetales Propionibacteriaceae Propionibacterium Propionibacterium sp. 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas mucidolens 

Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Enhydrobacter Enhydrobacter aerosaccus 

Actinobacteria Actinobacteria Actinomycetales Geodermatophilaceae Geodermatophilus Geodermatophilus sp. 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas lundensis 

Proteobacteria Betaproteobacteria - - - - 

Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae Roseomonas Roseomonas sp. 

Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Arthrospira Arthrospira sp. 

Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter Acinetobacter tjernbergiae 

Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Ralstonia Ralstonia pickettii 

Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae - - 

Actinobacteria Actinobacteria Actinomycetales - - - 

Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae Bradyrhizobium Bradyrhizobium sp. 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Paracoccus Paracoccus sp. 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas chloritidismutans 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Paracoccus Paracoccus aestuarii 

Tenericutes Mollicutes Acholeplasmatales Acholeplasmataceae Candidatus Phytoplasma Candidatus Phytoplasma sp. 

Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas melonis 



Annexes 

200 
 

Phylum Class Order Family Genus Specie 

Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae - - 

Firmicutes Clostridia Clostridiales Peptostreptococcaceae Peptostreptococcus Peptostreptococcus stomatis 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas azotoformans 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus raffinolactis 

Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Oligella Oligella ureolytica 

Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Micrococcus Micrococcus yunnanensis 

Firmicutes Bacilli Lactobacillales - - - 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas putida 

Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Brevundimonas Brevundimonas olei 

Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter Acinetobacter seohaensis 

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Enterobacter Enterobacter sp. 

Cyanobacteria Nostocophycideae Stigonematales Rivulariaceae Calothrix Calothrix parietina 

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Serratia Serratia marcescens 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas xanthomarina 

Spirochaetes Leptospirae Leptospirales Leptospiraceae Leptospira Leptospira licerasiae 

Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Arthrobacter Arthrobacter uratoxydans 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas borealis 

Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus Lactobacillus sp. 

Firmicutes Bacilli Lactobacillales Leuconostocaceae Leuconostoc Leuconostoc sp. 

Firmicutes Bacilli Bacillales Bacillaceae Virgibacillus Virgibacillus salexigens 

Actinobacteria Actinobacteria Actinomycetales Propionibacteriaceae Propionibacterium Propionibacterium avidum 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus bovis 
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Table E-5. Prokaryotic population present in the area CM5 of the Convent, identified through HTS approach. 

Phylum Class Order Family Genus Specie 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas corrugata 

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Erwinia Erwinia mallotivora 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas sp. 

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Erwinia Erwinia papayae 

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Erwinia Erwinia sp. 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas moraviensis 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas viridiflava 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas borealis 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas lurida 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas azotoformans 

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae - - 

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Enterobacter Enterobacter hormaechei 

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Erwinia Erwinia psidii 

 

 

Table E-6. Prokaryotic population present in the area CM6 of the Convent, identified through HTS approach. 

Phylum Class Order Family Genus Specie 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas fragi 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas lundensis 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas sp. 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas abietaniphila 

Cyanobacteria Nostocophycideae Nostocales Nostocaceae Anabaena Anabaena augstumalis 

Proteobacteria Gammaproteobacteria - - - - 
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Phylum Class Order Family Genus Specie 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas moraviensis 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas borealis 
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E.2. Eukaryotic population 

 

Table E-7. Eukaryotic population present in the area CM1 of the Convent, identified through HTS approach. 

Phylum Class Order Family Genus Specie 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium sp. 

Ascomycota Dothideomycetes Capnodiales Neodevriesiaceae unidentified unidentified 

Ascomycota Dothideomycetes Capnodiales - - - 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria sp. 

Ascomycota Dothideomycetes Capnodiales Neodevriesiaceae - - 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria didymospora 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria hordeicola 

Chlorophyta Trebouxiophyceae Trebouxiales Trebouxiaceae Trebouxia Trebouxia arboricola 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria alternata 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium sphaerospermum 

Ascomycota Dothideomycetes Pleosporales Phaeosphaeriaceae Phaeosphaeriopsis Phaeosphaeriopsis glaucopunctata 

Ascomycota - - - - - 

Ascomycota Lecanoromycetes Lecanorales Ramalinaceae Toninia Toninia physaroides 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Didymella Didymella sp. 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium fusiforme 

Ascomycota Dothideomycetes Pleosporales Didymosphaeriaceae Neokalmusia Neokalmusia brevispora 

Ascomycota Dothideomycetes Pleosporales Didymellaceae - - 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Stemphylium Stemphylium sp. 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria metachromatica 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Mycosphaerella Mycosphaerella tassiana 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium grevilleae 
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Ascomycota Dothideomycetes Capnodiales Neodevriesiaceae Neodevriesia Neodevriesia sp. 

Chlorophyta Trebouxiophyceae Trebouxiales Trebouxiaceae Trebouxia Trebouxia decolorans 

Ascomycota Dothideomycetes Pleosporales - - - 

Ascomycota Dothideomycetes Pleosporales 
Pleosporales_fam 

_Incertae_sedis 
Ochrocladosporium Ochrocladosporium frigidarii 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium velox 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae - - 

Chytridiomycota - - - - - 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Ramularia Ramularia sp. 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium pullulans 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Zasmidium Zasmidium sp. 

Chlorophyta Trebouxiophyceae Trebouxiales Trebouxiaceae Trebouxia Trebouxia sp. 

Ascomycota Sordariomycetes Sordariales Sordariaceae Sordaria Sordaria fimicola 

Ascomycota Leotiomycetes Helotiales - - - 

Ascomycota Sordariomycetes Diaporthales Diaporthaceae Diaporthe Diaporthe mayteni 

Ascomycota Dothideomycetes - - - - 

Basidiomycota Agaricomycetes Polyporales Meruliaceae Phlebia Phlebia sp. 

Ascomycota Dothideomycetes Capnodiales Teratosphaeriaceae - - 

Ascomycota Lecanoromycetes - - - - 

Ascomycota Dothideomycetes Capnodiales Teratosphaeriaceae Meristemomyces Meristemomyces frigidus 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium dominicanum 

Basidiomycota Agaricomycetes - - - - 

Ascomycota Dothideomycetes Capnodiales Teratosphaeriaceae Teratosphaeria Teratosphaeria xenocryptica 

Ascomycota Leotiomycetes Thelebolales Thelebolaceae Thelebolus Thelebolus globosus 

Ascomycota Dothideomycetes Capnodiales Neodevriesiaceae Neodevriesia Neodevriesia coryneliae 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium halotolerans 
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Ascomycota Saccharomycetes Saccharomycetales 
Saccharomycetales 

_fam_Incertae_sedis 
Candida Candida galli 

Ascomycota Lecanoromycetes Umbilicariales Umbilicariaceae Umbilicaria Umbilicaria torrefacta 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae Kazachstania Kazachstania naganishii 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Bipolaris Bipolaris sp. 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae - - 

Ascomycota Sordariomycetes Sordariales Sordariaceae Neurospora Neurospora sp. 

Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Penicillium Penicillium sp. 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Ramularia Ramularia beticola 

Ascomycota Sordariomycetes Coniochaetales Coniochaetaceae Coniochaeta Coniochaeta decumbens 

Glomeromycota Glomeromycetes Diversisporales Diversisporaceae Diversispora Diversispora sp. 

Basidiomycota - - - - - 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium aphidis 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Cercosporidium Cercosporidium bougainvilleae 

Basidiomycota Agaricomycetes Polyporales Meruliaceae Phlebia Phlebia tuberculata 

Ascomycota Geoglossomycetes Geoglossales Geoglossaceae Geoglossum Geoglossum simile 

Ascomycota Dothideomycetes Capnodiales 
Capnodiales_fam 

_Incertae_sedis 
Phaeotheca Phaeotheca triangularis 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Ramularia Ramularia acris 

Ascomycota Sordariomycetes Microascales Microascaceae Scopulariopsis Scopulariopsis fusca 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Pseudocercospora Pseudocercospora sp. 

Ascomycota Dothideomycetes Capnodiales Teratosphaeriaceae Teratosphaeria Teratosphaeria mexicana 

Ascomycota Dothideomycetes Pleosporales Sporormiaceae Preussia Preussia sp. 

Ascomycota Dothideomycetes Capnodiales Teratosphaeriaceae Capnobotryella Capnobotryella sp. 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Ramulispora Ramulispora sorghi 

Ascomycota Sordariomycetes Trichosphaeriales Trichosphaeriaceae Nigrospora Nigrospora oryzae 

Ascomycota Eurotiomycetes Coryneliales Coryneliaceae Corynelia Corynelia sp. 
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Ascomycota Dothideomycetes Capnodiales Teratosphaeriaceae Melanodothis Melanodothis caricis 

Ascomycota Leotiomycetes Helotiales Sclerotiniaceae Botrytis Botrytis caroliniana 

Ascomycota Dothideomycetes Pleosporales Didymosphaeriaceae Pseudopithomyces Pseudopithomyces sp. 

Basidiomycota Agaricomycetes Agaricales - - - 

Ascomycota Dothideomycetes Pleosporales Didymosphaeriaceae - - 

Ascomycota Sordariomycetes - - - - 

 

Table E-8. Eukaryotic population present in the area CM2 of the Convent, identified through HTS approach. 

Phylum Class Order Family Genus Specie 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Stagonosporopsis Stagonosporopsis dorenboschii 

Ascomycota Dothideomycetes Pleosporales Didymellaceae - - 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium sp. 

Ascomycota Leotiomycetes Helotiales Helotiaceae Articulospora Articulospora sp. 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Mycosphaerella Mycosphaerella tassiana 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria alternata 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Didymella Didymella sp. 

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Vishniacozyma Vishniacozyma carnescens 

Ascomycota Leotiomycetes Helotiales Helotiaceae Articulospora Articulospora proliferata 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria sp. 

Ascomycota Dothideomycetes Pleosporales Didymellaceae unidentified unidentified 

Ascomycota Leotiomycetes Helotiales Helotiaceae Articulospora Articulospora sp. 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Ascochyta Ascochyta rabiei 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium namibiae 

Ascomycota Dothideomycetes Pleosporales - - - 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Neoascochyta Neoascochyta desmazieri 
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Ascomycota Dothideomycetes Capnodiales - - - 

Ascomycota Leotiomycetes Helotiales - - - 

Ascomycota - - - - - 

Basidiomycota Tremellomycetes Filobasidiales Filobasidiaceae Naganishia Naganishia adeliensis 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium pullulans 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Didymella Didymella chenopodii 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Stagonosporopsis Stagonosporopsis sp. 

Basidiomycota Cystobasidiomycetes 
Cystobasidiomycetes 

_ord_Incertae_sedis 
Symmetrosporaceae Symmetrospora Symmetrospora foliicola 

Ascomycota Lecanoromycetes Lecanorales Ramalinaceae Toninia Toninia physaroides 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Allophoma Allophoma minor 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium halotolerans 

Ascomycota Dothideomycetes Pleosporales Didymellaceae unidentified Didymellaceae sp. 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium subglaciale 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Epicoccum Epicoccum sp. 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae - - 

Ascomycota Dothideomycetes Capnodiales 
Capnodiales_fam 

_Incertae sedis 
Phaeotheca Phaeotheca triangularis 

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Vishniacozyma Vishniacozyma dimennae 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Boeremia Boeremia exigua 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Phoma Phoma multirostrata 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria hordeicola 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Xenodidymella Xenodidymella humicola 

Basidiomycota - - - - - 

Ascomycota Dothideomycetes Pleosporales Morosphaeriaceae Acrocalymma Acrocalymma cycadis 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Didymella Didymella gardeniae 

Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Penicillium Penicillium sp. 
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Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae Saccharomyces Saccharomyces sp. 

Ascomycota Leotiomycetes Helotiales Vibrisseaceae Phialocephala Phialocephala virens 

Ascomycota Dothideomycetes Venturiales Venturiaceae Venturia Venturia hystrioides 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Neoascochyta Neoascochyta sp. 

Basidiomycota Microbotryomycetes Sporidiobolales Sporidiobolaceae Sporobolomyces Sporobolomyces oryzicola 

Ascomycota Dothideomycetes Pleosporales Sporormiaceae unidentified unidentified 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Stagonosporopsis Stagonosporopsis helianthi 

Ascomycota Dothideomycetes Pleosporales Leptosphaeriaceae Neophaeosphaeria Neophaeosphaeria sp. 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Stemphylium Stemphylium sp. 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium grevilleae 

Ascomycota Dothideomycetes Capnodiales Neodevriesiaceae - - 

Ascomycota Lecanoromycetes - - - - 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Boeremia Boeremia noackiana 

Ascomycota Dothideomycetes Pleosporales Phaeosphaeriaceae - - 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Stagonosporopsis Stagonosporopsis loticola 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Nothophoma Nothophoma infossa 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae Kazachstania Kazachstania sp. 

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Vishniacozyma Vishniacozyma sp. 

Basidiomycota Microbotryomycetes Leucosporidiales Leucosporidiaceae Leucosporidium Leucosporidium muscorum 

Basidiomycota Tremellomycetes Tremellales unidentified unidentified unidentified 

Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Penicillium Penicillium corylophilum 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria metachromatica 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Pleospora Pleospora sp. 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae Saccharomyces Saccharomyces cerevisiae 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium fusiforme 

Ascomycota Sordariomycetes Hypocreales Stachybotryaceae Sirastachys Sirastachys cylindrospora 
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Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Vishniacozyma Vishniacozyma psychrotolerans 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Ascochyta Ascochyta sp. 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Calophoma Calophoma aquilegiicola 

Basidiomycota Agaricomycetes - - - - 

Ascomycota Dothideomycetes Dothideales Dothioraceae Sydowia Sydowia polyspora 

Ascomycota Dothideomycetes - - - - 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Dendryphiella Dendryphiella paravinosa 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae - - 

Basidiomycota Tremellomycetes Tremellales Tremellaceae Cryptococcus Cryptococcus frias 

Ascomycota Sordariomycetes - - - - 

Ascomycota Saccharomycetes Saccharomycetales - - - 

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Vishniacozyma Vishniacozyma victoriae 

Ascomycota Dothideomycetes Pleosporales Leptosphaeriaceae Sphaerellopsis Sphaerellopsis paraphysata 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Didymella Didymella urticicola 

Ascomycota Sordariomycetes Glomerellales Plectosphaerellaceae Plectosphaerella Plectosphaerella cucumerina 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium sp. 

Ascomycota Dothideomycetes Pleosporales Leptosphaeriaceae Leptosphaeria Leptosphaeria polylepidis 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Ascochyta Ascochyta phacae 

Ascomycota Dothideomycetes Dothideales - - - 

 

Table E-9. Eukaryotic population present in the area CM3 of the Convent, identified through HTS approach. 

Phylum Class Order Family Genus Specie 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium sp. 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Mycosphaerella Mycosphaerella tassiana 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Stemphylium Stemphylium sp. 
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Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria metachromatica 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium namibiae 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria hordeicola 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Phoma Phoma polemonii 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria eureka 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria sp. 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Stemphylium Stemphylium vesicarium 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae - - 

Ascomycota Dothideomycetes Capnodiales - - - 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Stemphylium Stemphylium sp. 

Ascomycota Dothideomycetes Dothideales Dothioraceae Hormonema Hormonema sp. 

Ascomycota Dothideomycetes Pleosporales - - - 

Ascomycota Dothideomycetes Pleosporales Didymellaceae - - 

Basidiomycota Agaricostilbomycetes Agaricostilbales Kondoaceae Kondoa Kondoa aeria 

Ascomycota - - - - - 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria alternata 

Basidiomycota Exobasidiomycetes Microstromatales Microstromataceae Microstroma Microstroma album 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Bipolaris Bipolaris sp. 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria breviramosa 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria infectoria 

Ascomycota Lecanoromycetes Lecanorales Ramalinaceae Toninia Toninia physaroides 

Basidiomycota Agaricomycetes Agaricales Physalacriaceae Cylindrobasidium Cylindrobasidium sp. 

Ascomycota Dothideomycetes Capnodiales 
Capnodiales_fam 

_Incertae_sedis 
Phaeotheca Phaeotheca triangularis 

Ascomycota Leotiomycetes Thelebolales Pseudeurotiaceae unidentified unidentified 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium sp. 
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Ascomycota Sordariomycetes Hypocreales Nectriaceae Fusarium Fusarium sp. 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae - - 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Paradendryphiella 
Paradendryphiella 

arenariae 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium fusiforme 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Stemphylium Stemphylium loti 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae Saccharomyces Saccharomyces sp. 

Basidiomycota Cystobasidiomycetes 
Cystobasidiomycetes 

_ord_Incertae_sedis 
Symmetrosporaceae Symmetrospora Symmetrospora foliicola 

Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Penicillium Penicillium sp. 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium halotolerans 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Didymella Didymella negriana 

Ascomycota Leotiomycetes Helotiales - - - 

Ascomycota Dothideomycetes Pleosporales unidentified unidentified unidentified 

Ascomycota Dothideomycetes Pleosporales Leptosphaeriaceae Sphaerellopsis Sphaerellopsis paraphysata 

Ascomycota Lecanoromycetes Acarosporales Acarosporaceae Sarcogyne Sarcogyne hypophaeoides 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium grevilleae 

Ascomycota Dothideomycetes Dothideales - - - 

Ascomycota Dothideomycetes - - - - 

Ascomycota Leotiomycetes Thelebolales Thelebolaceae Thelebolus Thelebolus globosus 

Basidiomycota Agaricostilbomycetes Agaricostilbales Kondoaceae Bensingtonia Bensingtonia sp. 

Ascomycota Lecanoromycetes - - - - 

Ascomycota Dothideomycetes Pleosporales Morosphaeriaceae Acrocalymma Acrocalymma sp. 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Curvularia Curvularia clavata 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium pullulans 

Ascomycota Sordariomycetes Hypocreales Cordycipitaceae Lecanicillium Lecanicillium dimorphum 

Ascomycota Dothideomycetes Dothideales Dothideaceae Celosporium Celosporium sp. 
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Basidiomycota Cystobasidiomycetes 
Cystobasidiomycetes 

_ord_Incertae_sedis 
Buckleyzymaceae Buckleyzyma Buckleyzyma aurantiaca 

Basidiomycota Microbotryomycetes Sporidiobolales Sporidiobolaceae Rhodotorula Rhodotorula mucilaginosa 

Ascomycota Saccharomycetes Saccharomycetales - - - 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Phoma Phoma aloes 

Basidiomycota Microbotryomycetes Sporidiobolales Sporidiobolaceae Sporobolomyces Sporobolomyces roseus 

Ascomycota Sordariomycetes Diaporthales Diaporthaceae Diaporthe Diaporthe mayteni 

Basidiomycota Agaricomycetes Agaricales Agaricaceae Lepiota Lepiota subincarnata 

Ascomycota Leotiomycetes - - - - 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae - - 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae Kazachstania Kazachstania sp. 

Basidiomycota Tremellomycetes Filobasidiales Filobasidiaceae Naganishia Naganishia albida 

Ascomycota Sordariomycetes Hypocreales Nectriaceae - - 

Ascomycota Dothideomycetes Capnodiales Neodevriesiaceae unidentified unidentified 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Curvularia Curvularia uncinata 

Ascomycota Dothideomycetes Dothideales Dothioraceae Sydowia Sydowia polyspora 

Basidiomycota Agaricomycetes - - - - 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Ramulispora Ramulispora sorghi 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Pseudocercospora Pseudocercospora sp. 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae Saccharomyces Saccharomyces cerevisiae 

Basidiomycota Malasseziomycetes Malasseziales Malasseziaceae Malassezia Malassezia restricta 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Curvularia Curvularia bothriochloae 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Curvularia Curvularia sp. 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Exserohilum Exserohilum rostratum 

Ascomycota Dothideomycetes Pleosporales Phaeosphaeriaceae - - 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Rachicladosporium Rachicladosporium sp. 
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Ascomycota Eurotiomycetes Chaetothyriales Trichomeriaceae Knufia Knufia peltigerae 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Cochliobolus Cochliobolus sp. 

Mucoromycota Mucoromycetes Mucorales Mucoraceae Mucor Mucor plumbeus 

Ascomycota Dothideomycetes Pleosporales Phaeosphaeriaceae Tintelnotia Tintelnotia destructans 

Basidiomycota - - - - - 

Basidiomycota Tremellomycetes Tremellales - - - 

 

Table E-10. Eukaryotic population present in the area CM4 of the Convent, identified through HTS approach. 

Phylum Class Order Family Genus Specie 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium pullulans 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium sp. 

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Vishniacozyma Vishniacozyma carnescens 

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Vishniacozyma Vishniacozyma victoriae 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Stagonosporopsis Stagonosporopsis sp. 

Basidiomycota Microbotryomycetes Sporidiobolales Sporidiobolaceae Sporobolomyces Sporobolomyces roseus 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria metachromatica 

Ascomycota Dothideomycetes Pleosporales Didymellaceae - - 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae - - 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria hordeicola 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium subglaciale 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Kabatiella Kabatiella lini 

Basidiomycota Tremellomycetes Filobasidiales Filobasidiaceae Filobasidium Filobasidium oeirense 

Ascomycota - - - - - 

Ascomycota Dothideomycetes Capnodiales - - - 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Mycosphaerella Mycosphaerella tassiana 
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Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium sp. 

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Vishniacozyma Vishniacozyma sp. 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium namibiae 

Ascomycota Dothideomycetes Dothideales - - - 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria sp. 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium microstictum 

Ascomycota Lecanoromycetes Lecanorales Ramalinaceae Toninia Toninia physaroides 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Verrucocladosporium Verrucocladosporium dirinae 

Ascomycota Dothideomycetes Capnodiales Neodevriesiaceae Neodevriesia Neodevriesia bulbillosa 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Stagonosporopsis Stagonosporopsis lupini 

Ascomycota Sordariomycetes Hypocreales Hypocreaceae Trichoderma Trichoderma sp. 

Ascomycota Lecanoromycetes Pertusariales Megasporaceae Megaspora Megaspora sp. 

Ascomycota Dothideomycetes Capnodiales Neodevriesiaceae unidentified unidentified 

Ascomycota Dothideomycetes Pleosporales - - - 

Ascomycota Lecanoromycetes - - - - 

Basidiomycota - - - - - 

Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Penicillium Penicillium sp. 

Ascomycota Dothideomycetes Capnodiales 
Capnodiales_fam 

_Incertae_sedis 
Phaeotheca Phaeotheca triangularis 

Ascomycota Dothideomycetes Capnodiales Teratosphaeriaceae - - 

Basidiomycota Agaricomycetes - - - - 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae Saccharomyces Saccharomyces sp. 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Ramulispora Ramulispora sorghi 

Basidiomycota Agaricomycetes Agaricales - - - 

Ascomycota Leotiomycetes Helotiales - - - 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium aphidis 
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Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria infectoria 

Basidiomycota Agaricomycetes Hymenochaetales Hymenochaetaceae Phellinus Phellinus andinus 

Ascomycota Dothideomycetes - - - - 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae - - 

Ascomycota Sordariomycetes Hypocreales Nectriaceae unidentified unidentified 

Ascomycota Saccharomycetes Saccharomycetales - - - 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Didymella Didymella boeremae 

Ascomycota Dothideomycetes Pleosporales Phaeosphaeriaceae Phaeosphaeria Phaeosphaeria triglochinicola 

Ascomycota Dothideomycetes Pleosporales unidentified unidentified unidentified 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Kabatiella Kabatiella zeae 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium grevilleae 

Ascomycota Lecanoromycetes Acarosporales Acarosporaceae - - 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Bipolaris Bipolaris sp. 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae Lachancea Lachancea sp. 

Basidiomycota Agaricomycetes Russulales Peniophoraceae Subulicystidium Subulicystidium sp. 

Ascomycota Dothideomycetes Botryosphaeriales Botryosphaeriaceae - - 

Ascomycota Sordariomycetes Hypocreales Nectriaceae Fusarium Fusarium sp. 

Ascomycota Lecanoromycetes Umbilicariales Ophioparmaceae Hypocenomyce Hypocenomyce scalaris 

Basidiomycota Tremellomycetes Tremellales - - - 

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Hannaella Hannaella luteola 

Basidiomycota Cystobasidiomycetes Cystobasidiales Cystobasidiaceae Cystobasidium Cystobasidium slooffiae 

Basidiomycota Malasseziomycetes Malasseziales Malasseziaceae Malassezia Malassezia restricta 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium halotolerans 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria breviramosa 

Ascomycota Sordariomycetes Hypocreales Nectriaceae Volutella Volutella lini 

Basidiomycota Microbotryomycetes Sporidiobolales Sporidiobolaceae Sporobolomyces Sporobolomyces sp. 
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Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae Kazachstania Kazachstania sp. 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium fusiforme 

Ascomycota Sordariomycetes Hypocreales Nectriaceae Fusarium Fusarium domesticum 

Ascomycota Dothideomycetes Pleosporales Morosphaeriaceae Acrocalymma Acrocalymma cycadis 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae - - 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae Saccharomyces Saccharomyces cerevisiae 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Stagonosporopsis Stagonosporopsis helianthi 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Pseudocercospora Pseudocercospora sp. 

Ascomycota Dothideomycetes Tubeufiales Tubeufiaceae Acanthostigma Acanthostigma multiseptatum 

Ascomycota Leotiomycetes Thelebolales Thelebolaceae Thelebolus Thelebolus globosus 

Basidiomycota Agaricomycetes Agaricales Tricholomataceae - - 

Ascomycota Eurotiomycetes Eurotiales Aspergillaceae - - 

 

 

Table E-11. Eukaryotic population present in the area CM5 of the Convent, identified through HTS approach. 

Phylum Class Order Family Genus Specie 

Ascomycota Sordariomycetes Sordariales Sordariaceae Sordaria Sordaria fimicola 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium sp. 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium pullulans 

Basidiomycota Tremellomycetes Cystofilobasidiales Cystofilobasidiaceae Guehomyces Guehomyces pullulans 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Mycosphaerella Mycosphaerella tassiana 

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Vishniacozyma Vishniacozyma victoriae 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium namibiae 

Ascomycota Dothideomycetes Pleosporales Didymellaceae - - 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria hordeicola 
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Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria metachromatica 

Ascomycota Sordariomycetes Sordariales Sordariaceae Neurospora Neurospora sp. 

Ascomycota Sordariomycetes Hypocreales Nectriaceae Gibberella Gibberella tricincta 

Ascomycota Dothideomycetes Capnodiales - - - 

Ascomycota Dothideomycetes Capnodiales Neodevriesiaceae Neodevriesia Neodevriesia pakbiae 

Ascomycota - - - - - 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria sp. 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria alternata 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Readeriella Readeriella sp. 

Ascomycota Lecanoromycetes Lecanorales Ramalinaceae Toninia Toninia physaroides 

Ascomycota Dothideomycetes Pleosporales Anteagloniaceae Flammeascoma Flammeascoma bambusae 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Stagonosporopsis 
Stagonosporopsis 

dorenboschii 

Ascomycota Sordariomycetes Sordariales Sordariaceae Neurospora Neurospora crassa 

Ascomycota Sordariomycetes Sordariales Sordariaceae - - 

Basidiomycota Tremellomycetes Tremellales Rhynchogastremataceae Papiliotrema Papiliotrema fuscus 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Didymella Didymella sp. 

Ascomycota Leotiomycetes Helotiales Sclerotiniaceae Botrytis Botrytis porri 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae - - 

Ascomycota Dothideomycetes Pleosporales - - - 

Basidiomycota Tremellomycetes Tremellales Rhynchogastremataceae Papiliotrema Papiliotrema sp. 

Ascomycota Dothideomycetes unidentified unidentified unidentified unidentified 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Didymella Didymella chenopodii 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Kabatiella Kabatiella lini 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Didymella Didymella boeremae 

Ascomycota Sordariomycetes - - - - 
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Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium sp. 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium subglaciale 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium aphidis 

Ascomycota Dothideomycetes Capnodiales Neodevriesiaceae Neodevriesia Neodevriesia modesta 

Basidiomycota Agaricomycetes - - - - 

Ascomycota Dothideomycetes Dothideales - - - 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Ascochyta Ascochyta rabiei 

Ascomycota Lecanoromycetes - - - - 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae Saccharomyces Saccharomyces sp. 

Ascomycota Sordariomycetes Sordariales Sordariaceae Neurospora Neurospora terricola 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium microstictum 

Ascomycota Leotiomycetes Helotiales - - - 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Phoma Phoma polemonii 

Ascomycota Dothideomycetes Botryosphaeriales Botryosphaeriaceae Dothiorella Dothiorella santali 

Basidiomycota Agaricomycetes Agaricales - - - 

Ascomycota Dothideomycetes Pleosporales Phaeosphaeriaceae Chaetosphaeronema Chaetosphaeronema sp. 

Ascomycota Dothideomycetes - - - - 

Ascomycota Sordariomycetes Hypocreales Stachybotryaceae Myrothecium Myrothecium verrucaria 

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Vishniacozyma Vishniacozyma carnescens 

Ascomycota Dothideomycetes Pleosporales unidentified unidentified unidentified 

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Vishniacozyma Vishniacozyma sp. 

Basidiomycota - - - - - 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae - - 

Ascomycota Sordariomycetes Hypocreales Nectriaceae Gibberella Gibberella baccata 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria breviramosa 

Ascomycota Sordariomycetes Hypocreales Nectriaceae Nalanthamala Nalanthamala diospyri 
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Ascomycota Sordariomycetes Hypocreales Nectriaceae Fusarium Fusarium sp. 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium grevilleae 

Ascomycota Dothideomycetes Pleosporales Didymosphaeriaceae Paraconiothyrium Paraconiothyrium sp. 

Ascomycota Dothideomycetes Pleosporales Phaeosphaeriaceae Nodulosphaeria Nodulosphaeria aconiti 

Basidiomycota Tremellomycetes Tremellales Phaeotremellaceae Gelidatrema 
Gelidatrema 

spencermartinsiae 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Stemphylium Stemphylium sp. 

Ascomycota Sordariomycetes Hypocreales Stachybotryaceae Myrothecium Myrothecium roridum 

Basidiomycota Tremellomycetes Tremellales Tremellaceae Tremella Tremella globispora 

Basidiomycota Tremellomycetes Tremellales Rhynchogastremataceae Papiliotrema Papiliotrema bandonii 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria eureka 

Ascomycota Dothideomycetes Pleosporales Morosphaeriaceae Acrocalymma Acrocalymma cycadis 

Ascomycota Dothideomycetes Pleosporales Periconiaceae Periconia Periconia digitata 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Rachicladosporium Rachicladosporium sp. 

Ascomycota Dothideomycetes Capnodiales Extremaceae - - 

Ascomycota Dothideomycetes Pleosporales Arthopyreniaceae Arthopyrenia Arthopyrenia salicis 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae - - 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria infectoria 

Ascomycota Dothideomycetes Capnodiales Extremaceae Vermiconia Vermiconia calcicola 

Ascomycota Sordariomycetes Sordariales Sordariaceae Sordaria Sordaria sp. 

Basidiomycota Agaricomycetes Agaricales Psathyrellaceae Coprinellus Coprinellus xanthothrix 

Ascomycota Dothideomycetes Capnodiales Neodevriesiaceae unidentified unidentified 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Bipolaris Bipolaris sp. 

Ascomycota Lecanoromycetes Acarosporales Acarosporaceae - - 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae Lachancea Lachancea sp. 

Ascomycota Dothideomycetes Pleosporales Cucurbitariaceae Pyrenochaeta Pyrenochaeta sp. 
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Ascomycota Sordariomycetes Hypocreales Nectriaceae unidentified unidentified 

Ascomycota Lecanoromycetes Lecanorales - - - 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae Kazachstania Kazachstania sp. 

Ascomycota Saccharomycetes Saccharomycetales - - - 

Ascomycota Sordariomycetes Diaporthales Diaporthaceae Diaporthe Diaporthe mayteni 

Chytridiomycota Spizellomycetes Spizellomycetales Spizellomycetaceae Spizellomyces Spizellomyces sp. 

Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Penicillium Penicillium sp. 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Ramulispora Ramulispora sorghi 

Ascomycota Sordariomycetes Hypocreales Nectriaceae - - 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium fusiforme 

Ascomycota Sordariomycetes Glomerellales Glomerellaceae Colletotrichum Colletotrichum sp. 

Ascomycota Dothideomycetes Capnodiales Teratosphaeriaceae Devriesia Devriesia fraserae 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Ramularia Ramularia beticola 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Epicoccum Epicoccum sp. 

Ascomycota Dothideomycetes Capnodiales Teratosphaeriaceae - - 

Ascomycota Eurotiomycetes Eurotiales Aspergillaceae - - 

Ascomycota Dothideomycetes Pleosporales Didymosphaeriaceae Montagnula Montagnula aloes 

Ascomycota Dothideomycetes Capnodiales Teratosphaeriaceae Capnobotryella Capnobotryella sp. 

Ascomycota Dothideomycetes Dothideales Dothioraceae Hormonema Hormonema viticola 

Ascomycota Dothideomycetes Tubeufiales Tubeufiaceae Acanthostigma Acanthostigma multiseptatum 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Zasmidium Zasmidium sp. 

Ascomycota Dothideomycetes Capnodiales Extremaceae Incertomyces Incertomyces vagans 

Ascomycota Dothideomycetes Dothideales Dothioraceae Sydowia Sydowia polyspora 

Basidiomycota Tremellomycetes Cystofilobasidiales - - - 

Ascomycota Sordariomycetes Calosphaeriales Calosphaeriaceae Jattaea Jattaea sp. 

Ascomycota Dothideomycetes Pleosporales Phaeosphaeriaceae 
 

- 
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Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Pseudocercospora Pseudocercospora sp. 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae Kazachstania Kazachstania naganishii 

Arthropoda Insecta Lepidoptera Crambidae Petrophila Petrophila incerta 

Ascomycota Dothideomycetes Botryosphaeriales Botryosphaeriaceae - - 

Ascomycota Eurotiomycetes Chaetothyriales Cyphellophoraceae Cyphellophora Cyphellophora europaea 

Ascomycota Sordariomycetes Sordariales - - - 

Ascomycota Leotiomycetes Helotiales Helotiaceae Glarea Glarea lozoyensis 

Ascomycota Leotiomycetes Helotiales Sclerotiniaceae - - 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Protostegia Protostegia eucleae 

Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Aspergillus Aspergillus sp. 

 

 

Table E-12. Eukaryotic population present in the area CM6 of the Convent, identified through HTS approach. 

Phylum Class Order Family Genus Specie 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium sp. 

Ascomycota Leotiomycetes Thelebolales Thelebolaceae Thelebolus Thelebolus globosus 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium namibiae 

Ascomycota Dothideomycetes Pleosporales Didymellaceae - - 

Ascomycota Dothideomycetes Capnodiales Neodevriesiaceae Neodevriesia Neodevriesia pakbiae 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria hordeicola 

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Vishniacozyma Vishniacozyma victoriae 

Ascomycota Dothideomycetes Pleosporales Sporormiaceae unidentified unidentified 

Ascomycota Sordariomycetes Hypocreales Nectriaceae Gibberella Gibberella tricincta 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium pullulans 

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Vishniacozyma Vishniacozyma carnescens 
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Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria sp. 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria metachromatica 

Ascomycota Sordariomycetes Xylariales Amphisphaeriaceae unidentified unidentified 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Stemphylium Stemphylium sp. 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Readeriella Readeriella sp. 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Didymella Didymella chenopodii 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Stagonosporopsis Stagonosporopsis sp. 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria eureka 

Ascomycota - - - - - 

Basidiomycota Tremellomycetes Holtermanniales 
Holtermanniales_fam 

_Incertae_sedis 
Holtermanniella Holtermanniella takashimae 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Mycosphaerella Mycosphaerella tassiana 

Ascomycota Dothideomycetes Capnodiales - - - 

Ascomycota Sordariomycetes Hypocreales Stachybotryaceae Myrothecium Myrothecium roridum 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Stagonosporopsis Stagonosporopsis dorenboschii 

Ascomycota Dothideomycetes Pleosporales - - - 

Ascomycota Lecanoromycetes Lecanorales Ramalinaceae Toninia Toninia physaroides 

Ascomycota Dothideomycetes Pleosporales Sporormiaceae - - 

Ascomycota Dothideomycetes Pleosporales Didymosphaeriaceae Neokalmusia Neokalmusia brevispora 

Ascomycota Dothideomycetes Pleosporales Anteagloniaceae Flammeascoma Flammeascoma bambusae 

Ascomycota Dothideomycetes Pleosporales Sporormiaceae Sporormiella Sporormiella leporina 

Ascomycota Dothideomycetes Pleosporales Phaeosphaeriaceae unidentified unidentified 

Ascomycota Dothideomycetes unidentified unidentified unidentified unidentified 

Basidiomycota Tremellomycetes Filobasidiales Filobasidiaceae Filobasidium Filobasidium wieringae 

Ascomycota Dothideomycetes Dothideales Dothioraceae Sydowia Sydowia polyspora 

Ascomycota Sordariomycetes Hypocreales Nectriaceae Fusarium Fusarium oxysporum 
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Ascomycota Lecanoromycetes - - - - 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae - - 

Ascomycota Dothideomycetes Pleosporales Sporormiaceae Sporormiella Sporormiella sp. 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium sp. 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria infectoria 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria alternata 

Ascomycota Sordariomycetes Hypocreales Nectriaceae Gibberella Gibberella baccata 

Ascomycota Eurotiomycetes Verrucariales Verrucariaceae Verrucaria Verrucaria nigrescens 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae - - 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Didymella Didymella sp. 

Ascomycota Dothideomycetes Pleosporales Didymosphaeriaceae Montagnula Montagnula aloes 

Ascomycota Sordariomycetes Togniniales Togniniaceae Phaeoacremonium Phaeoacremonium sp. 

Ascomycota Eurotiomycetes Chaetothyriales Herpotrichiellaceae Phialophora Phialophora cyclaminis 

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Vishniacozyma Vishniacozyma dimennae 

Ascomycota Dothideomycetes Pleosporales Cucurbitariaceae Pyrenochaeta Pyrenochaeta sp. 

Ascomycota Dothideomycetes Pleosporales Phaeosphaeriaceae Chaetosphaeronema Chaetosphaeronema sp. 

Ascomycota Sordariomycetes Hypocreales Stachybotryaceae Alfaria Alfaria sp. 

Ascomycota Sordariomycetes Hypocreales Nectriaceae Ilyonectria Ilyonectria macroconidialis 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Boeremia Boeremia sambuci-nigrae 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Didymella Didymella negriana 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Epicoccum Epicoccum sp. 

Ascomycota Lecanoromycetes Acarosporales Acarosporaceae - - 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Stemphylium Stemphylium sp. 

Ascomycota Sordariomycetes Hypocreales Stachybotryaceae - - 

Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Penicillium Penicillium sp. 

Ascomycota Dothideomycetes Pleosporales Sporormiaceae Preussia Preussia pilosella 
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Ascomycota Sordariomycetes Hypocreales Stachybotryaceae unidentified unidentified 

Ascomycota Sordariomycetes Hypocreales Nectriaceae Fusarium Fusarium domesticum 

Ascomycota Dothideomycetes - - - - 

Ascomycota Dothideomycetes Pleosporales Phaeosphaeriaceae Wojnowicia Wojnowicia viburni 

Ascomycota Dothideomycetes Pleosporales unidentified unidentified unidentified 

Ascomycota Dothideomycetes Dothideales - - - 

Ascomycota Sordariomycetes Hypocreales Nectriaceae - - 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium grevilleae 

Ascomycota Dothideomycetes Capnodiales Extremaceae Vermiconia Vermiconia calcicola 

Ascomycota Sordariomycetes - - - - 

Ascomycota Leotiomycetes - - - - 

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Vishniacozyma Vishniacozyma sp. 

Ascomycota Eurotiomycetes Verrucariales Verrucariaceae Psoroglaena Psoroglaena sp. 

Ascomycota Dothideomycetes Pleosporales Phaeosphaeriaceae - - 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Phomatodes Phomatodes aubrietiae 

Ascomycota Leotiomycetes Helotiales Hyaloscyphaceae Lachnum Lachnum fuscescens 

Ascomycota Lecanoromycetes Lecanorales - - - 

Ascomycota Sordariomycetes Hypocreales Nectriaceae Gibberella Gibberella sp. 

Ascomycota Dothideomycetes Pleosporales Leptosphaeriaceae Subplenodomus Subplenodomus sp. 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria breviramosa 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Didymella Didymella boeremae 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Ascochyta Ascochyta rabiei 

Ascomycota Dothideomycetes Capnodiales Teratosphaeriaceae Devriesia Devriesia fraserae 

Ascomycota Leotiomycetes Helotiales - - - 

Basidiomycota Tremellomycetes Tremellales Rhynchogastremataceae Papiliotrema Papiliotrema flavescens 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Bipolaris Bipolaris sp. 
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Ascomycota Sordariomycetes Hypocreales 
Hypocreales_fam 

_Incertae_sedis 
Acremonium Acremonium persicinum 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium subglaciale 

Ascomycota Lecanoromycetes Lecanorales Parmeliaceae Karoowia Karoowia scitula 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Boeremia Boeremia exigua 

Ascomycota Leotiomycetes Helotiales Helotiaceae Tetracladium Tetracladium marchalianum 

Ascomycota Leotiomycetes Helotiales Helotiaceae Crocicreas Crocicreas epicalamia 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Kabatiella Kabatiella lini 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Stemphylium Stemphylium loti 

Ascomycota Dothideomycetes Pleosporales Phaeosphaeriaceae Phaeosphaeria Phaeosphaeria triglochinicola 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Zasmidium Zasmidium sp. 

Ascomycota Leotiomycetes Helotiales Sclerotiniaceae Botrytis Botrytis caroliniana 

Ascomycota Sordariomycetes Xylariales - - - 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Phoma Phoma multirostrata 

Ascomycota Sordariomycetes Sordariales Sordariaceae Neurospora Neurospora crassa 

Ascomycota Dothideomycetes Pleosporales Cucurbitariaceae Pyrenochaeta Pyrenochaeta inflorescentiae 

Ascomycota Eurotiomycetes - - - - 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Stagonosporopsis Stagonosporopsis lupini 

Ascomycota Dothideomycetes Capnodiales Extremaceae Incertomyces Incertomyces vagans 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Dendryphiella Dendryphiella paravinosa 

Ascomycota Sordariomycetes Xylariales Bartaliniaceae Truncatella Truncatella spadicea 

Basidiomycota Agaricomycetes - - - - 

Ascomycota Dothideomycetes Capnodiales Extremaceae - - 

Basidiomycota - - - - - 

Basidiomycota Tremellomycetes Cystofilobasidiales Cystofilobasidiaceae Cystofilobasidium Cystofilobasidium capitatum 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae - - 
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Ascomycota Dothideomycetes Capnodiales Neodevriesiaceae Neodevriesia Neodevriesia modesta 

Ascomycota Dothideomycetes Pleosporales Didymosphaeriaceae - - 

Ascomycota Lecanoromycetes Lecanorales Ramalinaceae Lecania Lecania proteiformis 

Ascomycota Dothideomycetes Dothideales Aureobasidiaceae Aureobasidium Aureobasidium microstictum 

Ascomycota Dothideomycetes Pleosporales Didymosphaeriaceae Pseudopithomyces Pseudopithomyces sp. 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Ascochyta Ascochyta phacae 

Ascomycota Dothideomycetes Pleosporales Arthopyreniaceae Arthopyrenia Arthopyrenia salicis 

Ascomycota Lecanoromycetes Trapeliales Phlyctidaceae Phlyctis Phlyctis argena 

Ascomycota Sordariomycetes Xylariales Apiosporaceae Arthrinium Arthrinium sacchari 

Ascomycota Sordariomycetes Hypocreales - - - 

Ascomycota Dothideomycetes Botryosphaeriales Botryosphaeriaceae Lasiodiplodia Lasiodiplodia crassispora 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Phoma Phoma saxea 

Ascomycota Saccharomycetes Saccharomycetales - - - 

Ascomycota Sordariomycetes Sordariales Sordariaceae Neurospora Neurospora sp. 

Ascomycota Leotiomycetes Rhytismatales Cudoniaceae - - 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium fusiforme 

Ascomycota Leotiomycetes Helotiales Sclerotiniaceae Botrytis Botrytis porri 

Ascomycota Sordariomycetes Sordariales Sordariaceae Neurospora Neurospora terricola 

Ascomycota Sordariomycetes Xylariales Bartaliniaceae Hyalotiella Hyalotiella spartii 

Ascomycota Dothideomycetes Pleosporales Morosphaeriaceae Acrocalymma Acrocalymma cycadis 

Ascomycota Sordariomycetes Hypocreales Stachybotryaceae Sirastachys Sirastachys cylindrospora 

Ascomycota Dothideomycetes Capnodiales Teratosphaeriaceae Devriesia Devriesia compacta 

Ascomycota Dothideomycetes Pleosporales 
Pleosporales_fam 

_Incertae_sedis 
Monodictys Monodictys sp. 

Basidiomycota Tremellomycetes Holtermanniales 
Holtermanniales_fam 

_Incertae_sedis 
Holtermannia Holtermannia corniformis 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria Alternaria didymospora 
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Ascomycota Dothideomycetes Pleosporales Phaeosphaeriaceae Nodulosphaeria Nodulosphaeria aconiti 

Ascomycota Dothideomycetes Capnodiales 
Capnodiales_fam 

_Incertae_sedis 
Arthrocatena Arthrocatena tenebrio 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium Cladosporium aphidis 

Ascomycota Lecanoromycetes Acarosporales Acarosporaceae Sarcogyne Sarcogyne hypophaeoides 

Ascomycota Eurotiomycetes Chaetothyriales Herpotrichiellaceae Coniosporium Coniosporium apollinis 

Ascomycota Sordariomycetes Xylariales Amphisphaeriaceae Seimatosporium Seimatosporium sp. 

Ascomycota Lecanoromycetes Lecanorales Ramalinaceae Lecania Lecania erysibe 

Basidiomycota Tremellomycetes Cystofilobasidiales Cystofilobasidiaceae Guehomyces Guehomyces pullulans 

Ascomycota Dothideomycetes Pleosporales Lentitheciaceae Keissleriella Keissleriella taminensis 

Basidiomycota Agaricomycetes Agaricales - - - 

Basidiomycota Agaricomycetes Agaricales Strophariaceae Psilocybe Psilocybe inquilina 

Ascomycota Saccharomycetes Saccharomycetales Dipodascaceae Dipodascus Dipodascus australiensis 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Pseudocercospora Pseudocercospora sp. 

Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Aspergillus Aspergillus sp. 

Ascomycota Lecanoromycetes Acarosporales Acarosporaceae Polysporina Polysporina sp. 

Ascomycota Dothideomycetes Pleosporales Didymellaceae Xenodidymella Xenodidymella humicola 

 

 

 

 


