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1. INTRODUCTION 

Fungi represent a diverse group of eucaryotic organisms that were classified as 
a separate kingdom fifty plus years ago (Whittaker 1969). Mycology, initially a 
descriptive subdiscipline of botany, has increasingly been developed in terms of 
experimental and molecular science. Advances in methodology have allowed 
researchers to more precisely characterize and catalogue fungi, which remains 
an essential task of mycologists. The general principle of fungal systematics is 
based on the common origin of taxa, the hypotheses of evolutionary history, 
which are modeled using genetic data. The implementation of DNA-based 
methods of phylogenic classification has been especially important regarding 
ascomycetes (=phylum Ascomycota), the most species rich group of fungi. 

Molecular studies are accumulating new evidence on the phylogenetic 
relationships of previously poorly explored lineages. This development is based 
not only on visible fruitbodies, but on data from analyses of their habitat, such 
as soil, water, and host plants. Although much regarding the life-histories of 
fungi remains unknown, DNA analysis has been confirmed as an important tool 
for providing essential information about the life of fungi, in addition to the 
traditional knowledge based on fruitbodies (Stajich 2015). However, many 
branches are missing or unnamed in the current Fungal Tree of Life (e.g. Fig. 4 
in LoBuglio & Pfister 2010). The aim of this study was to investigate one of the 
“weak branches” of the Fungal Tree of Life, the helotialean fungi, which are 
mostly cupulate ascomycetes, that are as common as mushrooms. However, 
owing to their scattered growth and small size (often less than 2mm in fruitbody 
diameter), recording them in nature is difficult, despite the fact that some are 
brightly coloured. 

The helotialean fungi belong to the class Leotiomycetes, where limitation of 
genera and higher taxa are not well agreed. Owing to the different interpretation 
of characteristics of these fungi, the morphological description of individual 
species often differ drastically, although some standard practise for describing 
species has been suggested (e.g. Huhtinen 1994). The search for information 
about species description often ends up in returning ambiguous information, 
especially where descriptions lack detailed illustrations and one must imagine 
the appearance of the fungus. Due to the scarcity of taxonomic keys, the process 
of species identification is often time-consuming and unproductive.  

The molecular identification of helotialean fungi is critical, because the key 
users of taxonomic information (e.g. ecologists, evolutionary biologists, and 
plant pathologists) need DNA barcode markers for species identification. DNA-
based methods will also help to characterise the biodiversity of helotialean 
fungi, especially their symbiotic relationships with plants. Current state, when 
several morphological criteria that once defined a taxon have been deposed, 
indicates the need for building a new classification based upon phylogenetic 
data. To ascertain new diagnostic characters, a critical revision of morpholo-
gical characters using complemented technical possibilities (e.g. electron 
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micoscopy) is essential. The main research questions concern the delimitation 
of families and genera considering their phylogeny. In the following section, the 
selected groups of helotialean fungi with their main characters, are introduced. 
The original multigene phylogeny and electron microscopy results are then 
presented and discussed.  

The current confusion regarding the order level delimitation of the studied 
fungi, necessitated using the informal name “helotialean fungi”. This indicates 
that at present, Helotiales represents a polyphyletic group, largely circumscribed 
using characters that have evolved as a result of convergent evolution (e.g. 
Wang 2006a). The family names used in the original papers III–VI do not 
correspond to those in this thesis, because the classification of the studied 
genera was changed based upon the subsequently published data of other 
researchers and one’s own results.  
 
 

1.1. Overview of study groups and  
taxonomic problems 

1.1.1. Class Leotiomycetes O.E. Erikss. & Winka 1997 

The class Leotiomycetes includes over 1000 genera of inoperculate asco-
mycetes (Johnston et al. 2015). Their ascus apex lacks a lid or operculum, and 
they ejaculate spores via an alternative mechanism, which is mainly annular in 
structure. The sister class of the Leotiomycetes is the perithecial Sordario-
mycetes (Spatafora et al. 2006, Schoch et al. 2009a). Although these classes 
largely deviate morphologically, it has been presumed that they evolved from a 
common ancestor: a nonlichenized saprotroph with unitunicate inoperculate asci 
(Zhang & Wang 2015). The estimated time of diversification is about 300 
million years ago, during the Permian-Carboniferous geological period, as there 
are no known fossil records of Leotiomycets (Beimforde et al. 2014). 

The class Leotiomycetes was described by Eriksson and Winka (1997), and 
includes the orders Helotiales, Rhytismatales, Erysiphales, Thelebolales, 
Leotiales, Phacidiales, Cyttariales, and Medeolariales. The last two orders are 
monotypic, whereas several others contain numerous members (Kirk et al. 
2008). The current classification of the Leotiomycetes (Lumbsch & Huhndorf 
(2010), public databases Mycobank and Index Fungorum) and its accepted 
orders, are based mainly on the traditional morphological characters of the 
teleomorph. Often these characters have not confirmed phylogenetically 
informative and the present Leotiomycetes classification is not congruent with 
recently presented phylogenies (Wang et al. 2006a, b; Schoch et al. 2009a; 
Hustad & Miller 2011; Lantz et al. 2011; Han et al. 2014; Crous et al. 2014). 
These phylogenies show both polyphyly or paraphyly among many of 
Helotiales taxa, intermixed between other orders, where monophyly is well 
supported for Cyttariales, Erysiphales, Rhytismatales, Phacidiales. 
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The proposed classifications are sometimes controversial and often very 
difficult to interpret when one compares morphology and phylogeny. For 
example, the Erysiphales (powdery mildews), which are chasmothecial epiphytic 
leaf parasites (Webster & Weber 2007), have very different morphology com-
pared to apothecial Helotiales, but phylogenies (Wang et al. 2006a, b) have 
supported its placement among these. In contrast, members of Geoglossaceae, 
morphologically similar to Helotiales, have been excluded from this order, with 
a new class Geoglossomycetes created based on molecular phylogenies (Schoch 
et al. 2009b).  

The biogeography of Leotiomycetes is also important to understand their 
diversity (Zhang & Wang 2015). In the Erysiphales, different lineages are 
geographically isolated, with two basal lineages diverged to South American 
and eastern Asia (Takamatsu 2004). The Cyttariales is restricted to the southern 
hemisphere, where Cyttaria spp. have coevolved with its host Nothofagus 
(Peterson et al. 2010). 

 
 

1.1.2. Order Helotiales Nannf. 1932 

Based on a macroscopial study of fungal fruitbodies, A. J. Retzius (1769) 
introduced the genus Lachnum; subsequently E. Fries (1822) established among 
many others, the genus names Mollisia and Encoelia. Based on micromorpho-
logy, during the second half of the 19th century the Friesian genera were divided 
into numerous smaller ones by Fuckel (1869), Karsten (1871), and Boudier 
(1885). At the beginning of the 20th century, J. A. Nannfeldt (1932) established 
the basis of generic level taxonomy in the order Helotiales. 

Helotiales is an order with worldwide distribution, including approximately 
300 genera and 3000 species (Baral 2016). The order is diverse both ecologi-
cally and regarding the “general habitus” of fruitbodies. The most common 
fruitbodies are non-stromatic sessile or stipitate cupulate-discoid apothecia, but 
other types include semi-immersed, turbinate, funnel-shaped, clavate (Baral 
2016, Spooner 1987), or exceptionally cleistothecial (e.g. Bicornispora, see 
Galán et al. 2015). Stipes, if present, are mostly central and cylindrical. The 
apothecia may be scattered singly or variously aggregated, and be soft or 
leathery tough. Some examples of the different lineages studied for this thesis 
are illustrated in Fig. 1. The asci develop in the hymenium amongst the longi-
tudinal sterile paraphyses, and the receptacle tissues are usually well developed. 

Nannfeldt (1932) distinguished six families in the order Helotiales, of 
which the Geoglossaceae, Orbiliaceae and Phacidiaceae have been updated to a 
higher taxonomical rank today (Eriksson et al. 2003, Schoch et al. 2009b, Crous 
et al. 2014). The other three (Helotiaceae, Hyaloscyphaceae, and Dermateaceae) 
remain families within the Helotiales. However, the original concept of 
classifying these families based on their excipular structure, hairs, and ascus and 
paraphyses features (like introduced in Cannon & Kirk 2007), has been 
discredited by molecular phylogeny (Wang 2006a, Han et al. 2014, Crous et al. 



12 

2014), because members of these families have been divided into many separate 
lineages. Baral (2016) recently differentiated a total of 25 Helotiales families, 
many of which were resurrected from historical families. In the Helotiales, the 
classification of approximately 90 genera are incertae sedis (Lumbsch & 
Huhndorf 2010; Baral 2016).  

 
a) Family Dermateaceae Fr. 1849 
Members of the Dermateaceae (sensu Nannfeldt 1932) were defined by the 
parenchymatous cells of the outer excipulum and the sessile apothecia. Based 
on phylogenies globose excipular cells was considered to be homoplasious 
character. Wang (2006a, b) revealed two distinct lineages which form the 
Dermateaceae s. str and Mollisia complex. The first lineage includes the plant 
endophyte-parasites Dermea Fr., Pezicula Tul. & C. Tul., and Neofabraea H.S. 
Jacks., and the family name Dermateaceae should be restricted to those genera 
according to Verkley (1999) and Abeln (2000). This family is a quite well 
studied monophyletic group (Verkley 1999; Abeln et al. 2000; Jong et al. 2001; 
Chen et al. 2015). 

The second of Wang’s lineages (2006a) contained Mollisia in the larger 
clade Loramyces-Mollisia-Vibrissea. Mollisioids are soft (as indicated by their 
name), with mostly sessile discoid apothecium (Fig. 1e) and rounded or 
rectangular brown-walled excipular cells (Nauta 2010). The mollisioid fungi 
lack any modern revision based on morphology and there is also a shortage of 
molecular studies. Mollisia, with ˃120 species (Kirk et al. 2008), is “notorious” 
in terms of species misidendifications. Morphologically similar genera include 
the Tapesia (Pers.) Fuckel with the subiculum under the apothecia, and the 
septate-spored Niptera Fr. and Belonopsis (Sacc.) Rehm (Nannfeldt 1985; 
Nauta & Spooner 1999). Pyrenopeziza Fuckel is another species-rich genus, but 
with more erumpent apothecia than Mollisia (Greenleaf & Korf 1980, Gremmen 
1958, Hütter 1958, Gminder 1996). Despite Pyrenopeziza and Mollisia being 
extremely similar macromorphologically, they are not genetically closely 
related. Anamorph features correspond to separate clades of the teleomorph of 
these fungi. Cadophora-like producing solitary phialids are related to Mollisia 
dextrinospora Korf (note: the morphology of this species is similar to 
Pyrenopeziza), and Phialocephala-like producing complex heads of multiple 
phialids are related to Mollisia spp. (Day et al. 2012). Baral (2016) resurrected 
the family Ploettnerulaceae Kirschst. which includes Pyrenopeziza and several 
other lineages traditionally connected with the Dermateaceae.  

The Mollisiaceae comprises genera with high ecological plasticity, such as 
the Phialocephala, which includes species that are either frequent root 
endophytes, leaf endophytes, saprobes, or parasites (e.g. on grasses) (Zaffarano 
et al. 2010; Queloz et al. 2011, Wong et al. 2015, Tanney et al. 2016). Often the 
morphology is highly reduced and the lifecycle lacks the sexual state, such with 
in the Phialocephala fortinii complex as characterized by melanized septate 
hyphae (Grünig et al. 2008).  
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Fig. 1 Apothecia of helotialean fungi.  
a Ciboria batschii with sclerotia, TU104222. b Rutstroemia firma, TU104493. c Chlo-
rencoelia versiformis, TU107606. d Encoelia furfuracea, TU104599. e Mollisia lividofusca, 
TU104358. f Calycina citrina, TU109158. g Lachnum brevipilosum, TU109185. h 
Capitotricha bicolor, TU104600. i Trichopeziza mollissima, TU104372. j Hymenoscyphus 
fraxineus, TU104160. k Ionomidotis irregularis, TAAM198450. l Chlorociboria 
aeruginascens. Scale bar: a–d = 5mm, e–j, l = 1mm, k = 1cm. Authors of images V. Liiv: 
a, c, i, j, l; K. Põldmaa: d; H. Tamm: e,f; I. Zettur: k.  
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b) Family Helotiaceae Rehm 1892  
Currently the Helotiaceae is the most heterogeneous family of the Helotiales in 
terms of morphology and ecology, and comprises 117 genera and 826 species 
(Kirk et. al. 2008). Previously, Nannfeldt (1932), Dennis (1978), and Korf (1973) 
distuingished up to 10 intrafamiliar subdivisions, but none have been systemati-
cally evaluated using molecular phylogenetics. Several lineages (Ascocoryne-
Neobulgaria, Calycina, Chlorociboria, Cordierites, Hymenoscyphus-Cudoniella, 
Stamnaria, Strossmayeria, and Mitrula) have been recognized using phylogenies 
(Hustad & Miller 2011, Baral et al. 2013, Crous et al. 2014, Baral et al. 2015b). 
Chlorociboriaceae Baral & P.R. Johnst. has recently been described for the 
Chlorociboria lineage (Baral 2015a) and Pezizellaceae Velen. emended for 
Calycina-Calycellina-Mollisina lineage (Baral 2016). Some species-rich genera 
of the Helotiaceae, such as Crocicreas Fr. (Carpenter 1981) and Hymeno-
scyphus Gray (Lizoñ & Kučera 2014), have yet to be critically revised. 

Morphological features of the family Helotiaceae, according to the original 
description (Rehm 1892) are sessile or stipitate, fleshy or cartilagineus apo-
thecia, with most having ectal excipulum of the textura oblita. Korf (1973) 
emphasized long-celled excipulum, rarely of t. prismatica or angularis, gelati-
nized apothecia, and medullary excipulum of the t. intricata for the Helotiaceae. 
The subfamily Encoelioideae Nannf. was distinguished from the Ciborioideae 
by the former’s longevity and the leathery consistency of their apothecia. The 
outside of the Encoelioideae apothecium seems mealy (Fig. 1d), because the 
outermost cells of the ectal excipulum are loosely aggregated. Several of these 
genera had previously been assigned to the family Cenangiaceae Rehm. 
Encoelioideae (sensu Korf 1973) was distinguished from other members of the 
Helotiaceae mainly by the characters of the excipulum.  

Encoelia (Fr.) P. Karst. is a large heterogeneous genus with members that 
have tough apothecia with a coarse outside, and usually erumpent from bark 
(Korf 1973). Peterson and Pfister (2010) revealed that the genus Encoelia is 
polyphyletic, with three species included in their four gene phylogenetic 
analysis falling into two distinct groups: E. heteromera (Mont.) Nannf. with 
E.helvola (Jungh.) Overeem near the Cordierites Mont. (Helotiaceae); and 
E.fascicularis (Alb. & Schwein.) P. Karst. in the Sclerotiniaceae. However, 
Encoelia furfuracea (Roth) P. Karst., a type species of the genus, has been 
neglected in recent phylogenetic and morphological studies, despite being 
commonly found in Europe and North America. 
 
c) Families Hyaloscyphaceae Nannf. 1932 and Lachnaceae (Nannf.) Raitv. 
2004 
The family Hyaloscyphaceae was established by Nannfeldt (1932) for taxa with 
hairy apothecia and was originally divided into tribes: 1) Arachnopezizeae: 
apothecia arising from the subiculum; 2) Hyaloscypheae: small-sized apothecia, 
mainly cylindrical paraphyses, hairs of various shape; and 3) Lachneae: rela-
tively large apothecia, hairs multiseptate and granulated (Fig. 1g–h), lanceolate 
paraphyses. The first multigene phylogenetical work of hyaloscyphoid fungi–
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based on Asian data–suggested this family is polyphyletic (Han et al. 2014). 
The Hyaloscyphaceae was emended by Raitviir (2004), who excluded genera of 
the Lachneae as a distinct family of its own (Lachnaceae), which was later 
supported by the multigene phylogenetic study of Hosoya et al. (2010). 

Lachnum Retz. is a world-wide genus with approximately 250 species (Kirk 
et al. 2008). These have cupulate +/– stipitate apothecia with hyaline or pig-
mented hairs often bearing crystals in apices, and lanceolate paraphyses. 
Raitviir’s (1970) idea that species with totally or partially smooth-walled hairs 
belonging to separate genera (Albotricha Raitv., Belonidium Mont. & Durieu, 
Dasyscyphella Tranzschel and Trichopezizella Dennis ex Raitv.), was con-
firmed by the exclusion of further taxa from Lachnum, based on morphological 
characters. New genera have been proposed for fungi with thick-walled hairs, 
e.g. Capitotricha, Brunnipila, and Incrucipulum by Baral (1985), and for those 
with thin-walled melanin-containing hairs (Fuscolachnum J.H. Haines, Haines 
1989). Albotricha have hairs that bear amorphous reactive resinous matter that 
does not dissolve in Melzer reactive (MLZ) (Raitviir 1970). Lachnellula 
P.Karst. contains 40 species (Kirk et al. 2008) and is macromorphologically 
very similar to Lachnum segregates, in contrast to latter, Lachnellula asci arise 
from unique open croziers, the stipe is short, and the parahyses cylindrical. 
Baral (2000) emphasized the desiccation-tolerance of the apothecia in 
Lachnellula spp.  

Trichopeziza (Fig. 1i) and Trichopezizella were assigned by Raitviir (1987) 
into a different subfamily (Trichopezizelloideae), which were also recently 
excluded from the emended Lachnaceae (Hosoya et al. 2010). In contrast to the 
Lachnaceae, the Trichopeziza spp. have long, smooth, densely septate, and 
relatively thick (up to 2µm) hairs of a yellow–reddish–brownish pigment. 

 
 

1.2. Characters in systematics of Helotiales 
1.2.1. Characters of apothecium 

Traditional morphological characters used to identify the Helotiales are the 
shape and measurments of the hymenium components of apothecia: asci, 
ascospores, and paraphyses (Nannfeldt 1932, Korf 1973, Spooner 1987, Pfister 
& Kimbrough 2001). The structure that supports hymenial part of the apo-
thecium is called the excipulum with layers of different hyphal types 
distinguished (textura type), and the presence of exudate or/and gel noted. The 
characters of hairs covering the external part of the apothecium of numerous 
helotialean taxa have been of important diagnostic value (hairs’ density, length, 
shape, septation, presence of crystals or other external substances, and 
refractivness). The ornamented hairs, which seem punctate or granulate in LM, 
and the crystals in the central part of the hair apex have been observed under 
scanning electron microscopy (Hein 1980, Horner et al. 1983).  
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Baral (1992) has drawn the attention to the cell components, such as the 
amount of lipid bodies in ascospores, or vacuolar bodies in vegetative cells. The 
special components of vacuoles, the refractive vacuolar bodies, occurring on 
external parts of apothecia, contain a colloidal substance, which reflects the 
light during microscopical observations (Baral 1992). 

Isolation of helotialean fungi into pure culture is not routinely applied and 
many of them do not produce conidiomata or any other asexual structures in 
culture, and/or the ascospores do not germinate on standard culture media. 
 
 

1.2.2. Ascus and its apical apparatus 

The ascus is the largest distinct cell in the fruitbodies of ascomycetes, resembles 
a fluid-filled sac, and its growth is determinate in contrast to unspecialized 
vegetative hyphae (Read & Beckett 1996). Asci develope from ascogenous 
hyphae growing out of an ascogonium (Wilson 1952). The essential biological 
processes karyogamy, meiosis, and mitosis, are conducted in the asci (Belle-
mère 1994). In Helotiales, the result of these processes, the ascospores, are 
forcibly ejected and carried via air to new substrata or habitats. For example, 
Sclerotinia sclerotiorum eject thousands of ascospores synchronistically, when 
a blast of air is created that carries the spores away (Roper et al. 2010). 

At the top of the ascus is a strigger (a ring-shaped structure) and the struc-
ture of the ascus apex has been shown to be quite complex under TEM, and is 
called the ascus apical apparatus (Verkley 1992). This apparatus is responsible 
for the ejaculation of ascospores. This is very fast process, because it is 
important to cross the stagnant layer of air surrounding the fruitbodies, however 
the pressure is controlled to avoid rupture of the ascus (Fritz et al. 2013, Trail & 
Seminara 2014). It is assumed that glycose or glycerole provides the 
osmotically active solute responsible for the increase in turgor pressure just 
before discharge (Read & Beckett 1996). In helotialean fungi, the opening is in 
most cases via eversion of an apical ring (annulus) (Verkley 1995b).  

Ascus characteristics have long been used in ascomycete systematics, first 
the shape and size, then the number of ascospores (mostly 8) per ascus, and the 
arrangement of spores (uniseriate, biseriate, or overlapping) (Bellemère 1994). 
The presence of croziers at the ascus base, next to the ascogeneous hyphae, is 
constant for a taxon (Huhtinen (1990). Boudier (1879) argued for use of iodine 
solution for studying the ascus apex in detail, as he found this method useful in 
classifiying apothecial ascomycetes (Discomycetes). The iodine reaction, 
however, has not become a standard component in all descriptions of taxa in the 
helotialean fungi.  

The helotialean fungi differ in their ascus apices, with an apical ring not 
always present. When a ring is absent, the apical wall may be thickened 
(reviewed in Verkley 1995b). The annulus (the apical ring), usually reacts to 
iodine, and according to Baral (1987a) this species-specific reaction is either : 1) 
negative in iodine reagents = inamyloid, I–; 2) stains blue in Melzer (MLZ) and 



17 

Lugol (LUG) solution = euamyloid, I+ bb; 3) stains reddish in LUG = 
hemiamyloid, I+ rb (red at high, blue at low concentrations) or I+ rr (red); in 
addition, hemiamyloid apex stains blue in MLZ after KOH pretreatment. Ascus 
shapes change before the liberation of spores (Bellemère 1994). Mature asci are 
usually apically blunt, while the lateral wall becomes thinner and apical ring 
height decreases compared to juvenile asci. In some species, e.g. Lachnellula 
occidentalis, inamyloid and amyloid asci are intermixed in the hymenium of 
one apothecium (Baral & Matheis 2000). However, amyloidity type is mostly 
constant in a species, and the annulus shape and (approximate) type can be 
described using LM. Based on observations of different ascal apices, some taxa 
have been critically studied and taxonomic recombinations proposed (Triebel & 
Baral 1996, Johnston et al. 2014, Sandoval-Leiva 2014). 

The pioneer of comparative TEM studies of the ascus appical apparatus in 
helotialean fungi was Bellemère (1977). Before him only single species of 
Sclerotiniaceae (Ciboria acerina by Corlett & Elliott 1974 and Dumontinia 
tuberosa by Schoknecht 1975) and Bulgariaceae (Bellemère 1969) had been 
studied. Later studies by G. J. M. Verkley revealed specific ascus apical 
apparatus in several families of Helotiales (Verkley 1992; 1993a, b; 1994; 
1995a, b; 1996 and 2003). Verkley’s comparative treatment of 26 genera 
(resulting in 14 different ascus types) in his doctoral thesis (1995b) suggested 
that ultrastructural studies offer a promising approach in refining the taxonomy 
of the Helotiaceae, Geoglossaceae and Sclerotiniaceae, via observing 
methodically each devepmental stage (juvenile, immature, and mature) of the 
ascus lateral wall structure and mode of dehiscence.  

 
 

1.3. Ecology of Leotiomycetes 
Leotiomycetes inhabit very different ecological niches, from marine to 
terrestrial, and from soil to the crowns of trees. A reference-based overview of 
substrata/hosts and putative lifestyles of this fungal class is presented in Table 1. 
Ecology has been neglected by most earlier taxonomists, and fruitbody speci-
mens in fungal collections had often been detached from the substrate, and or 
the plant species upon which they were growing, was not identified. Teleo-
morphs and anamorphs of helotialean fungi are most frequently observed on 
different parts of plants, and the formers’ lifestyle is either saprobic, parasitic, 
or symbiotic. In the case of foliicolous fungi, it has been shown with molecular 
and cultivating methods, that still attached senescent living leaves are hosts for 
endophytic Leotiomycetes, and that the same species later act as initial 
decomposers (Koukol & Baldrian 2012, Voříšková & Baldrian 2013) by pro-
ducing extracellular enzymes (Korkama-Rajala et al. 2008, Žifčáková et al. 
2011).  
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Table 1. Distribution of putative lifestyles and substrates among the lineages of the 
Leotiomycetes. Taxa are assigned into families according to the results of the phylo-
genetic analysis (I) and a recent classification by Baral (2016) in which old family names 
have been resurrected. 

Life- 
style 

Substrate/host  Examples References (Putative) lineage 

S
ap

ro
be

s 

dead leaves Heyderia, Rutstroemiaceae, 
Lachnaceae, Pezizellaceae, 
Helotiaceae and many others 

Hansen & 
Knudsen 2000, 
Dennis 1978 

Various, see 
examples 

dead stems of 
herbaceous 
plants 

Crocicreas, Lachnaceae, 
Mollisiaceae, Helotiaceae s.l., 
Hyaloscyphaceae and many 
others 

Hansen & 
Knudsen 2000, 
Dennis 1978 

Various, see 
examples 

decaying wood Most families include 
lignicolous members  

Hansen & 
Knudsen 2000, 
Dennis 1978 

many 

algae, 
Phaeofucaceae 

Calycina maritima Baral & Rämä 
2015 

Pezizellaceae 

Fungi Hyphodiscus spp. Han et al. 2014 Hyphodiscus  

Moserella Pöder & Scheuer 
1994 

unknown 

Ionomidotis pro parte Zhuang 1988 a Cordieritidaceae 

Unguiculariopsis, Skyttea Suija et al. 2015 Cordieritidaceae 

Dung Coprotinia Dumont 1975 Sclerotiniaceae 
Thelebolales Landvik et al. 

1998 
Thelebolales 

Soil Phaeohelotium geogenum, 
Discinella 
Podophacidium xanthomelum

Hansen & 
Knudsen 2000 

Helotiaceae 
 
unknown 

Mosses Bryoscyphus,  
Hymenoscyphus, Mniaecia 

Stenroos et al. 
2010 

Pezizellaceae 
Helotiaceae, 
Mniaecia 

Hyaloscypha hepaticola Baral et al. 2009 Hyaloscyphaceae 
submerged 
wood 

Vibrissea Hustad & Miller 
2011 

Vibrisseaceae  

P
ar

as
it

es
 

leaves  
 
 

Hymenoscyphus fraxineus Baral & 
Bemmann 2014 

Helotiaceae 
 

Kohninia linnaeicola Holst-Jensen et al. 
2004 

Sclerotiniaceae 

Pyrenopeziza brassicae Li et al. 2003 Ploettnerulaceae 

Rhytismatales  Lantz et al. 2011 Rhytismatales 
Erysiphales Braun & Cook 

2012 
Erysiphales 

branches of 
trees  

Neofabraea, Pezicula Abeln et al. 2000 Dermateaceae 
s.str. 

Cyttaria Peterson & Pfister 
2010 

Cyttariales 
 

Gremmeniella Baral 2015a Godroniaceae 

mosses Discinella, Pezoloma Kowal et al. 2015 Pezoloma 
plant roots Roesleria Kirchmair et al. 

2008 
Roesleria 

fruits, Rosaceae 
and others 

Monilinia Holst-Jensen et al. 
1997  

Sclerotiniaceae 
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Life- 
style 

Substrate/host  Examples References (Putative) lineage 

herbs, Liliaceae Medeolaria LoBuglio & 
Pfister 2010 

Medeolariales 

Equisetum  Roseodiscus, Stamnaria Baral & 
Krieglsteiner 
2006 

Roseodiscus, 
Stamnaria 

S
ym

bi
on

ts
, e

nd
op

hy
te

s 

Roots Leptodontidium orhidicola  Walker et. al. 
2011, Rodriques 
et al. 2009 

Leptodontidium  

Oidiodendron, 
Amorphotheca, Myxotrichium

Wang 2006a Myxotrichaceae 
 

Phaeomollisia, 
Phialocephala, Acephala 
Leohumicola 
“Cadophora” finlandica, 
Phialophora 

Grünig et al. 2009
Day et al. 2012 
 

Mollisiaceae 
Hyphodiscus 
Hyaloscyphaceae  

Meloniomyces variablis, 
Pezoloma ericae 

Hambleton & 
Sigler 2005, 
Hambleton et al. 
1999 

 
 
Pezoloma 

Leaves Sarcotrochila, Cenangium, 
Rhabdocline 

Grünig et al. 2009 Cenangiaceae 

Phaeomollisia 
Phialocephala 

Tanney et al. 
2016 

Mollisiaceae 

Rhytismataceae, 
Cryptomycetaceae 

Lantz et al. 2011 Rhytismatales 

S
ym

bi
on

ts
, m

yc
or

rh
iz

al
 

arbutoid ErM 
subtype 

Leotia cf. lubrica  Kühdorf et al. 
2015 

Leotiaceae 

ErM+DSE Acephala applanata 
Pezoloma ericae 

Lukešová et al. 
2015,  
Hambleton & 
Sigler 2005, 
Walker et al. 2011

Mollisiaceae 
Pezoloma 

 
 
 
ECM with trees 

Meliniomyces 
„Cadophora“ finlandica 
Phaeohelotium?  
Acephala macrosclerotiorum 

Reviewed in 
Tedersoo 2010 
Baral et al. 2013 
Münzenberger 
2009 

Hyaloscyphaceae 
Hyaloscyphaceae 
Helotiaceae 
Mollisiaceae 

ae
ro

aq
ua

tic
 

 Exochalara, 
Infundichalara, 
Brachychalara,  
Loramyces 
Hydrocina, Varicosporium 
Helicodendron 
Helicocentralis 

Réblová et al. 
2011 
Wang et al. 2006a
Hustad & Miller 
2011 
Sri-indrasutdhi 
2015 

Hyphodiscus 
 
Loramycetaceae 
Pezoloma 
 
 

aq
ua

ti
c 

 Gyoerffyella, Tricladium, 
Ypsilina, Filosporella, 
Lemonierra 
Rhynchosporium 
Tetracladium 
Flagellospora 

All 
Baschien et al. 
2013 

Pezoloma 
 
ploettneruloid 
Tetracladium 
Phacidiales  

P
ar

as
it

es
 

Table 1. Continuation 
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Based on Tedersoo et al. (2014) the phylogenetic diversity of Leotiomycetes 
in soil is high. According to their analyses of global soil samples, Leotio-
mycetes represent 7.1% of all fungal groups detected in this environment, and 
are relatively more diverse in arctic tundra (approximately 25% from total 
sequences of that biome). In addition, proportions of Leotiomycetes in boreal 
and southern temperate forests, and grassland–shrublands, exceed the global 
average proportion, and are least abundant in tropical savannas (Tedersoo et al. 
2014). Leotiomycetes can survive in extreme habitats, such as the acidotolerant 
anamorphic fungus Soosiella minima Hujslová & M. Kolařík recently dis-
covered in acidic soil with a pH of ˂3 (Hujslová et al. 2014). The ectomycor-
rhizal helotialean fungi often lack latin names and known teleomorphs, and 
most probably have evolved independently in different geographical regions 
(Tedersoo 2010). In mycorrhizal symbiosis members of Leotiomycetes do not 
form the typical Hartig net, with the one exeption being Leotia lubrica that 
forms arbutoid mycorrhiza (Kühdorf et al. 2015).  

Globally distributed root endophytes associated with ectomycorrhizae 
dominate among the soil-inhabiting Leotiomycetes. These are referred to as root 
associated fungi or dark septate endophytes (Queloz et al. 2011). Quite common 
among these are the Phialocephala-Acephala and Rhizoscyphus-Meliniomyces 
complexes, which are host generalists (Vrålstad et al. 2002, Tedersoo et al. 
2009). Their effects upon the plant partner range from neutral to negative, and 
are strain-dependent (Tellenbach et al. 2011, Reininger et al. 2012). It has been 
shown that the fungi forming ericoid or orchidoid mycorrhiza largely overlap 
(Bergero 2000, Chambers et al. 2008, Kohout et al. 2012).  

One important role of Leotiomycetes in plant communities is the decom-
position of plant matter. This process involves many fungi, with early decom-
posers (in woody substrates often opportunistic basidiomycetes) are gradually 
replaced by ascomycetes. For instance, Chlorociboria aeruginascens causes 
soft rot while colonizing fallen trunks that have previously been degraded by 
white rot fungi (Richter & Glaeser 2015). The enzymatic activities of Leotio-
mycetes as wood-decomposers are not well known. Calycina citrina (Hedw.) 
Gray (Fig. 1f) and Bulgaria inquinans, have been associated with low levels of 
soft rot decay (Worrall et al. 1997), as has Phialocephala dimorphospora (Held 
2013).  

More than 100 Leotiomycetes species live in aquatic habitats. Many of 
these that live in freshwater also inhabit terrestrial habitats, such as waterlogged 

Nowadays, fungal ecology is usually based on genetic data. Mycorrhizal or 
endophytic lifestyle, existence in soil or in aquatic environments, and either as 
mycelium or single conidia, are easily detected using modern DNA sequencing 
techniques, and such kinds of studies are increasing in number. DNA from the 
fruitbodies of numerous taxa are sequenced, though a large part of described 
taxa still lack molecular data. Therefore, it is difficult to refresh taxonomical 
information regarding the source organism of unidentified strains, resulting in 
them being named as “Leotiomycetes/Helotiales sp.” or “uncultured asco-
mycetes” in international nucleotide sequence databases (INSD).  
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wood (Dennis 1978, Pfister & Kimbrough 2001). Many species in the Lora-
mycetaceae-Vibrisseaceae-Mollisiaceae clade, especially in an asexual state, are 
found on submerged wood or other substrate in aquatic environments (Baschien 
et al. 2013, Sandoval-Leiva et al. 2014).  

Apothecia of encoelioid species mostly form on the bark or wood of various 
tree species (I Table S3) and saprotrophic or sometimes parasitic lifestyles have 
been suggested for these fungi (Torkelsen & Eckblad 1977). Encoelia fur-
furacea grows on recently died standing branches of Corylus.  
 
 

1.4. Aims 
The general aim of the present thesis was to contribute to establishing a 
phylogeny-based classification of the Leotiomycetes, especially of helotialean 
fungi.  

In particular, the aims were following: 
1) to evaluate the applicability of morphological and ultrastructural characters 

in the systematics of helotialean fungi (species, genus, family level) focusing 
on genera of the family Lachnaceae, as well as of mollisioid and encoelioid 
fungi; 

2) to reveal the phylogenetic affinities of species included in the subfamily 
Encoelioideae, and particularly in the genus Encoelia, with a special focus 
on its type species, E. furfuracea;  

3) to establish a phylogeny-based classification of the taxa previously in-
corporated to Encoelioideae; 

4) to synthesize the information on the ecology of members of different 
helotialean lineages by analyzing together ITS rDNA sequences originating 
from fruitbodies, culture isolates and complex biological samples using 
sequences obtained in this study as well as those available in INSD. 
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2. MATERIALS AND METHODS 

2.1. Materials 
The studied fungal specimens for encoelioid phylogeny (I) were obtained from 
the fungaria (acronyms according to Thiers, 2015): BPI, C, CUP, DAOM, FH, 
K, LD, M, NY, O, OULU, QCNE, S, TAAM, TNS, and TU, and from the private 
collections of H.-O. Baral, G. Marson, J. H. Petersen, I. Wagner, and E. Rubio 
Domínguez. For the TEM research (II–VI), living apothecia were collected 
from nature and kept alive in plastic boxes until fixation. During winter, 
prefrozen substrates, such as dead Rubus idaeus canes and stems of Filipendula 
ulmaria, were incubated in vegetation chambers under artificial light and humid 
conditions (on wetted filter paper) at 20 °C, in order to obtain living apothecia 
for fixation. For original voucher specimens preserved in TAAM and TU 
collections, the exhaustive data were entered into the PlutoF platform 
(https://plutof.ut.ee/ Abarenkov et al. 2010) and data are partly accessable via 
the public website (https://natarc.ut.ee/en/seenekogud.php). 
 
 

2.2. Methods 
For identification purposes morphological characters were recorded in all 
studied specimens using LM. After the reconstruction of the multigene 
phylogeny (I), the features distinguishing monophyletic clades, were outlined 
for each taxon. The ascus apical apparatus and apothecial hair wall ultra-
structure were selected for TEM observations because the resolution of LM was 
insufficient for characterising these and additional details were expected to be 
found in their ultrastructure.  
 
 

2.2.1. Light microscopy 

The morphology of the living apothecia and anamorphs was mostly studied with 
the specimens mounted in tap water. Dry specimens were rehydrated and 
mounted in a 3% aqueous potassium hydroxide solution (KOH). For staining 
specific structures, cotton blue (CB, in lactic acid), cresyl blue (CRB, in water), 
Melzer’s regent (MLZ) and Lugol’s solution (IKI) were used. Ionomidotic 
reaction (IR) was tested in encoelioid specimens (I) by applying a 3–10% 
aqueous KOH solution to a water mount of apothecial fragments. Micro-
photographs and measurements of structural elements were taken from freehand 
sections or squash mounts using a Nikon 80i microscope.  
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2.2.2. Transmission electron microscopy  

For TEM analysis (II–VI), taxa were sampled from the Lachnaceae and 
Mollisiaceae, and Encoelia furfuracea, whose ultrastructure had not previously 
been included in comparative studies. The preparations followed Samuelson 
and Kimbrough’s (1978), and Curry and Kimbrough’s (1983).  
• Fixation of apothecia: 2 hours using a 2% paraformaldehyde, 2.5% 

glutaraldehyde, and 2mM calcium chloride in a 0.1M sodium cacodylate 
buffer solution; post-fixation for 45 minutes in a 1% osmium tetroxide 
solution in the same buffer.  

• Dehydration: through a graded ethanol series from 10–90 % and 3×100% 
solution of EtOH, followed by treatment with acetone.  

• Embedding into Spurr’s resin using an infiltration resin series and acetone 
in 1:3, 1:1 and 3:1 proportions for ≥4 hours each. 

• Polymerization for 10–16 hours at 70°C.  
• Ultramicrotomy: sections were made mostly using glass knives, except for 

some specimens when diamond knives were available.  
• Staining of the sections: 2% uranyl acetate in 50% EtOH and 0.2% lead 

citrate solution.  
• Examination: an electron microscope was used with magnifications from 

5,000 × to 25,000×. 
For more details, see the TEM methodologies in II–VI.  
 

 
2.2.3. Molecular analysis 

The methodological details of DNA extraction from fruitbodies of helotialean 
fungi, DNA amplification, and analysis of molecular data are given in I. Taxon 
sampling for multigene analysis was designed to cover the main Leotiomyces 
lineages, with an emphasis on the three lineages that were previously members 
of the Helotiaceae (the Encoelia furfuracea, Cordierites, and Chlorociboria 
lineages), and the families Hemiphacidiaceae, Rutstroemiaceae, and Sclerotini-
aceae. For multigene phylogeny, genomic DNA was extracted from dried or 
fresh apothecia. In 70 specimens, selected regions of the nuclear 18S and 28S 
ribosomal subunits and three protein-coding genes (tef1, rpb1 and rpb2) were 
amplified. The primers used in multigene (combined 18S and 28S rDNA) and 
ITS analysis are listed in I Table 1. For improving 18S rDNA and rpb1 
amplification, new primers were designed. DNA sequences obtained in I were 
submitted to the INSD (I Table S1). 

Taxon sampling for ribosomal DNA (18S + 28 rDNA) focused on groups of 
helotialean fungi, members of which were used in the TEM analysis of this 
study. ITS rDNA taxon sampling included available public sequences with a 
certain percentage of similarity to the target species. This treshold value 
differed among studied families, the ITS sequences of which were analysed 
separately. DNA sequences used in Bayesian phylogeny of ITS rDNA 
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(Lachnaceae) and 18S+28S rDNA were submitted to UNITE via the PlutoF 
platform (https://plutof.ut.ee).  

For constructing the Bayesian phylogeny of Leotiomycetes, a GTR+I+G 
evolutionary model was selected and constructed using MrModeltest (Nylander 
2004) for most of the partitions. MrBayes v. 3.2.6 (Ronquist et al. 2012) was 
used to analyse the partitioned five-gene dataset for multigene analysis (I). The 
analyses were run for 50,000,000 generations using the CIPRES Science 
Gateway v. 3.3 (http://www.phylo.org), sampling each 1000th generation. By 
the end of the run, the average standard deviation of the split frequencies had 
reached 0.01. The first 25% of the trees were discarded as a burn-in, and the 
posterior probabilities (PP) calculated from the remaining trees.  

ITS rDNA was used to test phylogenetic relationships among the members 
of Lachnaceae and encoelioid taxa. Due to the high variability in the ITS 
regions, the encoelioid sequences were aligned in separate matrices, conforming 
to the families studied (I). In addition to the original sequences, the most similar 
sequences were obtained from the INSD by applying a BLAST search for the 
target species, which were then added to the respective matrices. These 
resulting datasets were analysed using MrBayes v. 3.2.6 (Ronquist et al. 2012) 
in CIPRES. From 10,000,000 generations, 75% of trees were retained and used 
to calculate the PP. Species Hypothesis (SH) codes in the UNITE database 
(Kõljalg et al. 2013) were assigned to all ITS sequences generated in this study 
via the PlutoF platform.  
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3. RESULTS 
3.1. Phylogenetic analyses 

3.1.1. Multigene dataset 

In the Bayesian phylogeny (I) based upon the analysis of five genes (Fig. 2), 
most of the terminal clades and many deeper branches, received strong posterior 
probability support (PP≥0.95). The results revealed the Helotiales to be 
paraphyletic. While Cyttariales, Thelebolales, Rhytismatales, Phacidiales, and 
Erysiphales were monophyletic, their relationships with various lineages of 
helotialean fungi remained unresolved. Encoelia (9 species) and Encoelioideae 
(28 species) appeared to be highly polyphyletic in all analyses. Members of 
Encoelioideae were dispersed among six families and three clades of unclear 
affiliation.  

Encoelia fascicularis and E. pruinosa belonged to the Sclerotiniaceae, and 
these species were transferred to a new genus (Sclerencoelia), together with a 
new species, S. fraxinicola. The sister group of Sclerotiniaceae was Rutstroemi-
aceae, which included Encoelia tiliacea and Dencoeliopsis johnstonii. Due to 
their close relationship to the type species of Rutstroemia (R. firma) both 
species were accepted in Rutstroemia. Piceomphale bulgarioides and Cenangium 
acuum, whose taxonomy remained unsettled, formed the sister group of the 
Sclerotiniaceae and Rutstroemiaceae.  

The type species of Encoelia, E. furfuracea, formed a strongly supported 
group with species of Velutarina and Cenangiopsis (Encoelioideae s. str.), as 
well as Trochila spp. and an undescribed taxon. The sister group of this clade 
comprised species of Chlorencoelia and Heyderia, Sarcotrochila longispora (a 
Hemiphacidium clade in Wang et al. 2006a), as well as Crumenulopsis sororia, 
and Cenangium ferruginosum. Altogether the E. furfuracea clade, the extended 
Hemiphacidium clade, and Rhabdocline laricis, were considered to represent 
Cenangiaceae, which thus includes the Hemiphacidiaceae. 

Eleven encoelioids (“Encoelia” fimbriata and “E.” heteromera, and species 
of Ameghiniella, Cordierites, Diplocarpa, Ionomidotis, Llimoniella, and 
Unguiculariopsis) formed a strongly supported clade with four non-encoelioid 
lichenicolous species. Altogether, the members of this clade were considered to 
constitute the family Cordieritidaceae Sacc. “Encoelia” fimbriata and “E.” 
heteromera were not congeneric and Ionomidotis appeared to be polyphyletic.  

The Chlorociboriaceae comprised Chlorociboria spp. and Encoelia glauca, 
witch was transferred to the former genus. Species of Chaetomella, Pilidium, 
and Xeropilidium dennisii (=Encoelia fuckelii), formed a strongly supported 
group representing the Chaetomellaceae. However, phylogenetic relationships 
of this family remained unresolved.  
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Fig. 2 Bayesian phylogeny of Leotiomycetes inferred from 5 genes (18S, 28S rDNA; 
tef1, rpb1, rpb2). Species traditionally recognised in Encoelioideae are presented in 
bold, with those of Encoelia in capital letters. Species studied with TEM (in II, III,VI) 
are underlined. Taxa marked with „KL“ are sequenced for this study. Sordariomycetes 
strains represent the outgroup. Branches with posterior probability scores ≥0.95 are 
presented in bold. Scale bar indicates substitutions per site. 
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KL290 Rutstroemia firma
Rutstroemia firma

KL291 Rutstroemia firma
KL292 Rutstroemia firma
KL222 Rutstroemia bolaris
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KL304 “ENCOELIA” HETEROMERA

KL231 Ionomidotis fulvotingens
KL239 Ionomidotis fulvotingens

SK91 Skyttea radiatilis
Cordierites guianensis
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For rDNA (18S + 28S) dataset of Leotiomycetes, sequences of 90 genera, 
including newly sequenced Encoelia furfuracea, Podophacidium xanthomelum, 
the selected members of the Lachnaceae and the Mollisia-Pyrenopeziza complex, 
were merged into the matrix. Four species of Sordariomycetes were chosen to 
constitute an outgroup. Mollisia revincta and Podophacidium xanthomelum 
were represented with only 28S, and Mollisia dilutella with only 18S. The 18S 
+ 28S rDNA dataset included 6797 characters; after removing ambiguously 
aligned nucleotids and long insertions, the matrix comprised 1480 bp from 18S 
and 1332 bp from 28S, of which 275 and 381 positions were, respectively, 
parsimony-informative. The Bayesian analysis was run using a partitioned gene 
dataset.  

In the rDNA phylogeny the lineages of Helotiales were intermixed with those 
of Erysiphales, Rhytismatales, Phacidiales, and Cyttariales (Fig. 3), as in the 
multigene analysis (Fig. 2). Most of the Leotiomycetes lineages received low 
support. Encoelia furfuracea formed a clade with Velutarina spp., Cenangiopsis 
quercicola, Trochila laurocerasi and Cenangium ferruginosum. This clade 
formed together with the Chlorencoelia-Sarcotrochila clade, Piceomphale clade, 
Rutstroemiaceae and Sclerotoniaceae clades a well-supported large clade. Its 
sister group was formed of strongly supported Cordieritidaceae.  

Lachnaceae was found to be monophyletic with Phaeohelotium geogenum 
as a poorly supported sister group. Within Lachnaceae, the close relationship of 
Perrotia populina to Lachnellula willkommii and L. subtilissima was strongly 
supported. Incrucipulum ciliare represented a sister group to these three species 
whereas Lachnellula abietis was not closely related to this group, but 
constituted a sister taxon of Erioscyphella curvispora and Belonidium aeru-
ginosum. Capitotricha bicolor, Dasyscyphella nivea and D. cassandrae formed 
a sister clade to Lachnum virgineum and L. arcticum.  

The Mollisiaceae- Loramycetaceae-Vibrisseaceae clade included Belonopsis 
spp., Loramyces macrosporus, Mollisia cinerea, M. clavata, M. melaleuca, 
Tapesia fusca, Vibrissea truncorum, and Phialocephala fortinii. Two analyzed 
strains of Mollisia cinerea most likely represent different species. The 
relationships of Mollisia species with other members of Mollisiaceae remained 
unresolved.  

A clade corresponding to the family Ploettnerulaceae Kirschst. (fide Baral 
2016) included three species of Mollisia, two Pyrenopeziza and Peltigeromyces 
sp. Pyrenopeziza gentiana, Mitrula paludosa, and Encoeliopsis rhododendri 
formed a separate clade. Thus, Pyrenopeziza was found to be not monophyletic 
and further studies are needed to ascertain the phylogenetic relationships of 
Pyrenopeziza species, including its type species, P. chailletii (Pers.) Fuckel.  

The analysis confirmed the inclusion of Pezicula carpinea, Dermea acerina 
and Neofabreae malicorticis in Dermateaceae. The affinities of Trichopezizella 
nidulus and Podophacidium xanthomelum in the Leotimycetes remained 
unresolved.  

3.1.2. 18S and 28S rDNA dataset 
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Fig. 3. Bayesian phylogeny inferred from rDNA 18S and 28S sequences of Leotio-
mycetes. Species studied with TEM (in II–VI) are presented in bold, in capital letters. 
Sordariomycetes strains represent the outgroup. Taxa marked with „KL“ or „AR“ are 
sequenced for this study. Generic types are marked with . Scale bar indicates 
substitutions per site. 
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3.1.3. ITS rDNA dataset  

The high interspecific variation hampered unambiguous alignment of ITS 
sequences from different genera and higher level taxa. ITS phylograms, as 
examplified in Fig. 4 and in I, resulted in partly/largely unresolved phylogenies 
with limited support to deeper nodes. In particular, Bayesian analyses of 
original ITS sequences of nine species of Cenangiaceae from different genera 
along with ≥90% similar INSD sequences for each of these, resulted in a largely 
unresolved tree (I Fig. S1). However, the monophyly of genera and species was 
strongly supported in case of Heyderia, Rhabdocline, Sarcotrochila and 
Trochila. Also in Sclerotiniaceae, a clade comprising three encoelioid species of 
newly described genus, Sclerencoelia was well supported, but the relationships 
among many sclerotiniaceous genera remained unsettled. The same analysis 
also supported the idea about the lack of extant close relatives of E. furfuracea 
(note: the sequence of Velutarina rufoolivacea, the most similar taxon based on 
morphology, was unavailable). While the sequences of E. furfuracea from 
Europe and North America were almost identical, these showed only 87% 
overlap with the most similar INSD sequence, and 88.3 % and to 88 % with 
Cenangiopsis quercicola and Cenangium ferruginosum, respectively.  

The ITS phylogenetic tree of Lachnaceae was poorly resolved, too. INSD 
BLAST searches were conducted using nine sequences of putatively distinct 
genera of Lachnaceae. ITS sequences of ≥95% similarity to the queries were 
added to the matrix including sequences obtained from apothecia. The dataset 
contained 65 sequences and the Lachnaceae were represented by 46 species and 
13 genera. In the phylogenetic tree (Fig. 4) Brunnipila and Lachnellula 
appeared monophyletic. Most species of Lachnum formed a strongly supported 
clade, including the type species, L. virgineum. Relationship of Albotricha spp. 
and Perrotia flammea, type species of Perrotia, remained unresolved. 
Belonidium aeruginosum formed a clade with “Lachnum” euterpes which was a 
lineage in a clade including septate-spored seggregates of previous Lachnum 
with 4 species of Erioscyphella (as resurrected by Perić & Baral 2014) and 
“Lachnum” pteridophyllum. Lasiobelonium spp., Trichopezizella nidulus, and 
Trichopeziza spp. formed a well-supported clade. 

Differences in ITS rDNA sequences among members of one genus and 
family varied considerably. At family level, widest range of sequence variation 
(15–16%) was observed among Cenangiaceae as delimited in I, Chlorocibo-
riaceae and Chaetomellaceae. ITS analyses revealed several genera not to be 
monophyletic, these including Ciboria, Chlorencoelia, Chlorociboria, 
Rutstroemia, Lanzia, Dasyscyphella, Incrucipulum, Perrotia and others. In 
contrast, ITS data supported the distinction of a newly described species, 
Sclerencoelia fraxinicola, the ITS sequence of which differed from that of its 
closest relative, S. fascicularis, at 15 positions. 
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Fig. 4. Bayesian phylogeny based on rDNA ITS sequences of Lachnaceae with 
Hymenoscyphus spp. as the outgroup. The datamatrix included sequences obtained from 
fruitbodies in this study (marked with „KL“ or „AR“), with those studied with TEM (in 
capital letters) and available sequences originating from fruitbody or culture of INSD 
(all in italics). INSD environmental sequences with ≥95% similarity to one of the 12 
reference sequences (underlined, in bold) were added to the analysis. Taxa marked with 

 are generic types. Scale bar indicates substitutions per site. 
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Incorporation of public sequences from various biological samples (labelled 
as ‘uncultured Helotiales/Leotiomycetes/Ascomycota/fungus’ in the INSD) in 
ITS rDNA analyses allowed to identify sequenced organisms at species, genus, 
or family level and added information on the ecology of several taxa. For 
example, INSD sequences originating from needles or twigs of Pinus spp. and 
Viscum album parasitizing these, could be identified as belonging to Cenangium 
ferruginosum. Endophytic isolates were also included in Sclerencoelia 
fascicularis, S. fraxinicola, Xeropilidium dennisii, Heyderia abietis, Rhab-
docline laricis, R. parkeri. An INSD sequence obtained from the European elm 
bark beetle (Scolytus multistriatus), the vector of Dutch elm disease, was shown 
to belong to Xeropilidium dennisii. An isolate from Quercus leaf-litter was 
congeneric with Belonidium. The genus Lachnum comprised unnamed members 
sampled from soil, from roots of Pyrola, Rhododendron and Ledum, and from 
ectomycorrhizae.  

The ITS sequences of helotialean fungi generated in this study were 
assigned to 41 Species Hypotheses (SH, Kõljalg et al. 2013) according to the 
1.5% distance treshold. More than half of the ITS sequences generated in I (40 
out of unique 73 sequences) had also no >97% similar sequences available. 
New SHs were generated for these sequences in the 7.1 version of UNITE SHs 
(https://unite.ut.ee). 

In several cases ITS sequences from biological samples formed lineages 
devoid from, but closely related to groups including apothecia-derived 
sequences. For example, sequences from EcM root tips or litter of conifers were 
closely related to C. versiformis and C. torta. Cenangium ferruginosum clade 
comprised sequences from surface sterilised tissues of conifers, a forest grass, a 
liverwort and a lichen. Sclerotiniaceae and “Rutstroemia” calopus clade in-
cluded lineages of INSD sequences originating mostly from soil samples. In 
addition, three strongly supported groups with unresolved relationships in 
Cenangiaceae comprised sequences only from endophytes, mostly originating 
from roots or soil. 
 
 

3.2. Evaluation of characters 
Delimitation of monophyletic lineages comprising encoelioid fungi revealed the 
importance of observing the complex of morphological characters of apothecia, 
and of avoiding the overestimation of the importance of one or a few characters 
when aiming at a natural classification. The members of each studied lineage 
could be delimited according to a typical combination of characters (I Table 
S3). Namely, most of the monophyletic groups observed in the multigene 
analysis (Fig. 2) differ with respect of the type of the ascus apical structure, the 
presence/absence of an ionomidotic reaction, the characteristics of the asexual 
state (if the anamorph was studied), and vacuolar bodies (VB) in living 
vegetative cells. However, in some lineages one or a few characteristics varied 
among closely related species/genera. 
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Table 2. The ascus apical apparatus characteristics of the studied fungal species in 
comparision with Baral’s (1987b, LM) and Verkley’s (1995b, TEM) typifications. 
Lineages of taxa are presented according to rDNA phylogenetic analysis (Figs. 3–4). 

Species; lineage  Ascus shape/ 
apex shape 
(LM) 

Annulus 
type/ 
amyloidity 
in LUG 
(LM) 

Ascus apical apparatus (TEM) 
Comparative type according to 
Verkley in Roman numerals  

paper 

Encoelia furfuracea; 
Cenangiaceae/ Encoelia  

cyl cl with 
long narrow 
stipe/ ro–tr  

Calycina-
like/ I+, bb 

Encoelia type. Apical 
thickening increases gradually, 
annular protrusion absent, 
annulus is homogenous, 
relatively broad, narrowing 
downwards.  

II 

Lachnum brevipilosum; 
Lachnaceae/ Lachnum 

cyl cl/ co–
subpapillate 

 Calycina-
like/ I+, bb 

t VIII, Lachnum st. 
Apical thickening moderal, 
disctinct annular protrusions, 
tapering and becoming more 
electron-dense toward lower 
end. Apical chamber quite high. 

III 

Dasyscyphella 
cassandrae; Lachnaceae 

cyl cl/ co–ro  Calycina-
like/ I+, bb 

Brunnipila clandestinum; 
Lachnaceae/ Brunnipila  

cyl cl/ co–tr 
to 
subpapillate 

 Calycina-
like/ I+, bb 

As in the t VIII, Lachnum st, 
but annular protrusion more 
blunt 

Albotricha acutipila; 
Lachnaceae 

cyl cl/ 
subpapillate 

 Calycina-
like/ I+, bb 

Capitotricha bicolor; 
Lachnaceae 

cyl cl/ co–tr  Calycina-
like/ I+, bb 

Incrucipulum ciliare; 
Lachnaceae/ Incrucipulum 

cyl cl/ ro  Calycina-
like/ I+, rb 

t VIII, similar to Lachnum, but 
annulus broadening upwards 
and electron-dense apical cap 
(nasse apicale). Apical chamber 
more rounded than those of 
Lachnum 

Belonidium aeruginosum; 
Lachnaceae/ Belonidium 

cyl cl / co–tr  Calycina-
like/ I+, bb 

IV 

 

 3.2.1. The ascus apical apparatus 

The ascus apical apparatus was studied in 21 species of Lachnaceae, 
mollisioids, and Encoelia. As a result, five main types of ascus ultrastructure 
were distinguished (Table 2). In general, taxa that were closely related in the 
18S and 28S rDNA phylogeny (Fig. 3) and available for TEM studies, shared 
the general structure of ascus apex. These could be assigned to the types 
distinguished by Verkley (1995b). Type VIII, (Chlorociboria-Pezizella-
Calycina ascus type) included members of the Lachnaceae except for 
Lachnellula (III–IV and Fig. 5b, c), and Mollisia spp., Pyrenopeziza spp., 
Belonopsis hydrophila (Fig. 5e and VI). However, the latter three genera 
sharing a morphologically similar mollisioid subtype of ascal apex, were 
distributed among three lineages (Fig. 3). Encoelia (Fig. 5a), Lachnellula (Fig. 
5d), and Podophacidium (Fig. 5g), belonging to three lineages (Fig. 3), each 
represented an unique type of ascus apex ultrastructure (II, V, VI), not described 
in previous literature. The Pezicula type was published by Bellemère (1977), and 
specific ontogenesis and annulus (Fig. 5f) were described in VI. Pezicula is 
placed in Dermateaceae clade (Fig. 3).  
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Species; lineage  Ascus shape/ 
apex shape 
(LM) 

Annulus 
type/ 
amyloidity 
in LUG 
(LM) 

Ascus apical apparatus (TEM) 
Comparative type according to 
Verkley in Roman numerals  

paper 

Lachnellula willkommii; 
Lachnaceae/ Lachnellula 

cyl cl/ blunt, 
tr–ro 

NA/ I– Lachnellula t. Apical thickening 
abruplty becomes to annulus. 
Annular protrusion incurved, 
apical camber and central 
cylinder wide. 

V 

Belonopsis hydrophila; 
Mollisiaceae/ Belonopsis 

cyl cl/ co–tr  Calycina-
like/ I+, bb 
 

t VIII, mollisioid st. Moderal, at 
first gradual beside the annulus 
abrupt apical thickening. 
Annulus a bit narrowing on 
lower part. The annular 
protrusions points straight 
downwards and apical chamber 
present.  
 

VI 

Mollisia clavata; 
Mollisiaceae 
Mollisia stromaticola; NA 

Mollisia revincta; 
Ploettnerulaceae?1 
Mollisia dilutella; 
Ploettnerulaceae 
Pyrenopeziza millegrana; 
NA 
Pyrenopeziza pulveracea; 
Ploettnerulaceae 
Pyrenopeziza rubi; 
Ploettnerulaceae 
Mollisia melaleuca; 
Mollisiaceae  

cyl cl/ co–tr,  Calycina-
like/ I+, bb 

t VIII, mollisioid st: annulus 
broader, electron-density lower 

Mollisia ramealis; 
Cenangiaceae? 2 

cyl cl/ co–tr  Calycina-
like/ I+, rb 

t VIII, mollisioid st: more 
abrupt apical thickening, 
annulus broader. Apical 
chamber more prominent. 

Pezicula cinnamomea; 
Dermateaceae/Pezicula 
(Verkley 1999) 

cyl cl/ ro   Pezicula-
like/ I+, rr 

Pezicula t, wide central 
cylinder, broad annular 
protrusions points strongly 
inwards. Apical chamber 
flattened. 

Podophacidium 
xanthomelum; Helotiales 
inc. sedis 

cyl cl/ tr–ro NA/ 
strongly I+; 
bb 

Podophacidium t, aff. Verkley t 
XIII, Phaeohelotium sub-
carneum. Apical thickening 
gradual. Very narrow highly 
electron-dense annulus. Apical 
chamber absent. 

Abbreviations: cylindrical = cyl; clavate = cl; conical = co; I+, bb = euamyloid; I+, rb/rr = 
hemiamyloid; I– inamyloid; NA = data not available; st = subtype; rounded = ro; truncate = tr; 
type of ascus = t  
1 Based on the phylogeny in Crous & Groenewald (2003), M. revincta is a member of the 
Mollisiaceae.   
2 Based on BLAST search of ITS rDNA, this species is likely a member of Cenangiaceae. 

Table 2. Continuation 
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Fig. 5. Studied types of ascus apical apparatus, the schematic representation  
a Encoelia furfuracea. b Lachnum virgineum. c Belonidium aeruginosum. d Lachnellula 
willkommii. e Belonopsis hydrophila. f Pezicula cinnamomea. g Podophacium xantho-
melum. 
 

3.2.2. Apothecial hair ultrastructure  

Owing to the increased magnification, the micrographs of the hairs obtained 
using TEM, in particular complemented the characteristics of the ornamentation 
of walls. This allowed for better comparison with related taxa than is possible 
using LM. The hair ultrastructure in each lineage was characterized by a similar 
thickness, stratification, and ornamentation of the wall. The refracted or 
pigmented areas seen in LM, differed in electron density under TEM. This 
allowed to refine the description of hair ultrastructure in the following lineages 
of Leotiomycetes: 

 
Hyaloscyphaceae, sensu Han et al. (2014) 
The hair walls of Hyaloscypha aureliella (Nyl.) Huhtinen, Olla millepunctata 
(Lib.) Svrček and Unguiculella hamulata (Feltgen) Höhn. (Fig. 6 a–c), were 
thin and unclearly stratified, and the refractive parts of the hairs (under LM, 
Olla and Unguiculella) were electron-transparent under TEM.  
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Fig. 6. Hairs of helotialean species, as observed under TEM 
a–c Hyaloscyphaceae s.str.: a Hyaloscypha aureliella TAAM165603. b Unguiculella 
hamulata TAAM165350. c Glassy apex of hair. Olla millepunctata TAAM164053. d 
Pezizellaceae: Phialina ulmariae TAAM165353. e Lachnaceae: Lachnellula calyciformis 
TAAM165524, f–g Trichopeziza lineage: f Lasiobelonium variegatum TAAM165343. g 
Trichopezizella nidulus TAAM165352. b, e, f–cross-sections, a, c, d, g–longitudinal 
sections. Bar = 1µm, except for a 5µm.  
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The Pezizellaceae lineage (according to Baral & Rämä 2015) 
Phialina ulmariae (Lasch) Dennis, which based on morphology belongs (the 
DNA barcode was unavailable) to the recently resurrected Pezizellaceae Velen., 
showed under TEM very homogeneous electron dense regions (Fig. 6d) in the 
apical part of hairs, where yellow vacuolar bodies were observed under LM.  
 
The Lasiobelonium-Trichopeziza-Trichopezizella lineage (Fig. 3) 
In contrast to the Lachnaceae, in the Trichopeziza lineage the outer layer of the 
hair wall was very electron dense, as examplified by Lasiobelonium variegatum 
(Fuckel) Raitv. and Trichopezizella nidulus (J.C. Schmidt & Kunze) Raitv. (Fig. 
6 f–g).  
 
Lachnaceae (III–V) 
Seven genera and nine species of warty members of the monophyletic 
Lachnaceae clade (Fig. 3), had more complex hair walls than members of the 
Hyaloscyphaceae that were available for comparision. The studied Lachnaceae 
members also differed in hair wall thickness, stratification, warts’ shape, 
electron-density, and erodibilty. The hair ultrastructure of Lachnum bre-
vipilosum and L. virgineum, as well Brunnipila clandestinum and B. calyculi-
formis were highly similar in respective genera. Although sampling was 
restricted, a genus-specific pattern can be suggested, because the genera 
Albotricha, Belonidium, Brunnipila, Capitotricha, Dasyscyphella, and Incruci-
pulum were all represented by their type species (Fig. 6e and Figs. in III–V).  
 
 

3.2.3. Vacuolar bodies  

Vacuolar bodies (VB, as introduced by Baral 1992) in the apical part of the 
paraphyses or outer excipulum cells occured in some helotialean groups. VBs of 
studied taxa were either hyaline, bright yellow or greenish, globose or 
elongated. These were affirmed as taxonomically informative and represented 
the main synapomorph in the resurrected family Cenangiaceae (I). The 
morphology of the mostly elongated VBs were lineage-specific, e.g. pigmented 
in Cenangiaceae and hyaline in Mollisia spp., but in the latter group vacuolar 
bodies turned yellow in KOH. According to Baral (2016), cylindrical refractive 
VBs in the paraphyses apex occur in Mollisia but are absent in Pyrenopeziza 
and Pirottaea.  
 
 

3.2.4. Anamorphs and stromata 

The anamorphs clearly indicated the previous misplacement of following 
species of Encoelia (I): a) Chlorociboria glauca apothecia were observed with 
Dothiorina asexual morphs on the same substrate, and b) Xeropilidium dennisii 
synanamorphs (sporodochial conidiomata in culture and pycnidial conidiomata 
on bark along the apothecia).  
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Sclerotium-like structures of the genus Sclerencoelia, were described here 
for two previous Encoelia members, E. fascicularis and E. pruinosa and a new 
species (I). These structures were hidden under the apothecia in the substratum 
under the bark of trees. This fact pointed to an additional reason to accept these 
taxa, whose apothecia emerge from sclerotia or stromatized plant debris, into 
the Sclerotiniaceae. Typical for Rutstroemiaceae, the stipe base of apothecia of 
Rutstroemia tiliacea was blackish brown, and arose from indeterminate dark 
substratal stroma. The latter was visible as a black line in wood cross-section 
under the apothecia. 
 
 

3.2.5. Ionomidotic reaction  

Studying the genus Ionomidotis, Korf (1958) introduced the term ionomidotic 
reaction (IR) for a chemical reaction whereby aqueous potassium hydroxide 
solution (KOH) extracts pigments from fungal tissues. The pigments are 
released into the medium seconds after adding KOH to a microscope slide of 
fungal preparate. IR can be detected also in the dried fungal specimens of 
collections. However, the chemical background of this reaction has yet to be 
studied among the Leotiomycetes. In the current work, IR was observed in most 
members of the monophyletic Cordieritidaceae (I). IR can be considered as the 
main synapomorph in this family, where morphological characteristics are quite 
deviating. The colour resulting IR, however, differed among the members of 
Cordieritidaceae. For example, in species of Ionomidotis irregularis and 
Diplocarpa curreyana, the extracted pigments were purple, wheras the IR of 
taxa related to Ameghiniella was ochraceous. However, “Encoelia” heteromera 
and “E”. fimbriata, belonging to different lineages, had a golden-yellow 
reaction. It can be concluded that among the Cordieritidaceae, IR is a valuable 
characteristic for discriminating genera. However, solitary IR+ exceptions in 
generally IR- families were observed, e.g. in Lachnaceae (Brunnipila calyci-
formis, pinkish IR) and Cenangiaceae (Cenangium ferruginosum, peach-colored 
IR). The basal part of Belonidium aeruginosum (Lachnaceae) hairs and outer 
excipulum turn lilac in KOH, distinguishing it from the morphologically similar 
genus Incrucipulum. Based on references, IR is known to occur in Godronia 
spp. and members of Dermateaceae s. str. (Baral 2016).  
 
 

3.2.6. Ecology  

The rDNA ITS phylogeny of Leotiomycetes allowed to make the following 
observations (compare with Table 1): 

An endophytic lifestyle is quite common in the Cenangiaceae, wheras it is 
almost entirely absent among its sister families Rutstroemiaceae and Scleroti-
niaceae (I Figs. S1–S4). Many INSD sequences of Cenangiaceae originated 
from the leaves and roots of coniferous trees (I Fig. S1). ITS analysis provided 
strong evidence for the occurrence of Cenangium ferruginosum as an endophyte 
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in pine needles and twigs, as well in as Viscum album parasitizing pines. ITS 
phylogeny supported the distinction of the endophytic Rhabdocline parkeri 
from the pathogenic R. pseudotsugae, R. epiphylla, R. oblonga, and R. obovata.  

In the Sclerotiniaceae, the inclusion of the newly described genus Scle-
rencoelia expanded the concept of the ecology of this family to include ligni-
colous members. A sequence originating from the shoots of Fraxinus spp. was 
assigned to Sclerencoelia fraxinicola (I Fig. 2), providing additional evidence 
for the distinction of this supposedly Fraxinus-restricted species from its 
siblings that grow mainly on Populus spp. The apothecia of Sclerencoelia 
fraxinicola grew on recently dead branches. S. pruinosa was found to act as a 
intensive parasite (Anonymous 2011), whereas own observations about S. 
fascicularis pointed only saprotrophic occurrence.  

Inclusion of Rutstroemia (=Dencoeliopsis) johnstonii expanded the 
Rutstroemiaceae to include a fungicolous species. Rutstroemiaceae split into 
two groups: a) the Rutstroemia firma clade comprising species growing on 
fallen branches and leaves of trees, or on fruits, which also includes R. 
johnstonii; and b) the clade of species related to Rutstroemia calopus, whose 
apothecia form on monocot stems; this group included many DNA sequences 
obtained from soil in various habitats (I Fig. S4).  

The Chaetomellaceae was expanded by the inclusion of desiccation-tolerant 
species with a xylicolous lifestyle, transferred to a new genus Xeropilidium. The 
others members of this family are desiccation-sensitive and parasitic or saprobic 
on leaves, stems, or fruits of dicots (I Fig. S6). 

Analysis of Lachnaceae revealed an INSD sequence from Quercus 
deserticola leaf-litter, closely related to Belonidium aeruginosum, which also 
inhabits oak leaves. The Lachnum clade included sequences from soil, roots of 
Ericaceae, and from ectomycorrhizae of herbaceous plants (Fig. 4).  

 
 

3.3. Taxonomical novelties 

Resurrected families. The phylogenetic analyses in I distinguished two 
monophyletic groups of helotialean fungi without a name in current use at the 
family rank. However, as old family names were available for some members of 
these groups, two names were resurrected and applied to these groups while 
expanding the concept of respective families.  
1.  Cenangiaceae Rehm 1888 was the sister group of Sclerotiniaceae and Rut-

stroemiaceae, and was emended by Baral & Pärtel, using additional infor-
mation regarding neglected morphological characteristics, e.g. refractive 
vacuolar bodies of the vegetative cells. Beside Velutarina, Encoelia, 
Cenangium and Cenangiopsis (Rehm’s original genera Cenangiaceae), 
relationships with members of the family Hemiphacidiaceae (Korf 1962) 
were affirmed in the current work. The hymenium in the premature 
apothecia of many taxa of Cenangiaceae s. str. and former Hemiphacidiaceae 
is initially protected in unsuitable dry conditions by inrolled margins or by a 
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membraneous lid (I Fig. 3). Members of the Cenangiaceae grow as endo-
phytes, saprobes, or parasites, and inhabit wood or needles of conifers. 

2.  Cordieritidaceae Sacc. 1889 was originally described to include helotialean 
fungi with leathery, carbonaceous apothecia developing from a common or 
branched and often excentric stipes. The current work, howewer, showed 
more extended morphological variation. Many members of this group have 
an ionomidotic reaction or change the colour of their excipulum in KOH. 
Cordieritidaceae species are lignicolous, lichenicolous, fungicolous on 
ascomycetes, or co-occur with certain fungi.  

 
New species and genera, and new combinations 
    Chlorociboria glauca (Dennis) Baral & Pärtel (Chlorociboriaceae) 

Basionym: Encoelia glauca Dennis 1975 
Genus Sclerencoelia Pärtel & Baral (Sclerotiniaceae) 
    Sclerencoelia fraxinicola Baral & Pärtel  
    Sclerencoelia fascicularis (Alb. & Schwein.) Pärtel & Baral (neotype selected) 

Basionym: Peziza fascicularis Alb. & Schwein. 1805 
    Sclerencoelia pruinosa (Ellis & Everh.) Pärtel & Baral  

Basionym Dermatea pruinosa Ellis & Everh. 1888 
Genus Xeropilidium Baral & Pärtel (Chaetomellaceae) 
    Xeropilidium dennisii Baral, Pärtel & G. Marson 
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4. DISCUSSION 

4.1. Distinction of monophyletic groups  
of helotialean fungi 

The results of this study showed that the taxonomy of studied helotialean fungi 
has suffered from reliance on convergent morphological characters. Evidence 
on this was provided by the genus Encoelia, members of which were distributed 
across major lineages of Leotiomycetes based on the multigene phylogeny. One 
of such lineages, representing the family Chaetomellaceae, might even not 
belong to the Leotiomycetes as its phylogenetic relationship remained 
unresolved in the multigene phylogeny. The sampling used for multigene 
analysis was more extended in terms of genes and taxa than in previously 
published phylogenies of the Leotiomycetes, despite it being uneven for various 
lineages due to the focus on encoelioids. Hibbett et al. (2007) commented in 
their fungal classification, that Leotiomycetes is one of the most undersampled 
higher taxa among the Ascomycota, and predicted the creation of additional 
orders after more extensive molecular sampling. Until now, the situation has not 
changed much and the polyphyletic Helotiales is used sensu lato.  

The present work contributed to establishing a phylogeny-based taxonomy 
of Leotiomycetes by accumulating molecular data of the genera thus far 
classified in the Helotiaceae. Moreover, a distinct clade of Leotiomycetes was 
found that could be described as a new order, the Sclerotiniales. This lineage 
includes members of the Sclerotiniaceae, Rutstroemiaceae, the Piceomphale 
clade), and Cenangiaceae. The Sclerotiniales lineage was affirmed as clearly 
unrelated to the Helotiaceae s.s., the core group of the Helotiales. However, we 
preferred to postpone describing the new order until experts of different taxa 
will contribute additional DNA sequences from well studied voucher specimens 
that would enable to construct a new order-level classification for the major part 
of Leotiomycetes.  

 
 

4.2. Ultrastructural characters of helotialean fungi 
Phylogenetic analyses and morphological observations, including ascus 
ultrastructure, enabled to re-evaluate the diagnostic characters thus far used for 
the delimitation of the families Helotiaceae, Hyaloscyphaceae, and Dermateaceae. 
It can be summarized that for completing historical taxon descriptions of 
helotialean fungi it is necessary to study the type of the ascus apex. Whenever 
possible, living specimens should be used for detecting characters that may 
disappear in dried vouchers and for obtaining the anamorph stage in culture. 

Distinct patterns of ascus apical apparatus characters were detected in 
families/lineages of Helotiales, and in general these proved to be informative 
for the taxonomy. Some types of the ascus apical apparatus were distributed 
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among many lineages, whereas others were unique. Ascus apparatus type VIII 
(Verkely’s (1995b) appeared to be widely distributed in unrelated lineages, such 
as the Lachnaceae (III–IV, Verkley 1996), Chlorociboriaceae (Verkley 1993b), 
Pezizellaceae (Calycina, “Hymenoscyphus” herbarum, and Pezizella, Verkley 
1993b), Mollisiaceae, and Ploettnerulaceae (VI). This work supported the 
conclusion of Verkley (1995b) that the ascus annulus amyloidity of the 
Helotiales observed in LM correspond to the most electron-dense structurally 
differentiated areas in the TEM micrographs. This enables one to compare the 
general apical apparatus morphology obtained by TEM and LM. However, 
owing to the size of the annulus (approximately 3 µm wide), light microscopy 
has limitations for observing details, especially in cases when the amyloid 
reaction is absent/very weak or very strong (overshadow). For example, the 
ascus apical apparatus of Encoelia furfuracea could not be distinguished from 
that of Calycina until using TEM. LM can be useful for characterizing the ascus 
apex, if illustrations are presented along indication which chemicals have been 
used for testing the amyloidity (see e.g. Baral 1987b). Without figures of ascus 
apex it is nearly impossible to compare the ascus apex characters of different 
helotialean taxa. 

 
a) Cenangiaceae 
Encoelia furfuracea placement in the Cenangiaceae was in accordance with the 
morphological similarity of related fungi, especially Velutarina rufoolivacea. In 
general, the fruitbody’s macroscopical depiction, as illustrated in I Fig. 3, can 
vary largely among the Cenangiaceae. Under LM, the ascus apices showed 
different amyloidity among genera. Many Cenangiaceae members were with 
euamyloid annulus, but some were hemiamyloid or inamyloid. For example, 
Velutarina rufoolivacea is hemiamyloid whereas V. bertiscensis is inamyloid 
(Baral & Perić 2014). Such variation has also been observed in the genera 
Sarcotrochila and Rhabdocline (Stone & Gernandt 2005). Encoelia furfuracea 
had a well-developed ascus apparatus (II), whereas Cenangium ferruginosum 
has a strongly reduced apical apparatus (Verkley 1995a), with a recognisable 
apical chamber and annulus, but which do not function during dehiscence. 
According to Verkley (1995a), the ejaculation of the ascospores instead occurs 
via an irregular slit next to the apical apparatus, which is unique among the 
helotialean fungi.  

In the sister families Sclerotiniaceae and Rutstroemiaceae, the characters of 
the ascus apex were similar in these groups under LM and TEM. The asci were 
mostly euamyloid, with one ascus apical type characterized thus far (Verkely 
1993a). Spooner (1987) has proposed a correlation between the presence of 
stromatic tissues, and a long and narrow ascus pore. In support of this idea, the 
length of ascus apical thickening was observed as relatively short in 
Cenangiaceae, a closely related family, whose members are non-stromatic. 
Howewer, the extent of the variation of the apical apparatus among the Cenangi-
aceae and its differences from those in Sclerotiniaceae and Rutstroemiaceae 
remain unknown.  
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b) Cordieritidaceae 
The Cordieritidaceae lineage is one of the few monophyletic lineages (beside 
Ascocorticiaceae, Chaetomellaceae, and Loramyces and Roesleria lineages), 
whose known members have inamyloid asci that lack the observable ascus 
apical apparatus due the absence of annulus. This is significant variation 
comparing to their sister clade, Sclerotiniales lineage. In this family, the asci 
were observed to be apically rounded, and with thickened apical wall in some 
taxa. Verkley (1995a) has shown unique ascus dehiscence by the lid for 
“Encoelia” fimbriata, the only member of the Cordieritidaceae studied with 
TEM. The thickened ascus wall structure is probably caused by the repeated 
desiccation and rehydration of the longeval apothecia in nature according to 
Verkley (1995a). Encoelia furfuracea shares the longevity and retracting of 
apothecia in unsuitable conditions with “E.” fimbriata, but has a different ascus 
lateral wall and opening mechanism (II), which indicates that the ascus 
ultrastructure of helotialean fungi apparently do not show direct adaptation to 
the xero-tolerance. Besides the ascus characters, the ionomidotic reaction in 
Cordieritidaceae was observed as unique. Baral et al. (2015) noticed that the 
presence of vacuolar bodies is negatively correlated with IR, and VBs are never 
seen together in the same taxa/lineage. Further studies could detect how 
Cordieritidaceae species eject spores, and whether the discharge is more passive 
compared to taxa with a well-developed ascal apparatus. 

The family Cordieritidaceae includes genera in which apothecia vary from 
tiny immersed perithecioids to apothecia 10 cm in diam (Fig. 1k), and that are 
lignicolous, fungicolous or lichenicolous. The type genus Cordierites is 
comprised of tropical species with cupulate brownish apothecia that arise from 
branched stipes; it is lignicolous, but associated with Xylariales (Zhuang 1988). 
In phylogenetic analyses (I, Peterson & Pfister 2010, Suija et al. 2015), 
Cordieritidaceae has been distinguished as a strongly supported group. It is 
likely that adaptation to a possible fungicolous lifestyle has created the 
morphological diversity in this group.  

 
c) Lachnaceae 
In this family, the ascus apical apparatus was represented by two types, one in 
the Lachnellula (V) and the second in Lachnum-related taxa (III–IV, Verkley 
1996), but intergeneric variation was described for hair walls using TEM (III). 
The ITS rDNA phylogeny of Hyaloscyphaceae s.l. (Cantrell & Hanlin, 1997) 
and subsequent works with extended gene-sampling (Hosoya et al. 2010, Han et 
al. 2014), have demonstrated different hyaloscyphaceous lineages and multiple 
origins of the hairs among the Helotiales. Until now, molecular sampling has 
been quite occasional among hairy helotialean fungi. Here (III–IV), additional 
evidence was offered to support the distinctness of the family Lachnaceae and 
Hyaloscyphaceae based on the TEM characters of hairs. All studied members of 
Lachnaceae formed a monophyletic group (Fig. 3), and monophyly of most of 
the studied genera (Lachnum, Lachnellula, Brunnipila, Incrucipulum and 
Albotricha) was supported by ITS phylogeny (Fig. 4, compare Hosoya et al. 
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2010, Perić & Baral 2014). As congruent with TEM studies, Brunnipila species 
with unique pigmented hair wall formed a distinct clade. More extensive 
sampling with molecular methods is needed for the delimitation of Albotricha, 
Capitotricha, and Dasyscyphella. TEM studies of the excipular hairs in 
Lachnaceae offered a more detailed view of the cell wall stratification and 
ornamentation compared with studies published based on scanning electron 
microscopy (Hain 1980). 

Belonidium aeruginosum was not closely related to Incrucipulum according 
to the rDNA phylogenetic analysis (Figs. 3–4). This fact rejected the hypotheses 
proposed in IV, which was based on hair wall and ascus ultrastructural 
characters of the type species in both genera, Belonidium aeruginosum (IV) and 
Incrucipulum ciliare (III). Based on phylogeny, B. aeruginosum belonged to a 
complex of species having elongated ascospores. The apical cap (nasse apicale 
sensu Bellemére 1977) was present in Belonidium aeruginosum and 
Incrucipulum ciliare as shown under TEM. Vibrissea (Vibrisseaceae) is the 
only other genus that has this structure of the helotialean fungi, as illustrated in 
a micrograph of V. decolorans (Bellemère, 1977: 244) and the LM figure of V. 
truncata (Baral 1987b, Fig. 17). Our results on B. aeruginosum and I. ciliare 
provide new evidence of homoplasy of ultrastructural characters in Lachnaceae, 
complementing those of Hosoya et al. (2010: Table 4) aquired using LM. 
Further sampling is needed for taxa with elongated spores like Erioscyphella 
species, to establish monophyletic lineages and delimit genera in Lachnaceae. 
 
d) Dermateaceae compared to Mollisiaceae and Ploettnerulaceae 
Dermateaceae s. str. was monophyletic, and characterized by mostly a 
hemiamyloid ascus apex of a specific structure (VI). The Mollisia-like fungi, 
even though sharing a similar ascus apparatus among Belonopsis, Pyrenopeziza, 
and Mollisia (VI), appeared to belong to not closely related groups based on 
their rDNA (Fig. 3). Taxon sampling of mollisioid species was limited in this 
work, and further phylogenetic studies are needed to reveal their phylogenetic 
relationships. However, the species of Mollisiaceae studied in this work were 
distinct from those in the Ploettnerulaceae. Mollisia pro parte and two 
Belonopsis species were related to the Loramycetaceae-Vibrisseaceae-Mol-
lisiaceae (Fig. 3) clade, as shown for Mollisia in other published phylogenies 
(Wang et al. 2006b, Grünig et al. 2009).  

In the Plottnerulaceae, some original strains of Pyrenopeziza spp., 
“Mollisia” dilutella and “M.” revincta, complemented the list of members of 
this lineage. Designation of reference sequences from well-studied voucher 
specimens is critical for identification of mollisioids species. At present many 
misidentified entries from this group occur in INSD. For example, Mollisia 
cinerea is represented by several deviating ITS rDNA sequences. In the 
mollisioid complex, epitypification and neotypification of generic types is 
needed to introduce meaningful names for the phylogenies at higher levels.  

The diagnostic importance of the content of the paraphyses, as introduced 
by Baral (1992), was confirmed for certain lineages. According to Beckett et al. 
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(1974), the cell vacuoles may have many functions, and these organelles have 
been mentioned as having the most variable structure in cells (Riquelme et al. 
2011). The published descriptions of helotialean fungi often miss out this 
characteristic, because it is only visible in living material. This can be a reason 
for misidentication of macroscopically similar taxa throughout the mollisioids. 

 
 

4.3. Ecological patterns 
The role of helotialean fungi in nature is complex. Different lifestyles alternate 
during the life of a fungus, the switches are likely determined by senescence or 
weakening of the host the mycelium is living in. The host range of an 
ascomycete can be broader in the endophytic than in the saprotrophic stage 
when fruitbodies are formed (Sieber 2007). This work offered some examples 
of this trend: a common aspen-dwelling species, Sclerencoelia fascicularis, was 
found from pine needles based on an INSD sequence. Similarly, Tanney et al. 
(2016) described the life history of Phialocephala spp.: a vegetative endophytic 
stage occurs in Picea leaves, followed by a saprotrophic anamorphic stage on 
non-foliar substrates (angiosperm fallen branches, intact to decayed), and the 
formation of a teleomorph on the same substrate. A common toolbox of genes 
in Sclerotiniaceae, necessary for plant symbiosis, was shown to be selectively 
expressed during these different lifestyle stages (Andrew et al. 2012).  

In case of encoelioid fungi that form tough apothecia on still attached, 
recently dead branches, the sequence-based discovery of mycelium in their 
substrates seems rather predictable. In the Cenangiaceae, INSD data revealed 
that its members commonly grow as endophytes or parasites in leaves and roots 
of coniferous trees. An endophytic lifestyle is widely distributed among the 
Leotiomycetes (Wang et al. 2006a), however the current study concluded that it 
does not define the morphology of associated apothecia, as suggested by Wang 
et al. (2009). We do not know whether the ability to inroll the apothecia of 
Cenangiaceae is an adaptation to survive in arid conditions or it has rather 
evolved to protect the structures, related to reproduction and dissemination, 
from insects. 

The sequences from roots and soil, including ectomycorrhizal samples, 
were found in lineages related to genera Lachnum and Chlorencoelia. Many 
species of these genera form apothecia on decorticated branches, that lie on the 
ground, in close contact with soil. It is unknown how many of these fungi lack 
reproductive structures or whether these have not yet been discovered or 
sequenced. Based on this study, the mycorrhizal symbiosis is uncommon in 
Cenangiaceae and Chlorencoelia represents an atypical member of this family 
in respect of ecology.  

This work detected a wider substrate range than previously known in some 
of the helotialean lineages. One example was the addition of the caulicolous 
saprobe Chlorociboria aeruginella to the well-known lignicolous Chloro-
ciboriaceae (I, compare with Johnston & Park 2005). According to Johnston & 



46 

Park, Chlorociboria is more diverse in the southern hemisphere, but further 
evidence is needed regarding whether a shift to a herbicolous substrate occurred 
in the northern hemisphere. 

The substrate spectrum of all helotialean fungi is quite wide and is yet 
randomly sampled with molecular methods. Most probably hyphae inside the 
substratum precede fruitbodies in the majority of the helotialean fungi, and that 
could be detected by molecular methods. It seems that sequences from living 
deciduous trees are currently less represented than those from conifers in public 
databases. The search for similar sequences for taxa forming fruitbodies on 
deciduous substrates (Encoelia furfuracea, Dasyscyphella spp., Incrucipulum 
spp., Lasiobelonium spp., Trochila spp.) did not result in finding close matches 
from endophytic organisms in INSD. However, the studied group of fungi may 
play an important role in the decay of plant material in natural environments, 
but their task in the living plant tissues could be similarly important. 

 
 

 
• The incubation of substrates (mostly decaying plant material) is useful to be 

able to study living fungi, especially in case of ephemeral apothecia. In this 
way the apothecia can easily be initiated to observe their morphology. For 
temperate and boreal zones, the substrate should be frozen before in-
cubation to follow natural seasonality necessary for formation of apothecia. 

• Chemotaxonomy should be given more attention as biochemical differences 
are likely to provide additional synapomorphies for distinguishing taxa of 
Leotiomycetes. Determination of KOH soluble pigments should be useful 
for taxonomic analysis of the members of Leotiomycetes, as has been done 
in studies of Sordariomycetes (see the review by Stadler 2011). Cell wall 
components should be investigated in the Cyttariales related lineages to find 
out whether these lack chitin like Cyttaria (Oliva et al. 1986). 

• TEM provides informative characters for taxonomy, but its relevance is 
currently limited owing to a lack of comparative studies at larger taxonomic 
scale. It is quite unrealistic to suppose that usage of this method will 
increase much in the future because of the time, resource, and skill 
demands. Therefore, more precise LM observations, including those of the 
ascus apex, are recommended for refining the taxonomy of helotialean 
fungi. 

• Due to the taxonomic value of vacuoles in paraphyses and excipular tissues, 
it would be very important to study their ultrastructure, chemical content, 
and function(s).  

• Specific primers should be designed for amplification of genes containing 
insertions (e.g. 18S rDNA in Leotiomycetes).  

• For species identification, rDNA ITS sequencing should be more 
extensively used among the helotialean fungi. This method is independent 
of specimen alteration during drying (loss of original apothecium shape and 

4.4. Methodological suggestions for the future 
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colour, disappearance of some micromorphological characters). It also 
allows one to compare sequences from complex biological samples, 
deposited in public databases in order to complement the fruitbody-based 
information on the ecology lifecycle for these fungi.  

• The UNITE (https://unite.ut.ee/) platform should be used to develop further 
ITS rDNA barcode-based Species Hypothesis in a large and intricate group 
as Leotiomycetes. It is critical to increase the number of reference 
sequences from holotypes or designated epitypes to serve as name anchors 
in public DNA databases. 

• Isolation of pure cultures from ascospores should be increasingly used for 
characterizing asexual stages and obtaining pure DNA for molecular 
studies. This is especially important in case of rare species, or those with 
tiny solitary apothecia, and the vouchers of new taxa. 
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5. CONCLUSIONS 

Revisions of classifications should first and foremost rely on the reconstruction 
of phylogenies. Special attention to type species is inevitable for linking 
phylogenies with traditional taxonomy. Integration of phylogenetic analyses 
with morphological and ecological observations on helotialean fungi led to the 
following conclusions: 
1)  A complex of several characters, rather than individual features, defined the 

studied taxa. High diagnostive value was ascribed to the ascus apex 
features, refractive vacuolar bodies in living paraphyses, ionomidotic 
reaction of apothecial tissues, morphology of anamorphs, presence of 
stromata/sclerotia, and the features of excipulum and hymenial parts of 
apothecia. TEM studies alone are insufficient for drawing taxonomic 
conclusions, but can offer additional details for describing the morphology 
of specimens under LM.  

2)  Phylogenetic hypotheses offer a new point of view regarding the 
delimination of helotialean taxa. Based on the phylogenetic analyses of 
multigene data, the subfamily Encoelioideae and the genus Encoelia 
appeared to be polyphyletic, with species distributed among eight major 
lineages of Leotiomycetes. A large extent of homoplasy of morphological 
characters was confirmed. The type species of Encoelia, E. furfuracea, was 
shown to belong to the Cenangiaceae. Considering its morphological 
uniqueness and isolated position in phylogenetic trees, it likely represents 
an early diverged species with no extant siblings. The ascus apparatus of E. 
furfuracea differs considerably from species previously accepted in 
Encoelia. 

3)  Based on ultrastructure, the wall of apothecial hairs in Lachnaceae varies at 
the genus level. Despite the ascus apical apparatus being largely similar 
among the segregates of Lachnum, it is unique in Lachnellula. Lachnum 
should be used sensu stricto, because the phylogeny and ultrastructural data 
endorse the distinction of the genera Albotricha, Brunnipila, Belonidium, 
Capitotricha, Dasyscyphella, and Incrucipulum, merged in Lachnum by 
some earlier authors. Belonidium aeruginosum is not congeneric with 
Incrucipulum as proposed based on ultrastructure. 

4)  To improve the taxonomy of mollisioid fungi further studies are needed to 
ascertain the synapomorphies characterising members of phylogenetic 
lineages. Based on their ascus apical apparatus, mollisioids are clearly 
distinct from Dermateaceae s. str.  

5)  For detecting helotialen fungi in diverse habitats, DNA-based methods are 
valuable, enabling to accumulate information about their distribution, 
substrata and lifestyle. Phylogenetic analyses combining ITS rDNA 
sequences from fruitbodies and complex biological samples enabled to 
provide a name to the unidentified source organisms of many INSD ITS 
sequences, and indicated that members of each lineage mostly share a 
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common lifestyle. Members of the Cenangiaceae frequently grow as 
endophytes in various host tissues, a feature thus far ascribed to Hemi-
phacidiaceae, here merged in the Cenangiaceae. This study highlights the 
potential of DNA-based identification methods in studies on the ecology of 
cryptic fungi in a phylogenetic context. 
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KOKKUVÕTE 

Ultrastruktuuri ja molekulaarsete andmete  
rakendused tiksikseente taksonoomias 

Tänapäeva süstemaatika järgib põhimõtet, et ühte taksonisse kuuluvad ühisest 
eellasest pärinevad organismid. Klassifikatsiooni aluseks olevaid evolutsiooni-
hüpoteese püstitatakse geneetiliste andmete alusel. DNA-põhiste meetodite 
kasutamine on iseäranis oluline väikesemõõtmeliste organismide taksonoomias, 
kuivõrd nende morfoloogilised kriteeriumid on raskemini tuvastatavad. Sarnane 
on olukord kottseente hulgas, kõige liigirikkamas seenehõimkonnas, kus siiani 
osutub taksonite piiritlemine paljudes rühmades keeruliseks. 

Doktoritööga püütakse anda panus fülogeneesipõhise klassifikatsiooni 
loomisesse ühes molekulaarselt vähe uuritud kottseente rühmas, tiksikseened. 
Need kuuluvad klassi Leotiomycetes, mille liigirikkaim selts – tiksikulaadsed 
(Helotiales) (~300 perekonda, 3000 liiki) – on heterogeenne nii morfoloogia kui 
ökoloogia poolest. Nende lehtereoslad on valdavalt ketasjas-peekerjad, pruuni-
kad, valkjad või eredavärvilised ning läbimõõduga alla 2 mm. Eluviisilt on 
tiksikseened kas saproobid, parasiidid või sümbiondid (endofüüdid, mükoriisa-
seened), keda leidub mitmesugustel taimsetel substraatidel, aga ka mullas ja vees. 
Viimasel aastakümnel on selgunud, et traditsiooniliselt tiksikulaadsete seltsi 
arvatud sugukonnad ei moodusta monofüleetilist rühma, mistõttu kasutatakse 
siinses töös uuritavate seente puhul mitteformaalset nimetust tiksikseened. 

Doktoritöö eesmärk oli 1) hinnata morfoloogiliste ja ultrastruktuuri tunnuste 
sobivust taksonite eristamiseks nii liigi, perekonna kui ka sugukonna tasandil; 
sugukonna Lachnaceae ja alamsugukonna Encoelioideae esindajatel ning Mollisia 
rühma seentel; 2) selgitada välja alamsugukonna Encoelioideae ja perekonna 
lõhkik liikide sugulussuhted; 3) esitada perekonna lõhkik ja sellega lähisuguluses 
olevate liikide fülogeneesile tuginev klassifikatsioon; 4) värskendada infot 
uuritud rühmade ökoloogia kohta, kasutades ITS geenijärjestusi viljakehadest, 
seenekultuuridest ja keskkonnaproovidest avalikes andmebaasides. 

Põhimeetodid püstitatud ülesannete lahendamisel olid valgus- ja transmis-
sioon-elektronmikroskoopia, DNA sekveneerimine ning fülogeneesi rekonst-
rueerimine molekulaarsete tunnuste põhjal. Peaaegu kõigil uuritud taksonitel 
määrati DNA ITS nukleotiidne järjestus – seente triipkoodistamise marker, 
millest koostatud andmemaatriksitesse kaasati avalikes geeniandmebaasides 
talletatud keskkonnaproovidest pärit sekventsid. Et hinnata ultrastruktuuri 
tunnuste kasutatavust liikide ja perekondade piiritlemisel, rekonstrueeriti klassi 
Leotiomycetes fülogeneesipuu rDNA 18S ja 28S põhjal, haarates valimisse 
võimalikult palju taksoneid, mille ultrastruktuur oli kirjeldatud. Multigeeni-
analüüsi jaoks sekveneeriti 5 geenilõiku (rDNA 18S ja 28S ning valke kodeerivad 
geenid rpb1, rpb2 ja tef1) 70 taksonil, kaasates kättesaadavaid Encoelioideae 
taksoneid. 

Multigeenianalüüsil osutus perekond lõhkik polüfüleetiliseks, kuna selle 
liigid jagunesid kuu sugukonna vahel. Perekonna tüüpliik, Eestiski sarapuudel 
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tavaline sametlõhkik (Encoelia furfuracea), eristus eoskoti tipustruktuuri 
poolest selgelt sinna perekonda varem arvatud liikidest ning paigutus sugu-
konna Cenangiaceae hulka. Selles sugukonnas kirjeldati vakuoolikehi elusate 
viljakehade parafüüsides. Cenangiaceae sisaldab puidusaproobe ning okaspuude 
parasiite-endofüüte, hõlmates varasema sugukonna Hemiphacidiaceae. ITS 
analüüsil leidis kinnitust perekonna Cenangium liikide esinemine endofüütidena 
nii mändides kui ka männi puuvõõrikus. 

Sugukonda Sclerotiniaceae kuuluvad kobarlõhkik (Encoelia fascicularis) ja 
E. pruinosa, vastavalt saproob ja parasiit haavapuude koorel, neile lisaks 
kirjeldati uus liik saarepuul. Kõigi kolme jaoks kirjeldati uus prk. Sclerencoelia, 
mida iseloomustavad peremeespuu koore all moodustuvad sklerootsiumilaadsed 
struktuurid. Eestis uus liik E. tiliacea leiti olevat lähisuguluses perekonna 
Rutstroemia tüüpliigiga sugukonnas Rutstroemiaceae. Sclerotiniaceae, Rutstro-
emiaceae ja Piceomphale klaad ning Cenangiaceae moodustavad fülogeneesipuul 
tugeva toetusega monofüleetilise rühma, mis võib olla uus tiksikseente selts. 

Kaks endist lõhkiku liiki ning mitmed Encoelioideae liikmed paigutusid 
taaselustatud sugukonda Cordieritidaceae, kuhu kuuluvad samblikel ja teistel 
seentel kui ka puidul saprotroofidena kasvavad seened. Sealhulgas on Eesti 
suurim tiksikseen Ionomidotis irregularis, millel esineb oma sugukonnale 
iseloomulik tugev ionomidootiline reaktsioon kaaliumhüdroksiidi lahuses. 
Suurest rühmasisesest morfoloogilisest varieeruvusest hoolimata oli Cordieriti-
daceae monofüleetilisus tugevalt toetatud. Encoelia glauca tõsteti rohetiksiku 
(Chlorociboria) perekonda sugukonnas Chlorociboriaceae. Encoelia fuckelii 
põhjal kirjeldati uus perekond Xeropilidium (Chaetomellaceae). 

Lachnaceae oli rDNA fülogeneesi põhjal monofüleetiline rühm ning pere-
konnast Lachnum saab eristada mitmeid väiksemaid perekondi, mis erinevad 
üksteisest lehtereoslate karvade seinte ultrastruktuuri poolest. Lachnaceae 
esindajate eoskoti tipustruktuur oli sugukonna piires küllalt sarnane, v.a. pere-
kond Lachnellula. 

Mollisia rühma seentel osutus perekondade Belonopsis, Mollisia ja 
Pyrenopeziza eoskoti tipustruktuur vähe varieeruvaks ning perekonnad selle 
tunnuse alusel ei eristanud. Neil seentel on taksonoomiliselt olulised anamorfide 
ja parafüüside vakuoolikehade tunnused, olles kooskõlas perekondade asetse-
misega fülogeneesipuul. 

Fülogeneesianalüüsil ilmnes mitmete traditsiooniliselt eristatud sugukondade/ 
perekondade para- ja polüfüleetilisus. Leiti, et uuritud seente liike ja kõrgemaid 
taksoneid eristab mitme tunnuse kombinatsioon, kus üksiku tunnuse seisundit ei 
või üle tähtsustada. Klassifikatsiooni korrastamisel on iseäranis oluline sugu-
kondade ja perekondade tüüptaksonite analüüsimine. Paljude tiksikseente takso-
nite kohta saadi olulist ökoloogilist lisateavet, analüüsides koos viljakehadest ja 
keskkonnaproovidest pärit DNA järjestusi. Samas võimaldas viljakehade 
sekventside võrdlus identifitseerida mitmeid avaliku geeniandmebaaside 
määramata keskkonnasekvente (annoteeritud kui kultiveerimata seen, Leotio-
mycetes sp. vms). Siinse töö näitel võib julgustada taksonoome DNA triipkoodi 
rohkem kasutama ning tegema ökoloogidega tõhusamalt koostööd. 
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