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Introduction 

The most recent estimate (October 2010) by the Food and Agriculture Organization of the 

United Nations (FAO), says that 925 million people are undernourished. The increase of 

hungry people has been due to three factors: 1) neglecting agriculture relevant to very poor 

people by governments and international agencies, 2) the current worldwide economic 

crisis, and 3) the significant increase of food prices in the last several years which has been 

devastating to those with only a few dollars a day to spend. Hunger is a term which means 

the uneasy or painful sensation caused by wanting of food; craving appetite. Malnutrition is 

a general term that indicates a lack of some or all nutritional elements necessary for human 

health. Seventy percent of malnourished children live in Asia, 26 percent in Africa and 4 

percent in Latin America and the Caribbean. In many cases, their plight began even before 

birth with a malnourished mother. Undernutrition among pregnant women in developing 

countries causes that one out of six infants is born with a low weight. This is not only a risk 

factor for neonatal deaths, but also causes learning disabilities, mental retardation, poor 

health, blindness and premature death (World Hunger Facts, 2008).  Poverty is the principal 

cause of hunger. Causes of poverty include poor people's lack of resources, an extremely 

unequal income distribution in the world, and within specific countries conflicts. Two types 

of poverty are identified. Extreme poverty that refers to being unable to afford basic human 

needs, including clean and fresh water, nutrition, health care, education, clothing and 

shelter. Relative poverty refers to lacking a usual or socially acceptable level of resources 

or income as compared with others within a society or country 

(http://en.wikipedia.org/wiki/Poverty). The first type of poverty is faced by Ecuadorians 

living in rural areas. The other type of poverty is linked to the economic crisis, faced by 

people located in the cities.  The latest data show that in 2006, nearly 13% of the people 

lived in extreme poverty. In rural areas extreme poverty is five times higher than in the 

cities. The ethnic groups most affected by poverty are indigenous people in the highlands 

and Afro Ecuadorians at the coast. The percentage of malnourished people reduced from 

26% in 1999 to 18% in 2006. Even though, in the Amazonian and highlands 24% and in the 

coastal region 12.5% of people is underfed  

(www.ecuadorvolunteer.org/es/informacion_ecuador/estadisticas.html). 

http://en.wikipedia.org/wiki/Poverty
http://www.ecuadorvolunteer.org/es/informacion_ecuador/estadisticas.html
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Tailoring Food Sciences to Endogenous Patterns of Local Food Supply for Future Nutrition 

(TELFUN) is a project supported by Wageningen University that aims to support people to 

choose their own way of producing, processing and consuming local foods. The central 

research question is: how do technological practices, developed from within food networks, 

enhance food-sovereignty and the nutritional status of people? To answer this question, 

TELFUN has started as an interdisciplinary and comparative research program based on 

twelve research projects, divided in four disciplines and carried out in three geographical 

locations. Its scientific development is divided in four disciplines - plant breeding, food 

technology, human nutrition, and sociology of science and technology - for a more complete 

understanding of the production, processing, utilization and consumption of lupine in 

Ecuador. Similar studies are taking place with cowpea in West Africa and mungbean in India 

(www.telfun.info).   

Anthracnose is the most devastating disease of lupine around the world (Talhinhas et al., 

2002; Thomas, 2003). A lot of research has been done in other species of lupine that come 

from the old world (Talhinhas et al., 2003); however, little research has been done with L. 

mutabilis, a native species from the Inter Andean region. In the breeding discipline of the 

TELFUN project the specific research question was: How can exploratory studies both on the 

pathogen and on the lupine genetic diversity contribute to the development of lupine in the 

Cotopaxi province? Current data of lupine production and lupine anthracnose in the Andean 

zone is provided by a survey. Agronomical characterization and nutritional value of lupine 

cultivars released by the Agropecuarian National Research Autonomous Institution (INIAP) 

is determined and compared with their values in presence of anthracnose. Morphological and 

molecular studies provide the basis of pathogen diversity. Host cross reaction of lupine 

isolates on tamarillo or “tomato tree” (Solanum betaceum), another Andean native crop, 

provide new insight for disease management and for the establishment of appropriate 

breeding strategies. Neither anthracnose resistant/tolerant as high yielding landraces were 

known in Ecuador and therefore it was decided to evaluate anthacnose susceptibility and yield 

of a limited number of lupine cultivars released by INIAP and to study disease development 

in order to determine critical time points in the infection process. Anthracnose infection was 

evaluated in naturally infected seed and inoculation in a specific phenological stage made it 

possible to classify lupine plants on the basis of their level of tolerance. Anthracnose tolerance 

http://www.telfun.info/
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and alkaloid content were evaluated in selfed lupine plants in order to study the role of 

alkaloids in tolerance.  

The results, described in this thesis, will contribute to the establishment of better lupine 

breeding programs and seed production practices (high yield, anthracnose resistance, good 

nutritional and agronomical traits).  The experiments were done at the Simon Rodriguez 

Institute in Latacunga – Cotopaxi province, Ecuador. The students of this Institute, who are 

rural, young farmers, learned about the management of growing lupine.  They will pass these 

new findings on to their families and other farmers in the area.  The interaction of the four 

disciplines (Plant Breeding, Food Processing, Human Nutrition, and Social Sciences) is 

expected to contribute to the development of robust local networks for the production, 

processing, and consumption of high quality lupine.  

 

History  

Lupine (Lupinus mutabilis Sweet), also known as tarvi, tarhui, tarwi, chuchus muti 

(Quechua); tauri, taure (Aymara); chocho (Spanish-Ecuador); chocho, tauri, tarwi (Spanish-

Peru); tremoço (Portuguese-Brazil); lupino, altramuz (Spanish-Spain); lupin, pearl lupin, 

Andean lupine (English) is an Andean native legume, domesticated by indigenous people 

from old civilizations (Rios, 1996).  Its exact place of origin is unknown because there is no 

written evidence about the pre-Columbian culture (Gross, 1982).  However, the presence of 

lupine in the Andean region in the pre-Columbian culture is unquestionable due to the fact 

that lupine has been found in pre-Hispanic tombs and ceremonial ceramic representations 

(Rios, 1996), its use in folkloric traditions, oral transmissions, and other indirect references 

(Gross, 1982). It has a local distribution among Andean countries from Ecuador, Peru to 

Bolivia.   

 

Genetic resources 

The INIAP of Ecuador had a collection of lupine accessions since 1988.  In INIAP‟s 

collection, there are 529 lupine accessions from 17 different species. Of this total amount, 257 

accessions were collected in Ecuadorian areas and 272 originate from other countries.  A wide 

variability in earliness, diseases response, and flower color, was found in a preliminary 

characterization of 120 accessions of L. mutabilis (Peralta et al., 2003). The genetic variation 
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in lupine local cultivars resulted from the balance among forces enlarging the genetic 

variation within cultivars (mutations, out-crossing between and within cultivars followed by 

segregation, inadvertent mixing) and forces restricting the genetic variation (natural selection 

and selection carried out by the farmers) (Lindhout et al., 2007).   

L. mutabilis shows some genetic similarity with the old world species L. albus and L. 

angustifolius (Talhinhas et al., 2003). Unlike in other lupine species, not much research has 

been conducted in the species L. mutabilis. 

 

Agricultural and other benefits  

Lupine is a good alternative in crop rotation with cereals and tubers and requires minimal 

tillage before sowing. It is a land crop and little or no fertilizer is applied (Caicedo and 

Peralta, 2000). Due to the good taste, high amount of protein, iron, and vitamins the 

consumption of this legume has become high. However, the seeds have a high alkaloid 

content and therefore a debittering process is required (Peralta et al., 2008).   

Lupine, like other legumes, fixes its own nitrogen, and is an excellent green manure. Besides 

that, lupine has a broad adaptation and plasticity. For instance, in Ecuador, it grows easily in 

the different ecological zones between 2500 and 3400 meters above sea level (masl).   Lupine 

has an excellent capacity for soil erosion control due to its pivotal, vigorous, branched and 

lignified root system that sometimes grows until three-meter deep. Lupine plants can be found 

in the border of the roads growing as wild plants. Some Andean farmers plant lupine as 

protective border plants to function as a repellent plant against pest and diseases of other 

crops. All plants of the Lupinus genus contain alkaloids.  The total concentrations range from 

0.01 to 4%, depending on plant species and part of the plant (INEN, 2004).  It was thought 

that the alkaloids are mainly synthesized in the green leaves and shoots; however studies 

demonstrated that the synthesis occurs mainly in the roots, with xylem transportation and 

deposition in shoot organs.  Mature seeds have the highest concentration of alkaloids and 

subsequently a bitter taste.  This bitterness works as a general repellent against insects and 

grazing mammals (Allen, 1998).  Small farmers take water from boiled lupine seeds to control 

endo-parasites of cattle and wash cattle for controlling their ecto-parasites. Research has been 

done in Italy to verify lupine therapeutic proprieties on human cholesterol levels, diabetes, 

and hypertension (Guzman, 2006).  
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Lupine is currently considered as an important source for both human and animal nutrition. 

Lupine seeds are a valuable protein and fat source. The protein amount varies from 35 to 45% 

and the oil from 15 to 23%. There is a positive correlation between the level of protein and 

alkaloids, and a negative correlation between protein and oil content (Jacobsen and Mujica, 

2006).  From the lupine grain it is possible to obtain flour which can be used to prepare soup, 

biscuits and other desserts but also for making lupine milk (Peralta et al., 2006b).  The grain, 

after its debittering, is eaten separately with salt or in combination with fried grain, corn or 

with vegetable salads. 

 

The “ceviche” is prepared with a selection of lupine seeds, fresh tomato juice, white onion cut 

into long strips, fresh lemon juice, fresh chopped cilantro (for garnish), 2 tablespoons of 

vegetable oil and salt to taste. The ceviche is served with fried plantain chips, popcorn or 

toasted corn kernels and spicy chili sauce. Everyone who visits Riobamba, the capital of the 

Chimborazo province, is invited to taste the unique “lupine ceviche”. Currently, lupine 

ceviche is consumed in Quito, Latacunga and other main cities of the Ecuadorian highlands.  

 

Plant characteristics 

L. mutabilis is mainly a self-pollinating species, but low levels of cross-pollination can occur 

(5 – 10%); this level may increase depending on the ecotype and the ecological condition 

where it is grown (Gross, 1982).  The cycle of lupine production is for local genotypes 9-10 

months. Breeding resulted in lupines with a life cycle of 6-7 months (Peralta et al., 2006b).  

L. mutabilis grows up to 2 meter high with almost no branching. There are 11-18 leaves on 

the main stem. The most developed are the 3-4 uppermost shoots (Figure 1A). The shoots are 

long (7-10 cm). The 7 to 11 leaflets are obovate-oblong, acuminate and blunted (Figure 

1A,B). The stipules are small-sized, growing together at the basis with a pulpy cushion of 

petioles. The flowers are in racimes, semi-verticillate or alternate. The inflorescence is 8 to 20 

cm long. The flowers are clustered in 9 to 10 verticils (Figure 1B) with often 5 flowers per 

verticil.  The calyx has almost equal labia; the lower one is integral, while the upper one is 

bilabiate. The bractlets are bristly and the small floral bracts are styliform.  The corolla is 

aromatic, and is blue, white, pink or violet colored, and range in size from 1.8 to 2.0. The 

standard and the wings are broad, longer than the keel (Figure 1C). The pods are pubescent, 
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non-shattering, 5-6 seeded (Figure 1D). Preferred grain-seed is white oval cuboid (Figure 1E) 

but there is variation in seed shapes and secondary color distribution on the seed of local 

cultivars. A sample of seeds from the lupine collection is shown in Figure 1F. 

Figure 1.  Some characteristics of lupine (L. mutabilis) A. Main stem and side branches of a 

lupine plant, inflorescences on main and secondary stems. B. Lupine flowers clustered in 9 -

10 verticils and obovate-oblong leaflets C.  Flower parts. D. Pubescent pods, 5-6 seeded. E. 

White Andean lupine seed – grain. F. View of different seed shapes and secondary color 

distribution: (from left to right) white oval cuboid (I-450 ANDINO cultivar), white cuboid, 

flattened oval brown eyebrow, flattened brown eyebrow, oval black eyebrow crescent, 

flattened brown eyebrow, oval black spotted, oval black eyebrow-spotted, spherical black 

spotted, and black spherical.   
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Production of lupine in Ecuador 

Lupine is cultivated in the Inter Andean zone, from Colombia, Ecuador, Peru to Bolivia 

(Caicedo and Peralta, 2000) from 2000 to 3850 masl (Jacobsen and Mujica, 2006).  Ecuador, 

including the Galapagos Islands, is among the most biodiversity-rich countries in the world. 

According to the World Wildlife Fund, Ecuador is one of the 17 most “megadiverse” 

countries in the world. For instance, the country has an estimated 25,000 species of vascular 

plants (roughly 10 percent of the world‟s total). Agriculture is one of the pillars of Ecuador‟s 

economic development (www.worldbank.org/ec).  Ecuador‟s continental region is divided 

from North to South from the Andean cordillera, forming three important mountain ranges 

(cordilleras): the Eastern Cordillera, the Inter Andean cordillera with various basin and 

valleys, and the Western Cordillera.  The Ecuadorian Inter Andean region is characterized by 

low temperatures, strong winds, intense ultraviolet radiation, strong rains, rail, hail, storms, 

snow, and high altitudes. The rainy season in this area lasts from October to May, and the 

average annual temperature ranges from 11 
o
C to 18

 o
C. The daily variation can be extreme 

with very hot days and quite cold nights.  Under these environmental conditions lupine is 

cultivated.  More than 56% of the agro-ecological and geographical zones for lupine 

cultivation are located in the Cotopaxi and Chimborazo provinces (Caicedo and Peralta, 2000) 

(Figure 2).  

The lupine cultivation is limited to small areas called “Unidad de Producción Agrícola” 

(UPA).  The Censo Nacional Agropecuario (2003) described an UPA as a small piece of land 

of one half hectare in the Inter Andean region. The “minifundios” which are represented by 

small pieces of land up to 0.5 ha, are about 80% of the productive units. The main crops of 

Ecuadorian Inter Andean region are potato (Solanum tuberosum and Solanum sp), corn (Zea 

mays L), quinoa (Chenopodium quinoa), common beans (Phaseolus vulgaris), melloco 

(Ullucus tuberosus Loz) and other introduced crops, such as faba bean (Vicia faba), barley 

(Hordeum vulgare L), wheat (Tritichum vulgare L) and vegetables (Jacobsen and Sherwood, 

2002). A recent activity in the Ecuadorian high lands is the production of native non-

traditional fruits, such as tamarillo or tomato tree (Solanum betaceum), blackberry or “mora 

de castilla” (Rubus glaucus), babaco (Vasconcellea babaco), taxo o curuba (Pasiflora spp.), 

groundcherry or “uvilla” (Physalis peruviana), and black cherry or “capuli” (Prunus serotina) 

(http://www.runatupari.com). 

http://www.worldbank.org/ec
http://www.runatupari.com/
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Figure 2. Map of Ecuador (www.geology.com/world/ecuador-satellite-image.shtml). The 

two provinces with the most appropriate agro-ecological and geographical zones for lupine 

cultivation are inside the blue lines    

 

The yield of lupine depends on different characteristics such as, earliness, development of 

inflorescences on primary stem, the axillar branches, pod number per inflorescence, seed 

number per pod, seed size and time of maturity of the pod (Hondelmann, 1984).  According to 

the Censo Nacional Agropecuario (2003) 5974 ha of lupine was sown from October 1999 to 

September 2000. Only 66% of the potential of the crop in good conditions was realized 

(Peralta et al., 2004), this was mainly due to biotic stress (diseases and pest) and abiotic 

stresses (drought and flooding). In Ecuador, lupine might yield around 220 kg/ha, but farmers 

did well if they reached 130 kg/ha. The national production was 789 MT, of which 601 MT 

was sold. Seventy percent of the lupine UPA is in the Cotopaxi and Chimborazo provinces 

(Figure 2), combined they have 75% of the sowing surface and 65% of the national 

production (Censo Nacional Agropecuario, 2003).  Currently, the cultivated lupine area has 

steadily increased to 6,270 ha and the potential productivity has increased from 250 to 400 

kg/ha. This better yield is the consequence of new technological developments, such as 

sowing lupine in furrows and appropriate use of agrochemicals (Murillo et al., 2006) and 

phenotypic seed selection (Peralta et al., 2006b). However, the potential highest production 

level is seldom reached. The average in the Cotopaxi province with conventional technology 

http://geology.com/world/ecuador-satellite-image.shtml
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is only 180 kg/ha.  The national mean production is barely 200 kg/ha (Censo Nacional 

Agropecuario, 2003).   

 

Biotic stress – Lupine anthracnose 

Anthracnose is worldwide the most devastating disease in lupine. It affects stems, leaves, 

pods and seeds (Figure 3A-D) and causes the typical twisting of the stem and petioles.  The 

dark lesions in the center of infections form orange conidial masses (Figure 3A-C). Because 

the attack is on the apical zone, the plant dries out and no flowers and pods are produced 

(Guzman, 2006).  The pathogen was first studied on L. angustifolius in 1943 and the causal 

agent was identified as Colletotrichum gloeosporioides (Penz) Penz & Sacc.  Yang and 

Sweethingham (1998) supported the original description of C. gloeosporioides and identified 

three related compatibility groups. In Ecuador, it is known as C. gloeosporioides (Insuasti, 

2001), or Colletotrichum spp. (Peralta et al., 2008).  Based on a combination of colony and 

spore morphology and molecular techniques Lardner et al. (1999), looked at the genetic 

variability of the genus Colletotrichum. Talhinhas et al. (2002) studied the genetic variability 

of Colletotrichum acutatum.  In accordance to Nirenberg et al. (2002) the pathogen is 

reclassified as C. lupini, including two new sub groups.  Based on morphological and 

molecular techniques (ITS, RAPD-PCR) they divided Colletotrichum in three groups: C. 

acutatum, C. acutatum var. lupini, and C. acutatum var. sensu lato.  For these studies, 

pathogen samples were collected from different parts of the world; one isolate from Bolivia 

was included, but not from Ecuador.  Taxonomic details of C. acutatum isolates from this 

study and their relatedness with other close plant pathogenic fungi can be found through Basic 

Local Aligment Search Tool (BLAST) of ITS nucleotide data records of the isolates 

deposited in GenBank (www.ncbi.nlm.nih.gov/genbank). 

Interaction of many species with their host plants is characterized by a short biotrophic phase. 

At this point, the cell surfaces of the two organisms are in close contact, followed by a 

destructive necrotrophic phase. Anthracnose symptoms appear at this latter stage on the aerial 

parts of susceptible plants, leaving the root system unaffected.  Organ resistance most likely 

results from failure of the pathogen to penetrate the tissues. For this reason, it must be 

distinguished from race-cultivar specific resistance which is expressed on certain cultivars of 

a given species after penetration by the pathogen. This type of resistance is dependent on the 

http://www.ncbi.nlm.nih.gov/genbank
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presence of resistance genes in the host (Esquerre-Tugaye et al., 1992). Durable resistance 

against specialized fungi is often quantitative and based on the additive effects of higher 

numbers of genes (Lindhout et al., 2007).  Appropriate inoculation methods in adequate 

phenological stages are needed to identify anthracnose resistant plants. 

 

 

Figure 3. Typical symptoms of anthracnose A. infected main stem. B infected stem. C. pod 

lesions. D. infected seed 

 

Anthracnose of lupine is a seed-borne pathogen that prefers moist environments.  The 

heterogeneous environment of Ecuadorian highlands characterized by large differences in 

rainfall, humidity, and temperature is favorable for anthracnose development. This kind of 

environments also facilitates the development of new races. Anthracnose resistance of 

genotypes must be quantified under an adequate pathogen selection pressure (Thomas and 

Adcock, 2002) and the most virulent race should be used for infection (Kurlovich and 

Kartuzova, 2002).  

The diversity of other species of Colletotrichum that cause anthracnose in beans has been 

studied in south, central and north America.  Different races of the pathogen have been 

characterized (Balardin et al., 1997) and new sources of bean resistance for a specific 

geographical zone have been found (Vidigal et al., 2007).  

 

Anthracnose in the Andean lupine cropping system 

The increased demand of other native agricultural products of high value is causing the 

introduction of new crops into the traditional lupine cropping systems. The new crops 

introduced from the valleys to the highlands in the east and west result in the replacement 

A C B D 
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of the natural vegetation. The valleys have also been used for growing crops that were 

traditionally cultivated in cold areas such as lupine, due the increased demand for 

agroindustry (Teran, 2007). For instance, tamarillo or “tomato tree” is a small tree or shrub, 

bearing edible egg-shaped fruit with a thin skin and a soft flesh, when ripe.  Tamarillo is a 

perennial crop. Its growing season is all year round, producing for up to four years 

(Sánchez et al., 1996). Tamarillo has traditionally grown in valleys of 1600 to 2600 masl; 

however, the historical limitation for growing tamarillo in low lands in the Cotopaxi 

province is changing (Terán, 2007). Currently, tamarillo and lupine are grown by small 

farmers in small pieces of land that are close to each other. For instance, at Sigchos Canton, 

in the Cotopaxi Province (around 120 km south from Quito) and in San Pablo Lake, in the 

Imbabura Province (120 km north from Quito), it is common to observe anthracnose 

symptoms in tamarillo as well as in lupine in the new cropping systems. Anthracnose is a 

wide host range pathogen that affects lupine (Talhinhas et al., 2005), tamarillo (Afanador-

Kafuri et al., 2003) and many other hosts (Freeman et al., 2000). This fact may be 

providing more possibilities for the pathogen to adapt in both hosts or developing tamarillo 

as a potential reservoir for lupine anthracnose. A combination of morphological, molecular 

and host cross range studies will provide more insight for appropriate management of 

anthracnose in lupine as part of the cropping system and the implementation of breeding 

strategies.  

 

Protein, Iron, and Zinc   

In Ecuador, lupine has been traditionally consumed by rural people, however currently its 

consumption in urban areas has increased due to the fact that it is a cheap source of protein 

in comparison with animal protein (Peralta et al., 2006b).  In Europe, lupine is also 

consumed for the fat (41%)  (Gross, 1982). From the total fat, 3–14% are essential fatty 

acids (Jacobsen and Sherwood, 2002). Adequate lupine consumption can improve the 

nutritional status of the rural Ecuadorian population. Increased protein content would be a 

very beneficial trait in view of new markets and new processing opportunities. Until recently, 

higher protein concentrations were not a formal breeding objective in lupine. Most lupine 

varieties fall within the acceptable range of 14-24% content (Buirchell and Sweetingham, 

2006).   
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Iron and Zinc deficiency are well-documented problems in food crops, causing decreased 

crop yields and lower nutritional quality. Generally, the regions in the world with Fe-deficient 

and Zn-deficient soils are also characterized by mineral deficiency in humans (Vasconcelos 

and Grusak, 2006; Cakmak, 2008).  Recent estimates indicate that nearly half of the world 

population suffers from Zn deficiency (Cakmak, 2008). Among the strategies being discussed 

as major solutions to Fe and Zn deficiency, plant breeding and agronomic measures are the 

most important. Foliar or combined soil + foliar application of Fe and Zn fertilizers under 

field conditions are demonstrated to be highly effective and very practical way to maximize 

uptake and accumulation of micronutrients in the whole wheat grain, raising concentrations of  

Fe and Zn (Cakmak, 2008). Breeding strategies (e.g. genetic biofortification) are sustainable 

and cost-effective and should aim at improving the highest possible micronutrient 

concentration in the grain.  In the plant kingdom, there is vast genetic variation for maximum 

mineral concentration (Vasconcelos and Grusak, 2006).  This variation is at the species level, 

and even amongst individual plants of the same species. For instance, in cultivated and wild 

accessions of common bean (Phaseolus vulgaris) the micronutrient concentration in seeds can 

range from 55 to 95 μg/g iron (Beebe et al., 2000).  Application of micronutrient fertilizers or 

micronutrients-enriched NPK fertilizers, under glasshouse and in small plots in the field, 

represents a useful complementary approach to the on-going lupine breeding program.  If 

cultivars are found with a significant higher Zn and Fe potential and these cultivars have the 

required agronomic and end-use traits they can be quickly introduced and will have an 

immediate impact (Pfeiffer and McClafferty, 2007).  The combination of breeding and 

biofortification is a promising, cost-effective, and sustainable intervention for alleviating 

micronutrient deficiency (Ma, 2007).   

 

Conclusion 

Lupine can play an important role in increasing living conditions of poor farmers in Ecuador. 

It is necessary that the agro ecological production systems are maintained using sustainable 

farming methods. The use of disease free lupine seed is of utmost importance and a good 

understanding of the plant– pathogen interactions can increase yield. Lupine breeding should 

aim at anthracnose resistance, high yield varieties, and cultivars with high levels of 

micronutrients.  Having high-quality lupine cultivars will, together with the results in the 
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other three disciplines - food technology, human nutrition, and sociology of science and 

technology –contribute to the food sovereignty concept (www.telfun.info). 

 

Figure 4.  Lupine (L. mutabilis) situation and proposed research program with emphasis on 

anthracnose resistance in Ecuador  

 

Research aims and thesis outline 

The thesis presents new techniques that contribute to the improvement of lupine by exploring 

the possibilities of developing anthracnose resistant lupine varieties, with good agronomical 

traits, adapted to Cotopaxi province – Ecuador. The wanted lupine varieties should also have 

a high protein, iron and zinc content (Figure 4). Findings of this study will contribute to 

achieve food sovereignty of Ecuadorian farmers. The General Introduction presents a 

general overview of lupine. Its role in the food chain of Ecuador, the difficulties in getting a 

good and high yield and what important traits are to be considered to develop new cultivars. 

Chapter 2 presents two surveys; firstly, the results of a survey among farmers and 

secondly an inventory of existing new cultivars released by INIAP. Several agronomical 

http://www.telfun.info/
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traits were evaluated. Nutritional value of the lupine grain genotypes was assessed based on 

protein, iron and zinc content.  

  Chapter 3 describes the morphological and molecular characterization of the 

species of Colletotrichum that causes lupine anthracnose in the Cotopaxi and Chimborazo 

provinces - Ecuador. Five Colletotrichum isolates from tamarillo (S. betaceum) were also 

included in the analyses. Tamarillo also plays an important role in the Ecuadorian farming 

systems. Tamarillo is being cultivated in nearby places where lupine grows. The 

characterization of the species of Colletotrichum, the causal agent of lupine anthracnose in 

Ecuador, its genotypic relation with tamarillo anthracnose and a better understanding of the 

cross-host reaction are important before starting breeding efforts.    

  Chapter 4 describes the anthracnose tolerance of five lupine cultivars recently 

introduced by INIAP, the so-called INIAP-450 ANDINO cultivar, and two landraces 

determined under the same conditions in one trail Cotopaxi. This chapter also follow-up of 

anthracnose screening in the field, and presents a description of symptoms and analysis of 

critical points for controlling the disease. Anthracnose infection was quantified on the 

harvested seed.  

  Chapter 5 illustrates the use and effects of different inoculation methods and 

lupine plants of different ages to evaluate anthracnose tolerance. The first steps to find 

lupine individual plants with anthracnose Tolerance and Susceptibility in the selfing of I-

450 ANDINO cultivar. Alkaloid content in the seeds was quantified and the correlation 

with anthracnose tolerance (phenotypically assessed) was determined. These findings 

provide suitable methodologies for further evaluating germplasm or large populations of 

lupine seedlings for tolerance to anthracnose.  

 In the General discussion, the findings of this research are presented in an 

integrated way.  In the discussion the tools to be used by researchers and/or farmers in order 

to develop anthracnose tolerant/resistant lupine varieties, with good agronomical traits, and 

high nutritional value are discussed. These genotypes will certainly contribute to the food 

sovereignty of Ecuadorian farmers  
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Summary 

Lupine, Lupinus mutabilis, is mainly, due to its high nutritional value, of high importance 

for Andean countries. This is not a well studied lupine; most research has been done on 

other lupine species such as L. angustifolius. The yield of Andean lupine is often low. This 

study describes agronomic characteristics and nutritional value of a set of lupine cultivars 

released by the Agropecuarian National Research Autonomous Institution (INIAP).  

A questionnaire showed that lupine is the third preferred main crop by small stakeholders 

and ninety nine percent of planted lupine comes from common, low quality seed. There are 

no lupine varieties resistant to the most common lupine diseases and only few farmers use 

new technologies to improve yield. A new lupine cultivar, I-450 ANDINO, was developed 

by INIAP after a selection on agronomic traits. After screening samples of the lupine 

collection in Ecuador, other five cultivars with good agronomic characters were selected. 

These cultivars were used for further selection in different environmental conditions. In this 

study, agronomic traits and nutritional value of six selected cultivars and two local 

landraces were measured in the wet season in the Province of Cotopaxi. Most agronomic 

important traits were severely affected in the extreme wet season in which we did our 

observations. A multivariate analysis showed variation in plant height at flowering, number 

of flowers at the main axis, percentage of germination, presence of pods on the main stem, 

seeds per pod, and number of lateral branches. The landrace ECU-2698 showed the highest 

percentage of non-commercial seed. Significant different levels (P<0.05) of protein were 

found and the iron and zinc content of the lupine cultivars varied from 53 to127 and from 

39 to 62 ppm, respectively. The highest values for the two nutritional elements and protein 

were found in I-450 ANDINO. The importance of characterizing genetic resources of L. 

mutabilis for crop improvement is outlined.  

 

Introduction 

Lupine, Lupinus mutabilis, is a native crop of the Andean zone. Historical data about lupine 

are based on archaeological evidence, folk traditions and customs, oral transmission and 

other indirect references (Gross, 1982). Lupine has been found in tombs of the Nazca 

culture. During the Spanish conquest approximately ten million inhabitants lived in the Inca 
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Empire (Peru, Ecuador and Bolivia). It has been speculated that during that period lupine 

was already grown (Gross, 1982).   

Lupine can be cultivated as a monoculture or in association with other crops or in a rotation 

scheme. Lupine is important in crop rotation because of its ability to restore fertility of the 

soil through nitrogen fixation (Junovich, 2003). Lupine can grow on marginal soils such as 

soils of volcanic origin, soils with low fertility and in areas with water shortages (Jacobsen 

and Mujica, 2006). Although lupine can grow, the lupine yield is often low due to abiotic 

stress (Peralta et al., 2006b).  The national yield average is 200 kg/ha. Ninety nine percent 

of the planting is performed with common seed, usually saved by farmers from their last 

crop (Censo Nacional Agropecuario, 2003). Lupine cultivation is limited to small pieces of 

land (up to a half hectare) and grown by small stake holders (Peralta et al., 2006b). Lupine 

has a high protein content (35-45 %), high quality fat, fiber, and a good content of minerals 

such as calcium, phosphorus, iron and zinc (Jacobsen and Mujica, 2006). A disadvantage is 

that the lupine seed has a high alkaloid content (INEN, 2004), which has to be washed 

away (Jacobsen and Sherwood, 2002). Lupine seeds are the raw material for preparing 

various foods, such as flour, milk and margarine. Its cooked seeds are popular in soups, 

stews and salads or are consumed as snacks in the same way peanuts and popcorn are 

(Popenoe et al., 1989). Because lupine is tasty and has nutritional benefits there is a high 

demand at national and international level. In 2000, the annual lupine consumption per 

capita was 4.8 kg in the cities of Latacunga and Riobamba.  The potential demand was 

10,500 t nationally (INIAP, 2001). In 2007, the demand increased twofold. In Ecuador the 

lupine production does not meet the demand, and therefore it is imported from Peru (Peralta 

Pers. Comm.).   

Intra- and interspecific genetic variability of lupine is conserved in the National collection 

of DENAREF – INIAP. Of the 529 lupine accessions 257 were collected in Ecuador and 

272 came from other countries. About 120 accessions belong to the species L. mutabilis 

(Rivera et al., 1998).  Researchers of the Legume and Andean Grain National Program 

(PRONALEG-GA / INIAP) have been cultivating L. mutabilis accessions for more than 10 

years. A specific lupine genotype from Peru was used for selection under Ecuadorian 

conditions on desirable agronomic traits such as earliness, white seed color, and good plant 

architecture and resulted in the I-450 ANDINO cultivar (INIAP, 1999). However, seed 
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production of I-450 ANDINO is not high enough to satisfy farmers‟ demand and therefore, 

it is used mainly for research purposes. INIAP also chose samples of other populations 

from the lupine collection and evaluated them under different environmental conditions in 

the Provinces of Cotopaxi and Chimborazo. Farmers, organized in Local Research 

Agriculture Committees (CIAL), prefer lupine cultivars with a high yield, white seeds, a 

size seed of 6-8 mm diameter, a uniform plant height of about 1.4 m, and a growing season 

of less than 190 days. Based on these criteria, they selected the five most suitable lupine 

cultivars (Peralta et al., 2003). However, the yield of some of these cultivars was even 

lower than that of the I-450 ANDINO cultivar (Peralta et al., 2003). During the last past 

years, INIAP unsuccessfully tried to enhance seed production in the five selected cultivars 

and lupine yield is still very variable from one year to another (Peralta et al., 2006b).  

The TELFUN project aims to support people to choose their own way of producing, 

processing, and consuming local foods that fit best in their local conditions 

(www.telfun.info). The following research questions were put forward in order to 

contribute to the development of lupine in the Province of Cotopaxi:  

- what is the situation of lupine production in the Province of Cotopaxi?,   

- what are the agronomic characters and nutritional attributes of the lupine cultivars selected 

as the best by INIAP researchers in the Province of Cotopaxi? No better performing 

cultivars were found by INIAP in their screenings of the available L. mutabilis germplasm. 

These screenings could not be repeated in the framework of this study. 

To answer this question the following goals were set: (i) to determine the actual situation of 

the lupine production in the Province of Cotopaxi, (ii) to evaluate agronomic traits of the 

five selected lupine cultivars, the I-450 ANDINO cultivar and two local landraces in the 

wet season in the Province of Cotopaxi (iii) to determine the nutritional value of the 

selected lupine cultivars. 

 

Materials and methods 

Analysis of lupine production 

The Northern Andes in Ecuador consists of two parallel ranges, the Cordillera Occidental 

and the Cordillera Oriental. In both regions farmers were visited (see geographical positions 

in Table 1). A questionnaire was made to analyse the lupine production and especially, the 

http://www.telfun.info/
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threat anthracnose poses in the Province of Cotopaxi. The chosen communities to obtain 

lupine production data was based on information from the project Sustainable Production 

Systems for Guaranteeing Food Security in the Poor Communities of the Cotopaxi Province 

(Peralta et al., 2006a). Interviews were performed at farms and the survey was conducted in 

twenty locations (Table1). On each location, there was a survey, including repetitions of 

some of the questions. Forty small-stake holders were interviewed from May to June 2007 

(Table 2). Since this research is part of an interdisciplinary research, a more extensive 

survey has been conducted and will be published by the Social Science discipline. 

 

Table 1. Localities at the Province of Cotopaxi where the survey for diagnose lupine 

production was done 

N Locality Geographical 

localization 

Altitude 

(masl) 

N Locality Geographical 

localization 

Altitude 

(masl) 

1 Juan 

Montalvo/ 

San Jorge 

00 54‟ 40” S 

78 35‟ 06” W 

2840 11 San Marcos / 

Alaquez 

00 51‟ 54” S 

78 33‟ 47” W 

3050 

2 Pangigua 

grande 

00 54‟ 38” S 

78 33‟ 36” W 

2950 12 El Tejar / 

Alaquez 

00 51‟ 40” S 

78 33‟ 08” W 

3100 

3 Pusuchusi 00 54‟ 44” S 

78 32‟ 27” W 

3180 13 Itupungo 00 50‟ 42”S 

78 33‟ 26” W 

3239 

4 Picualo 

Alto 

00 53‟ 56” S 

78 33‟ 19” W 

3000 14 Chinchil 

Robayo 

00 47‟ 41” S 

78 33‟ 36” W 

3117 

5 San Juan 00 54‟ 04” S 

78 34‟ 36” W 

2860 15 Canchicera 00 47‟ 33” S 

78 32‟ 59” W 

3222 

6 Laipo 

Grande 

00 53‟ 15” S 

78 32‟ 51” W 

2900 16 Langualo 

chico 

00 49‟ 40” S 

78 34‟ 03” W 

3093 

7 San Marcos 00 53‟ 03” S 

78 34‟ 24” W 

2920 17 San 

Francisco de 

Casas 

01 04‟ 44” S 

78 40‟ 20” W 

3086 

8 La Merced 

Molle-

pamba 

01 00‟ 21” S 

78 41‟ 10” W 

2969 18 Chilla grande 00 48‟ 28” S 

78 43‟ 55” W 

3300 

9 Isinche de 

Comines 

01 01‟ 08” S 

78 40‟ 24” W 

2972 19 Chalopamba 00 49‟ 09” S 

78 44‟ 13” W 

3321 

10 Guantopolo 00 42‟ 45”S 

78 39‟ 35” W 

3638 20 Quilitopamba 00 53‟ 27” S 

78 43‟ 13”W 

3543 
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Table 2. Questionnaire and summary of the findings (values in parenthesis are percentages)   

Locality …………… Region  ……………  Community …………. 

Name ……………. Age …………                Gender ……………. 

1.  What are the main crops that you 

cultivate? 

 

8.    Mention  two main reasons for lupine 

low productivity? 

Corn  

Potato  

Lupine   

Barley  

Alfalfa  

Lens 

30 

25 

20 

10 

10 

5 

Pests and diseases  

Other different  

90 

10 

  

2. How do you sow the lupine?       9.    Look at the attached picture (with 

anthracnose symptoms).  Have you seen 

this problem in the lupine        crop?        

 

Monoculture 

Associate 

60 

40 

Yes  

No  

90 

10 

  

3.  How much seed per hectare did you use 

for sowing?   

10. In which part of the lupine plant have 

you seen   the problem considered 

above?  

 

0.5-25kg 

26-50kg 

> 50kg)    

92 

6 

2 

More than one tissue 

Stems  

Pods  

Didnot see 

70 

10 

10 

10 

  

4.  How much did you harvest per hectare? 11.  Do you know any lupine variety that 

cannot get diseased? 

 

100 - 150kg  

151 - 300 kg 

301 - 600 kg 

601 – 900 kg  

 

60 

30 

5 

5 

 

No  

Yes  

 

100 

0 

  

5.  Where did you obtain the lupine seed for 

sowing? 

12.  Do you know how to screen lupine 

seed for sowing ? 

 

Own seed  

From someone else  

 

80 

20 

 

 

No  

Yes  

 

90 

10 

  

 

(cont…) Table 2.  
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6.  Which characteristics of lupine  do you 

prefer?      Plant height …..  Seed colour….. 

13.  What do you do in order to control 

lupine anthracnose? 

 

1.0 – 1.4 m height 

Around 1.0 m height 

More than 1.4 m 

height  

 

White seedcolour  

 

50 

25 

25 

 

 

100 

 

Nothing  

Chemicals  

 

60 

40 

  

7.  How do you prepare the soil for lupine 

cultivation?  

 

14.  What are the chemical products that 

you use to control lupine anthracnose? 

Furrows  

(0.6 x 0.25 m)    

A hole at the sowing 

(1.0 x 1.0m) 

 

80 

 

20 

Do not apply 

chemicals  

Do not remember the 

chemical name  

Know name 

60 

 

 

25 

15 

 

 

Sources of lupine cultivars for agronomic characterization 

Seeds of the five lupine cultivars were provided by PRONALEG-GA/INIAP. The five pre-

selected cultivars were screened under different environmental conditions (Peralta et al., 

2006b). Seeds of two landraces were provided by National collection of DENAREF – 

INIAP. The I-450 ANDINO cultivar was included as control (Table 3). Other local 

landraces and local genotypes were not evaluated because we wanted to know whether the 

developed material by INIAP was an improvement or not. These modern cultivars are 

characterized by early flowering, large pod size and white seeds. Small farmers use late 

genotypes (12-13 months) and recycled (anthracnose infected) seed.   
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Table 3. Origin and characteristics of a set of five lupine cultivars, the I-450 ANDINO 

cultivar and two Andean landraces of lupine (L. mutabilis) used in the Province of 

Cotopaxi, Ecuador, 2008 

Cultivar Origen Contributing 

Institute
a
 

Type 

I-450 

ANDINO
b
 

ECU - 2659 introduced to 

Ecuador from Peru in 1992. 

Evaluated in several 

environments, selections 

were made and released as 

I-450 ANDINO cultivar in 

1999 

INIAP-DENAREF Cultivar 

ECU-712-1 Peru, Mantaro Research 

Experimental Station 

INIAP-DENAREF Under selection in the 

Province of Cotopaxi  

ECU-2658 Peru, Lima, Institute of 

Nutrition, 200 masl 

INIAP-DENAREF Under selection in the 

Province of Cotopaxi  

ECU-2700-2 Bolivia (UNTA) INIAP-DENAREF Under selection in the 

Province of Cotopaxi  

ECU-722-4 Peru, Mantaro Research 

Experimental Station. 

INIAP-DENAREF  Under selection in the 

Province of Cotopaxi  

ECU-8415 Ecuador, Cotopaxi, 

Salcedo, Cusubamba. 

INIAP-DENAREF Under selection in the 

Province of Cotopaxi  

ECU-740
c
 Peru, Cuzco, Granja Kaira, 

3400 masl 

INIAP-DENAREF  Local cultivar 

ECU-2698
c
 Bolivia, (UNTA) INIAP-DENAREF Local cultivar 

a
INIAP (Instituto Nacional Autónomo de Investigaciones Agropecuarias), DENAREF 

(Departamento Nacional de Recursos Filogenéticos), PRONALEG-GA (Programa 

Nacional de Leguminosas y Granos Andinos) 
b 

I-450 ANDINO cultivar used as control of 

Andean lupine.  
c
Andean lupine landraces from the  collection of Ecuador.  

 

Field plots  

The field experiments were conducted at the Simón Rodríguez Technological Institute of 

Agriculture, located in the Province of Cotopaxi, Latacunga City, Alaquez Parish (latitude 

00º 52‟ 01” S, longitude 78º 37‟ 07” W, altitude 2859 meter above sea level (masl), it is 

located at the central region of Ecuador, 91 km from Quito, the Capital of Ecuador. The 

five selected lupine cultivars and I-450 ANDINO and two local cultivars were evaluated 

under field conditions from January to August 2008 in one trail.  The fields used in this 

study were already used for lupine cultivation during the previous years.  The lupine 

cultivars were planted in a Randomized Complete Block Design with four replications. 



Chapter 2 

32 | P a g e  

There were 32 experimental plots (5.0 x 4.0 meter) with five furrows each.  The distance 

among furrows or rows was one meter. In the rows holes were made at a distance of 0.25 m 

and three seeds were sown in each hole.  At the borders, around the experimental field, I-

450 ANDINO was sown both as a physical barrier and to obtain seeds for further studies.  

Management of the experiment was according to the PRONALEG-GA and INIAP technical 

recommendations (Peralta et al., 2008). At sowing time, the insecticide Endosulfan 4 ml/l 

water, was applied for pest control. Plots were fertilized with the equivalent of 175 kg/ha 

(N-P2O5–K2O: 10-30-10). During the growing season, plots were weeded after 35 days with 

local hoeing instruments. The base of the plant was covered with surrounding soil 57 days 

after planting.  Other pests such as Agrotis ypsilon appeared 60 days after planting. They 

were controlled with Endosulfan 4 ml/lwater. Other diseases affecting aerial lupine plant 

parts were Uromyces sp., Ascochyta sp., Ovularia sp. and Sclerotinia sp. No chemical 

control was used. Data of two local lupine landraces were collected from another 

experiment conducted in the same place at the same period of time.  

 

Evaluation of agronomic traits of selected lupine cultivars 

The percentage of germination was based on the number of seedlings 17 days after 

planting. Plant height at flowering time was the length from the crown to the apical part of 

the main stem. The number of plants at early flowering was recorded the day that the first 

flowers appear at the main stem and when 50% of plants were flowering. The number of 

lateral branches was counted when 50% of the plants were flowering. The number of 

flowers at the main axis was counted when 50% of evaluated plants had flowered. The total 

numbers of pods on the main stem as well as the number of pods on the lateral branches 

were counted at harvest time. This made it possible to calculate the total number of pods 

per plant. Data were collected from ten plants randomly chosen in the experimental units. 

Lupine plants were evenly distributed in the field with equal opportunity to compete for 

space, light, water and nutrients. Pods were threshed to determine the number of seeds per 

pod (the number of seeds from 10 pods of 10 plants was counted and the average 

calculated). The percentage of non-commercial seed was calculated after weighing 

damaged seed and total seed. The weight of a random sample of 100 seeds was also 
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recorded.  Yield was based on the weight of seed (g/experimental unit) and this was 

extrapolated to kg/ha.   

 

Data analysis 

An ANOVA test was carried out to determine statistical differences of twelve agronomic 

traits in the different cultivars.  Agronomic traits with significant (P<0.05) differences 

between cultivars were further analyzed. 

Multivariate analysis was performed to calculate the Euclidian distances between each pair 

of cultivars and the results were compiled into a matrix. Data in this matrix were then used 

both for Cluster Analysis (CA) and Principal Component Analysis (PCA). In CA, the 

cultivars were clustered into hierarchical groups represented in a dendrogram according to a 

weighted average linkage. A cophenetic correlation coefficient was calculated to represent 

the degree of information lost when converting the original distance matrix into a 

dendrogram. 

In PCA, the multidimensional data set (agronomic characters x cultivars) was reduced to a 

two dimensional representation, projecting the original standardized data into an axis 

system obtained by calculated Eigen vectors and values from distance matrix (Dunn and 

Everitt, 1982). An ANOVA test and least standard deviation (5%) was performed to 

establish statistical variability among groups represented in PCA using the INFOSTAT 

software www.infostat.com.arg 

 

Evaluation of nutritional value of the seed 

Samples of 2 g of commercial seed were used to determine the percentage of protein 

(Munshi and Raheja, 2000) by the method of McKenzie and Wallace (1954) and iron and 

zinc concentrations were measured by flame absorption spectrophotometry (Shimatsu, 

Japan, Model 680) according to methods described by AOAC (2005).  An ANOVA test 

was performed using the INFOSTAT software www.infostat.com.arg  and least standard 

deviation (5%) was used to compare the means of treatments. 

 

 

 

http://www.infostat.com.arg/
http://www.infostat.com.arg/
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Results 

 

Evaluation of lupine production 

The questionnaire was answered by 20 to 65-year-old men and women. The main crop that 

farmers cultivate is not lupine but it is in the third place of preferred crops for small farmers. 

Lupine is mainly cultivated as a monoculture. Eighty two percent of the farmers start sowing 

with only 0.5-25 kilos seeds. The yield is between 100 - 150 kilos/ha. Farmers prefer lupine 

plants of 1.0 to 1.4 meters high and with white seeds. These preferences are due to crop 

management and to demand of customers.  Ninety nine percent of planted lupine comes from 

seeds collected by the farmers themselves. The remaining one percent is distributed by 

INIAP. High quality of seeds is mostly not a selection criterion for sowing.  

The majority of farmers have learned to use the technology of planting lupine in furrows. 

However, lack of irrigation makes marginal farmers remain with the old technology of 

dropping a bunch of seed in a hole. 

Farmers do not know lupine cultivars that do not get diseased. Most of them do something to 

control anthracnose in lupine. Some apply chemicals, but they often do not remember the 

name of the product. Small farmers are familiar with the anthracnose symptoms on lupine 

plant.  

 

Evaluation of agronomic traits of selected lupine cultivars 

Data on agronomic characters of the five selected lupine cultivars, the I-450 ANDINO 

cultivar and the two landraces are shown in table 3.  For each pair of characters a Pearson‟s 

correlation was conducted. The number of pods on the lateral branches correlates (r = 0.95) 

with the total number of pods. The pods on lateral branches contributed to the major part of 

the total pod weight. However, in lupine it is expected that main production comes from the 

main steam. The branches produced only 25% of the total pod weight (Hardy et al., 1997). 

It indicates that pod formation in the main steam branches was severely affected in this 

study. The extreme rainfall during the period of study may have been the reason for this. 

For example: under normal conditions I-450 ANDINO produces 10 to 14 pods on the 

central axis and 6 to 8 seeds per pod (Caicedo et al., 1999). In this study, we found 

averages of almost 2.2 pods on the central axis and 1.9 seed per pod (Table 4). 
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Table 4. Means, minimum, maximum, and variation coefficient of agronomic traits of five 

selected lupine cultivars, I-450 ANDINO cultivar and two landraces naturally infected by 

C. acutatum. 

Acronym Min Mean Max Units 

POG 57.00 72.16 87.94 % 

PHF 0.72 1.21 1.46 M 

PEF 29.80 41.83 49.80 % 

LB 10.20 11.84 14.00 no. 

FMA 30.60 39.58 47.20 no. 

PMA 0.40 2.21 7.10 no. 

PLB 1.50 6.06 15.40 no. 

TPP 2.60 7.88 20.90 no. 

SP 0.60 1.91 4.00 no. 

NCS 25.39 45.35 67.00 % 

W100 18.40 33.47 50.38 G 

Y 64.44 124.05 232.78 kg x ha
-1

 

Percentage Of Germination (POG), Plant Height at Flowering time (PHF), Plants at Early 

Flowering (PEF), Lateral Branches (LB), Flowers at the Main Axis (FMA), Pods on the 

Main Axis(PMA), Pods on the Lateral Branches (PLB), Total of Pods per Plant (TPP), 

Seeds per Pod (SP), Non-Commercial Seed (NCS), Weight of 100 seeds (W100), Yield (Y) 

 

The yield was considerably affected and the percentage non-commercial seed was high. 

The yield was on average 124 kg per hectare. That is below the national average of 200 

kg/ha (Censo Nacional Agropecuario, 2003) and also lower as in previous studies with the 

same cultivars in which the lowest yield of I-450 ANDINO was 270 kg/ha  (Peralta et al., 

2003). On average, forty five percent of the harvested seed was non-commercial.  In 

general, these results show the poor adaptation to the wet seasonal periods in the Province 

of Cotopaxi of the selected lupine cultivars. The cumulative rainfall in January-August 

2008 was high (474.9 mm) compared to the average of the preceding eight years (363.6 

mm). Some biotic factors that may have affected agronomic traits, e.g. anthracnose 

susceptibility of selected lupine cultivars in conjunction with the wet seasonal are discussed 

in chapter four.  
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Table 5. Agronomic characters
a
 of a set of five selected lupine genotypes and I-450  

ANDINO cultivar naturally infected by C. acutatum at Simon Rodriguez Agronomic 

Institute, Alaquez, Cotopaxi, Ecuador, 2008 

Lupine 

genotypes 

POG PHF FMA LB PMA SPP Y NCS 

I-450ANDINO 68.4 ab 1.34 cd 39.4 bc 13.6 b 3.4 c 2.8 c 130 ± 24 42.4 ab 

ECU-712-1 67.4 ab 1.26 c 40.1 bc 12.1 a 2.8 bc 2.3 bc 131 ± 34 47.0 ab 

ECU-2658 79.8 c 1.33 cd 40.3 bc 11.2 a 1.0 a 1.9 bc 127 ± 23 38.2 a 

ECU-2700-2 73.2 abc 1.37 d 45.1 d 11.5 a 1.8 abc 1.6 ab 142 ± 20 37.9 a 

ECU-722-4 81.0 c 1.38 d 39.6 bc 11.4 a 1.8 abc 2.0 bc 149 ± 32 40.3 a 

ECU-8415 76.2 bc 1.37 d 41.4 cd 11.4 a 1.3 ab 1.9 b 110 ± 24 42.7 ab 

ECU-2698 62.5 a 0.74 a 34.4 a 11.5 a 2.8 bc 0.9 a 100 ±  1 61.6 c 

ECU-740 68.8 ab 0.92 b 36.3 ab 12.1 a 3.0 bc 1.9 b 104 ±  4 52.6 bc 

         

Mean 72.2 1.2 39.6 11.8 2.2 1.9 124 45.4 

CV (%) 10.4 5.1 7.6 7.5 52.4 32.5 37.2 17.5 

LSD (P<0.05) 10.94 0.09 4.35 1.29 1.68 0.90 67.32 11.56 
a
 In a column, values followed by the same letter are not significantly different al P < 0.05 

according to least standard deviation test. Acronyms used:  POG = Percentage Of 

Germination 17 days after planting, PHF = Plant Height at Flowering (meters), FMA = 

Flowers at the Main Axis, LB = Lateral Branches when 50% of the plants were flowering, 

PMA = Pods on the Main Axis, SPP = Seeds Per Pod, Y = Yield (Kg/ha), NCS = Non-

Commercial Seed percentage. 

 

After the ANOVA test, a set of agronomic traits with high heritability values were chosen 

to be analyzed. For 7 out of 14 characters, significant (P<0.05) differences were found 

(Table 5). ECU-8415, ECU-722-4, and ECU-2700-2 were taller, ECU-2658 and ECU-722-

4 germinated earlier and ECU-2700-2 produced more flowers than the others (Table 5). In 

general, all cultivars had a high percentage of non-commercial seed. The average was 45%. 

Among them, the ECU-2658, ECU-2700-2 and ECU-722-4 had significantly (P< 0.05) the 

lowest percentage of non-commercial seed. Some individual plants of these cultivars may 

have anthracnose tolerance genes. ECU-2698 had the highest percent of non-commercial 

seed.  
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Group 1 Group 2 Group 3

0.00 1.32 2.64 3.96 5.28

ECU-2658

ECU-8415

ECU-722-4

ECU-2700-2

ECU-712-1

ECU-740

I 450 ANDINO

ECU-2698

Weighted average linkage

Euclidea's distance

Group 1 Group 2 Group 3  

Fig 1. Dendrogram relating the eight lupine cultivars used for multivariate analysis of 

agronomic traits, calculated upon clustering of cultivars from a ANOVA test, cophenetic 

correlation coefficient r = 0.86.  Cultivars were grown in a wet seasonal period and 

naturally infected by C. acutatum.. 

 

A multivariate analysis was done with plant height at flowering time, number of seeds per 

pod, percentage of germination, number of lateral branches, percent of non-commercial 

seed, number of flowers at the main axis, and number of pods on the main stem. A 

dendrogram calculated by CA represents the relationship degree between cultivars (Fig 1).  

ECU-2658, ECU-8415, ECU-722-4, and ECU-2700-2 cultivars were group A, the landrace 

ECU-2698 was in group B and the remaining ECU-712-1, I-450 ANDINO and the landrace 

ECU-740 landrace were group C. 
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Fig 2. Projection in a 2-dimensional space of Eigen vectors related with to characters used 

in multivariate analyses, obtained by principal component analysis.  

 

With CA and PCA the characters that determine the three main groups were defined. The 

group A characters are related to vegetative development of lupine and contains plant 

height at flowering and number of flowers at the main axis. The percentage of germination 

is also included in this group. The character defining Group B is the percentage of non-

commercial seed. Group C cluster characters concern reproductive development, such as 

seeds per pod, pods on the main stem, and number of lateral branches. Principal component 

analysis determined that the two axes explained 100% of variability among the groups 

obtained in a neighbor-joining test. Axis one explain 70.6 % and axis two explains 25% of 

the variability (Fig. 2). 

When comparing the means within the three groups in group A plant height at flowering, 

percent of germination, and flowers at main axis were significantly (P< 0.05) higher. The 

cultivar I-450 ANDINO (Group C) was significantly (P<0.05) higher for seed per pod, pods 
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on the main stem, and number of lateral branches than the others. ECU-2698 was in the 

group C with the highest percent of non-commercial seed (Table 6). 

 

Table 6. Agronomic characteristics differences among the three lupine genotype groups 

based on the neighbor joint analysis 
a
.  

 Plant 

height at 

flowering 

Seeds 

per pod 

Percent of 

germination 

Lateral 

branches 

Percent of 

non-

commercial 

seed 

Flowers 

at main 

axis 

Pods on 

main 

stem 

Group A 1.36 a 1.85 b 77.54 b  11.37 a  39.80 a 41.59 c 1.46 a 

Group B 0.74 b 0.90 a 62.50 a 11.45 a 61.63 b 34.45 a 2.75 b 

Group C 1.18 c 2.33 b 68.21 a 12.60 b 47.34 c 38.60 b 3.03 b 

LSD 

(P<0.05) 

0.125 0.59 6.88 0.89 7.47 3.16 1.04 

a
In a column, values followed by the same letter are not significantly different al P < 0.05 

according to Least Significant Difference 

 

Table 7. Nutritional value of seed of five selected lupine cultivars and I-450 ANDINO 

cultivar grown at Simon Rodriguez Agronomic Institute, Alaquez, Cotopaxi, Ecuador, 2008 

Lupine genotype P
*
 Fe

*
 Zn

*
 

I-450 ANDINO 41 b 127b 62 

ECU-712-1 39 a 71 a 36 

ECU-2658 41 b 71 a 41 

ECU-2700-2 41 b 64 a 38 

ECU-722-4 41 b 81 ab 40 

ECU-8415 41 b 53 a 38 

    

Mean 40.4 78 42.7 

CV (%) 1.51 44.53 54.02 

LSD (P<0.05) 0.92 52.26 34.74 
In a column, values followed by the same letter are not significantly different al P < 0.05 according to 

Least Significant Difference. *Each value is the mean of 2 g  of seed samples replicated four times.  

Acronyms used:  P = protein (g/100g), Fe = iron content (mg/kg), Zn = zinc content (mg/kg).  
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Evaluation of nutritional value of selected lupine cultivars 

The protein, iron and zinc content of the six selected lupine cultivars are shown in table 7. 

Only genotype ECU-712-1 had a significantly lower protein content (P<0.05). I-450 

ANDINO had a significantly (P<0.05) higher iron content than the other cultivars. No 

significant differences at the 5% level for zinc concentrations were presented for the six 

selected lupine cultivars. Values ranged from 36 to 62 ppm for zinc content. The highest 

values for the two nutritional elements and protein were found in I-450 ANDINO. 

 

Discussion 

The questionnaire showed that lupine is not the main crop cultivated by small farmers in the 

Province of Cotopaxi. Sixty percent is grown as a monoculture and 40% in association, 

mainly with corn (Peralta et al., 2004). In the Province of Chimborazo, 84% of the farmers 

grow it as monoculture (Censo Nacional Agropecuario, 2003). Lupine production and lack of 

quality are influenced by this continuous monoculture. Lupine productivity is very low under 

the traditional production system of low input small-holders.  However, a lupine harvest of up 

to 1200 kg/ha can be achieved with the application of good agronomic practices and investing 

50 kg/ha of good quality seed (Peralta et al., 2008). For selling, farmers select large seeds that 

do not have lesions or bits. They usually prefer selling the good lupine seeds than using it for 

their own consumption. They do this in order to obtain money and buy another type of food 

that is cheaper and has less nutritional value. Only a small part of the lupine production is 

used for self consumption (Jacobsen and Sherwood, 2002). Establishing programs for mass 

production and consumption of lupine are critical. Finding a high productive lupine seed, 

with good quality and a seed well accepted in the market are the main traits that INIAP 

researchers are selecting in a participatory breeding program (Peralta et al., 2003).  

The survey shows that most farmers use their own low quality seed for sowing. This choice 

makes the next generation of plants is already infected by anthracnose. This is one of the main 

causes of low lupine productivity in marginal areas and the main cause of the spread of seed-

borne pathogens, such as Colletotrichum. Andean lupine cannot compete in the farming 

systems until it is recognized that using high quality seed for next generations will be more 

profitable than selling the high quality seed and sowing the lower quality. According to 

Peralta et al. (2008) neither public nor private industries want to invest resources to grow 
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lupine for just to sell seeds. Lupine, quinoa, amaranto and bean cultivation is mainly done by 

poor Andean farmers and are therefore not representing an interesting market for seed 

industries. Breeders in conjunction with Agrarian Research Local Comities (CIAL‟s in 

Spanish) are responsible for establishing alternative systems to produce lupine seeds of good 

quality. For example, an Artisanal Production System (APS) may be initiated by a farmer or a 

group of skilled farmers that have learned the management of seed. Quality seed with genetic 

identity and high germination rate must be produced. An APS must offer seed at low cost and 

at the appropriate moment (Peralta et al., 2008). The desirable lupine variety should be 

anthracnose resistant, early maturating (6 months or less), height up to 150 cm, good yielding 

(800 kg/ha or more), produce at least 15 pods per plant with at least 8-mm seed size, white 

seeds and high nutritional value (Murillo et al., 2006).   

The agronomic study of the six selected L. mutabilis cultivars and two landraces allowed us 

to evaluate their performance in a very wet period in the Latacunga region. In general, the 

lupine cultivars showed low averages for all agronomic traits. This points out that the 

selected lupine cultivars (released by INIAP) were poorly adapted to Cotopaxi‟s high 

rainfall season in 2008. In order to obtain improvements in seed yield the first step in a 

breeding program is to identify the phenotype adapted to local climatic conditions (Wells, 

1984). In France and UK, large yield improvements of L. albus  were seen in dwarfism, 

determined growth, and vernalizing types. These genotypes were sown early in the autumn 

and resisted freezing damage during winter (Cowling et al., 1998). 

The second step in the breeding program should be to seek quantitative improvements for 

yield and quality which are usually under polygenic control. In this study, the yield of 

studied cultivars showed low averages, even lower than the national yield average of 200 

Kg/ha (Censo Nacional Agropecuario, 2003).  The yield improvements in L. angustifolius 

cultivars from 1973 to 1991 were due to improvements in harvest index, but there was no 

increase in total biomass of the improved cultivars (Tapscott et al., 1994). The harvest 

index increased from 0.24 to 0.29, mostly due to more pods and seeds per plant. However, 

this index is still low compared with other grain legumes (Cowling et al., 1998) indicating 

that there is still much to gain in lupine breeding.  

The set of selected cultivars could be divided in three groups. Group A was based on the 

predominant height of the main axis and vigorous vegetative development, group C 
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characteristics were lower height and had more lateral branches and reproductive capacity. 

Determinacy reduces the number of branches and induces early maturation (Milford et al., 

1993). Determinacy is the result of a change in growth pattern; at a given time in the grown 

cycle, all buds become floral, and no new vegetative organs are formed (Cowling et al., 

1998).  In L. albus, the architecture is influenced by two major genetic systems, restriction 

of branching (determinacy) and dwarfism. In L. mutabilis, two types have been observed, 

the “chocho” a tall annual or biennial plant which has long branches, adapted to the long 

growing seasons of the Andes, and the “tarwi” an annual type from high altitudes in the 

central Andes of Peru and Bolivia which has a dominant main stem, few branches, and 

shorten growing season of 155 days (Tapia, 1990). In this study, we found cultivars that 

belong to the so called “chocho” type (group C) and cultivars to the “tarwi” type (group A). 

The higher number of lateral branches of I-450 ANDINO may be the result of the 

continuous visual selection of INIAP. Group B was associated with a high percentage of 

non-commercial seed and the landrace ECU-2698 showed the highest percentage for this 

trait. Some cultivars (ECU-2658, ECU-2700-2 and ECU-722-4) had lower percentages of 

non-commercial seed. Possible tolerant anthracnose genes may be present in some 

individual plants. The high percentage of non-commercial seed of I-450 ANDINO may be 

due to the continuous use of seed selected by its phenotypic appearance. The level of 

anthracnose infection in commercial seed (visually clean and healthy); seeds with small 

red-brown stains and non-commercial seed (bad quality, diseased, small) and appropriate 

local management of lupine seed is discussed in chapter four of this thesis. Low averages 

for all agronomic traits suggest a poor adaptation of cultivars to the wet season of the 

Province of Cotopaxi. Studies demonstrated that Andean lupine is susceptible to high 

rainfall and prolonged wet seasonal periods causing flower abortion (Hardy et al., 1997). 

From all studied cultivars, only ECU-2700-2 showed high number of flowers at the main 

axis, but the pods at the main stem and seeds per pod of all cultivars were low (Table 5). 

The low seed yield and variable production from year to year are often the main agronomic 

limitations of L. mutabilis. These differences between L. mutabilis and the other species of 

lupine could arise from the lack of human interference in the evolution of L. mutabilis. 

Andean lupine was partially domesticated 3000 years ago in South America. However, its 

use was always hampered by the presence of bitter alkaloids (Jacobsen and Sherwood, 
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2002). In a breeding program, promising individual plants of accessions of the National 

lupine collection  can be used as starting points. The resulting cultivars must be compared 

with the cultivars released by INIAP. It should, of course, be possible to recognize the 

promising individuals based on architecture, tolerance to wet and dry seasons, and tolerance 

to biotic stress such as anthracnose. 

The seeds of the lupine accessions in this study had good protein, iron and zinc content. 

Protein values fluctuated around 40 percent; this is in the same range as in local bitter 

cultivars in Ecuador (INEN, 2004). Iron and zinc concentrations of the selected lupine 

cultivars varied from 53 to 128 ppm and from 36 to 62 ppm, respectively. This is somewhat 

higher than in accessions of L. albus (35 – 77 ppm for iron and 45 to 48 ppm for zinc), and 

in accessions of L. angustifolious (32 to 53 ppm for iron and 48 to 55 ppm for zinc (Trugo 

et al., 1993). The highest values for the two nutritional elements were found in I-450  

ANDINO. Breeding programs should result in better quality Andean lupine.  It is important 

that high nutritional genotypes also have high anthracnose tolerance and abiotic stress 

resistance. 
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Summary 

Anthracnose, caused by C. acutatum, is a serious problem of lupine (Lupinus mutabilis) and 

tamarillo (Solanum betaceum). Morphological features, internal transcribed spacer (ITS) 

sequence analyses, and host specificity tests were used to characterize Colletotrichum 

isolates isolated on lupine and tamarillo. Isolates from each host were compared for the 

diameter of lesions they produced on the main stem of two tamarillo and three lupine 

cultivars. On lupine plants, isolates from lupine caused larger lesions than isolates from 

tamarillo. On tamarillo, isolates from that host caused larger lesions than isolates from 

lupine. Isolates from lupine were highly biotrophic on lupine stems, causing little necrosis 

during the twenty days following infection, even though abundant sporulation could be 

seen. In contrast, isolates from tamarillo sporulated less abundantly on lupine stems and 

produced darkly pigmented lesions. Isolates from lupine produced dark lesions and with 

few spores on tamarillo stems. It indicates that host adaptation is not determined by an 

ability to cause disease but rather by quantitative differences in pathogenic fitness. 

Phenotypic and molecular characterization showed that on both hosts the causal agent of 

anthracnose was C. acutatum. All the isolates from lupine and tamarillo gave a product in a 

C. acutatum-specific polymerase chain reaction (PCR) reaction and no C. gloeosporioides-

specific product could be amplified. Colony diameter, spore shape, and insensitivity to 

benomyl also grouped the lupine and tamarillo anthracnose isolates in the C. acutatum 

group. Phylogenetic analysis was based on comparisons of ITS1 gene sequences. Both 

neighbor-joining and maximum parsimony methods placed the lupine and tamarillo isolates 

from the Ecuadorian Andean zone in two clades with a 98 % similarity between clusters 

and over 99% similarity within the clusters. In each cluster both lupine and tamarillo 

isolates were represented. Isolates of lupine were compared to isolates from other hosts 

around the world and it was shown that the C. acutatum isolates from Andean lupine are 

distinct from other C. acutatum isolates collected on lupine around the world.  

 

Introduction 

Lupine (Lupinus mutabilis) is an Andean legume and is strategic for accomplishing food 

sovereignty of the Andean people.  Lupine is important in human nutrition because of its 

high protein content (>40% in dry grain; INEN, 2004), fat (20%), carbohydrates, minerals 
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and fibers (Jacobsen and Mujica, 2006).  Lupine plays a role in many production systems in 

the Ecuadorian highland. It is cultivated in intercropping, monoculture and rotation systems 

(Peralta et al., 2008).  

Tamarillo (Solanum betaceum), another native Ecuadorian plant, is also important in the 

Ecuadorian agricultural systems. It grows as a small tree or shrub, bearing edible egg-

shaped fruits with a thin skin and soft flesh, when ripe (Sánchez et al., 1996). Traditionally, 

lupine has been cultivated in colder areas between 2500 to 3400 meter above sea level 

(masl), (Caicedo and Peralta, 2000; Llamuca, 2006), and tamarillo between 1000 to 2500 

masl where the temperature is somewhat higher (Sánchez et al., 1996; Llamuca, 2006). Due 

to the increased demand for lupine, this is changing (Terán, 2007) with unavoidable agro-

ecological complications such as changes in susceptibility to diseases like anthracnose. 

Host adaptation of anthracnose has important epidemiological consequences in areas where 

two or more potential hosts grow in close proximity.    

Worldwide there are several species of Colletotrichum that can cause anthracnose on 

legumes, perennial crops, and vegetables (Freeman et al., 1998, Freeman et al., 2000b, 

Talhinhas  et al., 2005). In lupine, anthracnose causes the typical twisting of petioles and 

stems, with dark sunken lesions in the center on which orange conidial masses are produced 

(Fig. 1 A-D). On tamarillo, anthracnose includes depressed black lesions on fruit 

accompanied by erupting pink spore masses in the lesions.  Ultimately, the pathogen 

deforms and the fruit rots away (Fig. 1 F). On the branches the symptoms are dark 

depressed lesions varying in size and form ((Fig. 1 G).  In Ecuador, yield losses due to 

anthracnose can reach up to 100% in lupine (Murillo et al., 2006) and 60% in tamarillo 

(Sánchez et al., 1996; Albornóz, 1992).  The causal agent of anthracnose in lupine (Insuasti, 

2001) and tamarillo in Ecuador (Santillán, 2001; Sánchez et al., 1996; Albornóz, 1992) has 

been referred to as C. gloeosporioides.  

Species identification in Colletotrichum has relied mainly on morphology and host range 

criteria (Freeman et al., 1996).   In the genus Colletotrichum, a range of morphological and 

colony characters are used for species identification. For example, C. acutatum has 

fusiform conidia and slow growing pink colonies (Sreenivasaprasad et al., 1996a).  The 

growth in media amended with benomyl (Adaskaveg and Hartin, 1997) is also a 

discriminating character. Still it is often unreliable to distinguish properly the subspecies 
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(Brown et al., 1996;  Sreenivasaprasad et al., 1996a).  C. acutatum can be pathogenic and 

non-pathogenic and can also grow on a number of different hosts (Sreenivasaprasad and 

Talhinhas, 2005).  The sequence of the internal transcribed spacer (ITS1-2) of ribosomal 

DNA (rDNA) has been used to classify the fungi on lupine (Talhinhas et al., 2002) and 

tamarillo (Afanador-Kafuri et al., 2003).  A combination of morphological and molecular 

techniques in the last years, has identified C. acutatum as the causal agent of anthracnose 

instead of C. gloeosporioides which was originally thought to be the causal agent (Brown et 

al., 1996, Freeman et al., 2000b). The objectives of this study were (i) to determine the 

causal agent of lupine and tamarillo anthracnose in Ecuador based on morphological and 

genotypic characters (ii) to analyze lupine and tamarillo Colletotrichum isolates from 

Ecuador and determine their relatedness with worldwide representatives based on the ITS 

sequence (iii) to assess the pathogenic variability and cross-infection potential of these 

Colletotrichum isolates.  To the best of our knowledge, this is the first study of anthracnose 

in Ecuador in which phenotypic and molecular approaches are combined to characterize the 

population structure of this important pathogen. These findings will help in the 

development of an appropriate disease management and in efficient breeding strategies.    

 

Materials and methods 

 

Fungal isolates 

A total of 18 Colletotrichum spp. isolates were collected from different lupine production 

areas and five Colletotrichum spp. isolates were collected from tamarillo production areas 

(Table 1).  Not all isolates were used in all the analyses and further details are provided in 

the appropriate sections. Stock cultures of the monoconidial isolates were stored at 0 
o
C, as 

dense conidial suspensions in cryotubes. The suspension consists of peat + 10% autoclaved 

sucrose. Isolates were propagated by transferring small amounts of frozen conidial 

suspension from cryotubes to Petri dishes containing potato dextrose agar (PDA - Difco 

Laboratories, Detroit).    

 



Chapter 3 

50 | P a g e  

 

Fig. 1.  Anthracnose symptoms caused by natural infection of C. acutatum on lupine (L. 

mutabilis) A. On leaves.  B. On the apical main stems.  C. On the main stems. D. On the 

pods.  E. On the seed.   F. Anthracnose symptoms on tamarillo (S. betaceum) fruit. G. 

Symptoms on tamarillo main stem. H. A tamarillo plant in a nursery. I. Tamarillo plant in 

the field affected by anthracnose.   
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Table 1.  Colletotrichum spp. isolates collected in Ecuadorian provinces  

Original 

code 

Host species Affected 

tissue 

Location,  province Collection 

date 

Lup1 Lupine  Stem Juan Montalvo, 

Cotopaxi 

2007 

Lup2 Lupine Stem Pangigua grande, 

Cotopaxi 

2007 

Lup3 Lupine Stem Pusuchusi, Cotopaxi 2007 

Lup4 Lupine Stem Picualo Alto, Cotopaxi 2007 

Lup5 Lupine Stem San Juan, Cotopaxi 2007 

Tam6 Tamarillo  Fruit San Pablo, Imbabura 2007 

Tam7 Tamarillo  Fruit Ibarra, Imbabura 2007 

Lup8 Lupine Stem San Marcos, Cotopaxi 2007 

Lup10 Lupine Stem El Tejar, Cotopaxi 2007 

Lup11 Lupine Stem Chinchil, Cotopaxi 2007 

Lup12 Lupine Stem Chinchil Robayo, 

Cotopaxi 

2007 

Lup14 Lupine Stem Canchicera, Cotopaxi 2007 

Lup16 Lupine Stem San Francisco, 

Cotopaxi 

2007 

Lup18 Lupine Stem Pujili, Cotopaxi 2007 

Tam20 Tamarillo Fruit Guallabamba, 

Pichincha 

2010 

Lup21 Lupine Stem Tixan, Chimborazo 2010 

Lup24 Lupine Stem Guamote, Chimborazo 2010 

Lup28 Lupine Stem Palmira, Chimborazo 2010 

Lup30 Lupine Stem Lican, Chimborazo 2010 

Lup31 Lupine Stem Guazazo, Chimborazo 2010 

Lup32 Lupine  Stem San Andres, 

Chimborazo 

2010 

Tam33 Tamarillo Fruit Atuntaqui, Imbabura 2011 

Tam34 Tamarillo Fruit Cotacachi, Imbabura 2011 

IMI 

356878 

AJ536229
*
 

Olive (Olea 

europaea subsp. 

europaea) 

Fruit Montsia, Tarragona - 

Spain 

2003 

*
 Reference isolate IMI 356878 (AJ536229.1) (C. gloeosporioides) from olive (Olea 

europaea subsp. europaea) was kindly provided by Dr. Pedro Martinez-Culebras (IATA, 

Universidad de Valencia – Spain). 

 

Morphological studies 

Each isolate was grown on PDA for 10 days.  A conidial suspension was prepared and 

adjusted to 10
6
 conidia/ml.  Fifteen µL was pipetted in the center of a Petri dish (PDA 
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amended with 500 mg/l Cloramphenicol (Chloromycetin Parke Davis Co.). Colony 

characteristics (transparency, presence of conidial masses, concentric bands, pigment color, 

concentric bands color, size of the pigment across surface) were recorded from cultures 

grown at 17 ± 2
 o 

C in day light.  The growth rate of all isolates on PDA at 15, 20, 25 and 30 

o 
C in the dark was measured.  Each isolate had 3 replications which were daily evaluated 

during 5 days. The experiments were conducted twice and the means were reported. The 

colony radius with three replicates, four measurements per replicate was analyzed using 

analysis of variance and the least significant difference determined with the Statistic 

Software Infostat (www.infostat.com.arg).  Spore size and shape were measured after five 

days of incubation.  Benomyl sensitivity of the isolates was assessed by comparing colony 

radius on PDA and PDA amended with 2 mg/l benomyl (Benlate 50WP, DuPont). Six 

isolates from lupine and three isolates from tamarillo were tested in duplicate, and the 

experiment was conducted twice. Colony radius mean values of both experiments were 

compared with isolates grow on PDA and the reference isolate of C. gloeosporioides IMI 

356878 (AJ536229.1). A colony radius reduction (>30 %) was considered positive.   

 

DNA preparation 

Lupine and tamarillo isolates were grown on PDA medium at 25 °C for 6 days. Mycelium 

was collected from the plates with a scalpel, frozen in liquid nitrogen and ground in a 

mortar to a fine powder. DNA extractions were performed using approximately 100 mg of 

powder mycelium with the help of the commercial EZNA Fungal DNA kit (Omega Bio-

tek, Doraville, USA) according to the manufacturer's instructions. DNA  samples were 

diluted to a final concentration of 50 to 100 ng/µl. 

 

Taxon-specific PCR amplification  

PCR primers for taxon specific amplification included the ITS4 (White et al., 1990) primer 

coupled with specific primers for C. acutatum (CaInt2) (GGGGAAGCCTCTCGCGG) and 

for C. gloeosporioides (CgInt) (GGCCTCCCGCCTCCGGGCGG) (Brown et al., 1996).  

PCR reactions were performed for 30 cycles (30 s at 95°C, 30 s at 60°C and 1.5 min at 

72°C). Amplification products were separated in agarose gels (1.5%, wt/vol) in Tris-

http://www.infostat.com.arg/
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acetate-EDTA buffer (Sambrook  et al., 1989) at 80 V for 2 h. A 100 bp ladder (Invitrogen, 

USA) was used as molecular standard.    

       

PCR amplification and sequencing of ITS1, 5.8S and ITS4 regions of the rDNA genes 

Universal PCR primers were used (ITS1, TCCGTAGGTGAACCTGCGG and ITS4, 

TCCTCCGCTTATTGATATGC) for amplification of the ITS1 and ITS4 regions between 

the small and large nuclear rDNA, including the ITS2 and the 5.8S rDNA, as described by 

White et al., (1990). PCR reactions were done on a Techne DNA Thermal Cycler TC-512 

in 100 μl, containing 50–100 ng of DNA, 50 mMKCl, 10 mMTris-HCl (pH 7.5), 80 μM 

(each) dNTP, 1 μM of each primer, 2 mM MgCl2 and 1 U of DNA polymerase (Invitrogen, 

USA).  The temperature regime of the 40 cycles was 30 sec. at 95 °C, 1 min at 44 °C and 1 

min at 72 °C.   

 

Sequence procedure 

PCR products were purified with the UltraClean PCR Clean-up DNA Purification kit 

(MoBio, USA) and sequenced using the TaqDyeDeoxy™ terminator cycle sequencing kit 

(Applied Biosystems, UK), according to the manufacturer's instructions in an Applied 

Biosystems automatic DNA sequencer model 373A.  

 

Phylogenetic analysis 

ITS sequences obtained in this study were compared with ITS sequences of other lupine 

isolates (C. acutatum, C. lupini var. lupini, C. lupini var. setosum), tamarillo (C. acutatum) 

and also with C. acutatum isolates from other hosts from all over the world. All ITS 

sequences including those of C. fragaria, C. gloeosporioides, and C. falcatum were 

obtained from the GenBank. Neurospora crassa was used as outgroup (Chambers et al., 

1986). The genetic distances were calculated using the Jukes–Cantor model and the 

phylogenetic inference was obtained by the neighbour-joining (NJ) method (Saitou and 

Nei, 1987). The NJ tree and the statistical confidence of a particular group of sequences in 

the tree, were evaluated by bootstrap test (1000 pseudoreplicates) (Hills and Bull, 1993), 

and sequences were aligned using the program MegAlign version 5.08. Complete ITS1-

ITS4 sequences of the isolates are deposited in GenBank (www.ncbi.nlm.nih.gov/genbank).       

http://www.ncbi.nlm.nih.gov/genbank
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Agressiveness on alternate host  

Differential aggressiveness for five isolates from lupine and five from tamarillo was tested 

in a cross-inoculation experiment. This study used 1.5-months-old lupine seedlings and 2.0- 

months-old tamarillo seedlings. Each isolate was evaluated on the host from which it was 

isolated (host of origin) and on the other host (alternate host). Three susceptible cultivars of 

lupine (ECU-2658, ECU-7112-1, and ECU-722-4) and two susceptible cultivars of 

tamarillo (Gigante comun and Comun) were used. Inoculum was prepared by flooding PDA 

plates, on which the isolate was growing for 10 days at 25 
o
C, with 4 ml 0.01% Tween-80 

solution and rubbing with a sterile glass rod. The conidial suspensions were diluted to a 

final concentration of 10
6
 conidia per ml saline solution (0.05% NaCl+  0.01% Tween-80).  

A hypodermic syringe with a 0.2 mm-diameter and 0.3 mm-depth was used to injure lupine 

or tamarillo plants at the apical main stem. A 20 µl droplet of conidia (10
6
 conidia/ml) was 

used for inoculation. The inoculated lupine and tamarillo plants, along with appropriate 

controls, were incubated in a tunnel greenhouse with 100% relative humidity at 20 ± 2 
o 

C. 

Lesion size was measured with a ruler parallel to the main stems twenty days after 

inoculation. Symptoms were compared on both hosts.  At the end of the study, pathogen 

was isolated from lupine or tamarillo stems, in order to verify it was really Colletotrichum 

(colony and spore characteristics). The significance of the interaction between isolates and 

hosts was tested with analysis of variance (ANOVA). Each plant-pathogen combination 

was represented by three plants of lupine for each pot or one plant of tamarillo per pot and 

replicated three times. One wound was made in each lupine plant and two wounds per 

tamarillo plant. The mean of three or two lesions (for lupine or tamarillo, respectively) was 

the basic unit for analysis. The source of variance analyzed were the (inoculated) host 

(lupine or tamarillo), the original host of the isolate (lupine or tamarillo), and the 

combination original host x inoculated host.               

 

Results 

Culture and morphological characteristics 

The colony morphology of all isolates (upper and lower surface) was consistent with 

published descriptions of C. acutatum species (Sutton, 1992). All isolates presented either a 

white-pink or a gray-pink pigmentation on the back of the colony. Pink-salmon colored 
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spores is a characteristic of C. acutatum in formal descriptions (Sutton, 1992). The growth 

of the isolates was regular and progressive on PDA and after 10 days at 17 ± 2
 o 

C at day 

light, the Petri dish was covered for 1/3 to 2/3 in case of  the lupine isolates and almost 

fully covered in case of tamarillo isolates.  During their growth, 3 out of 8 of the lupine and 

tamarillo isolates formed white to pale aerial mycelium which is cottony and often dense 

near the centre and the other 5 developed olive-grey mycelium (Figure 2A vs Figure 2B, C 

and D). Concentric white and dark-pink circles were seen on the mycelium. The tamarillo 

isolates were growing differently, either with white mycelium slowly turning to a salmon 

color and without concentric circles (Figure 2E), or with white mycelium slowly turning 

gray and producing circles around the center of the culture (Figure 2F). In general, the 

colony color changed in time from white to dark, but conidia were consistently pink-

salmon. C. acutatum isolates from lupine formed a pink-salmon pigment and tamarillo 

isolates a pink-yellow pigment on PDA.    

Mycelial radial growth showed a high variability at 15, 20 and 30 
o 

C in the dark (Table 2). 

Growth rate was better reproduced at 25 
o
C. At this temperature, the isolates could be 

divided in three groups; the slow growing group (Lup4), the fast growing group (Tam6, 

Tam7 and C. gloeosporioides reference isolate), and an intermediate growing group (Lup1, 

Lup14, Lup16, Lup18, Lup28, and Tam20).  Above 25 
o
C the growth rate of the fungi 

reduces.  

The shape of  the spores varied between lupine isolates at 17 ± 2
 o 

C.  Spores of isolates Lup 

1 and Lup 28 were ovoid, with one round and one acute end (Fig 2A), but spores of the 

others lupine isolates were mostly cylindrical with round ends, that resemble C. 

gloeosporioides (Fig 2B-D). Spores of tamarillo isolate Tam6 had acute ends typical for C. 

acutatum (Fig 2E), Tam7 and Tam20 had one round and one acute end (Fig 2F).      

Length and width ranges of the spores of the lupine and tamarillo isolates overlap (Table 3). 
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Fig. 2.  Colony and conidial morphological variability of C. acutatum isolates from lupine 

(L. mutabilis) and tamarillo (S. betaceum) grown for 10 days at 17 ± 2
 o 

C at day light on 

PDA plates.  A. Inverse colony surface and spore shape of isolate Lup 1.  B. Inverse colony 

surface and spore shape of isolate Lup 14. C. Upper colony surface and spore shape of 

isolate Lup 16. D. Upper colony surface and spore shape of isolate Lup 18, and  E. Upper 

colony surface and spore shape of isolate Tam 6 and F. Upper colony surface and spore 

shape of isolate Tam 20 (each division line = 10.0 µm).  
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Table 2. Cumulative myceliar radial growth at four selected temperatures of Colletotrichum 

isolates from L. mutabilis and S. betaceum for 5 days on PDA in the dark, relative 

sensitivity in PDA amended with benomyl, and polymerase chain reaction (PCR) 

amplification products using primers CaInt2/ITS4 and CgInt/ITS4 

Isolate Radial growth for five days (mm)
 a
 Benomyl 

sensitivity
b
 

Primer reaction
 c
 

15
o
C 20

o
C 25

o
C 30

o
C Mean CaInt2 CgInt 

Lup 1 40.1 41.7 48.6 29.2 39.9 + + - 

Lup 4 45.4 45.4 44.0 24.6 39.9 + + - 

Lup 14 41.2 36.3 54.4 25.7 39.4 + + - 

Lup 16 39.4 37.0 59.3 29.7 41.4 + + - 

Lup18 44.0 44.0 60.6 36.5 46.3 + + - 

Lup28 44.8 44.3 49.9 18.2 39.3 + + - 

Tam6 47.7 35.6 64.8 21.0 42.3 + + - 

Tam7 51.7 48.5 64.6 23.7 47.1 + + - 

Tam20 45.4 43.5 60.0 21.1 42.5 + + - 

IMI 

356878
*
 24.5 40.2 64.5 28.5 39.4 

 

- 

 

- 

 

+ 

Mean 42.4 41.7 57.1 25.8 41.7    
a
 Radial growth of isolates on PDA at selected temperatures in the dark was measured using 

colonies initiated from 15 µl droplet 1 x 10
6
 conidia x ml

-1
.  Each isolate had 3 replications, 

4 measurements per replicate, which where daily evaluated for up to 5 days. 
b
 Benomyl 

sensitivity of the isolates was assessed by comparing colony radius on PDA and PDA 

amended with 2 mg liter
-1 

benomyl (Benlate 50WP, DuPont), growth (+) or non-growth (–) 

mycelial reaction. 
c
Taxon-specific primers CaInt2 (C. acutatum), and CgInt (C. 

gloeosporioides) were coupled with primer ITS4 for species identification; a positive (+) or 

negative (–) reaction with fungal DNA of each isolate is designated. 
*
 Reference isolate IMI 

356878 (AJ536229.1) (C. gloeosporioides) from olive (Olea europaea subsp. europaea) 

was included.  

 

Benomyl test 

The benomyl sensitivity assay indicated differences between C. acutatum and C. 

gloeosporioides. Lupine and tamarillo isolates showed myceliar radial growth of 30 to 50% 

in comparison with the controls. This response was considered a positive benomyl 

sensitivity response (Table 2). The reference isolate of C. gloeosporioides IMI 356878 

(AJ536229.1) did not show any myceliar radial growth in PDA amended with benomyl. 
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Table 3.  Conidia type and colony morphology of representative isolates of Colletotrichum 

spp. from lupine and tamarillo species in Ecuador grown for 10 days at 17 ± 2
 o 

C in day 

light on PDA plates. 

Isolate Host Conidia morphology 

and size 

Colony morphology in PDA 

Lup1 

Lup28 

Lupine Ovoid, one round and 

one acute ended 

spores, measuring  

from 10.0 to 13.0 by 

4.5 to 5.0 μm 

Transparent, cottony, and low density 

colonies with abundant pink-orange 

spore masses in the center, transparent 

concentric bands, pink-salmon pigment 

covers 1/3 of the colony surface, no 

setae or “hair-like structures” present. 

Lup14 

Lup16 

Lup18 

Lupine Cylindrical, rounded 

ends spores or one 

round and one acute 

ended, measuring 

from 12.5 to 18.0  by 

5.0 to 5.5 μm 

Gray-olive, felty and medium dense 

colonies with pink spore masses, dark 

concentric bands, sclerotia present, 

pink-salmon pigment covers 2/3 to 3/3 

of the colony surface, setae presence or 

not.  

    

Tam6 Tamarillo Elliptic, pointed at 

both ends. Size is 

12.5 to 18.0 by 2.5 to 

4.5 μm 

White mycelium, turning salmon with 

age due to proliferation of spore masses; 

no sclerotia present; setae present, no 

concentric bands presence, yellow-

salmon pigment cover 2/3 of the colony 

surface. 

Tam7 

Tam20 

Tamarillo Elliptic and pointed 

at one end  measuring 

from 14.0 to 18.5 by 

4.5 to 6.0 μm 

White mycelium turning gray and 

powdery with pink spore masses, 

salmon in color, produced outward in 

circles from the center of the culture, 

sclerotia present, setae present, 

concentric circles form the center of the 

colony, yellow-salmon pigment covers 

2/3 to 3/3 of the colony surface. 

 

 

Species-specific primer analyses 

DNA from ten Colletotrichum isolates collected from lupine and tamarillo was isolated.  A 

490-bp DNA fragment was amplified with the C. acutatum-specific primers CaInt2 and 

ITS4 in all lupine and tamarillo isolates. The C. gloeosporioides-specific 450-bp DNA 

fragment was only amplified in the reference isolate C. gloeosporioides IMI 356878 

(AJ536229.1) (Table 2). These results show that C. acutatum is the species that causes 

lupine and tamarillo anthracnose. 
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Sequencing of rDNA region 

Colletotrichum isolates from lupine (Lup1, Lup12, Lup14, Lup16, Lup18, Lup24, Lup28) 

and from tamarillo (Tam6, Tam7, Tam20) were used for sequence analysis of the ITS1-2 

sequence. The results were compared to published Colletotrichum ITS sequences from 

lupine (Nirenberg et al., 2002, Talhinhas et al., 2002), tamarillo (Afanador-Kafuri et al., 

2003), strawberry (Martinez-Culebras et al., 2003), and olive (Talhinhas et al., 2005, 

Talhinhas  et al., 2009) in the EMBL database.  Sequences of additional representative 

isolates of the species C. gloeosporioides, C. fragariae, and C. falcatum were also included 

(Martinez-Culebras  et al., 2003) (Table 4). The phylogenetic analyses of 32 taxa of 

Colletotrichum were done by applying the neighbour-joining and maximum composite 

likelihood models (Figure 3).  Phylograms were generated to confirm inter-specific 

separation of C. acutatum from lupine and tamarillo with C. gloeosporioides, C. fragariae, 

and C. falcatum. Removing highly variable positions from the  sequence analysis did not 

affect tree topology. Sequence analysis confirmed that all lupine and tamarillo isolates were 

C. acutatum.  

Phylograms were also generated to determine whether any intra-specific differences among 

C. acutatum from lupine and tamarillo can be revealed using ITS sequences. Most 

Ecuadorian C. acutatum lupine isolates are in one new subgroup (I) in which also Tam6 is 

placed.  Tamarillo isolates (Tam7 and Tam20) belong to another subgroup (III) together 

with Lup28 and with isolates of tamarillo from Colombia (Afanador-Kafuri et al., 2003). 

The other subgroups in the phylogenetic tree consisted of isolates from other studies around 

the world. For instance, one C. acutatum isolate from lupine (Talhinhas et al., 2002), one 

from strawberry (Martinez-Culebras et al., 2003) and two from olive (Talhinhas et al., 

2004, 2005) formed subgroup II. Subgroup IV consisted of one C. acutatum from lupine 

(Talhinhas et al., 2002), one from olive (Talhinhas et al., 2004) and four C. lupini from 

lupine (Nirenberg et al., 2002).  One isolate C. acutatum from primula (Nirenberg et al., 

2002) and one Colletotrichum sp. from lupine (Talhinhas et al., 2002) were placed within a 

separate cluster (subgroup V) (Figure 3).  
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Table 4.  Internal transcribed spacer 1 and 2 sequences of Colletotrichum isolates used in this study  

Isolate code EMBL  

accession 

Determination by the 

authors as 

Host Country 

BBA 70343 

PD 93/1373 

AJ301915 C. acutatuma Primula Netherlands 

PD 

BBA 70344 

PD 93/1436 

AJ301916 C. lupini var. setosum a Lupinus sp. Netherlands 

PD 

BBA 700073 AJ301927 C. lupini var. setosum a Lupinus polyphyllushyb Germany 

BBA 63879 AJ301930.1 C. lupini var. lupini a Lupinus mutabilis Bolivia 

BBA 70884 AJ301948 C. lupini var. lupini a Lupinus albus Ukraine 

 AJ300558 Colletotrichum sp. b Lupinus angustifolius Portugal 

 AJ300563 Colletotrichum sp. b Lupinus mutabilis Portugal 

 AJ311391 C. acutatum b Lupinus albus Canada 

 AJ300558 C. acutatum b Lupinus albus. Portugal 

 AJ749674 C. acutatumc Olea europaea 

subsp. europaea 

Portugal 

 AJ749679 C. acutatum d Olea europaea 

subsp. europaea 

Portugal 

 AM991131 Glomerella  acutata e Olea europaea 

subsp. europaea 

Portugal 

 AM991137 Glomeralla  acutata e Olea europaea 

subsp. europaea 

Portugal 

Lup 1 JN543059 f C. acutatum  Lupinus mutabilis Ecuador 

Tam 6 JN543069 f C. acutatum Solanum betaceum Ecuador 

Tam 7 JN543070 f  C. acutatum Solanum betaceum Ecuador 

Lup 12 JN543060 f C. acutatum Lupinus mutabilis Ecuador 

Lup 14 JN543061 f C. acutatum Lupinus mutabilis Ecuador 

Lup 16 JN543062 f C. acutatum Lupinus mutabilis Ecuador 

Lup 18 JN543063 f C. acutatum Lupinus mutabilis Ecuador 

Tam 20 JN543071 f C. acutatum Solanum betaceum Ecuador 

Lup 21 JN543064 f C. acutatum Lupinus mutabilis Ecuador 

Lup 24 JN543065 f C. acutatum Lupinus mutabilis Ecuador 

Lup 28 JN543066 f C. acutatum Lupinus mutabilis Ecuador 

Lup 30 JN543067 f C. acutatum Lupinus mutabilis Ecuador 

Lup 31 JN543068 f C. acutatum Lupinus mutabilis Ecuador 

 AF521205 C. acutatum g Solanum betaceum Colombia 

 AF521210 C. acutatum g Solanum betaceum Colombia 

345034 AJ536207 C. acutatum h Fragaria x ananassa Australia 

356878 AJ536229 C. gloeosporioides h Fragaria x ananassa Italy 

345047 AJ536223 C. fragariae h Fragaria x ananassa USA 

347765 AJ536231 C. falcatum h Fragaria x ananassa Bangladesh 
a  

Isolate sequenced by Nirenberg et al. 2002  Mycologia 94 (2), 307–320 
b
 Isolate sequenced by Talhinhas et al. 2002 Phytopathology 92 (9), 986-996  

c
 Isolate sequenced by Talhinhas et al. 2005 (EMBL direct submission) 

d
 Isolate sequenced by Talhinhas et al. 2005 Appl. Environ. Microbiol. 71(6), 2987-2998  

e  
Isolate sequenced by Talhinhas et al. 2009 FEMS Microbiol. Lett.296, 31-38 

f  
Isolates sequenced by the authors.  2011(EMBL accession number) 

 

g
 Isolate sequenced by Afanador-Kafuri et al. 2003  Phytopathology 93 (5), 579-587 

h
 Isolate sequenced by Martinez-Culebras et al. 2003 J. Phytopathology 151, 135–143 
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Fig. 3. Neighbor-joining consensus tree depicting relationships among Colletotrichum 

isolates from L. mutabilis, S. betaceum and other hosts around the world based on internal 

transcribed spacer sequences. One thousand bootstrap data sets and Jukes-Cantor method 

were used. Other isolate sequences are identified with species designations (C. falcatum; C. 

fragariae, C. gloeosporioides). Neurospora crassa was used as outgroup. Database 

accession number is provided for reference sequences of table 1. 
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Homology values were calculated according to a data matrix from the sequence divergence 

(data not shown). Sequence analysis showed homology levels from 99.1 to 100% in 

subgroup I and from 97.8 to 100% in subgroup III (Afanador-Kafuri et al., 2003). Subgroup 

II demonstrated also homology levels of 100% among lupine and olive isolates from 

Portugal (Talhinhas  et al., 2004, 2005) and 98.6% homology with one strawberry isolate 

from Australia. Subgroup IV included two  C. lupini var. lupini sequences (Bolivia and 

Ukraine), two C. lupini var. setosum (Netherlands and  Germany) (Nirenberg et al., 2002), 

one C. acutatum of olive (Portugal) (Talhinhas  et al., 2004) and one from lupine (Canada) 

(Talhinhas et al., 2002) with similarities from 99.1 to 99.8 %. There were 752 positions in 

the final dataset, of which 63 were parsimony informative. Tree topology was similar for 

NJ and MP trees with respect to placement of taxa. 

 

Agressiveness on alternate host  

Five C. acutatum isolates from lupine and five from tamarillo were tested for their 

aggressiveness on lupine and tamarillo plants.  The interaction between the inoculated host 

and the source of the pathogen (lupine or tamarillo) was highly significant (P<0.0001) for 

lesion length (Table 5), and was also evident by visual examination of plotted means of 

lesion length (Fig. 4) after 20 days of inoculation. On lupine stems, isolates from lupine 

caused the largest lesions, on tamarillo stems, isolates from this host caused larger lesions 

than isolates from lupine did. 

 

Table  5.  Analysis of variance of the lesion length using a general linear model 
a
 

 

Variable 

Lesion  length 

df MS Fvalue Pvalue 

Inoculated host (I) 1 2.67 0.05 0.8196 

Host of origin (H) 1 339.79 6.65 0.0109 

I x H 1 1144.69 22.40 <0.0001 
a
 Components of variance are the inoculated host (lupine or tamarillo) in this assay, host of 

origin (lupine or tamarillo) from which isolates were collected, and the combination 

inoculated host per original host of the isolates; df = degree of freedom, MS = mean square.  

 

Symptoms expression on lupine was different for the two populations of C. acutatum 

studied here. Isolates from lupine were highly biotrophic in lupine, producing little or no 

necrosis on lupine stems after twenty days following infection. Abundant salmon-colour 
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sporulation and intense production of mycelium were also observed 7 days after 

inoculation. In contrast, isolates from tamarillo sporulated less abundantly on tamarillo and 

induced dark pigmentation in the lesions, sporulation was seen 15 days after inoculation. In 

the host cross test, isolates of tamarillo were also biotropic on lupine stems producing little 

necrosis with sporulation after 7 days, but isolates of lupine produced dark pigmentations 

with almost no sporulation in tamarillo stems.   

 

Table 6. Diameter (mm) of lesions on three lupine cultivars and two tamarillo cultivars 

caused by isolates of C. acutaum 

 Lupine cultivars Tamarillo cultivars 

Source isolate 

ECU-

2658 

ECU-

7112-2 

ECU- 

722-4 Mean 

Gigante 

comun Comun Mean 

Tamarillo        

Tam 6 13.33 18.66 16.00 16.00 22.00 18.33 20.17 

Tam 7 16.00 16.00 16.00 16.00 22.00 14.66 18.33 

Tam 20 6.00 8.00 13.33 9.11 22.00 22.00 22.00 

Tam 33 16.00 5.33 21.33 14.22 22.00 14.66 18.33 

Tam 34 18.66 10.66 10.66 13.33 18.33 11.00 14.67 

Mean 14.00 11.73 15.46 13.73 21.27 16.13 18.70 

 

Lupine     

   

Lup 1 24.00 21.33 21.33 22.22 22.00 22.00 22.00 

Lup 4 24.00 24.00 24.00 24.00 22.00 22.00 22.00 

Lup 14 18.66 13.33 24.00 18.66 22.00 14.66 18.33 

Lup 18 24.00 21.33 24.00 23.11 14.66 0.00 7.33 

Lup 28 21.33 24.00 24.00 23.11 18.33 3.66 11.00 

Mean 22.40 20.80 23.47 22.22 19.80 12.46 16.13 
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Fig. 4. Histogram of an aggressiveness test based on average lesion length on lupine or on 

tamarillo main stems caused by isolates of C. acutatum collected from lupine and tamarillo. 

Error bars indicate ± standard error of the means. 

 

Discussion 

Colony color can be considered a preliminary differentiation of Colletotrichum species. All 

isolates examined were typical C. acutatum. Some Colletotrichum lupine isolates produced 

white mycelium with salmon-pink conidia and white pale concentric rings (Figure 2A) and 

others grow in concentric rings with light to brown gray aerial mycelium (Figure 2BCD). 

Based on these morphological features Nirenberg et al., (2002) named the first type C. 

lupini var. lupini and the second type C. lupini var. setosum. Tamarillo isolates produce 

white mycelium turning salmon with age due to proliferation of spore masses (Figure 2 

EF).  

Growth rate and pigment can also be considered as parameters to differentiate isolates of 

lupine and tamarillo. C. acutatum lupine isolates grow slower than tamarillo isolates and 

produce a pink-salmon pigment (tamarillo isolates produce a pink-yellow pigment). Based 

on the colony growth rate of lupine isolates at 25 
o 

C, Talhinhas  et al., (2002) divided  C. 

acutatum isolates of lupine in only two groups (slow and fast); isolates from other species 
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such as C. gloeosporioides, C. falcatum, and C. graminicola  were all fast growing.  

Nirenberg et al., (2002) described that C. lupini var. lupini grows on PDA slower than C. 

lupini var. setosum. 

Colletotrichum isolates in this study were notoriously unstable when cultured at room 

temperature in day light. The colony color can change in time (Du et al., 2005). Mycelial 

radial growth was comparatively reduced and conidia were consistently not well swollen 

when C. acutatum isolates where grown at 30 
o 

C. Other studies indicate that fungal growth 

was observed at temperatures from 10 to 30 
o
 C with maximum growth rate occurring at 25 

o
 C (Nirenberg et al., 2002; Thomas et al., 2008). It shows that C. acutatum is adapted to 

higher altitudes with lower temperatures.  

The morphology from conidia can be used as a preliminary differentiation of C. acutatum 

isolates, but not spore size because there is too much variation. The basic shape of conidia 

produced by lupine Colletotrichum species was ovoid with either one rounded and one 

pointed end (Figure 2A) or with a cylindrical shape  (Figure 2 B-D). Cylindrical spores 

have often been associated with C. gloeosporioides (Sutton, 1992) and this might be the 

reason that others have seen C. gloeosporioides as the causal agent of anthracnose in 

lupine. For instance, cylindrical formed spores might were the reason for Yang and 

Sweetingham (1998) and Elmer et al., (2001) to assume that C. gloeosporioides was the 

causal agent of lupine anthracnose and not C. acutatum, although molecular analysis with 

Random Amplified Polymorphic DNA (RAPDs) isolates showed low similarity with C. 

gloeosporioides. Other authors mention that C. fragariae, with conidia pointed only at one 

end, is the only species that is very similar in morphology to C. lupini, especially to var. 

setosum described by Nirenberg et al. (2002).  In our study we found cylindrical, pointed at 

one end or ovoid spores of C. acutatum (Fig. 2 A-D). Spores of tamarillo isolates had either 

acute ends typical for C. acutatum or one round and one acute end (Fig 2E-F). 

Morphology of conidia can be affected by differences in artificial conditions but direct 

identification of isolates coming from the plant is also difficult because conidia morphology 

varies during the infection process. In C. acutatum some conidia deviate in development. 

For instance, some conidia can produce secondary conidia directly without producing a 

germ-tube first. If conidia produce a germ-tube it grows along the plant surface until it 

come into contact with other C. acutatum hyphae or conidia (Wharton and Dieguez-
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Uribeondo, 2004). The use of morphological features to distinguish Colletotrichum taxa is 

tricky due to the lack of standardized protocols and international rules. In this study, we 

have shown that spore form, colony appearance, colour of pigment in the media after 10 

days of incubation at 17 ± 2 
o 

C and radial mycelial growth rate can be used for a 

preliminary characterization of Colletotrichum isolates. However, taxonomic relationships 

within the genus are unlikely to be resolved only by the use of traditional morphological 

characters (Sutton, 1992) and the significance of morphological characters as indicators of 

evolutionary relationships is unknown (Cannon et al., 2000).  

C. acutatum can also be distinguished based on the ability to grow on PDA with 2 mg/l 

benomyl, C. gloeosporioides like reference isolate IMI 356878 (AJ536229.1) doesn‟t grow 

on this medium (Table 2). It is critical to know the pathogen species in order to develop 

effective disease management. Moreover, differential sensitivity of mixed Colletotrichum 

populations to fungicides, such as benomyl can pose problems in disease control, as well as 

to shifts in pathogen populations (Freeman et al., 2000). 

The C. acutatum and C. gloeosporioides-specific primers used here reliably differentiate 

isolates from lupine and tamarillo to the species level (Table 2). These primers have been 

utilized in numerous studies. By using this approach, it was shown that C. acutatum is the 

causal agent of lupine in Portugal (Talhinhas et al., 2002), tamarillo anthracnose in 

Colombia (Afanador-Kafuri et al., 2003), almond anthracnose in California (Förster and 

Adaskaveg, 1999), and that both C. acutatum and C. gloeosporioides are responsible for 

anthracnose of olive in Portugal (Talhinhas  et al., 2005). In this study, the use of specific 

primers determined that C. acutatum is the causal agent of lupine and tamarillo anthracnose 

in the Ecuadorian Andean zone. 

ITS sequence analysis is reliable for phylogeny and systematics of Colletotrichum spp. 

(Freeman et al., 2000a,  Sreenivasaprasad  et al., 1996b). We targeted the complete internal 

transcribed spacer ITS (ITS 1–5.8S-ITS 2) because of the high degree of variation that can 

be found even between closely related species (Freeman et. al., 2001; Sreenivasaprasad  et 

al., 1996a).  In previous studies already many ITS regions of Colletotrichum species have 

been sequenced and these sequences are publicly available (Talhinhas  et al., 2002, 2005, 

2009, Martinez-Culebras  et al., 2003, Afanador-Kafuri et al., 2003). We added to these 

data a representative set of isolates originating from four Andean provinces of Ecuador 
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(Table 4).  Phylogenetic analyses of the ITS sequences, divided the C. acutatum lupine and 

tamarillo populations from Ecuador into two subgroups and most (one exception) lupine 

isolates formed one new subgroup (Figure 3). Earlier studies showed that the pathogen 

population within a geographical location was very homogeneous and nearly clonal 

(Martínez-Culebras  et al., 2002, 2003; Muñoz et al., 2000). This is also found for C. 

acutatum populations on strawberry on a number of locations in the USA (Ureña-Padilla et 

al., 2002) and on several locations in Israel (Freeman and Katan, 1997). In this study, the 

homogenous new group of lupine isolates included surprisingly one from tamarillo (Tam6). 

This kind of observations has been described earlier. Talhinhas  et al., (2002) used ITS 

sequencing to determine one homogeneous subgroup of lupine anthracnose in Portugal 

which included one isolate from Cinnamon, and another heterogeneous subgroup with 

lupine isolates from the Azores islands found on strawberries and olives. Further, tubuline 

(tub2) and histone (his4) sequences revealed groups concordant with ITS (Talhinhas  et al., 

2002).  Lardner et al., (1999) demonstrated two genetically distinct groups within C. 

acutatum capable of causing stem and leaf blights of lupine or pine.  Although here it was 

hypothesized that the isolates of C. acutatum capable of causing terminal crook disease of 

pine were those actually isolated from lesions on lupine plants growing amongst pine 

seedlings. In this study, isolate Tam6 was collected in San Pablo, Province of Imbabura, 

150 km north from Quito.  In that place lupine and tamarillo are being cultivated together 

for about 10 years and the isolate might have been an occasional lupine isolate that cross 

infected a particular field of tamarillo‟s.  Studies demonstrated that Glomerella  acutata, the 

sexual stage of C. acutatum, can change and adapt to new and diverse hosts (Guerber  et al., 

2003).  

The other subgroup grouped tamarillo sequences from Ecuador and Colombia and it 

included one sequence of lupine (Lup28) (Figure 3).  Based on sequence analysis of the 

ITS2 region Afanador-Kafuri et al., (2003) found two subgroups of C. acutatum isolates 

from tamarillo and that in one of these clades two isolates of lupine early described as C. 

lupini and C. lupini var. setosum  were included (Nierenberg et al., 2002). Afanador-Kafuri 

et al., (2003) suggested that isolates in this population may not be host specific. In this 

study, isolate Lup28 collected in Palmira, a desert place in the Province of Chimborazo was 

pathogenic on tamarillo.  Episodic selection could have occurred where asexual populations 
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of C. acutatum may lead to new host-specific forms. Brasier (1995) states that sudden 

environmental disturbances, as climate change, are likely to lead to a significant alteration 

in the population structure of certain fungal species and even to emerging highly virulent 

isolates. 

We conducted a host range test and our data clearly show that lupine and tamarillo are 

attacked by two separate, host-adapted populations of C. acutatum (Fig. 4), in which two 

isolates from the other host are embedded in the two main populations (Fig. 3). Lupine and 

tamarillo populations of C. acutatum could be distinguished based on morphological 

characteristics of the isolates, ITS sequence, differential lesion development on lupine and 

tamarillo, and symptoms on both hosts. Based on symptoms and lesion size, it is concluded 

that host adaptation is quantitative rather than qualitative, because isolates were more 

aggressive on their original host, but also pathogenic on their alternative host.  This is 

similar to situations where different clonal lineages populations of P. infestans associated 

with potato and tomato in Ecuador were most aggressive on its primary host, but could 

cause lesions on the alternative host (Oyarzun  et al., 1998), or P. infestans isolates 

collected in tomato and potato in Uganda and Kenya which infected and sporulated in both 

hosts (Vega-Sanchez et al., 2000). C. acutatum  isolates have been found in association 

with lupine and other hosts (Talhinhas  et al., 2002;  Afanador-Kafuri et al., 2003) in other 

parts of the world. This species is considered as the “group species” C. acutatum sesu lato 

(broad sense) by Lardner et al. (1999) because of its capacity to cause fruit rots, and 

infected lupine, and pine. It indicates the considerable diverse aggressiveness of C. 

acutatum.  Isolates of C. acutatum with diverse aggressiveness could be particularly 

destructive in developing countries where both lupine and tamarillo are grown year round 

in the same geographic regions. 

In the present study, host adaptation appears to be manifested based on lesion size and 

sporulation in the alternative host (Table 6). The lupine-adapted isolates caused darkly 

pigmented lesions on tamarillo stems which may be classified as a partially necrotrophic 

reaction. The lesions that tamarillo-adapted isolates caused in lupine stems were typical of a 

biotropic reaction. Isolates from tamarillo produced larger lesions in lupine than isolates of 

lupine in tamarillo (Fig. 4). The infection strategy adopted by C. acutatum depends on the 

host being colonized and this fungus may also change its infection strategy when colonizing 
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different hosts and cultivars (Wharton and Dieguez-Uribeondo, 2004). We found early and 

more sporulation of C. acutatum in lupine than in tamarillo. It may be given by a pathogen 

toxic compound of tamarillo that delays infection. Loss of the product may lead to tamarillo 

adaptation, but apparently at a cost to the pathogen, since all the lupine-adapted isolates 

tested were less aggressive on tamarillo, in conjunction with smaller lesions and delayed 

sporulation.  Although C. acutatum isolates from each host showed less aggressiveness on 

the alternate host (Fig. 3), isolate Tam 34 is weakly pathogenic isolate in tamarillo, adapted 

to some lupine cultivars, such as ECU-2658 (Table 6). Adaptation to a new host is not 

always associated with reduced fitness in the original host (Lebreton  et al., 1999) and until 

more components of aggressiveness (infection efficiency and sporulation in the field, 

among others) are determined, anthracnose integrated management efforts for both lupine 

and tamarillo should be coordinated.  
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Summary 

Lupinus mutabilis is a legume native to the Andean region of South America with a high 

nutritional value. Anthracnose, caused by Colletotrichum acutatum is the main lupine 

disease around the world and it is prominently present in the production regions of Ecuador. 

From 120 genotypes of L. mutabilis in the lupine collection in Ecuador, five were selected 

by the Agropecuarian National Research Autonomous Institution (INIAP) based on their 

good agronomical traits. Five cultivars were tested by INIAP and from them selections 

were made under circumstances in the Ecuadorian highland. These circumstances were 

different from the circumstances during the wet season in the Cotopaxi province in which 

the test in our study was done. In one trial under the same conditions, five selections, one 

cultivar and two landraces were evaluated. Anthracnose symptoms were scored every two 

weeks from seedling until harvest. Anthracnose‟s typical twisting of the main axis severely 

affected yield and percentage of non-commercial seed. Severity was quantified on a scale 

from 1 to 6 from day 48 until day 178 after planting.  The area under disease progress curve 

(AUDPC) of all cultivars was high. Data of this study indicate that selected cultivars used 

by INIAP have a low level of anthracnose tolerance under high disease pressure. Seed 

samples of naturally infected plants were used to determine the level of anthracnose 

transmission via seed. Based on data collected in this study recommendations are made to 

reduce the impact of the disease in the field and for the appropriate local management of 

lupine seed. 

 

Introduction 

Anthracnose is considered one of the most destructive diseases in lupine (L. mutabilis) due 

to the rapid spread of the disease. C. acutatum is the fungal pathogen responsible for lupine 

anthracnose (Talhinhas et al., 2002; this thesis).  The disease occurs worldwide, but is more 

commonly observed in tropical or subtropical environments where frequent rainfall, high 

relative humidity and warm temperatures enhance the development and spread of the 

disease (Thomas and Sweetingham, 2004).  

Yield is severely reduced due to anthracnose infection in the adult plant and seeds 

(Sweetingham et al., 1998). The pathogen affects the central axis and the plant does not 

form new pods or produces infected pods (Thomas, 2003). In Ecuador, anthracnose 
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symptoms become visible when the plants start to blossom (Peralta Pers. Comm). Infection 

can happen at every stage of plant development and spores are spreading by rain-splashes 

(Sweetingham et al., 1998). Typical symptoms are: bending of main axis, circular or 

elongated lesions on stems and pods and infected seeds (Thomas, 2003). During sporulation 

of the fungus, acervuli (asexual fruiting bodies) will appear as black spots in the center of 

the lesions. Lupine resistant cultivars have small lesions and no sporulation. 

The National lupine collection of DENAREF – INIAP is a valuable resource to find new 

sources of anthracnose resistance.  The collection maintains 529 lupine accessions collected 

in Ecuador and other countries. About 120 accessions belong to the species L. mutabilis 

(Rivera et al., 1998). Researchers of the Legume and Andean Grain National Program 

(PRONALEG-GA / INIAP) have been cultivating lupine (L. mutabilis) accessions for more 

than 10 years. Based on earliness, seed color and plant architecture a specific lupine 

genotype (I-450 ANDINO) was selected to be the most suitable for Ecuadorian conditions 

(Caicedo et al., 1999). Later, INIAP choose other samples from the lupine collection to 

study specific traits and made preliminary selections under different environmental 

conditions in the Ecuadorian highland. The five most suitable selections were used for 

further cultivar development (Peralta et al., 2003). The yield of some of these cultivars was 

lower than that of I-450 ANDINO (Peralta et al., 2003), but still INIAP failed to produce 

enough seeds of the selected cultivars for extensive trials mainly due to the very variable 

yield from one year to another (Peralta et al., 2006b). Anthracnose is more prevalent during 

the wet season. In Australia, differences in environmental conditions during the rainy 

season from year to year cause variation in lupine yield. But also under favorable 

conditions significant yield losses due to anthracnose can occur (Thomas and Sweetingham, 

2004). A better understanding of the disease development can contribute to a more 

appropriate management.   

Anthracnose is a seed-born pathogen and when poor quality, infected seed is used for 

planting this will often result in infected plants. Infected seeds are usually smaller, wrinkled 

and/or decolorized (Thomas, 2003). In Ecuador, seed is collected by local farmers 

themselves. Unfortunately they prefer to sell the commercial seed and use the non-

commercial seed (and seeds with small red-brown stains) for sowing. In this study, the 

presence of anthracnose was quantified in harvested lupine seed. The ability to produce a 



Anthracnose susceptibility of Andean lupine cultivars 

75 | P a g e  

high percentage commercial seed on highly infected lupine plants is a favorable trait and 

might be genetically controlled. 

Anthracnose assessment of lupine cultivars and level of infection on seeds of infected 

plants will make it possible to compare the resistance level of selected lupine cultivars and 

local landraces under natural conditions in a field known to have a high disease pressure. 

 

Materials and methods 

Location 

The field experiments were conducted at the Simón Rodríguez Agriculture Technological 

Institute, located in the Province of Cotopaxi, Latacunga City, Alaquez Parish (latitude 00º 

52‟ 01” S, longitude 78º 37‟ 07” W, altitude  2859 meter above sea level (masl). This is the 

central region of Ecuador, 91 km from Quito, the Capital of Ecuador. 

 

Field plots and lupine genotypes 

The six selected lupine cultivars (including I-450 ANDINO) plus two landraces were 

evaluated in one trial under field conditions from January to August 2008 in the Province of 

Cotopaxi. Seeds of the lupine cultivars and of two landraces were provided by INIAP. I-

450 ANDINO was included as control. The fields used in this study were already in use for 

lupine cultivation during the previous years.  The lupine cultivars were planted in a 

Randomized Complete Block Design with four replications. There were 32 experimental 

plots (5.0 x 4.0 meter) with five furrows each. The distance among furrows or rows was one 

meter. In the rows holes were made at a distance of 0.25 m and three seeds were sown in 

each hole.  At the borders, around the field, I-450 ANDINO was sown both as a physical 

barrier and to obtain seeds for further studies.  Management of the experiment was 

according to PRONALEG-GA, INIAP technical recommendations (Peralta et al., 2008). At 

sowing time, the insecticide Endosulfan 4 ml/l water, was poured in the furrow for pest 

control. Plots were fertilized with the equivalent of 175 kg/ha (N-P2O5-K2O: 10-30-10). 

During the growing season, plots were weeded after 35 days with local hoeing instruments. 

Fifty-seven days after planting the base of the plant was covered with surrounding soil. 

Other pests such as Agrotis ypsilon appeared 60 days after planting, they were controlled 

with Endosulfan 4 ml/l water. Other diseases affecting aerial lupine plant parts were 
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Uromyces sp., Ascochyta sp., Ovularia sp. and Sclerotinia sp. Against these fungi no 

chemical control was used.  

 

Evaluation of anthracnose tolerance under natural pressure  

The six selected lupine cultivars and two landraces were evaluated under natural conditions 

and this was repeated every two weeks, from 48 to 178 days after planting. The severity of 

the disease was based on a 1-6 scale (Figure 1).  The Area Under Disease Progress Curve 

(AUDPC) was calculated based on severity values at the observation days after planting 

(DAP).  Disease progress curves were constructed for each entry by using the disease 

severity reading. On the basis of the severity measurements, the AUDPC was calculated 

according to the equation of Campbell and Madden (1990): 
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wheren is the number of evaluations, y the severity and t the number of days after sowing. 

(t; y) = (0, 0) is included as the first evaluation.  ANOVA test was performed with AUDPC 

data and least standard deviation test (5%) to compare the means of treatments. 

The monthly mean of precipitation and average temperature was provided by the airport 

weather station of Latacunga, located 500 m from the site of the experiment.  

 

Yield and non-commercial seed 

Yield was based on the weight of seed (g x experimental unit
-1

) and this value was 

extrapolated to kg x ha
-1

.  The percentage of non-commercial seed was calculated after 

weighing damaged seed and total seed.  An ANOVA test was conducted with yield and 

non-commercial seed scores. Least significant differences at 5% probability level were 

performed to compare means of genotypes.  

 

Quantification of anthracnose on three different categories of lupine seeds  

A laboratory experiment was set up in the Province of Pichincha, Rumiñahui County, San 

Fernando Parish, at the Biological Control and Phytopathology laboratory of the Life 



Anthracnose susceptibility of Andean lupine cultivars 

77 | P a g e  

Science Department, Agropecuarian Science Faculty of the Army Polytechnic School 

(ESPE), Ecuador. 

Seeds harvested from the six selected lupine cultivars, which were naturally infected, were 

divided in three groups: 1) Good quality seed (for commercial purpose suitable); 2) seeds 

with small red-brown stains (confirmed here as anthracnose infected), and 3) bad seed 

(non- commercial). Chloramphenicol (Chloromycetin) Parke Davis Co. (500 mg/l) was 

added to potato dextrose agar (PDA) Difco media. Seeds were surface disinfected with 

0.5% NaClO for 5 min and washed with water. Random samples of 36 seeds from the three 

groups, of each of the six selected lupine cultivars, were aseptically sown on the surface of 

PDA (9 seeds per Petri dish). Seven to eleven days after sowing, the presence of mycelium 

and spores was evaluated visually and microscopically. Two Petri dishes 14.5 cm diameter 

x 2 cm high were the experimental unit which was replicated two times in a Completely 

Randomized Design. Analysis of variance with anthracnose infection scores were done to 

determine statistical differences among cultivars, category of seed, and the interaction 

cultivars x category of seed. Least significant differences at 5% probability level were 

calculated to compare means of genotypes and interactions.  

All analysis was conducted by using INFOSTAT software www.infostat.com.arg. 

 

Results 

Evaluation of anthracnose tolerance  

The levels of anthracnose severity are shown in table 1. All six selected lupine cultivars 

were susceptible to C. acutatum. No disease symptoms were noticed during germination. 

The first wrinkled leaves appeared 48 DAP and the characteristic bending over of the 

central apical stem was notorious between 76 and 108 DAP, this coincides with the 

flowering period. Lesions up to 5 mm on stems and lateral branches were seen, with little 

sporulation. This dramatically increased just before or at the moment of pod filling (121 

DAP). Most plants showed large lesions on stems and branches with necrotic tissue and 

only few plants were free of lesions. This indicates that C. acutatum conidia might splash 

from initially infected seedlings to the neighboring plants by wind or rain.  

Significant differences in the level of tolerance were seen until 108 DAP. All six cultivars 

were significantly (P > 0.05) more tolerant than the two lupine Andean control landraces. 

http://www.infostat.com.arg/
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ECU-2658 was significantly (P<0.05) different from ECU-8415 and the two landraces at 

121 DAP.  ECU-2658 and I-450 ANDINO were significantly (P<0.05) different from the 

two landraces at 134 DAP.  I-450 ANDINO was significantly (P<0.05) more tolerant than 

ECU-2658, ECU-2700-2 and the two landraces at 178 DAP (Table 1). 

Table 1.  Anthracnose severity and Area Under Disease Progress Curve (AUDPC) of five 

selected lupine cultivars, the I-450 ANDINO cultivar and two Andean lupine landraces 

under natural pathogen pressure at Simon Rodriguez Agronomic Institute, Alaquez, 

Cotopaxi, Ecuador, 2008. 

 Anthracnose severity at the stated days after planting (DAP) 
a
 

Lupine 

cultivars 

48 59 76 108 121 134 178 AUDPC
b
 

I-450 

ANDINO 

1.4 a 1.5 a 1.5 a 2.1 a 3.4 ab 3.8 a 5.2 a 432 a 

ECU-712-1 1.3 a 1.4 a 1.4 a 2.6 a 3.4 ab 3.9 ab 5.5 ab 447 a 

ECU-2658 1.3 a 1.4 a 1.5 a 2.3 a 3.1 a 3.8 a 5.5 b 437 a 

ECU-2700-2 1.2 a 1.3 a 1.3 a 2.2 a 3.2 ab 4.0 ab 5.6 b 439 a 

ECU-722-4 1.3 a 1.4 a 1.5 a 2.4 a 3.6 ab 4.1 ab 5.4 ab 455 a 

ECU-8415 1.2 a 1.3 a 1.4 a 2.6 a 3.6 bc 4.1 ab 5.5 ab 454 a 

ECU-740
c
 2.2 b 2.4 b 2.5 b 3.9 b 4.4 d 4.6 c 6.0 c 569 b 

ECU-2698
c
 2.3 b 2.5 b 2.8 b 4.0 b 4.1 cd 4.3 bc 6.0 c 576 b 

         

Mean 1.6 1.7 1.8 2.8 3.6 4.1 5.59 476 

CV (%) 18.6 20.1 23.6 15.6 8.9 7.2 3.6 6.0 

LSD 

(P<0.05) 

0.42 0.48 0.60 0.63 0.47 0.43 0.29 67.53 

a
In a column, values followed by the same letter are not significantly different at P < 0.05 

according to a least standard deviation test. Each value is the mean of 10 plants replicated 

four times in a randomized completely block design.
b
Anthracnose  severity calculated as 

the cumulative disease progress and represented as the AUDPC using the formula of 

Campbell and Madden (1990). 
c 
Two Andean lupine landraces.  

 

Monthly rainfall and average temperature from January to August 2008 and the eight year-

average for the same period at Latacunga – Ecuador are shown in Table 2.  The high 

rainfall and mild temperature from March to May of 2008 in the period 48 until 121 DAP 

(Table 2) favored anthracnose development. Environmental conditions such as high 

rainfall, humidity, and number of rainy days favor the establishment and increase severity 

of anthracnose in lupine (Thomas, 2003). 
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Figure 1. Scale for evaluating anthracnose severity on lupine  
1  

2  
 

3  

 
4  

 

5  
 

6  

= plant without any injury 

= lesions very small (less than 5 mm) on leaves or at the central apical stem, some wrinkles on the leaves, 
sporulation absent 

= central apical stem doubled due to infection, abundant wrinkles on the leaves, injures of 0.5 cm to 1 cm, 

little sporulation 
= presence of lesions of medium size (from 1 cm up to 3 cm) on stems and branches, accompanied  by 

necrotic tissue (sporulation) 

= presence of large lesions (more than 3 mm) on stems, branches or pods with necrotic tissue  accompanied 
by collapse of tissues (abundant sporulation) 

= severely affected necrotic plant, or dead plant. If formed, small pods, necrotic tissue salmon color 

sporulation 
1-2 incompatible: resistant reaction, 3 to 6 compatible: susceptible reaction.  In chapter 5, figure 1 shows a visual description.   

Note: The scale was used to follow up anthracnose severity every 2-3 weeks from 48 to 178 days after planting (DAP). 
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Table 2.   Monthly rainfall and average temperature during the period of study compared 

with the historical eight year - averages in Latacunga,  Ecuador. 

Month   2008 8-yr 

average 

Difference  Month 2008 8-yr 

average 

Deviation 

Rainfall (mm)  Averagetemperature ( 
o
C) 

January 51 37.9 13.1  January 14.3 14.5 -0.2 

February 72.7 79.1 -6.4  February 13.9 14.5 -0.6 

March 84.3 69.9 14.4  March 13.5 14.1 -0.6 

April 83.1 85.0 -1.9  April 13.6 14.2 -0.6 

May 79.9 45.0 34.9  May 13.5 14.1 -0.6 

June 48.4 25.1 23.3  June 13.3 13.1  0.2 

July 15.1 12.3 2.8  July 12.7 13.3 -0.6 

August 40.4 9.3 31.1  August 12.7 13.1 -0.4 

Average 59.4 45.4 13.9  Average 13.4 13.9 -0.5 

Total 474.9 363.6 111.3      
a
Source: Latacunga airport weather station (DAC 2008)  

 

Yield and non-commercial seed 

There were differences in yield and the average yield was 124 kg per hectare. That is below 

the national average of 200 kg/ha (Censo Nacional Agropecuario, 2003) and also lower as 

in previous studies with the same cultivars (Peralta et al., 2003, 2004). ECU-722-4 and 

ECU-2700-2 cultivars yielded more than I-450 ANDINO which was supposed to be 

adapted to the Province of Cotopaxi conditions (Table 3).  

There were significant differences among cultivars for percentage of non-commercial seed 

(F=4.25, p=0.0035). On average 45 percent of the harvested seed was non-commercial. The 

cultivar ECU-2698 has significantly (P>0.05) more non-commercial seed compared to the 

other cultivars.  ECU-2698 yielded less than the other cultivars (Table 3).  In general these 

studies show the high anthracnose susceptibility of the selected lupine cultivars.  

 

Anthracnose presence on lupine seeds coming from infected plants 

There were significant differences between genotypes (F=5.85, p=0.0005) for the 

percentage of infected seeds in the three different categories (F=249.03, p<0.0001) and 

genotype x category of seed (F=2.81, p=0.0127).  The percentage of anthracnose in 

commercial seed of ECU-2698 was significantly (P<0.05) higher than in most of the other 

cultivars (Table 3). Identical means found for anthracnose seed infection among batches of 

seeds are due to the rather small seed-lot size used. The data show also that phenotypic 
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healthy, commercial seed still can be infected. The I-450 ANDINO cultivar has been used 

by INIAP for study its adaptation to different environmental conditions (Peralta et al., 

2003, 2004, 2006b). 

 

Table 3. Yield, non-commercial seed, and anthracnose infection in three categories of seeds 

from field plots naturally infected by C. acutatum
a
 

Lupine 

genotypes 

Yield 

(Kg/ha) 

Non- 

commercial

seed (%) 

 

 

Anthracnose infection (%) b 

   Commercial 

seed 

Small red-

brown stains 

on seed 

Non-

commercial 

seed 

ECU-722-4 149 ± 32 40.3 a 0.0 a 5.5 a 38.8 a 
ECU-712-1 131 ± 34 47.0 ab 0.0 a 5.5 a 50.0 ab 
ECU-2658 127 ± 23 38.2 a 0.0 a 19.4 ab 50.0 ab 
I-450 ANDINO 130 ± 24 42.4 ab 5.5 ab 5.5 a 69.4 bc 
ECU-2700-2 142 ± 20 37.9 a 5.5 ab 11.1 ab 77.7 c 
ECU-2698 100 ±   1 61.6 c 13.1 b 11.1 ab 80.1 c 
ECU-740 104 ±   4 52.6 bc 0.0 a 27.8 b 81.8 c 
ECU-8415 110 ± 24 42.7 ab 0.0 a 27.8 b 83.3 c 

      

Mean 124 45.4 3.0 14.2 66.4 

CV (%) 37.2 17.5 133.9 67.6 15.9 

LSD (P<0.05) 67.32 11.56 9.33 22.20 24.34 
a Values followed by the same letter are not significantly different using least significant difference 

(P< 0.05),  mean  ± standard error. bSeeds harvested from the selected lupine cultivars and landraces 

were divided in three groups. Random samples of 36 seeds from each group were aseptically sown on 

the surface of PDA (9 seeds per Petri dish) and presence of mycelium and spores was evaluated 

visually and microscopically.   

 

 

Discussion 

Our data allow us to understand lupine anthracnose development. After infection symptoms 

become visible as wrinkles in the first true leaves (48 DAP) and become more evident 

before flowering and pod filling starts (76 DAP resp. 121 DAP). Some differences in 

tolerance were seen (Table 1), the selected lupine cultivars are a bit more tolerant to 

anthracnose than the two local landraces. ECU-2658, for instance, showed less severity 

than ECU-8415 at 121 DAP and I-450 ANDINO had less severity than ECU-2658, ECU-

2700-2 and the two landraces at 178 DAP (Table 1).  In other studies we determined that 

2.5 months-old lupine plants are more anthracnose susceptible than 2.0, 1.5, and 1.0-month-

old plants (Chapter 5). Our field data shows the critical points in lupine anthracnose 
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development. C. acutatum conidia spread from initially infected seedlings to neighboring 

plants by wind or rain. The typical twisting of the main stem, presence of salmon colored 

spores, and necrotic tissues on the stems were already evident on all plants before 

blossoming (see level 3 of scale in figure 1) and symptoms were progressive during pod 

filling (see levels 4-6 of scale in figure 1).  

Our experiments were done in 2008 and this was an exceptional rainy year (Table 2) and 

the severity of lupine anthracnose in the field coincided with heavy and frequent rainfall. 

The yield of the selected genotypes and I-450 ANDINO was low in comparison with 

previous years (Peralta et al., 2003, 2004). In lupine, the main production comes from the 

central axis. In this study, however, production came mainly from lateral branches because 

anthracnose strongly affected the main axis and destroyed floral primordia, flowers and 

pods. Under the weather conditions in 2008 ECU-722-4 and ECU-2700-2 yielded more 

than the, completely adapted to the Province of Cotopaxi, ANDINO I-450 (Table 3). Under 

less rainy circumstances, such as in the Province of Chimborazo, ANDINO I-450 yielded 

twice as much (Peralta et al., 2004). In a good disease management the weather plays an 

important role especially during the latter crop developmental stages. Thomas et al., (2008) 

demonstrated that under field conditions, disease spread and infection are largely 

influenced by rainfall. Application of fungicides has to take place prior to rainfall or shortly 

after rainfall. Another method to increase yield is a foliar application of azoxystrobin (250 g 

ai ha 
-1

) or mancozeb (1600 g ai ha 
-1

) at the moment of podding on the primary branches 

(Thomas et al., 2008).  Our results indicates that in earlier stages it is best to use fungicides 

as soon as small lesions appear (grade two Table 1).   

A preliminary laboratory assay determined in what percentage of three categories of seed 

anthracnose is present. Overall, the data shows that both a visual inspection and a good seed 

disinfection can reduce the number of infected seeds to 14.2 and 3.0%, respectively, but 

also that a visual selection of seeds does not guarantee 100% uninfected clean seed. The 

level of transmission of the disease via seeds might be partially, genetically determined. To 

check this hypothesis a detailed study under controlled conditions with C. acutatum 

inoculations on more homozygous lupine cultivars is needed.  

The most important strategy for effective control of lupine anthracnose is to clearly 

understand its seed-borne nature, and produce disease free seeds with strict seed 
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certification programs. The primary inoculum of C. acutatum in lupine is infected seed. But 

there are no disease free seeds in Ecuador and the majority of common lupine growers in 

Ecuador are using their own, often infected, seeds.     

The percentage of infection in seeds with small red-brown lesions (Table 3)  suggests that 

the fungus can also be present under the seed coat and maybe also in cotyledonal leaves. 

Yesuf and Sangchote (2005) demonstrated that in infected common bean C. 

lindemuthianum is mainly present in the seed coat. A good seed disinfection method is 

required to reduce the initial inoculum but there will be escapes after visual selection. The 

simple method developed in this study is suitable for preselecting, uninfected lupine seeds. 

Seeds that do not show infection in Petri dishes will be planted and used in resistance 

screenings. All lupine collection accessions can be screened starting with uninfected. As 

soon as tolerant and susceptible plants, with no segregation for resistance in the progeny 

after selfing, crosses can be made and genetic mapping studies can be initiated.  A PCR 

assay is another possibility to confirm presence of C. acutatum in large seed batches and 

individual plants (Chen et al., 2007).  The percentage infected seeds used by Ecuadorian 

farmers fluctuates from 14% to 66 % (Table 3). This is far above the recommended 

threshold of 2% for seed-borne pathogens (Aftab  et al., 2008).  Since the commercial seeds 

are sold the next best thing is to choose the small red-brown stained seeds and treat them 

before sowing. Farmers should learn about the use of methods that do not have large effects 

on the percentage germination (Thomas and Adcock, 2004). Farmers can expose the seed 

previous to sowing to solar heat for 5-7 days.  This thermotherapy can be combined with a 

chemical treatment for a further reduction of infection.  Some fungicides prevent the 

infection of seedlings although the seed was infected. Procymidone (0.25 g a.i. /kg seed) 

and particularly iprodione (0.25 g a.i. /kg seed) do this especially in combination with 

thiram (1.0 g a.i. /kg seed) (Thomas and Sweetingham, 2003). The fungus can survive for 

up to two years on seed (Thomas, 2003).   

The cultivars in this study have been developed mainly on their agronomic performance 

(Peralta et al., 2003, 2006b, 2008) and are genetically still heterozygous. INIAP researchers 

have chosen this approach because it minimizes the risk to lose the complete lupine 

production. Whether different tolerance mechanisms are present in the selected cultivars is 

unclear, to find this out the right plants have to be identified and mapping populations have 
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to be made. If there are different mechanisms and we can select for the underlying genes a 

breeding effort can be made to combine all known mechanism in order to get the highest 

tolerance possible. If it is necessary to maintain clean plants in combination with infection 

experiments in vitro  multiplication is necessary. A tissue culture protocol for Andean 

lupine is currently being developed in our laboratory.  

A combined approach that involves active participation of farmers (participatory plant 

breeding) and more applied and basic research of INIAP and universities is the most logical 

way to go. Firstly, the farmers have to be more aware of how important it is to look for 

anthracnose tolerant plants and how to recognize and use good quality seed  

www.telfun.info  Key farmers should be skilled to identify anthracnose tolerant plants and 

if possible, seeds should be collected from selfed plants in order to obtain more 

homozygous plants.  

Further research is also needed to determine the influence of different varieties on 

anthracnose severity and how environmental conditions influence severity. It is to be 

expected that different varieties lupine have to be developed for different microclimates. 

Supply of cultivars with different level of anthracnose tolerance adapted to rainy and drier 

zones will augment the production and quality of lupine 
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Summary 

Anthracnose, caused by C. acutatum, is the most devastating fungal disease in lupine. The 

fungus spreads through the main stem and produces necrotic spots and orange spores. It can 

also grow on leaves and terminal branches. Bending of the main stem is the result of 

anthracnose infection. The level of tolerance was studied under greenhouse conditions and 

depended on plant stage and inoculation method. Lupine plants of the cultivar I-450 

ANDINO were grown and plant-pathogen interactions were determined in five different 

phenological stages (0.5, 1.0, 1.5, 2.0, 2.5-month-old plants). Three isolates of C. acutatum 

were used for inoculation on the meristematic section of the main stem either by spraying 

or pipetting on an artificial wound.  A scale (1-6) was used to score disease severity in the 

apical main stem of each plant. There were significant differences between the two 

inoculation methods and the five phenological stages. Plants that received the inoculum by 

pipetting after artificial wounding showed significant (P<0.05) more anthracnose symptoms 

than those that were sprayed. One and a half-month-old plants were the most tolerant and 

spraying appears to be the best method for a preliminary screening of large lupine 

populations, but artificial wounding is more reliable when screening potential resistant 

genotypes.  We recommend to do the first screening in young plants (1.0-monthsold) and to 

confirm tolerance when flowering starts (2.5-monthsold) in this way the overall host 

reaction can be determined. Seeds of selfed lupine plants were partly used for replanting 

and disease evaluation and partly for measuring alkaloid content. There was no correlation 

between disease severity and alkaloid content. 

 

Introduction 

The lupine or “tarwi” (L. mutabilis) is domesticated and cultivated in South America. It is 

of agricultural importance in Ecuador (Peralta et al., 2004), Peru and Bolivia (Jacobsen and 

Mujica, 2006).  Recently the interest for the Andean lupine has extended to Europe due to 

its nutritional value (Jacobsen and Sherwood, 2002).  Disadvantages of the Andean lupine 

are indeterminate growth, high content of alkaloids and susceptibility to diseases.  The 

principal biotic factor limiting production of L. mutabilis in Ecuador and other lupine 

species around the world is anthracnose (Talhinhas, 2002; Thomas, 2003; Elmer et al., 

2001). The disease is caused by C. acutatum (Talhinhas  et al., 2002; this thesis). The 
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pathogen infects the main stem and lateral branches and produces necrotic lesions from 

where orange conidial masses are developed (Gross, 1982; Thomas, 2003).  

The Agropecuarian National Research Autonomous Institution (INIAP) of Ecuador has since 

20 years a lupine collection with now more than 500 accessions from 17 different species. Of 

this total number, about 120 accessions are L. mutabilis (Rivera et al., 1998).  Researchers of 

the Legume and Andean Grain National Program (PRONALEG-GA/INIAP) have been 

conducting field studies for more than 12 years aiming at selecting Andean lupine cultivars 

with good agronomic traits.  In this selection process, the I-450 ANDINO cultivar was chosen 

as the best genotype because it is early maturing (6 months), uniform white seed, and almost 

twice the yield than other cultivars  (INIAP, 1999). However, I-450 ANDINO is anthracnose 

susceptible.   

Anthracnose resistance can be evaluated with parameters such as infection efficiency, lesion 

growth, and level of sporulation (Thurston, 1971). The interaction of these parameters with 

plant age affects the infection degree (Wastie, 1991). This has also been found in the 

interaction between potato plants and late blight where young plants are susceptible, later 

plants become more and more resistant, and finally old plants become more susceptible again 

(Stewart, 1990). Also some bean cultivars showed different resistance levels related to the 

developmental stages of the plants inoculated with C. lindemuthianum (Bigirimana and 

Hofte, 2001). Gieco et al. (2004) demonstrated that wheat seedlings were susceptible to 

Septoria  tritici but resistant in the tillering and flag leaf. However, progenies that behaved 

in the opposite way were also found. Appropriate methodologies should be developed to 

evaluate disease severity for each disease in each crop.  

Anthracnose screenings have been conducted to identify tolerant lupine genotypes in Ecuador 

(Peralta et al., 2003). Tolerant is a term that indicates that a host plant can support 

reproduction of the pathogen while sustaining little damage. Most studies conducted by 

Peralta et al. (2003, 2004) focused on tolerance with emphasis on yield.  Some tolerance in L. 

mutabilis was found after  spraying the pathogen on 0.5-monthold plants (Murillo et al., 

2006). Visual observations on naturally infected, adult plants (Peralta et al., 2004) indicate 

that lupine is more susceptible in the blossoming season. Until now, there has been no reliable 

method to evaluate anthracnose tolerance in Andean lupine and the appropriate phenological 

stage to evaluate for tolerance still had to be identified. In L. angustifolius and L. albus  two 
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methods of inoculation were used under greenhouse conditions. There were no significant 

differences between the first method (artificial wounding) and the second method 

(spraying), although the method of artificial wounding resulted in more differentiation in 

response.  This analysis did not allow a reliable separation in tolerant and susceptible 

genotypes. Field studies showed relative low tolerance of genotypes which were considered 

as more tolerant in greenhouse screenings (Talhinhas, 2002).  

Andean lupine has a high alkaloid content and mature seeds have the highest concentration 

(Allen, 1998). Values vary from 0.01 to 4.0% (INEN, 2004). The alkaloids, causing a bitter 

taste, have to be removed before seeds can be used for human consumption. This water-

wash process takes about one week (Peralta et al. 2006b). After debittering, the aqueous 

alkaloid solution can be used to control ectoparasites and intestinal parasites of animals. It 

is also thought that alkaloids play a role in plant defense against herbivores (Wink and 

Schimmer, 1999). For this reason, Andean lupine is frequently sown as a hedge or to 

separate plots of different crops, preventing damage which animals might cause. 

Lupine alkaloids have also bacteriostatic and antifungal activities. Bacterial growth is 

inhibited by alkaloid at concentrations between 0.3-7.0 mM and fungal growth was 

inhibited at concentrations of 10-50 mM (Wink, 1984). Plant pathogens activate general 

and specific plant defense mechanisms associated with a stimulation of secondary plant 

metabolism (Weir and Vivanco, 2008) possibly including alkaloid production. Reports on 

L. albus indicate that lupine alkaloid concentrations were reduced after elicitation of 

seedlings with cell wall extracts from the fungus C. lindemuthianum (Stobiecki  et al., 

1996). During the hypersensitive response, compounds such as alkaloids, terpenoids, and 

phenylpropanoids can play a role in killing pathogens and restricting invasion into the plant 

(Sepulveda-Jimenez et al., 2004). Significant inhibition of the mycelial growth was seen for 

Alternaria  solani and Fusarium  solani after adding lupine floor to potato dextrose agar 

media (Yepes Ponte et al., 2009). The growth of Colletotrichum species and other plant 

pathogens in vitro was hindered at very low alkaloid concentrations (200 to 1000 ppm; 

Singh et al., 2007).  

The starting point for an evaluation of tolerance is the development of a reliable protocol. 

Our protocol development was done with the susceptible I-450 ANDINO. It has good 

agronomic traits and until now it is only grown for research purposes. The appropriate 
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inoculation method and phenological stage for this cultivar should make the evaluation of 

the level of anthracnose tolerance in more genotypes of Andean lupine possible. The 

possibility that alkaloid content plays a role in anthracnose tolerance of lupine was 

investigated. 

 

Materials and methods 

Plant material and experimental design 

The experiment was conducted in a greenhouse at the Agropecuarian Science Faculty, Life 

Science Department, of the Army Polytechnic School (ESPE), Province of Pichincha, 

Rumiñahui  County, San Fernando Parish, Ecuador at 2748 m, coordinates 0° 23‟ 20‟‟ S, 

78° 24‟ 44‟‟ W. I-450 ANDINO was used to develop the protocol. Phenotypic healthy 

seeds of I-450 ANDINO were selected and surface disinfected (5 min 0.5% NaClO) and 

rinsed with water.  Twelve seeds were planted, four of each in 22 cm diameter pots 

containing 4 kg of a mixture of sterilized soil / grinded pumice / coconut fiber (1:1:1).  

After 15 days, one seedling was removed from each pot, leaving three plantlets per 

experimental unit. All pots were placed in a greenhouse with a temperature of 12 ± 2 
o 

C 

night / 20 ± 2 
o 

C day and 12 h photoperiod, and relative humidity of 70 ± 10%. The sowing 

was repeated every fifteen days and after 2.5 months five phenological stages were 

compared. Treatments were arranged in a combined factorial design: five phenological 

stages, two inoculation methods, three C. acutatum isolates, and one non-inoculated 

control.   

 

Production of inoculum 

Three C. acutatum isolates (Lup1, Lup14, Lup18) were collected from three different 

places (with different environmental conditions) in the Province of Cotopaxi - Ecuador.  

Lup1 (Picualo alto, 0
o
 53‟ 56” S 78

o
 32‟ 37 W, 3180 meter above sea level, masl), Lup14 

(Canchicera, 0
 o
 47‟ 33S 78

o
 32‟ 59” W, 3222 masl), Lup18 (Isinche de comines, 0

o
 01‟ 08” 

S 78
o
 40‟ 24W, 2972 masl). They were compared for their virulence in five phenological 

stages and with two inoculation methods.  Spores of the isolates were taken from potato 

dextrose agar slants and subcultures were grown on Petri plates with autoclaved PDA 

(Difco). The isolates were incubated for 10 days at room temperature 20 ± 2 
o 

C. Conidia 
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suspensions were prepared by flooding the surface with sterile distilled saline solution 

(NaCl 0.8% + Tween-80 0.1%) and gently scraping with a glass rod. The concentration of 

spores was determined with a heamocytometer and diluted to 2.5 x 10
6
 conidia/ml. Plants in 

different growth stages were inoculated at the same time. 

 

Inoculation methods 

Two inoculation methods were evaluated. For inoculation by spraying, approximately  0.5 

ml of each suspension was spread on the meristematic parts, apical leaves and young stems 

of lupine plants. A small hand-held Venturi atomizer (aerographer) with an air pump was 

used.  For the other method, an artificial wound was made with a hypodermic syringe at the 

apical main stem (the same depth for each wound).  25 µl of the spore suspension of each 

isolate was injected with a micropipette in each wound. The inoculation area of each plant 

was completely covered with small black plastic bags.  A piece of cotton drenched in sterile 

distilled water was added to the bags before sealing. The wet cotton was used to maintain 

the relative humidity and to promote infection. The bags were removed after 72 h.    

 

Disease evaluation 

Anthracnose was scored on individual plants, using a 1-6 scale as described in Figure 1 (1-2 

= tolerant/resistant, 3-6 = susceptible).  

 

Development of plant populations   

Plants were grown from middle of October 2009 to the end of March 2010. Seeds of I-450 

ANDINO were sown in an experimental field at Simón Rodríguez Technological Institute 

of Agriculture, located in the Province of Cotopaxi, Latacunga County, Alaquez Parish 

(latitude 00º 52‟ 01” S, longitude 78º 37‟ 07” W, altitude  2859 masl. The experimental 

field is located in the central region of Ecuador, 91 km south from Quito, the Capital of 

Ecuador. Seeds were sown in threerow plots of five-meter long and a one-meter  distance 

between rows. In the furrows holes were made at a distance of 35 cm and three seeds were 

sown in each hole. Healthy plants were selected. Main stem of each plant was self-

pollinated before the blossom period. Seeds produced on the main stem of phenotypic 
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healthy plants were harvested to study anthracnose tolerance. Alkaloid content was measured 

on the remaining seed produced on main stem.  

 

 

Figure 1. Scale to evaluate anthracnose resistance/tolerance in lupine.  1 = no symptoms or 

wrinkled folioles, 2 = small injuries < 2 mm at the point lesion was made or at the meristem 

region pathogen was spread, sporulation absent, 3= central apical stem doubled due to 

infection, little sporulation,  4 = lesions 2-5mm at the point lesion was made or at the 

meristem region, little sporulation, 5 = presence of lesions (more than 5 mm) on main stem, 

accompanied by necrotic tissue, abundant sporulation, 6 = severely affected necrotic plant, 

or dead plant (1 to 2 incompatible reaction – resistant/tolerant reaction, 3 to 6 compatible 

reaction – susceptible reaction). The disease ratings were scored at day 26 after inoculation. 

Anthracnose phenotypic reaction of S1 families 

The experiment was conducted in the same greenhouse under equal conditions. Seeds of S1 

lupine I-450 ANDINO families, healthy in appearance, were chosen and surface disinfected 

on NaClO (0.5%) for 5 min and washed with water.  Four seeds were planted in 22 cm 

diameter pots containing 4 kg of a mixture of sterilized soil / grinded pumice / coconut fiber 

(1:1:1).  Treatments were arranged in a complete randomized design, with three pot-
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replications and twelve plants per family. Isolate Lup18 EMBL accession number 

JN543063 (Table 4, Chapter 3) was chosen as inoculum. Incubation period and inoculum 

preparation was as above. Plants at the greenhouse were inoculated 4 weeks after sowing. 

Approximately  0.5 ml of pathogen suspension was spread on the meristematic parts, apical 

leaves and young stems of lupine plants. Black bags covered only apical parts. A piece of 

cotton imbibed in sterile distilled water was put in the bags before sealing, this keeps the 

relative humidity high and promotes infection.  Bags were removed after 72 h. Anthracnose 

was evaluated after 15 days on twelve individual plants per family, using the above 1-6 

scale.  

 

Alkaloid extraction procedure 

Total alkaloid percentage on seed was determined according to Beck cited by Harrison and 

Williams (1982). One gram of finely chopped seed was boiled in 50 ml 50% ethanol and 

left to cool overnight at 4°C. After decanting, the seed tissue was extracted with four 

successive volumes of 70% ethanol, and left overnight at 4°C. The combined extracts dried 

under vacuum at 40°C to a volume of about 2 ml, and the pH was adjusted to 4.0 - 4.5 with 

sulphuric acid. After lowering the pH to 2.5 and centrifugation, the lipids were removed 

with two volumes dichloromethane in a separating funnel and pH was adjusted to 9-9.5 

with sodium hydroxide. The alkaloids were then extracted with three volumes of 

chloroform and after bringing the pH to 10.5-11.0, two more chloroform extractions were 

performed. After drying on anhydrous sodium sulphate, the combined  extracts were 

completely dried under vacuum at 40°C and residual alkaloids transferred into 2 ml of 

chloroform which evaporated in a stream of warm air. The residue was dissolved in 1 ml of 

chloroform per g of original seed tissue. For titration, alkaloid extracts were added to a 

known volume of 0.005 M sulphuric acid and titrated with 0.01 M sodium hydroxide, using 

methyl red as indicator; blank titrations with only acid were also carried out. 

Percentage alkaloid was calculated with the formula: 

Volume of 0.01 M NaOH  x248 

Weight of seed (g)        1000 
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where the volume of NaOH is the difference in ml between the blank titration and the 

sample, and 248 the molecular weight of lupanine, the prevalent alkaloid (Harrison and 

Williams 1982). Each test was done five times on different days.  

 

Statistical analyses 

To compare the level of anthracnose tolerance in five phenological stages with two 

inoculation methods and three C. acutatum isolates an analysis of variance was performed 

with the average of anthracnose severity scores. Graphs were constructed with the average 

of the anthracnose severity to visualize disease progress patterns of each inoculation 

method in the five stages. 

An ANOVA test was conducted separately to determine significant differences among 

phenological stages, isolates and interaction stages per isolates. Variability in each 

phenological stage was calculated by the least standard deviation. To observe plants with 

less disease severity data were collected 26 days after inoculation for those phenological 

stages where differences were more pronounced (1.0 and 2.5 months).   

Individual offspring plants of selfed lupine were inoculated with C. acutatum and the 

segregation ratio was determined. Mean scores and standard error of alkaloid percentage of 

the seed were used for testing for differences between different offspring families of I-450 

ANDINO. The correlation of tolerance/susceptibility and alkaloid content of the seed was 

calculated by regression analysis.  Data analyses were performed and graphs were made 

with the help of the statistical program Infostat for windows www.infostat.com.arg. 

 

Results 

Inoculation methods and plant age  

Twenty six days after inoculation analyses of variance showed significant differences in 

disease severity between inoculation methods (F=17.91, p=0.0001) and between 

phenological stages (F= 6.83, p=0.0001) (see Figure 2). Grand mean was 4.27 and the 

coefficient of variation 19.29. 

 

http://www.infostat.com.arg/
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Figure 2. Two inoculation methods and five phenological stages were compared for disease 

severity.  Means are the average of 9  I-450  plants and 3 C. acutatum isolates collected at 

26 days after inoculation. Bars show the standard deviation. 

 

Table1. Influence of inoculation methods on anthracnose severity in five phenological 

stages of I-450 ANDINO. 

 

 Anthracnose severity score  

Inoculation method Phenological stage (months)  

 0.5  1.0  1.5  2.0  2.5   Mean 

Spraying 4.14 b 4.00 b 3.07 a 4.37 b 3.96 b  3.90 A 

        

Artificial wounding 4.96 b 4.81 b 3.78 a 5.11 b 4.55 b  4.64 B 

Mean separation in rows (a – b) and mean separation in columns (A – B) by least standard 

deviation, P<0.05. 

 

Analyses of variance after spraying show significant differences for phenological stages 

(F= 2.86, p=<0.0404), but no significant differences were found between isolates (F=0.73, 

p=<0.4900). R
2  

was 0.72 and the coefficient of variation 22.42. Analyses after artificial 

wounding method show significant differences for phenological stages (F= 4.20, 

p=<0.0081) and also between isolates (F= 6.28, p=<0.0053), R
2 

was 0.59 and the 

coefficient of variation 16.58. The two inoculation methods gave similar tendencies. 
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However, in plants after artificial wounding the anthracnose severity was significantly 

higher (P<0.05; Table 1).   

One and a half-month-old plants generally had the lowest disease severity scores, 

symptoms decreased until 1.5 months (for both inoculation methods significantly lower; 

Table 1) but subsequently increased.  

 

 

Table 2.  Differences between isolates for disease severity on I-450 ANDINO. 

 

 Anthracnose severity score 

Isolate Spraying Artificial 

wounding 

Lup 1 4.04  ± 0.40 4.37 a 

Lup 14 4.00  ± 0.32 4.31 a 

Lup 18 3.69  ± 0.36 5.28 b 

Mean followed by different letters are significantly different (P<0.05). Means ±  standard 

deviation when there is no significant difference.  

 

 

There was a significant (p=<0.05) difference between isolate Lup18 and the other two 

isolates after artificial wounding (Table 2), this difference was not found after spraying. 

More differences in disease severity were seen in older plants (1.0, 1.5 and 2.5 month) and 

for finding potential tolerant plants these three stages are more suitable. We recommend to 

score disease severity after inoculation of 1.0-month-old plants  and confirm the scores 

after inoculation of 2.5-month-old plants. 

 

Table 3. Anthracnose disease score (~25 plants of I-450 ANDINO per experiment) after 

spraying and measured 26 days after inoculation.   

 

 

 

Anthracnose severity (1-6 scale) 

2 3 4 5 6 

 

1.0 month old  

 

2.5 month old  

 

5 

 

0 

 

7 

 

2                

 

5 

 

1 

 

2 

 

5 

 

8 

 

19 

 

 

 

Table 3 shows that the scores vary from 2 to 6 in young plants, but the average disease 

rating goes up when plants are inoculated that are almost flowering. Plants in scale 2 can be 
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tolerant but can also be escapes and the response should be confirmed in 2.5 month old 

plants.  Same pattern was seen in plants inoculated after artificial wounding (Table 4).   

 

Table 4. Anthracnose disease score (~25 plants of I-450 per experiment) after artificial 

wounding and measured 26 days after inoculation.  

 

 

 

Anthracnose severity (1-6 scale) 

2 3 4 5 6 

 

1.0 month old             

 

2.5 month old  

 

 

4 

 

0 

 

3 
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2 

 

4 

 

3 

 

9 

 

15 

 

7 

 

 

Screening for correlation between alkaloid content and disease severity 

One hundred and twenty I-450 ANDINO seeds were sown to obtain offspring. The highest 

number of seeds per main axis was 57 and the lowest 9, with an average of 25. I-450 

ANDINO produces normally between 60 – 70 seeds per main axis (INIAP, 1999).  Paper 

bags around the main axis of each plant were placed before blossoming to promote self-

pollination. Twenty three S1 populations had at least 28 seeds per main axis and were 

selected to evaluate anthracnose tolerance and alkaloid content. The partial tolerance in the 

offspring of the 23 selfed populations was measured 15 days after inoculation. This allowed 

us to study differences in speed of infection. Seven S1 families were found with at least 

75% uninfected plants (20, 32, 63, 95, 100, 201, 202) and five S1 families were found with 

less than 25% uninfected plants (3, 19, 27, 62, 227) (Table 5).  

Twelve S1 lupine families were further analyzed and total alkaloid content was determined 

in the remaining seeds. Of the total alkaloid content, lupanine is the predominant alkaloid in 

lupine seeds (up to 62%) (Harrison and Williams, 1982). The mean alkaloid content per S1 

family varied from 3.07 to 3.41 percent (Table 6).  No significant differences were found in 

levels of alkaloids between families and therefore differences in speed of infection are not 

caused by difference in alkaloid content. 
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Table 5.  Screening of individual plants of offspring families of individual plants of  I-450 

ANDINO after artificial inoculation. Score based on the 1-6 severity scale described in 

figure 1 (1 to 2 considered tolerant and 3 to 6 susceptible).  The disease symptoms were 

evaluated fifteen days after inoculation.   

 

 Anthracnose severity (1-6 scale)  

 1 2 3 4 5 6  Families with 

75% or more 

uninfected 

plants 

Families with 

25% or less 

uninfected plants 

Fam 1  4 3 2      

Fam 3  3 1 7 1    75.0 

Fam 10 6 1 1 4      

Fam 13 3 1 1 3 1     

Fam 19 2 1 2 3 4    75.0 

Fam 20 9 3      100  

Fam 27  1 5 4 1 1   91.7 

Fam 29 2 3 2 4  1    

Fam 30 1 5 2 3  1    

Fam 31 3 4 1 1 1     

Fam 32 11   1    91.7  

Fam 41 5 1  4 1 1    

Fam 62 1 1  1 3 5   81.8 

Fam 63 2 7 2 1    75.0  

Fam 91 4 3  5      

Fam 92 1 5 2 4      

Fam 93 5 1 3 2 1     

Fam 95 9 2      100.0  

Fam 100 8 3      100.0  

Fam 201 11 1      100.0  

Fam 202 8   2    80.0  

Fam 206 2 5 2 1      

Fam 227  2 4 5     81.8 
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Table 6. Alkaloid content of offspring families with high and low levels of uninfected 

plants (see table 5) 

>75% Uninfected plants  (a)  < 25% Uninfected plants  (b) 

 Total alkaloid (%)   Total alkaloid (%) 

Fam 20 3.11 ± 0.14  Fam 3 3.07 ± 0.25 

Fam 32 3.21 ± 0.08  Fam 19 3.19 ± 0.19 

Fam 63 3.20 ± 0.25  Fam 27 3.26 ± 0.24 

Fam 95 3.17 ± 0.15  Fam 62 3.06 ± 0.28 

Fam 100 3.41 ± 0.12  Fam 227 3.36 ± 0.17 

Fam 201 3.15 ± 0.17    

Fam 202 3.09 ± 0.16    

 

 

Discussion 

Two methods of inoculation have been used to evaluate anthracnose disease symptoms in a 

susceptible lupine cultivar. Artificial wounding gave higher anthracnose scores than 

spraying (Table 1). Spraying mimics the natural situation where spores are splashed by rain 

and wind, from infected lupine seedlings or stubbles (Thomas, 2003). The spores penetrate 

directly or through hidathodes and stomata. The infection process of Colletotrichum is 

characterized by a short biotrophic phase. At this point, cells of the two organisms are in close 

contact, followed by a necrotrophic phase (Esquerre-Tugaye  et al., 1992).  When using the 

artificial wounding method, the biotrophic phase of the pathogen is likely to be shorter than 

when using spraying. Niks and Lindhout (2006) recommended the use of artificial wounding 

to minimize escapes. The results of our research show that both inoculation methods give 

typical anthracnose symptoms in the apical main stem of lupine (Figure 1).  Artificial 

wounding overcomes more easily a low level of tolerance, but spraying may be appropriate 

as a preliminary selection in large lupine populations followed by artificial wounding to detect 

escapes.  

Disease severity symptoms were not the same in all phenological stages. More symptoms 

were found at the end of the cotyledonal stage (0.5-monthold) and at the beginning of 

flowering (2.5-monthold plants) (Figure 2). Changes in disease susceptibility during the life 

cycle of the plant have been observed in other plant-pathosystems. Bigirimana and Hofte 

(2001) found that some bean cultivars showed different levels of tolerance depending on 

the developmental stages of the plants when inoculated with C. lindemuthianum. Gieco  et 
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al. (2004) demonstrated that wheat seedlings were susceptible to Septoria  tritici but 

resistant in the tillering and flag leaf. Carnegie and Colhoun (1982) found that late blight 

susceptible potato varieties appeared to become more susceptible at higher plant ages, 

whereas the more resistant varieties appeared to become even more resistant. In addition to 

age-related changes in tolerance, Visker et al. (2003) found that leaf position plays an 

important role in the tolerance of potato to late blight. Apical leaves were more resistant to 

P. infestans than basal leaves in the same plant. Leaf position appeared to affect quantitative 

levels of disease infection. Chang and Hwang (2003) have demonstrated that lower leaves 

were more severely infected by leaf blight than upper leaves of adlay perennial grasses, 

irrespective of growth stage and cultivar. Other studies show that individual plant organs 

within a given plant vary in the level of tolerance or susceptibility. Pfender (2004) found 

that there were significant differences among plant organs on different positions on perennial 

ryegrass infected by stem rust. In this study, it is likely that the observed differences are 

mainly the response of lupine apical stem organs in which inoculation took place. Each plant-

pathosystem requires the development of its own methodologies for assessing disease 

symptoms in order to identify resistant genotypes.  

Epidemiological studies on lupine showed that reproductive tissue during flowering and pod 

formation are more anthracnose susceptible (Thomas and Sweetingham, 2004). This might be 

caused by stage-specific tolerance genes.  Some of these genes might be not effective in 

early and late developmental stages.  

Paper bags were placed on the main axis before the blossom season to promote selfings. 

This was not always successful and flower abortion and empty pods were commonly found. 

In normal conditions, there is a high level of cross pollination in the Andean lupine 

(Sweetingham et al., 2005).  Cultivation of the Andean lupine has often resulted in a low 

seed yield (Sawicka-Sienkiewicz and Augiewicz, 2002) and this low seed yield in has been 

attributed to protandry or protogyny (Hardy and Huyghe, 1997).  

Seeds of S1 families of ANDINO I-450 were sown to look for components of anthracnose 

tolerance  (compare Table 5 with Tables 3 and 4) although I-450 ANDINO is anthracnose 

susceptible. Field studies showed that only a few individual plants did not get diseased 

(chapter four of this thesis). In this study, differences in speed of infection in S1 families of 

this cultivar were observed (Table 5). It is not known if this difference in speed of infection  
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in L. mutabilis is monogenic or polygenic controlled. Anthracnose tolerance in L. albus is 

caused by more than one gene and is quantitative (Yang et al., 2009). The first step to 

understand anthracnose inheritance of Andean lupine is to develop homozygous populations.  

But this is difficult for Andean lupine since it is considered a cross-pollinating species 

(Sweetingham  et al., 2005).  We want to develop more homozygous material based on 

cultivars selected by INIAP and of new genotypes. With homozygous material and good 

levels of tolerance, it is feasible to do Quantitative Trait Loci (QTL) mapping studies.  

Alkaloid content in lupine seeds was measured as total alkaloid percentage and determined 

by titration. Gas-liquid chromatography can detect smaller amounts, but for our purposes 

determining total alkaloid is satisfactory (Harrison and Williams, 1982). Sweet, low 

alkaloid, genotypes are those that go from 0.002% up to the acceptable Food Standard of 

0.02% (200 mg/kg). However, there are bitter seeds of L. albus in the range of 1.5 to 2.2 % 

(Luckett, 2010). I-450 ANDINO is a bitter genotype. In this study, we analyzed S1 

populations of ANDINO I-450 to look for a correlation of the speed of infection and the 

alkaloid content in the seed. Alkaloids can be selectively high in lupine peripheral cell 

layers of stems and seeds (Wink, 1984). No correlation was found between alkaloid content 

in seed samples with level of uninfected or infected plants 15 days after inoculation (Table 

6). Further studies looking at infested plants and their percentage commercial seeds in 

relation to alkaloid content may show a correlation.  In other studies no association were 

found between brown spot disease and total alkaloid concentrations in F2 segregating 

populations (Gremigni  et al., 2006).  Bradley et al. (2002) found brown spot-resistant 

plants in both the bitter and sweet F2 progeny of crosses between susceptible sweet 

cultivars and resistant landraces of wild bitter L. angustifolius.  Other natural products in 

lupine, different from alkaloids, may have antifungal properties or maybe the chemical 

defense system of lupine consists of more compounds than the alkaloids alone.  Breeding 

Andean lupine for sweet varieties appears to be possible without losing tolerance/resistance 

to anthracnose. Other sweet lupine breeding programs as for example, in L. luteus and L. 

angustifolius have been successful in finding nearly alkaloid-free varieties. Alkaloid 

content of raw lupine seed is on average 3.3% but could be reduced to 0.47 % by plant 

breeding (Schoeneberger  et al. 1982). After the development of sweet lupine cultivars of L. 

albus gradually plants with higher levels of alkaloids were found due to cross-pollination 
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(Kurlovich, 2002). Breeding for sweet lupine varieties in L. mutabilis has received little 

attention (Schoeneberger  et al., 1982). Considering the high level of outcrossing of L. 

mutabilis (Sweetingham  et al., 2005), it is obvious that once a low-alkaloid lupine variety 

is identified, field plots should be established with no wild bitter lupine plants around.  In 

the first year, the offspring need to be tested for the presence of alkaloids and all identified 

bitter plants should be removed before blossoming.  If clean, production of such plots may 

satisfy the demand for seed for many years in great areas (Kurlovich and Kartuzova, 2002), 

production of seed with low alkaloid content or varieties free of alkaloids in the Andes of 

Ecuador could reintroduce lupine in traditional areas. 

Results of this study may be considered as a pilot for further evaluation of anthracnose 

tolerance in Andean lupine. In our opinion, the most reliable protocol is by spraying a C. 

acutatum isolate as a preliminary selection of large populations.  Scoring in 1.0-month-old 

plants and confirms the tolerance in 2.5-month-old plants to determine the overall reaction. 

Individual plants found resistant by the plant spray inoculation should be further challenged 

by artificial wounding of inoculum in 1.0-month-old plants. Two and a half-month-old 

plants that are still alive may be considered tolerant.  Anthracnose tolerance can also be 

measured in plants sown in pots under greenhouse conditions. Reliable tolerant and 

susceptible individuals can be used to make crosses and create mapping populations. 

Because of the high level of out-crossing of Andean lupine, no homozygous genotypes are 

present but effort should be made to create homozygous resistant genotypes.  Further 

studies are needed to elucidate the effect of organ age and position on the level of lupine 

anthracnose tolerance. 
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The interdisciplinary TELFUN project and Food Sovereignty 

The Tailoring Food Sciences to Endogenous Patterns of Local Food Supply for Future 

Nutrition (TELFUN) project aimed to support people to choose their own way of producing, 

processing, and consuming local foods that fit best in their local conditions. The central 

research question was: how do technological practices, developed from within food 

networks, enhance food-sovereignty and the nutritional status of people? TELFUN is an 

interdisciplinary and comparative research program based on twelve research projects, 

divided in four disciplines and carried out in three geographical locations. Its scientific 

development is divided in four disciplines - plant breeding, food technology, human nutrition, 

and sociology of science and technology - for a more complete understanding of the 

production, processing, utilization and consumption of lupine in Ecuador. Similar studies 

have taken place with cowpea in West Africa and mungbean in India (www.telfun.info).  

Lupine (Lupinus mutabilis) is a native legume of the Andean zone. It is adapted to marginal 

regions with limited water supply and poor nourished soils. In comparison with other 

legumes used in human nutrition, lupine seeds have high variability in iron and zinc 

content. These are just a few attributes that might make the Andean lupine a food of the 

future (www.telfun.info). Unfortunately, lupine is very susceptible to anthracnose and has a 

high content of alkaloids. Alkaloids have to be removed from seeds by processing before 

human consumption. Paradoxically, very little research has been done to breed for 

anthracnose resistance of Andean lupine. This is in contrast with the research done in other 

species of lupine cultivated around the world (Yang et al., 2008, 2009). L. mutabilis has a 

low level of genetic similarity with L. albus and L. angustifolius from the Old World 

(Talhinhas  et al., 2003).  

 

Plant breeding as part of the interdisciplinary research 

In the breeding discipline the following research question was proposed: How can 

exploratory studies, both on the pathogen and on the lupine genetic diversity, contribute to 

the development of better lupine varieties in the Province of Cotopaxi - Ecuador? The 

research described in this thesis focuses on determining the actual situation of lupine in the 

Province of Cotopaxi, determining agronomic traits and nutritional value of lupine cultivars 

selected by the Agropecuarian National Research Autonomous Institution  (INIAP),  

http://www.telfun.info/
http://www.telfun.info/
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identifying the species of anthracnose in lupine and tamarillo by using molecular 

techniques and exploring anthracnose diversity associated with lupine and tamarillo. Both 

lupine and tamarillo are native Andean crops. The lupine has traditionally been cultivated in 

the Ecuadorian cold highland places. The tamarillo has been cultivated in warm areas in the 

valleys.  In recent years, the agricultural borders of the two crops are shifting and often they 

are cultivated close to each other.  Tamarillo is a perennial crop with a short life of four years.  

Tamarillo may be a reservoir of C. acutatum isolates capable to infect lupine. Other studies 

focused on quantifying anthracnose resistance of selected cultivars and anthracnose 

infection in lupine seed, determining critical points in the disease development, designing 

methods for screening anthracnose resistance in individual lupine plants and studying the 

possible relation between speed of infection and alkaloid content.  Based on our findings a 

basic and applied model to start a breeding program with emphasis on anthracnose 

resistance is proposed. The interdisciplinary practices for the sustainable production of 

lupine in Ecuador which contribute to food sovereignty are highlighted. 

 

Agronomic traits and nutritional value of Andean lupine 

In the selection process of Andean lupine there has been chosen for white seed, a plant 

height of about 1.4 m, and early flowering. Based on these criteria, INIAP selected the six 

most suitable lupine cultivars, grew them and made selections under different 

environmental conditions in Ecuador (Peralta et al., 2008). Most modern cultivars are 

characterized by early flowering, large pod size and white seeds. In contrast, most wild 

relatives have low levels of vegetative development, late flowering and small brown seeds. 

They grow in marginal uncultivated and more mountainous areas. 

The set of selected cultivars could be grouped based on the height of the main axis, 

vigorous vegetative development, number of lateral branches and reproductive capacity 

(Chapter 2). Based on plant architecture Tapia (1990) distinguished a tall annual or biennial 

plant with long branches, adapted to the long growing seasons of the Andes (chocho) and 

an annual type from high altitudes in the central Andes of Peru and Bolivia which has a 

dominant main stem, few branches, and a short growing season of 155 days (tarwi). In each 

cultivar we distinguished tall and dwarf plants, early and late plants, and plants with 

determinate and non-determinate growth. It indicates that the cultivars are still very 
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heterogeneous. Development of homogeneous populations of Andean lupine is needed to 

look for the genetic components leading to anthracnose resistance.  

The agronomic study of six selected L. mutabilis cultivars and two landraces showed their 

performance in a very wet period in the Latacunga region. In general, the six lupine 

cultivars show low averages for all agronomic important traits (Chapter 2). This illustrates 

the poor adaptation of the selected lupine cultivars (released by INIAP) to the conditions in 

the wet season. For large improvements in seed yield, the first step in a breeding program is 

to identify a phenotype well adapted to local climatic conditions (Wells 1984). Andean 

lupine requires only 300 mm of rainfall during the production period (Peralta et al., 2008) 

and is better adapted to places with less rainfall, such as the Province of Chimborazo. 

The significant different levels of protein, iron, and zinc in lupine cultivars suggest that 

these characteristics are genotype dependent. In our overall breeding scheme, we propose to 

evaluate for quality after selection for tolerant/resistant lupine genotypes (Table 1). 

 

Morphological, molecular, and pathological studies of anthracnose in lupine and 

tamarillo 

Anthracnose is the most devastating disease in lupine and tamarillo, the Colletotrichum 

species causing this was not determined in Ecuador. This was the first study of anthracnose in 

which phenotypic and molecular approaches are combined to characterize the population 

structure of this pathogen and to determine their relatedness with worldwide representatives 

based on ITS sequence, and to establish pathogenic variability and host plant-cross infection.        

 

Use of morphological characteristics to identify Colletotrichum species 

Colletotrichum is the causal agent of anthracnose and all isolates had either a white-pink or 

a gray-pink pigmentation on the back of the colony. Pink-salmon colored spores are typical 

for C. acutatum in formal descriptions (Sutton, 1992). Lupine isolates grow slower than 

tamarillo isolates on Potato Dextrose Agar (PDA) in the Petri dishes after 10 days at 17
o
C ± 

2
 o

C at day light. The color of colonies varied from pale to olive-grey of aerial mycelium 

forming concentric circles (Figure 2A-E, Chapter 3) in isolates of lupine and tamarillo. In 

general the colony color changed in time from white to dark brown or black. C. acutatum 

isolates from lupine formed a pink-salmon pigment and tamarillo isolates a pink-yellow 

pigment on PDA. 
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Table 1. Basic and applied research scheme to start a breeding program with emphasis on 

anthracnose resistance 

 

Steps Methodology Selection criteria 

Preliminary screening 

for tolerance  

Spraying method  

Score in one-month-old plants 

Confirm in 2.5-month-old plants 

Tolerance to pathogen 

infection in apical part of 

plants 

Screen on commercial 

seeds of infected plants 

Sow on the surface of PDA in Petri 

plates 

 

Tolerance to 

transmission of the 

pathogen via seed 

Production of 

homozygous resistant 

plants and/or plants 

with a low seed 

transmission 

Main stem bagged to promote self-

pollination 

Homozygous seed 

production  

Confirmation of 

resistance in  

homozygous 

populations 

Resistant plants will be selfed again 

(preferable through non-infected 

cuttings of the plants). Pipetting 

after an artificial wound method  

Score in one-month-old plants 

Confirm in 2.5-month-old plants 

Disease screening.  

All progeny plants must 

be resistant 

Screen for nutritional 

value 

Methods described by AOAC 

(2005) 

High protein, iron, zinc 

content 

Genetic studies for both 

anthracnose resistance 

and seed transmission  

Crosses of resistant x susceptible 

plants. Association studies with 

molecular markers (Single 

Nucleotide Polymorphisms) in F2 

populations. 

 

Anthracnose resistant 

varieties  

 

 

Hybrid testing high resistance,  low 

seed anthracnose transmission, high 

yield,and nutritional value. 

Healthy plants with 

maximum of commercial 

seed  

   

or   Seed production 

program of good 

quality seed  

Field plots in local communities  Constant supply of clean 

lupine seeds  
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The shape of the spores varied between lupine isolates. Some were with one round and one 

acute end (Fig 2A in Chapter 3), but spores of the others lupine isolates were mostly 

cylindrical with round ends (Figure 2B-D, Chapter 3), that resemble C. gloeosporioides 

(Sutton, 1992). Based on morphological criteria alone lupine anthracnose (Insuasti, 2001) 

and tamarillo anthracnose (Sánchez et al., 1996; Santillán, 2001) were classified as C. 

gloeosporioides in Ecuador. Our studies demonstrated that identification of species by 

traditional methods (morphology, colony color, size of conidia), is not sufficient for 

identification of species and subspecies, which is critical for disease management and 

breeding. However, spore form, color appearance, color of pigment in the media after 10 

days of incubation at 17 ± 2 
o 

C and radial mycelia growth rate can be used for a 

preliminary characterization of Colletotrichum isolates.  

 

Molecular diagnosis and benomyl sensitivity   

All the isolates from lupine and tamarillo gave a C. acutatum-specific amplification product 

in the polymerase chain reaction (PCR) and no C. gloeosporioides-specific product (Brown 

et al., 1996). These results show that C. acutatum is the causal agent of lupine and tamarillo 

anthracnose and not C. gloeosporioides. Additionally all C. acutatum isolates from lupine 

and tamarillo grew on medium with benomyl and as expected, the C. gloeosporioides 

reference isolate did not. C. acutatum needs a different disease management than C. 

gloeosporioides. Efficient treatment of C. acutatum is done by fungicides such as 

azoxystrobin, mancozeb, or chlorothalonil (Thomas et al., 2008).  

 

Phylogenetic studies  

The internal transcribed spacer ITS (ITS 1–5.8S-ITS 2) was targeted to analyze phylogeny 

and systematics of Colletotrichum isolates from lupine and tamarillo. Our sequences were 

compared with ITS regions of Colletotrichum species (Talhinhas et al., 2002, 2005, 2009; 

Martinez-Culebras et al., 2003; Afanador-Kafuri et al., 2003) that are public available in 

GenBank (www.ncbi.nlm.nih.gov/genbank). 

Phylogenetic analyses of the ITS sequences, divided the C. acutatum isolates from lupine 

and tamarillo in Ecuador into two subgroups and all sequences but one in a newly formed 

subgroup. Pathogen populations within a geographical location are very homogeneous and 

http://www.ncbi.nlm.nih.gov/genbank
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nearly clonal (Martínez-Culebras  et al., 2002, 2003; Muñoz et al., 2000). In our study, the 

new group of lupine isolates included one from tamarillo (Tam6) (Figure 3 in Chapter 3). 

Isolate Tam6 was collected in San Pablo, Province of Imbabura, 150 km north from Quito.  

In that place, lupine and tamarillo have both been cultivated for about 10 years and the 

isolate might have been an occasional lupine isolate that cross infected a particular field of 

tamarillo.  Close similarity of C. acutatum isolates indicate that the practice of cultivate 

lupine close to tamarillo is not advisable. The existence of a teleomorph (Guerber and 

Correl, 2001) in C. acutatum may be contributing to the genetic divergence of some isolates 

creating more opportunities for pathogen to adapt to both hosts. In addition, sequence 

analysis grouped isolates of both hosts that previously were referred as C. gloeosporioides. 

This is new and valuable information for adequate anthracnose management in Ecuador.  

 

Pathological studies 

We conducted a host range test and found that isolates from lupine were pathogenic on 

tamarillo plants and tamarillo isolates were pathogenic in lupine plants. In anthracnose 

pathosystems, the same host is often infected by different species of Colletotrichum and the 

same pathogen can infect different hosts (Freeman et al., 1998). C. acutatum from olive 

causes symptoms in strawberries and lupine (Talhinhas et al., 2005). In this study, with a 

small number of C. acutatum isolates from tamarillo and lupine we saw that C. acutatum 

isolates can infect both tamarillo and lupine, but with different levels of virulence. Studies 

by pipetting C. acutatum isolates after wounding tamarillo and lupine plants show a 

positive host cross response with different degrees of virulence. The high levels of 

biological variability of C. acutatum populations may be caused by their high plasticity 

(Sreenivasaprasad and Talhinhas, 2005). The techniques developed in our study must be 

used to monitor the dominant Colletotrichum species in the multi cropping Andean system 

and to establish the appropriate disease management and breeding strategies. 

 

Understanding lupine anthracnose development  

Although all the six selected cultivars were susceptible in the Province of Cotopaxi, 

variation was seen in anthracnose development. After infection, symptoms become visible 

as wrinkles in the first true leaves 48 days after planting (DAP) and become more evident 
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before flowering and pod filling starts (76 DAP and 121 DAP response). Variation may be 

due to quantitative tolerance genes.  

Our data show that the seedling stage (48 days after planting), and the period before 

flowering and pod filling are critical points  in lupine anthracnose development (Table 1 

and Figure 1, Chapter 4). The first symptoms are wrinkled leaves and lesions on the leaves 

and apical stems.  C. acutatum conidia spread from initially infected seedlings to the 

neighboring plants by wind or rain. The typical twisting of the main stem, presence of 

salmon colored spores, and necrotic tissues on the stems were already evident on all plants 

before blossoming. Symptoms were progressive during pod filling.  

 

What are appropriate strategies considering local situations?  

There are no Andean lupine cultivars with anthracnose resistance. Cultivars released by 

INIAP and local cultivars have low tolerance levels under high disease pressure. If 

anthracnose resistant lupine varieties are developed, there might still be a risk of severe pod 

and seed infection under favorable conditions. Thomas et al., (2008) demonstrated that 

application of fungicide on the right time, for instance when there is podding on the 

primary branches, a significant increase in pod number and yield was found in high 

anthracnose risk areas of Western Australia. We saw small lesions on the leaves, apical 

stems or wrinkled leaves (grade two of scale, Chapter 4) in earlier stages of field studies. 

Wrinkled leaves and small lesions were also seen after spraying (score one and two of 

scale, Chapter 5). It is better to use fungicides as soon as small lesions appear. There are no 

studies that quantify the reduction of anthracnose infections and yield losses in Andean 

lupine by the use of chemicals. Studies must be conducted in the Province of Cotopaxi as 

well as under less rainy circumstances, such as in the Province of Chimborazo. Previous 

studies conducted by Peralta et al., (2004) indicate that the I-450 cultivar that is adapted 

well to Province of Chimborazo had double the yield as in our study. 

We have shown that the visual selection of seeds is very useful but it does not guarantee 

100% healthy seed. The percentage infected seeds used by farmers fluctuates from 14% in 

case of the seeds with small red-brown stains to 66 % of the non-commercial seeds (Table 

3, Chapter 4). This is far above the recommended threshold of 2% for seed-borne pathogens 

(Aftab et al., 2008).  The continuous use of infected seed results in the low yield.  Since the 
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commercial seeds are sold, the best alternative is to choose the small red-brown stained 

seeds and treat them before sowing. A good seed disinfection method is required to reduce 

initial inoculum. Farmers should be instructed to use thermotherapy methods that do not 

have any effect on the percentage of germination (Thomas and Adcock, 2004). This 

thermotherapy can be combined with a chemical treatment for a further reduction of the 

percentage of infected seeds. These experiences should be assayed with farmers in local 

centers under a participatory plant breeding program (see interdisciplinary appraisal for the 

sustainable production of lupine in Figure 1)   

 

 

Fig 1. Scientific interdisciplinary framework for an integrated social-technical production, 

processing, and consumption of lupine (L. mutabilis) to achieve Food Sovereignty in 

Ecuador (TELFUN)  

 

Assessing tolerance of Andean lupine (Lupinus mutabilis S.) to anthracnose 

Two methods of inoculation were used to evaluate anthracnose disease symptoms in the 

susceptible lupine cultivar I-450 ANDINO (Chapter 5). Our spraying method mimics the 

natural situation where spores from infected lupine seedlings or stubbles are splashed by 

rain and wind (Thomas, 2003). Wharton and Dieguez-Uribeondo (2004) demonstrated that 
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Colletotrichum penetrates directly the host cuticle and epidermal cell wall by means of a 

narrow penetration peg that emerges from the base of the appressorium. They indicate that 

indirect penetration through stomata is rare. It is possible that a brief biotrofic phase occurs 

when C. acutatum isolates were inoculated on the apical parts of lupine. Artificial 

wounding gave higher anthracnose scores than spraying but doesn‟t mimic natural 

conditions and when using the artificial wounding method, the biotrophic phase of the 

pathogen is likely to be shorter.  Niks and Lindhout (2006) recommended the use of wound 

infection methods to nullify escapes. The results of our research show that both inoculation 

methods give typical anthracnose symptoms in the apical main stem of lupine (Figure 1, 

Chapter 5).  For screening larger number of plants, we propose the spraying method as a 

preliminary selection followed by artificial wounding to detect escapes (Table 1). 

Anthracnose symptoms were not the same in all phenological stages. More symptoms were 

found at the end of the cotyledonal stage (0.5-month-old) and at the beginning of flowering 

(2.5-month-old plants). Infection in 1.5-month-old plants was less severe. We looked in 

five separate individual phenological stages (Figure 2, Table 1 in Chapter 5). For 

evaluations of anthracnose tolerance in more genotypes of Andean lupine, we recommend 

to inoculate plants of 1.0-month-old and confirm the disease severity in 2.5-month-old 

plants (Table 1) to obtain an overall reaction.   

The level of infection in seeds harvested from the six naturally infected lupine cultivars was 

determined. We divided harvested seeds in three categories: 1) Good quality seed (for 

commercial purpose suitable), 2) Seeds that have small red-brown stains (known to be 

anthracnose, Chapter 4), and 3) Non-commercial seed. The fact that seeds are non-

commercial isn‟t always caused by anthracnose, there are also other reasons that seeds end 

up in the category non-commercial. The level of transmission of the disease into seeds 

might be partially, genetically determined. As part of the basic and applied research to start 

a breeding program on anthracnose, we suggest also screening the percentage of 

commercial seed of infected plants (Table 1). 
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Basic and applied research to start a breeding program with emphasis on anthracnose 

resistance  

INIAP‟s collection has 529 lupine accessions from17 different species.  More than 200 

accessions belong to L. mutabilis (Rivera et al., 1998). The steps to explore this collection 

of L. mutabilis are given below and in short in Table 1. 

 

Steps in development of a lupine breeding program for Ecuador 

1. Tolerance/resistance to plant infection. Because of the large number of plants to be 

screened the first selection will use the spraying method. Disease evaluation will be in 

young plants (one-month-old) and a confirmation when flowering starts (2.5-months-old). 

Plants will be grown under greenhouse conditions (Chapter 5). Selection will be based on 

tolerance to infection in apical part of plants. Severity scale from 1 being the most tolerant 

to 6 being the most susceptible 

2. Tolerance to seed transmission of the pathogen. Screen on percentage of commercial 

seed from infected plants. Seeds are aseptically sown on the surface of PDA in Petri plates 

with PDA (see methodology in chapter four). Seeds without anthracnose infections will be 

planted and re-screened. A low seed transmission is a favorable trait and might have a 

genetic basis and should be selected.   

3. Production of homozygous tolerant/resistant plants and/or homozygous plants with a low 

seed transmission. Seed samples of tolerant/resistant plants will be sown in the soil in a 

greenhouse. Before blossom the main stem will be bagged to promote self-pollination. 

Selection will be made based on disease screenings and tolerant/resistant plants will be 

selfed again (non-infected cuttings). 

4. Confirmation of resistance in homozygous populations (all progeny plants must be 

resistant). The most resistant populations that do not segregate any more will be used for 

further breeding.  

5. Screen for nutritional value (quality). Resistant homozygous lines with high 

concentrations of Zn and Fe will come out of the screenings.  

6. Genetic studies for both anthracnose resistance and seed transmission, high levels of 

proteins and micro-nutrients. Mapping populations should be developed who make it 

possible to perform genetic mapping studies for these treats. Identifying associated DNA 
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markers will make it possible to design a breeding program based on marker assisted 

selection leading to elite lupine cultivars.  Alternatively, a seed production program can be 

established from consistent tolerant/resistant plants. 

7. Explore the possibilities, advantages and difficulties of the production of F1 hybrids.  In a 

breeding program it might be possible to make hybrids based on one parental line with a 

high level of tolerance and a parental line with a low seed transmission of the disease. 

 

The interdisciplinary appraisal for sustainable production of lupine in Ecuador helps 

Food Sovereignty 

Our research pays attention to the lupine specific farming system in the Ecuadorian inter 

Andean zone. Diversity, however, is not limited to the existence of different farming 

systems but also includes the existence of different production-consumption systems 

(www.telfun.info). It is notorious that each ethnicity of the different Andean cultures has its 

own way to produce, process, and consume of lupine (www.telfun.info). 

Interdisciplinary research was carried out in local food networks of the Province of 

Cotopaxi because lupine is mainly produced in that province. The national average yield is 

around 220kg/ha, but farmers do well if they harvest 100 – 150 kg/ha (see Table 2, Chapter 

2). This is because lupine is produced by farmers that do not have good quality seed, no 

advanced technology for cultivating lupine, and live and farm in places where there is no 

irrigation water (Table 2, Chapter 2). Seed is phenotypically selected and the seeds with 

small red-brown stains and bad quality are used for sowing. Commercial seed is sold in 

nearby towns or to the first buyer. Subsequently, lupine seed requires a soaking, cooking 

and debittering process. The traditional method of cooking is done in households. The 

cooked grain is placed in jute pouches and debittered in rivers or watersheds for about 7 

days. After removal of  alkaloids, the seeds will be used for consumption or processing into 

other lupine-based dishes. Recently, small and medium entrepreneurs have settled in towns 

(such as Saquisili 20 km north from Latacunga City, capital of the Province of Cotopaxi) 

where seed is debittered in cement ponds. The grain is then sold in small portions of 20 g 

on the streets in Latacunga or other small towns. Lupine processors have formed 

associations to improve the volume of production, the quality of the product, and achieve a 

http://www.telfun.info/
http://www.telfun.info/
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better price. Currently, lupine is offered in markets and supermarkets as a grain or lupine-

based products, such as milk and flour.  

Good agronomic methods are present for growing lupine (Peralta et al., 2006b, Peralta et 

al., 2008). Several of these experiences have been developed in conjunction with farmers 

(Peralta et al., 2003) and selection resulted in lupine cultivars with a 6-7 month growing 

period and white seed (Peralta et al., 2004).  The basic and applied research methods we 

propose should be integrated in a participatory breeding program (Figure 1) to offer a 

constant supply of clean lupine seeds. A combined approach that involves active 

participation of farmers (participatory plant breeding) and more applied and basic research 

between INIAP and universities, non-government and government organizations is 

imminent. Farmers need to be empowered of local practices (www.telfun.info) for adequate 

pest control, fertilization, and the good agronomic practices developed by INIAP (Peralta et 

al., 2003, 2004, 2006b, 2008). Farmers have to be more aware of producing seed of good 

quality and be skilled in harvest and selection. For managing anthracnose (and other seed 

borne diseases), farmers need to know the important role of using seed of good quality, 

contrary to current common practice of use and exchange of bad quality seed 

(www.telfun.info). New tolerant or resistant varieties must be evaluated in different 

environments under a participatory breeding program. It is expected that different varieties 

of lupine have to be developed for different microclimates. Supply of cultivars with 

different levels of anthracnose tolerance adapted to rainy and drier zones will augment the 

production and quality of lupine. 

Andean lupine cultivars are high in alkaloids. Level of alkaloids in selfed population 

greatly varied among populations. Anthracnose infection level of self-fertilized lupine 

populations did not correlate with the content of alkaloids (Table 6, Chapter 5). Pure line 

development is needed for selection studies of cultivars with low alkaloid content. Andean 

lupine has a high level of cross-pollination.  

The process of lupine debittering takes places close to towns where water supplies (rivers 

or lakes) are available. Processing is made by small household or family enterprises. As 

part of this interdisciplinary research, the food science colleague has developed new 

methods to optimize the processing time of the lupine (www.telfun.info). INIAP has also 

gained good postharvest processing experience (Peralta et al., 2006b, 2008). New products, 

http://www.telfun.info/
http://www.telfun.info/
http://www.telfun.info/
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such as flour or extruded products were also developed on a small scale in the food science 

area (www.telfun.info). INIAP has developed new lupine-based dishes (Lara et al., 2000). 

New technologies for debittering and new lupine-based dishes must be reported in local 

centers to increase the consumption of lupine (Figure 1). 

Data obtained in the plant breeding area indicate that the studied lupine cultivars have a 

good nutritional value (Table7, Chapter2). The effect of lupine based products on anemia, 

changes in energy balance, nutritional status, and body composition of school children at 

Guayama Community at the Province of Cotopaxi was studied for the Human Nutrition 

colleague of the TELFUN program. These cultivars and new products to get her with the 

traditional "lupine with roasted corn" or "ceviche of lupine" strengthen the nutritional status 

of children (Figure 1), young students, and pregnant woman in the Ecuadorian Andes.  

Small farmers are accustomed to share lupine seeds within local networks. They select the 

commercial seed for sale, leaving poor quality seed for future sowing. Our data indicate 

that 90 % of farmers did not know how to screen lupine seed for sowing. Eighty percent of 

seed is own recycled seed, and 20% of the seed come from exchange with people from 

surrounding communities (Table 2, Chapter 2). Seed exchange is an ancestral tradition of 

friendship. However, from a technical point of view exchange of infected seed contributes 

to anthracnose dispersion to new locations, because anthracnose is a seed-borne pathogen. 

The colleague in the sociology of science and technology has explored local network for 

producing, processing, and consuming of lupine in the Province of Cotopaxi. It indicates a 

disconnection within the social organization of lupine global food chain (www.telfun.info). 

Lupine is produced in one place and is processed in another locality. Buyers of lupine seeds 

are related with producers and processors. Upland farmers who want to consume lupine, 

must buy processed lupine at an unfair high price. For that reason, producers prefer to buy 

other cheaper and less nutritious food products, such as noodles or cookies. Lupine 

producers receive little profit and almost no nutritional value from their crop. It is necessary 

to reconnect the network paradigm into the lupine network. It requires a strong cooperation 

among plant breeding, food processing, and human nutrition disciplines to develop new 

technology and implement new findings as being an ensemble of social-technical issues 

(Figure 1). 

http://www.telfun.info/
http://www.telfun.info/
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Last year the Ecuadorian government issued a law to regulate the sale and consumption of 

healthy food in bars of the Educational National System (high schools and schools). Lupine 

is considered a priority food for the preparation of nutritional dishes or for consuming as 

grain (Acuerdo Interministerial 1-10, 2010). Estimating a population of 3 million students, 

a daily consumption average of 20 g per person, 60.000 Kg/day of processed lupine grain 

will be needed. Farmers and processors must be educated on the findings of this 

interdisciplinary study to optimize management, processing practices, and consumption of 

lupine. The new “catalystic” lupine varieties will be anthracnose resistant giving social 

benefits to rural people. Lupine smallholders should be associated to offer good quality 

seed, meeting demand volumes, receiving a fair price. Seed of these varieties will be 

processed in less time and under sanitary conditions. Seeds of these varieties will also have 

high nutritional value. New lupine-based dishes will be prepared. School children and 

pregnant women will be fed with lupine and new dishes and on-farm sources of protein and 

zinc will be available for rural people improving their nutritional status (Figure 1). It is 

clear, that cooperation between disciplines is essential to make this process successful. 
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The Tailoring Food Sciences to Endogenous Patterns of  Local Food Supply for Future 

Nutrition (TELFUN) project aims to support people to choose their own way of producing, 

processing, and consuming local foods that fit best in their local conditions. The central 

research question is: how do technological practices, developed from within food networks, 

enhance food-sovereignty and the nutritional status of people?, TELFUN is an 

interdisciplinary and comparative research program based on twelve research projects, 

divided in four disciplines and carried out in three geographical locations. Its scientific 

development is divided in four disciplines - plant breeding, food technology, human 

nutrition, and sociology of science and technology - for a more complete understanding of 

the production, processing, utilization and consumption of lupine in Ecuador. Similar 

studies are taking place in cowpea in West Africa and mungbean in India 

(www.telfun.info). The lupine (Lupinus  mutabilis) is a native legume of the Andean zone. 

Like other species of lupine it has easily adapted to marginal regions with limited water 

supply and poor nourished soils. As compared to other legumes used in human nutrition, 

lupine seeds have high protein, and variable iron and zinc content. These are just a few 

attributes that make the Andean lupine be considered a food of the future 

(www.telfun.info). Disadvantages of lupine are its high susceptibility to anthracnose and its 

high content of alkaloids (which have to be removed by processing). A specific research 

question to tackle lupine production in Ecuador was studied in the breeding discipline: How 

do exploratory studies, both on the pathogen and on the lupine genetic diversity, contribute 

to the development of better lupine varieties in the Cotopaxi province - Ecuador?  

Chapter 1  presents the importance, nutritional value, agronomical characteristics and 

breeding for anthracnose resistance of lupine in Ecuador. In Chapter 2, the actual lupine 

production, a number of agronomic characteristics, the nutritional value and anthracnose 

susceptibility of a set of lupine cultivars were determined.  The importance of 

characterizing genetic resources of L. mutabilisfor crop improvement is outlined. In 

Chapter  3, morphological, molecular and pathological methods were developed to identify 

the causal agent of anthracnose in lupine and tamarillo (another Andean native crop). 

Anthracnose diversity and the phylogenetic relationships between isolates of both hosts 

were studied. The techniques developed can be used to identify and monitor the dominant 

http://www.telfun.info/
http://www.telfun.info/
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Colletotrichum species in the multi cropping Andean system to establish an appropriate 

disease management and breeding strategies. In Chapter 4, anthracnose susceptibility and 

the disease development of lupine cultivars was assessed under natural infection of C. 

acutatum. Seed samples of naturally infected plants were used to determine the level of 

anthracnose infection in seeds. Recommendations are made to reduce the impact of the 

disease in the field and for the appropriate local management of lupine seed until new 

anthracnose resistant lupine varieties are developed. In Chapter 5, the development of 

methods for screening anthracnose resistance in individual lupine plants are described. 

Inoculation methods, phenological stages and the relation of resistance and alkaloid content 

are discussed. In Chapter 6, we put in perspective our findings and the appropriate 

methodologies we developed for starting an Andean lupine breeding program with 

emphases on anthracnose resistance. 

In conclusion, lupine can play an important role in increasing living conditions of the poor 

farmers in Ecuador. It is needed that the agroecological production systems are maintained by 

using sustainable farming methods. The use of disease free lupine seed is of utmost 

importance and a good understanding of the plant– pathogen interactions can increase yield. 

Lupine breeding should aim at anthracnose resistance, high yield varieties, and cultivars with 

high levels of protein and micronutrients.  Having high-quality lupine cultivars will, together 

with the results in the other three disciplines - food technology, human nutrition, and 

sociology of science and technology –contribute to the food sovereignty concept, that is, 

connect local networks chain for a better production, processing and consumption of lupine 

(www.telfun.info). 
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Het TELFUN (Tailoring Food Sciences to Endogenous Patterns of  Local Food Supply for 

Future Nutrition) project is opgezet om ondersteuning te geven aan mensen zodat ze lokale 

gewassen beter kunnen produceren en verwerken. Hierdoor kan de consumptie van lokaal 

voedsel, wat onder lokale omstandigheden geteeld is, hoger worden. De centrale 

onderzoeksvraag was: kunnen technologische verbeteringen, ontwikkeld vanuit 

voedselnetwerken, voedselsoevereiniteit en  de voedingsstatus van mensen verbeteren? 

TELFUN was een interdisciplinaire en vergelijkend onderzoeksprogramma gebaseerd op 

twaalf onderzoeksprojecten, die verdeeld waren in vier disciplines en die uitgevoerd zijn op 

drie verschillende geografische locaties. De vier disciplines waren - plantenveredeling, 

levensmiddelentechnologie, voeding en sociologie van wetenschap en technologie – deze 

disciplines geven o.a. een beter begrip van productie, verwerking en consumptie van lupine 

in Ecuador. Overeenkomstige studies hebben plaats gevonden in West Afrika met cowpea 

en in India met mungbean (www.telfun.info).  

Lupine (Lupinus mutabilis) is een lokale peulvrucht uit de Andes-zone. Het heeft met 

andere lupines gemeen dat het zich aangepast heeft aan marginale omstandigheden met 

beperkte hoeveelheden water en arme gronden. Vergeleken met andere peulvruchten 

hebben lupine zaden een hoog gehalte aan eiwitten en een variabele concentratie  ijzer en 

zink. Dit zijn enkele van de eigenschappen die deze lupine uit de Andes een veelbelovend 

voedsel maken (www.telfun.info). Nadelen van deze lupine zijn de gevoeligheid voor 

anthracnose en het hoge gehalte aan alkaloïden (die voor consumptie verwijderd moeten 

worden). In de veredelingsdiscipline werd de vraag gesteld: Hoe kunnen  verkennende 

studies, zowel aan de pathogeen kant als aan de lupine kant, bijdragen aan de ontwikkeling 

van betere lupine rassen geschikt voor de Cotopaxi provincie in Ecuador?  

Hoofdstuk 1 behandelt het belang van lupine, de voedingswaarde, agronomische 

eigenschappen en het veredelen op anthracnose resistentie in Ecuador. In hoofdstuk 2 

worden de actuele lupine productie, een aantal agronomische eigenschappen, de 

voedingswaarde en de anthracnose vatbaarheid van een aantal lupine rassen beschreven.  

Het belang van een inventarisatie van de genetische bronnen ten behoeve van  L. mutabilis 

gewasverbetering wordt benadrukt. In hoofdstuk 3 worden morfologische, moleculaire en 

pathologische methoden beschreven om de causale oorzaak van anthracnose in lupine en 

tamarillo (een ander gewas komend uit de Andes) beter te kunnen identificeren. De 
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anthracnose diversiteit en de fylogenetische verwantschap tussen isolaten verzameld op 

bovengenoemde gastheren wordt beschreven. Deze technieken maken het mogelijk de 

belangrijkste Colletotrichum soorten te identificeren, dit is nodig voor een goede 

anthracnose beheersing  in het Andes systeem met veel verschillende gewassen.  Het 

kunnen onderscheiden van verschillende isolaten is ook belangrijk bij het veredelen op 

anthracnose resistentie. Hoofdstuk 4 beschrijft de anthracnose gevoeligheid van lupine 

rassen en de ziekte ontwikkeling na een spontane infectie door C. acutatum. Zaadmonsters 

van geïnfecteerde planten, na een natuurlijke infectie, zijn gebruikt om het niveau van  

anthracnose infectie in de zaden te bestuderen. Aanbevelingen worden gemaakt om de 

impact van anthracnose zo gering mogelijk te houden. Dit is van belang zolang er nog geen 

anthracnose resistente lupine rassen zijn ontwikkeld. In hoofdstuk 5, worden de 

ontwikkelde methoden beschreven om op anthracnose resistentie te kunnen screenen in 

individuele lupin planten. Inoculatie methoden, het effect in verschillende stadia van plant 

groei en de relatie tussen resistentie en alkaloïde gehalte worden bediscussieerd.  In 

hoofdstuk 6 worden onze data en methodes in een breder perspectief besproken. Speciale 

aandacht wordt gegeven aan die methodes die het mogelijk maken een 

veredelingsprogramma te beginnen in Ecuador gericht op het ontwikkelen van lupine rassen 

met anthracnose resistentie. 

Lupine kan een belangrijke rol spelen bij het verbeteren van de levensomstandigheden van 

arme boeren in Ecuador. Daarvoor is het nodig dat de agro-ecologische productie systemen 

blijven bestaan. Het gebruik van ziektevrije lupine zaden is uiterst belangrijk en een goed 

begrip van plant-pathogeen interacties kunnen de opbrengst verhogen. Lupine veredeling 

moet zich richten op anthracnose resistentie, hogere opbrengst, en op hoge eiwit- en 

micronutriëntenniveaus.  Kwalitatieve goede lupine rassen, kunnen samen met de uitkomsten 

van de andere drie disciplines  - levensmiddelentechnologie, voeding , en sociologie – 

bijdragen aan het voedselsoevereiniteit  concept, en lokale netwerken gebruiken voor een 

betere productie, verwerking en consumptie van lupine (www.telfun.info). 
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El proyecto adaptación de las Ciencias de la Alimentación de los patrones endógenos de 

suministro local de alimentos para la nutrición futuro (TELFUN por sus siglas en Ingles) 

tiene por objeto contribuir para que las personas elijan su propio modo de producción, 

procesamiento y consumo de alimentos locales que mejor se adapten a sus condiciones 

locales. La pregunta central de ésta investigación es: ¿cómo las prácticas tecnológicas, 

desarrolladas desde el interior de las redes de alimentos mejoraran la alimentación y la 

soberanía del estado nutricional de las personas?, TELFUN es un programa de 

investigación interdisciplinario y comparativo basado en doce proyectos de investigación, 

dividido en cuatro disciplinas y llevado a cabo en tres zonas geográficas. Su desarrollo 

científico se divide en cuatro disciplinas – mejoramiento genético vegetal, tecnología de 

alimentos, nutrición humana y sociología de la ciencia y la tecnología - para una 

comprensión más completa de la producción, transformación, utilización y consumo del 

chocho en el Ecuador. Estudios similares están desarrollándose cawpi en el África 

Occidental y frijol mungo en la India (www.telfun.info).   

El chocho (Lupinus mutabilis) es una leguminosa nativa de la zona andina. Al igual que 

otras especies de chocho es de fácil adaptación a las regiones marginales con limitado 

suministro de agua y en suelos pobres en nutrientes. En comparación con otras leguminosas 

utilizadas en la alimentación humana, las semillas de chocho tienen alto porcentaje de 

proteína y variable contenido de hierro y zinc. Estos son sólo algunos atributos que hacen 

que el chocho andino sea considerado un alimento del futuro (www.telfun.info). Entre las 

desventajas, el chocho es muy susceptibilidad a la antracnosis y tiene alto contenido de 

alcaloides (que deben ser eliminadas mediante procesamiento). En el área de mejoramiento 

genético vegetal se planteó una pregunta especifica de investigación para abordar la 

producción de chocho en el Ecuador: ¿Cómo estudios exploratorios, tanto en el patógeno, 

como en la diversidad genética del chocho contribuirán al desarrollo de mejores variedades 

de chocho en la provincia de Cotopaxi - Ecuador? 

El capítulo 1 presenta la importancia, valor nutritivo, características agronómicas y de 

mejoramiento para resistencia a la antracnosis del chocho en el Ecuador.En el capítulo 2, 

se determina la producción actual de chocho, una serie de características agronómicas,  

valor nutricional y la susceptibilidad a la antracnosis de un conjunto de cultivares de 

chocho.Se describe la importancia de la caracterización de los recursos genéticos para el 

http://www.telfun.info/
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mejoramiento genético del chocho L. mutabilis. En capítulo 3, se detallan métodos 

morfológicos, moleculares y patológicos aquí desarrollados para identificar el agente causal 

de la antracnosis en chocho y tomate de árbol (otro cultivo nativo andino). Se estudió la 

diversidad de la antracnosis y las relaciones filogenéticas entre aislamientos de ambos 

hospederos. Las técnicas desarrolladas pueden utilizarse para identificar y controlar las 

especies de Colletotrichum dominante en el sistema mixto de cultivo de la zona andina para 

así establecer un manejo adecuado de la enfermedad y estrategias de mejoramiento. En el 

capítulo 4, se evaluó la susceptibilidad a la antracnosis y el desarrollo de la enfermedad en 

cultivares de chocho causado por infecciones naturales de C. acutatum.Luego se usaron 

muestras de semillas de plantas naturalmente infectadas para determinar el nivel de 

infección de antracnosis en semillas. Se hacen recomendaciones para reducir el impacto de 

la enfermedad en el campo y para el adecuado manejo local de semillas de chocho mientras 

se desarrollen nuevas variedades de chocho con resistencia a la antracnosis. En el capítulo 

5, se describe el desarrollo de métodos que permitan seleccionar plantas individuales de 

chocho con resistencia a la antracnosis. Se discuten métodos de inoculación, estados 

fenológicos de la planta y la relación entre la resistencia fenotípica de la planta con el 

contenido de alcaloides en la semilla. En el capítulo 6, se pone en perspectiva los 

resultados y las metodologías apropiadas que hemos desarrollado para dar inicio a un 

programa de mejoramiento genético del chocho andino con énfasis en resistencia a la 

antracnosis.  

En conclusión, el chocho puede jugar un papel importante en el aumento de las condiciones 

de vida de los agricultores pobres de Ecuador. Para ello, es necesario que los sistemas de 

producción agroecológica se mantengan  mediante el uso de métodos agrícolas sostenibles. 

El uso de semillas de chocho libres de enfermedades es de suma importancia, una buena 

comprensión de las interacciones planta-patógeno puede aumentar el rendimiento. El 

mejoramiento del chocho debe tener como objetivo la resistencia a antracnosis, variedades 

de alto rendimiento y cultivares con altos niveles de proteínas y micronutrientes. Al tener 

alta calidad de cultivares de chocho, junto con los resultados en las otras tres disciplinas - 

tecnología de alimentos, nutrición humana y sociología de la ciencia y la tecnología - 

contribuirán con el concepto de soberanía alimentaria, es decir, conectar la cadena de redes 

locales para una mejor producción, elaboración y el consumo de chocho (www.telfun.info).

http://www.telfun.info/
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The cover art was inspired by the topic of this thesis: Lupinus  mutabilis in Ecuador with 

special emphasis on anthracnose resistance.  

 

Front cover page represents the wanted anthracnose-resistant lupine plant on the left side, in 

contrast with the traditional, susceptible lupine genotypes on the right side. The salmon 

pink spores of Colletotrichum re-suspended in a cloud of air and steam represent the 

pathogen ready to infect susceptible lupine plants.  The lupine plant represents the food 

sovereignty of people in the Andean region. The two hands that surround the earth illustrate 

the important role that Andean lupine plays as an affordable source of nutrition for the 

world population.  

 

Back cover page represents good quality seed (for commercial purpose suitable) in contrast 

with bad seed (not commercial useful), and seed with small red-brown stains (suggesting 

that the fungus can also be present under the seed coat and may also be in cotyledonal 

leaves).  


