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General introduction 

 

Basal defense of plants 

 

Plants are exposed to a vast number of potential pathogens either in the phyllosphere 

(aerial plant part), rhizosphere (zone of influence by root system) or endosphere (internal 

transport system) (Berendsen et al. 2012; Bulgarelli et al. 2013; Lambers et al. 2009; 

Vorholt 2012). However, not all potential pathogens can invade successfully and inflict 

disease on plants. Plants usually possess layers of preformed and induced defense to resist 

the invasion of potential pathogens (Thordal-Christensen 2003).  

 

The first line of defense in plants are the preformed physical and chemical barriers on the 

surface of plant cells. Surface structures such as, cuticle, trichome and cell wall provide 

the physical barrier which may prevent potential pathogens from penetrating into the cells 

(Łaźniewska et al. 2012). Various preformed chemicals, such as saponins, cyanogenic 

glucosides and glucosinolates, are toxic for potential pathogens (Iriti and Faoro 2009). The 

physical and phytochemical barriers are not full proof defenses. Some potential pathogens 

may have developed strategies to breach these defenses. Plants, however, have the ability 

to quickly detect these pathogens and trigger induced defense. 

 

The induced defense mechanism requires the ability of plants to recognize invaders 

through pattern-recognition receptors (PRRs). Those well studied PRRs can be categorized 

into receptor-like kinases and receptor-like proteins (Liu et al. 2013; Monaghan and Zipfel 

2012). The PRRs recognize invaders directly through the perception of microbe-associated 

molecular pattern (MAMPs) which is also known as pathogen-associated molecular 

pattern (PAMPs) (Ingle et al. 2006). The MAMPs/PAMPs, here on PAMPs, are conserved 

molecules that are vital for fitness or survival of entire groups of microbes and are not 

present in the host. Well described PAMPs includes chitin, peptidoglycans, 

lipopolysaccharides, elongation factor Tu and flagellin (Pel and Pieterse 2012). Indirect 

recognition of invaders is also possible through the perception of damage-associated 

molecular patterns (DAMPs) (Dodds and Rathjen 2010) also known as microbe-induced 

molecular patterns (MIMPs) (Mackey and McFall 2006). DAMPs are endogenous 

molecules such as plant peptides or cell wall fragments released during microbe invasion 

or wounding which are also known as host-derived danger signals (Boller and Felix 2009). 

Stimulation of PRRs will induce an immune response called PAMP-triggered immunity 

(PTI) (Jones and Dangl 2006). The preformed and induced defense generally is nonhost 

resistance which protects plants against non-adapted pathogens (Niks and Marcel 2009). 
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Pathogenicity 

 

Pathogens have to negate the defenses of plants to infect plants successfully. To overcome 

the preformed defenses on the plant surface, pathogens have developed specialized 

infection structures or digestive enzymes to penetrate the physical barriers (Łaźniewska et 

al. 2012). Against the phytochemical defense, adapted pathogens acquired the ability to 

tolerate or detoxify the phytochemical compounds with antibiotic activity (Iriti and Faoro 

2009). The ability of pathogens to neutralize the preformed defenses needs to be 

accompanied by the ability to escape or evade the recognition by the PRRs on the plant 

surface (Hoefle and Hückelhoven 2008; Łaźniewska et al. 2012). Escaping or evading the 

recognition by PRRs is necessary especially for biotrophic pathogens which need to 

exploit plants without inducing PTI or with effective suppression of PTI (Laluk and 

Mengiste 2010). 

 

A pathogen can escape from the recognition by PRRs when the recognition domain of its 

PAMP is altered under selective pressure. Since PAMPs are vital for fitness or survival of 

pathogens, a mutation in PAMPs is likely to put pathogens in unfavorable condition for 

survival. However, variations have been observed in the recognition domain of PAMPs, 

viz. bacterial flagellin and lipopolysaccharide which impaired the recognition by PRRs 

without decreasing the fitness of the pathogen (Pel and Pieterse 2012). When a pathogen 

tries to evade the recognition by PRRs, the pathogen will produce proteins that prevent 

PAMP recognition by PRRs or that interferes with PTI. The proteins that interfere with 

PTI are called effectors which mostly interfere the downstream of defense signaling 

pathways after PRRs recognition of pathogens (Pel and Pieterse 2012). Effectors are 

“molecules secreted by plant-associated organisms that alter host-cell structure and 

function” (Win et al. 2012), i.e. effectors are secreted by adapted and non-adapted 

pathogens, and mutualistic microorganisms.  

 

Pathogens will secrete effectors either into the apoplast or cytoplast. For successful 

colonization, pathogens need to secrete effectors to the right location and at proper timing 

to target plant defenses (Hogenhout et al. 2009; Win et al. 2012). The effectors will 

manipulate the operative targets in the plant to enhance pathogen fitness (van der Hoorn 

and Kamoun 2008). Effectors have specific operative targets in plants. Therefore, a 

pathogen may fail to infect a plant if the versions of the operative targets in the plant are 

incompatible with the effectors of the would-be pathogen. So, the targets may not be 

absent, but be present in a version the effector cannot address (Niks and Marcel 2009; 

O’Connell and Panstruga 2006; van der Hoorn and Kamoun 2008). This explains the 

strong host specificity of many biotrophic pathogens, i.e. pathogenic on certain plant 
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species, even if plant species taxonomically, physiologically and morphologically seem to 

be very similar (barley versus wheat).  

 

Plants are able to recognize effectors of pathogens through their intracellular receptors 

which will signal the activation of effector-triggered immunity (ETI). Many resistance 

genes (R genes) encode such intracellular receptors (Dodds and Rathjen 2010; Jones and 

Dangl 2006). Under natural selection, pathogens will shed or will have new variant 

effectors to negate ETI. In turn, plants also will acquire new variance of R genes to 

reactivate the ETI. This evolutionary arm race continues (Jones and Dangl 2006). 

 

The resistance confirmed by R genes is race specific and functions on a gene-for-gene 

basis (Flor 1971; Parlevliet 1983). This resistance is not durably effective (Dodds and 

Rathjen 2010; Niks and Marcel 2009). For example, Puccinia striiformis f. sp. tritici (Pst) 

can evolve rapidly in to new races and makes previously resistant wheat cultivars 

susceptible. In the United States, after 49 years from the first ever recorded Pst infection, 

now 118 Pst races have been documented (Chen 2005; Chen et al. 2010; Hovmøller et al. 

2011). The rapid emergence of new virulent races is also true for P. striiformis f. sp. 

hordei on barley (Chen 2008; Wan and Chen 2011) – 82 races after 18 years from the first 

detection in the US. Low durability of R gene resistance is probably because: (1) many 

effectors are dispensable, (2) virulence is restored by only one arbitrary loss-of-function 

mutation in the cognate effector-Avr gene and (3) pathogens with restored virulence after 

mutation of the cognate Avr gene can reproduce much more efficiently than the avirulent 

genotypes, and have a tremendous selective advantage (Niks and Marcel 2009).  

 

 

Genetic basis of host status in plants 

 

A plant species is a host to a pathogen species if that pathogen can deal effectively with 

the basal defense mounted against them, i.e. basic compatibility is achieved. Otherwise, a 

plant species is a nonhost. The versions of operative targets of effectors in plants probably 

will determine the host status of a plant species.  

 

Inheritance study is a strategy to identify the operative targets which determine the host 

status. Three different approaches are possible (Niks and Marcel 2009): (1) crossing a 

nonhost with a host species (Jeuken et al. 2008), (2) crossing individuals within a nonhost 

species with different degree of nonhost resistance (Ayliffe et al. 2011; Shafiei et al. 

2007), and (3) within a marginal-host, crossing a rare susceptible individual with an 

accession with regular immunity (Jafary et al. 2006; 2008).  

 



Chapter 1  General Introduction 

5 

Inheritance studies by following the first approach are usually difficult because it involves 

interspecific crosses. The progenies obtained from interspecific crosses, if any, are 

associated with abnormalities which may hamper genetic studies. The second approach 

depends on the quantitative differences in the defense components. The quantitative 

differences can be relatively small which can obscure the observations and typically 

require laborious microscopic observations. The third approach is used in the barley-rust 

pathosystem (see details in the next section).  

 

 

The model system: barley-rust pathosystem 

 

Barley (Hordeum vulgare) is a host to barley leaf rust (Puccinia hordei), and a complete 

nonhost to most of the non-adapted rusts fungal species but a marginal-host to several 

others, such as P. triticina, P. hordei-murini, P. hordei-secalini, among others (Atienza et 

al. 2004). The marginal-host status of barley to some non-adapted rust fungi provides the 

opportunity to study the inheritance of nonhost resistance without resorting to interspecific 

crosses. The inheritance study assumes that the genetic basis of marginal-host status can 

help in the comprehension of full nonhost resistance by extrapolation.  

 

Rare barley accessions with moderate susceptibility to P. triticina at seedling stage were 

identified. They served as genetic resources to develop an experimental line – SusPtrit. 

SusPtrit is, at seedling stage, not only exceptionally susceptible to P. triticina but also 

susceptible to at least nine other non-adapted rust fungi to which barley is a marginal-host 

(Atienza et al. 2004). Another experimental line is also available – SusPmur, which was 

developed using the same procedure, but under selection for increased susceptibility to P. 

hordei-murini (Atienza et al. 2004). 

 

SusPtrit was used to develop mapping populations by crossing it with regular barley, viz. 

Vada (Jafary et al. 2006) and Cebada Capa (Jafary et al. 2008) which are immune to non-

adapted rust fungi. The immunity of Cebada Capa and Vada inherits polygenically. 

Different sets of quantitative trait loci (QTLs) segregate in the two populations with few 

QTLs in common between the populations. Most of their QTLs confer resistance against 

one or two rust species which implies overlapping specificities of QTLs for resistance to 

non-adapted rust fungi (Jafary et al. 2006; 2008).  

 

SusPtrit is also susceptible to P. hordei (Jafary et al. 2006). Hence, the Cebada 

Capa/SusPtrit and Vada/SusPtrit mapping populations were also used to study the 

inheritance of partial resistance to P. hordei in addition to other mapping populations of 

barley, viz. L94/Vada, Steptoe/Morex and Oregon Wolfe Barley (OWB). Partial resistance 
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to P. hordei is observed as low levels of infection despite a compatible infection type in 

the field due to a delay in epidemic build-up of P. hordei (Niks et al. 2011; Parlevliet 

1979). Similar to nonhost resistance, partial resistance is inherited polygenically 

(Parlevliet 1976, 1978). To date, at least 20 QTLs against P. hordei were mapped in 

different mapping populations and seem to act according to a minor-gene-for-minor-gene 

model (González et al. 2012; Jafary et al. 2008; Marcel et al. 2007b; 2008; Niks et al. 

2000; Parlevliet and Kuiper 1977; Qi et al. 1998; 1999). 

 

On the high density consensus map of barley, the QTLs for nonhost resistance tend to co-

localize significantly with the partial resistance QTLs (Jafary et al. 2006; 2008). The QTLs 

for nonhost and partial resistance also tend to coincide with barley peroxidase gene 

clusters (González et al. 2010). This observation suggests that partial and nonhost 

resistance may share some genes for resistance which supports an earlier suggestion of 

Zhang et al. (1994) and Hoogkamp et al. (1998).  

 

The association between nonhost and partial resistance is also observed at microscopic 

level. Barley genotypes with partial resistance against P. hordei arrest a high proportion of 

infection unit at an early stage of development, coined early abortion (Niks, 1982), due to 

the failed attempts of haustorium formation associated to the formation of papillae. It is 

therefore a prehaustorial resistance, and it is not associated with a hypersensitive reaction 

of plant cells. The proportion of early aborted colonies is correlated to the level of partial 

resistance (Niks 1982, 1986). The mechanism of partial resistance is shared with, but less 

complete than, nonhost resistance of barley to non-adapted rust fungi (Niks 1983a, b). The 

evidences seem to suggest that partial resistance is a weak form of nonhost resistance 

(Niks and Marcel 2009; Niks et al. 2011). 

 

 

The principle of partial and nonhost resistance  

 

Many PAMPs, but not all, are highly conserved among microbes (Pel and Pieterse 2012; 

Thomma et al. 2011). Plausibly, P. hordei and other non-adapted rust fungi possess very 

similar or identical PAMPs. Therefore, P. hordei as well as non-adapted rust fungi can be 

recognized by the PRRs of barley and signal the activation of PTI. 

 

P. hordei and non-adapted rust fungi will secrete effectors to suppress the PTI of barley. 

For haustoria-forming pathogens such as P. hordei, the large majority of effectors are 

assumed to be secreted through feeding structures called haustoria (Catanzariti et al. 2007; 

Voegele and Mendgen 2003, 2011). The mechanism of delivering effectors from haustoria 

to host cells remains a mystery but several hypothetical mechanisms have been proposed 
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(de Jonge et al. 2011; Kamoun 2007; Panstruga and Dodds 2009). The successfulness of 

effectors in manipulating the operative targets in barley will determine the intensity of PTI 

suppression, i.e. the level of susceptibility (Figure 1). For non-adapted rust fungi to which 

barley is a nonhost, the PTI of barley will not be suppressed by the effectors of non-

adapted rust fungi. For some non-adapted rust fungi, barley is a marginal-host such as P. 

triticina and P. hordei-murini (Atienza et al. 2004). The effectors of these non-adapted 

rust fungi may have suppressed partly the PTI activated in some of the barley accessions, 

which result in some level of basic compatibility. Incomplete suppression of PTI is also 

expected when partially resistant barley genotypes are attacked by P. hordei, but for 

susceptible barley genotypes, the effectors of P. hordei fully suppress the PTI (Niks and 

Marcel 2009) and bring about high basic compatibility. The marginal host status and 

partial resistance of barley may represent the transitional stages during the evolution 

process of losing or acquiring host status to rust fungi.  

 

The genes underlying the effect of resistance QTLs need to be cloned for further 

understanding of nonhost resistance, partial resistance and their possible association. The 

information can be applied for developing new crop varieties with efficient and durable 

resistance against different pathogens.  

 

 

Figure 1: The ability of pathogen effectors in manipulating the plant operative targets in different barley-

rust interactions. 
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Map-based cloning nonhost and partial resistance QTLs of barley to P. hordei 

 

The identified nonhost and partial resistance QTLs of barley are presumed to be or to 

encode the operative targets of the pathogen’s effectors (van der Hoorn and Kamoun 

2008). They are expected to differ not only between plant species but also between 

members of a plant species as indicated by the different set of QTLs mapped for nonhost 

and partial resistance of barley in different mapping populations, with few shared QTLs 

when challenged with a particular rust pathogen (González et al. 2012; Jafary et al. 2008; 

Marcel et al. 2007b). Consequently, one plant genotype can be a more suitable host 

individual than another genotype of the same plant species, provided that the effectors-

operative targets interaction is specific. The specificity of effectors-operative targets 

interaction is supported by the fact that the specificity of QTL effects is observed both for 

nonhost and for partial resistance of barley (Figure 3) (González et al. 2012; Jafary et al. 

2008).  

 

Partial and nonhost resistance are probably resting on similar principles. Hence, studying 

partial resistance of barley to P. hordei is relevant to understand nonhost resistance of 

barley to the related non-adapted rust fungi and vice versa. In barley over 100 QTLs for 

partial and nonhost resistance to rust fungi and powdery mildew have been mapped in 

different barley mapping populations. We need to identify and isolate the genes that are 

responsible for the effect of these QTLs because, only then we can know and understand 

the molecular basis of partial and nonhost resistance. 

 

To begin with, the QTLs identified should be validated by using near isogenic lines 

(NILs). NILs allows the QTL effect to be tested in a uniform genetic background without 

the interference of other resistance QTLs. These isogenic lines are developed by 

recurrently backcrossing of the QTL donor to a recurrent recipient parent to “Mendelize” 

the QTL (Alonso-Blanco and Koornneef 2000). The process of developing NILs can be 

accelerated with the assistance of molecular markers (Collard et al. 2005; Moose and 

Mumm 2008). The prefered barley genotype to be used as the recipient parent is SusPtrit. 

In SusPtrit genetic background, each QTL effect can be tested against adapted and non-

adapted rust fungi. 

 

QTLs which are identified in a mapping study are usually positioned into a large interval, 

depending on the mapping population size and the resolution of the linkage map. Before 

the identification and cloning of a gene explaining a QTL is feasible, the QTL needs to be 

fine-mapped into a smaller interval. NILs are usually used for QTL fine-mapping by 

creating multiple sub-NILs which carry different recombination points at the QTL marker 

support interval (Han et al. 1999; Marcel et al. 2007a; Xue et al. 2010; Zhou et al. 2010). 
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The QTL interval after fine mapping needs to be sufficiently small to allow the 

construction of a Bacterial Artificial Chromosomes contig covering the region i.e., 

physical mapping. The co-segregating markers of the targeted QTLs are used to fish BAC 

clones from the BAC libraries and also act as anchor to construct the BAC contig. Up to 

now, BAC clones can be fished out from BAC libraries which are made available for four 

barley genotypes – Morex (Schulte et al. 2011; Yu et al. 2000), Cebada Capa (Isidore et al. 

2005), Haruna Nijo (Saisho et al. 2007), and a doubled haploid barley line CS134 derived 

from Clipper/Sahara-3771 (Shi et al. 2010). The genomic sequence of Morex (The 

International Barley Genome Sequencing Consortium 2012) is also valuable for assisting 

in physical mapping of QTLs. The genomic libraries of the four barley genotypes 

mentioned above may not contain the genes for targeted QTLs if they are not the QTL 

donor. Therefore, a BAC library should be constructed for the barley accession that was 

donor of the QTL of interest (Saisho et al. 2007).  

 

The sequence information of the BAC clones will allow the identification of candidate 

genes for QTLs. Validation of candidate genes may possibly be conducted via either 

transient overexpression and silencing through virus-mediated overexpression and virus-

induced gene silencing (Lee et al. 2012). However, each transiently transformed plant is 

unique and makes replicated disease tests not possible to validate candidate genes for their 

effect on quantitative resistance as are relevant in nonhost and partial resistance of barley. 

Stable transformation is another option for candidate genes validation. For stably 

transformed plants, multiple identical plants with the transgene are available because the 

transgene is transmitted from one generation to another through grains. Hence, disease 

tests with replications are possible. Unfortunately, the efficiency of stable transformation 

in barley is genotype-dependent (Hensel et al. 2008). Functional study of candidate genes 

on the appropriate barley genotypes, such as SusPtrit, can possibly be restricted by the 

transformation efficiency of the barley genotype. One must have an alternative for 

validation of candidate genes if the barley genotype of interest is not transformable.  
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The scope of thesis 

 

This thesis is working on map-based cloning of QTLs for nonhost and partial resistance. 

We got to know SusPtrit is a valuable barley genotype for nonhost and partial resistance 

study, but it is not amenable to Agrobacterium-mediated transformation. Validation of 

candidate genes is then not possible, although preferable, on SusPtrit. In Chapter 2, we 

aimed to develop a new barley experimental line which can replace SusPtrit as a valuable 

line for studies on nonhost and partial resistance, and can be used to validate candidate 

genes.  

 

From the abundantly available QTLs for partial and nonhost resistance mapped in 

different mapping populations, five QTLs with major effect for partial resistance and one 

QTLcontributing to nonhost resistance are selected for our studies (Table 1). In Chapter 3, 

we aimed to develop NILs for the selected QTLs by using SusPtrit as recurrent parent. We 

expected to confirm the effect of each QTL against a selection of adapted and non-adapted 

rust fungi, in a uniform genetic background.  

 

 
Table 1: The QTLs selected to study of partial and nonhost resistance 

*QTL Chromosome 
Explained phenotypic 

variance 
Donor 

Mapping 

population 
References 

Rphq2 2H 36% Vada L94/Vada Qi et al. (1998) 

Rphq3 6H 17% Vada L94/Vada Qi et al. (1998) 

Rphq4 5H 25% Vada L94/Vada Qi et al. (1998) 

Rphq11 2H 34% Steptoe Steptoe/Morex Marcel et al. (2007b) 

Rphq16 5H 33% Dom OWB Marcel et al. (2007b) 

Rnhq 7H 30% Vada L94/Vada Niks et al. (2000) 

* Rphq – QTL for partial resistance, Rnhq – QTL for nonhost resistance 

 

 

Among the QTLs in Table 1, only Rphq2 and Rphq4 are fine-mapped into a sufficiently 

small interval for physical mapping [(Marcel et al. 2007a); Y. Wang and X. Qi, Institute of 

Botany, Chinese Academy of Sciences, Beijing, China]. In Chapter 4, we aimed to fine-

map another two QTLs, Rphq11 and Rphq16, to get them ready for physical mapping. For 

Rphq2, we aimed to accomplish physical mapping and then to obtain the sequence 

information of the region from Vada and SusPtrit to identify candidate genes explaining 

the resistance effect of the QTL (Chapter 5). 
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Abstract 

Nonhost and partial resistance to Puccinia rust fungi in barley are both polygenically 

inherited. These types of resistance are principally prehaustorial, show a high diversity 

between accessions of the plant species and are genetically associated. To study nonhost 

and partial resistance, as well as their association, the candidate gene(s) for resistance must 

be cloned and tested in susceptible material where SusPtrit would be the line of choice. 

Unfortunately, SusPtrit is not amenable to Agrobacterium-mediated transformation. In this 

study, a new bi-parental doubled haploid (DH) population (n=122) was created by 

crossing SusPtrit with Golden Promise to develop a ‘Golden SusPtrit’, i.e., a barley line 

combining SusPtrit’s high susceptibility to non-adapted rust fungi with the high 

amenability of Golden Promise for transformation. At a logarithm of the odds (LOD) 

threshold of 10, a linkage map was constructed using 686 SNPs obtained from the 

ILLUMINA iSelect 9k barley infinium chip. The total map length is 1175 cM. 

Quantitative trait locus (QTL) mapping identified nine genomic regions occupied by 

resistance QTLs against four non-adapted rust fungi and P. hordei isolate 1.2.1 (Ph.1.2.1). 

Among the nine genome regions, five regions conferred resistance to different rust fungi, 

suggesting that the responsible genes have effects on multiple rust species. Four DH lines 

were selected for an Agrobacterium-mediated transformation efficiency test. They were 

among the 12 DH lines most susceptible to the tested non-adapted rust fungi. The most 

efficiently transformed DH line was SG062N (11 to 17 transformants per 100 immature 

embryos). The level of non-adapted rust fungi infection on SG062N is either similar to or 

higher than the level of infection on SusPtrit. Against Ph.1.2.1, the latency period 

conferred by SG062N is as short as that conferred by SusPtrit. SG062N, designated 

‘Golden SusPtrit’, will be a valuable experimental line that could replace SusPtrit in future 

nonhost and partial resistance studies, especially for stable transformation using candidate 

genes that may be involved in rust resistance mechanisms. 

 

 

Keywords: DH lines, Agrobacterium-mediated, QTL mapping, Puccinia  
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Introduction 

 

Nonhost resistance implies immunity of all members of a plant species against a potential 

pathogen species (Niks et al. 2011). The resistant plant species is referred to as nonhost, 

and the would-be pathogen species is referred to as non-adapted pathogen. Classification 

of a plant species as nonhost or host against certain potential pathogen species is not easy 

(Niks 1987; Niks et al. 2011). Some plant species have few accessions with an 

intermediate level of susceptibility to a particular pathogen. Such plant species are referred 

to as having a near-nonhost status (Niks 1987; Niks et al. 2011). The rare susceptibility of 

those few accessions may occur only at the seedling stage or under a very severe infection 

pressure (Niks 1987). Barley appears to be a near-nonhost to several non-adapted rust 

fungal species, such as Puccinia triticina and P. hordei-murini. Through the accumulation 

of genes for susceptibility to P. triticina from rare barley accessions with moderate 

susceptibility at the seedling stage, an experimental barley line called SusPtrit was 

developed. This line is extraordinarily susceptible to several grass rusts that are non-

adapted to barley (Atienza et al. 2004). SusPtrit facilitated the development of the barley-

Puccinia rust fungus model system to study the inheritance of nonhost resistance in plants. 

Two mapping populations – Vada/SusPtrit (V/S) and Cebada Capa/SusPtrit (C/S) – were 

developed using SusPtrit as one of the parents (Jafary et al. 2006; 2008). 

 

Partial resistance is a type of host resistance that slows down epidemic development 

despite a compatible infection type (Niks et al. 2011). On partially resistant barley, the 

pathogen realizes a lower infection frequency, has a lower sporulation rate and has a 

longer latency period (Parlevliet 1979). The partial resistance of barley against P. hordei 

(the adapted rust fungus) is one of the most extensively studied cases of this type of 

resistance [reviewed by St. Clair (2010)].  

 

Nonhost and partial resistance to Puccinia rust fungi in barley are both polygenically 

inherited. Nonhost and partial resistance quantitative trait loci (QTLs) against different 

rust fungi have been mapped in different bi-parental mapping populations (Qi et al. 1998; 

1999; Jafary et al. 2006; 2008; Marcel et al. 2007; 2008). Nearly all of the reported QTLs 

were effective against only one to three rust species, and, hence, were rust species-

specific, and some QTLs were even rust isolate-specific (Atienza et al. 2004; González et 

al. 2012; Jafary et al. 2006; Marcel et al. 2008). The QTLs for nonhost resistance to rust 

fungi tended to map in the same genomic regions as the QTLs for partial resistance to P. 

hordei (González et al. 2010; Jafary et al. 2008). There is evidence that nonhost and partial 

resistance of barley to rust fungi share important features: both are principally 

prehaustorial (Hoogkamp et al. 1998; Niks 1983; Niks and Marcel 2009), show a high 
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diversity between accessions of the plant species (Qi et al. 2000; Jafary et al. 2006; 2008) 

and are genetically associated (Hoogkamp et al. 1998; Zhang et al. 1994). The association 

was also shown in a transcriptional study wherein barley (cv. Ingrid) was exposed to a pair 

of adapted and non-adapted rust fungi and a pair of adapted and non-adapted powdery 

mildews. The induced transcriptional changes overlapped not only for the responses of cv. 

Ingrid to the adapted and non-adapted fungal pathogen but also for the responses to the 

two different pathosystems (Zellerhoff et al. 2010).  

 

SusPtrit is useful for studying the association between nonhost and partial resistance of 

barley. This valuable experimental line is not only susceptible to P. triticina and several 

other non-adapted rust fungi but also extremely susceptible to the adapted P. hordei 

(Atienza et al. 2004; Jafary et al. 2006). QTLs conferring nonhost and partial resistance in 

other barley accessions have been introgressed into SusPtrit to develop near isogenic lines 

(NILs) (Chapter 3, this thesis). These QTL-NILs allow the testing of individual QTLs 

against non-adapted rust fungi and P. hordei without the interference of other QTLs. 

Subsequently, sub-NILs are developed to fine-map the responsible gene(s) to a small 

genetic window, which may be spanned by bacterial artificial chromosome (BAC) clones. 

The candidate gene(s) explaining the resistance QTLs are identified from the sequenced 

BAC clones, isolated and verified through complementary functional studies. 

 

Functional studies of candidate genes may be conducted via either transient 

overexpression or transient silencing of genes by particle bombardment, as applied in the 

studies of candidate resistance genes against powdery mildew (Douchkov et al. 2005; 

Miklis et al. 2007). For candidate genes of barley against rust fungi, this approach is not 

feasible because the carriers of the gene constructs cannot reach the mesophyll cells, 

which are the main cell types that rust fungi target. Transient overexpression and silencing 

in barley are also feasible through virus-mediated overexpression (VOX) and virus-

induced gene silencing (VIGS) (Lee et al. 2012). These approaches, however, are difficult 

for quantitative resistance because phenotyping with replication is not possible as each 

individually treated plant is unique. Stable transformation is another alternative for the 

functional study of candidate genes, although also this approach has its caveats and 

limiations. Primary transformants transmit the transgene to their offspring through the 

grains. This transmission to offspring is important because it allows the transgenic line to 

have multiple identical plants with the transgene, which are necessary to test the line for 

its level of partial resistance. Stable transformation is possible in barley, but the efficiency 

of barley transformation is genotype-dependent (Hensel et al. 2008). To date, barley cv. 

Golden Promise (GP) is the first choice for the standard method of Agrobacterium-

mediated transformation using immature embryos (IEs). The transformation efficiency of 

GP can be as high as 86.7 transformants per 100 IEs when the co-cultivation medium is 
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supplemented with L-cysteine and acetosyringone and the Agrobacterium strain AGL-1 is 

used (Hensel et al. 2008). 

 

In a functional study, the resistance allele can be silenced in a resistant plant. In polygenic 

nonhost resistance, however, an immune plant may have several redundant genes for 

resistance. A barley accession, such as cv. Vada, may be immune to most, if not all, non-

adapted rust fungi, and the resistance is encoded by several genes (QTLs) (Jafary et al. 

2006). Silencing one of the resistance QTLs in Vada might be insufficient to compromise 

the nonhost resistance enough to alter the immunity to some level of susceptibility. 

Therefore, testing of the candidate genes for resistance in a susceptible line may be a 

better option when SusPtrit is the line of choice. SusPtrit is, unfortunately, not amenable to 

Agrobacterium-mediated transformation using the established procedure (Hensel et al. 

2008) with minor modification (FKS Yeo and G Hensel, unpublished data). Although the 

non-inoculated IEs of SusPtrit appeared to be responsive to callus induction media, the 

callus growth of Agrobacterium-inoculated IEs ceased after approximately two weeks. A 

similar situation was observed by WA Harwood on cultivars Optic, Oxbridge and Tipple 

[unpublished data, reviewed by Harwood (2012)].  

 

In this study, a new bi-parental population of doubled haploids was created by crossing 

SusPtrit with GP. The objective was to find a line, ‘Golden SusPtrit,’ that combines the 

susceptibility of SusPtrit to non-adapted rust fungi with the amenability of GP for 

Agrobacterium-mediated transformation. In addition, the population was used to map 

nonhost and partial resistance QTLs, which were compared with QTLs identified earlier in 

other mapping populations. 

 

 

Materials and Methods 

 

Development of recombinant doubled haploids and general outline 

 

SusPtrit was crossed with cv. GP. F1 grains were sent to PLANTA Angewandte 

Pflanzengenetik und Biotechnologie, Germany to develop a DH population. The 

haploid/DH plantlets were regenerated from embryogenic pollen cultures, with the DH 

plants obtained through spontaneous genome duplication. Fertility of spikes was used to 

indicate the restoration of the diploid condition. The population was inoculated with 

selected non-adapted and adapted leaf rust fungi, and QTLs were mapped (see below). The 

most susceptible DH lines were selected and tested for amenability to Agrobacterium-

mediated transformation.  
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Whole genome genotyping and linkage map construction 

 

Fresh young leaves of seedlings of the SusPtrit, GP and the DH populations were used to 

extract genomic DNA according to the CTAB-based protocol of Stewart and Via (1993). 

The DNA samples were sent for whole genome genotyping (TraitGenetics GmbH, 

Gatersleben, Germany). Genotyping was performed using an ILLUMINA iSelect 9k 

barley infinium chip which carries 7,864 SNPs. JoinMap 4.1 (van Ooijen 2006) was used 

for linkage analysis and map construction. Map distance calculations were made based on 

Kosambi’s mapping function. The linkage groups were assigned to their respective 

chromosomes based on the linkage map for the Morex/Barke recombinant inbred line 

population, which was previously genotyped using the same chip (Comadran et al. 2012). 

The linkage map was used for QTL mapping. The biggest gap in the linkage map was 16 

cM on chromosome 6H. 

 

 

Mapping QTLs for nonhost and partial resistance at the seedling plant stage 

 

Four non-adapted leaf rust fungi, P. hordei-murini isolate Rhenen (Phm.R), P. hordei-

secalini isolate France (Phs.F), P. persistens isolate Wageningen (Pp.W), and P. triticina 

isolate Flamingo (Pt.F), as well as one adapated leaf rust fungus, P. hordei isolate 1.2.1 

(Ph.1.2.1), were used for disease tests. Inoculums of these pathogens were produced on 

their respective host plants. 

 

The disease tests were carried out in a greenhouse. The seedlings of the SusPtrit/GP (S/G) 

population were inoculated with the above-mentioned leaf rust fungi in consecutive 

experiments. For each leaf rust fungus, three consecutive disease tests (series) were 

performed. In each series, every DH line of the S/G population was represented by one 

seedling. 

 

Grains of the DH lines, SusPtrit and GP were sown in boxes (37 x 39 cm). Twelve-day-old 

seedlings with unfolded primary leaves were fixed horizontally with the adaxial side 

facing up. For non-adapted leaf rust fungi, seven milligrams of spores per box per series 

were used, amounting to approximately 400 spores deposited per cm
2
. For Ph.1.2.1, one 

milligram of spores (approximately 60 spores per cm
2
) per box was applied. The spores 

were diluted with 10 times their volume of lycopodium spores before inoculating the box 

in a settling tower (Niks et al. 2011). The inoculated boxes were incubated overnight for 

eight hours in the dark in a dew chamber set at 18°C with 100% relative humidity. 

Following incubation, the boxes were moved to a greenhouse compartment set at 20 ± 3°C 

with 70% relative humidity. 
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For non-adapted leaf rust fungi, the infection frequency (IF; number of pustules per cm
2
 

leaf area) was scored at 12 days post-inoculation. For P. hordei, the latency period 

(LP50S) of the leaf rust was scored and calculated as described by Parlevliet (1975). 

Relative infection frequency (RIF) and relative latency period (RLP50S) were calculated 

relative to the average IF and LP50S, respectively, of all SusPtrit seedlings in each series. 

 

The RIF and RLP50S data were used to map QTLs using MapQTL
®

6 (van Ooijen 2009). 

The logarithm of the odds (LOD) threshold to declare a QTL was determined by a 

permutation test. Only QTLs mapped in at least two of the three series and in the data 

averaged over the three series were reported. The confidence interval of a QTL is the 

estimated LOD-2 support interval. When the LOD-2 support interval of two QTLs 

overlapped, either between QTLs mapped in the different series of one rust fungus or of 

different rust fungi, they were considered one QTL. Declared nonhost resistance QTLs 

were designated as Rphmq/Rphsq/Rppq/Rptq followed by a number. Partial resistance 

QTLs to P. hordei were designated as Rphq (host QTL) followed by a number. 

 

 

Selection of S/G DH lines for Agrobacterium-mediated transformation  

 

The S/G DH lines were ranked based on their RIFs in the first series of disease tests 

against Phs.F and Pt.F. Preliminary data on the infection levels of Phm.R were available 

and were used to provisionally rank the DH lines for selection of the most susceptible DH 

lines. The ten most susceptible DH lines according to the ranking, with an infection 

severity similar to SusPtrit against the three rust fungi, were selected for Agrobacterium-

mediated transformation efficiency tests.  

 

Of the ten selected DH lines, four were used to test the amenability to genetic 

transformation. Growth of donor plants and the transformation protocol were essentially 

the same as described elsewhere (Hensel et al. 2009). Briefly, developing caryopses were 

harvested at 12-16 days post-pollination and surface sterilized. The IEs were excised and 

either pre-cultured on liquid barley co-culture medium for one day or directly inoculated 

with the Agrobacterium tumefaciens strain AGL-1 harboring the plasmid pGH215. The 

plasmid contains the selectable marker gene HYGROMYCIN PHOSPHOTRANSFERASE 

(HPT) driven by the doubly enhanced CaMV 35S promoter and the synthetic green 

fluorescent protein (gfp) gene under the control of the maize UBIQUITIN 1 promoter with 

first intron. The agrobacteria were grown, inoculated and co-cultured with the IEs (Hensel 

et al. 2009). After co-culture, the IEs were transferred to barley callus induction medium 

supplemented with either 20 or 50 mg/L Hygromycin B (Roche, Mannheim, Germany) to 

induce calli under selective conditions. After 2 rounds of 2-week incubations in the dark at 
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24°C, the calli were transferred to barley regeneration medium supplemented with 25 

mg/L Hygromycin B, then transferred to light. All regenerants (T0) were transferred to 

soil, and genomic DNA was isolated and used for PCR with primers specific for the 

selectable marker and reporter genes, as described below (Table 1). The transformation 

efficiency was evaluated based on the number of independent transgenic regenerants per 

100 IEs (transgenics/100 IEs). 

 

 

Table 1: Primer sequences used for the PCR analysis of putative transgenic regenerants. 

Primer  Sequence 5’ – 3’ Primer binding site 

35S-F2-Catrin CATGGTGGAGCACGACACTCTC Bp 331-352 of enhanced CaMV 35S 

promoter 

Bie475 TTTAGCCCTGCCTTCATACG Bp 1421-1440 of ZmUBI1 promoter 

GH-GFP-F1 GGTCACGAACTCCAGCAGGA Bp 680-661 of gfp gene 

GH-HYG-F1 GATCGGACGATTGCGTCGCA Bp 896-877 of HPT gene 

 

 

DNA gel blot analysis and analysis of reporter gene expression 

 

Twenty one transgenic plants (T0) from the most efficiently transformed line, SG062N, 

were randomly selected and subjected to DNA gel blot analysis to determine the transgene 

copy number. At least 25 μg of genomic DNA was digested with HindIII, separated by 

agarose gel electrophoresis and blotted onto a Hybond N membrane. A gene-specific 

probe (GFP or HPT) was labeled with DIG, as recommended by the supplier (Roche, 

Mannheim, Germany). The 21 T0 plants of SG062N produced 21 T1 populations by 

selfing. Between 21 and 59 T1 grains harvested from the 21 transgenic T0 plants of 

SG062N, as well as from the SG062N wild type control, were surface sterilized, 

germinated on solid B5 medium (Gamborg et al. 1968) and incubated under a 16/8 h 

light/dark regime at 24°C. After ten to fourteen days, root tips were screened for GFP 

fluorescence using a Leica MZFLIII fluorescence microscope equipped with the GFP 

Plant filter set (Leica Microsystems, Wetzlar, Germany). Genomic DNA of four plants 

from each T1 population, preselected by the presence/absence of GFP fluorescence in the 

root tip, was extracted from ~100 mg of snap-frozen leaf tissue, as described in Pallotta et 

al. (2000). Multiplex-PCR was designed based on the amplification of 100 ng of template 

primed by the sequences listed in Table 1. Amplicons were separated by agarose gel 

electrophoresis and visualized by staining with Ethidium bromide. From each of the 21 T1 

populations, three plants that tested positive in the PCR assays, as well as one plant that 

had lost the transgene via segregation, were subjected to DNA gel blot analysis, as 
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described above, to estimate the transgene copy number and to characterize the integration 

site(s) regarding linked/unlinked copies. 

 

 

Results 

 

DH population and linkage map construction 

 

Of the 308 in vitro cultured plantlets, 137 survived and were fertile, thus producing grains. 

Through whole genome genotyping, duplicate genotypes were identified and eliminated, 

resulting in a population of 122 unique DH lines. 

 

From the 7,864 SNPs on the chip, 2,943 SNP markers were polymorphic between SusPtrit 

and GP. Before linkage analysis was performed, 2,257 markers with identical segregation 

patterns were removed from the data set. We used 686 markers to construct the linkage 

map. At LOD threshold 10, seven linkage groups corresponding to seven barley 

chromosomes were detected (Supplemental Figure 1). The total map length was 1,175 cM. 

The map length of individual linkage groups ranged from 130 cM (4H, 84SNP markers) to 

202 cM (5H, 122 SNP markers). The marker order on the linkage map of S/G is in 

agreement with the linkage maps of V/S and C/S, which were also genotyped using the 

ILLUMINA iSelect 9k barley infinium chip (unpublished data). Of the 686 SNP markers, 

351 (51%) exhibited segregation patterns that significantly deviated from the expected 1:1 

ratio. Segregation was skewed towards the SusPtrit allele for 213 markers and towards the 

GP allele for 138 markers. The markers showing distorted segregation occurred in clusters 

(14 clusters). On linkage groups corresponding to chromosomes 2H and 3H, all of the 

distorted segregation was skewed towards the SusPtrit allele. In contrast, all of the 

distorted segregation for markers on chromosome 4H was skewed towards the GP allele.  

 

 

Disease resistance of S/G recombinants against non-adapted and adapted leaf rust 

fungi. 

 

SusPtrit is susceptible to all four non-adapted leaf rust fungi and to Ph.1.2.1. GP is 

immune to all four non-adapted leaf rust fungi and causes 5% higher RLP50S 

(approximately eight hours longer LP) of Ph.1.2.1 than SusPtrit. Segregation in the level 

of resistance among the S/G population was quantitative, suggesting a polygenic 

inheritance pattern (Figure 1). The infection levels observed in the S/G population with the 

four non-adapted leaf rust fungi ranged from immune to either as susceptible as or more 
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susceptible than SusPtrit. Correlations between the average RIF values for the four non-

adapted rust species ranged from 0.5 to 0.7. These values indicate a moderate association 

in the genetic basis of resistance to these four rust species. This result is consistent with 

the conclusion made by Jafary et al. (2006; 2008) that genes underlying nonhost resistance 

have overlapping specificities. Due to the moderate association of susceptibilities to 

different rust fungi, we found 21 S/G DH lines that were, for more than one non-adapted 

rust fungi, among the 20 most susceptible lines (Table 2). 

 

Generally, the pustules formed by the non-adapted rust fungi on the SG lines were of the 

compatible type, i.e., they were not associated with chlorosis or necrosis. This was true 

even for the lines on which few pustules appeared, i.e., lines with fair levels of resistance. 

For all non-adapted rust types, fewer than 15 lines with Pt.F, Phs.F, or Phm.R and fewer 

than 30 lines tested with Pp.W displayed some chlorosis or necrosis; however, in most 

cases, these reactions were inconsistent over experimental runs. 

 

 

Nonhost and partial resistance QTL mapping in the S/G population 

 

For each non-adapted rust fungus, the results obtained in the three disease test series 

correlated well (r = 0.6-0.9); however, the correlation between the three disease test series 

was low for Ph.1.2.1 (r = 0.2-0.4). Based on permutation tests, a LOD threshold between 

2.9 and 3.2 was used for QTL declaration in each mapping attempt.  

 

We found two nonhost resistance QTLs for Phm.R, four for Pt.F, five for Phs.F and six for 

Pp.W (Table 3). As previously described by Jafary et al. (2008), declaring QTLs from 

LOD profiles may become arbitrary when multiple peaks are observed in the same 

genomic region. Such was the case for Pp-nhq5 and Pp-nhq6 located on chromosome 7H 

(Table 3, Figure 2), which we chose to report as two QTLs. These QTLs co-localized with 

two QTLs against Phs.F, Phs-nhq4 and Phs-nhq5, which were indicated by two clearly 

separated peaks in the LOD profile.  
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Figure 1: Frequency distribution of average RIF for (a) Phm.R, (b) Phs.F, (c) Pp.W, and (d) Pt.F, and 

(e) frequency distribution of average RLP50S for Ph.1.2.1. Values of the parental lines are indicated by 

arrows. 
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Table 2: Twenty-one S/G DH lines with levels of susceptibility similar to or higher than SusPtrit for 

more than one rust species. The ranking was based on the average RIF over three series of disease tests.  

DH line Phm.R Phs.F Pt.F Pp.W Ph.1.2.1 No. of species 

SG019N 4 18 8 20 * 

4 

SG020N 7 1 11 1 * 

SG037N 14 2 4 7 * 

SG048N 19 16 12 9 * 

SG062N 10 10 9 19 * 

SG117N 2 15 17 3 * 

SG038N 14 7 * 16 8 

SG093N 8 5 * 6 15 

SG088N 20 19 6 * * 

3 SG130N * 6 16 15 * 

SG109N 18 * 2 2 * 

SG047N 12 3 * 4 * 

SG010N 6 4 * * * 

2 

SG078N 17 8 * * * 

SG097N * 14 20 * * 

SG119N * 9 18 * * 

SG068N * * 5 8 * 

SG113N * * 1 10 * 

SG133N * * 7 11 * 

SG075N 11 * * 17 * 

SG051N * 12 * 12 * 

SusPtrit 13 38 13 21 17 

* The DH line ranked over 20 based on the average RIF over three series of disease tests 

 

 

The QTLs mapped for the different non-adapted rust fungi occupied nine genomic regions, 

among which only one region on 7H affected resistance to all four non-adapted rust 

species. Four regions had a QTL that significantly contributed to resistance to only one 

particular non-adapted rust fungus. The four other regions had a QTL that was found to 

confer resistance to two or three rust fungi (Table 3, Figure 2). This tendency of QTL 

regions to affect susceptibility to more than one non-adapted rust fungus may explain why 

many DHs with high IF to one non-adapted rust fungus also exhibit relatively high IFs to 

the other non-adapted rust fungi.  
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Among the QTLs, Phm-nhq2 at 7H had such a high LOD score (LOD = 21) and such a 

large effect (explaining 51% of the phenotypic variation) that it could be considered a 

major resistance gene. Of the remaining QTLs, seven explained 10-18% and nine 

explained less than 10% of the phenotypic variation. The immune parent, GP, is the sole 

resistance allele donor for all of the QTLs mapped for Phm.R, Pp.W and Pt.F. For the 

QTLs affecting resistance to Phs.F, GP donated a resistance allele for four of the QTLs 

and SusPtrit donated the resistance allele for one QTL. This observation is consistent with 

the intermediate resistance against Phs.F seen in SusPtrit (Figure 1b).  

 

Only one QTL for partial resistance to P. hordei was detected; this QTL mapped to 

chromosome 6H and explained approximately 14% of the total phenotypic variation. The 

resistance allele is donated by GP, as expected. The QTL is designated as Rphq3 (as 

explained below). This QTL co-localizes with Pp-nhq4 and Pt-nhq3 (Table 3). 

 

Among the non-adapted rust fungi, Jafary et al. (2008) mapped nonhost resistance QTLs 

with the same isolates used in this study for Phs and Pt but with different isolates for Phm 

(Phm isolate Aragón) and Pp (Pp isolate RN-8) in the mapping populations V/S and C/S. 

Jafary et al. (2006) mapped QTLs for partial resistance to Ph.1.2.1 in the V/S mapping 

population. Recently, V/S and C/S were re-genotyped using the same ILLUMINA iSelect 

9k barley infinium chip used for the present S/G map, and new SNPs linkage maps were 

generated for these two populations (unpublished data). The V/S, C/S and S/G maps were 

integrated (A. Martin-Sanz, R. Niks and P. Schweizer ERA-PG “TritNONHOST” project, 

ERAPG08.053; unpublished), and we compared the positions of nonhost and partial 

resistance QTLs mapped in S/G with those mapped in V/S and C/S. Seven out of the nine 

QTL regions detected in S/G coincided with QTL intervals detected in V/S and C/S. The 

coinciding QTLs are effective against either the same rust or to different rust species 

(Table 3, Figure 2). On chromosome 6H, the only QTL conferring partial resistance to P. 

hordei of S/G coincided with the nonhost resistance QTLs of Jafary et al. (2008). On the 

barley integrated map [Barley, Integrated, Marcel 2009 available at http://wheat.pw.usda. 

gov/GG2/index.shtml; (Aghnoum et al. 2010)], the nonhost resistance QTLs of Jafary et 

al. (2008) on chromosome 6H coincided with Rphq3, a QTL for partial resistance to P. 

hordei mapped in L94/Vada (Marcel et al. 2008; Niks et al. 2000; Qi et al. 1998). It is 

possible that the partial resistance QTL of S/G also coincided with Rphq3; hence, the same 

name was given. 
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Amenability of pre-selected DH lines for Agrobacterium-mediated transformation 

 

The four DH lines chosen for the Agrobacterium-mediated transformation efficiency test 

were among the 12 most susceptible lines (average ranking) to Phm.R, Phs.F and Pt.F 

(Supplemental Table 1). Three of the four tested DH lines were amenable to 

transformation. The efficiency of transformation ranged from 1 to 17 T0 plants/100 IEs 

(Table 4). The most efficient DH line was SG062N (11 to 17 T0/100 IEs), and its T0 plants 

were further analyzed to determine the number of T-DNA copies that were integrated (see 

below). The transformation efficiency for these lines was approximately 6% less than for 

the GP line. Compared to other barley genotypes tested for transformation efficiency using 

IEs, SG062N had transformation efficiency better than the 9 barley accessions tested by 

Hensel et al. (2008) and other barley accessions reviewed in Goedeke et al. (2007).  

 

Twenty-one SG062N T0 plants from three independent transformation attempts were 

randomly selected to determine the number of T-DNA copies integrated in their genomes 

(Figure 3). We detected one to five integrated T-DNA copies in the genomes of the 21 T0 

plants using HPT and gfp probes (Table 5). The gfp probe suggested that 8/17 of the T0 

plants had single-copy integrations, while the HPT probe suggested 10/21 T0 plants had 

single-copy integrations. At T1, GFP fluorescence (Figure 4) indicated that six out of the 

17 T1 populations, instead of the expected eight T1 populations, were segregating for a 

single copy T-DNA. This result is because there were two T1 populations (BG398E21 and 

BG398E22) that gave segregation ratios of 15:1 (with reporter gene expression : no 

reporter gene expression), indicating that two copies of T-DNA were segregating. It is 

possible that the two independently integrated T-DNAs in BG398E21 and BG398E22 

cannot be distinguished based on HindIII DNA digestion. Nine other T1 populations 

(excluding BG398E21 and BG398E22) segregated for two or more T-DNA copies, and 

among the nine, six showed segregation of linked T-DNA copies (Table 5 and 

Supplemental Figure 2). 
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Table 3: Summary of nonhost and partial resistance QTLs detected at the seedling stage in the S/G 

population in this study and the overlapping QTLs reported in Jafary et al. (2006; 2008). 

Chr 
Position 

(cM) 
Phm.R Phs.F Pp.W Pt.F Ph.1.2.1 

Previously mapped 

QTLs for rust 

resistance
#
 

1H 43-68  
Rphsq1 

(4,11%,G)
*
 

   Phs-nhq (6,12%,V) 

2H 

40-68   
Rppq1 

(4,10%,G) 

Rptq1 

(4,11%,G) 
 Pp

RN
-nhq (4,6%,C) 

98-141  
Rphsq2 

(4,10%,G) 

Rppq2 

(3,8%,G) 

Rptq2 

(5,12%,G) 
 Pp

RN
-nhq (5,8%,V) 

3H 112-176 
Rphmq1 

(3,5%,G) 
    

Phm
A
-nhq (6,10%,C) 

Phs-nhq (7,12%,C) 

Pp
RN

-nhq (7,14%,C) 

Pt-nhq (8,22%,C) 

4H 52-75  
Rphsq3 

(3,8%,S) 
   

Pt-nhq (3,7%,S) 

Phs-nhq (5,11%,S) 

Pp
RN

-nhq (6,12%,S) 

Phm
A
-nhq (8,14%,S) 

5H 73-110   
Rppq3 

(4,10%,G) 
   

6H 56-88   
Rppq4 

(4,9%,G) 

Rptq3 

(4,9%,G) 

Rphq3 

(4,14%,G) 

Pp
RN

-nhq (4,5%,C) 

Pt-nhq (11,19%,V) 

Phm
A
-nhq (6,12%,C) 

Rphq3 (16,21%,V) 

7H 

92-121 
 

 

Rphsq4 

(4,9%,G) 

Rppq5
!
 

(6,14%,G) 
  

Phs-nhq (3,6%,V) 

Pp
RN

-nhq (5,10%,V) 

Pt-nhq (11,21%,V) 

Rphq8 (4,6%,V) 

141-168 
Rphmq2 

(21,51%,G) 

Rphsq5 

(5,12%,G) 

Rppq6
!
 

(4,9%,G) 

Rptq4 

(7,18%,G) 
  

!
 The LOD-2 interval of these QTLs overlapped, but they were still considered two QTLs.  

#
Results extracted from Jafary et al. (2006; 2008). Rphq3 results extracted from Qi et al. (1998).  

*
In ( ), the QTL LOD score, percentage of explained phenotypic variation and the donor are given. The 

LOD score and the percentage of explained phenotypic variation for each QTL from this study were 

extracted from the mapping results for the averaged data. The QTL donor: C = Cebada Capa, G = GP, S 

= SusPtrit, V = Vada 

Phm
A 

is a P. hordei-murini isolate from Aragón, Spain. Pp
RN

 is a P. persistens isolate from Netherlands 

collection number RN-8. These isolates were used in Jafary et al. (2008) and were different from those 

used in this study. 
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Figure 2 (previous page): Skeleton linkage map with position of nonhost resistance QTLs and one partial 

resistance QTL mapped in this study and the co-localizing partial and nonhost resistance QTLs of Jafary et 

al. (2006; 2008). Only on chromosome 6H,     V* is a QTL for partial resistance to P. hordei mapped in Qi et 

al. (1998). The QTL bars represent the QTLs of this study. The bars correspond to the rMQM LOD-1, and 

the extended lines correspond to the rMQM LOD-2 confidence interval. The letters inside ( ) indicate the 

QTL donor (G =GP; S=SusPtrit). The QTL dots represent the estimated position of the peak markers of 

previously mapped QTLs. The letters above the dots represent the QTL donor (C=Cebada Capa; S=SusPtrit; 

V=Vada). The ruler on the left side shows the distance in cM calculated according to Kosambi. 

 

 

Table 4: Summary of transformation experiments for the four selected DH lines, expressed as 

the number of transformed plants per 100 plated IEs. Co-cultivation for 2-3 days and selection 

on 50 mg/L Hygromycin B. 

DH line Attempt Total IEs 
*
Number of T0 plants 

T0 plants/100 

IEs 

   
 

 

SG062N 

BG398-1 210 35 17 

BG398-2 430 49 11 

BG398-3 122 15 12 

   Average T0 plants/100 IEs 13 

     

     

SG047N BG396-1 
a
420 36 9 

 BG396-2 
b
300 7 2 

   Average T0 plants/100 IEs 6 

     

     

 BG399-1 310 30 10 

SG093N BG399-2 180 16 9 

 BG399-3 
b
110 1 1 

   Average T0 plants/100 IEs 8 

     

     

 BG400-1 220 0  

SG133N BG400-2 
b
420 0  

 BG400-3 
b
210 0  

     

     

GP BG405-1 200 
c
36 18 

 BG405-2 200 
c
40 20 

   Average T0 plants/100 IEs 
 

19 

 

* The number of regenerants positive for root GFP fluorescence and for PCR detection of gfp 

and HPT genes 

a
 210 IEs were pre-cultured one day before co-culture 

b
 The IEs were pre-cultured one day before co-culture 

c
 The number of regenerants positive for root GFP fluorescence detection. Ten randomly selected 

regenerants were positive for PCR detection of gfp and HPT genes 
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Figure 3: (a) Representative blot for analysis of T-DNA copy numbers in T0 plants integrated with (b) 

HPT gene driven by CaMV 35S promoter and gfp gene driven by maize UBIQUITIN 1 promoter with first 

intron (this study). The HindIII-digested genomic DNA from SG062N T0 plants (E) and SG062N wild 

type (WT) was hybridized with DIG-labeled HPT probe. 

 

 

Figure 4: Representative 

microscopic analysis of 

GFP fluorescence in 

SG062N transgenic plants 

(BG398E17 & G398E21). 

Bright field (A, C, E) and 

epifluorescence (B, D, F) 

in germinating caryopses 

and roots of T1 segregants. 

az – azygous plant that 

has lost the transgene. Bar 

= 0.5 cm 
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Table 5: Copy numbers of integrated T-DNA for the 21 SG062N T0 plants and segregation of their T1 

populations. 

T0 T1 populations 

Transformants 

(T0) 

Copy number 

according to 

gfp probe 

Copy number 

according to 

HPT probe 

Reporter 

gene expression 

vs. no expression 

Segregation 

observed 

(assumed) 

Χ 2- 

Value 

Likelihood 

(P) 

according 

to Χ 2- test 

BG398E06 1 1 39:18 2.2:1 (3:1) 1.92 > 0.10 

BG398E07 1 1 42:17 2.5:1 (3:1) 0.64 > 0.40 

BG398E09 1 1 27:12 2.2:1 (3:1) 0.70 > 0.40 

BG398E10 1 1 37:12 3.1:1 (3:1) 0.03 > 0.90 

BG398E11 1 1 36:15 2.4:1 (3:1) 0.54 > 0.40 

BG398E14 1 1 25:14 1.8:1 (3:1) 2.43 > 0.10 

BG398E21 1 1 35:3 12:1 (15:1) 1.33 > 0.20 

BG398E22 1 1 48:1 48:1 (15:1) 1.53 > 0.20 

BG398E01 2 2 21:0 21:1 (15:1) 3.40 > 0.05 

BG398E12 2 2 44:4 11:1 (15:1) 0.36 > 0.60 

BG398E03 2 3 26:12 2.2:1 (3:1) 2.17 > 0.10 

BG398E18 3 1 44:0 44:0 (15:1) 3.02 > 0.05 

BG398E17 3 2 46:9 5:1 (3:1) 2.17 > 0.10 

BG398E16 3 3 53:0 53:0 (63:1) 2.59 > 0.10 

BG398E20 3 4 52:6 9:1 (15:1) 4.09 > 0.05 

BG398E19 4 4 45:0 45:0 (15:1) 3.00 > 0.05 

BG398E05 5 5 36:12 3:1 (3:1) 0.00 > 0.99 

BG398E04 n.d 1 n.d n.d n.d n.d 

BG398E02 n.d 2 n.d n.d n.d n.d 

BG398E08 n.d 2 n.d n.d n.d n.d 

BG398E15 n.d 2 n.d n.d n.d n.d 

 

 

Susceptibility of SG062N to non-adapted rust fungi and Ph.1.2.1 

 

The selection of DH lines for Agrobacterium-mediated transformation tests was based on 

preliminary infection data. Additional series of experiments to quantify the susceptibility 

level were performed following the initiation of the transformation experiments.   
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This study identified nine genomic regions occupied by resistant QTLs against the four 

non-adapted rust fungi and Ph.1.2.1. At the nine genomic regions, SG062N carried six 

susceptibility alleles and three resistance alleles. The resistance alleles conferred resistance 

to Pp.W, Pt.F and Phs.F, and each explained approximately 10% of the phenotypic 

variation. 

 

Based on the three series of disease tests for QTL mapping, the level of infection in 

SG062N for the four non-adapted rust fungi is either similar to or higher than the level of 

infection in SusPtrit (Table 6). The LP50S against Ph.1.2.1 conferred by SG062N is as 

short as that conferred by SusPtrit in additional disease tests (data not shown). This result 

is expected because SG062N has the susceptible allele for Rphq3, the only partial 

resistance QTL detected in this study. 

 

 

Table 6: The susceptibility of SG062N, relative to SusPtrit, to the four non-adapted rust fungi 

tested over three series per rust species. 

Non-adapted rust fungi 

Average RIF 

SusPtrit SG062N 

Phm.R 100 104 

Phs.F
*
 100 189 

Pp.W 100 100 

Pt.F 100 105 

* 
SusPtrit has one resistant QTL 

 

 

Discussion 

 

Genetics of nonhost and partial resistance 

 

Nine chromosomal regions were found to segregate for nonhost resistance in S/G, and of 

these regions, one co-locates with the only partial resistance QTL, Rphq3, mapped in this 

study. Among the nonhost resistance QTLs mapped in this study, Phm-nhq2 on 

chromosome 7H had the largest effect and may be considered a major gene for resistance. 

The resistance conferred by Phm-nhq2 is not associated with a hypersensitivity response. 

The confidence interval of Phm-nhq2 overlapped with the estimated position of the major 

gene for resistance to P. hordei, Rph19.ah (Marcel 2007). This result suggests that either 

Phm-nhq2 is an allelic version of Rph19.ah or that they are simply at two closely linked 

loci. GP is not known to carry Rph19.ah. 
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Rphq3 was the only partial resistance QTL found in this study. GP gave an average of 5% 

(8 hours) longer LP50S than SusPtrit, a relatively low level of partial resistance to P. 

hordei compared to Vada, which has a high level of partial resistance. The LP50S of P. 

hordei on Vada is approximately 25% longer than on the susceptible accessions SusPtrit 

(Jafary et al. 2006) and L94 (Qi et al. 1998). Additionally, Vada has three QTLs effective 

at the seedling stage (Jafary et al. 2006; Qi et al. 1998). It is not surprising, then, to find 

only Rphq3 in S/G; however, there may be other QTLs with effects too small to be 

detected. 

 

GP is immune to non-adapted rust fungi and contains many genes (nine chromosomal 

regions) for resistance to the four non-adapted rust fungi species tested. This finding is 

very similar to the results obtained by Jafary et al. (2006; 2008) for Vada and Cebada 

Capa. It is, however, possible to find DH lines with susceptibility as high as, or higher 

than, that of SusPtrit.  

 

Among the nine chromosomal regions with resistance QTLs identified in S/G, five regions 

conferred resistance to different rust fungi, suggesting that the responsible genes have 

effects on multiple rust species. Jafary et al. (2006) observed that QTLs affecting multiple 

rust species do not tend to be effective against taxonomically related rust species. Based 

on the phylogenetic tree of the rust species constructed by Jafary et al. (2006), we 

observed three genomic regions where the co-localization only involved QTLs affecting 

resistance to closely related rust species (Phs.F, Pp.W and Pt.F) (Table 3). In the other 

three regions, the QTLs were effective against less closely related rust species (QTLs for 

Phm.R and Ph.1.2.1 overlapped with QTLs for Phs.F, Pp.W and Pt.F). Co-localization of 

the QTLs for nonhost and partial resistance suggests an overlap of gene sets for these 

types of resistance in barley. Jafary et al. (2008) also observed similar QTL co-

localization. Furthermore, several other studies (Hoogkamp et al. 1998; Zellerhoff et al. 

2010; Zhang et al. 1994) have suggested that nonhost and partial host resistance may 

partly involve the same genes. 

 

The tendency for co-localization of QTLs for different rust fungi may be due to either 

several closely linked genes, each involved in resistance to only one or two rust species, or 

to a single gene that contributes to resistance to multiple rust species. Fine-mapping is 

required to distinguish between these two possibilities. 
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SG062N, a new experimental line for nonhost and partial resistance studies 

 

As in most monocotyledonous plant species, barley transformation efficiency is limited by 

genotype, explant, and media components, among other factors [reviewed in (Cheng et al. 

2004; Goedeke et al. 2007; Harwood 2012)]. To improve transformation efficiency, 

adjusting treatment and tissue culture variables can be tried [e.g., the use of different 

Agrobacterium strains or the application of acetosyringone and L-cysteine (Hensel et al. 

2008)]. Improving transformation efficiency for one genotype (e.g., GP) is helpful, but the 

transformable line may not be ideal for studying specific traits – in this case, GP is not 

suitable for the functional study of nonhost resistance. The line of choice to study nonhost 

resistance, SusPtrit, was unsuccessfully tested for amenability to Agrobacterium-mediated 

transformation (data not shown). Therefore, we applied a breeding approach to combine 

the amenability of GP for Agrobacterium-mediated transformation with the susceptibility 

of SusPtrit to non-adapted rust fungi.  

 

Theoretically, the S/G mapping population can be used to locate genetic factors affecting 

transformation efficiency, as described in Cogan et al. (2002; 2004). It is not practical, 

however, to apply the Agrobacterium-mediated transformation procedure used in our 

study to a mapping population because of the labor and greenhouse space required. The 

high non-genetic variation in the transformation efficiency of a single line between 

experimental runs is another factor that complicates the mapping of such genes in barley. 

This variation can be attributed to variables such as the actual environmental conditions 

for transformation and tissue culture, the quality of explant donor plants and the individual 

handling of the experiment (Hensel et al. 2008). The high transformation efficiency of GP 

is likely a result of several genes, as in Brassica oleracea (Cogan et al. 2002; 2004). 

Hence, quantitative variation was observed in the transformability of the four pre-selected 

DH lines. We compared the genotypes of SG062N (highest transformation efficiency) and 

SG133N (not transformable) and found six chromosomal regions potentially involved in 

the transformation efficiency of barley (Supplemental Figure 3).  

 

To date, GP is the line of choice for standard barley transformation. Notably, GP is a 

gamma-ray-induced mutant derived from cultivar Maythorpe (Forster 2001). The 

efficiency for transformation of GP is most likely not a result of the mutation, as 

Maythorpe can be transformed approximately as efficiently as GP. The transformation 

efficiency of Maythorpe ranges from 6 to 19% (G Hensel and J Kumlehn, unpublished 

data) and has been reported to reach 25% in one experiment [WA Harwood, unpublished 

data (John Innes Centre, Norwich, UK)]. In the Germplasm Resources Information 

Network (GRIN, http://www.ars-grin.gov/npgs/holdings.html), the ancestors of GP/ 

Maythorpe are traced back to Chevalier, Hana and Gull (Supplemental Figure 4). Tracing 
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the ancestor that has donated the genetic factors for efficient transformation can provide 

valuable information. 

 

By crossing SusPtrit with GP, the susceptibility of SusPtrit to non-adapted and adapted (P. 

hordei) rust fungi and the amenability of GP to Agrobacterium-mediated transformation 

were easily combined. Simple screening of the progeny for individual lines that had 

inherited traits of both SusPtrit and GP was sufficient to verify that we had achieved our 

objective of obtaining the valuable new experimental line – SG062N (Golden SusPtrit). 

The optimized transformation procedure for GP can be applied directly to Golden SusPtrit 

to obtain approximately 47% of transformants with single-copy T-DNA integration (based 

on the gfp probe), which is fairly comparable to the proportion (50%) reported by Hensel 

et al. (2008). 

 

Golden SusPtrit is as susceptible as SusPtrit to P. hordei and to the four tested non-

adapted rust fungi. As such, Golden SusPtrit will replace SusPtrit as a valuable 

experimental line for future nonhost and partial resistance studies, especially for stable 

transformation with candidate genes that might be responsible for resistance. 
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Supplemental Figure 2: Transgenic loci linkage analysis of three segregating T1 progenies. Genomic 

DNA of four T1 plants from each primary transgenic line (T0) were digested by HindIII, separated, 

blotted and hybridized with DIG-labeled HPT or gfp probes. 
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Supplemental Figure 3: The six tentative chromosomal regions determining the transformation 

efficiency of GP. 

 

 

Supplemental Figure 4: The pedigree 

of GP. Information extracted from 

GRIN. Symbol  indicates that the 

pedigree was not traced further. 
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Supplemental Table 
 

Supplemental Table 1: The average ranking of susceptibility against Pt.F, Phm.R and Phs.F for 

the four DH lines selected for transformation efficiency tests.  

Line 
Pt 

(IF) 

Phm 

(Severity score)
*
 

Phs 

(IF) 

Average  

ranking
!
 

No. of susceptible 

QTL alleles  

SG093N 20 4 21 8 6 

SG062N 13 4 49 8 6 

SG133N 18 4 17 12 6 

SG047N 11 5 17 16 6 

Line on rank 1 33 5 49 - - 

SusPtrit 20 5 18 8 9 

* Severity score 

0: Immune 

1: Less than 3 pustules and medium or many flecks 

2: 3-10 pustules 

3: 10-100 pustules 

4: More than 100 pustules 

5: More than 500 pustules 

Ranking involved 137 DH lines and SusPtrit.  

!
SusPtrit ranked number 1 in the average ranking.  
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Specificity of barley near-nonhost and partial resistance QTLs towards 

adapted and non-adapted rust fungi 

 

Yeo FKS, Martin-Sanz A, Wang C, Loriaux A, Marcel TC, and Niks RE 

 

 
Laboratory of Plant Breeding, Wageningen University, 6700 AJ Wageningen, The Netherlands 

 

 

Abstract 

 

Partial resistance of barley to Puccinia hordei and nonhost resistance to non-adapted rust 

fungi inherits polygenically. The two types of resistance seem to share some genes and 

have a similar prehaustorial mechanism of resistance, but partial resistance is less 

complete than nonhost resistance of barley. Partial resistance to adapted rusts fungi seems, 

therefore, like a weak form of nonhost resistance to non-adapted rust fungi. If partial 

resistance and nonhost resistance are indeed based on the same principles, one can 

understand nonhost resistance by studying partial resistance and vice versa. Four partial 

resistance QTLs and one for nonhost resistance were selected to study their effect in near 

isogenic lines (NILs). SusPtrit and L94 are appropriate recurrent parents for NIL 

development because they are extremely susceptible to P. hordei and unusually 

susceptible to some non-adapted rust fungi at seedling stage. This allows the QTL effect in 

L94 and SusPtrit genetic backgrounds to be tested against different isolates of P. hordei 

and different species and isolates of non-adapted rust fungi. NILs of Rphq2, Rphq3, Rphq4 

and Rnhq in L94 background were already available. In this study, we developed NILs in 

SusPtrit background for Rphq2, Rphq3, Rphq11, Rphq16 and two alleles of Rnhq. Whole 

genome genotyping of the NILs with the ILLUMINA iSelect 9k barley infinium chip 

showed some NILs to be free from unwanted donor genomes but some are not. The L94- 

and SusPtrit-NILs were inoculated with selected adapted and non-adapted rust fungi. 

Some QTLs were rust isolate and rust species specific but others have a broader resistance 

spectrum, such as Rphq3 and Rphq11. However, the NILs may overestimate the spectrum 

of effectiveness for the gene underlying the QTL effect. If the spectrum of effectiveness 

for a QTL is confirmed, this study suggests some genes may be involved in partial as well 

as nonhost resistance. The NILs are suitable materials to start fine-mapping of the 

responsible genes for the QTLs they carry. 

 

 

Keywords: NILs, Quantitative Trait Locus (QTL), Specificity, Puccinia  
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Introduction 

 

Nonhost resistance is defined as resistance shown by all genotypes of a plant species to all 

genotypes of a potential pathogen species (Niks et al. 2011). It is impossible to test all 

genotypes of a plant species to all genotypes of potential pathogens. Hence, all ‘nonhost’ 

qualifications are virtually based on limited evidence.  

 

Under certain conditions, such as under very high inoculum dose applied to seedling 

leaves, a low percentage of accessions of a putative nonhost species may turn out to be 

somewhat susceptible to a potential pathogen (Niks 1987).  This marginal host status may 

qualify the plant species as near-nonhost to a certain tested potential pathogens. For 

example, after screening a set of 109 spring barley (Hordeum vulgare) accessions with 

different rust fungi, barley was classified as nonhost to most non-adapted rust fungi but as 

a marginal host, or near-nonhost, to some other non-adapted rust fungi like Puccinia 

triticina and P. hordei-murini (Atienza et al. 2004). In the context of our work, non-

adapted rust fungi are rust fungi that are poorly or not adapted to barley, but primarily to 

one or few other plant species. The near-nonhost status of barley to some non-adapted rust 

fungi has opened up the opportunity to study barley nonhost resistance without resorting to 

interspecific crosses. The assumption is that the genetic basis of near-nonhost status may 

help to understand, by extrapolation, the genetic basis of full nonhost resistance. Rare 

barley accessions which were at the seedling stage moderately susceptible to P. triticina 

were intercrossed to develop an experimental line – SusPtrit, which is at the seedling stage 

exceptionally susceptible to P. triticina. SusPtrit is at seedling stage also susceptible to at 

least nine other non-adapted rust fungi to which barley is a near-nonhost (Atienza et al. 

2004). Mapping populations developed by crossing SusPtrit with regular barley – Cebada 

Capa/SusPtrit (C/S) and Vada/SusPtrit (V/S) – showed that the immunity of Cebada Capa 

and Vada to the non-adapted rust fungi inherited polygenically. The two mapping 

populations segregated for different sets of quantitative trait loci (QTLs) with only few 

QTLs in common between the populations. Most mapped QTLs in the C/S and V/S were 

effective to only one or two rust species indicating high but overlapping specificities of 

QTLs for resistance to non-adapted rust fungi (Jafary et al. 2006; 2008).  

 

Partial resistance is defined as resistance that delays the epidemic development despite a 

compatible infection type (Niks et al. 2011; Parlevliet 1979). Partial resistance of barley 

accessions to the barley leaf rust fungus (P. hordei) is due to a lower infection frequency, 

lower sporulation rate and longer latency period of the pathogen (Parlevliet 1979). As with 

the resistance of barley to non-adapted rust fungi, partial resistance of barley to P. hordei 

inherits polygenically and to date, more than 20 QTLs for partial resistance to P. hordei 
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have been mapped in different bi-parental populations at seedling and adult plant stages. 

Each mapping population segregates for a different set of QTLs with few QTLs shared 

(Marcel et al. 2007b; Qi et al. 2000). Some of the mapped QTLs were shown to have an 

isolate specific effect (González et al. 2012; Marcel et al. 2008; Niks et al. 2000; Qi et al. 

1999). 

 

Nonhost resistance of barley to non-adapted rust fungi and partial resistance to P. hordei 

are both based on reduced success in haustorium formation by the pathogen (Niks 1983a, 

b). Partial resistance to P. hordei seems, therefore, like a weak form of nonhost resistance 

to non-adapted rust fungi (Niks and Marcel 2009; Niks et al. 2011). Partial and nonhost 

resistance may share some genes because QTLs for partial resistance mapped in C/S and 

V/S tend to co-localise significantly with QTLs for resistance to non-adapted rust fungi 

(Jafary et al. 2008). For both resistances QTLs tend to coincide with peroxidase gene 

clusters (González et al. 2010). Transcriptomics on powdery mildew-inoculated barley 

suggested that partial resistance and nonhost resistance to powdery mildew are 

functionally associated (Zellerhoff et al. 2010). We hypothesize that nonhost and partial 

resistance are both based on the pathogen-associated molecular pattern-triggered (PAMP-

triggered) defense system. The near-nonhost resistance and partial resistance of barley 

would result from incomplete suppression of PAMP-triggered defense by effectors of the 

pathogen (Niks and Marcel 2009). In the view of co-evolution, partial resistance may 

represent a transitional stage of losing or acquiring host status to a certain rust fungus.  

 

If partial and nonhost resistance are indeed based on the same principles, one can 

understand nonhost resistance by studying partial resistance and vice versa. Five major 

QTLs for partial resistance to P. hordei were selected to study the molecular basis this 

resistance. Map-based cloning of the responsible genes at these QTLs has been initiated 

(Marcel et al. 2007b; Chapter 6 (Rphq2), this thesis; Y. Wang and X. Qi, Institute of 

Botany, Chinese Academy of Sciences, Beijing, unpublished). The effect of each QTL can 

be tested using QTL-near isogenic lines (QTL-NILs). A QTL is Mendelized when it is 

introgressed into a NIL (Alonso-Blanco and Koornneef 2000). The QTL effect is then 

evaluated in a uniform genetic background without the interference of other genes 

influencing the same trait. Such QTL-NILs are an important stage in map-based cloning of 

the responsible gene(s) determining the effect of the QTL.   

 

SusPtrit and L94 served as recurrent parents. Both SusPtrit and L94 are extremely 

susceptible to P. hordei (Jafary et al. 2006). They are also susceptible to some non-adapted 

rust fungi at seedling stage, although L94 is not as susceptible as SusPtrit (Atienza et al. 

2004).  The QTL effect in L94 and SusPtrit genetic backgrounds can be tested not only 

against different isolates of P. hordei but also against different species and isolates of non-
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adapted rust fungi to test whether genes for partial resistance may also play a role in 

resistance to non-adapted rust fungi. 

 

The current study aims to develop NILs in SusPtrit genetic background (SusPtrit-NILs) for 

four partial resistance QTLs (Rphq) mapped in various mapping populations and derived 

from various donors. Two different alleles of nonhost resistance QTL (Rnhq) are also 

included to develop SusPtrit-NILs. The newly developed SusPtrit-NILs in this study 

together with the L94-NILs developed by van Berloo et al. (2001) and Marcel et al. 

(2007a) were inoculated with different adapted and non-adapted rust fungi to test the 

specificity of the introgressed QTLs against the different rust fungi. 

 

 

Materials and Methods 

 

SusPtrit-NILs development and whole genome genotyping 

 

The plant materials used to develop SusPtrit-NILs for each QTL are listed in Table 1. 

SusPtrit was crossed with each donor accession to obtain an F1 generation. F1 individuals 

were backcrossed to SusPtrit for five or six rounds to obtain near-isogenic lines in BC5 to 

BC6.  SusPtrit was used as the female plant throughout the NILs development program.  

 

 

Table 1: Plant materials for SusPtrit-NIL for resistance QTLs of interest 

QTL Immediate donor Original donor Recurrent parent References 

Rphq2 L94-Rphq2 Vada SusPtrit 
van Berloo et al. (2001) 

Marcel et al. (2007a) 

Rphq3 L94-Rphq3 Vada SusPtrit 
van Berloo et al. (2001) 

Marcel et al. (2007a) 

Rphq11 Steptoe Steptoe SusPtrit Marcel et al. (2007b) 

Rphq16 DOM DOM SusPtrit Marcel et al. (2007b) 

Rnhq.V L94-Rnhq.V Vada SusPtrit Niks et al. (2000) 

Rnhq.L L94 L94 SusPtrit  

 

 

At each round of backrossing, the donor allele of the QTL was selected by molecular 

markers, i.e. marker assisted selection (MAS). No whole genome selection against donor 

background was applied. For Rphq2, Rphq3, Rnhq.L. and Rnhq.V, their donor (L94 or 

L94-NILs) was not expected to contribute any other allele(s) for quantitative resistance to 
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rust fungi. Hence, only selection for the respective target QTLs was required. The MAS 

for Rphq11 and Rphq16 required positive selection for those QTLs and negative selection 

against a second QTL detected in the same donor. Steptoe, the donor of Rphq11 and 

DOM, the donor of Rphq16, each carry one additional partial resistance QTL – Rphq15 

and Rphq17, respectively (Marcel et al. 2007b). The markers used for the selection in 

favour or against each QTL are listed in Table 2.  

 

 At generation F2BC5S1 or BC6S1, two SusPtrit-NILs (Sister NILs) were selected for each 

QTL (only one selected for Rphq2 and Rphq16). These SusPtrit-NILs together with the 

L94-NILs (Marcel et al. 2007a; van Berloo et al. 2001), Vada, SusPtrit, Steptoe, Dom and 

L94 were subjected to whole genome genotyping using the ILLUMINA iSelect 9k barley 

infinium chip which carries 7864 SNPs. Total DNA was extracted from young leaves 

using a CTAB-based method (Stewart and Via 1993). 

 

The barley SNP integrated map (A. Martin-Sanz, R. Niks and P. Schweizer ERA-PG 

“TritNONHOST” project, ERAPG08.053; unpublished), was used as a guide to estimate 

the position and the size of the donor genome introgression in the NIL. 
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Inoculum and disease tests 

 

The levels of resistance of the NILs were determined for eight adapted and non-adapted 

Puccinia species and formae speciales. Four of these, P. hordei, P. hordei-secalini, P. 

hordei-bulbosi and P. triticina, were represented by more than one isolate (Table 3). 

 

 
Table 3: Rust isolates used in this study. 

Adapted 

Puccinia sp Isolate Origin Abbreviation 

P. hordei 1.2.1 Netherlands Ph.1.2.1 

P. hordei Cordoba 4 Spain Ph.Co4 
α
 

P. hordei Uppsala Sweden Ph.Upp 
β
 

P. graminis f. sp. tritici  Hungary Pgt 

Non-adapted 

P. graminis f. sp. lolii Rhenen Netherlands Pgl 

P. hordei-murini Rhenen Netherlands Phm.R 

P. hordei-secalini French France Phs.F 

P. hordei-secalini Groningen Netherlands Phs.G 

P. hordei-secalini Wageningen Netherlands Phs.W 

P. hordei-bulbosi Iran Iran Phb.Ir 
γ
 

P. hordei-bulbosi Israel Israel Phb.Is 
δ
 

P. triticina BWR96258 Switzerland Pt.B 
ε
 

P. triticina Flamingo Netherlands Pt.F 

P. triticina INRA France Pt.I 
η
 

P. persistens Wageningen Netherlands Pp.W 

α
 Kindly provided by Dr D. Rubiales. Collected at Còrdoba, Spain. 

β
 Kindly provided by Dr F. Martínez. Collected at Uppsala, Sweden. 

γ
 Kindly provided by Dr H. Jafary. Collected from Kalaybar, Iran. 

δ
 Kindly provided by Prof Dr Y. Anikster. Collected at Ariel, Israel. 

ε
 Kindly provided by Dr G. Schachermayer, Zürich-Reckenholz, Switzerland. 

η
 Kindly provided by Dr H. Goyeau, INRA, France 

For 
ε
 and 

η
, the places of collection are unknown. 

 

 

The disease tests were carried out at seedling stage in a greenhouse compartment with two 

to three series. The L94-NILs and SusPtrit-NILs together with the reference lines L94 and 

SusPtrit were sown in boxes (37 x 39 cm). Each NIL and the relevant reference line were 

represented by five seedlings in each disease test. Twelve days after sowing, the unfolded 

primary leaf of each seedling was fixed horizontally with adaxial side up and inoculated in 

a settling tower (Niks et al, 2011). 
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For P. hordei, one milligram of inoculum per box (about 60 spores/cm
2
) was used. For P. 

graminis f. sp. tritici (Pgt) and the non-adapted rust fungi, two milligram of inoculum per 

box was applied. Lycopodium spores were used to dilute the inoculum about 10 times. The 

inoculated boxes were subjected to overnight incubation in a dew chamber, set at
 
18

o
C 

with 100% relative humidity, for 8 hours overnight, in the dark. After the incubation, the 

boxes were transferred to a greenhouse compartment. The temperature in the compartment 

was set at 20 ± 3
o
C with 70% relative humidity. 

 

Latency period (LP50S) of the P. hordei isolates was scored as described in Niks et al. 

(2011). From the day the first pustules became visible, a mid-section of each seedling leaf 

was delimited by marker pen, and mature pustules in this section were counted daily using 

a pocket lens (×10), until the number did not increase anymore (5 or 6 days). The LP of 

the pathogen on each seedling was evaluated by estimating the number of hours from 

inoculation to the moment at which 50% of the ultimate number of uredinia was visible. 

For Pgt, the percentage of area covered with lesions (ACL) was scored for SusPtrit and 

SusPtrit-NILs (as in Jafary et al. 2006).  This is because the neighboring pustules and 

surrounding halos often merged. Such a merge of colonies was not observed in L94 and 

L94-NILs. Therefore, for Pgt infection frequency (IF – total number of pustules/cm
2
) was 

scored on L94 and L94-NILs, at 12 days post inoculation. For non-adapted rust fungi, IF 

was scored at 12 days post inoculation. The relative latency period (RLP50S) and relative 

infection frequency (RIF) were calculated relative to the LP50S and IF on SusPtrit for 

SusPtrit-NILs and on L94 for L94-NILs. The data were tested for significant differences 

by the linear mixed model using GenStat
®
 14

th
 edition (VSN International Ltd. 2011). The 

least significant difference, P<0.05 (LSD0.05) was used to declare if the L94-NILs and 

SusPtrit-NILs were significantly different from L94 and SusPtrit, respectively. The 

reported RLP50S and RIF data are the predicted means according to the linear mixed 

model.  

 

 

Preliminary histological observations on non-adapted rust fungi in QTL-NILs  

 

For six QTL-NIL/rust isolate combinations in which the macroscopic data suggested a 

relatively strong effect of the QTL on resistance level, histology of the infection was 

characterized. The selected combinations were sown and inoculated as for the 

macroscopic tests. For each QTL-rust interaction, two leaf segments were sampled on the 

fifth day post inoculation (5dpi). The collected leaf segments were bleached in 

acetic/ethanol (1:3) for a week, and stained with Uvitex 2B (Ciba-Geigy) (Rubiales and 

Niks 1996). A fluorescence microscope (Zeiss Axiophot, exciter filter BP 395-440, 

chromatic beam splitter FT 460 nm and barrier filter LP 420) was used to observe the leaf 



Chapter 3  QTL Specificity 

54 

segments. Approximately, 50 infection units were screened for each leaf segment and 

were classified into different stages of development (Niks 1982). Infection units with six 

or less haustorial mother cells were considered as early aborted. Infection units with more 

than six haustorial mother cells were classified as established, and their longest diameter 

was measured using an eyepiece micrometer. The number of infection units associated 

with autofluorescent cells, indicating plant cell necrosis, was recorded. For testing the 

diameter of established infection units for differences between barley accessions, a linear 

mixed model was performed using GenStat
®
 14

th
 edition (VSN International Ltd. 2011) 

unless indicated otherwise. 

 

 

Results 

 

Genome purity of L94- and SusPtrit- NILs  

 

The whole genome genotyping for L94-Rphq2, L94-Rnhq.V, Sus-Rphq11.6 and Sus-

Rphq16 did not indicate any donor marker allele away from the target introgression, and 

hence these NILs may be clear from unwanted segments from the donor. The other NILs 

contained segment(s) of unwanted donor genome with size ranges from approximately 2 

cM to 30 cM (Figure 1). The SusPtrit sister NILs did not tend to have the same inadvertent 

undesired donor fragments.  

 

Marcel et al. (2007a) reported on the basis of 226 amplified fragment length 

polymorphism (AFLP) markers that L94-Rphq2 and L94-Rphq4 are free of unwanted 

donor segments, and L94-Rphq3 has a segment at the end of chromosome 3HL. The 

present genome-wide screen with SNP markers from the ILLUMINA iSelect 9k barley 

infinium chip did not reveal other donor fragments in L94-Rphq2, and confirmed the 

donor fragment at the end of chromosome 3HL for L94-Rphq3, but indicated three 

unwanted donor fragments in L94-Rphq4. 

 

We compared the estimated size of QTL introgressions based on the integrated SNP map 

with the size estimated based on the position of their flanking markers on the barley 

integrated map [Marcel 2009, (Aghnoum et al., 2010)]. No discrepancy was observed 

except for the Rphq3- and Rnhq.V-introgressions in L94; Rphq2-, Rphq11- and Rnhq.V-

introgressions in SusPtrit, which may have donor DNA beyond the flanking markers of  

the QTL. 
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Figure 1: The graphical genotypes of L94- and SusPtrit-NILs carrying partial and nonhost resistance 

QTLs of interest. The introgression size in cM is indicated on the right hand side of the chromosome bars. 

The grey boxes in the chromosome bars indicate unwanted donor genome introgressions. The black boxes 

in the chromosome bars indicate the targeted introgressions carrying the QTLs. 

 

 

Partial and nonhost resistance QTLs against adapted and non-adapted rust fungi 

 

Table 4 summarizes the infection tests on the L94-NILs and SusPtrit-NILs with adapted 

and non-adapted rust fungi. Compared to the susceptible recurrent parent, some NILs were 

significantly more resistant only to P. hordei, others also to one or more non-adapted rust 

fungi (for example, compare SusPtrit-Rphq11 versus SusPtrit-Rphq16). L94-Rnhq gave a 

similar latency period of P. hordei as L94, but showed a significantly higher level of 

resistance than L94 when inoculated with four of the non-adapted rust species tested. 

These observations indicate that the responsible genes varied in spectrum of effectiveness 

to rust species and rust isolates. The data also indicate that QTLs may be effective to some 

rust isolates and not to others. Such isolate specificity occurred for resistance to the 

adapted P. hordei as well as to some non-adapted rust fungi. It seems surprising that for 
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some rust fungi relatively small differences in RIF values are significant, whereas in 

others large differences are not. The lack of significance in some cases where the 

difference is large may be due to a large experimental error in the experiment (see Pt.B 

and Pt.I in Table 4). 

 

L94-Rphq4 was not included in the disease test against Ph.1.2.1 and Ph.Co4 because 

Rphq4 is only effective against Ph.1.2.1 at adult stage (Qi et al. 1998) and it was not 

detected in the L/V mapping population against Ph.Co4 at seedling stage (González et al. 

2012). We could not confirm a significant effect of Rphq4 at the seedling stage to Ph.Upp, 

as reported by Marcel et al. (2008). L94-Rphq4 also showed a similar level of infection as 

L94 to Phm.R, the three isolate of Pt and the three isolates of Phs, and hence at the 

seedling stage Rphq4 did not appear to be effective to any of the non-adapted rust fungi 

tested here (data not shown). 

 

Rphq2, Rphq3 and Rnhq.V-introgressions were available in two genetic backgrounds, viz. 

in SusPtrit and in L94. Some background effect was suggested. For example, the Rphq2-

introgression was effective against Ph.Co4 in L94 background, but not in SusPtrit 

background; Rnhq.V was effective against Ph.Upp in SusPtrit but not in L94 background. 

In other cases isolate specificity was consistently found in both backgrounds (e.g. Rphq3 

against Ph.Co4 and the three isolates of Phs). Among the adapted rust fungi, Ph.Upp was 

the isolate to which the highest number QTL-introgressions were effective (five QTL-

introgressions), and among the non-adapted rust fungi, it was isolate Pt.F (four QTL-

introgressions). 

 

The Sus-Rphq11 sister NILs had a higher level of resistance than SusPtrit to almost all the 

rust fungi tested and they were nearly completely resistant to Phb.Ir (Figure 2). No 

hypersensitivity response was observed macroscopically on Sus-Rphq11 sister NILs 

against all the rust fungi tested. 

 

 

 

Figure 2: The urediospores of Phb.Ir on the leaf segment of SusPtrit and Sus-Rphq11. 

SusPtrit

Sus-Rphq11
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Preliminary histological observations on partial and nonhost resistance QTL NILs 

against non-adapted rust fungi 

 

The NILs with Rphq3, Rphq11 and Rnhq.V-introgression had a higher level of resistance 

than NILs containing one of the other introgressions when inoculated with a certain non-

adapted rust fungi (Table 4). For those introgressions and a selection of rust fungi we 

determined the fate of about 50 infection units on two leaf samples per NIL/rust 

combination by UV microscopy (Table 5).  

 

Rphq11-introgression in SusPtrit 

 

The resistance observed on the NIL Sus-Rphq11 to non-adapted rust fungi was for 

Phb.Ir and Phs.W due to high early abortion without hypersensitivity but for 

Phm.R and Pp.W no enhanced level of early abortion was observed. The Rphq11-

introgression was not associated with high levels of autofluorescence near early 

aborted or established colonies. The established colonies on the sister NILs also 

did not necessary have smaller diameter than those on SusPtrit. 

 

Rphq3-introgression in SusPtrit and L94 

 

The Rphq3-introgression in SusPtrit and L94 affected resistance against Pt.F 

(Table 4) by increasing the proportion of early aborted colonies, with hardly or no 

induction of hypersensitivity. The introgression seemed to slow down the growth 

of established Pt.F colonies more obviously in L94 than in SusPtrit. 

 

The background resistance present in L94 against Phs.G already caused a 

substantial early abortion of that rust fungus. The Rphq3-introgression did not 

increase early abortion further. The introgression seemed, however, to slow down 

the growth of established Phs.G colonies. We did not test the effect of the 

introgression in SusPtrit background, since in that background it did not seem to 

cause resistance (Table 4). 

 

Rnhq.V-introgression in L94 

 

The Rnhq.V-introgression affected resistance against non-adapted rust fungi such 

as Phs.W, Phs.G and Phm.R in L94 genetic background but not in SusPtrit 

background (Table 4). The resistance against Phs.W, Phs.G and Phm.R conferred 

by the Rnhq.V-introgression was not due to an enhanced proportion of early 

aborted colonies and was not associated with high levels of autofluorescence near 
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early aborted or established colonies. The introgression seemed to slow down the 

growth of established colonies of those non-adapted rust fungi. 

 

In general, the resistance observed either increases the proportion of early abortion or 

restricts the growth of colonies or both. We also observed resistance confer by a QTL 

which seems to affect neither the proportion of early abortion nor the diameter of 

established colony, such as Rphq11-introgression against Phm.R and Pp.W. There is no 

systematic difference in the mechanism between the QTL-introgressions.  

 

 

Table 5: The histology of the resistance to a selection of non-adapted rust fungi, conferred by 

introgressions carrying Rphq11 or Rphq3 or Rnhq.V in either SusPtrit or L94 background 

QTL 
Rust 

fungus 
Line EA % (EA+N) 

α
 Est % (Est + N) 

β
 

Diameter of Est 

infection units (μm) 

Rphq11 

Phb.Ir
 !
 

SusPtrit 4 (0) 96 (0) 346 

Sus-Rphq11.6 24  (0) 76 (4) 232* 

Phs.W 

SusPtrit 4 (0) 96 (0) 245 

Sus-Rphq11.6 29 (0) 71 (4) 265 

Sus-Rphq11.12 31 (4) 69 (3) 237 

Phm.R 

SusPtrit 17 (17) 83 (36) 247 

Sus-Rphq11.6 19 (10) 81 (29) 228 

Sus-Rphq11.12 27 (35) 73 (50) 259 

Pp.W 

SusPtrit 46 (0) 54 (0) 251 

Sus-Rphq11.6 34 (0) 66 (8) 266 

Sus-Rphq11.12 60 (0) 40 (7) 234 

Rphq3 

Phs.G  
L94 50 (16) 50 (22) 199 

L94-Rphq3 40 (13) 60 (43) 139* 

Pt.F 

L94 17 (0) 83 (7) 338 

L94-Rphq3 41 (6) 59 (16) 172* 

SusPtrit 23(0) 77 (1) 360 

Sus-Rphq3.1 49(0) 51(0) 336 

Sus-Rphq3.6 60(0) 40(0) 324 

Rnhq.V 

Phs.W L94 17 (0) 83 (42) 336 

 L94-Rnhq.V 25 (19) 75 (41) 203* 

Phs.G L94 50 (16) 50 (22) 199 

 L94-Rnhq.V 56 (9) 44 (38) 129* 

Phm.R L94 37 (6) 63 (5) 344 

 L94-Rnhq.V 39 (3) 61 (11) 241* 

n.d. not determined 

EA, early aborted colonies 

Est, established colonies 

+N, associated with autofluorescence  
α in ( ) is the percentage of EA+N colonies from the total EA colonies 
β in ( ) is the percentage of Est+N colonies from the total Est colonies 

* The means of L94-NILs significantly smaller than the mean of L94 or SusPtrit-NILs from SusPtrit (α = 0.05) 
! t-test was used to analyse the data 
 Bold: The proportion of EA on the NIL is more than in the recurrent parent (not statistically tested)  
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Discussion 

 

The susceptibility of L94 and SusPtrit to P. hordei made these lines suitable for 

development of NILs to study partial resistance. These NILs could also be studied to 

determine a possible pleiotropic effect of partial resistance genes on nonhost resistance to 

non-adapted rust fungi. SusPtrit is an experimental line which is at the seedling stage 

susceptible to at least nine non-adapted rust fungi (Atienza et al. 2004), and L94 has a 

remarkable level of susceptibility to several non-adapted rust fungi (Niks 1983a), but less 

extreme than SusPtrit in direct comparison (Atienza et al 2004).  The substantial level of 

nonhost resistance in L94 makes it less ideal than SusPtrit to study a possible pleiotropic 

effect of partial resistance genes on nonhost resistance to non-adapted rust fungi.  

 

The NILs can serve as materials to fine-map the QTLs in the introgressions, and later to 

map-based clone and functional characterization of the responsible genes. In this study, 

the NILs developed were used to confirm the resistance QTLs found in earlier mapping 

studies, to quantify their effect without the interference of other QTLs, and to study their 

spectrum of effectiveness to several adapted and non-adapted rust fungi.  

 

The QTL-NILs suggested that the effects of the partial resistance genes depended on rust 

species and rust isolate. Some introgressions conferred a broader resistance spectrum than 

others, the broadest being Rphq11-introgression. This introgression was selected to be 

introduced into SusPtrit on the basis of its relatively large contribution (30% explained 

variation) to partial resistance to P. hordei in the population Steptoe x Morex (Marcel et 

al, 2007b). In the NILs the introgression appeared to confer broad spectrum resistance to 

nearly all non-adapted rust fungi included in the test. The NILs may overestimate the 

spectrum of effectiveness of the partial resistance genes for two reasons. First, some NILs 

contain inadvertent donor genome in the background (away from QTL region, Figure 1) 

which by chance may have additional resistance genes to the same or other rust 

isolate/species. Second, the introgressed QTL region may contain several resistance genes, 

each with a narrow spectrum of effectiveness, but together conferring a broad resistance 

spectrum against different rust isolates/species. Therefore, individual genes may be more 

specific than suggested by the data in Table 4.  If a certain QTL-NIL has resistance to one 

rust isolate but not to another, the specificity should be real, since the same QTL-NIL was 

tested against different rust isolates, such as the Rphq2, Rphq16 and Rnhq.V-introgressions 

in SusPtrit against Ph.1.2.1. Isolate and species specificity of nonhost and partial 

resistance QTLs were observed in previous studies as well (González et al. 2012; Jafary et 

al. 2006; 2008; Marcel et al. 2008; Parlevliet 1977; 1978).  
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We compared the effect of Rphq2, Rphq3 and Rnhq.V against adapted and non-adapted 

rust fungi in SusPtrit and in L94 background. If an introgressed QTL is effective in L94 

but not in SusPtrit and vice versa to a certain rust fungus (species/isolate), this may be due 

to the size of the introgressions in the two recurrent parents that may not cover an identical 

stretch of the chromosome, and hence absence or presence of additional resistance gene(s) 

on either of the introgressions. Possible inadvertent undesired donor segments in the 

background can also cause the different QTL effect observed in L94 and SusPtrit (as 

explained above). For example, Rphq3 confers resistance to the three isolates of Phs in 

L94 but not in SusPtrit background. The resistance may be due to the extra length of 

Rphq3-introgression in L94 (35 cM) compared to SusPtrit (16 cM) or the inadvertent 

undesired donor segments on 3H and 5H respectively (Figure 1).  

 

The SusPtrit and L94 NILs are also different in recurrent genome and cytoplasmic 

materials since SusPtrit and L94 were the female recurrent parents during the NIL 

development program. The difference in the spectrum of effectiveness for a gene in two 

backgrounds may be due to interactions between the introgressed gene with other gene 

elsewhere on the genome (Holland 2007; Lagudah 2011) or with a cytoplasmic factor 

(Akula et al. 2012; Levings and Siedow 1992; Mazouz et al. 2002) present in one of the 

two backgrounds. 

 

The resistance of the NILs against different non-adapted rust fungi does not seem to be 

associated with a hypersensitive response but ranges from occasionally to heavily 

associated with hypersensitive response at macroscopic level (Figure 3). This 

hypersensitive response can also be observed on the reference lines viz. L94 and SusPtrit 

against some non-adapted rust fungi.  

 

 

 

Figure 3: The range of hypersensitive response on NILs inoculated with non-adapted rust fungi. 

L94-Rphq3 – Pt.F

SusPtrit-Rphq3 – Pt.F

SusPtrit-Rphq11 – Phb.Ir
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At microscopic level, the resistance observed on the NILs carrying Rphq11 and Rphq3 to 

non-adapted rust fungi involved for some rust fungi a prehaustorially acting mechanism 

and may involve some level of hypersensitivity in the L94-Rphq3-Pt.F interaction. For 

other rust fungi (Phm.R, Pp.W and Phs.G) the resistance is not due to a high proportion of 

early aborted colonies and this is also true for L94-Rnhq.V inoculated with Phs.W, Phs.G 

and Phm.R. The resistance conferred by the introgressions against the respective rust fungi 

can probably be due to slower growth of infection units, leading to smaller colony size 

such as the interaction between L94-Rphq3 with Phs.G and L94-Rnhq.V against Phs.W, 

Phs.G and Phm.R, but not on the sister NILs of Rphq11 inoculated with Pp.W and Phm.R. 

The resistance conferred by Rphq11-introgression against Pp.W and Phm.R probably is 

due to late abortion, i.e. abortion of colonies after establishment, but before sporulation 

(Niks 1982). The growth and development of colonies may have been arrested at a later 

stage than the moment we collected the leaf segments (5dpi). Further histological 

investigation is needed to establish the fungal development stage in which the resistance 

interferes with the infection process. 

 

Our disease tests show that QTLs such as Rphq2 and Rphq16 in SusPtrit background 

affect resistance specifically to P. hordei. Other QTLs such as Rphq3 in L94 background 

and Rphq11 in SusPtrit background seem to have broader resistance spectrum. However, 

the NILs that we developed may overestimate the spectrum of effectiveness for a QTL. If 

the spectrum of effectiveness of the introgressions reflects indeed the pleiotropic effect of 

a single (quantitative) gene is true, this study would add evidence that partial resistance 

and nonhost resistance are (partly) based on the same genes, and hence are evolutionary 

and mechanistically part of the same principal (González et al. 2010; Jafary et al. 2008; 

Niks and Marcel 2009; Zellerhoff et al. 2010).  
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Supplemental Table 
  

Supplemental Table 1: The markers used for marker assisted selection in the development of NILs for targeted 

QTLs 

QTLs Name Type Chrom Restriction 

enzyme 

Tm  

(oC) 
Primer sequences 

Rphq2 

k00345 CAPs 2H SduI 56 
F: TTCCTTCCATGGCTTTTGAC 

R: AAGGCACACATCCACCTTTC 

besV76P5D5AR SCAR 2H  56 
F: GAGGAGCCGTGTCGTCTTGT 
R: CCGTTTCCGTTCACTGGTTAT 

scP15M51-204 SCAR 2H  56 
F: CGGAGGAAACATGGACAACGAA 

R: AGCGAGCTCACTGCCAATCTACC 

GBMS216 SSR 2H   Confidential 

Rphq3 

ABG388 CAPs 6H NlaIII  
F: GCACTGGCATAGTCTCACAA 

R: CGATGCTGGTTCGGTCATAC 

WBE201 CAPs 6H MnlI 58 
F: GGTCAGCAATTCCCCAAAGTT 

R: AATGCCGAAATCTCCCAAATGA 

GBM1212 SSR 6H   
F: TGTTGCAAGAAGCAAGGATG 

R: GCGCTTACTCTCTCGTCGTC 

HVM14 SSR 6H   
F: CGATCAAGGACATTTGGGTAAT 

R: AACTCTTCGGGTTCAACCAATA 

HVM22 SSR 6H   
F: TTTTGGGGGATGCCTACATA 
R: TTTCAAATGGTTGGATTGGA 

Rphq11 

GBS0512 CAPs 2H AciI 58 
F: CCACATGCTGCGGAGGT  

R: CGTTGAGGATGATGCTGAGG  

GBM1062 SSR 2H   Confidential 

GBMS244 SSR 2H   Confidential 

Rphq15 

MWG966 CAPs 6H NlaIV 57 
F: ATGCGTGCCCTTTGGAACA 

R: TGGCCTGCGATATGGAGACC 

GBMS033 SSR 6H   Confidential 

scssr09398 SSR 6H 
 

 
F: AGAGCGCAAGTTACCAAGC 
R: GTGCACCTCAGCGAAAGG 

Rphq16 

scsnp03275 CAPs 5H BglII 65 
F: AACGGCCAGGCTATAACCATCACA 

R: CGGCGGCTTCATCAATTTCACTAA 

Dst-33 SCAR 5H 
 

45 
F: GCACACATATTATCATGAAAAAGAGC 
R: ACCCCAAATGAGTTTCGATG 

GMS002 SSR 5H 
 

 
F: CCGACAACATGCTATGAAGC 

R: CTGCAGCAAATACCCATGTG 

Rphq17 

Bmag0136 SSR 3H 
  F: GTACGCTTTCAAACCTGG 

R: GTAGGAGGAAGAATAAGGAGG 

Bmac0067 SSR 3H 
  F: AACGTACGAGCTCTTTTTCTA 

R: ATGCCAACTGCTTGTTTAG 

Rnhq.V 
Rnhq.L 

MWG2031 CAPs 7H MwoI 55 
F: TGTGACCTGTCAGACTGTTCAAGTT 

R: TACGTCGGCATAATTGGCA 

SKT1 CAPs 7H AluI 60 
F: TGGACCTCATAGCAGCCTTT 
R: GGTGCCACTGAGATTCACCT 

WBE101 CAPs 7H HpyCH4IV 52 
F: CGAGCGCCTGACGGACGAT 

R: CTCACGGCCCAGACATAGC 

GBM1303 SSR 7H   
F: TCTTTTTGGAGGGGTTTCCT 

R: ATCATCTTCACGCTTCCTCC 
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Abstract 

Partial resistance QTLs, Rphq11 and Rphq16, were first mapped against Puccinia hordei 

isolate 1.2.1 in seedlings of the mapping populations Steptoe/Morex (S/M) and Oregon 

Wolfe Barleys (OWB), respectively. In this study, QTL mapping was performed at adult 

plant stage for the two mapping populations challenged with the same rust isolate. In none 

of the series of disease tests for S/M and OWB we detected our target QTLs Rphq11 and 

Rphq16. Therefore, it is likely that these two QTLs are effective only at the seedling stage, 

and not at the adult plant stage. Cloning of several genes responsible for partial resistance 

of barley to P. hordei is undertaken in order to elucidate the molecular basis of this type of 

plant defence. A map-based cloning approach implies first to fine-map the QTL in a 

narrow genetic window. The commonly followed fine-mapping strategy makes use of near 

isogenic lines (NIL). NIL development is very laborious and time consuming. For barley, 

the development of a NIL with approximately 95% genome of the recurrent parent at 

generation BC4 will take approximately two years and four months. Another year will be 

necessary to obtain enough seeds of homozygous recombinant plants (i.e. sub-NILs) to 

allow fine-mapping. In total, about three years and four months are needed to fine-map a 

QTL to a certain genetic window. In this study, fine-mapping of partial resistance QTLs 

Rphq11 and Rphq16 was carried out using an approach aiming at speeding-up the 

development of plant material and simplifying its evaluation. The plant materials for fine-

mapping were identified from early breeding materials (F2 for Rphq11 and BC1/BC2 for 

Rphq16) developed to produce QTL-NILs. The material was first selected to carry the 

targeted QTL in heterozygous condition and susceptibility alleles at other resistance QTLs 

in homozygous condition. This strategy took four to five generations to obtain fixed QTL-

recombinants (i.e. homozygous recombinants at the Rphq11/Rphq16 QTL alleles, 

homozygous susceptible at the non-targeted QTL alleles). Their genomic background was 

still segregating, but expected not to be of influence on the resistance level. In less than 2 

years, Rphq11 was fine-mapped into a 0.2 cM genetic interval and a 1.4 cM genetic 

interval for Rphq16. The strongest candidate gene for Rphq11 is phospholipid 

hydroperoxide glutathione peroxidase (PHGPx). This gene corresponds to the new Rphq11 

peak marker – WBE129, located within the refined 0.2 cM genetic interval and was one of 

the candidate genes for Rphq11 identified through eQTL mapping on S/M challenged with 

the same rust isolate. There was no clear candidate gene identified for Rphq16. 

 

 

Keywords: High Resoltuion Mapping, Quantitative Trait Locus (QTL), Specificity, 

Puccinia, Barley 



Chapter 4                                                 High Resolution Mapping of Rphq11 & 16 

69 

Introduction 

 

Partial resistance of barley against barley leaf rust (Puccinia hordei) results in a reduced 

epidemic, despite a compatible infection type (Parlevliet 1979). The epidemic reduction is 

due to a lower infection frequency, lower sporulation rate and longer latency period of the 

pathogen on barley accessions with high levels of partial resistance (Parlevliet 1979). 

Partial resistance is a prehaustorial resistance, where failed attempts to form haustoria are 

associated with cell wall reinforcements, called papillae (Niks 1986; O’Connell and 

Panstruga 2006). The failure of a proportion of the haustorium formation reduces the 

capacity for nutrient extraction from the plant and for delivery of pathogenicity promoting 

effectors into the plant cells (Catanzariti et al. 2007; de Jonge et al. 2011). This 

mechanism of resistance is similar to, but less complete than, nonhost resistance of barley 

to non-adapted rust fungi like P. recondita and P. triticina (Niks 1983, 1989).  

 

Partial resistance of barley to P. hordei is polygenically inherited and is supposed to act on 

a minor-gene-for-minor-gene model (González et al. 2012; Marcel et al. 2008; Niks et al. 

2000; Parlevliet and Zadoks 1977; Qi et al. 1999). There is an abundance of quantitative 

trait loci (QTL) for partial resistance against barley leaf rust. To date, at least 20 partial 

resistance QTLs against barley leaf rust have been mapped in different bi-parental 

mapping populations. In each barley mapping population, a different set of QTLs was 

identified, with few QTLs shared among the populations. The explained phenotypic 

variation per QTL ranges from around three to 50 per cent (Jafary et al. 2008; Marcel et al. 

2007b; 2008; Niks et al. 2000; Qi et al. 1998; 1999; Yeo et al. 2014).  

 

QTL mapping studies indicated that the resistance QTLs can be effective across different 

stages of plant development or only at specific stages (Qi et al. 1998), which was 

confirmed on QTLs that were introgressed into near isogenic lines (NILs) (Wang et al. 

2010). Plant growth stage dependent effects of resistance QTLs have also been observed 

in other plant-pathosystems (Aghnoum et al. 2010; Dedryver et al. 2009; Shankar et al. 

2008; Steffenson et al. 1996). Consequently, different sets of QTLs will protect barley 

plants against leaf rust at different growth stages. It is important to know the effect of 

QTLs at different growth stages before to design breeding strategies or to engage in a 

positional cloning procedure.  

 

Cloning of several genes responsible for partial resistance of barley to P. hordei is 

undertaken in order to elucidate the molecular basis of this type of plant defence (Marcel 

et al. 2007a). Fine-mapping and positional cloning requires the evaluation of very large 

numbers of plants in a controlled environment and a similar physiological condition, 
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which is often only feasible at the seedling stage. To date, no QTLs for resistance to rust 

fungi or powdery mildew have been cloned in barley. However, three large-effect 

resistance QTLs have been cloned in rice; two against Magnaporthe oryzae (Fukuoka et 

al. 2009; Hayashi et al. 2010) and one wide-spectrum QTL against Rhizoctonia solani and 

M. oryzae (Manosalva et al. 2009). There are two cloned QTLs in wheat; one against P. 

striiformis (Fu et al. 2009) and one wide-spectrum QTL against P. triticina, P. striiformis 

and Blumeria graminis (Krattinger et al. 2009). All the genes cloned so far belong to 

different gene families and are involved in different functions, suggesting a wide diversity 

of mechanisms underlying partial resistance. 

 

A map-based cloning approach implies first to fine-map the QTL in a genetic window 

sufficiently narrow to make physical mapping feasible. This approach requires the effect 

of the QTL to be sufficiently clear to infer the QTL genotype from its phenotype; the 

phenotypic variation explained by the QTL should be more than 10% according to Kou 

and Wang (2012). The commonly followed fine-mapping strategy makes use of near 

isogenic lines (NIL). In non-isogenic plant materials, other QTLs may be segregating in 

the genetic background blurring the determination of the phenotypic effect of the QTL of 

interest. The NIL carrying the targeted QTL is crossed with its recurrent parent to 

“Mendelize” the QTL in the resulting progeny. Then, a selection of plants recombining at 

the QTL containing chromosome region (i.e. sub-NILs) and the evaluation of their 

phenotype allow to pin-point the targeted QTL into a refined genetic position (Han et al. 

1999; Marcel et al. 2007a; Xue et al. 2010; Zhou et al. 2010). Fine-mapping using this 

strategy is efficient but very laborious and time consuming in generating the plant 

materials, marker development and genotyping. 

 

Rphq11 and Rphq16 are partial resistance QTLs that were first mapped against P. hordei 

isolate 1.2.1 in seedlings of the mapping populations Steptoe/Morex (S/M) and Oregon 

Wolfe Barleys (OWB), respectively (Marcel et al. 2007b). They are effective at seedling 

stage in their respective mapping population, each explaining approximately 30% of the 

phenotypic variance. Rphq11 was mapped at seedling stage near the middle of 

chromosome 2HL and the resistance allele was contributed by Steptoe. It was also 

detected by Chen et al. (2010) as an expression QTL (eQTL) co-locating with the 

phenotypic QTL (pQTL) in the same mapping population. Six candidate genes were 

suggested by those authors that may explain Rphq11. Rphq16 was mapped at seedling 

stage near the telomeric region of chromosome 5HL and the resistance allele was 

contributed by Dom.  

 

The first objective of this study was to test whether Rphq11 and Rphq16 are also effective 

at adult plant stage. The second objective was to fine-map Rphq11 and Rphq16 using an 
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approach aimed at speeding-up the development of plant material and simplifying its 

evaluation with the final aim of cloning them. Rphq11 and Rphq16 qualify for map-based 

cloning to study partial resistance because of sufficient effect size at seedling stage. 

 

 

Materials and methods 

 

Inoculum 

 

All the disease tests in this study were done with P. hordei isolate 1.2.1 (Ph.1.2.1), the 

same isolate used in (Marcel et al. 2007b). This isolate is a monospore purification of the 

isolate 1.2 collected in the Netherlands in 1971 (Parlevliet 1976).  

 

 

QTL mapping on adult plants 

 

The Doubled Haploids (DH) mapping populations S/M (Kleinhofs et al. 1993) and OWB 

(Costa et al. 2001) were used to map QTLs for non-hypersensitive quantitative resistance 

at the adult plant developmental stage (heading stage Z51-Z55 on Zadoks’ growth scale). 

Marker segregation data of S/M (150 DH lines) and OWB (94 DH lines) were extracted 

from the barley integrated map [Barley, Integrated, Marcel 2009 available at 

http://wheat.pw.usda.gov/GG2/index.shtml; (Aghnoum et al. 2010)]. Data comprise 3561 

segregating markers in S/M and 882 in OWB. Skeletal maps were generated for S/M and 

OWB by selecting markers homogeneously distributed over the integrated map, spaced at 

approximately 1-5 cM intervals. 

 

The parental lines Steptoe and Morex or Dom and Rec and the reference barley lines L94 

and Vada were included in each experiment. Parental and reference lines were sown 

continuously every 3 days from one week before to one week after the sowing of the DH 

lines of the two mapping populations. For each line, three seeds were sown in a pot. To 

ensure the uniformity of the developmental stage of the plants at the time of inoculation, 

plants of a mapping population were divided into 3-4 subgroups based on their heading 

date. For each subgroup, plants of parental and reference lines with a similar 

developmental stage were added. Three series – at different times of the year, were 

performed with three individuals per DH line for the first and second series, and one 

individual per DH line for the third series. The first and second series were conducted at a 

different greenhouse facility than the third series. 
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Plants were inoculated after the flag leaf was unfolded (around heading stage Z52). Per 

pot, one milligram of spores diluted 10 times with lycopodium spores were used as 

inoculum. Before the inoculation, the pots were lined-up two by two. Then, the inoculum 

was dusted over the plants as uniformly as possible. The inoculated plants were then 

placed in a humidity chamber overnight (8 hours) at 100% relative humidity in the dark at 

18
o
C to allow the spores to germinate. After incubation, the plants were transferred to a 

greenhouse compartment where the temperature was set at 20 ± 3
o
C with 30-70% relative 

humidity. 

 

The flag leaf (F) of the three plants in each pot was scored for latency period (LP50A). It 

was scored daily by counting the mature pustules on a marked area of the F leaf until all 

the pustules matured. Latency period estimates the period of time in hours at which 50% 

of the total number of pustules is mature. It is among the most informative components of 

barley partial resistance to leaf rust and is relatively easy to measure (Niks et al. 2011; 

Parlevliet 1979). Relative latency period (RLP50A) was calculated relative to LP50A of 

Steptoe for S/M and relative to LP50A of Dom for OWB. 

 

ANOVA was performed using GenStat
®
 14

th
 edition (VSN International Ltd. 2011). QTLs 

were mapped using MapQTL
®
6 (van Ooijen 2009). A permutation test was performed to 

set the LOD threshold to declare a QTL. The confidence interval of a QTL is the estimated 

LOD-2 support interval. 

 

The data for heading date (HD) and plant height (PH) of S/M were downloaded from 

GrainGenes (http://wheat.pw.usda.gov/GG2/index.shtml). The QTLs for HD and PH were 

mapped on the S/M skeletal map generated from the barley integrated map [(Barley, 

Integrated, Marcel 2009; (Aghnoum et al. 2010)]. 

 

 

Selecting plant material segregating for a single target QTL 

 

Previous QTL mapping studies at seedling stage revealed in the S/M population two QTLs 

contributed by Steptoe, Rphq11 and Rphq15, and in the OWB population two QTLs 

contributed by Dom, Rphq16 and Rphq17 (Marcel et al. 2007b). Steptoe and Dom were 

first crossed, and then recurrently backcrossed with the susceptible experimental line 

SusPtrit (Atienza et al. 2004). Molecular markers flanking the QTLs were used to select 

for the susceptible QTL alleles of Rphq15 and Rphq17, and to select for the resistance 

QTL alleles of Rphq11 and Rphq16 at each generation. Rphq11 and Rphq16 were finally 

introgressed into SusPtrit by backcrossing over five generations for Rphq11 and six 
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generations for Rphq16 to obtain NILs (Figure 1). Details and results obtained with the 

NILs will be published elsewhere. 

 

For Rphq11, the backcross of F1 plants to SusPtrit yielded a low number of BC1 seeds. 

Therefore, some F1 individuals were selfed to obtain the F2 generation. At the F2 

generation, the resistance allele of Rphq11 was selected with three simple sequence repeat 

(SSR) markers (Bmag0125, GBM1062 and GBMS244) while the susceptibility allele 

(from SusPtrit) of Rphq15 was selected with two SSR markers (scssr09398 and GBM033) 

and a cleaved amplified polymorphic sequence (CAPS) marker (MWG966) (Table 1). The 

selected plants were heterozygous for the target QTL but lacked the second gene for 

resistance of the donor line at the other QTL. They were selfed, and 97 F3 seedlings were 

inoculated with Ph.1.2.1 (Figure 1). Their latency period was scored (LP50S) and the 

relative latency period (RLP50S) was calculated relative to SusPtrit. The F3 seedlings were 

also genotyped with the markers flanking Rphq11. The plants were grouped according to 

their QTL allele, homozygous Steptoe (AA), heterozygous (AB) and homozygous SusPtrit 

(BB), to estimate the effect and the dominance/recessiveness of Rphq11 at the seedling 

stage. Plants that had a recombination between the QTL flanking markers were excluded 

from the analysis. The data were analysed with Unbalanced One-way ANOVA using 

GenStat
®
 14

th
 edition (VSN International Ltd. 2011).   

 

For Rphq16, the backcross of F1 plants to SusPtrit was successful and a sufficient number 

of BC1 seeds were obtained. The resistance allele of Rphq16 was selected with two CAPS 

markers (ABG390 and ABG391) and two SSR markers (GMS002 and scssr09041) while 

the susceptibility allele (from SusPtrit) of Rphq17 was selected with two SSR markers 

(Bmac0067 and Bmag0136) (Table 1). Similar to Rphq11, the selected plants were 

heterozygous for Rphq16 but lacked the other resistance QTL Rphq17 allele. Those plants 

were selfed and 52 BC1S1 seedlings were inoculated with Ph.1.2.1 (Figure 1). The QTL 

effect and the dominance/ recessiveness of Rphq16 were estimated as described for 

Rphq11. 

 

 

Fine-mapping Rphq11 and Rphq16  

 

Among the 97 F3 plants for Rphq11 and among the 52 BC1S1 plants for Rphq16, there 

were 12 and 18 recombinant plants, respectively. These plants were grown to set seeds 

which were then used to identify plants with homozygous recombination. These plants 

were then homozygous recombinants at the Rphq11/Rphq16 QTL alleles, homozygous 

susceptible at the Rphq15/Rphq17 QTL alleles, but their genomic background was still 

segregating. For simplicity, these plants will be called “fixed QTL-recombinants” from 
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this point onwards. These fixed QTL-recombinants were already used to refine the 

positions of Rphq11 and Rphq16 (data not shown). Based on the refined positions, new 

flanking markers were selected for Rphq11 (GBS0512 and GBMS244) and for Rphq16 

(scsnp03275 and GMS002) (Table 1). 

 

 

 

 
Figure 1: Procedure for fine-mapping a) Rphq11 and b) Rphq16 in parallel with their NIL development 

programs. 
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Table 1: Molecular markers used to select alleles at QTLs for resistance to P. hordei from 

barley cultivars Steptoe and Dom. 

QTLs Chrom. Positiona Markers Positiona Types Ref.b 

Rphq11$ 2H 90 

Bmag0125 84 SSR Varshney et al. (2007) 

GBM1062 91 SSR Varshney et al. (2007) 

GBS0512 92 CAPS Stein et al. (2007) 

GBMS244 97 SSR Varshney et al. (2007) 

Rphq15* 6H 22 

scssr09398 5 SSR Varshney et al. (2007) 

MWG966 18 CAPS Graner et al. (1991) 

GBMS033 26 SSR Varshney et al. (2007) 

Rphq16$ 5H 170 

ABG391 154 CAPS Rostoks et al. (2005) 

ABG390 158 CAPS Rostoks et al. (2005) 

scsnp03275 - CAPS Rostoks et al. (2005) 

GMS002 179 SSR Varshney et al. (2007) 

scssr09041 179 SSR Varshney et al. (2007) 

Rphq17* 3H 64 
Bmag0136 64 SSR Varshney et al. (2007) 

Bmac0067 67 SSR Varshney et al. (2007) 

a
 The position is based on the integrated map (GrainGenes: Marcel 2009) 

b
 References for the CAPS markers give the origin of the sequences obtained for marker  

development. Primer sequences and annealing temperature are available in supplemental data 

$
 Resistance allele selected for 

*
 Resistance allele selected against 

 

 

In order to further fine-map Rphq11 and Rphq16, the F3 plants heterozygous for Rphq11 

and BC2 plants heterozygous for Rphq16 were selfed to produce a large number of seeds. 

New recombinants for Rphq11 and Rphq16 were identified by screening the F4 and BC2S1 

plants with the new flanking markers for Rphq11 (GBS0512 and GBMS244) and Rphq16 

(scsnp03275 and GMS002). The same markers were used to identify fixed-QTL 

recombinants for both QTLs in the subsequent generation. The fixed QTL-recombinants 

were then genotyped with all molecular markers located in the QTLs vicinities to generate 

high resolution genetic maps around Rphq11 and Rphq16. 

 

The fixed QTL-recombinants were subjected to four rounds of disease tests for Rphq11 

and three for Rphq16 (Figure 2). At each round, a different subset of the fixed QTL-

recombinants was strategically selected based on previous results of disease tests in order 

to progressively refine the map position of the QTL. This strategy allowed more 

individuals to be tested per fixed QTL-recombinant at each round, increasing the 

confidence in the phenotype. SusPtrit was included in all disease tests as susceptible 

reference.  
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(A) 

 
(B) 

  
Figure 2: Rounds of disease test with fixed QTL-recombinants for (a) Rphq11 and (b) Rphq16. The graphical 

genotypes represent the fixed QTL-recombinants tested in each round. The white bars represent homozygous SusPtrit; 

black bars represent homozygous Steptoe (a) or Dom (b); grey bars represent intervals where recombination occured. 

Markers in bold are the flanking markers used after preliminary fine-mapping. M – New markers obtained (Figure 7). 
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Disease tests were performed at seedling stage following the method of Qi et al. (1998). 

The latency period (LP) was measured. The relative latency period on seedlings (RLP50S) 

was calculated by setting SusPtrit at 100. Data from different rounds of disease test were 

analyzed together under a linear mixed model with GenStat
®
 14

th
 edition (VSN 

International Ltd. 2011). The significant difference in mean RLP50S between fixed QTL-

recombinants and SusPtrit was determined based on the least significant difference (LSD, 

P < 0.05).  

 

Genomic DNA of the plant materials for recombinant screening was extracted following 

the method of Wang et al. (1993), adjusted for a 96-well format. This method allows quick 

genotyping of large numbers of plants, to recover rare recombinant plants. sbeadex
®
 maxi 

plant kit (LGC Genomics) was used to isolate DNA of recombinant plants for selection of 

fixed QTL-recombinants. 

 

 

Marker saturation of Rphq11 and Rphq16 intervals 

 

Two approaches were followed to develop 20 molecular markers in the approximately 13 

cM interval of Rphq11 and to develop 27 molecular markers in the approximately 25 cM 

interval of Rphq16. All the markers developed are polymorphic in SusPtrit/Steptoe as well 

as in SusPtrit/Dom. 

 

Approach I: Molecular markers that mapped within the intervals of Rphq11 and Rphq16 

on the integrated map (GrainGenes: Barley, Integrated, Marcel 2009) were targeted for 

generating new PCR based markers segregating in our material. Sequence information of 

targeted Restriction Fragment Length Polymorphism (RFLP) markers and Transcript 

Derived Markers (TDM) were used to design specific primer pairs.  For RFLPs, sequences 

were downloaded from the GrainGenes database (http://wheat.pw.usda.gov/GG2/index 

.shtml). For TDMs, unigene sequences were downloaded from the Barley SNP Database 

(http://germinate.scri.ac.uk/barley_snpdb/dbStats_contig.html) (Potokina et al. 2008). For 

Sequence Tagged Sites (STS) markers, the primer sequences were obtained directly from 

the GrainGenes database. The primer sequences of Simple Sequence Repeat (SSR) were 

obtained from literature (Varshney et al. 2007). Sequence for the Diversity Array 

Technology (DArT) marker ctg15632 and primers for the Cleaved Amplified Polymorphic 

Sequence (CAPS) marker Uni19962 have been reported elsewhere (Boyd et al. 2007). 

 

Approach II: Conserved microsynteny between barley, rice and Brachypodium 

distachyon was also used to generate new markers closely linked to Rphq11 and Rphq16. 

The sequences of EST-based markers mapped in the vicinity of Rphq11 and Rphq16 were 
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used for blast searches of rice and Brachypodium distachyon (B. distachyon) homologous 

genes, respectively, in the Rice Genome Annotation Project blast search (http://rice. 

plantbiology.msu.edu/analyses_search_blast.shtml) and in the B. distachyon blast portal 

(http://blast.brachypodium.org/). Rice and B. distachyon gene sequences within the 

identified synteny blocks were in turn blasted against the barley EST tentative consensus 

(TC) sequences from the barley TIGR Gene Indices database (http://www.tigr.org/tdb/tgi/ 

index.shtml). Only barley TC sequences with a blast hit having an E-value ≤10
-15

 were 

further considered for primer design and marker development. To maximise the chance of 

developing markers that map in the target regions of the barley genome, only barley TC 

sequences having an homologous gene in the syntenic regions of both rice and B. 

distachyon were further considered for primer design and marker development. 

 

Primers were designed using the Lasergene software (DNASTAR® 8 Inc., Madison, WI, 

USA). For each primer pair a gradient PCR was performed to determine the optimal 

annealing temperature. Sequence Characterized Amplified Region (SCAR) markers were 

obtained by finding length polymorphism or allele-specific amplification directly after 

PCR on parental lines (SusPtrit, Steptoe – Rphq11 donor, and Dom – Rphq16 donor). For 

primers that amplified bands of the same size in parental lines, CAPS markers were 

developed. The PCR products were sent for sequencing (BaseClear, Leiden, the 

Netherlands). SNPs were identified from the sequence obtained, using the Lasergene 

software. The dCAPS finder program [http://helix.wustl.edu/ dcaps/dcaps.html; (Neff et 

al. 2002)] was then used to find discriminating restriction enzymes. 

 

Markers developed based on TDMs, synteny and eQTL candidate genes were named as 

WBE for Wageningen Barley ESTs.  

 

 

Results 

 

Mapping QTL for partial resistance at adult stage in S/M and OWB populations 

 

A significant series x genotype effect was observed for the adult plant disease tests of both 

S/M and OWB mapping populations. Consequently, QTL mapping was performed for 

each series independently. In both populations and in each series, RLP50A showed a 

continuous distribution of phenotypes with transgressive segregation (Supplemental 

Figure 1). On Steptoe and Rec RLP50A was always higher than on Morex and Dom, 

respectively, except in the first series for the OWBs where Rec and Dom had nearly the 

same RLP50A. A permutation test suggested a LOD threshold of 3 for each series. A QTL 
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was declared only when its LOD profile surpassed this threshold in at least two series of 

the same population.  

 

Two partial resistance QTLs were mapped in S/M, viz. on chromosomes 1H and 3H 

(Table 2). These two QTLs were mapped in regions where no partial resistance QTL was 

reported before (Supplemental Figure 2). They are designated as Rphq22 and Rphq23, 

respectively. Rphq22 was mapped in all three series of the disease test. Rphq23 was 

mapped in two series of the disease test while its LOD score in the third series was just 

below the threshold. Rphq22 explained approximately 26% of the phenotypic variation 

and Rphq23 explained around 22%. For both QTLs, the resistance allele was donated by 

Steptoe. Also for another possible QTL mapped on chromosome 6H the resistance allele 

was donated by Steptoe. But that third QTL was only detected in one series, and is 

therefore not reported in Table 2. No QTL resistance allele was found to be contributed by 

Morex despite the observed transgressive segregation in the mapping population. This 

most probably indicates the presence of QTLs with effects too small to be detected in this 

experiment. 

 

The QTLs for heading date (HD) and plant height (PH) segregating in S/M were also 

positioned on the integrated map. Rphq22 and Rphq23 collocate neither with the HD nor 

the PH QTLs. 

 

 

Table 2: Summary of partial resistance QTLs against barley leaf rust isolate 1.2.1 detected at adult 

plant stage in S/M DH mapping population. The QTL features are based on the series with the 

highest LOD score using MAPQTL
®
6 (van Ooijen 2009) 

QTL Chrom. Peak marker cM
1
 LOD Exp%

2
 Donor 

Rphq22 1H Contig8593 134.4 8.6 26.1 Steptoe 

Rphq23 3H Contig10370 101.9 6.1 21.7 Steptoe 

1
 Peak marker position on the integrated map “Barley, Integrated, Marcel 2009” 

2
 Percentage of explained phenotypic variance (MapQTL

®
6) 

 

 

For OWB, the correlation between series was very weak (data not presented). There was 

no QTL identified in at least two series of the disease test. In each series, a different 

unique QTL was identified on chromosomes 2H, 5H and 7H, respectively.  

 

In none of the three series of disease tests for S/M and OWB we detected our target QTLs 

Rphq11 and Rphq16. Therefore, it is likely that these two QTLs are effective only at the 

seedling stage (Marcel et al. 2007b), and not at the adult plant stage. 
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Markers developed for Rphq11 and Rphq16  

 

Twenty markers were developed that supposedly mapped on chromosome 2HL in the 

region of Rphq11 flanked by the markers Bmag0125 and GBMS244 (Supplemental Table 

1). Among those, 16 markers mapped between the flanking markers while the other four 

markers (one CAPS and three SSR) mapped near but outside the flanked QTL interval. 

The 16 markers consist of two SSR, two SCAR and 12 CAPS markers. Seven of the 

linked markers are synteny-based markers, developed using rice and B. distachyon 

annotated genes. The rice syntenic region on chromosome 4 was identified by blast with 

Uni19962 and GBM1062 sequences. Uni19962 is homologous to Loc_Os04g47040 in rice 

and GBM1062 is homologous to Loc_Os04g46820 in rice. However, there is no B. 

distachyon homolog for Uni19962 and GBM1062. Therefore the B. distachyon syntenic 

region on chromosome Bd5 was based on the rice homolog of Uni19962 and GBM1062, 

as well as two EST based markers, WBE144 and WBE129, which were flanked by 

Uni19962 and GBM1062. WBE144 is homologous to Bradi5g17980 in B. distachyon and 

WBE129 is homologous to Bradi5g18000 in B. distachyon 

 

For Rphq16, twenty-seven markers were developed that supposedly mapped on 

chromosome 5HL in the QTL confidence interval flanked by the markers ABG391 and 

GMS002 (Supplemental Table 2). Among those, 18 markers mapped between the flanking 

markers of the QTL while the other nine markers (one SCAR, five CAPS and three SSR) 

mapped near but outside the flanked QTL interval. Three of the markers closely linked to 

Rphq16 are synteny-based markers. The rice syntenic region on chromosome 3 and B. 

distachyon syntenic region on chromosome Bd1 was identified by blast with WBE320 and 

GBS0408 sequences. WBE320 is homologous to Loc_Os03g63450 in rice and 

Bradi1g01500 in B. distachyon. GBS0408 is homologous to Loc_Os03g63940 in rice and 

Bradi1g00990 in B. distachyon. 

 

 

High-resolution genetic map for Rphq11 and Rphq16 

 

There were 89 fixed QTL-recombinants identified for Rphq11 and 135 for Rphq16 

(described in the next section). These fixed QTL-recombinants were genotyped with the 

newly developed markers and high-resolution genetic maps were generated (Figure 3 and 

4).  

 

On the new high-resolution genetic map of the Rphq11 region, the distance between 

markers GBS0512 and GBMS244, flanking Rphq11, is approximately 6 cM. Their interval 

on the barley integrated map [Barley, Integrated, Marcel 2009; (Aghnoum et al. 2010)] is 
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comparable (5 cM). Sixteen markers were mapped in this interval, providing an average 

marker density of one marker per 0.4 cM. Marker positions of GBS0512, WBE301 and 

GBM1062 around Rphq11 in the new high resolution genetic map were slightly different 

compared to the integrated map, Marcel 2009. GBS0512 (Stein et al. 2007) and WBE301 

(Potokina et al. 2008) were originally mapped in S/M, and GBM1062 in OWB (Varshney 

et al. 2007), which can explain the inaccuracy of their order on the integrated map. The 6 

cM genetic window comprising Rphq11 is in synteny with rice chromosome 4 and B. 

distachyon chromosome Bd5. The orientation of the syntenic block delimited by 

Uni19962 and WBE307 in barley is inverted compared to rice and B. distachyon, and 

microsyntenic rearrangements in marker order are also observed within the block. The 

orientation of the syntenic block and the order of markers are perfectly conserved between 

rice and B. distachyon (Figure 3).  

 

On the new high-resolution genetic map of the Rphq16 region, the distance between 

markers scsnp03275 and GMS002, flanking Rphq16, is approximately 11 cM. Their 

interval is approximately 20 cM on the barley integrated map [Barley, Integrated, Marcel 

2009; (Aghnoum et al. 2010)]. The estimated 20 cM interval was based on MWG2193, 

WBE310 and WBE314 which shared the same position as scsnp03275 on the high-

resolution genetic map because scsnp03275 was not mapped in the integrated map.  

 

There were 18 markers mapped in this interval, providing an average marker density of 

one marker per 0.6 cM. Marker order at Rphq16 was in agreement with marker order on 

the integrated map, Marcel 2009. The 11 cM genetic window comprising Rphq16 is in 

synteny with rice chromosome 3 and B. distachyon chromosome Bd1. The orientation of 

this syntenic region and marker order are perfectly conserved between barley and rice but 

inverted in B. distachyon (Figure 4). 
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Fine-mapping of Rphq11 and Rphq16 

 

At the early backcross generations, the disease test on 97 F3 plants segregating for Rphq11 

showed that Rphq11 is an incompletely dominant gene, while the disease test on 52 BC1S1 

plants segregating for Rphq16 shows that Rphq16 behaves predominantly as a recessive 

gene (Figure 5). The RLP50S comparison between the group of plants with homozygous 

donor allele (AA) and the group of plants without the donor allele (BB) shows that 

Rphq11 gives an approximately 21 hours (11%) prolongation of latency period on the 

seedling leaves and Rphq16 an approximately 14 hours (7%) prolongation. 

 

 

  
(a) (b) 

Figure 5: Histograms of the averaged RLP50S of (a) F3 seedlings segregrating for Rphq11 and (b) 

BC1S1 seedlings segregating for Rphq16. ‘A’ is the allele from Steptoe/ Dom and ‘B’ is the allele from 

SusPtrit. Similar letters above the bars indicate that the variance do not differ significantly according to 

the unbalanced one-way ANOVA analysis. 

 

 

Recombinant plant screening of 730 plants at F4/F5 resulted in 89 fixed QTL-recombinants 

at Rphq11 representing ten recombination points between all the markers mapped between 

Uni19962 and GBM1062. For Rphq16, recombinant plant screening of 655 plants at 

BC2S1/BC2S2 resulted in 135 fixed QTL-recombinants representing nine recombination 

points between all the markers mapped between WBE320 and GBS0408.  

 

After several rounds of disease tests on a subset of the fixed QTL-recombinants, Rphq11 

was fine-mapped into a genetic window of 0.2 cM flanked by markers Uni19962/WBE306 

proximal and WBE307/WBE308 distal. Indeed, the peak of the LOD profile generated by 

performing QTL mapping on the fixed QTL-recombinants supports this position of 

Rphq11 (Figure 6a). This is consistent with an RLP50S between 107 and 110 for fixed 
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QTL-recombinants having the Rphq11 allele, which is always significantly longer than the 

RLP50S on SusPtrit. And this is consistent with an RLP50S between 101 and 107 for 

fixed QTL-recombinants having the rphq11 allele, which is however not always 

significantly shorter than those having the Rphq11 allele.  

 

Similarly, Rphq16 was fine-mapped into a genetic window of 1.4 cM flanked by markers 

WBE313 proximal and MWG2249/WBE320 distal. The peak of the LOD profile 

generated by performing QTL mapping on the fixed QTL-recombinants supports this 

position of Rphq16 (Figure 6b). This is consistent with RLP50S on fixed QTL-

recombinants having the Rphq16 allele ranging from 106 to 111, which is always 

significantly longer than the RLP50S on SusPtrit. And this is also consistent with RLP50S 

on fixed QTL-recombinants having the rphq16 allele ranging from 100 to 105, which is 

not always significantly shorter than those having the Rphq16 allele.  

 

The refined position of Rphq11 in a 0.2 cM interval corresponds to the syntenic region 

inverted between barley and rice (Figure 4). The 0.2 cM in barley corresponds to physical 

distances of 161 kb with 18 annotated genes in rice and 79 kb with nine annotated genes in 

B. distachyon. Concerning Rphq16, its refined position of 1.4 cM in barley corresponds to 

physical distances of 118 kb with 20 annotated genes in rice and 188 kb with nine 

annotated genes in B. distachyon.  

 

 

Discussion 

 

Plant stage specific QTLs in S/M and OWB 

 

The seedlings and adult plants of S/M and OWB mapping population were challenged 

with Ph.1.2.1. None of the partial resistance QTLs that were detected at seedling stage 

(Marcel et al. 2007b) were also detected in any of the three series of disease test at the 

adult plant developmental stage (this study). This indicates that Rphq11 and Rphq16 are 

plant growth stage dependent and that their characterization can only be performed at the 

seedling stage. Rphq22 and Rphq23, which were detected in this study at the adult stage in 

S/M, are also plant growth stage dependent, since they were not detected in the earlier 

seedling tests. This plant stage dependence of QTLs for partial resistance against P. hordei 

was also reported for other partial resistance QTLs (Qi et al. 1998; Wang et al. 2010). 

 

Plant growth characteristics, such as heading date and plant height may influence the 

resistance of plants (Klahr et al. 2007; Williams 2003). In rice, the germin-like protein 1 
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was demonstrated to be involved in regulating plant height and disease resistance 

(Banerjee and Maiti 2010). Rphq22 and Rphq23 did not collocate with any heading date 

and plant height QTLs, which suggest that the resistance conferred by these two QTLs is 

not a pleiotropic effect of genes affecting heading date or plant height.  

 

 

Adult plant QTLs from S/M and OWB are affected by the environment 

 

In both populations, a clear series x genotype effect was observed, which was especially 

strong in the OWBs. From the three QTLs mapped in S/M, one was identified in only one 

of the three series. And all three QTLs mapped in OWB were identified in only one of the 

three series. 

 

Environmental effect may be one of the contributing factors for the inconsistency of QTL 

identification. The disease tests were carried out at different time periods of the year and 

the third series was carried out at a different greenhouse facility. The performance of DH 

lines can be sensitive to the difference in fluctuations of temperature and light intensity or 

quality in the greenhouse, leading to the detection of different QTLs depending on the 

conditions. For example, detection of partial resistance QTL Rphq4 is generally detected 

only at adult plant stage, but in plants that germinated at low temperature, the gene is also 

clearly effective at young plant stages (Xiaoquan Qi, Institute of Botany, Chinese 

Academy of Sciences, Beijing, pers. comm.). In S/M, the one extra QTL mapped on 

chromosome 6H in only one of the series can also be due to an interaction between 

genotype and environment (GxE). 

 

The high morphological variation between the OWB lines may also have contributed to 

the inconsistency of QTLs mapped in this population. Indeed, the parental lines of the 

OWB population have been developed by systematically crossing recessive alleles for 

morphological and physiological trait into one parent and dominant alleles into the other 

parent, maximizing the genetic, morphological and agronomic diversity segregating in the 

population (Costa et al. 2001). The variation in plant height may affect the uniformity of 

inoculum deposition. Heading date variation can also influence the result of a disease test 

as the sequential inoculation of different groups of lines according to their heading date 

may also compromise uniformity and randomisation of DH lines over batches. Notably, 

the disease resistance of DH lines may vary based on the age of the flag leaf used. It is 

difficult to homogenise the disease tests for this population due to the high morphological 

variation between lines.   
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(a) 

 

Figure 6: Graphical genotypes and 

phenotype means (RLP50S) for fixed QTL-

recombinants of (a) Rphq11 and (b) 
Rphq16; the phenotype means were 

compiled from results of the different 

rounds of disease test. The white bars 
represent homozygous SusPtrit. Black bars 

represent homozygous Steptoe (a) or Dom 

(b). Grey bars represent intervals where 
recombination took place. RLP50S values 

with an asterisk are significantly longer 

than the RLP50S on SusPtrit. The number 
between two markers on the chromosome 

bar indicates the recombination frequency 

observed. The new genetic window of 
Rphq11 and Rphq16 is indicated between 

the long dash lines. 

(b) 

 

G
B

S
0

5
1

2

W
B

E
3
0
2

ct
g
1
5
6
3
2

U
n
i1

9
9
6
2

W
B

E
3
0
6

W
B

E
1
2
9

W
B

E
3
0
5

W
B

E
1
4
4

W
B

E
3
0
8

W
B

E
3
0
7

G
B

M
1
0
6
2

W
B

E
3
0
4

W
B

E
3
0
1

W
B

E
1
3
0

k
0
4
0
0
2

G
B

M
S

2
4

4

1
.9

0
.3

0
.1

0
.1

0
.7

0
.2

0
.2

2
.3

0
.1

0
.3

2
H

0

1

2

3

4

5

L
O

D
 p

ro
fi

le

ST84.1

ST55.1

ST68.1

ST2.2

ST112.1

ST66.1

ST16.1

ST78.1

ST11.1

ST42.2

ST50.1

ST103.2

ST3.1

ST36.1

ST35.1

ST64.1

ST115.1

ST107.1

ST25.2

ST44.8

ST73.1

ST17.1

ST40.2

ST12.1

ST14.1

ST21.1

ST31.1

RLP50S

-

101

102

109*

107*

107*

-

-

-

-

-

108*

110*

109*

107*

107*

108*

103*

105*

105*

103*

103*

-

103*

107*

106*

105*

SusPtrit 100

Rphq11

M1 M2 M3 M4 M5 M6 M7 M8

0

1

2

3

4

5

L
O

D
 p

ro
fi

le

DOM110.7

DOM117.1

DOM140.6

DOM70.2

DOM137.4

DOM121.6

DOM154.9

DOM11.5

DOM127.6

DOM128.13

DOM56.3

DOM149.13

DOM143.1

DOM156.4

DOM15.3

DOM49.14

DOM31.1

DOM112.6

DOM6.2

DOM158.6

DOM53.6

DOM111.3

DOM129.7

DOM148.1

DOM104.7

DOM98.4

M
W

G
2
1
9
3

sc
sn

p
0

3
2

7
5

W
B

E
3
1
0

W
B

E
3
1
4

W
B

E
3
1
8

D
st

-3
3

G
B

S
0
5
7
6

W
B

E
3
1
3

M
W

G
2
2
4
9

W
B

E
3
2
0

W
B

E
3
1
9

W
B

E
3
1
5

W
B

E
3
1
2

G
B

S
0
4
0
8

W
B

E
3
1
7

W
B

E
3
1
1

sc
sn

p
0
3
6
8
3

G
M

S
0

0
2

1
.2

4
.0

1
.4

1
.7

0
.5

0
.5

0
.2

0
.2

0
.9

5
H

SusPtrit

RLP50S

-

-

108*

107*

108*

106*

109*

111*

107*

102*

105*

-

-

-

104*

101

100

101

104*

102

102

102*

102*

109*

-

-

100

Rphq16

M1 M2 M3 M4 M5M6 M7 M8



Chapter 4                                                 High Resolution Mapping of Rphq11 & 16 

88 

Efficient fine-mapping of Rphq11 and Rphq16 

 

A QTL can be fine-mapped without the interference of other QTLs if a NIL were used as 

starting material. The NIL development is, however, laborious and time consuming. For 

barley, one generation is approximately four months, thus the development of a NIL with 

approximately 95% genome of recurrent parent at generation BC4 will take two years and 

four months. Another year will be necessary to obtain enough seeds of homozygous 

recombinant plants (i.e. sub-NILs) to allow fine-mapping. In total, about three years and 

four months are needed to fine-map a QTL to a certain genetic window. One way to 

shorten this procedure is by exploiting individual lines from recombinant inbred lines 

(RILs), DH lines, chromosome segment substitution lines (CSSL) and backcross inbred 

lines (BILS) (Gao et al. 2004; Liu and Bai 2010; Zhang et al. 2011). Effectively, 

individual line(s) which contain only the targeted donor allele of the QTL can be crossed 

with a susceptible parent in order to generate recombinant plants that will be used for fine-

mapping. However, the construction of RILs, CSSL and BILs are as laborious and time 

consuming as NIL and sub-NILs development.   

 

The fine-mapping strategy followed in this study aimed at identifying recombinants in 

early breeding material developed to produce QTL-NILs. The material was first selected 

to carry the targeted QTL in heterozygous condition and susceptibility alleles at other 

resistance QTLs in homozygous condition. This strategy took 4-5 generations to obtain 

fixed QTL-recombinants. This way, it became possible to fine-map a QTL in less than two 

years. In parallel, the NIL of the targeted QTLs were developed, which allowed the 

confirmation of the effect of Rphq11 and Rphq16 in an isogenic background (data not 

shown).  

 

The position of Rphq11 has been narrowed down to a genetic window of 0.2 cM (1460 

gametes scored) and Rphq16 to a genetic window of 1.4 cM (1310 gametes scored). The 

fixed QTL-recombinants were not monitored for the presence of donor genome outside the 

regions of the targeted QTLs. Theoretically, the plant materials used to fine-map Rphq11 

should have approximately 50% of donor genome (i.e. F3). For Rphq16, the plant materials 

may still have approximately 13% of donor genome (i.e. BC2S1). Consequently, 

previously undetected minor effect QTLs for resistance may still be present and even 

segregate in the material used to fine-map Rphq11 and Rphq16. As a result of this 

heterogeneous genetic background, we may expect genetic and hence phenotypic noise in 

determining the QTL position and assessment of its effect. This may explain that several 

of the fixed QTL-recombinants carrying the susceptible allele at the target QTL gives a 

significantly longer latency period than the susceptible line SusPtrit used for crossing. 
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Nevertheless, it was still possible to dissect the position of Rphq11 and Rphq16 as the 

RLP50 range between fixed QTL-recombinants carrying the susceptibility allele and fixed 

QTL-recombinants carrying the resistance allele at the corresponding QTL were nearly 

distinct (i.e. RLP50S was 101-107 versus 107-110 for Rphq11, and 100-105 versus 106-

111 for Rphq16). Moreover, the positions of Rphq11 and Rphq16 were supported by 

mapping QTLs on the high-resolution map. The peak marker of Rphq11 became WBE129. 

The peak marker for Rphq16 became MWG2249/WBE320, which is one of the markers 

flanking the window. Note that MWG2249/WBE320 has the second highest LOD score. 

The peak LOD score for Rphq16 was in a marker interval. The new small genetic window 

of Rphq11 and Rphq16 remains consistent with the position of their peak marker originally 

identified (Figure 3 and 4). The position of Rphq11 is further supported by an eQTL 

mapping performed in the S/M population by Chen et al. (2010). The authors mapped 

eQTL with measures of transcript abundance obtained in the S/M population 18 hours 

after inoculation with P. hordei isolate 1.2.1. They analysed the correlation between the 

identified eQTL and the pQTL including Rphq11. They identified 54 eQTL located in the 

confidence interval of Rphq11 and six genes were proposed as candidate genes for 

Rphq11. Of these six, ‘Unigene2453’ encoding a phospholipid hydroperoxide glutathione 

peroxidase (PHGPx) was considered the strongest candidate for Rphq11. Interestingly, the 

marker developed on ‘Unigene2453’, WBE129, indeed was the peak marker of Rphq11 

located within the refined 0.2 cM position of this pQTL. 

 

Rphq11 and Rphq16 are the second and third fine-mapped QTLs for barley partial 

resistance to leaf rust. The fine-mapping strategy followed in this study has proven 

efficient to fine-map these two QTLs with a slightly smaller effect on the resistance level 

than of Rphq2. The latter gene explained 50% of the phenotypic variance, and was fine-

mapped in another study (Marcel et al. 2007a). However, in order to fine-map smaller 

effect QTLs it would probably be necessary to reduce the noise caused by genetic 

background by starting the fine-mapping process at BC3 or at even later backcross 

generations as suggested by Yang et al. (2012).  

 

 

Disrupted synteny between barley, rice and B. distachyon at Rphq11 and Rphq16  

 

The evolutionary history of grasses – Poaceae reveals that Oryza (rice), Hordeum (barley) 

and Brachypodium (purple false brome) are split into sister taxa Ehrhartoideae (Oryza) 

and Pooideae (Hordeum and Brachypodium) (GPWG 2001; Kellogg 2001). Due to their 

evolutionary history, genomes of grasses are highly collinear. Collinearity can be defined 

as a specific form of synteny between two or more organisms with conserved gene order 

(Tang et al. 2008). Disruption of genome collinearity can occur during the evolution of 
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grasses. Comparative genomics between rice, barley and B. distachyon shows that barley 

has higher genome colinearity with B. distachyon in comparison with rice (Mayer et al. 

2011). Disruption of genome collinearity is observed in the vicinity of Rphq11 and 

Rphq16. 

 

The genetic window of Rphq11 is syntenic with rice chromosome 4, in agreement with 

Pourkheirandish et al. (2007), and with B. distachyon chromosome Bd5 (Mayer et al. 

2011). The orientation of the syntenic region corresponding to Rphq11 is conserved 

between rice and B. distachyon but inverted in barley, which leads to a disruption in 

genome collinearity. Despite this reordering in gene order, the synteny was useful to 

saturate the Rphq11 region with new molecular markers. The size of the Rphq11 syntenic 

region in rice is approximately 161 kb, with 18 annotated genes. In B. distachyon, the size 

is approximately 79 kb with nine annotated genes. None of the genes found in this region 

are of the NBS-LRR type. However, several of them belong to gene families previously 

shown to be involved in resistance in other plant-pathogen systems. These genes include 

an actin-depolymerizing factor (Tian et al. 2009), a glutathione peroxidase (Lamb and 

Dixon 1997) and glucosyltransferases (Langlois-Meurinne et al. 2005; von Saint Paul et 

al. 2011).  All of them are conserved between rice and B. distachyon. 

 

Glutathione peroxidase is the best candidate gene for Rphq11. The peak marker for 

Rphq11 on the high-resolution genetic map is WBE129, which has been developed on the 

candidate gene Unigene2453 encoding for the phospholipid hydroperoxide glutathione 

peroxidase (PHGPx). This PHGPx gene has also been identified as the strongest candidate 

to explain Rphq11 by Chen et al. (2010), because it was detected as a high-LOD cis-

regulated expressed-QTL with significantly different transcript abundances between 

Steptoe and Morex.  

 

The PHGPx gene corresponding to Unigene2453 is the strongest candidate gene for 

Rphq11. As it is conserved across rice, B. distachyon and barley, it may also have a 

conserved function in defence against pathogens across plant species. In rice, the 

expression of rice PHGPx homolog – OsPHGPx - is induced by infection by Magnaporthe 

grisea (Agrawal et al. 2002). The tomato PHGPx homolog – LePHGPx - also confers 

resistance, viz., against Botrytis cinerea, when stably expressed in tobacco (Chen et al. 

2004).  

 

The genetic window of Rphq16 is syntenic with rice chromosome 3, in agreement with 

Close et al. (2009), and B. distachyon chromosome Bd1 (Mayer et al. 2011). The 

orientation of the syntenic region corresponding to Rphq16 is conserved between barley 

and rice, but it is inverted in B. distachyon. The telomeric region, where Rphq16 is 
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mapped, is indeed prone to dynamic chromosomal evolution (See et al. 2006). The size of 

the syntenic region is approximately 118 kb with 20 annotated genes in rice, and 188 kb 

with nine annotated genes in B. distachyon. Several of these genes belong to gene families 

involved in resistance in other plant-pathogen systems, including an oxidoreductase 

(Montesano et al. 2003), an aspartokinase (Stuttmann et al. 2011), and a proteasome 

subunit (Yao et al. 2012) which are conserved between rice and B. distachyon. There is 

also a glutathione S-transferase (Dean et al. 2005) and a transcription factor BTF3 (Huh et 

al. 2012) found only in the rice syntenic region, as well as a protein kinase C 

(Subramaniam et al. 1997), protein tyrosine phosphatases (He et al. 2012), 

glycosyltransferases (Langlois-Meurinne et al. 2005) and an NBS-LRR gene (Loutre et al. 

2009) found only in the B. distachyon syntenic region. There is no favourite candidate 

gene in the interval for the moment.  

 

The genome comparison between barley, rice and B. distachyon showed that the observed 

inversion of gene order can be specific to one of the three genomes or shared between two 

genomes (Mayer et al. 2011). If synteny remains a powerful tool to saturate a region of 

interest with molecular markers for high-resolution mapping, it should always be used 

with caution, notably regarding the transferability of candidate genes from one species to 

the other. Besides that, the genetic distance is not a precise estimation of physical size. 

Rphq11 has a smaller genetic interval than Rphq16. The comparison of their physical size 

in rice and B. distachyon does not tally to their genetic interval. The Rphq11 syntenic 

region in rice has approximately 1 gene in every 9 kb. In B. distachyon, there is 

approximately 1 gene in every 6 kb. The Rphq16 syntenic region in rice and B. distachyon 

has approximately 1 gene in every 6 kb. 

 

 

Feasibility of map-based cloning Rphq11 and Rphq16 

 

A map-based cloning approach starts with fine-mapping the QTL in a genetic window 

sufficiently narrow to make physical mapping feasible. The QTL phenotypic effect has 

also to be strong enough to be unambiguously recognised. The fixed-QTL recombinants 

(obtained from F4/F5 and BC2S1/BC2S2 recombinant screen for Rphq11 and Rphq16, 

respectively) which carry the QTL allele Rphq11 or Rphq16 prolong the latency period by 

12 hours in comparison to SusPtrit, which is sufficient to differentiate plants with the 

resistance allele QTL from those with the susceptibility allele. In agreement with this 

observation, the effect of Rphq11 and of Rphq16 was confirmed in their NIL (data not 

shown). Consequently, the phenotypic effect of Rphq11 and Rphq16 in their respective 

genetic background is high enough to pursue fine-mapping. 

 



Chapter 4                                                 High Resolution Mapping of Rphq11 & 16 

92 

Rphq11 and Rphq16 were fine-mapped to barley regions of 0.2 cM and 1.4 cM, 

respectively, following a time-efficient strategy. Even though there is phenotypic noise, it 

was still possible to dissect the position of Rphq11 and Rphq16. Rphq11 mapped in a high 

recombination rate region (1.1Mb/cM) of barley chromosome 2H, and Rphq16 in a very 

high recombination rate region (0.2-0.9 Mb/cM) of barley chromosome 5H (Künzel et al. 

2000). This offers good perspectives for the map-based cloning of the gene(s) underlying 

these two QTLs. Indeed, according to the given ratios, Rphq11 is now estimated to be 

located in a region of approximately 220 kb, and Rphq16 in a region of approximately 

200-900 kb of the barley genome. 

 

Many QTLs for partial resistance were mapped in barley against barley leaf rust but the 

underlying genes have not been identified so far. Rphq2 has previously been fine-mapped 

to a genetic interval of 0.11 cM (Marcel et al. 2007a), encompassing a barley region of 

approximately 190 kb. Eight candidate genes to explain Rphq2 have been identified and 

are currently being tested functionally. The precise mapping of Rphq11 and Rphq16 is a 

new step towards the understanding of the genetic basis of partial resistance to barley leaf 

rust. The sequenced Morex genome (The International Barley Genome Sequencing 

Consortium 2012) can be the reference for constructing the physical map and identifying 

candidate genes for Rphq11 and Rphq16. This is followed by functional studies of those 

candidate genes. If the gene for Rphq11 and Rphq16 is not present in Morex, bacterial 

artificial chromosomes (BACs) for Steptoe (Rphq11 donor) and DOM (Rphq16 donor) 

should be constructed. These BAC libraries are then used to build physical maps for 

Rphq11 and Rphq16, respectively. Alignment of Rphq11 and Rphq16 sequences from 

Morex, Steptoe and DOM, respectively, can help to find the candidate genes that cannot 

be found in Morex. The identified gene(s) for Rphq2, Rphq11 and Rphq16 will reveal if 

the genes for barley partial resistance at seedling stage belong to the same gene family or 

if different types of genes are involved. 
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Supplemental Tables 
 

Supplemetal Table 1: The new markers developed for Rphq11 on chromosome 2H 

Name Type 
Restriction 

enzyme 

Tm  

(oC) 
Primer sequences (5’-3’) 

Source! 

Ctg15632 CAPS MboII 58 
F: TGGCAAATGACGGGGCACTAAAAC Boyd et al. (2007) 

R: AACCGGCCTACAGATCGCAACCTT  

GBM1062 SSR   Confidential Li et al. (2003) 

GBMS244 SSR   Confidential Thiel et al. (2003) 

GBS0512 CAPS AciI 58 
F: CCACATGCTGCGGAGGT 

Stein et al. (2007) R: CGTTGAGGATGATGCTGAGG  

k04002 SCAR  60 
F: GACACAGGACCTGAAGCACA 

Hori et al. (2005) R: CGGCAGGCTCTACTATGAGG 

Uni19962 CAPS MseI 58 
F: GTCCCACATCACTGCACATC 

Boyd et al. (2007 ) R: CAGTCGCAGAAGTTACTGAAG 

WBE129 CAPS HpyCHY4IV 58 
F: CCCCCAAACTCCCAACT 

Rice synteny R: CTCCAGCCAGCAGGTCTAA 

WBE130 dCAPS XapI 58 

F: CTCGTATGTTGTGTGGAATTGTGA-

GCCCAATCTTAATCCTAAGATCTCGAA Rice synteny 
R: GGTCTCCCAGCTAAAGTCTCC 

WBE144 CAPS BsrI 58 
F: GAGGCCCTTATCATTCTGTTGTCC 

Rice synteny R: ATGCTGGCGCGTTTTTGGGTATG 

WBE301 SCAR 
 

65 
F: TCGATGAGCGGATGGGTAAGGTAT 

Potokina et al. (2008)  R: ATTCCCAGCTGCCCAGTGTTTCT 

WBE302 CAPS Tsp4CI 65 
F: ATGATCTTCGCCCTCGTCTACTGC 

Potokina et al. (2008) R: TGGTCTTGAATGGGATCGCTCTGA 

WBE304 CAPS SacII 65 
F: AGCTAGCTGTTGGGCGTGAAAATC 

Potokina et al. (2008) R: CAAGGGGGTGGAGGAGGAAGAAGT 

WBE305 CAPS MwoI 65 
F: CCGTCCCGTCACCCGAGTCC 

Rice synteny R: TCAGGCCTTCCAGTAGCGAGTTCC 

WBE306 CAPS NdeI 65 
F: CGGGGGCGCCTCCTCTACTC 

Rice synteny R: GTCCGGGTCATCATCTTCCACAAC 

WBE307 CAPS SduI 65 
F: GGCGCTCCGTGCAAAGAAGA 

Rice synteny R: GGAGACGAGGAGCAAAAGACACAA 

WBE308 CAPS ClaI 65 
F: CTGAGCCTGGGAAACAAAGTCG 

Rice synteny R: CAGCGCTGATGCAACAATAGGAT 

Bmac0216* SSR 
  F: GTACTATTCTTTGCTTGGGC 

Ramsay et al. (2000)   R: ATACACATGTGCAAAACCATA 

Bmag0125* SSR 
  F: AATTAGCGAGAACAAAATCAC 

Ramsay et al. (2000)   R: AGATAACGATGCACCACC 

GBM1440* SSR 
  F: CTACCGAGCTCCTCCTCCTC 

Marcel et al. (2007b)   R: GGCCTCCTTCTTGTCGTAGA 

scsnp06130* CAPS HinfI 56 
F: GACGTCCCTCGCGTAAATGG 

Rostok et al. (2005) 
R: TTGGCCGGGAACTTATGGTG 

* The markers which were mapped near but outside the flanked QTL interval 
!
  The references for CAPS and SCAR markers give the origin of the sequences obtained for marker   

   development. 
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Supplemetal Table 2: The new markers developed for Rphq16 on chromosome 5H. 

Name Type 
Restriction 

enzyme 

Tm  

(oC) 
Primer sequences (5’-3’) Source! 

DsT-33 SCAR 
 

45 
F: GCACACATATTATCATGAAAAAGAGC 

BarleyWorld.org  R: ACCCCAAATGAGTTTCGATG 

GBS0408 CAPS MseI 56 
F: ATGCCACCCCTTATGAATCCT 

Stein et al. 2007 R: TTGCCCGTTGAAAAGTCCA 

GBS0576 CAPS BspLI 56 
F: GTCCGGGCACAAGAACCTC 

Stein et al. 2007 R: GGCTGGGCATCATCCTCAA 

GMS002 SSR  
 F: CCGACAACATGCTATGAAGC 

Struss and Plieske (1998)  R: CTGCAGCAAATACCCATGTG 

MWG2193 CAPS AluI 56 
F: CAAACCCTTGAGGTCAGTTGC 

Graner et al. (1991) R: TCAGCTCTAAGATGCAGCACG 

MWG2249 CAPS DdeI 56 
F: GGCATGTGAGGGAAGCAATGG 

Graner et al. (1991) R: TGGAGAAGAACGTGTGGGTCG 

scsnp03275 CAPS BglII 65 
F: AACGGCCAGGCTATAACCATCACA 

Rostoks et al. (2005) R: CGGCGGCTTCATCAATTTCACTAA 

scsnp03683 CAPS HpyCHY4IV 
56 F: CAACGGCGCCACCTTCTACT 

Rostoks et al. (2005)  R: CACATACCCCACTGCCATGC 

WBE310 SCAR 
 

65 
F: GGCGCTTTTGGTTTTCCTGA 

Potokina et al. (2008)  R: CGGCCTGGTATAATTAAGAGTGTG 

WBE311 SCAR 
 

65 
F: CCAGAAAGGCGAGGAAGG 

Potokina et al. (2008)  R: TCGGATTATTGCACACCAGAAAAC 

WBE312 CAPS MseI 58 
F: TGTGCCGTGTTATAATGGGGAATG 

Potokina et al. (2008) R: CACAAAATCGGGCCTGCTTATCTT 

WBE313 CAPS MwoI 58 
F: TGCCGAGTCGCCTAACCATA 

Potokina et al. (2008) R: TCAACAACTACCTGCCAAATACCA 

WBE314 CAPS SphI 65 
F: CCAGGGAATTACCAGGGAGACA 

Potokina et al. (2008) R: TGAAGCCGACAACAAAAACAGG 

WBE315 CAPS HinfI 65 
F: CCCCCTTCGCCGGCTTCTCAACC 

Potokina et al. (2008) R: ATTCACAAAGCGCCGGCACACCAG 

WBE317 CAPS AcyI 65 
F: ATCCCAGCCGACAGCATCC 

Rice synteny R: GAGAGCAGGCACCCGCATAG 

WBE318 CAPS Hin1II 65 
F: ACGGTGGTGGTGGTGGTCA 

Rice synteny R: GCCCGCAGCGTCTCGTAG 

WBE319 CAPS HhaI 65 
F: GATGGGTAGGCTTAAGCAGAAACT 

Rice synteny R: AACGCGCCTAACACAAACTCCTAC 

WBE320 CAPS MseI 58 
F: CCCCCGGCTGGTGTGGA Potokina et al. (2008) 
R: CAGCTGTGGCGTGATGTATTTGTA 

ABC622* CAPs AluI 65 
F: AGGGAAGGGCTGCAAACTGTA Rostoks et al. (2005) 

R: ACCAACTGATCGCTGCCTGTGTAT 

ABG390* CAPs AluI 56 
F: TGTTCCCAGCATTTGAACAG 

Rostoks et al. (2005) R: CGGCAATCCTAATTTTTGGA 

ABG391* CAPs AluI 56 
F: GCAAGTGCACTGCTGTACAA 

Rostoks et al. (2005) R: TGTTCTCGTACCATGACTTC 

CMWG650* CAPs Hin1II 56 
F: ATGCCTGGGTACAAAAATCAAATG 

Stein et al. 2007 R: TCACCCAGCCTACCAAAATAACAG 

GMS001* SSR 
  F: CTGACCCTTTGCTTAACATGC 

Struss and Plieske (1998)   R: TCAGCGTGACAAACAATAAAGG 

scsnp00635* CAPS HinfI 65 
F: TGAGCAGCCGTGTCAGCTTC 

Rostoks et al. (2005) R: AAACATTGGATTGGGCACGC 

scsnp07825* SCAR 
 

65 
F: GGCGCGGCGGACTGACAAG 

Rostoks et al. (2005)  R: GTGGTGCTGCGACGAGGAGACG 

scssr03907* SSR 
  F: CTCCCATCACACCATCTGTC 

Ramsay et al. (2004)   R: GACATGGTTCCCTTCTTCTTC 

scssr09041* SSR 
  F: CATGTCAGTGGGGTTCTAGC 

Ramsay et al. (2004) 
  R: TCTACTTGGACCTGCTGACC 

* The markers which were mapped near but outside the flanked QTL interval 
!
  The references for CAPS and SCAR markers give the origin of the sequences obtained for marker  

   development. 
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Supplemetal Table 3: The new markers developed for Rphq15 and Rphq17. 

Name Type Chrom. 
Restriction 

enzyme 

Tm  

(oC) 
Primer sequences (5’-3’) 

Source! 

Rphq15 

Bmag0500 SSR 6H 
  F: GGGAACTTGCTAATGAAGAG 

Ramsay et al. (2004)   R: AATGTAAGGGAGTGTCCATAG 

GBM1355 SSR 6H 
  F: ATCCGTCGTATTCGCATCTC 

Varshney et al. (2006)   R: GCTGGTACTGGGAGAAATGG 

GBMS033 SSR 6H   Confidential Li et al. 2003 

MWG966 CAPS 6H BspLI 57 
F: ATGCGTGCCCTTTGGAACA 

Graner et al. (1991) R: TGGCCTGCGATATGGAGACC 

scssr09398 SSR 6H 
  F: AGAGCGCAAGTTACCAAGC 

Ramsay et al. (2004)   R: GTGCACCTCAGCGAAAGG 

Rphq17 

Bmac0067 SSR 3H 
  F: AACGTACGAGCTCTTTTTCTA 

Ramsay et al. (2004)   R: ATGCCAACTGCTTGTTTAG 

Bmag0136 SSR 3H 
  F: GTACGCTTTCAAACCTGG 

Ramsay et al. (2004)   R: GTAGGAGGAAGAATAAGGAGG 

* The markers which were mapped near but outside the flanked QTL interval 
!
  The references for CAPS and SCAR markers give the origin of the sequences obtained for marker  

   development. 
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Abstract 

 

Evidence suggests partial resistance of barley to powdery mildew and rust fungi to be a 

weak form of nonhost resistance based on pathogen-associated molecular pattern (PAMP)-

triggered immunity. A better understanding of partial resistance may help us to gain more 

insight into nonhost resistance, and vice versa. More than 20 partial resistance quantitative 

trait loci (QTLs) to Puccinia hordei have been mapped at seedling and adult plant stages. 

In order to determine the genes underlying those QTLs, we need to identify and validate 

the candidate genes of a selection of QTLs. Two non-gridded BAC libraries were 

constructed from the partially resistant cultivar Vada and from the very susceptible line 

SusPtrit. Based on the observed insert sizes of the BAC clones, the estimated genome 

coverage of the Vada BAC library is 2.6x and of the SusPtrit BAC library 3.7x. Together, 

the two BAC libraries give more than 99% probability of recovering any specific sequence 

from the barley genome. Three BAC clones of Vada which cover the Rphq2 genetic 

window were sequenced. Three BAC clones of SusPtrit were also sequenced but they did 

not cover the entire Rphq2 genetic window. The obtained sequences between markers 

flanking Rphq2 encompassed 195 Kbp in Vada and 226 Kbp in SusPtrit. This difference in 

size is linked to the lack of homology between the Vada sequence derived from an 

introgression from the exotic Hordeum laevigatum and the SusPtrit sequence homologous 

to other barley genotypes such as Morex and L94. The TriAnnot pipeline predicted 12 

genes on both Vada and SusPtrit contigs. Among the predicted genes, only five were 

common between Vada and SusPtrit. No nucleotide-binding-site-leucine-rich repeat 

resistance gene was annotated in the Rphq2 region. The possible candidate genes for 

Rphq2 code for peroxidases, kinases and a member of Seven in absentia protein family. 

 

 

Keywords: Barley, Bacterial Artificial Chromosome (BAC) Library, Partial Resistance, 

Quantitative Trait Locus (QTL), Puccinia 
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Introduction 

 

Partial resistance is an incomplete host resistance which retards epidemic development 

despite a compatible infection type (Niks et al. 2011; Parlevliet and van Ommeren 1975). 

Partially resistant barley to Puccinia hordei has lower infection frequency, lower 

sporulation rate and longer latency period of the pathogen, and such effects are not 

associated with hypersensitivity. Evidence suggests partial resistance of barley to powdery 

mildew and rust fungi to be a weak form of nonhost resistance based on pathogen-

associated molecular pattern (PAMP)-triggered immunity (PTI) (Jones and Dangl 2006; 

Niks and Marcel 2009; Niks et al. 2011; Trujillo et al. 2004). Nonhost resistance is, by 

definition, a resistance observed in all genotypes of a nonhost plant species to all 

genotypes of a potential pathogen species (Niks et al. 2011). However, plant species may 

turn out to have a marginal host or near-nonhost status to some pathogen species (Niks 

1987). Barley (Hordeum vulgare) is such a marginal host or near-nonhost to Puccinia 

triticina, Puccinia hordei-murini and some other non-adapted rust fungi because a small 

proportion of barley accessions (less than 10%) are susceptible (> 10 pustules on the first 

leaf) at seedling stage when inoculum is applied at high density (Atienza et al. 2004). In 

the context of this paper, non-adapted rust fungi are rust fungi that are poorly or not 

adapted to barley, but primarily to one or few other plant species. We try to investigate 

nonhost resistance by dissecting the genetics of near-nonhost resistance with the 

assumption that we can extrapolate the findings to explain also the basis of full nonhost 

resistance. SusPtrit was developed for such purpose by accumulating susceptibility genes 

from rare barley accessions which were somewhat susceptible to P. triticina at seedling 

stage. SusPtrit is, at seedling stage, highly susceptible to P. triticina and to at least nine 

other non-adapted rust fungi (Atienza et al. 2004). This experimental line was used to 

develop mapping populations Vada/SusPtrit (Jafary et al. 2006), Cebada Capa/SusPtrit 

(Jafary et al. 2008) and SusPtrit/Golden Promise (Chapter 2, this thesis), and near isogenic 

lines (Chapter 3, this thesis). Resistance of barley to non-adapted rust fungi inherits 

polygenically just like partial resistance to P. hordei, the barley leaf rust fungus (Jafary et 

al. 2006; 2008; Marcel et al. 2007b; Niks et al. 2000; Qi et al. 1998).  

 

The locations of genes for resistance to non-adapted rust fungi tend to overlap with those 

for partial resistance to P. hordei (González et al. 2010; Jafary et al. 2008; Niks and 

Marcel 2009) and they share the same prehaustorial resistance mechanism, viz. a high rate 

of failed attempt to haustorium formation (Niks 1983a, b). If both the partial resistance to 

adapted fungi and nonhost resistance to non-adapted fungi are mainly based on PTI, a 

better understanding of partial resistance will help us to gain more insight into nonhost 

resistance, and vice versa. More than 20 partial resistance quantitative trait loci (QTLs) to 
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P. hordei have been mapped at seedling and adult plant stages (Jafary et al. 2006; Marcel 

et al. 2007b; 2008; Niks et al. 2000; Qi et al. 1998; 1999). In order to determine the 

underlying genes of those QTLs, we need to identify and validate the candidate genes of a 

selection of QTLs. To date, five large-effect resistance QTLs have been cloned (Fu et al. 

2009; Fukuoka et al. 2009; Hayashi et al. 2010; Krattinger et al. 2009; Manosalva et al. 

2009). The cloned QTL are different from each other in gene structure and function, which 

implies a diversity of mechanisms underlying partial resistance. The genes that have been 

cloned thus far do not have the typical modular NB-LRR structure of R-genes. Rphq2 is 

one of the partial resistance QTLs to P. hordei mapped in L94/Vada (Qi et al. 1998), 

Vada/SusPtrit (Jafary et al. 2006) and in an association mapping study comprising 146 

barley genotypes (Kraakman et al. 2006). In L94/Vada and Vada/SusPtrit populations, 

Vada is the donor of Rphq2. Vada is a cultivar developed from Hordeum laevigatum/Gold 

(Dros 1957). Near isogenic lines (NILs) are available for Rphq2 in L94 genetic 

background (L94-Rphq2) (Marcel et al. 2007a; van Berloo et al. 2001) and for rphq2 of 

L94 in Vada background (Vada-rphq2) (Marcel et al. 2007a). L94 is an Ethiopian 

landrace-derived line that has some level of susceptibility to some non-adapted rust fungi 

(e.g Puccinia hordei-secalini and P. hordei-murini) (Atienza et al. 2004). When L94-

Rphq2 was inoculated with P. hordei-secalini and P. hordei-murini, it had a significantly 

lower infection level compared to L94 (Chapter 3, this thesis). This suggests that the 

postulated Rphq2 gene explaining the resistance to P. hordei also affects the resistance to 

some non-adapted rust species. Substitution mapping by using sub-NILs generated from 

Vada-rphq2 allowed pinpointing Rphq2 to an interval of about 0.1 cM, corresponding to 

about 121 to 198 kb (Marcel et al. 2007a). This estimated physical interval is sufficiently 

small to justify the development of a Bacterial Artificial Chromosomes (BAC) library in 

order to pin down Rphq2 to one or few more candidate genes. 

 

Construction and organization of BAC libraries remains laborious and costly, especially 

from organisms with large and complex genomes like barley [5.1 Gb (Doležel et al. 1998); 

4.6 Gb (Jones and Pašakinskienė 2005); 4.98 Gb (The International Barley Genome 

Sequencing Consortium 2012)]. In barley, about 200,000 clones with an average insert 

size of 120 kb would be required to achieve a genome coverage of five genome-

equivalents, which is needed for a more than 99 % probability of recovering any specific 

sequence of interest. To date, gridded BAC libraries are available for barley cv. Morex 

(Schulte et al. 2011; Yu et al. 2000), Haruna Nijo (Saisho et al. 2007) and a doubled 

haploid barley line CS134 derived from Clipper/Sahara-3771 (Shi et al. 2010). The 

inconveniences linked to the gridding, storage and maintenance of such a quantity of 

clones can be circumvented by the pooled library approach described by Ma et al. (2000) 

for wheat and Isidore et al. (2005) for barley. This approach consists of pooling several 

hundreds of clones together without the need of picking and storing individual clones. The 
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first pooled BAC library of barley developed from cv. Cebada Capa was successfully used 

to establish a single contig of six BAC clones spanning 230 kb at the Rph7 locus on 

chromosome 3H (Isidore et al. 2005). The BAC libraries from the four mentioned barley 

genotypes could help in the construction of physical maps around any target gene, but to 

isolate genes of interest in plants, it is often essential to construct BAC libraries from 

specific genotypes. Indeed, the gene content may vary between individuals of the same 

species and the gene of interest may not be present in the genomic libraries of related 

genotypes. This consideration is especially relevant concerning the genes involved in 

resistance to pathogens, which are known to be under strong selective pressure (Meyers et 

al. 2005; Salvaudon et al. 2008; Shen et al. 2006). 

 

The current study aimed to develop two non-gridded BAC libraries from cultivar Vada 

and line SusPtrit which will allow the isolation of genes for partial and nonhost 

resistances. Having a BAC library from the resistant parent as well as from a susceptible 

parent is required because genes involved in such resistances can either be a resistance or 

susceptibility factor. After screening the newly developed BAC libraries, we identified and 

sequenced BAC clones in the Rphq2 region of both genotypes. The assembly and 

annotation of BAC sequences revealed several genes that might be responsible for the 

phenotypic contrast between Vada and SusPtrit for partial resistance due to Rphq2. 

 

 

Materials and Methods 

 

The methodology followed to construct the two BAC libraries has been described in detail 

by Peterson et al. (2000), with several modifications proposed in subsequent papers 

(Allouis et al. 2003; Chalhoub et al. 2004; Isidore et al. 2005). 

 

 

Preparation of high-molecular-weight DNA 

 

About 500 seeds from Vada and from SusPtrit were sown in plastic trays and placed in a 

greenhouse compartment. Leaves were harvested twice from the same plants between two 

and four-weeks after sowing, flash-frozen in liquid nitrogen and stored at -80 
°
C. Before 

each harvest the plants were kept in the dark during 48 hours to promote the burst of 

chloroplasts and limit chloroplast DNA in the BAC libraries. About 40-50 g of leaf were 

used to extract nuclei and prepare high molecular weight (HMW) DNA following the 

protocol described by Peterson et al. (2000), with modifications (Allouis et al. 2003; 

Chalhoub et al. 2004). The modifications consisted mainly in the omission of polyvinyl 
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pyrolidone 40000 (PVP-40) and ascorbic acid from the sucrose-based extraction buffer 

(SEB) and from the lysis buffer. The quantity of PVP-40 in the wash buffers (WB-A, -B, -

C) was lowered to 0.25% instead of 2%. 

 

 

Partial digestion and size fractionation 

 

Plugs of HMW DNA were prepared in 0.75% InCert® agarose (BMA) as described by 

Peterson et al. (2000). Twelve plugs macerated in the HindIII modified restriction (H3M) 

buffer were digested at different enzyme concentrations: 0.2, 0.5, 1.0, 2.0, 5.0, 7.5, 10.0, 

15.0, 20.0 and 40.0 units. The partial digestion was performed in a 37 
°
C water bath during 

exactly 20 minutes. Then, the plugs were migrated together on a 1.0 % SeaKem® Gold 

agarose gel (Cambrex) in 0.25x TBE in a CHEF-Mapper apparatus (Bio-Rad) with the 

following conditions: pulse linear ramping from 1 to 40 sec, angle 120
°
, current 6.0 V/cm 

and 21 hours run time at 14 
°
C. After electrophoresis, the partially digested DNA was 

subjected to a single size selection. The flanking lanes loaded with the lambda ladder 

PFGE marker (New England Biolabs) were removed from the gel and stained with 

ethidium bromide to indicate the location of the size ranges. For each library, five slices of 

agarose-containing DNA in the ranges 50-100 kb (H0 fraction), 100-150 kb (H1 fraction), 

150-200 kb (H2 fraction), 200-250 kb (H3 fraction) and 250-300 (H4 fraction) were 

excised from the gel and stored at 4
 °
C in 1x TAE buffer. 

 

The HMW DNA was isolated by electro-elution using a BioRad Electroelution system run 

one hour at 60 mA direct current and 90 V alternating current. From each agarose slice, 40 

to 80 μl was recovered with a wide-bored tip. 

 

 

Ligation and transformation 

 

The insert DNA from H0 to H4 fractions was ligated separately into the pIndigoBAC 

vector (CalTech) prepared for high efficiency cloning with HindIII as described by 

Chalhoub et al. (2004) or into the commercial pIndigoBAC-5 vector (Epicentre 

Biotechnologies). Ligations were performed in a 50 μl reaction volume with 33 μl insert 

DNA (50-100 ng), 50 ng of vector DNA, 10 μl of 5x reaction buffer and 5 units of T4 

DNA ligase (Invitrogen). Ligation mixtures were incubated at 16 
°
C overnight and 

dialyzed 90 min at 4 
°
C as described by Chalhoub et al. (2004). Sixteen microliters of de-

salted ligation were mixed with 110 μl ElectroMax DH10B electrocompetent cells 

(Invitrogen). Seventeen microliters of the mixture were electroporated at 330 V and the 
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electroporations were pooled in a tube containing 2 ml SOC medium (Sambrook et al. 

1989) with 0.3 ml of 2 M glucose.  

 

 

Pooling of the BAC clones 

 

Transformed cells diluted with SOC were incubated at 37 
°
C under gentle agitation (220 

rpm) for 60 min and plated on a selective LB medium (Luria-Bertani medium) with 12.5 

μg chloramphenicol (CAM), 0.55 mM IPTG (isopropylthio-β-D-galactoside) and 80 μg/ml 

X-Gal (5-bromo-4-chloro-3-indolyl-β-D-galactoside) (Sambrook et al. 1989). A test 

plating of each transformation was performed in order to allow an average of about 1,500 

colonies per plate as suggested by Isidore et al. (2005). The plates were incubated at 37 
°
C 

for 20 hours. The clones were collected from each plate in 3 ml storage buffer (LB 

medium supplemented with 50% glycerol) and homogenized for 30 min under gentle 

agitation (220 rpm). Each of the resulting 3 ml cultures represents a pool. The pools were 

then aliquot into four tubes, each corresponding to one copy of the library (copies A, B, C 

and D). Copy A is stored in a -80 
°
C freezer at Unité de Recherche en Génomique 

Végétale (URGV – Evry, France), copy B at Institute of Botany, Chinese Academy of 

Sciences (IBCAS – Beijing, China). Copies C and D are stored at Wageningen UR, Plant 

Breeding (WUR – the Netherlands). 

 

 

Characterization of the BAC libraries 

 

Twenty-four BAC clones were randomly selected from the fractions H1, H2 and H3 of 

each library (i.e. 72 BAC clones per library) and grown for 24 hours at 37 
°
C in 1.5 ml LB 

medium containing 12.5 μg CAM. The BAC DNA was extracted following an alkaline 

lysis procedure (Sambrook et al. 1989) with ready-to-use buffers P1, P2 and P3 (Qiagen) 

and digested overnight with NotI (New England Biolabs). Digested products were 

separated on a 1% SeaKem® LE agarose gel (BMA) in 0.5x TBE in a CHEF-DR™ II 

apparatus (BioRad) with the following pulsed field gel electrophoresis parameters: 200 V, 

5-15 sec switch time, for 14.3 hours at 10 
°
C. The insert sizes of selected BAC clones were 

estimated after comparison with the CHEF DNA size standard lambda ladder (Bio-Rad) 

run in the same gel.  

 

BAC-pool DNA was isolated from 250 μl aliquot per pool from the copy D of the libraries 

as described previously. The two barley BAC libraries were characterized for genome 

representation by PCR-screening of 46 pools per library with one microsatellite marker 

from each of the 14 barley chromosome arms. The markers were selected from the barley 
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microsatellite consensus map of Varshney et al. (2007). The reverse primer of each 

microsatellite was labeled with IRDye-700 or IRDye-800 and the PCR-product visualized 

on a LICOR 4200 DNA sequencer (LICOR® Biosciences). 

 

 

Screening the library for BAC clones spanning the Rphq2 locus  

 

The work flow for identifying Vada and SusPtrit BAC clones spanning the Rphq2 locus is 

presented in Figure 1. The solid and liquid selective LB media (here onwards LBA and 

LB, respectively) used were supplemented with 20 μg/ml of CAM unless indicated 

otherwise. The BAC libraries were screened following a PCR based method (Figure 1a). 

In a first step, we used molecular markers known to be closely linked to Rphq2 to screen 

the BAC pools and to identify positive BAC clones. In a second step, after the 

identification and sequencing of several positive BAC clones, we used primers designed to 

amplify the BAC-end-sequences (bes), the genes annotated in these clones and newly 

developed markers. We also used primers to amplify sequences at the edges of gaps in the 

already assembled BAC sequences (Table 1).  

 

For each BAC pool that was positive in the PCR screen, test plating was performed in 

order to allow an average of about 2,000 to 3000 colonies on a large square Petri dish 

(506.25 cm
2
) which is used for robotic picking of BAC clones (Figure 1b). Each positive 

BAC pool was then diluted accordingly and 2 ml of the diluted positive BAC pools were 

plated on large Petri dishes containing LBA (Figure 1c). The BAC clones were grown at 

37 
°
C for about 14 hours, and afterwards kept at 4 

°
C until use. The BAC clones on the 

large Petri dishes were picked using a picking robot (Genomic Solutions Flexsys picker) 

and cultured in 384-well plates containing LB-freeze [LB, 36 mM K2HPO4, 13.2 mM 

KH2PO4, 1.7 mM trisodium citrate, 0.4 mM MgSO4, 6.8 mM (NH4)2SO4, 4.4% (vol/vol) 

glycerol] with 20 μg/ml CAM. The picked BAC clones were grown at 37 
°
C for 14 to 16 

hours and stored at -80 
°
C (Figure 1d). Each 384-well plate was replicated onto a small 

square Petri dish (144 cm
2
) containing LBA. The replicates were kept at 37 

°
C overnight. 

On each plate, 3 ml of LB were added and the clones were scrapped and collected (sub-

pool) into a culture tube (Figure 1e). The DNA of each sub-pool was isolated (Sambrook 

et al. 1989) and PCR-screened to identify the positive sub-pool. The 384-well plate 

corresponding to the positive sub-pool was replicated again as described above onto three 

small square Petri dishes (Figure 1f).  

 

In one of the small square Petri dishes, BAC clones from each column were pooled (24 

column-pools). In another Petri dish, BAC clones from each row were pooled (16 row-

pools) (Figure 1g). The pooling was done by streaking across a column or row using an 
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autoclaved toothpick and the pooled BAC clones were cultured overnight at 37 
°
C in 

culture tube containing 3 ml of LB. The DNA of each column- and row-pool was isolated 

(Sambrook et al. 1989) and PCR-screened to identify positive pools. The intersection 

between a positive column-pool and row-pool indicates a positive BAC clone. The 

positive BAC clone was picked from the third Petri dish using a toothpick and grown in a 

culture tube containing 3 ml LB at 37 
°
C overnight. The liquid culture was then diluted 

10,000 to 20,000x and 100 μl of the culture was plated on a small round Petri dish (ø 94 x 

16 mm) containing LBA and grown at 37 
°
C overnight. Five single-colonies were picked 

using a toothpick and grown as described above (labeled as ‘a’ to ‘e’). Their DNA was 

isolated (Sambrook et al. 1989) and the colonies validated after PCR-amplification with 

the markers and primers used during the screening process. The positive single-colonies 

were maintained in glycerol stock (LB supplemented with 25% glycerol). The insert size 

of the BAC clones was determined as described in the previous section before further 

analyses (see below). The BAC clones were named as follow: “BAC pool number; Sub-

pool number (384-well plate number); row letter; column number; single-colony letter” 

(eg. V41 P7 L 3 A). 

 

 

 
Figure 1: Work flow for the identification of BAC clones spanning the Rphq2 locus in Vada and in 

SusPtrit. 

PCR screening to identify

positive BAC pools.

Test plating to find a dilution giving 100 to

150 colonies per round Petri dish which

corresponds to plating of 2000 to 3000

colonies per large square Petri dish.

Plate each positive BAC pool

into a large Petri dish before

picking BAC clones with

robot.
Picked BAC clones in

384-well plates.

Make triplicate for positive 

384-well plate on square 

Petri dishes using replicator.

Use two of the triplicate to perform column and row pooling of 

BAC clones. Isolate the pool DNA (Sambrook et al., 1989) and 

screen for positive column and row pool. 

Use the remaining plate to recover the BAC clone found at the 

intersection between a positive column and a positive row.

Replicate each 384-well

plate into square Petri dish

using replicator. Pool the

384 BAC clones in each

Petri dish and isolate the

DNA (Sambrook et al.,

1989). Screen for positive

pool (384-well plate).

(a) (b)

(c)(d)(e)

(f)

(g)

(h)

Large square Petri dish 

506.25 cm2

Standard round Petri dish 

Ø 94 mm x 16 mm

Small square Petri 

dish 144 cm2

Small square Petri dish 

144 cm2
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BAC clones fingerprinting 

 

All the confirmed positive BAC clones from the Vada and SusPtrit libraries were 

fingerprinted following the AFLP procedure from Brugmans et al. (2006) using the 

HindIII/TaqI restriction enzyme combination. The generated fragments were separated on 

a LICOR 4200 DNA sequencer (LI-COR Biosciences, Lincoln, NE, USA). The 

fingerprints were scored manually. Shared bands between BAC clones indicated sequence 

overlaps between the clones.  

Table 1: Primer pairs used to identify BAC clones of Vada and SusPtrit at the Rphq2 locus 

Name Primers sequences (5’- 3’) Ta °C 

M
WBE114 

VS
 

F: GGCGACCTCCAGCGTATC 
58  

R: GTGGTTCGGTCCTTGATGAG 

M
WBE115 

VS
 

F: GGCGGTCGGCATCGTCCAGT 
61 

R: ATGCGTCCACAAAACCAATCTTCA 

M
P15M51-204 

V
 

F: CGGAGGAAACATGGACAACGAA 
56 

R: AGCGAGCTCACTGCCAATCTACC 

M
P14M54-252 

S
 

F: AGACCAGCATTACCTAAGCAGAGA 
56 

R: AGAGGAGAGTGAGTGTAGGTGTCG 

M
besV76P5D5AR 

V
 

F: GAGGAGCCGTGTCGTCTTGT 
56 

R: CCGTTTCCGTTCACTGGTTAT 

M
besS35P2K14EF 

S
 

F: TTGAAACAGCTGGGGTCTT 
58 

R: TGGTACACAAATATTCGTCTGC  

MG
Rphq2.S01 

S
 

F: TGAAGGCGGGTTTGGTGTGGTGTA 
58 

R: CCCGCGTATGATTCTCTGCCTCTT 

MG
Rphq2.V30  

S
 

F: CGGCGGTGCGATCATAGAAT 
65 

R: TCCCCGGCCGTAGAGTCC 

G
Rphq2.V32 

 S
 

F: GGGGCCCCGGCTATCGTGTA 
65 

R: AACTTTCCGCGGCAATCCTTCTTCT 

*
S35P100001F4 

S
 

F: CCTCGCTAGTCAAGGAGGTG 
65 

R: GTGGCTGTTGTAGGGACGAT 

*
S35P100004F2 

S
 

F: TTAATTTCTGCTCGCGTGTG 
65 

R: TGCATGCACTCCTCGTTTAG 

M
S7300002F 

S
 

F: GACGTTGAGGAGAGCAAAGG 
65 

R: GCCGTTTATCACGAGGTTGT 

M
 A molecular marker 

G 
An annotated gene 

MG
 An annotated gene converted into a marker 

*
 A short DNA fragment at the edge of a gap in assembled BAC sequences.  

S  
Primer pair used to screen only the BAC library of SusPtrit  

V  
Primer pair used to screen only the BAC library of Vada 

VS 
Primer pair used to screen the BAC library of Vada as well as SusPtrit 

Ta is the annealing temperature 
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BAC-end sequencing 

 

The extremities of all the confirmed positive BAC clones were sequenced (i.e. BAC-ends 

sequencing). The clones were digested individually with 12 different blunt-end restriction 

endonucleases (AluI, Bsh1236I, BspLI, BsuRI, DpnI, DraI, Exo32I, HincII, KspAI, RsaI, 

ScaI, SmaI and SspI), and ligated with non-specific blunt adapters (genome walker 

adapter). The restriction-ligations were performed in 50 μl reaction volume comprising 

50-100 ng DNA template, 1x restriction and ligation buffer (RL buffer), 0.02 unit T4 DNA 

ligase, 0.1 unit restriction enzyme, 0.5 μM genome walker adapter (GWadp; top: 5’-

GTAATACGACTCACTATAGGGCACGCGTGGTCGACGGCCCGGGCTGGA-3’; 

bottom: 5’-PO4-TCCAGCCC-NH2-3’), and 0.2 mM adenosine triphosphate (ATP). The 

reactions were incubated overnight at 37 °C and diluted 20x with MilliQ water (RL-

DNA). For each sample, a nested PCR approach with two rounds of amplification were 

carried out on the 12 RL-DNA in order to obtain PCR products as specific as possible 

before sequencing. The first PCR was performed in 20 μl reaction volume comprising 5 μl 

RL-DNA, 1x PCR buffer, 0.2 mM dNTPs, 0.15 mM forward-1 pIndigoBAC/ 

pIndigoBAC-5 primer (5’-GGATGTGCTGCAAGGCGATTAAGTTGG-3’), 0.15 mM 

adapter primer-1 (5’-TAATACGACTCACTATAGGGC-3’), and 0.02 unit Taq DNA 

polymerase. A separate PCR reaction was performed using the reverse-1 pIndigoBAC/ 

pIndigoBAC-5 primer (5’-CTCGTATGTTGTGTGGAATTGTGAGC-3’). The first-PCR 

product was diluted 50x in MilliQ water (Merck Millipore) and 5 μl of the diluted PCR 

product was used as template for the second PCR. The second PCR was performed in 20 

μl reaction volume. The PCR reaction mixture was similar to the first PCR, except for the 

primers that were used. They were the forward-2 pIndigoBAC/ pIndigoBAC-5 primer (5’-

ACGGCCAGTGAATTGTAATA-3’) and adapter primer-2 (5’-ACTATAGGGCACG 

CGTGGT-3’). A separate PCR reaction was performed using the reverse-2 pIndigoBAC/ 

pIndigoBAC-5 primer (5’-GGAAACAGCTATGA CCATGA-3’).  

 

The first PCR reaction was carried out with 24 cycles of 30 seconds denaturation at 94 °C, 

30 seconds annealing at 56 °C and 90 seconds extension at 72 °C (Profile A). The second 

PCR reaction was carried out with 5 minutes of initial denaturation at 94 °C, 35 cycles of 

Profile A and 7 minutes of final extension at 72 °C. The final PCR product was visualized 

on 1% agarose gel. For each BAC clone, the largest fragment (depending on the initial 

restriction endonuclease) obtained in the final PCR product of the forward and of the 

reverse PCR reactions was selected for sequencing. Primers which amplify the BAC-ends 

were designed by using Lasergene software (DNASTAR® 8 Inc., Madison, WI, USA). 
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BAC clone sequencing and annotation 

 

The Rphq2 genetic window is delimited by proximal (WBE114) and distal (WBE115) 

markers for which at least one recombination event has been found with Rphq2. Three 

BAC clones which fully covered the Rphq2 genetic window (V41P7L3A, V48P5B18A 

and V76P5D5A) were sequenced following a shotgun approach at Macrogen. One SusPtrit 

BAC clone was sequenced via a shotgun approach as well, S35P2K14E. The number of 

reads obtained for the BAC clones of Vada and SusPtrit ranges from 1000 to 1740 reads 

with an average length of 867 bp, corresponding to 8x sequencing depths. For each BAC 

clone, the short shotgun sequences were assembled in contigs and ordered by Macrogen. 

Several gaps remained within the BAC clones with five to 14 contigs per clone. Therefore, 

the three BAC clones of Vada and S35P2K14E of SusPtrit were resequenced following a 

454 sequencing approach at Greenomics™ in order to bridge the gaps. Two additional 

BAC clones of SusPtrit (S35P1J10A and S73P5N20A) were also sequenced following this 

454 sequencing approach. The three SusPtrit BAC clones, S35P2K14E with S35P1J10A 

and S73P5N20A, together cover only partially the targeted Rphq2 genetic window. The 

number of reads per BAC clone obtained from 454 sequencing ranges from 15570 to 

38120 reads with an average length of 350 bp, correponding to 20x sequencing depths for 

each BAC clone. For each BAC clone, the short sequences of 454 sequencing were 

assembled in contigs by Greenomics™.  

 

The obtained 454 sequence contigs were aligned to the previously assembled shotgun 

sequence contigs [Lasergene software (DNASTAR® 8 Inc., Madison, WI, USA)]. No 

discrepancy was observed between the assemblies obtained via both approaches. Based on 

the AFLP fingerprints of the BAC clones of Vada, V76P5D5A overlaps proximally with 

V41P7L3A and distally with V48P5B18A. We identified the overlapping sequences and 

confirmed the fingerprints. According to the AFLP fingerprints of the BAC clones of 

SusPtrit, S73P5N20A overlaps with S35P2K14E, and S35P1J10A is located proximally 

and not overlapping. We identified the overlapping sequences between S73P5N20A and 

S35P2K14E which also helped us to order the 454 sequence contigs. The 454 sequence 

contigs obtained for clone S35P1J10A were ordered according to a dot plot analysis 

(MUMMER; https://bacregistry.potatogenome.net) against V41P7L3A which share the 

same marker (WBE114).  

 

The consensus sequence corresponding to the Rphq2 genetic window of Vada, flanked by 

markers WBE114 and WBE115, was generated and annotated using the TriAnnot pipeline 

(Leroy et al. 2012) following the architecture for barley (http://wheat-urgi.versailles.inra. 

fr/Tools/Triannot-Pipeline/Architecture). The consensus sequence corresponding to the 
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Rphq2 genetic window of SusPtrit were annotated separately using the same TriAnnot 

pipeline. 

 

 

Marker saturation of the regions containing Rphq2 

 

Between the flanking markers (WBE114 and WBE115), BAC-end sequences and 

annotated gene sequences were used to develop sequence characterized amplified regions 

(SCAR) and cleaved amplified polymorphic sequence (CAPS) markers, polymorphic 

between Vada, SusPtrit and L94. Markers polymorphic between Vada and L94 was 

genetically mapped using homozygous recombinant plants from Marcel et al. (2007a) in 

order to confirm their position and order. SCAR and CAPS markers were also developed 

from the AFLP fingerprints by converting polymorphic bands to single locus PCR markers 

following the strategy proposed by Brugmans et al. (2003). Primers were designed using 

Lasergene software (DNASTAR® 8 Inc., Madison, WI, USA). The markers developed 

were used to assist in ordering of BAC clones.  

 

WBE114 and WBE115 (Table 1) together with two newly developed markers, viz. 

Rphq2.S01 (Table 1) and Rphq2.V09; F: 5’-GCCTCTACTTCCACGACTGC-3’, R: 5’-

CCGGAGATGAC GATGATGT-3’) were used to screen the Morex BAC library (Nils 

Stein, Leibniz Institute of Plant Genetic and Crop Plant Research, IPK) to identify the 

homologous Rphq2 region in the Morex genomic sequence.  

 

 

Comparative mapping in barley, rice and Brachypodium 

 

The sequence of annotated genes in the physical window of  Rphq2 were used for blast 

searches of rice and Brachypodium distachyon homologous genes, respectively, in the 

Rice Genome Annotation Project blast search (http://rice.plantbiology. msu.edu/analyses_ 

search_blast.shtml) and in the B. distachyon blast portal (http://blast. brachypodium.org/). 

For each annotated gene in barley, the best blast hit was retained above a threshold e-value 

≤ 1.0E-15. 
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Results  
 

We have constructed two non-gridded BAC libraries of barley from the cv. Vada and from 

the experimental line SusPtrit, respectively. Vada not only carries the resistance allele of 

our target QTL for map-based cloning, Rphq2, but also for many other QTLs for partial 

and nonhost resistances to adapted and non-adapted rust species (Jafary et al., 2006; 

2008), for which SusPtrit contains the susceptibility allele.  

 

 

Construction and characterization of the BAC libraries 

 

The Vada BAC library was generated from 6 different ligation reactions with pIndigoBAC 

vector and 8 different ligation reactions with pIndigoBAC-5 vector. The Vada library was 

organized in 116 pools named V1 to V116 (Supplemental Table 1), containing an average 

of 1,435 clones per pool. The percentage of (white) recombinant clones was estimated to 

be 96.8% based on the count of blue (non-recombinant) and white (recombinant) colonies 

per plate. Thus, the library consists of approximately 161,000 recombinant clones. The 

average size of inserts ranges from 67 Kbp to 98 Kbp. The observed insert sizes for each 

fraction do not correspond to the expectations based on the size selection (Table 2).  

 

 

Table 2: Composition of the Vada BAC library 

Size selection range 

(Kbp) 

Number of 

pools 

White colonies Blue colonies 
1
 Insert size 

2
 

(Kbp) 

Coverage 
3
 

(Mbp) 

H0: 50-100 3 225 0 - * - 

H1: 100-150 41 1636 45 98.3 6,593.6 

H2: 150-200 35 1724 79 67.4 4,066.9 

H3: 200-250 34 963 20 71.9 2,354.1 

H4: 250-300 3 97 1 - * - 

Total 116 1389 46 81.2 13,014.6 

1
 Estimation of the average number of colonies per pool 

2
 Average insert size estimated with 24 randomly selected BAC clones per fraction  

* because of their low number, the clones from fractions H0 and H4 have been neglected 
3
 Calculated with the estimated number of white colonies and their average insert size. 

 

 

The SusPtrit BAC library was generated from six different ligation reactions with 

pIndigoBAC vector and seven different ligation reactions with pIndigoBAC-5 vector. The 

SusPtrit library was organized in 110 pools named S1 to S110 (Supplemental Table 2), 
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containing an average of 1,606 clones per pool. The percentage of recombinant clones was 

estimated to be 97.9 % based on the count of blue and white colonies per plate. Thus, the 

library consists of approximately 173,000 recombinants clones. The average size of 

SusPtrit inserts ranged from 107 Kbp for selected fraction H1 to 141 Kbp for selected 

fraction H3 (Table 3). 

 

 

Table 3: Composition of the SusPtrit BAC library 

Size selection range 

(Kbp) 

Number of 

pools  

White colonies Blue colonies 
1
 Insert size 

2
 

(Kbp) 

Coverage 
3
 

(Mbp) 

H0: 50-100 9 3,316 3 83.0 * 2,477.1 

H1: 100-150 37 1,716 43 106.7 6,775.8 

H2: 150-200 38 1,704 48 110.5 7,152.9 

H3: 200-250 26 571 12 140.6 2,087.7 

H4: 250-300 - - - - - 

Total 110 1,572 34 108.0 18,493.5 

1
 Estimation of the average number of colonies per pool 

2
 Average insert size estimated with 24 randomly selected BAC clones per fraction  

* corresponds to the insert size of a single BAC clone isolated from fraction H0 
3
 Calculated with the estimated number of white colonies and their average insert size. 

 

 

Based on a haploid barley genome size of 4.98 Gb (The International Barley Genome 

Sequencing Consortium 2012) and on the genome coverage of each fraction of the 

libraries (Tables 2 and 3), we estimated that the coverage of the Vada and SusPtrit BAC 

libraries are approximately 2.6 and 3.7 genome-equivalents, respectively. Together, the 

libraries cover 6.4 genome-equivalents that allow for a probability greater than 99% of 

recovering any specific sequence from the barley genome (Clarke and Carbon 1976). 

 

 

Genome representation of the BAC libraries 

 

To verify the genome representation of the libraries, we screened 46 pools of Vada (V1 to 

V46) and 46 pools of SusPtrit (S1 to S46) corresponding approximately to 1.4 and 1.9 

genome-equivalents, respectively, with 14 microsatellite markers, each representing a 

chromosome arm of barley (Table 4). The microsatellite markers were mapped on a 

consensus map of barley (Varshney et al. 2007). We selected in priority the most robust 

markers that were also polymorphic between Vada and SusPtrit. For only two 

microsatellites, GBMS062 and GBM1482, Vada and SusPtrit had the same allele (Table 
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4). The number of positive pools was determined (Table 4) by counting the number of 

pools displaying a band of similar size as the one of the parental genomic DNA run on the 

same gel. None of the bands amplified in a BAC pool from one genotype had the size of 

the allele from the other genotype, indicating that the contamination of one library with 

clones from the other library is unlikely. 

 

An average of 2.7 positive pools per microsatellite marker was obtained for the Vada 

library and an average of 3.5 positive pools for the SusPtrit library (Table 4). All markers 

were represented at least once in the 46 pools of the SusPtrit library and only two markers 

were not represented in the 46 pools of the Vada library, indicating that the overall barley 

genome is well represented in our BAC libraries. Based on the average representation of 

the 14 microsatellite markers in 46 pools per library, we estimated that the total coverage 

of the Vada and SusPtrit BAC libraries are 5.0 and 6.8 genome-equivalents, respectively.  

 

 

Table 4: PCR-based screening of the Vada and SusPtrit BAC libraries with microsatellite markers 

representing each chromosome arm of barley on a subset of 46 pools per library (representing 

approximately 1.4 and 1.9 barley genome-equivalents) 

Chrom. Position 

(cM) 
1
 

Microsatellite Vada allele 
2 
 

(bp) 

SusPtrit allele 
2
 

(bp) 

Nr. Pools  

Vada 
3
 

Nr. Pools  

SusPtrit 
3
 

1HS 25.0 GBMS062 127 127 2 8 

1HL 73.4 Bmac0032 - 220 1 2 

2HS 28.6 HVM36 126 108 6 4 

2HL 90.9 GBM1062 215 219 3 2 

3HS 35.4 scssr10559 210 216 3 4 

3HL 150.5 HVM62 260 250 2 4 

4HS 47.1 GBM1482 210 210 12 5 

4HL 125.5 GBM1015 232 220 0 1 

5HS 21.2 GBM1176 - 300 1 4 

5HL 88.0 Bmag0223 174 170 1 5 

6HS 4.6 Bmac0316 169 165 1 3 

6HL 129.2 GBM1087 201 198 4 2 

7HS 18.6 Bmag0007 200 204 2 4 

7HL 87.7 GBM1359 151 145 0 1 

1
  Position of the corresponding microsatellite marker on the barley integrated map, Marcel 2009  

   available at http://wheat.pw.usda.gov/GG2/index.shtml (Aghnoum et al. 2010)  
2
 Approximate size of the allele amplified on Vada or SusPtrit genomic DNA 

3
 Number of positive pools per library 
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Generation of Vada and SusPtrit sequences at Rphq2  

 

We used four pairs of primers for the BAC library of Vada and ten primer pairs for the 

BAC library of SusPtrit (Table 1) to screen for BAC clones spanning the Vada or SusPtrit 

allele at Rphq2. For Vada, the four primer pairs detected 16 positive BAC pools in total 

from the Vada BAC library and for SusPtrit the ten primer pairs detected a total of 21 

positive BAC pools in the SusPtrit BAC library (Supplemental Table 3). The BAC pools 

positive for two or more primer pairs were prioritized for BAC clones picking. We picked 

around 1900 (five 384-well plates) to 5760 (15 384-well plates) colonies per positive pool. 

Then, we identified the 384-well plates (sub-pools) positive for the primer pairs. 

Consecutively, we confirmed the amplification with primer pairs on row and column pools 

of the positive sub-pool. Finally, we validated seven Vada BAC clones originating from 

four Vada BAC pools and 17 SusPtrit BAC clones originating from nine SusPtrit BAC 

pools. All BAC clones were fingerprinted. The order of the BAC clones was not only 

based on the BAC fingerprint, but also on the primer amplification. 

 

From the seven BAC clones of Vada, the AFLP fingerprint revealed a minimum tiling 

path of only three clones [V41P7L3A (120 Kbp), V76P5D5A (87 Kbp) and V48P5B18A 

(150 Kbp)], which were overlapping each other to cover the Rphq2 genetic window 

between markers WBE114 and WBE115. Based on the primer amplification, the three 

Vada BAC clones were bridged together by V76P5D5A. This BAC clone overlapped with 

V41P7L3A harboring WBE114 and V48P5B18A harboring WBE115 (Table 5).  

 

From the 17 BAC clones of SusPtrit, six had an identical AFLP fingerprint with 

S35P1J10A (105 Kbp) which harbored WBE114, but were not overlapping with any of the 

other identified SusPtrit BAC clones. On the other side, three BAC clones positive for 

WBE115 were overlapping with each other [S35P2K14E (140 Kbp), S7P2C21A (80 Kpb) 

and S81P2C6A (135 Kbp)], and with a fourth BAC clone [S73P5N20A (165 Kbp)] (Table 

5). S35P2K14E was selected for sequencing because it was positive not only for WBE115 

but also for P14M54-252, a marker mapped closer to Rphq2 (Marcel et al. 2007a; Figure 

2). S73P5N20A was also selected for sequencing because it overlapped with S35P2K14E 

distal to WBE115, and was expected to extend further into the Rphq2 genetic window.  

 

The three BAC clones of Vada were sequenced following both shotgun and 454 

sequencing approaches. The sequences obtained with one or the other approaches were 

assembled independently. The sequence assembly obtained from shotgun sequencing had 

ten gaps between WBE114 and WBE115, while the sequence assembly obtained from 454 

sequencing had 12 gaps. Aligning both assemblies led to a consensus sequence with only 

two gaps left. One of the gaps was between two sequence contigs from V76P5D5A and 
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the other gap was between two sequence contigs of V48P5B18A. Together, the two gaps 

represent approximately 7 Kbp, estimated by comparing the estimated insert size of the 

BAC clone with the size of the consensus sequence. The physical length of the three 

contigs covering the Vada BAC sequence from WBE114 to WBE115 is approximately 

195 kb not including the two gaps. 

 

Three BAC clones were sequenced from the SusPtrit library. The BAC clone S35P2K14E 

was sequenced following both shotgun and 454 sequencing approaches while the other 

two BAC clones S73P5N20A and S35P1J10A were sequenced following a 454 

sequencing approach only. The sequences obtained with one or the other approaches were 

assembled independently. The sequence assembly of S35P2K14E from shotgun 

sequencing had six gaps, while the sequence assembly obtained from 454 sequencing for 

this clone had four gaps. Aligning both assemblies led to a consensus sequence of 122 

Kbp with no gap for S35P2K14E. The sequence assemblies for the other two SusPtrit 

clones were composed of four contigs each (three gaps for each clone). The consensus 

sequence of S73P5N20A and S35P1J10A contigs resulted in three contigs of sizes 139 

Kbp, 563 bp, and 60 Kbp. Based on the available sequences, we estimated a 226 Kbp 

length for the complete SusPtrit consensus sequence between WBE114 and WBE115. 
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Sequence annotation 

 

The TriAnnot pipeline (Leroy et al. 2012) predicted 12 genes on both Vada and SusPtrit 

contigs. On Vada contigs, the predicted genes encoded three peroxidases (V.Perox-1, -2, -

3), two kinases (V.Kin-1, -2), one Seven in absentia protein family (V.SINA), one protein 

legume lectin domain (V.Leg-Lec-D), and five unknown function/hypothetical/ 

uncharacterized proteins (V.UF/HP/UP. On SusPtrit contigs, the predicted genes encoded 

three kinases (S.Kin-1, -2, -3), two peroxidases (S.Perox-1, -2), and seven unknown 

function/hypothetical/uncharacterized proteins (S.UF/HP/UP). Among the predicted 

genes, V.Perox-1, V.Perox-2, V.UP, V.Kin-1 and V.Kin-2 from Vada were positioned at 

the same locus (allelic) as S.Perox-1, S.Perox-2, S.UP, S.Kin-2 and S.Kin-3 from SusPtrit, 

respectively. Their positions were supported by co-dominant markers except the locus of 

V.Perox-2 and S.Perox-2 (Figure 2). The common genes between Vada and SusPtrit 

shared at least 99% similarity except for V.Kin-1 and S.Kin-2 which had similarity of at 

least 90%. The other annotated genes were not shared between Vada and SusPtrit (Figure 

2). The V.UF and V.HP from Vada were not aligning to the S.UF and S.HP from SusPtrit, 

respectively, and were regarded as different loci. The likelihood of genes listed in Figure 2 

to be candidates for Rphq2 will be discussed in the Discussion section. 

 

Using the sequence information between WBE114 and WBE115, we developed 38 new 

markers that were polymorphic between Vada, SusPtrit and L94. Interestingly, SusPtrit 

and L94 have the same genotype for all the markers obtained. Together with two AFLP-

converted single locus PCR markers developed by Marcel et al. (2007a), 40 markers were 

mapped between the flanking markers WBE114 and WBE115 (Supplemental Table 5). 

The genetic positions of the 40 markers were resolved based on their physical order and 

position on the sequence between WBE114 and WBE115. Among the 40 markers, 20 

were dominant markers amplifying Vada DNA and 17 were dominant markers amplifying 

SusPtrit DNA (Figure 2). There were three co-dominant markers; two were developed 

based on the common annotated genes between Vada and SusPtrit and one based on a 

random sequence from one of the sequence contigs of S73P5N20A. These three co-

dominant markers were located close to each other near WBE115. Based on the sequence 

annotation and the dominant nature of most of the newly developed markers located 

between WBE114 and WBE115, there seems to be a lack of homology between Vada and 

SusPtrit for the region containing Rphq2. This is further supported by a dot plot analysis 

(MUMMER; https://bacregistry.potatogenome.net) which compares the sequence of Vada 

and SusPtrit between WBE114 and WBE115 (Figure 3). Sequence similarity is only 

observed on approximately the first 36 Kbp of S35P1J10A which included WBE114.  
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Figure 2: A schematic presentation of the 0.1 cM marker interval between WBE114 and WBE115 

containing Rphq2: linkage map, the BAC contig of Vada and SusPtrit, and the Triannot annotated genes in 

the contigs. Markers with * are AFLP-converted single locus PCR markers developed by Marcel et al. 

(2007a).  
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We searched for the homologous Rphq2 region in the Morex genomic sequence (The 

International Barley Genome Sequencing Consortium 2012). A pair of primers which 

amplifies an annotated gene in Vada, Peroxidase 2 (Rphq2.V09) detected four BAC clones 

of Morex (HVVMRXALLEA0011E05, HVVMRXALLEA0179K22, HVVMRXALLe 

A0269J17 and HVVMRXALLeA0278A17). These four BAC clones are overlapping with 

each other and positioned between 806 to 981 kb of contig 44195 (1.9Mb) on chromosome 

2HL (http://mips.helmholtz-muenchen.de/plant/barley/index.jsp). Another pair of primers 

which amplifies an annotated gene in SusPtrit, Kinase 1 (Rphq2.S01; Table 1) detected 

one BAC clone, HVVMRXALLeA0299N24 which also belongs to contig 44195, 

positioned between 961 and 1101 kb of the contig. A total of 118 Morex sequence contigs 

(Mor_cont) from the BAC contig 44195 (kindly provided by Nils Stein, Leibniz Institute 

of Plant Genetic and Crop Plant Research, IPK) were aligned to the sequence between 

WBE114 and WBE115 of Vada and SusPtrit using Lasergene software with a minimum 

sequence match of 80% (DNASTAR® 8 Inc., Madison, WI, USA). Eleven of the 118 

Mor_cont from BAC contig 44195 aligned to the Vada sequences and 17 to the SusPtrit 

sequences (Table 6). We found that Mor_cont 43090 was approximately 300 bp distal 

from WBE114. Another one, the Mor_cont 2546833, aligned to a region including 

WBE115. We estimated the physical distance between WBE114 and WBE115 of Morex 

to be of approximately 254 kb which is very similar to the estimated physical distance in 

SusPtrit. More sequences from SusPtrit could be aligned on the Morex sequences 

indicating that SusPtrit and Morex are likely to be more similar than Vada and Morex at 

the Rphq2 locus. 

 

 

The synteny between barley, rice and Brachypodium 

 

The Rphq2 region is located in the barley 2L1.0 region, which has a syntenic relationship 

with a region on rice Chromosome 4 (Marcel et al. 2007a) and a region on Brachypodium 

Chromosome 5 (Mayer et al. 2011). Homologs of the two genes used to develop markers 

WBE114 and WBE115 have indeed been identified on rice Chromosome 4 and on 

Brachypodium Chromosome 5 (Table 7). The interval between the rice homologs 

Loc_Os04g59260 and Loc_Os04g59320 contains five annotated genes encoding a 

hypothetical protein, two retrotransposon proteins, a strictosidine synthase, and a 

phospholipase C. The interval between the Brachypodium homologs Bradi5g27210 and 

Bradi5g27240 contains 2 genes encoding a peroxidase and a phospholipase C. The gene 

used to develop the marker WBE114 encodes a peroxidase precursor. Interestingly, this 

gene is present in a single copy in rice, in two copies in Brachypodium and in barley line 

SusPtrit, and in three copies in barley cultivar Vada (Table 7). In addition, only two 

additional genes seem to be shared between the three species and the two barley genotypes 
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including a phospholipase C and a protein kinase used to develop marker WBE115. The 

remaining 7 genes predicted only from the Vada sequence and 7 genes predicted only 

from the SusPtrit sequence have no homolog in the identified synthetic regions of rice and 

Brachypodium. The best blast hits (threshold ≤ 1.0E-15) obtained for some of those genes 

are located outside of the Rphq2 syntenic interval (Table 7).  

 

 

Table 6: Alignment of 18 Morex sequence contigs on Vada and SusPtrit sequence assemblies 

between WBE114 and WBE115 (corresponding to Morex BAC contig 44195) 

Morex contigs; (sequence size, bp) Align to Vada Align to SusPtrit 

Mor_cont 43090; (5993)/WBE114
*
 Yes

$
 Yes 

Mor_cont 53633; (3569) Yes No 

Mor_cont 2267159; (240) No Yes 

Mor_cont 88428; (1710) No Yes 

Mor_cont 2550490; (9192) No Yes 

Mor_cont 2343918; (327) No Yes 

Mor_cont 41082; (7623) No Yes 

Mor_cont 442275; (1129) No Yes 

Mor_cont 280043; (1061) No Yes 

Mor_cont 1590687; (2251) Yes Yes 

Mor_cont 287733; (1989) Yes Yes 

Mor_cont 224400; (1060) Yes Yes 

Mor_cont 321571; (308) Yes Yes 

Mor_cont 60124; (3413) Yes Yes 

Mor_cont 1588307; (1769) Yes Yes 

Mor_cont 1572547; (2594) Yes Yes 

Mor_cont 8886; (1904) Yes Yes 

Mor_cont 2546833; (3163)/WBE115
!
 Yes Yes 

*
 WBE114 is 301 bp distal from Mor_cont 43090  

$
 Yes means that the Morex sequence aligned to the subject with a minimum sequence match of 80% 

!
 The WBE115 sequence of Vada aligned to Mor_cont 2546833 with one single nucleotide  

  polymorphism and two for the WBE115 sequence of SusPtrit. 
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Table 7: Best blast hits (≤ 1.0E-15) of the predicted genes in Vada and SusPtrit sequences with the rice 

and the Brachypodium gene catalogues 

Vada Rice Brachypodium SusPtrit Rice Brachypodium 

* Peroxidase 1 
Loc_Os04g59260 

(5.6E-127) 

Bradi5g27210 

(1.3E-134) 

* Peroxidase 1 
Loc_Os04g59260 

(3.4E-128) 

Bradi5g27210 

(2.7E-134) 

Na   Hypothetical protein x x 

Peroxidase 2 
Loc_Os04g59260 

(3.9E-103) 

Bradi5g27220 

(9.7E-119) 
Peroxidase 2 

Loc_Os04g59260 

(1.0E-103) 

Bradi5g27220 

(3.0E-119) 

Na   Hypothetical protein x x 

Na   Hypothetical protein x x 

Na   Unknown function 
LOC_Os07g35310 

(4.2E-61) 

Bradi1g25552 

(3.0E-73) 

Hypothetical 
protein 

x x Na   

Seven in 

Absentia protein 

LOC_Os05g06070 

(1.7E-32) 

Bradi2g01770 

(7.7E-43) 
Na   

Peroxidase 3 
Loc_Os04g59260 

(3.8E-108) 

Bradi5g27220 

(4.1E-120) 
Na   

Protein 

containing 
legume lectin 

domain 

LOC_Os08g03002 

(4.4E-60) 

Bradi1g28320 

(7.2E-63) 
Na   

Na   Hypothetical protein 
LOC_Os11g30140 

(1.7E-24) 
x 

Na   Hypothetical protein x x 

Hypothetical 

protein 
x x Na   

Unknown 

function 

LOC_Os10g37260 

(1.4E-66) 

Bradi3g30820 

(4.4E-63) 
Na   

Unknown 
function 

LOC_Os10g37260 

(4.0E-28) 

Bradi3g30820 

(1.2E-20) 
Na   

Na   Kinase 1 
LOC_Os07g35310 

(1.4E-136) 

Bradi1g25552 

(5.0E-194) 

Kinase 1 
LOC_Os08g03020 

(5.4E-140) 

Bradi1g28320 

(8.7E-225) 
Na   

Na   Kinase 2 
LOC_Os08g02996 

(4.6E-145) 

Bradi1g28320 

(3.5E-221) 

Uncharacterizaed 

Protein 

Loc_Os04g59310 

(5.3E-138) 

Bradi5g27230 

(7.0E-160) 

Uncharacterizaed 

Protein 

Loc_Os04g59310 

(2.8E-137) 

Bradi5g27230 

(1.9E-159) 

! Kinase 2 
Loc_Os04g59320 

(1.5E-201) 

Bradi5g27240 

(2.4E-222) 

! Kinase 3 
Loc_Os04g59320 

(1.5E-201) 

Bradi5g27240 

(2.4E-222) 

Na; Not annotated 

x; No hit or no significant hit 

Grey boxes indicate the syntenic interval of Rphq2 with rice chromosome 4 (indicated by Loc_Os04) and 

Brachypodium chromosome 5 (indicated by Bradi5). 
* WBE114 is located within this annotated gene. 
!  WBE115 is located within this annotated gene. 
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Discussion 

 

Map-based cloning is one of several approaches to isolate the gene(s) responsible for a 

QTL with an effect explaining more than 10 % of the phenotypic variation (Kou and 

Wang 2012). For rice, map-based cloning was successful to isolate the genes responsible 

for two resistance QTLs against Magnaporthe oryzae (Fukuoka et al. 2009; Hayashi et al. 

2010). For wheat, genes were isolated for one resistance QTL against P. striiformis (Fu et 

al. 2009) and one wide-spectrum QTL against P. triticina, P. striiformis and Blumeria 

graminis (Krattinger et al. 2009) following a map-based cloning approach. The partial 

resistance QTL Rphq2 explains 35% of the phenotypic variation in L94/Vada recombinant 

inbred lines population (Qi et al. 1998) and therefore, map-based cloning of Rphq2 should 

be possible.  

 

 

Vada and SusPtrit BAC libraries 

 

Two non-gridded BAC libraries were constructed for Vada and SusPtrit barley genotypes. 

We observed in the Vada BAC library that the average size of inserts decreased from 98.3 

Kbp for selected fraction H1 to 71.9 Kbp for selected fraction H3 (Table 2), while 

fractions H1 to H3 correspond to size selected fragments increasing from 100 to 250 kb, 

respectively. This could be due to a bias in the size selection procedure during library 

construction. Indeed, only one size selection was performed instead of two or three as 

recommended by different authors (Chalhoub et al. 2004; Peterson et al. 2000). If the first 

size selection allows selection of mostly DNA fragments longer than 100 Kbp, some small 

DNA fragments may remain trapped within the longer ones; and this may be especially 

true when the DNA concentration in the plugs is relatively high (Peterson et al. 2000). The 

average insert size over the complete Vada BAC library was 81 Kbp, with individual 

clones ranging from 18 to 209 Kbp (Supplemental Figure 1a; Table 2). In contrast to the 

Vada BAC library, the average size of inserts in the SusPtrit BAC library logically 

increased from 107 Kbp for selected fraction H1 to 140.6 Kbp for selected fraction H3. 

We presume that a lower concentration of SusPtrit DNA in the size fraction gel resulted in 

a lower amount of small DNA fragments being trapped than for Vada DNA. 

Consequently, the average insert size over the complete SusPtrit BAC library was 108 

Kbp, with individual clones ranging from 33 to 274 Kbp (Supplemental Figure 1b; Table 

3). On average SusPtrit inserts are 27 Kbp longer than Vada inserts. The average insert 

size of the Vada BAC library is the smallest among the BAC libraries available for barley. 

Such small average insert size is also observed in BAC libraries from other plant species 

such as wheat (Janda et al. 2004; Nilmalgoda et al. 2003) and soy bean (Xia et al. 2014). 
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The average insert size of the Vada and SusPtrit BAC libraries is still comparable to three 

of the Morex BAC libraries (HVVMRXALLrA, HVVMRXALLhB and HVVMRXALLh 

C) recently made available by Schulte et al. (2011). However, the average insert size of 

the constructed BAC libraries is smaller than the one reported for the Cebada Capa BAC 

library (140 Kbp) which was constructed using the same protocol (Isidore et al. 2005).  

 

Repeated size selections can increase the average insert size but may also be followed by a 

severe drop in transformation efficiency (Cai et al. 1995; Chalhoub et al. 2004). The 

balance to find between those two parameters depends on the final use of the BAC library. 

If a BAC library is to be used for genome-wide physical mapping and genome sequencing, 

then maximizing the average size of inserts is essential to limit walking. However, if a 

BAC library is to be used for positional cloning of genes that have already been confined 

to a very small interval, then having a large number of clones is more important in order to 

increase the chance to find the gene of interest. The principal aim of our BAC libraries is 

to isolate genes involved in basal resistance to cereal rust fungi after their high-resolution 

genetic mapping. Consequently, our priority was to obtain a large number of clones at 

lower cost. 

 

Mostly, DNA fractions H1, H2 and H3 were used to construct the libraries. The 

percentage of non-recombinant clones (blue colonies) was below 4%. Such a high 

proportion of recombinant clones over the non-recombinant clones reduce the problem of 

a possible bias in the libraries caused by faster growth of non-recombinant clones during 

the short amplification step (Isidore et al. 2005). 

 

 

Genome representation of the BAC libraries 

 

Based on the observed insert sizes of the BAC clones, the estimated genome coverage of 

the Vada BAC library is 2.6x and of the SusPtrit BAC library 3.7x. The genome coverage 

of the Vada library is comparable to the genome coverage of the Morex 

HVVMRXALLhB library, and SusPtrit to HVVMRXALLeA (Schulte et al. 2011). The 

estimation of the genome coverage based on microsatellite markers indicates, however, 

coverages of 5.0x and 6.8x for the Vada and the SusPtrit BAC libraries, respectively. The 

discrepancy between both estimations may be due to an underestimation of the average 

size of the BAC clones. As it is often observed in monocots (Peterson et al. 2000), several 

bands of identical sizes may be obtained after NotI restriction of BAC clones, which may 

result in the underestimation of the insert size from some clones. On the other hand, half 

of the microsatellite markers used for screening the BAC pools were derived from barley 

ESTs/genes (i.e. EST-SSR markers), implying that a marker amplifying a member from a 
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gene family may in some cases amplify other genes from the same family as well unless 

the sequences of the primer pairs are unique (Thiel et al. 2003). Indeed, the pressure of a 

primer to anneal on a similar but not identical sequence is much stronger on BAC DNA 

than it is on full genomic DNA. Therefore, the genome coverage of the two libraries 

remains uncertain, but is probably slightly higher for SusPtrit than for Vada. Based on 

insert sizes, the BAC library of Vada gives at least 93% probability of identifying a clone 

corresponding to any sequence of Vada and for BAC library of SusPtrit a probability of 

98% is expected (Clarke and Carbon 1976). Together, the two BAC libraries give more 

than 99% probability of recovering any specific sequence from the barley genome. 

 

 

Physical map of the Rphq2 locus 

 

Rphq2 is positioned at the telomeric region of chromosome 2HL which is known to be a 

gene rich region containing genes for different agronomic traits, including flowering time 

and disease resistance (Chen et al. 2009). Rphq2 is a partial resistance QTL against P. 

hordei, but it seems also to be effective to some non-adapted rust species (Jafary et al. 

2006; Chapter 3, this thesis). Recently, Johnston et al. (2013) suggested that Rphq2 is 

possibly a weaker allelic form of a novel leaf rust resistance gene Rph22 (or Rph22.ak) 

found in H. bulbosum, a nonhost species for P. hordei. Similar to Rphq2, Rph22 confers a 

non-hypersensitive reaction resistance. Therefore, it is interesting to clone Rphq2 which 

will provide molecular information to further study partial and nonhost resistances, and 

their possible association. 

 

The donor of Rphq2 is Vada (Jafary et al. 2006; Qi et al. 1998), which is a cultivar 

developed from Hordeum laevigatum/Gold (Dros 1957). The Rphq2 locus of Vada was 

donated by H. laevigatum (Arru et al. 2003; Giese et al. 1993). The name of the latter 

accession is taxonomically invalid, since it suggests a different (wild) species in the 

Hordeum genus. However, it is perfectly crossable with H. vulgare accessions and also 

has the H. vulgare general morphology, including non-shattering spikes. Therefore it 

should be regarded as H. vulgare. It occurs in the ancestry of many West-european 

cultivars, including Emir, Delta and Minerva [(Hickey et al. 2012); Germplasm Resources 

Information Network (GRIN) http://www.ars-grin.gov/npgs/holdings. html]. SusPtrit was 

bred from a double cross; Menelik/L100//Trigo Biasa/Nigrinudum [GRIN; (Atienza et al. 

2004)]. The very low degree (or even absence) of homology in the Rphq2 region is mainly 

due to the West-european cultivar Vada and hence due to the donor line H. laevigatum that 

contributed this chromosome section (Marcel et al. 2007a). The Rphq2-introgression from 

H. laevigatum is approximately 188 Kbp starting from approximately three Kbp distal 

from the WBE114 to WBE115. Other barley lines, viz the Ethiopian L94, the American 
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cultivar Morex and SusPtrit as a descendant from various exotic barley accessions, seem 

to have maintained their homology in this area, as it appears from the alignment of the 

Morex genome sequences with the SusPtrit sequences and not with the Vada sequences 

(Table 6). Accordingly, the primer pairs designed on SusPtrit sequences did amplify DNA 

of L94 while primer pairs designed on Vada sequences did not. A practical consequence is 

that we do not expect further recombination between WBE114 and WBE115, as in 

heterozygous material the chromosome regions will probably hardly pair. Indeed we failed 

to obtain recombinant plants in this area after screening more than 3000 plants (data not 

shown). Suppression of recombination prevents further fine-mapping of Rphq2. This lack 

of homology implies that having a BAC library from the parent donor of the resistance 

allele (Vada) is a necessity, and that if we would have used BAC libraries from other 

genotypes we might have had great difficulties to acquire sequence information in the 

region and to identify the candidate genes from Vada.  

 

 

Gene annotation at the Rphq2 locus 

 

The annotation of the Rphq2 region using Triannot with the architecture for barley 

identified 12 genes in Vada and 12 genes in SusPtrit, but only five of the annotated genes 

are shared between Vada and SusPtrit. These four annotated genes were also conserved in 

rice and B. distachyon. No nucleotide-binding-site-leucine-rich repeat (NBS-LRR) 

resistance gene was annotated in the Rphq2 region. The candidate genes for Rphq2 might 

be a resistance factor in Vada or a susceptibility factor in SusPtrit. A study of differentially 

expressed genes between L94 and L94-Rphq2 NIL suggested seven candidates for Rphq2 

(Chen et al. 2010). Among the candidates, only one gene, unigene2111 (encoding a 

peroxidase), was similar to an annotated gene at Rphq2. Unigene2111 has 99% identity 

with the coding sequence of V.Perox-2 of Vada and S.Perox-2 of SusPtrit. This suggests 

peroxidase 2 as a good candidate to explain Rphq2. This is also supported by the fact that 

peroxidases are known to be involved in defense reactions i.e. cell wall reinforcement and 

hypersensitive reaction [reviewed in Hückelhoven and Kogel (2003); (Almagro et al. 

2009)]. Furthermore, González et al. (2010) found 61% of the QTLs for partial resistance 

to adapted rust fungi (including Rphq2) co-localize with the peroxidase based markers. 

The same phenomenon is true for resistance QTLs for powdery mildew fungi (Schweizer 

and Stein, 2011). The kinases as well are good candidates to explain Rphq2. Kinases are 

involved in various signaling pathways including plant defense system against pathogens 

[Reviewed in Rodriguez et al. (2010); (Antolín-Llovera et al. 2012)]. It is possible that one 

of the peroxidase or kinase genes identified in the physical window of Rphq2 affects the 

resistance phenotype observed. Another possibility is that peroxidase or kinase gene 

members function as a complex QTL as observed in rice where the resistance effect of a 
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QTL on chromosome 8 was shown to be contributed by a cluster of germin-like protein 

genes (Manosalva et al. 2009).  

 

A gene from the Seven in absentia protein family (SINA) was annotated only on the 

Rphq2 sequence of Vada. This might be a candidate as well. SINA proteins are E3 ligases 

with a RING finger domain at the N-terminal followed by a conserved SINA domain 

which has a function in substrate binding and dimerization (Hu and Fearon 1999). One 

particular SINA protein is found, in a symbiotic interaction, to impair the rhizobial 

infection in Medicago truncatula (Mbengue et al. 2010) and Lotus japonicus (Den Herder 

et al. 2012). The candidate genes for Rphq2 resemble to none of the partial resistance 

genes cloned previously (Fu et al. 2009; Fukuoka et al. 2009; Hayashi et al. 2010; 

Krattinger et al. 2009; Manosalva et al. 2009). Genes for partial resistance can be 

resistance factors, such as ABC transporter gene of Lr34 (Krattinger et al. 2009), or 

susceptibility factors, such as a proline-rich protein of Pi21 (Fukuoka et al. 2009). 

Therefore, the candidate genes of Rphq2 might be either a resistance factor from Vada or a 

susceptibility factor from SusPtrit.  

 

Stable transformation of candidate genes for resistance in a susceptible barley genotype 

can be performed using Golden SusPtrit, a new genetically well transformable barley line 

(Chapter 2, this thesis). Golden SusPtrit inherited the susceptibility of SusPtrit to P. hordei 

and to non-adapted rust fungi, as well as the transformability of Golden Promise. The 

transformants in the genetic background of Golden SusPtrit will allow the testing of Rphq2 

candidate genes affecting resistance to adapted and non-adapted rust fungi. This will be 

valuable information to understand partial resistance in barley and its possible association 

with nonhost resistance.   
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Supplemental Figure 1: Analysis of 24 randomly selected barley BAC clones from Vada, fraction VH2 

(a), and from SusPtrit, fraction SH3 (b), on an ethidium bromide-stained CHEF gel (5-15 sec switch time, 

14.3 hours) showing insert DNA above and below the common 7.5 Kbp pIndigoBAC or pIndigoBAC-5 

vector band. 
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Supplemental Tables 
 

Supplemental Table 1: The descriptions of the 116 BAC pools of Vada. 

Pool White * Blue * Fraction Vector Insert size Individual pool genome contribution ! 

V1 20 0 H0 pIndigoBAC-5 83 1660 

V2 411 0 H0 pIndigoBAC-5 83 34113 

V3 244 0 H0 pIndigoBAC-5 83 20252 

V4 864 30 H1 pIndigoBAC 99 85536 

V5 1871 39 H1 pIndigoBAC 99 185229 

V6 1871 39 H1 pIndigoBAC 99 185229 

V7 1871 39 H1 pIndigoBAC 99 185229 

V8 1871 39 H1 pIndigoBAC 99 185229 

V9 1871 39 H1 pIndigoBAC 99 185229 

V10 1871 39 H1 pIndigoBAC 99 185229 

V11 1871 39 H1 pIndigoBAC 99 185229 

V12 966 12 H1 pIndigoBAC-5 83 80178 

V13 156 4 H1 pIndigoBAC 111 17316 

V14 2604 76 H1 pIndigoBAC 111 289044 

V15 2604 76 H1 pIndigoBAC 111 289044 

V16 2604 76 H1 pIndigoBAC 111 289044 

V17 2604 76 H1 pIndigoBAC 111 289044 

V18 2604 76 H1 pIndigoBAC 111 289044 

V19 2604 76 H1 pIndigoBAC 111 289044 

V20 2604 76 H1 pIndigoBAC 111 289044 

V21 1160 50 H1 pIndigoBAC-5 83 96280 

V22 966 12 H1 pIndigoBAC-5 83 80178 

V23 1871 39 H1 pIndigoBAC 83 155293 

V24 966 12 H1 pIndigoBAC-5 83 80178 

V25 966 12 H1 pIndigoBAC-5 83 80178 

V26 966 12 H1 pIndigoBAC-5 83 80178 

V27 966 12 H1 pIndigoBAC-5 83 80178 

V28 966 12 H1 pIndigoBAC-5 83 80178 

V29 966 12 H1 pIndigoBAC-5 83 80178 

V30 966 12 H1 pIndigoBAC-5 83 80178 

V31 966 12 H1 pIndigoBAC-5 83 80178 

V32 606 12 H1 pIndigoBAC-5 96 58176 

V33 1786 67 H1 pIndigoBAC-5 96 171456 

V34 1786 67 H1 pIndigoBAC-5 96 171456 

V35 1786 67 H1 pIndigoBAC-5 96 171456 

V36 1786 67 H1 pIndigoBAC-5 96 171456 

V37 1786 67 H1 pIndigoBAC-5 96 171456 

V38 1786 67 H1 pIndigoBAC-5 96 171456 

V39 1786 67 H1 pIndigoBAC-5 96 171456 

V40 1786 67 H1 pIndigoBAC-5 96 171456 

V41 1786 67 H1 pIndigoBAC-5 96 171456 

V42 1786 67 H1 pIndigoBAC-5 96 171456 

V43 1786 67 H1 pIndigoBAC-5 96 171456 

V44 1786 67 H1 pIndigoBAC-5 96 171456 

V45 319 1 H2 pIndigoBAC 94 29986 

V46 2136 34 H2 pIndigoBAC 94 200784 

V47 2136 34 H2 pIndigoBAC 94 200784 

V48 2136 34 H2 pIndigoBAC 94 200784 

V49 2136 34 H2 pIndigoBAC 94 200784 

V50 2136 34 H2 pIndigoBAC 94 200784 

V51 2136 34 H2 pIndigoBAC 94 200784 

V52 84 0 H2 pIndigoBAC 129 10836 

V53 995 8 H2 pIndigoBAC 129 128355 

V54 995 8 H2 pIndigoBAC 129 128355 

V55 995 8 H2 pIndigoBAC 129 128355 
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Supplemental Table 1: Cont… 

Pool White * Blue * Fraction Vector Insert size Individual pool genome contribution ! 

V56 995 8 H2 pIndigoBAC 129 128355 

V57 995 8 H2 pIndigoBAC 129 128355 

V58 725 31 H2 pIndigoBAC-5 55 39875 

V59 1947 57 H2 pIndigoBAC-5 55 107085 

V60 1947 57 H2 pIndigoBAC-5 55 107085 

V61 1947 57 H2 pIndigoBAC-5 55 107085 

V62 1947 57 H2 pIndigoBAC-5 55 107085 

V63 1947 57 H2 pIndigoBAC-5 55 107085 

V64 1947 57 H2 pIndigoBAC-5 55 107085 

V65 1947 57 H2 pIndigoBAC-5 55 107085 

V66 508 12 H2 pIndigoBAC-5 50 25400 

V67 2051 178 H2 pIndigoBAC-5 50 102550 

V68 2149 144 H2 pIndigoBAC-5 50 107450 

V69 2100 161 H2 pIndigoBAC-5 50 105000 

V70 2100 161 H2 pIndigoBAC-5 50 105000 

V71 2100 161 H2 pIndigoBAC-5 50 105000 

V72 2100 161 H2 pIndigoBAC-5 50 105000 

V73 2100 161 H2 pIndigoBAC-5 50 105000 

V74 2100 161 H2 pIndigoBAC-5 50 105000 

V75 2100 161 H2 pIndigoBAC-5 50 105000 

V76 2100 161 H2 pIndigoBAC-5 50 105000 

V77 2100 161 H2 pIndigoBAC-5 50 105000 

V78 2100 161 H2 pIndigoBAC-5 50 105000 

V79 2100 161 H2 pIndigoBAC-5 50 105000 

V80 168 5 H3 pIndigoBAC 104 17472 

V81 377 11 H3 pIndigoBAC 104 39208 

V82 377 11 H3 pIndigoBAC 104 39208 

V83 377 11 H3 pIndigoBAC 104 39208 

V84 377 11 H3 pIndigoBAC 104 39208 

V85 46 3 H3 pIndigoBAC 40 1840 

V86 515 8 H3 pIndigoBAC 40 20600 

V87 515 8 H3 pIndigoBAC 40 20600 

V88 1322 34 H3 pIndigoBAC-5 92 121624 

V89 1024 5 H3 pIndigoBAC-5 92 94208 

V90 1024 5 H3 pIndigoBAC-5 92 94208 

V91 1024 5 H3 pIndigoBAC-5 92 94208 

V92 1024 5 H3 pIndigoBAC-5 92 94208 

V93 1024 5 H3 pIndigoBAC-5 92 94208 

V94 1024 5 H3 pIndigoBAC-5 92 94208 

V95 1024 5 H3 pIndigoBAC-5 92 94208 

V96 1024 5 H3 pIndigoBAC-5 92 94208 

V97 1024 5 H3 pIndigoBAC-5 92 94208 

V98 1024 5 H3 pIndigoBAC-5 92 94208 

V99 1024 5 H3 pIndigoBAC-5 92 94208 

V100 1024 5 H3 pIndigoBAC-5 92 94208 

V101 870 10 H3 pIndigoBAC-5 54 46980 

V102 1294 42 H3 pIndigoBAC-5 54 69876 

V103 1294 42 H3 pIndigoBAC-5 54 69876 

V104 1294 42 H3 pIndigoBAC-5 54 69876 

V105 1294 42 H3 pIndigoBAC-5 54 69876 

V106 1294 42 H3 pIndigoBAC-5 54 69876 

V107 1294 42 H3 pIndigoBAC-5 54 69876 

V108 1294 42 H3 pIndigoBAC-5 54 69876 

V109 1294 42 H3 pIndigoBAC-5 54 69876 

V110 1294 42 H3 pIndigoBAC-5 54 69876 

V111 1294 42 H3 pIndigoBAC-5 54 69876 

V112 1294 42 H3 pIndigoBAC-5 54 69876 
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Supplemental Table 1: Cont… 

Pool White * Blue * Fraction Vector Insert size Individual pool genome contribution ! 

V113 1294 42 H3 pIndigoBAC-5 54 69876 

V114 20 1 H4 pIndigoBAC-5 83 1660 

V115 112 0 H4 pIndigoBAC-5 83 9296 

V116 158 0 H4 pIndigoBAC-5 83 13114 

* The estimated number of white and blue colonies 

! The genome contribution of the individual pool calculated by multiplying the number of white colonies with the  

  estimated insert size 

 

 
Supplemental Table 2: The descriptions of the 110 BAC pools of SusPtrit. 

Pool White * Blue * Fraction Vector Insert size Individual pool genome contribution ! 

S1 218 11 H0 pIndigoBAC-5 89 19402 

S2 3703 2 H0 pIndigoBAC-5 89 329567 

S3 3703 2 H0 pIndigoBAC-5 89 329567 

S4 3703 2 H0 pIndigoBAC-5 89 329567 

S5 3703 2 H0 pIndigoBAC-5 89 329567 

S6 3703 2 H0 pIndigoBAC-5 89 329567 

S7 3703 2 H0 pIndigoBAC-5 89 329567 

S8 3703 2 H0 pIndigoBAC-5 89 329567 

S9 3703 2 H0 pIndigoBAC-5 89 329567 

S11 790 14 H1 pIndigoBAC 95 75050 

S10 1957 40 H1 pIndigoBAC 95 185915 

S12 1957 40 H1 pIndigoBAC 95 185915 

S13 1957 40 H1 pIndigoBAC 95 185915 

S14 1957 40 H1 pIndigoBAC 95 185915 

S15 1957 40 H1 pIndigoBAC 95 185915 

S16 1957 40 H1 pIndigoBAC 95 185915 

S17 1957 40 H1 pIndigoBAC 95 185915 

S18 276 0 H1 pIndigoBAC 124 34224 

S19 2609 61 H1 pIndigoBAC 124 323516 

S20 2609 61 H1 pIndigoBAC 124 323516 

S21 2609 61 H1 pIndigoBAC 124 323516 

S22 2609 61 H1 pIndigoBAC 124 323516 

S23 2609 61 H1 pIndigoBAC 124 323516 

S24 1702 86 H1 pIndigoBAC-5 106 180412 

S25 1126 23 H1 pIndigoBAC-5 106 119356 

S26 1126 23 H1 pIndigoBAC-5 106 119356 

S27 1126 23 H1 pIndigoBAC-5 106 119356 

S28 1126 23 H1 pIndigoBAC-5 106 119356 

S29 1126 23 H1 pIndigoBAC-5 106 119356 

S30 1126 23 H1 pIndigoBAC-5 106 119356 

S31 1126 23 H1 pIndigoBAC-5 106 119356 

S32 1126 23 H1 pIndigoBAC-5 106 119356 

S33 1126 23 H1 pIndigoBAC-5 106 119356 

S34 1126 23 H1 pIndigoBAC-5 106 119356 

S35 1126 23 H1 pIndigoBAC-5 106 119356 

S36 1126 23 H1 pIndigoBAC-5 106 119356 

S37 1126 23 H1 pIndigoBAC-5 106 119356 

S38 1126 23 H1 pIndigoBAC-5 106 119356 

S39 578 4 H1 pIndigoBAC-5 104 60112 

S40 2522 82 H1 pIndigoBAC-5 104 262288 

S41 2522 82 H1 pIndigoBAC-5 104 262288 

S42 2522 82 H1 pIndigoBAC-5 104 262288 

S43 2522 82 H1 pIndigoBAC-5 104 262288 

S44 2522 82 H1 pIndigoBAC-5 104 262288 

S45 2522 82 H1 pIndigoBAC-5 104 262288 

S46 2522 82 H1 pIndigoBAC-5 104 262288 

S47 280 9 H2 pIndigoBAC 108 30240 

S48 1954 32 H2 pIndigoBAC 108 211032 
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Supplemental Table 2: Cont… 

Pool White * Blue * Fraction Vector Insert size Individual pool genome contribution ! 

S49 1954 32 H2 pIndigoBAC 108 211032 

S50 1954 32 H2 pIndigoBAC 108 211032 

S51 1954 32 H2 pIndigoBAC 108 211032 

S52 1954 32 H2 pIndigoBAC 108 211032 

S53 27 0 H2 pIndigoBAC 161 4347 

S54 609 6 H2 pIndigoBAC 161 98049 

S55 609 6 H2 pIndigoBAC 161 98049 

S56 609 6 H2 pIndigoBAC 161 98049 

S57 609 6 H2 pIndigoBAC 161 98049 

S58 609 6 H2 pIndigoBAC 161 98049 

S59 1464 54 H2 pIndigoBAC-5 116 169824 

S60 1029 28 H2 pIndigoBAC-5 116 119364 

S61 1029 28 H2 pIndigoBAC-5 116 119364 

S62 1029 28 H2 pIndigoBAC-5 116 119364 

S63 1029 28 H2 pIndigoBAC-5 116 119364 

S64 1029 28 H2 pIndigoBAC-5 116 119364 

S65 1029 28 H2 pIndigoBAC-5 116 119364 

S66 1029 28 H2 pIndigoBAC-5 116 119364 

S67 1029 28 H2 pIndigoBAC-5 116 119364 

S68 1029 28 H2 pIndigoBAC-5 116 119364 

S69 1029 28 H2 pIndigoBAC-5 116 119364 

S70 1029 28 H2 pIndigoBAC-5 116 119364 

S71 1029 28 H2 pIndigoBAC-5 116 119364 

S72 460 2 H2 pIndigoBAC-5 105 48300 

S73 3113 102 H2 pIndigoBAC-5 105 326865 

S74 3113 102 H2 pIndigoBAC-5 105 326865 

S75 3113 102 H2 pIndigoBAC-5 105 326865 

S76 3113 102 H2 pIndigoBAC-5 105 326865 

S77 3113 102 H2 pIndigoBAC-5 105 326865 

S78 3113 102 H2 pIndigoBAC-5 105 326865 

S79 3113 102 H2 pIndigoBAC-5 105 326865 

S80 3113 102 H2 pIndigoBAC-5 105 326865 

S81 3113 102 H2 pIndigoBAC-5 105 326865 

S82 3113 102 H2 pIndigoBAC-5 105 326865 

S83 3113 102 H2 pIndigoBAC-5 105 326865 

S84 3113 102 H2 pIndigoBAC-5 105 326865 

S85 209 5 H3 pIndigoBAC 154 32186 

S86 949 9 H3 pIndigoBAC 154 146146 

S87 949 9 H3 pIndigoBAC 154 146146 

S88 949 9 H3 pIndigoBAC 154 146146 

S89 949 9 H3 pIndigoBAC 154 146146 

S90 949 9 H3 pIndigoBAC 154 146146 

S91 949 9 H3 pIndigoBAC 154 146146 

S92 25 0 H3 pIndigoBAC 168 4200 

S93 199 1 H3 pIndigoBAC 168 33432 

S94 303 0 H3 pIndigoBAC 168 50904 

S95 251 1 H3 pIndigoBAC 168 42168 

S96 251 1 H3 pIndigoBAC 168 42168 

S97 251 1 H3 pIndigoBAC 168 42168 

S98 346 13 H3 pIndigoBAC-5 124 42904 

S99 491 21 H3 pIndigoBAC-5 124 60884 

S100 491 21 H3 pIndigoBAC-5 124 60884 

S101 491 21 H3 pIndigoBAC-5 124 60884 

S102 491 21 H3 pIndigoBAC-5 124 60884 

S103 491 21 H3 pIndigoBAC-5 124 60884 

S104 491 21 H3 pIndigoBAC-5 124 60884 

S105 128 4 H3 pIndigoBAC-5 127 16256 
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S106 849 24 H3 pIndigoBAC-5 127 107823 

S107 849 24 H3 pIndigoBAC-5 127 107823 

S108 849 24 H3 pIndigoBAC-5 127 107823 

S109 849 24 H3 pIndigoBAC-5 127 107823 

S110 849 24 H3 pIndigoBAC-5 127 107823 

* The estimated number of white and blue colonies 

! The genome contribution of the individual pool calculated by multiplying the number of white colonies with the  

  estimated insert size 

 

 

 
Supplemental Table 3: The positive BAC pools from Vada and SusPtrit BAC libraries detected using 12 

PCR primers. 
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V11    NT    NT NT   

 V17   NT    NT NT   

V21    NT    NT NT   

  V35  NT    NT NT   

V38    NT    NT NT   

V41    NT    NT NT  V41 

V45    NT    NT NT   

V48  V48  NT    NT NT  V48 

 V51   NT    NT NT   

 V69   NT    NT NT   

 V76 V76  NT    NT NT   

 V77   NT    NT NT   

V84    NT    NT NT   

V89    NT    NT NT   

    NT    NT NT  V104 

V113    NT    NT NT   
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S7     S7 S7    S7 S7 

S8            

      S13    S13  

S22            

S23            

S30            

S35   S35 S35 S35 S35  S35  S35 S35 

         S36   

S39            

S40   S40 S40 S40    S40   

S43           S43 

S45   S45 S45  S45 S45   S45  

     S51 S51    S51 S51 

S56            

        S58  S58  

      S73  S73  S73  

S75   S75      S75   

        S77    

        S81   S81 

S82            

      S109  S109  S109 S109 

The shaded areas indicate no amplification was expected from the primers on the respective BAC library. 

NT; Not tested 
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Supplemental Table 4: The primers used for determining the order of BAC clones in Table 5 

Name Primers sequences (5’- 3’) 
Ta 

(°C) 
Source 

WBE114 Refer Table 1  Marcel et al. (2007a) 

WBE115 Refer Table 1  Marcel et al. (2007a) 

besV41P7L3AF 
F: GTTGCTTCATGTATACTTCTTCTT 

56 BAC end 
R: ATCTTCCCAACGTCAACAAATC 

besV41P7L3AR 
F: ATAATCTTAGCCCTCACATCACCA 

56 BAC end 
R: AGTTCCAAGCAAAGCGTCGTAG 

besV76P5D5AF 
F: ATAGGGATGCTTACCACTGAA 

56 BAC end 
R: AAATTACTAGCTAGACTCCCACTC 

besV76P5D5AR Refer Supplemental Table 5  BAC end 

besV48P5B18AR Refer Supplemental Table 5  BAC end 

besV48P5B18AF 
F: TACTATCCTTCCGCTCACAACTCA 

58 BAC end 
R: GGGACCCCTATTACCACCAG 

Rphq2.S01 Refer Supplemental Table 5  SusPtrit annotated gene 

P14M54-252 Refer Supplemental Table 5  Marcel et al. (2007a) 

besS35P1J10AF 
F: CTGCCACTCTTTATCTTTTTG 

56 BAC end 
R: TAGTATCGGGGAGTATTAGC 

besS35P1J10AR 
F: TCCGGTATGCACGAAAAC 

58 BAC end 
R: CCTGCCGGTAAACGAGAT 

besS35P2K14EF Refer Supplemental Table 5  BAC end 

besS35P2K14ER 
F: TGTTCCGTTCATACTCACCTT 

56 BAC end 
R: ACCATAGAACGACCCTCACA 

besS7P2C21EF 
F: GAAGTATATGCCGACAACCAAATG 

58 BAC end 
R: GAAAACCGTCCAACCTCTACAAGT 

besS81P2C6AF 
F: CCCTAGGGAAAGCCATCATACG 

58 BAC end 
R: GGGTTTGCCTCATCCATAGC 

besS81P2C6AR 
F: CGCCGTTTTGACATCCATCTG 

58 BAC end 
R: TCAAATCCGAGGGCAAAGTGTT 

bfsS35P2K14EF-267 Refer Supplemental Table 5  BAC AFLP 

bfsS35P2K14EF-283 
F: ATGCGACCTATTGCATGTCT 

56 BAC AFLP 
R: TGACGGTAAACAAGCCTTTC 

bfsS35P2K14EF-468 
F: CTCATGGAAGCAGCAAAACTA 

58 BAC AFLP 
R: GCCGGCATACTCACCACT 
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Supplemental Table 5: The 40 molecular markers developed and mapped between flanking markers WBE114 and 

WBE115 of Rphq2 

Name 
Tm  

(°C) 

Restriction  

Enzyme 

Primers sequences  

(5’- 3’) 
Source 

Dominant markers amplifying Vada 

besV76P5D5AR 56 
 F: GAGGAGCCGTGTCGTCTTGT 

BAC end 
 R: CCGTTTCCGTTCACTGGTTAT 

bfsS35P2K14E-267 56 
 F: CGCCGTATACCAAGGCTATT 

BAC AFLP 
 R: ATGAGCTCGTAGACCAGCAG 

FQ2D1F6 65 
 F: ATGTGGGCCAACGGTGCAAATCAGG 

Vada BAC sequence 
 R: CAATACGGAGGTGTCGCCCATAAC 

FQ2D3F 65 
 F: CGTCTGCGGCCCCGTCGTCTCC 

Vada BAC sequence 
 R: GATGGGCGCGGTGGTCTTGTTCTTG 

FQ2D4F9 65 
 F: GCCCCGTGCATCCGTTCGT 

Vada BAC sequence 
 R: TCCGCAGATTTCATAGGCAGGTGT 

FQ2D4F14 65 
 F: TTTGATGCGCAGGGTTTGGAGAGGT 

Vada BAC sequence 
 R: GGGAGGGGTGAGGGGGCTGGAG 

FQ2D4F15 65 
 F: TCCTCCACGGCACCTACCAAGACG 

Vada BAC sequence 
 R: CCCGGACGGACGCCTGAAG 

FQ2D6F 65 
 F: TAGGGGCGATAGAACCAGAAAGT 

Vada BAC sequence 
 R: CTCCCCAAGGCCAAGATAAGA 

FQ2D6F2 65 
 F: CCCGCCGGAATAGCAGAATCAGG 

Vada BAC sequence 
 R: GCATCCGGCCACGTCCAGTCAG 

FQ2D6F3 65 
 F: CATCCGCGCAGCCACACCTTTCATA 

Vada BAC sequence 
 R: ACATTTCCCGCCATTTCCGACAACT 

FQ2D6F4 65 
 F: TCTTGCATCTGGCGGAGGAACTG 

Vada BAC sequence 
 R: TTTGGCACCGTATACCGAGGCTGAG 

FQ2D7F2 65 
 F: AGAAACTCCAACTCCTCGGCTCCAT 

Vada BAC sequence 
 R: TGTCGACGCAATCTTAACCTTCTGA 

FQ2D7F6 65 
 F: GGATGCCATATTTCACGTAGACAGG 

Vada BAC sequence 
 R: TCGTGGGAGGCATTGAGATTTGAGG 

FQ2D8F6 65 
 F: GTGACAACCGACCAACGAC 

Vada BAC sequence 
 R: GCGAGCGCCTTATCCATTAG 

FQ2D9F9 65 
 F: GCGGGTAGGCCTTGGTCTGTTC 

Vada BAC sequence 
 R: GGGAGGTGCATGCCAAAAAGTCAAT 

FQ2D10F2 60 
 F: CATGGCGGATTATTGGTGTTAGTAG 

Vada BAC sequence 
 R: CAGTGCGGTGGGGTGCTC 

P15M51-204 56 
 F: CGGAGGAAACATGGACAACGAA 

Marcel et al. (2007a) 
 R: AGCGAGCTCACTGCCAATCTACC 

Rphq2V14 58 
 F: CGCCGCCAACTGCAGCAAGAATCC 

Vada annotated gene 
 R: CAACGTCGACGGCAGTCCCGATG 

Rphq2V16 58 
 F: TTGCGGTGGAGTTCGACATCTTCA 

Vada annotated gene 
 R: GTCATCGGGTCCACTTTGCCTTCC 

Rphq2V19 65 
 F: CCCCGCGGTCTCATTCCTT 

Vada annotated gene 
 R: TCTTTTTATCTTGGGCAACCGTGTA 

Rphq2V25 65 
 F: TGTCTTCCTTCGGTTCCTTCC 

Vada annotated gene 
 R: TCCGCCATGGCCACGATACG 
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Supplemental Table 5: Cont… 

Dominant markers amplifying SusPtrit  

Name 
Tm  

(°C) 

Restriction  

Enzyme 

Primers sequences  

(5’- 3’) 
Source 

besS35P2K14EF 58 
 F: TTGAAACAGCTGGGGTCTT 

BAC end 
 R: TGGTACACAAATATTCGTCTGC 

FsQ2N2F3 56 
 F: GCACGGGCGGCCACAGAGGAG 

SusPtrit BAC sequence 
 R: TGTCGCCCAGCAGCTACGGAACC 

FsQ2N2F8 62 
 F: TGGCGGAGTCAAAATCAAGAGTT 

SusPtrit BAC sequence 
 R: TCGTGGATATAGCGGCAGAGGTC 

FsQ2N4F3 58 
 F: GCTGATCCCACCCGCCATTC 

SusPtrit BAC sequence 
 R: CATTCCTACCGCCCGCTTTCTTACG 

FsQ2N5F5 63 
 F: CCGCCGAGGACTGATACTT 

SusPtrit BAC sequence 
 R: GCAACCAAACGCACCCTTAGA 

FsQ2N11F6 62 
 F: CACTTCTCCAATGACTGCCCTTATG 

SusPtrit BAC sequence 
 R: ATCGCCTTTACGTGAACTATCCAG 

FsQ2N11F8 58 
 F: GAAATAATCAACTTGTGGCATAC 

SusPtrit BAC sequence 
 R: CTTAGGGCAGCGAGGTTAG 

FsQ2N11F9 62 
 F: CATCATATTGGCAGCAGTGG 

SusPtrit BAC sequence 
 R: AATCCCGAGCCTTCTTGACATA 

FsQ2N12F3 63 
 F: ACTGGTGGGTCCCCTTCTGGTA 

SusPtrit BAC sequence 
 R: GCTTTGCCGGTCTTGTTCGTATT 

FsQ2N13F2 63 
 F: AGCCCCTCGACAGTTCCAGCATAGA 

SusPtrit BAC sequence 
 R: CAGCCCGACCACATACCTCCACAGT 

FsQ2N13F3 63 
 F: AAAGAGGAGGGTGGCGGTGGTAGGA 

SusPtrit BAC sequence 
 R: GGGGTGCTCGCGTCTGAACTCTGAA 

FsQ2N13F9 60 
 F: AGCGGTCTTAGTCTGGTCGTTGTA 

SusPtrit BAC sequence 
 R: TCTTCAGGGCCATTTTCTATTTATC 

FsQ2N13F10 62 
 F: GGCCTCACTAACCAAAACGCAGAC 

SusPtrit BAC sequence 
 R: ATGATTTTCCGACCACGACAACGAT 

FsQ2N16F3 63 
 F: GGGTGCTTGTGCCATGGGAGTAGG 

SusPtrit BAC sequence 
 R: GGGGGTGGAGTGCGGAGGAAGAC 

P14M54-252 56 
 F: AGACCAGCATTACCTAAGCAGAGA 

Marcel et al. (2007a) 
 R: AGAGGAGAGTGAGTGTAGGTGTCG 

Rphq2S01 58 
 F: TGAAGGCGGGTTTGGTGTGGTGTA 

SusPtrit annotated gene 
 R: CCCGCGTATGATTCTCTGCCTCTT 

     

Co-dominant markers 

Rphq2V30 65 MboII 
F: CGGCGGTGCGATCATAGAAT 

Vada annotated gene 
R: TCCCCGGCCGTAGAGTCC 

Rphq2V34 58 TaqI 
F: ACCCCGGCTCCCTCGTCCTC 

Vada annotated gene 
R: CTTTTGCCGCAGCGCCTTCATCT 

S7300002F 65 SduI 
F: GACGTTGAGGAGAGCAAAGG 

SusPtrit BAC sequence 
R: GCCGTTTATCACGAGGTTGT 

 

Supplemental Reference: Literature cited in Supplemental Table 4 and 5 

Marcel TC, Aghnoum R, Durand J, Varshney RK, Niks RE (2007a) Dissection of the barley 2L1. 0 region 

carrying the 'Laevigatum' quantitative resistance gene to leaf rust using near-isogenic lines (NIL) 

and subNIL. Molecular Plant-Microbe Interactions 20:1604-1615 
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Introduction 
 

Partial resistance results in reduced epidemic development, despite a compatible infection 

type (Niks et al. 2011). Partial resistance inherits polygenically as was demonstrated for 

various pathosystems: (1) barley-rust (Marcel et al. 2007b; Qi et al. 1998) (2) barley-

powdery mildew (Aghnoum et al. 2010) (3) wheat-rust (Singh et al. 2005; Lowe et al. 

2011) and sunflower-Phoma macdonaldii (Darvishzadeh et al. 2007). Partial resistance is 

supposed to act on a minor-gene-for-minor-gene model (González et al. 2012; Marcel et 

al. 2008; Darvishzadeh et al. 2007; Qamar and Niks 2007). In the barley-rust pathosystem, 

the quantitative trait loci (QTLs) for partial resistance against barley leaf rust are 

abundantly available for breeders, viz. per cultivar a different set, per developmental stage 

a different set, per rust species a different set. Even to some extent per isolate a different 

set (González et al. 2012; Marcel et al. 2007b; 2008; Qi et al. 1998; 1999). Stacking of 

QTLs for partial resistance has been shown to increase the disease resistance in plants and 

even achieving near immunity (Castro et al. 2003a,b; Richardson et al. 2006; Singh et al. 

2000; 2005). 

 

Nonhost resistance provides immunity to all members of a plant species (nonhost) against 

a potential pathogen species (non-adapted/heterologous pathogen species). Different 

approaches can be used to investigate the inheritance of nonhost resistance: (1) 

interspecific crosses between the host and nonhost plant species (2) crossing individuals 

within a nonhost species with different levels of resistance to a particular non-adapted 

pathogen and (3) within a near-nonhost/marginal host species, crossing a rare susceptible 

individual with the one of common nonhost resistance (Niks and Marcel 2009). Nonhost 

resistance inherits polygenically as was demonstrated in various pathosystems; Based on 

approach (1), Lactuca-Bremia (Jeuken et al. 2008), approach (2), Arabidopsis-wheat leaf 

rust (Shafiei et al. 2007), approach (3) barley-powdery mildew (Aghnoum and Niks 2010) 

and barley-rust (Jafary et al. 2006; 2008). In barley-rust pathosystem, the QTLs for 

nonhost resistance against various rust fungi are abundantly available (Jafary et al. 2006; 

2008).  

 

Nonhost resistance can be an attractive source of resistance for breeding. Zhang et al 

(2009) stacked different combinations of nonhost resistance QTLs to Bremia lactucae, 

from a nonhost species (Lactuca saligna) into a host species (L. sativa) which is 

susceptible to B. lactucae. The stacking of a particular combination of QTLs increased the 

level of resistance for L. sativa against B. lactucae and one particular QTL combination 

even led to a complete resistance. For barley (Hordeum vulgare), which is a host to 

Puccinia hordei, an introgression of a resistance gene Rph22 from a nonhost species 

Hordeum bulbosum into cultivar Golden Promise gave a very high level of partial 
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resistance to P. hordei on adult plants and seedlings (Johnston et al. 2013). Nonhost 

resistance can be used in breeding through a pre-breeding program to avoid introducing 

undesirable traits from the nonhost species into the new variety or elite cultivars of host 

species. Other approaches are by identifying the homologs of nonhost resistance genes in 

the host species which give resistance and be used for breeding.  

 

In the barley-rust pathosystem, evidence suggests partial and nonhost resistance to be 

probably associated. At microscopic level, the mechanism of partial resistance is shared 

with, but less complete than, nonhost resistance of barley to non-adapted rust fungi (Niks 

1983a, b). Based on genetic studies, partial and nonhost resistance of barley may share 

some genes for resistance (Jafary et al. 2006; 2008). Partial resistance seems to be a weak 

form of nonhost resistance (Niks and Marcel 2009; Niks et al. 2011) which probably rests 

on similar principles. One can understand nonhost resistance by studying partial resistance 

and vice versa.  

 

The adapted and non-adapted rust fungal species plausibly share similar pathogen-

associated molecular patterns (PAMPs). Consequently, both the adapted and non-adapted 

rust fungal species will activate PAMP-triggered immunity (PTI). The adapted and non-

adapted rust fungal species will try to suppress PTI by secreting effectors. The genes 

explaining the effects of QTLs (or their corresponding transcripts or proteins) for partial 

and nonhost resistance are probably the operative targets of pathogen effectors. The ability 

of effectors to manipulate these operative targets will determine the suppression level of 

the defense response. Adapted pathogens should generally be much more successful in 

suppressing defense than non-adapted pathogens in a particular plant species. Stacking of 

resistance QTLs/operative targets would result in a resistance phenotype as a result of 

unsuppressed defense response. In contrast, stacking the variants of operative targets 

which can be manipulated by the effectors would result in a susceptible phenotype. 

Accumulation of such operative targets may explain the susceptibility of barley 

experimental lines such as SusPtrit and SusPmur against some non-adapted rust fungi 

(Atienza et al. 2004). It is probably also true for barley experimental lines, viz. SusBgtSC 

and SusBgtDC, which are somewhat susceptible to certain non-adapted powdery mildew 

fungi (Aghnoum and Niks 2010) 

 

In order to understand the molecular basis of partial and nonhost resistance, the genes 

explaining the QTLs need to be identified, cloned and validated for their function in 

resistance. Knowing the principles underlying nonhost resistance may allow the 

development of methods to engineer new nonhost-like types of resistance in hosts to their 

adapted pathogens/and or to select partial resistance more effectively. 
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Map-based cloning of minor genes for partial and nonhost resistance of barley 

 

Map-based cloning or positional cloning is a step-by-step procedure to position a QTL into 

the smallest possible genetic interval and then anchoring it to a corresponding physical 

interval where candidate genes can be identified and validated. In the previous chapters, 

we presented work in progress towards cloning minor genes for partial and nonhost 

resistance and we have developed different tools which are necessary assets to clone them.  

 

 

QTL validation 

 

After QTLs have been identified in mapping populations, they need to be confirmed. Such 

a validation of QTLs is usually performed using NILs. These isogenic lines provide a 

uniform genetic background to test the effect of a single QTL without the interference of 

other QTLs influencing the same trait. In Chapter 3, we describe the development of NILs 

in SusPtrit genetic background for four partial resistance QTLs (Rphq2, Rphq3, Rphq11 

and Rphq16) and two alleles of one nonhost resistance QTL viz. Vada and L94 alleles 

(Rnhq.V and Rnhq.L). Marker assisted selection enabled the backcrossing procedure. 

These newly developed NILs together with the NILs in L94 genetic background 

containing Rphq2, Rphq3, Rphq4 (Marcel et al. 2007a; van Berloo et al. 2001) and Rnhq.V 

(Niks, unpublished) were inoculated with different rust fungal species/isolates. 

 

All the QTLs selected for validation had a proportion of the explained phenotypic variance 

ranges from 15 to 35%. In the NILs, the effect of all the QTLs was confirmed. The effect 

of QTLs can possibly be isolate- and species-specific when tested against different rust 

fungal species/isolates. For example, the Rphq16 introgression in SusPtrit affects 

resistance only to P. hordei and was effective against all three isolates of P. hordei. In 

contrast, the Rphq11 introgression in SusPtrit not only conferred resistance to P. hordei in 

an isolate-specific fashion, but the introgression was also effective to other rust fungal 

species, such as P. hordei-bulbosi isolate Iran where the Rphq11 introgression resulted in 

near immunity. Based on the disease tests on NILs, it seems that partial and nonhost 

resistance indeed share some genes. We cannot rule out the possibility that we may have 

overestimated the resistance spectrum of the QTL introgressions because the wide 

resistance spectrum conferred by some introgressions may be due to presence of: (1) 

additional resistance genes to the same or other rust isolate/species introgressed from the 

donor away from the introgression, and (2) several resistance genes in the QTL 

introgression, each with a narrow spectrum of effectiveness, but together conferring a 

broader resistance spectrum against different rust fungal species/rust or (3) resistance 

conferred by an introgression may be the result of several infection reducing and even 



Chapter 6  General Discussion 

151 

promoting genes within the introgression, as was reported in Lactuca saligna-derived 

nonhost resistance in lettuce (L. sativa) to Bremia lacticae (den Boer et al. 2013).  

 

Rphq2, Rphq3 and Rnhq.V seemed to affect the resistance differently in different genetic 

backgrounds. For example, Rphq2 introgression in L94 was effective against P. hordei and 

two non-adapted rust species, but in SusPtrit, the Rphq2 introgression conferred isolate-

specific resistance to Ph.1.2.1 and not to other rust species. In contrast, Rnhq.V 

introgression in L94 was effective against four non-adapted rust species but not to adapted 

rust fungi. In SusPtrit, Rnhq.V introgression was effective to P. hordei isolate Uppsala. 

The different resistance phenotypes conferred by a QTL in different genetic backgrounds 

can result from the interactions between the QTL introgression with other gene(s) 

elsewhere in the genome (Holland 2007; Lagudah 2011) or with cytoplasmic factor(s) 

(Akula et al. 2012; Levings and Siedow 1992; Mazouz et al. 2002). Another explanation 

would be difference in the size of the introgressions in SusPtrit and L94 which may lead to 

difference in resistance genes present in the NILs.  

 

In the future, these NILs can serve as parents to accumulate different combinations of 

resistance QTLs. We can later test the effect of different combinations of QTLs against 

different rust fungi. For example, the combination of Rphq2 and Rphq3 in L94 resulted in 

higher level of resistance compared to NILs with a single QTL introgression (Marcel et al. 

2007a). Combinations of QTLs may or may not result in additive effects on the level of 

resistance (Zhang et al. 2009). Studying the combinational effect of different QTLs is 

crucial for breeders to plan the QTL pyramiding strategy.  

 

 

Fine-mapping 

 

The NILs can also be used as the starting materials to delimit QTLs to the smallest 

possible genetic interval as described in Marcel et al. (2007a) for fine mapping of Rphq2. 

Development of NILs followed by fine-mapping of QTLs into a certain genetic interval is 

time consuming. We suggest to develop NILs and to fine-map QTLs in parallel to reduce 

the time. In Chapter 4, fine-mapping of Rphq11 and Rphq16 was initiated by identifying 

plants from the early backcrossing generation. Molecular markers were used to select 

plants which carry recombinations at the targeted QTL region. Since the donor of Rphq11 

(Steptoe) and Rphq16 (DOM) also carry one additional QTL (Marcel et al. 2007b), 

molecular marker assisted selection was required against the additional QTL, i.e. the 

SusPtrit susceptibility allele was selected for those QTLs. In less than two years, i.e. 

before the NILs are ready, we managed to perform two rounds of fine-mapping and 

positioned Rphq11 into a 0.2 cM genetic interval and 1.4 cM for Rphq16. Further fine-
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mapping of the QTLs, if needed, can be done by backcrossing a strategic recombinant to 

the recurrent parent or obtain heterozygous plant materials from the backcross program 

and search for additional recombinations to further reduce the genetic interval. The 

drawback of this approach is the heterogeneous genetic background of the recombinants 

which may interfere the accuracy of phenotyping the QTL effect during fine-mapping.  

 

Fine-mapping of Rphq11 and Rphq16 using this “dirty” procedure demonstrated that there 

was still a substantial noise by segregating genetic background but this did not hamper the 

fine-mapping. We suggest that, to follow this “dirty” fine-mapping approach, it is 

particularly important that the targeted QTL effect is relatively large, stable and that we 

know whether additional QTLs are contributed by the same donor parent. If so, such QTLs 

should be selected against. This fine-mapping approach can be further improved by 

initiating fine-mapping at a later stage of backcrossing such as BC3 or subsequent 

generations (Figure 1) as suggested by Yang et al. (2012). At BC3, we expect that only six 

percent of the donor genome outside the regions of the targeted QTLs remains in the 

recurrent parent. Such a low proportion of donor genome in the background will cause 

little, if any, phenotypic noise during fine-mapping.  

 

Fine-mapping requires the QTL region to be saturated with markers. A higher resolution 

of the genetic map in the QTL region helps to identify more informative recombinations in 

the region to effectively delimit a new and smaller marker interval around the responsible 

gene. The high-density barley integrated map which contains 6,990 markers [Barley, 

Integrated, Marcel 2009 available at http://wheat.pw.usda.gov/GG2/index.shtml; 

(Aghnoum et al. 2010)] is a great tool to recruit polymorphic markers for fine-mapping. In 

this integrated map 43% of the markers are based on EST or gene sequences. Another 

integrated map based on SNPs of ILLUMINA iSelect 9k barley infinium chip was made 

available recently by A. Martín-Sanz, R. Niks and P. Schweizer (ERA-PG 

“TritNONHOST” project, ERAPG08.053; unpublished). These integrated maps are useful 

to identify candidate genes as well as to search for synteny in grass species such as rice 

and Brachypodium in which whole genome sequences are available (Mayer et al. 2011; 

Schmidt 2000). Synteny between barley, rice and Brachypodium can be used for 

dissecting a QTL region provided there is no disrupted collinearity and the gene of interest 

is conserved in the syntenic interval of rice and Brachypodium (Chapter 4 and Chapter 5). 

Successful usage of synteny for map-based cloning of genes is demonstrated for ror2, 

rym4/5 and Ppd-H1 genes in barley. However, map-based cloning using synteny for Rpg1, 

Rpg5, rpg4, and Vrs1 genes in barley was not effective, because either the orthologs were 

located at non-syntenous positions or were absent (Graner et al. 2010).  
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The synteny between barley, rice and Brachypodium was successfully exploited to saturate 

the region of Rphq2 (Marcel et al. 2007a). The physical map of Rphq2 (Chapter 5) 

revealed three conserved genes between the three species. One of the conserved genes, a 

peroxidase, is present in a single copy in rice, in two copies in Brachypodium and in 

barley line SusPtrit, and in three copies in barley cultivar Vada. The other two conserved 

genes are present in a single copy in all three species. The remaining seven genes 

predicted only from the Vada sequence and 8 genes predicted only from the SusPtrit 

sequence have no homolog in the identified syntenic regions of rice and Brachypodium. 

Since the microsynteny is not conserved between barley, rice and Brachypodium, we may 

not be successful in isolating the gene(s) for Rphq2 if based solely on synteny, and 

therefore we have to resort to physical mapping. 

 

 

Physical mapping 

 

A physical map of a genome, chromosome or a chromosome region shows the physical 

locations of loci. Generating a physical map requires the construction of a genomic library. 

Such a library consists of a large number of DNA fragments inserted into a cloning vector, 

and together representing a few times the genome of the organism. A genomic library is 

preferably composed of clones with large average insert size and can be kept stably for a 

long term. Large insert cloning vectors with different insert capacity such as yeast 

artificial chromosomes (YAC), bacterial artificial chromosomes (BAC), P1 phage-derived 

artificial chromosomes (PAC), among others (Gibson and Muse 2004; Monaco and Larin 

1994) are used to construct genomic libraries. YAC has the capacity to accommodate 

insert sizes up to 100 - 2000 Kb which implies that fewer YAC clones are required to 

cover a genome or a targeted chromosome region (Burke et al. 1987; Monaco and Larin 

1994). This insert capacity is desirable especially for constructing a genomic library for a 

large-genome species. Unfortunately, YAC has problems with the stability and chimerism 

of the inserts as well as with the efficiency of purifying the inserted DNA from the YAC 

DNA (Monaco and Larin 1994; Zhang and Wu 2001). YAC libraries are available for 

barley (Kleine et al. 1993; 1997; Schmidt et al. 2001) and problems with the stability and 

chimerism of DNA inserts were observed when used for map-based cloning (Lahaye et al. 

1998; Schmidt et al. 2001).   

 

Bacterial-based cloning vectors such as BAC (Shizuya et al. 1992) and PAC (Ioannou et 

al. 1994) are developed to circumvent the problems with YAC. Although BAC and PAC 

have relatively smaller insert capacity compared to YAC [insert sizes are up to 300 Kb 

(Monaco and Larin 1994)], they have a better stability and low frequency of chimerism of 

inserts. Additionally, purifying the DNA of BAC and PAC from the bacterial host DNA is 
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much easier than purifying the DNA of YAC from the yeast host DNA (Copeland and 

Jenkins 2001; Giraldo and Montoliu 2001; Zhang and Wu 2001). The isolation of BAC is 

done using the existing plasmid isolation protocols. In contrast, isolation of YAC requires 

tedious methods (Giraldo and Montoliu 2001; Monaco and Larin 1994). In Chapter 5, we 

decided to construct one BAC library from Vada and another one from SusPtrit.  

 

The BAC cloning vectors had fertility factor (F factor) genes (parA and parB). These 

genes maintain a low copy number of BAC (one to two copies) in a bacterium (Ioannou et 

al. 1994) which reduces the chances of recombination between DNA inserts. The BAC 

libraries constructed for barley so far, have an average insert size ranging from 80 to 140 

Kb [Chapter 5, this thesis; (Isidore et al. 2005; Saisho et al. 2007; Schulte et al. 2011; Yu 

et al. 2000)]. Fine-mapping of QTLs should result in a sufficiently small genetic interval 

to ease the construction of a physical map using a minimum number of BAC clones and to 

contain a manageable number of candidate genes in the region. It is difficult, but possible, 

to fine-map a QTL into a genetic interval containing only one candidate gene (Ashikari et 

al. 2005; Fridman et al. 2000; Zhang et al. 2012) provided there are sufficient 

recombination events in the QTL region.  

 

Construction and organization of a gridded BAC library from an organism, especially 

those with a large genome, is not only laborious and costly but also requires robotic 

technology as well as large freezer space for storage and maintenance. If the BAC library 

is only used for map-based cloning or generating markers at regions of interest, 

construction of a gridded BAC library is not necessary for such applications (Ma et al. 

2000). Constructing a gridded BAC library from multiple cultivars is irrational and not 

cost-effective. Still, one may need to construct BAC libraries from the genotypes of 

interest. This is, because the targeted gene might be absent in the genomic libraries 

available for other genotypes due to disrupted intraspecific collinearity (Springer and 

Stupar 2007). A non-gridded BAC library which can be constructed rapidly and less costly 

is a good alternative. The BAC libraries of Vada and SusPtrit that we developed (Chapter 

5) are non-gridded where the clones are organized in pools instead of individual clones in 

separate wells. Pooling clones together may create a competition for detection among the 

clones, but pooling of less than 2000 clones per pool will not hamper the detection 

efficiency appreciably (Ma et al. 2000). For barley, a BAC library with five genome-

equivalents needs about 200,000 clones with an average insert size of 120 Kb. In order to 

organize the BAC clones to have a gridded BAC library, 520 384-well plates are required, 

against only 100 pools of BAC clones (2000 clones per pool) kept in 100 microcentrifuge 

tubes for a non-gridded BAC library. To date, BAC libraries (gridded or non-gridded) are 

available for six barley genotypes (Table 1). 
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Table 1: List of BAC libraries currently available for barley. 

Barley genotype BAC library References 

Morex 

Six gridded BAC libraries 

 Constructed by partial digestion with HindIII 

(three), with EcoRI (one) and with MboI (one) 

 One constructed by mechanical shearing 

Yu et al. 2000;  

Schulte et al. 2011 

Haruna Nijo 

 

One gridded BAC library 

 Constructed by partial digestion with HindIII 

Saisho et al. 2007 

CS134
*
 

 

One gridded BAC library 

 Constructed by partial digestion with HindIII 

Shi et al. 2010 

Cebada Capa 

 

One non-gridded BAC library 

 Constructed by partial digestion with HindIII 

Isidore et al. 2005 

Vada 

 

One non-gridded BAC library 

 Constructed by partial digestion with HindIII 

This thesis, Chapter 5 

SusPtrit 

 

One non-gridded BAC library 

 Constructed by partial digestion with HindIII 

This thesis, Chapter 5 

*
 a doubled haploid line derived from a cross between Clipper and Sahara 3771 

 

 

In Chapter 5, we screened the non-gridded BAC library of Vada and SusPtrit and 

constructed a contig spanning Rphq2 of Vada and a contig covering partially the rphq2 

window of SusPtrit. The study in Chapter 5 together with that of Isidore et al. (2005) 

shows the usefulness of a non-gridded BAC library for map-based cloning. The screening 

strategy suggested in both studies was efficient in retrieving specific BAC clones of 

interest. One part of the screening procedure used in Chapter 5 and Isidore et al. (2005) 

involves robotic picking of BAC clones which may not be affordable for most 

laboratories. Recently, Xia et al. (2014) constructed a non-gridded BAC library for 

soybean and suggested an efficient screening method without resorting to robotic picking 

of BAC clones. 

 

The non-gridded BAC library of Vada and SusPtrit are not only useful for map-based 

cloning of Rphq2, but also for cloning of other minor genes for partial and nonhost 

resistance to rust fungi such as Rphq3, Rphq4, Rnhq, among others. The BAC libraries 

also can be used for map-based cloning of other minor genes such as minor genes for 

resistance to powdery mildew as were mapped by Aghnoum et al. (2010), minor genes for 

heading date and plant height (Qi et al. 1998), and other genetic traits for which these 

accessions contrast. The non-gridded BAC library of Vada and SusPtrit are however, not 

suitable for whole genome physical mapping. The two BAC libraries were constructed by 

partial digestion with a single restriction enzyme, HindIII, which will lead to a biased 

BAC library, i.e., having an under-representation of some genomic regions due to 
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nonrandom distribution of the enzyme restriction sites in the genome (Ariyadasa and Stein 

2012; Schulte et al. 2011). 

 

Once we identified the BAC clones spanning the targeted chromosomal region, the BAC 

clones were sequenced. One can sequence the BAC clones either by Sanger sequencing or 

by using the next generation sequencing technology platforms such as the Roche 454 

Genome Sequencer FLX system (Zhou et al. 2010). The sequence can be annotated using 

the annotation pipelines available on the web such as RiceGAAS (Sakata et al. 2002), 

FPGP (Amano et al. 2010), MAKER (Cantarel et al. 2008), iPlant (http://dnasubway. 

iplantcollaborative.org/), and TriAnnot (Leroy et al. 2012). TriAnnot was chosen for 

annotation of Rphq2 sequence from Vada and SusPtrit because the panels in the annotation 

pipeline can be customized for annotating barley sequences.  

 

 

Candidate gene validation 

 

In the barley-rust pathosystem, the rust fungi target mainly the mesophyll cells of barley. 

As a result, validation of candidate genes via transient (over)expression and silencing of 

candidate genes by particle bombardment is not suitable for barley-rust pathosystem, 

because the carriers of the gene constructs cannot reach the mesophyll cells. This is in 

contrast to the barley-powdery mildew pathosystem, where the pathogen only infects 

epidermal cells, and transient (over)expression and silencing of candidate genes by 

particle bombardment are successfully applied (Douchkov et al. 2005; Miklis et al. 2007). 

Other options are virus-mediated overexpression (VOX) and virus-induced gene silencing 

(VIGS).  

 

VOX and VIGS are rapid and easy techniques to validate candidate genes. Barley stripe 

mosaic virus (BSMV) is usually the vector for these two approaches. Until recently, 

BSMV-VOX only worked efficiently with small inserts (140 to 500 bp) like transient 

overexpression of effectors (Chapman et al. 2008; Christie et al. 2012; Lee et al. 2012). 

Larger inserts, such as green fluorescent protein (GFP) with 720 bp did not work well in 

BSMV-VOX due to a stability problem of the inserts, as in BSMV-VIGS, which then 

results in patchy expression (Lee et al. 2012). BSMV-VIGS is a well-established and 

powerful tool for validating candidate genes (Delventhal et al. 2011; Duan et al. 2013; 

Liang et al. 2012; Várallyay et al. 2012; Wang et al. 2013). Using this system on barley, 

the candidate genes are silenced at the most extensive level on the fifth leaf about 14 days 

after the inoculation was made on the fully expanded second leaf (Burch‐Smith et al. 

2004; Holzberg et al. 2002). This implies that VIGS cannot be used for candidate genes 

which are expected to express best at an earlier plant development stage, such as first 



Chapter 6  General Discussion 

158 

seedlings leaves as used in the phenotyping for near-nonhost resistance and partial host 

resistance to rust fungi. For example, the effect of Rphq2 against Ph.1.2.1 is most effective 

on the first leaf of seedlings and gradually become less effective starting from the third 

leaf onward (Wang et al. 2010). Evaluating the phenotype of Rphq2 on the fifth leaf will 

not be informative. The same problem may also be true for Rphq11 and Rphq16 which 

were mapped only at the seedling stage, on the first leaf (Chapter 4). Another possible 

limitation is the genotype-dependent efficiency of BSMV-VIGS (Bruun-Rasmussen et al. 

2007). As an example, the pairs of NILs of QTLs in L94 and SusPtrit genetic background 

(Chapter 3) are available for validating candidate genes through BSMV-VIGS. 

Unfortunately, BSMV-VIGS is not effective on L94. The silencing of phytoene desaturase 

(PDS) in L94 only resulted 10% of photobleaching on the fourth leaf, 14 days after 

inoculation on the first leaf. For SusPtrit, 40% of photobleaching was observed which 

suggests incomplete silencing of candidate genes. Such incomplete silencing would in 

case of quantitative resistance genes lead to inconclusive genotypes (T.C. Marcel, 

Wagenigen UR Plant Breeding, unpublished data). Besides that, if the candidate genes 

introgressed in SusPtrit are for nonhost resistance, the SusPtrit NILs are also not suitable 

for validating the candidate genes through BSMV-VIGS. The susceptible phenotype 

conferred by the alleles of SusPtrit to non-adapted rust fungi is particularly clear in first 

leaves of seedlings, and not at adult plant stage (Atienza et al. 2004) or intermediate 

development stages (R.E. Niks, Wageningen UR Plant Breeding, unpublished data). So, 

the fourth leaf is phenotypically not so contrasting between SusPtrit and regular immune 

barley accessions. Silencing the candidate genes, even if the genes are expressing at the 

fourth leaf, will not give a sufficiently contrasting phenotype between SusPtrit NILs and 

SusPtrit. 

 

For polygenic nonhost resistance there is one more reason that makes transient or stable 

gene silencing not a suitable approach for analyzing the candidate genes. Barley 

accessions, such as Vada that are immune to non-adapted rust fungi probably have a high 

gene dose to confer this resistance (Jafary et al. 2006). Silencing one of those genes might 

be insufficient to alter the immunity to some level of susceptibility. 

 

Another strategy to validate candidate genes is by targeting induced local lesions in 

genomes (TILLING). TILLING is particularly applied on species or genotypes that are not 

well amenable to genetic transformation, such as barley. TILLING aims to produce a large 

range of mutant phenotypes by creating mutations, such as missense changes, truncation 

and mutations in splice junction sequences (Kurowska et al. 2011). Several TILLING 

populations are available for barley, such as Optic (Caldwell et al. 2004), Morex (Talamè 

et al. 2008), Barke (Gottwald et al. 2009), Lux (Lababidi et al. 2009), among others 

(Kurowska et al. 2011). Recently, a TILLING population was created for Vada (Y. Wang 
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and X. Qi, Institute of Botany, Chinese Academy of Sciences, Beijing, China, 

unpublished), the donor of partial resistance QTLs, Rphq2, Rphq3, Rphq4 (Qi et al. 1998) 

and nonhost resistance QTL, Rnhq (Niks et al. 2000). By creating a TILLING population, 

we circumvent the problems which may arise from validating candidate genes by using 

BSMV-VIGS. However, for the same reason as explained for the BSMV-VIGS, also for 

TILLING it applies that a loss-of-function of one gene contributing to nonhost resistance 

might not alter the phenotype to susceptibility to non-adapted rust fungi, since several 

more genes remain to confer immunity.  

 

A better approach for testing the candidate genes for resistance would be expressing them 

in a susceptible barley line by using Agrobacterium-mediated stable transformation. In 

Chapter 2, we developed a new experimental line called Golden SusPtrit to test candidate 

genes for partial and nonhost resistance. Golden SusPtrit was developed to replace SusPtrit 

for the studies of partial and nonhost resistance. Golden SusPtrit is about as susceptible as 

SusPtrit to Ph.1.2.1 and non-adapted rust fungi tested in Chapter 2, but, in contrast to 

SusPtrit, it is also amenable to Agrobacterium-mediated stable transformation. Stable 

transformation with a candidate gene allows the transgene to be transmitted to the 

offspring through grains. As a result, we can obtain multiple identical plants with the 

transgene inserted at the same chromosomal position and consequently, the phenotype of a 

candidate gene can be tested with replications. This is not possible for transient assays, 

because each individually treated plant is unique. Stably expressed candidate genes for 

partial and nonhost resistance in Golden SusPtrit also provide the possibility to test the 

gene effect against adapted and non-adapted rust fungi on the same material, as we did for 

the NILs (Chapter 3). Such disease tests to multiple pathogens can show whether a gene 

for partial resistance plays a role in nonhost resistance and vice versa (Jafary et al. 2008; 

Chapter 3).  

 

 

Molecular basis of partial resistance 

 

Various postulations were made on the molecular basis of partial resistance based on 

evidences such as the association of resistance phenotypes with developmental phenotype, 

co-localization of partial resistance QTLs with resistance and defense gene analogues, 

among others (Poland et al. 2009). These postulations are speculative unless the genes 

explaining the QTLs are isolated and functionally tested. Only recently scientists have 

started to harvest their efforts of cloning the minor genes for partial resistance.  

 

The minor genes for partial resistance with large effect cloned thus far belong to different 

types of genes or gene families. They can be categorized into three different classes as 
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described by Poland et al. (2009): (1) QTLs are minor genes involved in basal defense and 

defense signal transduction, (2) QTLs are weak form of R-genes, and (3) QTLs are unique 

genes that were previously unknown to contribute to disease resistance. 

 

 

QTLs are genes involved in basal defense and defense signal transduction 

 

There are three cloned minor genes for partial resistance belonging to this category. One 

of them is Yr36, a temperature dependent race non-specific stripe rust resistance gene (Fu 

et al. 2009). Yr36 confers partial resistance to adult plants (Uauy et al. 2005) and seedlings 

(Fu et al. 2009) against P. striiformis f. sp. tritici (Pst) effectively at high temperature (25 

to 35°C). The gene of Yr36 encodes a protein with an N terminal kinase domain and a 

predicted steroidogenic acute regulatory protein-related lipid transfer domain (START) at 

the C terminal. This gene has been validated using a TILLING population of 1536 

mutagenized lines and was confirmed through stable transformation of the gene into a 

susceptible wheat variety. The combination of kinase and START domains is unique and 

not present in other organisms. The START domain is postulated to bind lipids from Pst 

(Fu et al. 2009) and to trigger the kinase domain to send out signals for defense response. 

Further studies are needed to characterize this gene. 

 

Lr34, previously known as LrT2 (Dyck 1977, 1987), is another cloned minor gene for 

resistance in wheat (Krattinger et al. 2009). Lr34 not only confers partial resistance of 

adult plants against leaf rust, Puccinia triticina (Pt) (Dyck et al. 1966), it also co-

segregates with the adult plant resistance genes Yr18 against stripe rust (Pst) (McIntosh 

1992; Singh 1992) and Pm38 against powdery mildew (Blumeria graminis f. sp. tritici) 

(Spielmeyer et al. 2005). Depending on the genetic background, Lr34 also is effective 

against stem rust (Puccinia graminis f. sp. tritici) (Dyck 1987). Lr34 has been fine-

mapped into a 0.15 cM genetic interval by using three high-resolution backcross 

populations developed from three pairs of parents (-Lr34/+Lr34): (1) Arina/Fomo, (2) 

Thatcher/PI5848, and (3) Avocet/Parula. The 0.15 cM genetic interval has been sequenced 

from Lr34-containing wheat cultivar Chinese Spring and revealed six candidate genes. 

The coding sequences of the six candidate genes from the three pairs of parental lines of 

the high-resolution backcross populations were compared. Among the candidate genes, 

only the coding sequence of ATP-binding cassette (ABC) transporter gene was 

consistently polymorphic between the alleles of all parental pairs. Then, mutants of the 

ABC transporter gene were obtained from ɣ-irradiation and sodium azide-induced 

mutation. The mutants were more susceptible to Pt, Pst, B. graminis f. sp. tritici and P. 

graminis f. sp. tritici. This strongly suggests Lr34 to be an ABC transporter gene 

contributing strongly to the partial resistance against the different pathogens. This gene 
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belongs to the pleiotropic drug resistance subfamily of ABC transporters, the same family 

as penetration deficient gene 3 (PEN3) of Arabidopsis. The gene has two cytosolic 

nucleotide binding domains and two hydrophobic transmembrane domains (Krattinger et 

al. 2009). Lr34 may have a similar function as proposed for PEN3 which transports toxic 

compounds derived from glucosinolates into the plant apoplast at the interaction sites with 

pathogen (Lipka et al. 2008; 2010). The Lr34 haplotype of Chinese Spring also occurs in 

Australian cultivar H45 but this cultivar is highly susceptible to Pt and Pst. However, H45 

recovered its resistance to Pst when it was crossed with Avocet which is also susceptible 

to Pst. This implies that the Lr34 haplotype of Chinese Spring may interact with an 

unknown factor(s) to confer resistance (Lagudah 2011). It is not known whether the cross 

between H45 with Avocet recovered the resistance of H45 to Pt. In Chapter 3, the Rphq2-, 

Rphq3- and the Vada allele of Rnhq-introgression in L94 conferred resistance against 

certain non-adapted rust fungi but not in SusPtrit background. Maybe similar to Lr34, the 

QTL introgressions in L94 confer resistance by interacting with an unknown factor(s) not 

present in SusPtrit. 

 

The third cloned minor gene for partial resistance that also is involved in basal defense and 

defense signal transduction is a QTL in rice which contributes to resistance against M. 

oryzae and Rhizoctonia solani (Manosalva et al. 2009). The QTL co-localized with oxalate 

oxidase-like genes now known as germin-like protein (GLP) genes which are candidate 

defense response genes. Within the QTL interval, there is a cluster of 12 highly conserved 

GLP gene members. The involvement of these genes in defense response is validated by 

silencing some to all of these genes through RNA interferences. The transgenic plants 

became more susceptible to M. oryzae as well as to R. solani when more of the GLP genes 

were silenced. This implies that the GLP genes control disease resistance as a complex 

locus in with each gene contributes a small additive effect. The hypothetic function of the 

GLP genes in disease resistance involves the production of superoxide dismutase which 

generates hydrogen peroxide (H2O2) that might be involved in the cell wall defense, 

hypersensitive cell death, signaling in systemic acquired resistance and in the induction of 

defense response gene expression (Manosalva et al. 2009).  

 

 

QTLs are weak forms of R-genes 

 

Panicle blast 1 (Pb1) is a cloned rice gene explaining a QTL effect against M. oryzae 

(Hayashi et al. 2010) derived from cultivar Modan (Fujii et al. 1999). The candidate genes 

explaining the QTL were validated through genetic transformation of the genes into the 

susceptible cultivar Norin 8. Pb1 is a gene encoding coiled-coil-nucleotide-binding-site-

leucine-rich repeat (CC-NBS-LRR) which is the characteristic of R genes. The R genes 
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mediate gene-for-gene race specific resistance, but a cultivar carrying Pb1, a NIL of Pb1 

and transformants overexpressing Pb1, all showed increased resistance to widely 

distributed blast races compared to cultivars/lines not carrying Pb1(Hayashi et al. 2010). 

Pb1 encodes an atypical R protein-like protein. In the NBS domain of Pb1, the 

prominently conserved P-loop, Walker B, Resistance-NBS-B (RNBS-B) and Gly-Leu-

Pro-Leu (GLPL) motifs are diverged from the typical R gene (DeYoung and Innes 2006). 

The pentapeptide EDVID motif located between the CC sequences is another important 

and conserved motif of R genes (Bai et al. 2002) that also is not conserved in Pb1. Hayashi 

et al. (2010) speculated on the implications of the atypical CC-NBS-LRR structure of Pb1 

on the resistance.  

 

 

QTLs are unique genes previously unknown to be involved in disease resistance 

 

A QTL in rice, Pi21 encodes a gene which was unknown to be involved in disease 

resistance (Fukuoka et al. 2009). Pi21 is a recessive resistance QTL (pi21) mapped against 

rice blast (Magnaporthe oryzae) by Fukuoka and Okuno (2001). Pi21 is fine-mapped into 

a 1,705 bp region containing only one gene, Os04g0401000, which encodes a protein 

containing a heavy metal-transport/detoxification protein domain in the N-terminal region. 

Comparison of the 1,705 bp sequence of a resistant cultivar (Owarihatamochi) with that of 

two susceptible cultivars (Aichiasahi and Kasalath) revealed seven nucleotide 

polymorphisms but only two located in the open reading frame associated with the 

phenotypes. Transformation of the resistance allele pi21 (from Owarihatamochi) into a 

susceptible cultivar (Aichiasahi) did not confer resistance. However, transformation of the 

susceptibility allele Pi21 (from Aichiasahi) into a NIL carrying pi21 resulted in an 

increase of susceptibility to M. oryzae. Fukuoka et al. (2009) suggested that the resistance 

allele pi21 carries a loss-of-function mutation. The susceptible allele Pi21 probably 

regulates the resistance negatively and is confirmed through silencing the expression of 

Pi21 which increases the resistance of transformants.  

 

 

Rphq2 and Rphq11 differ from the cloned genes explaining resistance QTLs 

 

The candidate genes explaining Rphq2 (Chapter 5) and Rphq11 (Chapter 4) differ from 

those cloned minor genes for partial resistance described above. For both QTLs, R-genes 

or weak forms of R-genes are unlikely candidates. The candidate gene for Rphq2 can 

either be a peroxidase or kinase or even a group of peroxidases or kinases as in the case of 

GLP genes in rice (Manosalva et al. 2009). Rphq2 may also be a Seven in absentia protein 

(SINA). For Rphq11 in Chapter 4, the strongest candidate gene is a phospholipid 
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hydroperoxide glutathione peroxidase. Other possible candidate genes include an actin-

depolymerizing factor and glucosyltransferases. Each of the candidate genes for Rphq2 

and Rphq11 were previously reported to be involved in disease resistance in one way or 

another (see Chapter 5 and Chapter 11). Based on the types of candidate gene suggested 

for Rphq2 and Rphq11, the gene explaining the two partial resistance QTLs are probably 

involved in basal defense and defense signal transduction. When isolating the candidate 

genes for Rphq2 and Rphq11, we should isolate the resistance allele as well as the 

susceptible allele. This is because a gene that explains a QTL can be either a resistance 

factor or a susceptibility factor (negative regulator) as in the case of Pi21 (Fukuoka et al. 

2009). For Rphq2, this may not be possible for some candidate genes which only are 

present in Vada but not in SusPtrit and vice versa.  

 

 

Other cloned genes explaining resistance QTLs 

 

For QTLs with a small effect, i.e. explaining less than 10% of the phenotypic variation, a 

candidate gene approach is proposed by Hu et al. (2008) to isolate the genes. First, 

differential expression analysis is performed to identify the candidate defense response 

genes. Candidate defense response genes should have differential expression either 

between infected resistant and susceptible plants, or between non-infected and infected 

plants. Then, the identified genes are mapped onto a linkage map to find genes that co-

localize with a resistance QTL. Those genes found to co-localize with QTLs are examined 

for their expression patterns against different plant-pathogen interactions to identify genes 

with expression influenced by a wide range of pathogens. Finally, complementary 

functional analysis is performed to confirm the involvement of the genes in disease 

resistance. Using this procedure, genes have been cloned that may explain small effect 

QTLs for disease resistance in rice (Table 2). 
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Specificity and durability of resistance QTLs 

 

We have mapped a great number of QTLs for partial and near-nonhost resistance using the 

barley-rust pathosystem, using at least six (SusPtrit/Golden Promise, Vada/SusPtrit, 

Cebada Capa/SusPtrit, Oregon Wolfe Barley, Steptoe/Morex, L94/Vada) mapping 

populations. The resistance conferred by the QTLs affect resistance either in an isolate 

specific manner, can be species specific or have a broad resistance spectrum, at least 

towards the pathogens that were tested [Chapter 3; (González et al. 2012; Jafary et al. 

2006; Marcel et al. 2008)].  

 

The isolate specificity of partial resistance deviates from the concept of horizontal 

resistance (van der Plank 1963, 1968). The specificity of partial resistance has been 

assumed to be due to a minor-gene-for-minor-gene interaction which is similar to the 

vertical resistance (Parlevliet and Zadoks 1977). The molecular basis of minor-gene-for-

minor-gene interaction would probably be the interaction between the pathogen effectors 

with their specific operative targets in plant. The operative targets are probably the genes 

(at the mapped QTLs) or the gene products which are involved in defense response. The 

more effectors fitting their operative targets, the higher the level of susceptibility is 

observed on plant. 

 

All the minor genes for partial resistance which have been cloned to date (see above) are 

reported to have a broad resistance spectrum. The specificity of a QTL against different 

isolates or even to different related species of a pathogen may depend on the genetic 

background [Chapter 3; (Lagudah 2011; St.Clair 2010)]. A minor gene at a QTL might 

interact with another factor in the plant, elsewhere on the genome, to confer resistance. If 

the QTL is transferred to a genetic background lacking the factor, or possessing a 

suppressor, a more susceptible phenotype will be observed [Chapter 3; (Lagudah 2011)]. 

 

Resistance based on minor-gene-for-minor-genes is believed to be more durable compared 

to R genes mediated resistance which tends to be broken down easily by the pathogen 

(Pretorius et al. 2012; Rouse et al. 2013; Singh et al. 2011; Wan and Chen 2011). The 

possible explanations for the durability of partial resistance as proposed by Niks and 

Marcel (2009) are:  

 Developing an effector to silence/neutralize a defense factor requires a particular 

gain of function mutation by the pathogen, which is rare 

 If a pathogen successfully overcomes one minor gene for resistance, the pathogen 

only gains a marginal advantage due to presence of other resistance genes 

especially for nonhost resistance.  
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 A great diversity of QTLs for partial resistance are available, at least in barley for 

resistance to Puccinia hordei. Each gene for partial resistance which is overcome 

by a mutant pathogen may occur in only a small proportion of the plant population 

or crop acreage. Therefore, a microbial mutant has limited selective advantage. 

 

Lr34 (Krattinger et al. 2009) and Sr2 (Ayliffe et al. 2008) in wheat are good examples of 

durable resistance QTLs where virulence towards these QTLs is not observed after more 

than 50 years of culture.  

 

 

Concluding remarks 

 

This thesis has developed tools that are important towards identification of genes for 

partial and nonhost resistance. First of all, Golden SusPtrit is a valuable experimental line 

to validate candidate genes for partial and nonhost resistance. Golden SusPtrit also serves 

as a platform to study the possible association between partial and nonhost resistance. The 

near isogenic lines of QTLs in SusPtrit background are a good starting material to stack 

different combinations of minor genes for resistance and to test their effect on partial and 

nonhost resistance. They are also very useful starting points for fine mapping of the minor 

genes conferring the QTL effects. The Vada and SusPtrit BAC libraries have been 

developed as tools to isolate the resistance and susceptible alleles of gene(s) for Rphq2, 

Rphq3, Rphq4 and Rnhq. They may also serve for isolation of other genes for which 

SusPrit and Vada contrast. Some QTLs studied in this thesis have specific resistance 

effects but others, such as Rphq11, have a broader resistance spectrum. However, the 

specificity seems to depend on the genetic background. Map-based cloning of Rphq2, 

Rphq3, Rphq4, Rphq11, Rphq16 and Rnhq will provide more insight into the diversity of 

genes and their function in partial and nonhost resistance. 
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Summary 
 

Partial resistance of barley to Puccinia hordei and near-nonhost resistance to non-adapted 

rust fungi inherit polygenically. The two types of resistance seem to share some genes and 

have a similar prehaustorial mechanism of resistance, but partial resistance is less strong 

than near-nonhost resistance of barley. Partial resistance to adapted, “host”, rust fungi 

seems, therefore, like a weak form of nonhost resistance to non-adapted rust fungi. If 

partial resistance and nonhost resistance are indeed based on the same principles, one can 

understand nonhost resistance by studying partial resistance and vice versa. To study 

partial and nonhost resistance, as well as their association, the candidate gene(s) for 

resistance must be cloned and characterized for their action. 

 

Five resistance quantitative trait loci (QTLs) for partial resistance (Rphq2, Rphq3, Rphq4, 

Rphq11 and Rphq16) and one nonhost resistance QTL (Rnhq) were selected to pursue 

map-based cloning. First, the effect of the QTLs was verified in near-isogenic lines 

(NILs). The NILs of Rphq2, Rphq3, Rphq4 and Rnhq (QTL-NILs) were available in L94 

genetic background. L94 is extremely susceptible to Puccinia hordei, and, at seedling 

stage, somewhat susceptible to certain non-adapted rust fungi. The experimental barley 

line SusPtrit is also susceptible to P. hordei but, at seedling stage, also very susceptible to 

at least nine species of non-adapted rust fungi. In Chapter 3, we developed NILs in 

SusPtrit background for Rphq2, Rphq3, Rphq11, Rphq16 and two alleles of Rnhq, viz. L94 

and Vada alleles. The effect of each QTL in L94 and SusPtrit genetic backgrounds was 

tested not only against different isolates of P. hordei but also against different species and 

isolates of non-adapted rust fungi. The QTL-NILs suggested that the effects of the partial 

resistance genes depended on rust species and rust isolates. Some introgressions conferred 

resistance to a broader spectrum of rust species and isolates than others, the broadest being 

the Rphq11-introgression. The NILs may overestimate the spectrum of effectiveness of the 

partial resistance genes because some NILs contain inadvertent donor genome in the 

background and the introgressed QTL region may contain several linked resistance genes, 

each with a narrow resistance spectrum. The introgression would then confer a resistance 

spectrum that is the combination of the spectra of several linked resistance genes. 

Allowing for the possibility of linkage of narrow-spectrum resistance genes, our study 

suggests that some genes may be involved in partial as well as nonhost resistance. Data 

also suggest that genetic background may play a role in the resistance conferred by the 

QTL-introgression. 
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The NILs also allow fine-mapping of the QTL as was done for Rphq2 in a previous study. 

In Chapter 4, we target to fine-map another two partial resistance QTLs of our interest, 

viz. Rphq11 and Rphq16. We, however, did not use the NILs for fine-mapping of Rphq11 

and Rphq16. Instead, after validating the effect of Rphq11 and Rphq16 using the early 

breeding materials for developing NILs of Rphq11 and Rphq16, we developed fixed QTL-

recombinants (i.e. homozygous recombinants at the Rphq11/Rphq16 QTL alleles, 

homozygous susceptible at the non-targeted QTL alleles). The genomic background of 

fixed QTL-recombinants was still segregating, but expected not to be relevant for the 

resistance level. Rphq11 was fine-mapped into a 0.2 cM genetic interval and a 1.4 cM 

genetic interval for Rphq16, before the NILs were ready. The strongest candidate gene for 

Rphq11 is a phospholipid hydroperoxide glutathione peroxidase (PHGPx). This gene 

corresponds to the new Rphq11 peak marker – WBE129, located within the refined 0.2 cM 

genetic intervals and was one of the candidate genes for Rphq11 identified through e-QTL 

mapping on Steptoe/Morex challenged with the same rust isolate. There was no clear 

candidate gene identified for Rphq16. 

 

A QTL has to be fine-mapped into a sufficiently narrow genetic window to make physical 

mapping feasible. Rphq2 with a genetic window of 0.1 cM is ready for physical mapping. 

In Chapter 5, we have constructed two non-gridded Bacterial Artificial Chromosome 

(BAC) libraries of barley from Vada and SusPtrit. Based on the insert sizes of the BAC 

clones, the estimated genome coverage of the Vada BAC library is 2.6x and of the SusPtrit 

BAC library 3.7x. The genome coverage of Vada is comparable to the BAC library of 

Morex, HVVMRXALLhB and SusPtrit to HVVMRXALLeA. The estimation of genome 

coverage based on microsatellite markers indicates, however, Vada and SusPtrit BAC 

libraries to have 5.0x and 6.8x genome coverage, respectively. Based on genome insert 

size, the BAC library of Vada gives at least 93% probability of identifying a clone 

corresponding to any sequence of Vada and for the BAC library of SusPtrit a probability 

of 98% is expected. Together, the two BAC libraries give more than 99% probability of 

recovering any specific sequence from the barley genome. A tiling path of three BAC 

clones was constructed for Vada, which cover the Rphq2 genetic window. The physical 

window of Rphq2 in Vada BAC contig is approximately 195 Kbp. For SusPtrit, the three 

BAC clones forming the contig did not cover the entire genetic window of Rphq2. The 

physical length bridged by them is approximately 226 Kbp. The TriAnnot pipeline 

annotated 12 genes in both the Vada and the SusPtrit contig, but only four of the annotated 

genes are shared between Vada and SusPtrit. The candidate genes for Rphq2 might be a 

resistance factor in Vada or a susceptibility factor in SusPtrit. The peroxidases and kinases 

are good candidates to represent Rphq2. It is possible that one of the peroxidase or kinase 

gene members in the physical window of Rphq2 explains the resistance phenotype 

observed. Another possibility is that peroxidase or kinase gene members function as a 
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complex QTL. A member of the Seven in absentia protein family (SINA) can be a 

candidate as well. The gene families to which previously cloned genes for partial 

resistance belong were not found to be represented in the Rphq2 region. 

 

We propose to perform functional analysis of candidate genes through Agrobacterium-

mediated stable transformation of the resistance allele into a susceptible genotype, such as 

SusPtrit. Unfortunately, SusPtrit is, as so many barley accessions, not amenable to 

Agrobacterium-mediated transformation. In Chapter 2, we developed a doubled haploid 

(DH) mapping population (n=122) by crossing SusPtrit with Golden Promise to develop a 

‘Golden SusPtrit’, i.e., a barley line combining SusPtrit’s high susceptibility to non-

adapted rust fungi with the high amenability of Golden Promise for transformation. Using 

the DH population, we identified nine genomic regions occupied by QTLs against four 

non-adapted rust fungi and P. hordei isolate 1.2.1 (Ph.1.2.1). From 12 DH lines that were 

most susceptible to the tested non-adapted rust fungi, we selected four DHs for an 

Agrobacterium-mediated transformation efficiency test. We obtained a DH line (SG062N) 

with transformation efficiency of 11 to 17 transformants per 100 immature embryos. The 

level of susceptibility of SG062N to non-adapted rust fungi is either similar to or higher 

than the level of susceptibility of SusPtrit. Against P. hordei, the latency period conferred 

by SG062N at seedling stage is as short as that conferred by SusPtrit. SG062N, designated 

‘Golden SusPtrit’, will be a valuable experimental line that could replace SusPtrit in future 

nonhost and partial resistance studies, especially for stable transformation using candidate 

genes that may determine the differences in resistance levels against adapted and non-

adapted rust fungi. 
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Samenvatting 
 

Partiële resistentie van gerst tegen Puccinia hordei en bijna-nietwaard resistentie tegen 

niet-aangepaste roestschimmels, waarvoor gerst geen waardplant is, hebben een polygene 

overerving. Sommige genen lijken beide typen resistentie te reguleren, en ook lijken beide 

resistentietypen voornamelijk te berusten op eenzelfde prehaustoriaal 

resistentiemechanisme. Partiële resistentie is echter minder sterk dan bijna-nietwaard 

resistentie van gerst. Partiële resistentie tegen aangepaste roestschimmels, waarvoor gerst 

waardplant is, lijkt op een zwakke vorm van nietwaard resistentie tegen niet-aangepaste 

roestschimmels. Als partiële resistentie en nietwaard resistentie inderdaad berusten op 

dezelfde principes, kan men nietwaard resistentie begrijpen door partiële resistentie te 

bestuderen en omgekeerd. Om partiële en nietwaard resistentie en hun mogelijke 

associatie te bestuderen, moeten kandidaat genen voor resistentie worden gekloneerd en 

gekarakteriseerd wat betreft hun effect op en aandeel in beide resistentietypen. 

 

Vijf kwantitatieve loci (QTLs) voor partiële resistentie (Rphq2, Rphq3, Rphq4, Rphq11 en 

Rphq16) en een QTL voor nietwaard resistentie (Rnhq) werden gekozen om via hun 

positie op de koppelingskaart gekloneerd te worden. Eerst werd het effect van de QTLs 

geverifieerd in bijna-isogene lijnen (NILs). De NILs van Rphq2, Rphq3, Rphq4 and Rnhq 

(QTL-NILs) waren beschikbaar in de genetische achtergrond van lijn L94. L94 is extreem 

vatbaar voor P. hordei, en in het zaailingstadium ook enigszins vatbaar voor sommige 

niet-aangepaste roestschimmels. De experimentele gerstlijn SusPtrit is eveneens vatbaar 

voor P. hordei maar in het zaailingstadium ook zeer vatbaar voor ten minste negen soorten 

niet-aangepaste roestschimmels. In hoofdstuk 3 ontwikkelden we NILs voor Rphq2, 

Rphq3, Rphq11, Rphq16 en twee allelen van Rnhq, namelijk die van L94 en van Vada, in 

de genetische achtergrond van SusPtrit. Het effect van elk QTL in de genetische 

achtergronden van L94 en SusPtrit werd niet alleen bepaald met verschillende isolaten van 

P. hordei, maar ook met verschillende soorten en isolaten van niet-aangepaste 

roestschimmels. De QTL-NILs suggereerden dat de effecten van de genen voor partiële 

resistentie afhingen van roestschimmelsoort en -isolaat. Sommige introgressies 

veroorzaakten resistentie tegen een breder spectrum van roestschimmels dan andere. Het 

breedste spectrum werd gevonden voor de introgressie van QTL Rphq11. Mogelijk 

overschatten de NILs het spectrum van effectiviteit van de genen voor partiële resistentie, 

want sommige NILs bevatten elders op het genoom ook nog enkele ongewenste 

fragmenten van het donorgenoom, en de introgressie met het resistentie QTL bevat 

mogelijk verscheidene gekoppelde genen voor resistentie, elk met een nauwer spectrum 

van effectiviteit. De introgressie zou in dat geval een resistentie geven tegen een spectrum 
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van roestschimmels dat de combinatie is van de spectra van verscheidene gekoppelde 

resistentiegenen. Onder voorbehoud van de mogelijkheid van koppeling tussen diverse 

nauw-spectrum resistentiegenen wijzen onze resultaten erop dat sommige genen zowel een 

rol spelen in partiële als in nietwaard resistentie. De gegevens suggereren ook dat 

genetische achtergrond een rol kan spelen in de resistentie die door de QTL-introgressies 

wordt veroorzaakt. 

 

De NILs zijn een goede stap naar fijnkartering van de QTLs, zoals in een vorige studie 

gedaan is voor Rphq2. In Hoofdstuk 4 stelden we ons tot doel twee andere interessante 

QTLs voor partiële resistentie fijn te karteren, namelijk Rphq11 en Rphq16. Daarvoor 

gebruikten we echter niet de NILs voor deze twee QTLs. Na bevestiging van de effecten 

van Rphq11 en Rphq16 in vroege terugkruisings nakomelingen ontwikkelden we 

recombinanten die homozygoot waren voor de  Rphq11/Rphq16 QTL allelen en 

homozygoot vatbaar voor het resistentie-QTL elders op het genoom. De genetische 

achtergrond van deze “gefixeerde QTL-recombinanten” splitste nog uit, maar was naar 

verwachting niet relevant voor het resistentieniveau. Nog voor de NILs gereed waren 

konden we op deze manier Rphq11 fijnkarteren in een interval van 0.2 cM en Rphq16 in 

een interval van 1.4 cM. Het meest waarschijnlijke kandidaat gen voor Rphq11 is een 

phospholipid hydroperoxide glutathione peroxidase (PHGPx). Dit gen komt overeen met 

de nieuwe Rphq11 piekmerker – WBE129, welke ligt binnen het fijnkarterings interval 

van 0.2 cM en welke ook uit een e-QTL studie in Steptoe/Morex naar voren kwam als een 

van de kandidaat genen voor Rphq11. Er werd geen duidelijk kandidaat gen gevonden 

voor Rphq16. 

 

Een QTL moet fijngekarteerd worden in een voldoende klein genetisch interval om 

fysieke kartering mogelijk te maken. Rphq2 ligt in een genetisch interval van 0.1 cM, wat 

voldoende moet zijn voor fysieke kartering. 

 

In Hoofdstuk 5 beschrijven we de ontwikkeling van twee “non-gridded” Bacterial 

Artificial Chromosome (BAC) bibliotheken (BAC-libraries) van de gerstaccessies Vada en 

SusPtrit. Op basis van de groottes van de BAC-klooninserties schatten we dat het genoom 

van Vada ongeveer 2,6x en dat van SusPtrit ongeveer 3,7x vertegenwoordigd is in de 

respectievelijke BAC-libraries. De dekking van het Vada genoom is van zelfde orde van 

grootte als die van de BAC-library van Morex HVVMRXALLhB en die van het SusPtrit 

genoom als die van HVVMRXALLeA. De dekking van het genoom werd ook geschat 

door bepaling van het voorkomen van microsatellietmerkers. Die methode suggereerde dat 

de libraries een 5,0x (Vada) en 6,9x (SusPtrit) dekking hebben. Op basis van de 

insertiegroottes schatten we dat de BAC-library van Vada een kans geeft van 93% om een 

bepaalde sequentie vertegenwoordigd te zien, en de BAC-library van SusPtrit een kans 
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van 98%. In combinatie zouden de BAC-libraries een 99% kans geven om een bepaalde 

sequentie te vinden.   

 

We vonden drie overlappende BAC-klonen voor Vada die samen het gehele genetische 

interval voor Rphq2 dekken. De fysieke grootte van deze Vada BAC-contig is ongeveer 

195 Kbp.  Voor SusPtrit konden we geen sluitende contig vinden voor Rphq2. De fysieke 

lengte die door de drie BAC-klonen daar wordt overbrugd schatten we op ongeveer 226 

Kbp. Met de TriAnnot procedure annoteerden we 12 genen in zowel de Vada- als de 

SusPtrit-contig, maar slechts vier van deze genen kwamen zowel in de Vada- als in de 

SusPtrit-contig voor. De kandidaat genen voor Rphq2 zouden een resistentiefactor in Vada 

kunnen zijn of een vatbaarheidsfactor in SusPtrit. De peroxidasen en kinasen zijn goede 

kandidaten voor Rphq2. Het is mogelijk dat een van de peroxidase- of kinasegenen in het 

fysieke interval van Rphq2 het effect op het resistentie fenotype verklaart. Een andere 

mogelijkheid is dat peroxidase- of kinasegenen functioneren als complex QTL. Een aantal 

genen voor Seven in absentia eiwitten (SINA) komen ook in aanmerking als kandidaat 

gen. De genfamilies die in eerdere studies door klonering geïdentificeerd werden als 

verantwoordelijk voor partiële resistentie waren niet vertegenwoordigd in de Rphq2 regio. 

 

Om de kandidaat genen functioneel te testen, stellen we voor stabiele transformatie van 

een vatbare accessie uit te voeren door middel van Agrobacterium, bij voorkeur de lijn 

SusPtrit. Deze lijn is echter, zoals zovele gerstgenotypen, niet efficiënt te transformeren 

via deze methode. In hoofdstuk twee beschrijven we de ontwikkeling van een verdubbelde 

haploiden (DH) populatie (n=122) uit een kruising van SusPtrit met Golden Promise met 

als doel een “Golden SusPtrit” lijn te ontwikkelen die de hoge vatbaarheid van SusPtrit 

tegen zekere niet-aangepaste roestschimmels zou combineren met de efficiëntie van 

Golden Promise voor genetische transformatie. De DH populatie werd getest op 

resistentieniveau tegen vier niet-aangepaste roestschimmels en een isolaat (Ph.1.2.1) van 

de dwergroestschimmel P. hordei. Uit twaalf DH lijnen met de hoogste vatbaarheid voor 

de geteste niet-aangepaste roestschimmels selecteerden we er vier om hun 

transformeerbaarheid te bepalen. We verkregen een DH lijn (SG062N) die een 

transformeerbaarheidsefficiëntie had van 11 tot 17 transformanten per 100 onrijpe 

embryo’s. Het niveau van vatbaarheid van SG062N tegen niet-aangepaste roestschimmels 

was vergelijkbaar met of zelfs hoger dan die van SusPtrit. De vatbaarheid voor P. hordei, 

gemeten als latentie periode in het zaailingstadium, is even hoog als die van SusPtrit. 

SG062N werd omgedoopt tot ‘Golden SusPtrit’, en zal fungeren als waardevolle 

experimentele lijn die SusPtrit kan vervangen in toekomstige nietwaard en partiële 

resistentie studies, met name waar gebruik gemaakt gaat worden van stabiele transformatie 

met kandidaat genen die verantwoordelijk kunnen zijn voor verschillen in 

resistentieniveaus tegen aangepaste en niet-aangepast roestschimmels.  
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