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CHAPTER 1 
 
 

Introduction 
 
 

 
 
1. Ectomycorrhizal symbiosis 

 
The German term “Symbiotismus” (symbiosis) was probably first used by Frank (1877) as a neutral 

term that did not imply parasitism, but was based simply on the regular coexistence of dissimilar 

organisms, such as is observed in lichens (Smith  & Read, 1997). De Bary (1887) used it to identify 

the common life of parasite and host as well as of associations in which the organisms apparently 

help each other. Since then the meaning of the terms symbiosis and parasite have changed, with 

symbiosis being used more and more for mutually beneficial associations between dissimilar 

organisms, and parasite and parasitism being  almost synonymous with pathogen and pathogenesis 

(Smith & Read, 1997). De Bary also pointed out that there is every conceivable gradation between 

the parasite that quickly destroys its victim and those that “further and support” their partners, and 

in recent years researchers have come back to this view.  

Although generally the mycorrhizal symbioses are considered mutualistic, due to the benefits for 

both partners, a better description probably is that individual plant and fungal symbionts are placed 

somewhere in the mutualistic-parasitic continuum, depending on their developmental state, the 

specific genotype combinations and the environmental conditions (Johnson et al., 1997; Egger & 

Hibbet, 2004). This thesis is based on the word “symbiosis”, as defined by de Bary. An example of 

a modified relationship between the plant and fungi, is a mycorrhiza that becomes a specimen of 

parasitism, where the mantle is present but the Hartig net is lacking is also reported (Paper I- 

chapter 3).  

The EM (ectomycorrhizal) symbiosis is typically formed between the terminal feeder roots of 

woody perennial plant species and a range of soil fungi (Smith & Read, 1997). The fungi exchange 

soil-derived nutrients for carbohydrates from the host plant. Nutrient uptake into the host is 

enhanced both as a consequence of the physical geometry of the fungal mycelium and by the ability 

of the fungi to mobilise N and P from organic substrates through the action of secreted catabolic 

enzymes (Leake & Read, 1997). 
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Within the root, the fungus ramifies between the outer cells forming a complex structure called the 

Hartig net (fig. 1), which provides a large surface area of contact between the fungus and the host, 

allowing an efficient transfer of metabolites. External to the root, a multi-layered, hyphal structure, 

called the mantle or sheath, develops (Taylor & Alexander, 2005).  

 

 

Fig. 1: Development of the Hartig net (modified from Smith & Read, 1997). (a) Block diagram showing typical 
structure of the Hartig net in different sectional aspects and of a pseudoparenchymatous mantle.  The main growth 
direction of the hyphae in the Hartig net is transverse to the root axis. (b)  Transmission electron microscopy of a 
mycorrhiza formed between Picea abies and Amanita muscaria. Ultrathin section through the intercellular space and 
several cortical cells showing fully developed, mature Hartig net. Extensive branching leads to the formation of 
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narrower and narrower hyphae (fh). Numerous mitochondria (m) and nuclei (n) can be seen. The presence of two 
dikaryons (arrowed) indicates the coenocytic nature of the tissue. (FV) fungal vavuole; (n) nucleus; (cv) epidermal cell 
vacuole, (hw) host wall. Bar, 2 µm. (c) Outline of the hyphae in (b). Main growth of the hyphae is in the direction of the 
full arrow. Dolipore septum and dikaryons are marked. From Kottke and Oberwinkler (1987). 
 
Agerer (1987-2002) has recognised two main types of hyphal development within EM mantles: 

pseudoparenchymatous – densely packed, highly differentiated hyphal elements, and 

plectenchymatous - loosely interwoven hyphae, where their linear nature is still evident. The hyphal 

arrangement within the mantle, particularly when seen in plain view, has been used by Agerer and 

coworkers to characterise the mantles formed by individual species as an aid to identification 

(Agerer 1987-2002; Agerer et al., 1996 – 2004). 

Several EM species form mantles that are hydrophobic (e.g. species belong to Cortinarius genus, 

Agerer, 1987-2002), implying that there is little direct exchange of solutes (uptake or exudation) 

with the soil solution (Taylor & Alexander, 2005). These species, possessing water repellence 

properties, seem to prefer highly areated soil in the conifer forest soils (Unestam, 1991). Despite 

this behaviour, the ecological strategy of the hydrophilic fungi is not very clear (Unestam, 1991; 

Unestam & Stenström,1989; Stenström 1991). 

These hydrophilic mantles (e.g. many Lactarius species) appear to be a close control over the 

movement and the exchange of material through the mantle (Ashford et al., 1988), and are most 

likely responsible for the uptake of water and nutrients (Cairney & Burke, 1996).  

EM fungi probably control the interface between the soil environment and the host plant. While the 

mantles may control the fluxes into and out of the root, the mycelium extending out from the mantle 

surface in the surrounding soil (the extraradical or extramatrical mycelium) is considered to be the 

primary site for nutrient and water uptake (Taylor & Alexander, 2005). 

The extramatrical mycelia produced by EM fungi varies from a small number of hyphae growing 

out a few mm (e.g. Russula spp.) to highly developed, extensive mycelial systems (e.g. Suillus spp.,  

Cortinarius spp.) that occupy large volumes of soil surrounding the colonised root tips (Agerer 

1987-2002). The extension and the structure of this extramatrical mycelium is thought to be 

different among EM fungal taxa (Agerer 2001). In this context the purpose to classify the EM 

fungal species with the “exploration types” according to Agerer (2001) interpreting the anatomical 

features like ecological strategies to colonise the soil, becomes more and more important to 

understand the role of these organisms, as key elements of forest nutrient cycles and a strong 

diversity of forest ecosystem processes (Read et al., 2004).  The mycelium formed hydrophilic 

structures seems to have substrate particles glued to their surface (Raidl 1997) and the hyphae are 
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thicker than the other most distant ones, which have relatively hydrophobic proximal parts 

(Unestam & Stun, 1995).  

This hypothesis was confirmed by a recent study on the production of oxidases of ectomycorrhizal 

fungi (Agerer et al., 2000) using fruitbodies. An evident correlation between fungal relationship, 

production of phenoloxidases and exploration type fo their ectomycorrhizae was found, because all 

Lactarius and Russula species revealed a higher ability to produce extracellular phenoloxidases. In 

contrast to almost all members of  the order Boletales, which lack this feature. The authors 

correlated these results with the exploration type of their mycorrhizae. Most species of the genus 

Russula and Lactarius belong to the “contact exploration type”, only some Lactarius species the 

“medium-distance smooth exploration type” (Agerer 2001). The profitable exploration of the 

surrounding substrate is assured by the ectomycorrhizae of both genera thanks to their hydrophilic 

behaviour.  

The typical ability to degrade lignin of these exploration types, which should increase access to 

nitrogen complexed to phenolic substances (Kuiters 1990) and could, therefore, support nutrient 

acquisition when squeezed between organic substrates (Agerer 2001). For these reasons in beech 

forests the EM belonging to the Lactarius, Russula and Laccaria genera are probably widespread in 

the upper soil, like a “sandwich” in the superficial thick layers fo leaves and other organic matter 

(Brand 1991).  

The Boletales, however, are all known to form ectomycorrhizae of the long-distance exploration 

type (Agerer 1999; with the exception of Gomphidiaceae) and are mostly hydrophobic at their 

proximal parts. Nutrient acquisition appears to be limited to the very distant hydrophilic substrate 

adhesion hyphae (Raidl 1997; Unestam & Sun, 1995). The lack of lignin degradation ability is 

compensated  here by a larger surface area and a greater range of spread (Raidl 1997). Laccaria 

species, possibly ascribable to the contact, medium or short-distance exploration type and generally 

hydrophilic, consistently produce extracellular phenoloxidases (Agerer 2001). However the 

capacity to produce extracellular phenoloxidases was not generally related to the type of 

exploration. The genus Dermocybe, for example, with its medium-distance fringe exploration type, 

lacks phenoloxidases. Species- and strain-specific differences were apparent in other genera (Agerer 

et al., 2000). 

The crucial importance of this extramatrical mycelium in nutrient uptake has been emphasized in 

recent years, and in particular the role of the symbiosis in the facilitation of capture of nitrogen (N) 

and phosphorus (P) in ionic form (Read & Perez-Moreno, 2003). In addition several recent 
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investigations have utilized molecular markers to localise the mycelium of EM fungal species in 

different soil layers and substrates (Dickie et al., 2003; Guidot et al., 2003; Landeweert et al., 2003; 

Koide et al., 2005).  

 

2. The phytobionts  
 

Around 8000 spp., about 3%, of seed plants form EM (Meyer 1973; Smith & Read, 1997) but this 

minority of plant species is of enormous ecological and economic importance, because they are the 

dominant components of forest and woodland ecosystems over much of the earth’s surface (Taylor 

& Alexander, 2005). The great majority of EM plants are woody perennials (Fitter & Moyersoen 

1996), but also some sedges (Kobresia spp.), and herbaceous Polygonum spp. form ectomycorrhizas 

(Massicotte et al., 1998). The forest dominants of the temperate and boreal zone (Fagaceae, 

Betulaceae, Salicaceae, Pinaceae) are habitually ectomycorrhizal under natural conditions, and the 

EM habit shows particular structures like adaptations for nutrient capture in temperate and boreal 

forests (Read & Perez-Moreno, 2003). Furthermore the EM occurrence elsewhere is patchy (Taylor 

& Alexander, 2005). However, much of the rest of the land surface also supports vegetation with a 

strong EM component: arctic and alpine habitats in the northern hemisphere are characterised by 

dwarf shrub communities of Dryas and Salix spp. support EM communities and the winter-wet 

ecosystems of the Mediterranean basin and California have a strong EM/arbutoid mycorrhizal 

component (Pinus, Cistus, Arbutus, Arctostaphylos; Taylor & Alexander, 2005). In the tropics the 

occurrence and importance of EM host species has been most consistently underestimated instead 

(Taylor & Alexander, 2005). In these ecosystems the family Dipterocarpaceae with more of 500 

spp., all members that form ectomycorrhizas have a key role for the  potential  spreading of the 

mycobionts. The range of dipterocarps extends from East Africa and Madagascar, through India, 

Bangladesh and Sri Lanka, to South-Est Asia, from South China in the north, to Papua New Guinea 

in the south and there is one genus (Pakaraimea) in South America. They also dominate the canopy 

trees and the understorey in South Est Asian lowland and highland rain forest, dry monsoonal 

forests of North India, Burma and Thailand (Taylor & Alexander, 2005).  

Several studies based on sporocarp survey (Lee & Kim, 1987; Molina et al., 1992; Newton & 

Haigh, 1998) have revealed the ecological specificity and host ranges of a variety of EM fungal 

species. As reported by Ishida et al. (2007), the absence of sporocarps does not necessarily indicate 

a lack of colonization and furthermore the approaches using sporocarps are problematic to 



 8 

understand the host specificity, when different host species are in close vicinity or occur in different 

field conditions. In contrast to the sporocarp approaches, the molecular methodologies can be 

applied to EM fungal species on individual host species in close vicinity within the same site, and to 

better understand EM fungal host specificity some authors (Ishida et al., 2007) examined EM 

occurrence at multiple host pair taxonomic levels. They found a tendency similar to the some 

sporocarp studies, which suggested host specificity at higher levels of the host taxon (i.e. genus or 

family). This phenomenon is relatively common (Molina et al., 1992; Newton & Haigh, 1998; 

Massicotte et al., 1999). This may indicate that  occurrence of EM fungal species is more common 

at the host family level than at the host species level, but this pattern may also be confounded by 

differences in statistical power among the host taxa compared (Ishida et al., 2007). Despite of the 

low level of colonization observed on host taxa, host preference and specificity were found for a 

considerable portion of EM species, suggesting that the presence of a variety of host taxa 

contributes to such EM fungal hyperdiversity in mixed conifer-broadleaf forests. This result 

supports the hypothesis that host diversity contributes to EM fungal diversity (Nantel & Neumann, 

1992; Kernaghan et al., 2003). In addition, EM communities differed significantly among 

codominant tree species, indicating EM fungal spatial heterogeneity (Ishida et al., 2007). The EM 

fungal colonization on seedlings is related to the surrounding EM communities (Cline et al., 2005); 

moreover EM fungal communities can have different effects on different host species (Jonsson et 

al., 2001). Therefore the heterogeneity of the EM fungi may contribute to the establishment of 

various host species and the ectomycorrhizal fungal hyperdiversity in mixed conifer-broadleaf 

forests, may be maintained by this host diversity. The coexistence of various host species may in 

turn be supported by diverse and spatially heterogeneous EM communities (Ishida et al., 2007). As 

van der Heijden et al. (1998) have already demonstrated a positive influence of endomycorrhizal 

(VAM) diversity on plant diversity, the possibility then exists that EM diversity in mixed-wood 

forests may be maintained by a positive feedback between plant and fungal communities.  

Plant species without mycorrhiza are mainly restricted to taxonomically defined groups of plants, 

such as the Cyperaceae, Caryophyllaceae and Brassicaceae families, or confined to aquatic or 

saline habitats (Harley & Harley, 1987). 

 

3. The ectomycorrhizal mycobionts 

 

Saprotrophic and mycorrhizal fungi are not separate groups from an evolutionary perspective, 
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because the ability of fungi to form symbiotic associations with plants is a life strategy that has 

appeared from ancestral saprotrophic strategies during the evolutionary history (Hibbett et al., 

2000). The most part, ca. 95%, of EM fungal species are homobasidiomycetes; the remaining 

species being ascomycetes (4.8%) and a few zygomycetes within the genus Endogone (Molina et 

al., 1992). Despite that a recent study by Weiss et al. (2004) demonstrated the understimated 

importance of heterobasidiomycetes with the Sebacinaceae as mycorrhizal formers, which have  

been strongly implicated as the mycobionts in EM (e.g. Urban et al., 2003), orchid (e.g. Taylor et 

al., 2003) and ericoid mycorrhizas (Allen et al., 2003). The recent description of mycorrhizal 

associations in jungermannioid liverworts also seems to involve members of this family (Kottke et 

al., 2003).  

Larsson et al. (2004) recognised how widespread the homobasidiomycetes are as EM formers with 

seven clades containing EM taxa. Anyway their fruitbodies formed by EM fungi are consequently 

very different and include thin, crust-like (resupinate), coral-like (clavarioid), cantharelloid, and 

agaricoid as well as boletoid structures. The majority of EM species are euagarics, and many of the 

most frequent and familiar sporocarps (e.g. Amanita spp.) that appear in forests in the autumn are 

formed by EM taxa (Taylor & Alexander, 2005).  

If a genus is mycorrhizal, it does not mean that the fungi can form only ectomycorrhiza: as a single 

fungal species can form ecto- and arbutoid mycorrhizas (Smith & Read, 1997) on different host 

species (Horton et al., 1999).  

At one time the genus Paxillus was considered to be an exception as it was thought to contain both 

EM formers (P. involutus and P. rubicundulus) and saprotrophic species (e.g. P. atromentarius and 

P. panuoides) (Taylor & Alexander, 2005), but now the latter species belong to the saprotrophic 

genus Tapinella. 

The knowledge of the ecology of ascomycete EM fungal species is very limited with the exception 

of some some Tuber spp. (Murat et al., 2004). The importance of the Helotiales as EM mycobionts 

is suggested in recent work (Vrålstad et al., 2000, 2002) up to now not valued. The identification of 

EM fungal species on short roots is a difficult task, but thanks to the molecular studies the accuracy 

of the classification has been greatly improved and the number of symbionts increases, so will the 

taxonomic range of the identified mycobionts (Taylor & Alexander, 2005).  

For these reasons, up to now, the use of a combination of anatomical and molecular identification 

techniques is the most reliable method to study ectomycorrhizal community. In addition, a number 

of fungal groups considered to be saprotrophic in the past, have been found to be EM [e.g. 
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tomentelloid fungi (Kõljalg et al., 2000)]. In fact until recently, only a few genera of resupinate 

fungi with few species have been considered to be ectomycorrhizal, i.e. Tylospora (Eberhardt et al., 

1999), Piloderma (Larsen et al., 1997), Amphinema (Fassi & de Vecchi, 1962), and Byssocorticium 

(Brand 1991). 

The total number of EM fungi is very unclear and likely underestimated, but the most recent 

estimate (Molina et al., 1992) suggested that there were about 5500 species. Thanks to the recent 

more intensive mycological explorations of tropical forests (e.g. Haug et al., 2005; Buyck et al., 

1996), and of the hypogeous fungi associated with the eucalyptus vegetation in Australasia 

(Claridge 2002), many unknown EM species were discovered. In summary, an accurate estimation 

of the size of the global community of EM fungi may not be known for some time but it is likely to 

be about 7000 – 10.000 species (Taylor & Alexander, 2005). 

The geographical distribution of the major mycorrhizal species in natural ecosystems has been 

suggested to follow altitudinal and latitudinal ecological gradients (Read 1991; Read & Perez-

Moreno, 2003). This  is probably explained by the change in factors limiting for plant growth, i.e. 

specific mycorrhizal associations are part of plant and fungal strategies to survive in various 

environments (Michelsen et al., 1996; Cornelissen et al., 2001). Furthermore, within each 

mycorrhizal anatomotype there might be a selection of specific fungal associates along ecological 

gradients (Taylor et al., 2000; Lilleskov et al., 2002; Read et al., 2004). For instance the large 

number of EM fungi varies widely in capabilites to enzymatically attack organic polymers for 

capture of N and P (Leake & Read, 1997), and in their construction of the external mycelium 

(Agerer 2001). The significance of EM fungal functional diversity for ecosystem function, , is still 

generally unexplored, particularly towards the Arctic and alpine regions (Clemmensen 2006).  

 

4. The reasons of the investigations on the ectomycorrhizal communities 

4.1 The ectomycorrhiza as bioindicator 

 
Ectomycorrhizae, due to their key position at the plant-soil interface, are important to consider in 

the study of human disturbances like global change, the effects of pollution or forest management 

practices (Rillig et al., 2002, Erland & Taylor, 2002). 

From this point of view the ectomycorrhizae can be considered as a bioindicator, because an 

environmental indicator should reflect all the elements of the causal chain that links human 

activities to their ultimate environmental impacts and the societal responses to these impacts 



 11 

(Smeets & Weterings, 1999). 

As reported by the work of Niemi & McDonald (2004), the ecological indicators have been applied 

in many ways in the context of both natural disturbances and anthropogenic stress. However, their 

primary role is to measure the response of the ecosystem to anthropogenic disturbances, but not 

necessarily to identify specific anthropogenic stress(es) causing impairment (US EPA, 2002a). Each 

ecological indicator referred as “state indicator”, responds over different spatial and temporal 

scales; thus, the context of these scales must be explicitly stated for each ecological indicator. 

Understanding the response variability in ecological indicators is essential for their effective use 

(US EPA, 2002b).Without such an understanding, it is impossible to differentiate measurement 

errors from changing conditions, or an anthropogenic signal from background variation. In addition, 

they should be sensitive enough to react in a detectable way when a system is affected by 

anthropogenic stress, and they should also remain reasonably predictable in unperturbed ecosystems  

coupling with economic and social indicators. Legislatively, mandated use of ecological indicators 

occurs in many countries worldwide and is included in international accords. In Figure 2, the 

instruments, the planning steps at the basis of the ecological indicators application are summarized.   

 
Fig. 2: Illustration of the suite of ecological indicators (left) for which a suite of assessment capabilities (right) are 
desired. Constraints on the development of ecological indicators at all levels for all assessment endpoints are due to a 
lack of scientific understanding and the predominance of policies requiring low cost monitoring. Goals in applications 
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generally include a compromise between cost-effectiveness and the ability to defend the ecological indicator 
scientifically at the spatial and temporal scale appropriate to answer the desired management objectives: from Niemi  & 
McDonald (2004).  
 
 
Most ecological monitoring programs using  ecological indicators are based on aggregated selected 

sites and on communities or population. But to recognize a particular trend in the ecosystem, an 

appropriate statistical design is necessary to understand the anthropogenic change against a 

background of natural variability. In fact, community and population respond to many other factors, 

some of which are not necessarily stress or stress-related. Furthermore, the researchers  need to 

recognize which part of the ecological indicator spectrum is relevant to the objectives of their 

investigation.  The applications of ecological indicators have focused at the species level like the 

studies on the EM communities, because the measurement assumes that a single species represents 

many species with similar ecological requirements, enforcing the definition of Landres et al. 

(1988).  This is important to understand the definition of “focal species” used in the literature (Cox 

et al., 1994; Lambeck 1997; Carroll et al., 2001) but the concept has been expanded for use in 

conservation and management. The focal species represent those selected as a focus for a specific 

investigation (Niemi & McDonald, 2004) and have been used to identify potential indicator species, 

when there is a desire to describe ecological condition or measure the response to a disturbance.  

The failure of the measure was likely attributable to the narrow geographic ranges and restricted 

habitat distribution of rare species. Hence, information on rare species and those that are at risk was 

essential, yet gathering data on rare species is generally difficult, time-consuming, and expensive. 

In contrast to the indicator species approach, Manley et al. (2004) evaluated an innovative, multi-

species monitoring for  animals.  

Historically, ecological indicators were primarily based on parameters associated with individual 

species (e.g., presence) or simple community metrics (e.g., species richness or diversity). However, 

many of these indicators did not fully represent the entire biological community of organisms 

present. Researchers have developed other indexes to provide more holistic approaches to 

ecological condition (Niemi et al., 2004). These indexes range from simple diversity indexes, such 

as the Shannon and Wiener Index (Shannon & Weaver, 1949), to multimetric indexes (Simon, 

2003). Multimetric ecological indicators are sets of mathematically aggregated or weighted 

indicators (US EPA ,2000, Kurtz et al., 2001) that combine attributes of entire biotic communities 

into a useful measure of condition (US EPA, 2002b). Many other multimetric indexes have evolved 

over the past 20 years and in contrast to them, multivariate indexes (Reynoldson et al., 1997) are 
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statistical analyses of the biological community using a host of multivariate techniques, such as 

principal components analysis (O’Connor et al., 2000), canonical correspondence analysis 

(Kingston et al., 1992), and combinations of multivariate analyses (Dufrene & Legendre, 1997). 

 

  4.2 The methods applied for the studies 

 

In a natural ecosystem the studies of mycorrhizal symbioses are carried out at multiple levels from 

the molecular level to the community complexity. The ectomycorrhizal fungal communities have 

traditionally been studied by surveying aboveground sporocarps identified using standard 

taxonomic approaches (Gardes & Bruns, 1996). The criticism of these approaches was clear, 

because these surveys do not always reflect the species composition of below ground EM fungal 

communities on root (Gardes & Bruns, 1996). The reasons were related to the lack of some EM 

fungi in aboveground surveys because they produce small or cryptic sporocarps, have no known 

sexual state or produce sporocarps infrequentely (Sakakibara et al., 2002). Also, responses to 

environmental changes of EM communities on roots is probably delayed in comparison with 

responses in sporocarp communities, which further highlights the need to perform studies of EM 

fungal communities on roots (Wallenda & Kottke, 1998).  

The EM communities are today mainly described by two methods associated with root tips: the 

molecular techniques and the morphological classification. The first method is based on the 

observation that the internal transcribed spacer (ITS) region of the nuclear rDNA exhibits a high 

level of variability among EM fungal species and minimal variation within species (Gardes & 

Bruns, 1996). After PCR amplification of the ITS region with fungi-specific primes, restriction 

fragment length polymorphism (RFLP) generated by enzyme digests of the ITS region can be used 

to separate several fungal species (Gardes & Bruns, 1996; Sakakibara et al., 2002). RFLP patterns 

or ITS sequences are compared to databases with data on known fungal species, e.g. GenBank. 

Hence, these DNA-based techniques make it possible to identify the fungus with reasonable 

certainty and facilitate evaluation of both intra-and interspecific (Dahlberg 2001). However, the 

success rate of DNA extraction and amplification can vary among fungal species, and the use of 

DNA techniques on randomly sampled root tips, with no prior morphological categorization, cannot 

be used to generate quantitative descriptions of EM fungal communities (Sakakibara et al., 2002). 

Sometimes the morphological classification, “morphotyping” of the root tips with EM formations,  

needs different accuracy and throughput of a lot of sample material. In this thesis the morphotyping 
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was made accurately, and not only confined to the morphological investigations. The morphological 

investigation was united to a more detailed anatomical observation and it was only the first step of 

this work, to avoid potential discrepancies. 

Some fungi that can be distinguished from each other by DNA analyses have an indistinguishable 

morphology (Sakakibara et al., 2002), however sometimes the sequences in the Genbanks are 

lacking or conflicting with the anatomical classification, as for the Ramaria genus or the 

Thelephorales members as reported in this thesis. For these reasons the morphotypes in this thesis 

were differentiated into anatomotypes [= species of ectomycorrhizae, according to Agerer et al., 

(2002)]. It is therefore necessary to find a compromise between the accuracy of the method used to 

quantify fungal communities and the number of replicates needed to perform the statistical analyses, 

in order to obtain descriptions of heterogeneous EM fungal communities in plant roots in replicated 

multi-factorial field studies (Clemmensen 2006). 

Thanks to the work of Tedersoo et al. (2007),  new frontiers are offered  for the future of the 

molecular analyses and consequentely for the phylogenetic researches. To overcome the problem of 

the contamination by misidentified and chimeric sequences accounts in the public sequence 

databases, the Nordic-Baltic initiative created the UNITE database (http://unite.ut.ee/) that includes 

well-annotated and vouched specimens identified by a taxonomist (Kõljalg et al., 2005).   

The data analysis is another important step to understand the quantitative response of the EM 

communities to the ecological factors. The diversity measures including richness and evenness are 

usually compared using conventional statistics.   

As reported by Tedersoo et al. (2007) compositional data is best analysed using various ordination 

methods, the choice depending on hypotheses and software, but the ordination results usually 

provide some implications whether the community composition as a whole changes and which 

factors account for most of variation. Moreover, the ordination itself proves nothing because most 

methods lack relevant statistical testing and alternative ordination methods or distance algorithms 

can produce contrasting results. Furthermore, similar problems exist also during the result 

interpretations, because the species' position relative to the axes and factors provide a sound basis 

for developing new hypotheses that could be subsequently experimentally tested. The Detrended 

Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA) are among the 

most consistent and useful ordination methods for indirect and direct gradient analysis. The PC-Ord 

(McCune & Mefford, 1999) or CANOCO software (ter Braak & Šmilauer, 2002) are the most 

sophisticated and demanding statistical tools up to now.  
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A great contribution to the ecological studies on EM fungal community was the work of Taylor 

(2002), highlighting the importance of the sampling to complete the diversity assessment, 

discussing the physical sampling strategy employed and the life cycle traits of the EM fungi being 

examined. As reported in these researches the structure of most  EM communities is based on the 

presence of few common species and a large number of rare species. The laws at the basis of the 

theoretical detection limits showed the need to understand the sampling effort involved in assessing 

species richness.   

The most recent techniques applied to the EM species are the isotopic tracer studies, following the 

fate of added stable or radioactive isotopic tracers (e.g. 15N, 13C, 14C, 32P), through different 

ecosytem pools can be used to assess fluxes of specific substances in an ecosystem. Isotopic labels 

have been widely used in laboratory studies to demonstrate uptake of different N-forms and to 

determine N- uptake kinetics in plants (Kielland 1994; Taylor et al., 2004), ectomycorrhizal fungi  

(e.g. Lipson et al., 1999). Isotopic labels have also proved valuabel tools to determine the rates of 

specific soil processes in field settings, e.g. nitrification (Stark & Hart, 1997). Applying 13CO2
  

14CO2 tracers, among many other results, have given some insight into flux rates of C from plants to 

mycorrhizal fungi in laboratory studies (Jones et al., 1991; Heinonsalo et al., 2004). Also 13CO2
  or 

14CO2 tracers demonstrated reciprocal interspecific transfer of C among plants through common 

mycorrhizal mycelial networks (Simard et al., 1997). When applying isotopic tracers to natural 

ecosystems the most challenging task is to harvest and separate the pools that are analysed for the 

label (Clemmensen 2006).  Because of naturally occurring 15N:14N and 13C:12C isotopic ratios, i.e. 

the 15N and 13C natural abundance, in various ecosystem pools can be used to reconstruct diet and 

trophic relationships as well as energy and mass flows within ecosystems (Post 2002). This is 

because most biochemical processes fractionate against the heavier isotopes so that the product has 

a lower isotopic ratio than the source of a process, e.g. N excreted from an organism is isotopically 

lighter than N kept (Clemmensen 2006). Thus, natural abundance of  15N and 13C of a pool or an 

organism reflects isotopic signatures of the inputs and outputs as well as the input-output balance. 

Notwithstanding the difficult sampling of different pools in an ecosystem, one advantage of the 

studies of natural isotopic abundance in comparison with isotopic labelling studies is that the 

method is not-manipulative. 

Recent studies of 15N and 13C natural abundance were carried out in sporocarp communities in 

forest ecosystems and they have identified a difference between EM and saprotrophic (SAP) fungi 

linked to their trophic status (Högberg et al., 1999; Hobbie et al., 2001; Henn & Chapela, 2001; 
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Taylor et al., 2003; Trudell et al., 2004). EM fungal species are relatively enriched in 15N and 13C 

compared to saprobes and autotrophs (Gebauer & Dietrich, 1993; Taylor et al., 1997) due to 

different N and C sources (Gleixner et al., 1993; Högberg et al., 1999), as reported in these previous 

studies on sporocarps. SAP fungi show the attitude to degrade dead organic material and use 

complex C sources like cellulose and lignin, whereas EM fungi receive more simple carbohydrates 

directly from the plant(s) with which they associate (Cooke & Whipps, 1993; Smith & Read, 1997). 

On the other hand the SAP and EM fungi have access to the same N sources in the soil, and the 15N 

enrichment of EM relative to SAP fungal tissues is hypothesized mainly to be related to 

fractionations of N isotopes within the EM mycelium and preferential transfer of 15N-depleted 

compounds to the plant (Högberg et al., 1996). 

It needs to be emphasized that stable isotope concentrations are taxonomically biased within 

“functional guilds” both in plants (Delwiche et al., 1978) and fungi (Taylor et al., 2003). This basis 

should be considered when choosing reference taxa and comparing across temporal and spatial 

scales (Taylor et al., 2003). Ignoring these facts may lead to incorrect conclusions, especially when 

assigning trophic status of fungi (Tedersoo et al.,  2007). 

Stable isotopes were used in this thesis, to assign the trophic status of a species that belongs to the 

Hygrophorus genus (chapter 3). The use of stable isotope techniques in plant ecological research 

has grown steadily during the past two decades and this trend will continue as investigators realize 

that it can serve to understand the plant-environment interactions (Dawson et al., 2002).  

 

4.3 The ectomycorrhizal communities in the soil 

 

It is well-known that EM fungal communities frequently have a high species richness, in some 

cases exceeding 100 taxa in relatively small plots of land (Izzo et al., 2004), and many species of 

EM fungi coexist in a mosaic fashion in a small volume of soil (Zhou & Hogetsu, 2002). Most 

comprise few, frequently occurring species and many more rare species (Taylor, 2002; Bueè et al., 

2005; Koide et al., 2005). Species may spatially partition the forest floor (Dickie et al., 2002; 

Genney et al., 2006) and interact with each other both positively and negatively (Agerer et al., 

2002; Koide et al., 2005). 

The relationship between the frequency of soil hyphae, presence and  numbers of fruiting structures 

and colonized roots change substantially among species (Gardes & Bruns, 1996; Gehring et al., 

1998; Koide et al., 2005).  
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Significant variation among species, also relieved in their enzyme activities (Bueé et al., 2005; 

Courty et al., 2005; 2006), may explain in part why species vary in their capacity to absorb and 

transport N or P to their hosts, or in their demand for host C. Such enzyme assays may be especially 

relevant for species of ectomycorrhizal fungi that possess the contact type of hyphal exploration 

strategy (Agerer 2001). For other species, the hyphae growing into the soil may be at least as 

important to nutrient capture as colonized roots (Koide et al., 2007). 

Although the highest fine root density in boreal forest soils is found in the organic and upper 

mineral soil horizons (Persson 1980; Sylvia & Jarstfer, 1997; Makkonen & Helmissari, 1998), tree 

roots can be found at greater depths (Jackson et al., 1996).  

At all soil depths, fine roots are colonized by ectomycorrhizal fungi (Egli 1981). Most of the 

ectomycorrhizal fungal community studies restricted sampling to the upper, organic part of the soil 

profile (Horton & Bruns, 2001), ignoring the ectomycorrhizal root tips in the deeper mineral soil 

layers. 

Chemical and mineralogical properties of soils change with depth, creating a number of different 

habitats for microrganisms, and the ectomycorrhizal fungal community is likely to change 

throughout the soil profile (Rosling et al., 2003). 

Studies on the distribution of  ectomycorrhizal taxa in soil suggested that there may be large 

differences in species composition between the organic layer and the mineral soil (Egli 1981; 

Goodman & Trofymow, 1998; Fransson et al., 2000; Danielsson & Visser, 1989; Heinonsalo et al., 

2001). Dickie et al. (2002 using T-RFLP analysis of DNA extracted from soil mycelium, found 

differences in ectomycorrhizal species composition between different components of the forest floor 

(L, F and H layers) and the B horizon of the mineral soil in a North American Pinus resinosa stand, 

while Zhou & Hogetsu (2002) used T-RFLP to map the three-dimensional distribution of 

ectomycorrhizal root tips in a Japanese Larix kaempferi stand, but found no clear vertical 

distribution patterns. Abuzinadah & Read (1986) suggested that the fungi found in the organic 

layers were adapted to using organic nutrients, while those in the mineral soil were more dependent 

upon mineral N. Further, Conn & Dighton (2000) and Dighton et al. (2000) demonstrated the 

importance of the litter chemistry in determining the species composition of EM fungi colonizing 

litter patches, as confirmed also by Toljander et al. (2006).  

In conclusion, the species composition of EM fungal communities can be strongly influenced by 

various soil properties, including parent material (Gehring et al., 1998; Scattolin et al., 2007), soil 

stratification (Malajczuk & Hingston, 1981; Dickie et al., 2002; Landeweert et al., 2003; Rosling et 
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al., 2003), organic matter content (Harvey et al., 1987), litter quality (Goodman & Trofymow, 1998; 

Conn & Dighton, 2000), moisture content (O'Dell et al., 1999) and fertility (Sagara 1995; Lilleskov 

et al., 2001). Variation in any of these soil variables has the potential to contribute to 

ectomycorrhizal fungal species diversity. The result of the abiotic preference of a species, which 

delineate its fundamental niche, can be at the basis of the kind of partitioning of the environment, as 

well as evident interactions among the same species could limit a species to its realized niche.  

These interactions among EM fungal species probably occur frequently (Koide et al., 2005). 

The findings of several studies suggested that there is frequent opportunity for at least some EM 

fungi within a community to interact with others as their hyphae attempt to colonize either newly 

produced roots in order to acquire carbon, or volumes of forest floor in order to capture water and 

nutrients (Gryta et al., 1997; Fiore-Donno & Martin, 2001; Guidot et al., 2001, 2003; Zhou & 

Hogetsu, 2002). Furthermore, many researchers have noted multiple species of EM fungi colonizing 

a single root (Mamoun & Olivier, 1993a, b; Wu et al., 1999), and association between specific pairs 

of fungi on colonized roots, Olsson et al., (2000). Unfortunately, there is limited knowledge as to 

whether there are special ecological microniches in the soil for morphologically different 

ectomycorrhizae (Agerer et al., 2002). 

Interactions among EM fungal species may be either positive (co-occurence, specific associations) 

or negative (competitive exclusion) in nature (Agerer et al., 2002; Koide et al., 2005). For example, 

the persistence may be related to the ability of a species to exclude others from colonizing roots 

(Fleming 1985; Mamoum & Olivier, 1993a, b; Olivier & Mamoun, 1994) and in some cases, this 

could involve the production of chemical inhibitory substance as for the species Cenococcum 

geophilum Fr. (Koide et al., 2005). However, systematic investigation of such not random 

distributions at the whole-community level has not been made (Koide et al., 2005). 

Izzo et al. (2005) sampled at intervals ranging from 5 cm to 200 cm at two depths over 3 years. 

With this combined approach the authors demonstrated that the ectomycorrhizal community turns 

over frequently at smaller scales, but much less so than at larger scales. These results indicated that 

the pool of available ectomycorrhizal species within an ecosystem may remain more or less 

constant, whereas the exact location of individual species may shift over time.  

The assessments of EM communities are important because a growing body of research suggests 

that mycorrhizal species vary in their influence on a number of ecological processes (Treseder 

2005). 

Izzo et al. (2005), found that inter-annual variation in climate and other factors had little impact on 
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the composition of the ectomycorrhizal community within the forest as a whole even over 3 years.  

By contrast, short-term changes pointed to the growth or death of particular individuals, rather than 

the loss or immigration of species. This distinction is important because it implies that the short-

term changes may be easily reversible, depending on future conditions (Treseder 2005). In disturbed 

ecosystems the results attested a different situation, in which changes in ectomycorrhizal 

composition have been recorded within a few years after exposure to fire, elevated CO2, or nitrogen 

additions (Grogan et al., 2000; Treseder & Allen, 2000). These different approaches are discussed to 

understand if these shifts in community composition are due to alterations in an otherwise stable 

“background” pool within the ecosystem, as might be implied by Izzo et al. (2005), or if they are a 

result of easily reversible changes in population dynamics (Treseder 2005).  

 

    4.4 The ectomycorrhizal responses to environmental stress 

 

The factors that influence community development and maintain the high EM fungal diversity 

present in boreal ecosystems are poorly understood. Studies which have examined determinants of 

EM fungal diversity under natural undisturbed systems, don't abound in contrast to several studies 

examining diversity in relation to changes in abiotic factors due to pollution and/or forest 

management practise (Erland & Taylor, 2002).  

The typical structure of a EM community consists of a few common species, colonising 50-70%  of 

the available fine roots, and a large number of rare species (Buée et al., 2005; Erland & Taylor, 

2002; Koide et al., 2005; Taylor 2002). The community diversity is usually considered to have two 

components: the number of the species or species richness and the relative abundance of species or 

community evenness (Magurann 1988). The high species richness, often reported in EM fungal 

community investigations, is due to several mechanisms that may contribute to including spatial 

and temporal partitioning, as a result of the edaphic variation or the interactions among the species 

(Koide et al., 2007). 

The most frequent response of the EM community to a perturbation due to anthropogenic factors is 

a shift in the community structure such as the dominance increases and species richness declines as 

reported by different studies (reviewed by Erland & Taylor, 1999; De Roman et al., 2005; Mosca 

2007), on Norway spruce (Kraigher 1999), oaks (Kovacs et al., 2000). Pollution and other 

anthropogenic stresses have been found to diminish biodiversity indices of EM also in spruce stand 

in Slovenia by Kraigher et al. (2006); however in European beech this trend was not detected 
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(Kraigher et al., 2006). 

New species may appear more important as colonisers after a disturbance (Kraigher et al., 2006). 

However Erland & Taylor (2002) suggested that until the spatial distribution is not really 

understood and the sampling strategies are not well developed to deal with the non-random 

distribution of the EM fungi in soil, the results could suggest changes in the community diversity, 

which should be interpreted with caution. The sampling strategies must be able to accommodate the 

changes of root tip density following a perturbation, because the number of root tips in a sample can 

significantly affect the number of EM fungal species found.  

Tab. 1: Summary of known effects of management and pollution upon the EM community (from Erland and 

Taylor 2002 with modification). 

 

Factor Mycorrhizal tip 
numbers 

Colonisation 
(%) 

Sporocarp 
production 

EM 
community 

belowground 

Extramatrical 
mycelium 

General 
comments 

Elevated 
CO2 

Increase in fine 
root production 
often recorded 
(Rey and Jarvis 
1997; Runion et 

al. 1997) 

No effect 
recorded 

No data Changes in 
species 

composition in 
pot cultures 

(Godbold et al. 
1997; Rey & 
Jarvis, 1997) 

Increased 
production 

(Godbold et al. 
1997; Rouhier 
& Read 1998, 

1999) 

Insufficient 
data, 

particularly 
field data 

Ozone Possible decrease 
(Edwards & 
Kelly, 1992) 

No effect (Roth 
& Fahey, 1998) 

No data Change in 
community 
structure 

(Edwards and 
Kelly 1992; 

Qiu et al. 1993) 

Insufficient 
data 

Insufficient data 

Heavy 
metals 

Effects 
dependent upon 
metal spp. and 

conc. (Hartley et 
al. 1999) 

Effects 
dependent 
upon metal 

spp. and conc. 
(Hartley et al. 

1999) 

Decrease. 
Species 
richness 

negatively 
affected 

(Rühling & 
Söderström, 

1990) 

Increase in 
tolerant species 
(Hartley et al. 

1999) 

Insufficient 
data 

Larger inter-and 
intraspecific 
differences. 
Complex 

interactions 
between 

plant/fungus/me
tal (Leyval et al. 
1997). Percent 
colonisation 

may decrease, 
especially if 
host is more 
tolerant than 
mycobionts 
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Decreases have 
been reported 

(Kraigher et al. 
1996; Erland et 

al. 1999) 

No change 
(Wallenda  & 
Kottke 1998; 
Taylor et al. 

2000) 

Initial change 
in community 

structure. 
Reduction in 
sporocarp 
production 

(Baar and ter 
Braak 1996) 
but increased 
production by 
tolerant spp. 
may mask 
decrease in 

sensitive spp. 
(Wallenda & 
Kottke, 1998) 

Decrease in 
diversity 
(Kraigher 

1996; Lilleskov 
and Fahey 

1996; Taylor et 
al. 2000) 

decrease in 
protein spp. 
(Taylor et al. 

2000) 

Insufficient 
data 

Decrease in 
diversity, both 

in terms of spp. 
Richness and 

evenness. More 
severe effect 

above ground. 
“Specialist 

species” more 
adversely 
affected. 

(Wallenda & 
Kottke, 1998). 
Deficiency of 
other nutrients 
may lead to 

higher numbers 
of EM 

N-
fertilisation 

Short-term 
decrease after 
large single N 

additions (Meyer 
1962; Ahlström 

et al. 1988) 

Short-term 
decrease after 
large single N 

addition 
(Wallenda & 
Kottke, 1998) 

Differential 
response- some 
spp. increase, 
e. g. Lactarius 

rufus, most 
spp. decline 
(Wallenda & 
Kottke, 1998) 

Insufficient 
data, 

particularly 
with regard to 

long term 
effects. 

Changes in 
community 
structure 
recorded 

(Arnebrant and 
Söderström 
1992; Kåren 
and Nylund 

1996) 

 Most studies 
record 

decreasing 
diversity after 
large single N 

additions  

Acidification Decrease in fine 
root numbers 
(Dighton & 
Skeffington, 

1987) 

No change 
(Dighton & 
Skeffington, 

1987) 

Decline in 
diversity 

(Arnolds 1991; 
Dighton and 
Skeffington 

1987; Agerer et 
al. 1998). 
Increased 

production by 
acidophilous 

spp. (Agerer et 
al. 1998) 

Changes in 
species 

composition 
(Roth & Fahey, 
1998; Qiu et al. 

1993). 
Decreases in 

spp. with 
abundant 

extramatrical 
mycelium 

Decreased 
production 
(Dighton & 
Skeffington, 

1987) 

Increased 
disturbance due 

to greater  
earthworm 

activity could 
reduce 

Extramatical 
mycelium 

Liming Often large 
increase in root 
tips (Erland & 
Söderström, 

1991; Persson & 
Ahlström, 1994; 
Jonsson et al. 

1999; Bakker et 

No change 
recorded but 

few data 
available on 
immediate 
effects of 

liming 

Differential 
response by 

spp. (Agerer et 
al. 1998) 

Considerable 
changes in spp. 
Composition 

often recorded 
after liming. 
(Lehto 1984, 

1994; Erland & 
Söderström, 

Increase in 
types with 
abundant 
mycelia 

(Bakker et al. 
2000) 

There is a great 
need for more 
studies into the 
effects of liming 
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al. 2000) 1991; 
Andersson & 
Söderström, 

1995;  Jonsson 
et al.1999) 

Wood ash Insufficient data No change 
(Mamood, 

2000) 

Insufficient 
data 

Some evidence 
of differential 
spp. Response 
(Mahmood, 

2000) 

Insufficient 
data. EM 

nycelia have 
been reported 
to colonise ash 

granules 
(Mahmood, 

2000) 

Very few 
studies available 

Vitality 
fertilisation 

Insufficient data No change 
Kåren & 

Mylund, 1996) 

Insufficient 
data 

Insufficient 
data 

No data Very few 
studies 

 

In Germany recent studies were performed on mature beech and spruce to discuss a possible 

ecological role for the abundant types of ectomycorrhiza and their putative application in ozone 

impact bioindication (Grebenc & Kraigher, 2007). The total number of mycorrhizal fine roots was 

higher at the fumigated plot as compared to the control site. Some species as Cenococcum 

geophilum Fr., Russula densifolia Romagn., Russula fellea Fr. (Fr.), Russula illota Romagn., Tuber 

puberulum (Berk.) Broome were more abundant under ozone-fumigated trees, and other species like 

Lactarius acris (Bolton) Gray, Fagirhiza fusca (Brand 1991) and Fagirhiza setifera (Brand 1991) 

were present only in fumigated plots. 

Coleman et al. (1992) described the soil as the “chief organizing centre for ecosystem function”. 

The role of soil biota and processes as modifiers of the ecosystem or plant responses to global 

change is becoming increasingly recognized. One of the main functions of mycorrhizal fungi and 

fungi in general at the ecosystem level is their contribution to the formation and maintenance of soil 

structure (Tisdall & Oades, 1982). The global change factors can influence other soil biota,  

physical features (soil structure) and can have potentially large indirect effects on the EM 

community composition of mycorrhizal fungi and mycorrhizal functioning (Rillig et al., 2002). 

Consequently each global change effect on the extraradical mycelium of mycorrhizal fungi can 

secondarily impact soil structure (Young et al., 1998; Rillig et al., 1999). 

The significance of shifts in EM fungal diversity at the ecosystem level remains unclear due to a 

lack of knowledge of the functional capabilities of most EM fungal taxa under field conditions. Up 

to now it is known, however, that considerable interspecies variation exists with regard to a number 

of physiological attributes for instance the nutritional host status can be affected by the changes in 
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dominance (Erland & Taylor, 2002).  

Due global change effects, the real interpretation of the shift is becoming increasingly difficult, , 

which in turn make it more difficult to discern the result of each component, notwithstanding the 

many multidisciplinary researches. However, the climate change on  Mediterranean forests is 

evident with a current biome shift,  which has been documented recently (Penuelas & Boada, 2003), 

in which Calluna vulgaris (L.) Hull (Heather) and Fagus sylvatica L. are being replaced by Quercus 

ilex (L.) in higher elevations as it extends beyond the former upper limit of its range with onset of 

the milder weather conditions. 

In this context, recent studies on global change, considering the predicted increase in drought 

frequency and intensity, reported that the short-term consequences of drought on biodiversity 

depend on species abilities to resist, and to recover after the drought, and on competitive 

interactions between species. Although the abundance of many species generally decreases during 

droughts, some taxa may increase in number during droughts or shortly thereafter (Archaux & 

Wolters, 2006) as reported for the EM communities responses to the general human pressure. 

The work on different  beech ecotypes of  Shi et al. (2002) confirmed in drought causes a shift in 

plant/fungus communities, showing that decreased soil water availability did not significantly 

change either the degree of fungal colonisation of the roots, nor the number of ectomycorrhizal 

types per root system. Droughts did, however, have an influence on the composition of the 

ectomycorrhizal community. Different mycorrhizal types responded to droughts differently in terms 

of patterns of occurrence/abundance. Droughts increased the abundance of mycorrhiza formed 

between beech and Xerocomus chrysenteron (Bull.) Quél. Sustained partitioning of carbon towards 

the mycorrhizal fungi under drought was reflected by an increase of nitrogen storage in the fungal 

vacuoles (Shi et al., 2002).  

The temperature can have also direct effects on mycorrhizal fungi (Staddon et al., 2002) as all 

organisms have an optimum for temperature conditions. The enzymatic activity depends on the 

temperature, since the latter can directly affect mycorrhizal fungi, and also due to its impacts on 

host plants. Temperature effects can also be indirect, via effects on other environmental factors (e.g. 

soil moisture). 

As for elevated CO2, it may be found that in natural ecosystems the effects of temperature on 

mycorrhizae will mainly be, due to temperature-induced changes to plant communities.  

Furthermore the work of Izzo et al. (2006) is an important improvement to understand the EM 

responses to  fire. They tested the behaviour of the resistant propagule community on heat 
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treatments in artificial conditions. One species, Rhizopogon olivaceotinctus, significantly increased 

in frequency, and two species (Cenococcum geophilum and Wilcoxina sp.) significantly decreased 

in frequency after a 75º C treatment. The increase of Rhizopogon olivaceotinctus A.H. Sm., coupled 

with other features of its behaviour, suggests that substantial heat disturbances may benefit this 

species in competing for roots. But in natural ecosystems many soil properties (e.g. nutrient 

availability, pH, and hydrophobicity) are present in an altered form, resulting from heat and the 

drying stress of fire (Agee 1993). Moreover, these effects may vary across space and soil depth.  

To partition the effects of these different factors, Grogan et al. (2000) examined the effect of 

removing post-fire ash, an important nutrient source, on EM community composition on field 

seedlings, but due to high species richness and spatial variability they found no clear effects. Baar et 

al. (1999) found that propagules of some EM species responded positively to soil drying in 

greenhouse experiments, and that these were the same species that colonized seedlings in nature 

following fire.  

The importance of  soil changes is also important to understand the sylvicultural impacts on EM 

communities. For instance, as reported by Baar & de Vries (1995), the manipulation of litter and 

humus layers strongly affects the ectomycorrhizal colonization capacity. Termorshuizen (1991) 

showed that the occurrence of ectomycorrhizal fruitbodies, in Scots pine forests of different ages, 

and the seedlings mycorrhization, is not linked to the aging of the trees, but to the aging of the 

forest soil, which is likely to be the main factor determing ectomycorrhizal infection. Based on the 

field experiment, it is also concluded, in the work of Heinonsalo (2004), that the shift in 

ectomycorrhizal community structure, observed in the seedling roots after clear-cut logging, is not 

due to the lack of inoculum in the clear-cut soil, but to changes in the soil environment. 

Normally, the spatial richness decreases in EM diversity after clear-cuts (Cline et al., 2005) or it can 

increase after a thinning (Bueè et al., 2005; Mosca et al., 2007). Harvesting significantly also 

decreased the thickness of the humus layer, as well as the numbers of ectomycorrhizal root tips, 

both per metre root length and per unit humus volume (Mahmood et al., 1999).  

The results on a particular type of repeated silviculture action are lacking up to now. 

In chapter 4 of this thesis the results of studies on the EM community structures in beech coppices 

are documented, to understand the possible resilience or an adaptative diversity of the EM species 

as reported in previous investigations (Mosca 2007; Scattolin 2007).   

The number of EM morphotypes increased with stand age along the chronosequence also in the 

studies of Gebhardt et al. (2007), performed on  EM communities of red oak (Quercus rubra L.) of 
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different age in the Lusatian lignite mining district, East Germany. However, the number of 

morphotypes was lower in stands with disturbed soil than with undisturbed soil and the age has 

probably influenced the colonization rate of red oak, because it was slower only in the youngest 

chronosequence stand. 

The notion that the age of a stand of trees could influence the community structure of EM was first 

postulated in the early 1980s (Mason et al., 1982; 1983). The concept generated considerable 

interest because Mason and his colleagues suggested that some species of EM fungi were found 

only when trees were in their pioneer phase, so-called early stage fungi and others were specific to 

climax vegetation, so-called late-stage fungi. This theory was later refined by Danielson (1984) to 

include a third category known as multi-stage fungi.  

Numerous studies have utilized forests with a gradient of stand ages to test Mason’s hypothesis with 

varying degrees of agreement. As a general point, it should be noted that several of these studies are 

compromised by the lack of true replication. This essential requirement for meaningful statistical 

analysis is not always easy to achieve in chronosequences. Moreover, many other factors are 

frequently correlated with stand age and careful experimental design, field observation, and 

statistical analyses are required to try and separate the various factors tested. The critics of the EM 

succession hypothesis have argued that the hypothesis is only likely to hold true for pioneer plant 

species because the original study utilized a stand of birch (Betula pendula Roth) that had recently 

colonized agricultural soil (Johnson et al., 2005). Visser (1995) studied a chronosequence of a Jack 

pine (Pinus banksiana Lamb) that had regenerated naturally after wildfire disturbance. The data 

showed that the number of EM morphotypes increased progressively in the first 65 years before 

increasing at a much-reduced rate until 122 years and the EM community included early-stage 

species such as Coltricia perennis (L.) Murill, multi-stage species such as Suillus brevipes (Peek) 

Kuntze, and late-stage species such as Cortinarius spp.  

Furthermore, the view of the EM community did not show the predicted decline in species richness 

following canopy closure (Last et al., 1987). A similar trend was seen in stands of Pinus kesiya 

Royle ex Gordon during the initial (2–17 year) growth phase (Rao et al., 1997). Here, species 

richness of EM fungi was directly proportional to the age of the stand. All these cited studies  

however are subject either to the vagaries of the relationship between sporocarp presence and 

mycorrhiza presence or from the uncertainties of EM morphotype identification (Johnson et al., 

2005). 

Lee & Alexander (1996) obtained similar data for the EM fungi in tropical rain forests and 
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demonstrated that EM community on the roots of dipterocarp seedlings changed in the 7 months 

following germination, showed that fungi entered the mycorrhizal community as time progressed, 

some fungi were lost or declined in relative abundance, and regarded this as a clear evidence of  

succession (Johnson et al., 2005). As far as known, there have yet to be any studies using DNA-

based methods to investigate the successional processes in EM communities, despite the recognition 

10 years ago that this would be a useful line of inquiry (Egger 1995). Species richness in the surface 

organic (L, F, and H) horizons was the least in the youngest stand (13 years) and was the greatest in 

the 59 and 116 year-old-stands. By contrast, species richness in the mineral horizon (in this case a 

uniform sand horizon several metres deep) did not differ between stand ages. This data suggests a 

rather idiosyncratic response of root-associated basidiomycete fungal communities to host plant 

age. It is clear that tree age can have impacts on EM fungal communities, but that these may be 

more or less apparent in particular forest types, notably young plantations versus old growth 

(Johnson et al., 2005). There seem to be two processes occurring: changes in mycorrhizal 

communities on individuals with time at that individual inocula are available, and also changes at 

the stand level associated with a range of edaphic factors. Several authors have alluded to the latter 

point (Johnson et al., 2005). Visser (1995) highlighted that differences in host carbon supply could 

have driven the changes seen in the EM fungal communities. This hypothesis arises from the notion 

that carbohydrate supply can affect EM colonization (Björkman 1949). The isotope tracer 

techniques required to determine if EM community composition is related to host carbon supply are 

readily available and have been highlighted already. 

It is further deducible that the extramatrical mycelium is likely to be the component of the 

belowground EM community that is most sensitive and responsive to environmental change (Erland 

& Taylor, 2002). In the recent years new advances (Anderson & Cairney, 2007) in understanding 

soil-borne mycelia of EM fungi have arisen from combined use of molecular technologies and 

novel field experimentation. These approaches have the potential to provide unprecedented insights 

into the functioning of EM mycelia at the ecosystem level, particularly in the context of land-use 

changes and global climate change. EM fungal mycelia can comprise 80% of the total fungal 

biomass and 30 % of the microbial biomass in some forest soil (Wallander et al. 2001, 2003; 

Högberg & Högberg, 2002), with carbon allocation to EM fungi estimated to be as much as 22% of 

net primary production (Hobbie 2006). EM fungi are thus an important component of forest carbon 

cycles, and the effects on elevated atmospheric CO2  have received more attention in the last years ( 

Anderson & Cairney, 2007). Elevated atmospheric CO2 conditions showed increased percentage 
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root colonization by EM fungi (Norby et al., 1987; Ineichen et al., 1995; Berntson et al., 1997; 

Godbold et al., 1997; Tingey et al., 1997; Rouhier & Read, 1998; Walker et al., 1998; Kasurinen et 

al., 2005), with only one exception (Rouhier & Read, 1999). Confirming this response some effects 

were also shown on the altered EM fungal root-tip community structure in experimental conditions 

(Norby et al., 1987; Ineichen et al., 1995) and in the field (Fransson et al., 2001; Kasurinen et al., 

2005). A change in EM root-tip community composition in favour of morphotypes that appeared to 

produce emanating hyphae and/or rhizomorphs was noted under these conditions (Goldbold & 

Bernston, 1997; Goldbold et al., 1997). Because the attempt to quantify soil-borne mycelia is 

lacking, this results can't provide direct information on the mycelia response of EM fungi. Another 

criticism is the inability to generalize, because the results are available only on single field 

experiments and on the response of the EM mycelial community and, therefore, they provide no 

information on the behaviour of individual EM species to elevated atmospheric CO2  in the field 

(Anderson & Cairney, 2007).  

 

5. The beech root system and its mycorrhizal root structure 

 

 
The root system of Fagus sylvatica L. has been described by Büsgen (1905) as intensive because of 

the relatively large number of fine roots per unit volume. 

The structure and mode of growth of the root tips of adult trees have been described in details by 

Clowes (1949, 1950, 1951, 1954). During their collection and dissection for physiological 

investigation Harley (1948) observed that the root system of the beech colonizes the soil within the 

immediate area of the tree canopy and produces a large number of fine roots in the surface layer of 

the soils The accumulation of rootlets near the soil surface is especially evident under woodland 

conditions. There appears to be a differentiation of the ultimate laterals into “long” and “short” 

roots; the short roots are often termed the “feeding roots” and the main function of absorption is 

ascribed to them. Indeed, as their surfaces constitute the greater part of the surface area of the root 

system, this must be true. It should not be assumed, however, that the long roots have solely a 

pioneer and anchoring function, for their apical regions are capable at least of absorbing salts and 

water (Harley 1948) and are often equipped with root-hairs. In Fagus there is no distinction in 

quality between the two types of roots, so that if a comparison is made of long and short roots that 

are uninfected by fungi, the types grade into one another. Harley (1948) was also the first to 
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investigate the primary root, considering them in order of increasing intensity of infection. 

The first mycorrhizas of Fagus sylvatica L. were recorded, in fact, by Harley (1948) and Warren 

Wilson (1951), as being after the first foliage leaves were set. Boullard (1960, 1961) and Laiho & 

Mikola (1964) observed the same features in Pinus sylvestris L., Pinus montana Salisb. (= Pinus 

cembra L.), and Picea abies L. In all these cases there was a correlation of the initiation of infection 

with the probable onset of active photosynthesis, and this can help to choose the right sampling 

time. 

The results of Boullard (1961) on the effect of light on the infection of Cedrus atlantica L., Pinus 

pinaster Ait., Pinus sylvestris L. and other tree species, showed that an increase of the light period, 

i.e. Increase of the duration of the daily photosynthetic period, from 6 hours to 16 hours or even 

longer, increased the development of the root systems and the number of short roots on the 

seedlings. It also resulted in an increase in the number and percentage of roots on the seedlings. It 

also resulted in an increase in the number   of roots converted to mycorrhizae Essentially similar 

results were obtained by Wenger (1955) using Pinus and by Harley & Waid (1955) using Fagus. 

But this correlation is not always valid.  

Clowes (1951) underlined the rare presence in Fagus of a tannin barrier outside the endodermis, as 

reported for other plants (MacDougal & Dufrenoy, 1946). Where it does occur it may take the form 

of a ring of cells (the epidermis or in the cortex) with droplets of tannin in the cytoplasm, or of a 

circle formed of tannin-impregnated  cells (Clowes 1951). 

As reported by Clowes, although the most common state of infection of Fagus is that normally 

described for ectotrophic mycorrhizae some of thicker roots (either long or short roots) had a mantle 

of fungal pseudoparenchyma without a Hartig net. The fungus laid on the surface of the epidermis 

or the outer cap cells and in a few cases the hyphae penetrated the outer cell wall into some of the 

epidermal cells and there formed swollen vesicles. More rarely intracellular hyphae ramified 

throughout the cortex and even into the meristem. This type of mycorrhiza occurred in the studies 

of Clowses frequently, when the infection is limited to the apex.  

Götsche (1972) also found an ectoendotrophic status of mycorrhizae in mixed stands of Picea abies 

and Fagus sylvatica, where the species showed intracellular hyphae and progressively destroyed the 

epidermal cells. The formation of this parasitism form was connected with suberin presence.  

The description of the EM on  F. sylvatica began with  the research of Brand (1991), who  classified 

23 new ectomycorrhizal species. 
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6. Aim of the thesis  

 
The main goal of this thesis, linked to “InHumusNat2000” (1587/2004) project, funded by the 

“Fondo per i progetti di ricerca della Provincia autonoma di Trento”, in co-operation with the 

Centre for Alpine Ecology (TN, Italy), was to verify the possibile response to the coppicing on 

beech (Fagus sylvatica L.), applying a biological indicator such as the ectomycorrhizal community 

could be. 

These researches were performed in beech coppices of different age, because the last cut was 

applied in different periods. They were selected among sites, which are very important for the 

European Community for habitat and species protection (“SIC” sites or “ZPS” sites belong to the 

“Net Nat2000”, in application of the European Directives n. 42 1992 and n. 409 1978, respectively). 

This work would integrate the parameters generally used for the management in forests of particular 

importance, but suffering under a hard and constant human pressure.  

Since only a few studies on the vertical distribution of EM (ectomycorrhizae) consortium in soils 

are available up to now, this thesis is an attempt to associate the species composition in the different 

soil horizons.  

To determine the influence of environmental features on the EM species distribution, pH, exposure, 

humus forms and their chemical-physical properties were taken into account as the most 

representative and influencing factors in soil ecological dynamics.  

To establish the diversity and the EM community structure in these natural habitats the study was 

carried out in different stands, to relate the coppicing effects on the species in the soil  layers.  

Moreover, this thesis would be a small contribution to the biodiversity of the beech forest 

ecosystems with four new  descriptions of ectomycorrhizae. 

 
          6.1  Thesis structure 

 

The thesis is composed by five chapters presenting at first the composition of the ectomycorrhizal 

communities in beech coppices in the North of Italy, in the Trentino-Südtirol Region, reporting 

three new species descriptions (chapter 2).  

Chapter 3 reports the investigation results on an ectomycorrhiza species, which shows a parasitic 

attitude in the studied sites.  

Chapters 4  consists of two different articles, to describe the EM community response to the 

coppicing and in particular in the soil organic layers and related to the different environmental 
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features. In chapters 5-9 five descriptions of new EM species are reported. 

Each chapter is based on a paper submitted to, or in evolution for, an international peer-reviewed 

journal, then followed by a general conclusion (chapter 10).  
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CHAPTER 2 
 
 
 

The composition of the ectomycorrhizal community in beech coppices of 
different age 

 
 
 
 

 
 

1. Introduction 
 

The research on ectomycorrhizae (EM) received a great impulse in the last 40 years thanks to the 

work of many scientists. The first morphological investigation together with the latest ecological, 

physiological and genetic studies widened the information now available, but the progresses in the 

anatomical identification of the fungi is a prerequisite of the studies of EM communities (De 

Roman et al., 2005). The molecular analysis are not sufficient and not always efficient  or reliable 

to classify the species, and morphological in combination with anatomical features have a 

fundamental role to understand the fungal structure and its different developmental stages on the 

host. Since the beginning of ectomycorrhizal symbiosis research in the late 19th century, a lot of 

EM morphotypes have been more or less accurately described, and few authors tried to create a 

classification systems and to develop identification keys similar to that available for plants and 

animals, but this was a difficult task (De Roman et al., 2005). The first attempt was made by 

Dominik (1969) and a few years later Zak (1973) attested that a detailed description of each EM 

was essential for the identification. Goodman et al. (1996–2000) realized concise Descriptions of 

North American Ectomycorrhizas, and the descriptions published according to this system were 

more detailed than those in Ingleby et al. (1990), but they lacked the level of detail. In the year 1986 

Agerer (1986, 1987–2006, 1994, 1999) began to publish guidelines for the systematic descriptions 

and identification of EM that are widely used nowadays (De Roman et al., 2005). In addition, 

Agerer created a binomial nomenclature system for those EM described but not yet identified, 

edited a Colour Atlas of Ectomycorrhizas (Agerer 1987–2006) with photographs of the EM to 

facilitate identification by comparison, and developed a synoptic key and determine EM (Agerer & 

Rambold 1998, 2004-2007).  
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Some 5.000-6.000 fungal species are estimated to be ectomycorrhizal fungi (Molina et al. 1992; 

Taylor & Alexander 2005), but only a small portion of them has been investigated by anatomical 

studies  (Agerer 2006). The most important informative ectomycorrhizal features for the recognition 

of fungal relationships are: 

 a) structure of the mantle layer as seen in plan view; 

 b) structure of rhizomorphs; 

 c) shape of cystidia; 

      d) features of emanating hyphae. 

In addition all the anatomical features, can be used to characterize EM, in particular those including 

hyphae (Agerer 2006). Recent investigations about the ecological function of the symbiotic species 

in the ecosystem, gave the possibility to apply putatively ecologically important features as 

expressed by their exploration types (Agerer 2001). Up to now only Brand (1991) published a more 

detailed contribution to the ectomycorrhize on Fagus sylvatica L., with 23 descriptions. Here we 

present the structure of the community discovered in beech coppices of different age in the Province 

of Trento (Trentino-Südtirol Region in Italy), thanks to three years of research on this topic.   

 

2. Methods 

 

The collected rootlets were carefully cleaned from adehring soil and debris in tap water. Under a 

stereomicroscope connected to digitals cameras the EM were sorted at first into morphotypes based 

on colour, occurence and abundance of cystidia, emanating hyphae and rhizomorphs (Agerer 1987-

2006, Agerer 1991). Furthermore several root tips of each morphotype per sample were 

anatomotyped following Agerer (1991). These analyses were completed within 12 days after 

sampling. Also the available literature was used to classify the anatomotypes (Goodman et al. 1996-

2000; Agerer 1987-2006; Cairney & Chambers 1999; Brand 1991, Agerer & Rambold 2004-2007; 

Haug et al., 1994). Subsenquently, EM were classified into exploration types (Agerer 2001) and we 

noted the hydrophobicity attitude according Unestam (1991).The anotomotypes unidentified by 

molecular or anatomical tools, were classified by an alphanumerical code (EDMxx). For the other 

anatomotypes we wrote the name and the alphanumerical code.  Sequences taxon categories were 

assigned as follows: sequence similarity of 100% (= identification to species level) sequence to 

similarity of 95% to 99% (= identification to genus level) sequence similarity of < 95% (= 

identification to family or ordinal level). 
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DNA extraction, amplification and sequencing.—DNA was extracted from organs of 

ectomycorrhizae after Gardes and Bruns (1993) using a Quiagen DNeasy plant Mini Kit (Quiagen, 

Hilden, Germany), according to the manufacturer’s instructions. PCR amplification was performed 

for internal transcribed spacers ITS1, ITS2, and for 5.8S region of the nuclear ribosomal DNA, 

using basidiomycete specific primer pairs ITS1F (5´ cttggtcatttagaggaagtaa 3´) and ITS4B 

(5´tcctccgcttattgatatgc 3´). PCR amplification was performed using a Ready To GoTM beads 

(Amersham Pharamacia Biotech., Piscataway, New Jersey), with 20 µm of PCR solution (composed 

of 120 µm ddH2O, 30 µl buffer, 21,6 µl MgCl, 12 µm ITS1F, 12 µl ITS4B, 30 µl dNTP-Mix and 

2,4 µm Taq-Polymerase) and 5 µl extracted DNA. The PCR was programmed as follows: 95 °C for 

5 min, [90° 30 sec, 55 °C for 30 sec, 72 °C for 1 min (+ 2 sec for each cycle): 35 cycles], 72°C for 

10 min,16 °C infinitely (Tedersoo et al., 2006). Amplified PCR products (2 µl) were run with 

bromophenol blue (2 µl) on 1% agarose gels for 30 min at 95 W, then stained in ethidium bromide 

for 10 min and afterward in ddH2O for 1 min. PCR products were then visualised under the UV 

light. Successful DNA bands were purified using the QIAquick-PCR purification Kit (Qiagen 

GmbH, Hilden, Germany) according to manufacturer’s instructions. DNA sequencing was 

performed by the sequencing service of the Institute for Genetics, Department Biology I (Ludwig-

Maximilians-Universität, München), using BigDye Terminator Ready Reaction Cycles Sequencing 

Kit v3.1 (Applied Biosystems, Foster City, CA, USA). Sequencing was performed on 6,7 µm DNA 

probes plus 0.3 µm ITS1F (forward) and 0.3 µm ITS4B (reverse). DNA sequences were aligned 

pairwise using the BIOEDIT (Bioedit Sequence Alignment Editor for Windows 95/98/NT/XP). 

Consensus sequences were compared with sequences from the GenBank databsase with BLASTn 

(National Center for Biotechnology Informations) or UNITE (Kõljalg et al., 2005) and in most case 

were blasted against both databases.  

The anatomotypes are stored in FEA in the TeSAF Department Herbarium of the University of 

Padua.  

 

3. Results: EM community composition 

 
Morphological, anatomical and molecular investigations revealed a total of 60 anatomotypes. Of 

these, 8 were assigned to family or ordinal level (Thelephorales, Boletales,  Pezizales, 

Sebacinaceae, Thelephoraceae) 19 to genus (Amphinema sp., Boletus sp., Cortinarius sp., 

Craterellus sp., Hydnum sp., Hygrophorus sp., Inocybe sp., Laccaria sp., Lactarius sp., Ramaria sp. 
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Sebacina sp., Tomentella sp.),  19 to species [Byssocorticium atrovirens (Fr.) Bondartsev & Singer 

ex Singer, Cenococcum geophilum  Fr., Cortinarius bolaris (Pers.) Fr., Cortinarius cinnabarinus 

Fr., Cortinarius infractus Berk., Cortinarius inochlorus Maire, Genea hispidula Berk. ex Tul. & C. 

Tul., Hygrophorus penarius Fr. (see Paper I – chapter 3), Lactarius acris (Bolton) Gray, Lactarius 

pallidus Pers., Lactarius rubrocinctus Fr., Lactarius subdulcis Bull., Lactarius vellereus (Fr.) Fr., 

Piloderma croceum J. Erikss & Hjortstam, Ramaria aurea (Schaeff.) Quél., Russula illota Romagn., 

Russula mairei Singer, Tricholoma acerbum (Bull.) Vent. and Tricholoma sciodes (Pers.) C. Martìn] 

and 11 [Fagirhiza arachnoidea (Brand 1991), Fagirhiza byssoporoides (description in this Thesis), 

Fagirhiza cystidiophora (Brand 1991), Fagirhiza entolomoides (description in this Thesis), 

Fagirhiza fusca (Brand 1991), Fagirhiza lanata (Brand, 1991), Fagirhiza oleifera (Brand 1991), 

Fagirhiza pallida (Brand 1991), Fagirhiza spinulosa (Brand 1991), Fagirhiza stellata (description 

in this Thesis), Fagirhiza vermiculiformis (Jakucs 1998)] not identified ectomycorrhizae but 

previously described in details, while 3 remained non-classified (tab. 1). The investigations on 

ecological features of the EM species are briefly described in the Short Communication (chapter 4). 
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Fungal taxa, codex in the Herbarium and 
accession number in the GenBank 

Best match sequence Size 
bp 

(pair) 

E value Similarity Accession number Source(a) 

Amphinema sp. (EDM50) - - - - - - 

Boletaceae (EDM51) EU444544 Boletus aestivalis ** 3E-73 90% UDB000941 UNITE 

Boletus sp. (EDM13) EU444539 Boletus rhodoxanthus 661 0.0 99% UDB001116 UNITE 

Byssocorticium atrovirens (EDM17) - - - - - - 

Cenococcum geophilum (EDM1) - - - - - - 

Cortinarius  ionochlorus (EDM27) EU444542 Cortinarius inochlorus 601 0.0 100% UDB002105 UNITE 

Cortinarius (EDM57)sp.  - - - - - - 

Cortinarius bolaris (EDM12) - - - - - - 

Cortinarius cinnabarinus (EDM5) - - - - - - 

Cortinarius infractus (EDM62) EU444553 Cortinarius infractus 541 0.0 100% UDB001161 UNITE 

Cortinarius sp. (EDM72) EU444551 uncultured ectomycorrhiza (Cortinarius) 481 0.0 100% AY299227 BLAST 

Craterellus sp. (EDM41)  - - - - - - 

EDM47  - - - - - - 

EDM65  - - - - - - 

EDM68  - - - - - - 

Entoloma sp. (EDM36) - - - - - - 

Entolomatacea (EDM8 )* EU444549 Entoloma sp. 901 e-168 91% UDB000937 UNITE 

Fagirhiza arachnoidea (EDM61) - - - - - - 

Fagirhiza byssoporoides (EDM55)*  EU444550 Byssoporia terrestris fruitbody (SR1101 in M) 541 - 99% - - 

Fagirhiza cystidiophora (EDM33)  - - - - - - 

Fagirhiza fusca (EDM40) - - - - - - 

Fagirhiza lanata (EDM29) - - - - - - 

Fagirhiza oleifera (EDM2)  - - - - - - 

Fagirhiza pallida (EDM25) - - - - - - 

Fagirhiza setifera (EDM7) - - - - - - 

Fagirhiza spinulosa (EDM3)  - - - - - - 

Fagirhiza stellata (EDM 21)* EU444548 Tomentella subtestacea 661 0.0 92% UDB000034 UNITE 

Fagirhiza vermiculiformis (EDM42) - - - - - - 

Genea hyspidula (EDM32) - - - - - - 

Hydnum sp. (EDM37)  - - - - - - 

Hygrophorus sp. (EDM26)   Hygrophorus ** 8e-75 96% UDB000556 UNITE 

Hygrophorus penarius (EDM60 )* EU444536  Hygrophorus penarius 481 0.0 100% UDB000097 UNITE 

Inocybe sp. (EDM71) EU444552          Inocybe fuscomarginata                                ** 0.16 100% UDB002156 UNITE 
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Inocybe sp. (EDM22) - - - - - - 

Laccaria  sp. (EDM23)  - - - - - - 

Lactarius acris (EDM56)  - - - - - - 

Lactarius pallidus (EDM6)  - - - - - - 

Lactarius rubrocinctus (EDM53) - - - - - - 

Lactarius sp. (EDM48)  - - - - - - 

Lactarius subdulcis (EDM4)  - - - - - - 

Lactarius vellereus (EDM45)  - - - - - - 

Pezizales (EDM 67) EU444547 Peziza sp. ** 3e-57 91% UDB001572 UNITE 

Piloderma croceum (EDM14) - - - - - - 

Ramaria aurea (EDM43) - - - - - - 

Ramaria sp.(EDM58) - - - - - - 

Ramaria sp. (EDM10) EU444537 Albatrellus critstatus 601 1e-91 100% UDB001761 UNITE 

Russula illota (EDM28) - - - - - - 

Russula mairei (EDM31) - - - - - - 

Sebacina sp.(EDM34) EU444543 Uncultured ectomycorrhiza (Sebacinaceae) 541 0.0 95% AJ879661 BLAST 

Sebacinaceae (EDM11) EU444538 Sebacina epigaea 541 0.0 94% UDB000975 UNITE 

Thelephoraceae (EDM63) - - - - - - 

Thelephoraceae (EDM66) - - - - - - 

Thelephorales (EDM64) EU444546 Tomentellopsis echinospora 541 0.0 94% UDB000191 UNITE 

Thelephorales (EDM59) EU444545 - ** - - - - 

Tomentella sp. (EDM18) EU444540 Tomentella cinerascens 481 0.0 99% UDB000232 UNITE 

Tomentella sp. (EDM19) EU444541 Tomentella pilosa 601 0.0 97% UDB000241 UNITE 

Tomentella sp.(EDM46) - - - - - - 

Tomentella sp.(EDM70)  - - - - - - 

Tricholoma acerbum (EDM24) - - - - - - 

Tricholoma sciodes (EDM39) - - - - - - 

 
Tab. 1: Ectomycorrhizal anatomotypes and their anatomical and morphological identification. (a)   Additional reference are available on the NCBI 
(www.ncbi.nih.gov/BLAST) or UNITE ( www.unite.ut.ee) websites [*      Descriptions; **    Partial sequence only]. 
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Fungal taxa Exploration types Hydrophobicity 

Amphinema sp. (EDM50) MD fr hydrophobic 
Boletaceae (EDM51) LD hydrophilic 
Boletus sp. (EDM13) LD hydrophobic 
Byssocorticium atrovirens (EDM17) SD hydrophobic 
Cenococcum geophilum (EDM1) SD hydrophilic 
Cortinarius  ionochlorus (EDM27)  MD fr hydrophobic 
Cortinarius (EDM57) sp.  MD fr hydrophobic 
Cortinarius (EDM72) sp.  MD fr hydrophobic 
Cortinarius bolaris (EDM12) MD fr hydrophobic 
Cortinarius cinnabarinus (EDM5) MD fr hydrophobic 
Cortinarius infractus (EDM62) MD fr hydrophobic 
Craterellus sp. (EDM41)  C/SD hydrophilic 
EDM47  SD hydrophilic 
EDM65  MD fr hydrophobic 
EDM68  SD hydrophobic 
Entoloma sp. (EDM36) MD sm hydrophobic 
Fagirhiza entolomoides (EDM8 )* MD sm hydrophilic 
Fagirhiza arachnoidea (EDM61) SD hydrophobic 
Fagirhiza byssoporoides (EDM55)*  MD sm hydrophobic 
Fagirhiza cystidiophora (EDM33)  SD hydrophilic 
Fagirhiza fusca (EDM40) SD hydrophilic 
Fagirhiza lanata (EDM29) MD sm hydrophilic 
Fagirhiza oleifera (EDM2)  C/SD hydrophilic 
Fagirhiza pallida (EDM25) SD hydrophilic 
Fagirhiza setifera (EDM12) SD hydrophilic 
Fagirhiza spinulosa (EDM3)  SD hydrophilic 
Fagirhiza stellata (EDM21)* MD sm hydrophobic 
Fagirhiza vermiculiformis (EDM42) MD sm hydrophilic 
Genea hyspidula (EDM32) SD hydrophilic 
Hydnum sp. (EDM37)  MD fr hydrophobic 
Hygrophorus sp. (EDM26)   C hydrophilic 
Hygrophorus penarius (EDM60 )*  SD hydrophilic 
Inocybe sp. (EDM71) MD mat hydrophobic 
Inocybe sp. (EDM22) SD hydrophilic 
Laccaria  sp. (EDM23)  MD sm hydrophilic 
Lactarius acris (EDM56)  MD sm hydrophilic 
Lactarius pallidus (EDM6)  MD sm hydrophilic 
Lactarius rubrocinctus (EDM53) MD sm hydrophilic 
Lactarius sp. (EDM48)  C hydrophilic 
Lactarius subdulcis (EDM4)  MD sm hydrophilic 
Lactarius vellereus (EDM45)  MD sm hydrophilic 
Pezizales (EDM 67) SD hydrophilic 
Piloderma croceum EDM14) MD fr hydrophobic 
Ramaria aurea (EDM43) MD mat hydrophobic 
Ramaria sp.(EDM58) MD mat hydrophobic 
Ramaria sp. (EDM10) MD mat hydrophobic 
Russula illota (EDM28) C hydrophobic 
Russula mairei (EDM31) C hydrophilic 
Sebacina sp.(EDM34) SD hydrophilic 
Sebacinaceae (EDM11) SD hydrophilic 
Thelephoraceae (EDM63) MD sm hydrophobic 
Thelephoraceae (EDM66) MD sm hydrophobic 
Thelephorales (EDM64) MD fr hydrophobic 
Thelephorales (EDM59) MD fr hydrophobic 
Tomentella  sp. (EDM18)  MD fr hydrophobic 
Tomentella  sp. (EDM19) MD sm hydrophilic 
Tomentella sp.(EDM46) MD sm hydrophilic 
Tomentella sp.(EDM70)  SD hydrophilic 
Tricholoma acerbum (EDM24) MD fr hydrophobic 
Tricholoma sciodes (EDM39) MD fr hydrophobic 

Tab. 2: Exploration types of the anatomotypes and the relationship with the hydrophobicity [C= contact  type - 
SD= short distance;  MD sm= medium distance smooth; MD fr= medium distance fringe; MD mat= medium 
distance mat; LD= long distance. *  Descriptions ]. 
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4. Short characterization of the species not described up to now on Fagus sylvatica  L. 
(according to Agerer 1991) 

 
 
Here it is reported a short characterization of the species not described up to now on Fagus 

sylvatica L. To identify the most important morphological and anatomical features, it is used the 

synoptic key in www.deemy.de by Agerer & Rambold 1998, 2004-2007. 

 

 

Amphinema sp. (EDM50), Figs. 1-4 

 

Basidiomycota, Basidiomycetes, Polyporales, Atheliaceae 

 

Colour: reddish orange, brownish-red, older part ochre. - Ramification (Fig. 1): irregularly-pinnate, dichotomous-like. - 

Shape: sinuous - Mycorrhizal surface: woolly. - Rhizomorphs (Fig. 4): orange-reddish, ramified repeatedly into smaller 

filaments, type A (undifferentiated with hyphae rather loosely woven and of uniform diameter). - Emanating hyphae 

(Fig. 3): present but not specifically distributed, with open anastomoses, with a short bridge or bridge almost lacking 

(contact-clamp), sometimes granulate and with thicker wall, intrahyphal hyphae with clamps present, too; 

membranaceously yellowish. - Outer mantle (Fig. 2): plectenchymatous type C (gelatinous matrix between the hyphae, 

membranaceously yellowish). - Middle and inner mantle: plectenchymatous with matrix, membranaceously yellowish. - 

Exploration type: medium distance subtype fringe. -  Hydrophobic attitude.  

It can be supposed that this anatomotype belongs to the genus Amphinema due to the typical anastomoses and the thick-

walled hyphae already reported in the descriptions of A. byssoides. 

 

Boletaceae (EDM51), Figs. 8, 9, 75-76 

 

Basidiomycota, Agaricomycetes, Agaricomycetidae, Boletales, Boletaceae 

 

Colour: whitish pink. - Ramification: monopodial-pinnate, monopodial-pyramidal. - Shape: straight; Mycorrhizal 

surface (Fig. 8): smooth. - Rhizomorphs (Fig. 76): whitish, with smooth margin, type F (highly differentiated - thick 

hyphae forming mostly a core, septa often partially or completely dissolved), with thick matrix. - Outer mantle (Fig. 

75): plectenchymatous type C (gelatinous matrix between the hyphae). - Middle and inner mantle (Fig. 9): 

plectenchymatous with thick matrix. - Exploration type: long distance. -  Hydrophilic attitude.  

It can be supposed that this anatomotype belongs to this family, for the typical differentiated rhizomorph.  This species 

showed also a similarity of 90% with Boletus aestivalis (Paulet) Fr. (sequences in Unite, see Tab.1). 

 

Boletus sp. (EDM13), Figs. 10, 77-79 

 

Basidiomycota, Agaricomycetes, Agaricomycetidae, Boletales, Boletaceae 

 

Colour: brownish with whitish-granulate surface, when older blackish and whitish-granulate surface more widespread. - 
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Ramification: monopodial-pinnate, monopodial-pyramidal. - Shape: straight, not inflated cylindric. - Mycorrhizal 

surface (Fig. 10): glistening. - Rhizomorphs (Fig. 77): the same colour of the mantle, infrequent;  type F (differentiated; 

thick hyphae forming a core, septa complete or sometimes enlarged, type E), with nodia and conical young-side 

branches present, crystals on the peripheral hyphae. - Emanating hyphae: generally present, granulate hyphae (cystidia-

like endcells, with small crystals on the surface) membranaceously brownish. - Outer mantle (Fig. 78): 

plectenchymatous type A/B (ring-like arrangement of hyphal bundles or hyphae rather irregularly arranged and no 

special pattern discernible), with crystals on the mantle layer. – Middle mantle layer (Fig. 80): pseudoparenchymatous 

epidermoid type. - Inner mantle (Fig. 79): plectenchymatous ring-like. - Matrix present in each mantle layer and also in 

the rhizomorphs. - Exploration type: long distance. -  Hydrophobic attitude. 

It can be supposed that this anatomotype belongs to this family, for the typical differentiated rhizomorph. The molecular 

investigations attested that this species showed a similarity of 99% with Boletus rodoxanthus (Krombh.) Kallenb 

(sequences in Unite, see Tab. 1). 

 

Cortinarius ionochlorus (EDM27), Figs. 11, 12, 81- 85 

 

Basidiomycota, Agaricomycetes, Agaricomycetidae, Agaricales, Cortinariaceae 

 

Colour: brownish green with yellowish hydrophobic surface not uniformly distributed; when older brownish and only 

the rhizomorphs yellow. - Ramification: irregularly-pinnate, dichotomous-like. - Shape: straight, not inflated, cylindric - 

Mycorrhizal surface (Fig. 11): silvery. - Rhizomorphs (Fig. 85): yellowish, frequent, without specific origin, type A 

(undifferentiated with hyphae rather loosely woven and uniform diameter). - Outer mantle (Fig. 81): plectenchymatous 

type A/B (ring-like arrangement of hyphal bundles or hyphae rather irregularly arranged and no special pattern 

discernible). – Middle mantle layers (Figs. 82, 84) plectenchymatous ring-like. - Inner mantle (Fig. 83): 

plectenchymatous,  ring-like. Membranaceously brownish. - Sclerotia (Fig.12): infrequent, green-yellowish, elongated-

irregular, on the mantle and laterally on the rhizomorphs. - Exploration type: medium distance subtype fringe. -  

Hydrophobic attitude.  

Montecchio et al. (2001) described this species on Quercus ilex L. The structure of the mantle layers and of the 

rhizomorph are similar to the specimen here reported.  The molecular analyses confirmed a similarity of 100% with 

Cortinarius ionochlorus R. Maire (UDB002105 in Unite, see Tab. 1).  

 

Cortinarius sp. (EDM57), Figs. 13, 14, 86, 87 

 

Basidiomycota, Agaricomycetes, Agaricomycetidae, Agaricales, Cortinariaceae 

 

Colour: whitish brown. - Ramification: irregularly-pinnate, dichotomous-like. - Shape: sinuous, bent, not inflated, 

cylindric. - Mycorrhizal surface (Fig. 13): silvery and densely stringy. -  Rhizomorphs (Fig. 87): whitish, type A 

(undifferentiated with hyphae rather loosely woven and of uniform diameter), frequent, origin not specific. - Outer 

mantle (Fig. 14): plectenchymatous type A/B (ring-like arrangement of hyphal bundles or hyphae rather irregularly 

arranged and no special pattern discernible). - Middle mantle (Fig. 86):  plectenchymatous. - Inner mantle: 

plectenchymatous/pseudoparenchymatous. - Exploration type: medium distance fringe subtype. - Hydrophobic attitude.  

It can be supposed that this anatomotype belongs to this genus, in particular for the habitus and for the typical 
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undifferentiated rhizomorph. Also the mantle structure can be related to this genus.  

 

Cortinarius infractus (EDM62), Figs. 15, 88, 89 

 

Basidiomycota, Agaricomycetes, Agaricomycetidae, Agaricales, Cortinariaceae 

 

Colour: whitish. - Ramification: irregularly- pinnate, dichotomous-like. - Shape: sinuous, bent, not inflated,  cylindric.- 

Mycorrhizal surface: very woolly (Fig. 15). – Rhizomorphs: whitish, type A (undifferentiated with hyphae rather 

loosely woven and of uniform diameter, with crystals and matrix), very frequent, origin not specific. - Outer mantle 

(Fig. 88) plectenchymatous type C (gelatinous matrix between the hyphae, with crystals). - Middle mantle (Fig. 89): 

plectenchymatous with matrix. - Inner mantle: plectenchymatous with matrix. - Exploration type: medium distance 

fringe subtype. – Hydrophobic attitude. 

It can be supposed that this anatomotype belongs to this genus, in particular for the habitus, for the typical 

undifferentiated rhizomorph. Also the mantle structure can be related to this genus. The species was classified thanks to 

molecular tools. The analyses showed the best similarity (of 100%) with Cortinarius infractus Berk. (UDB001161 in 

Unite, see Tab. 1). 

 

Cortinarius sp. (EDM72), Figs. 16, 91, 92 

 

Basidiomycota, Agaricomycetes, Agaricomycetidae, Agaricales, Cortinariaceae 

 

Colour: yellowish orange. - Ramification: irregularly-pinnate, dichotomous-like. - Shape: sinuous, bent, not inflated, 

cylindric. - Mycorrhizal surface: very cottony (Fig. 16). - Emanating hyphae (Fig. 91): very frequent anastomoses, open 

with a short bridge or bridge almost lacking, with clamps; rhizomorphs not observed.  - Outer mantle (Fig. 90): 

plectenchymatous type A (ring-like arrangement of hyphal bundles). - Middle mantle: plectenchymatous. - Inner mantle 

(Fig. 92): plectenchymatous. - Exploration type: medium distance subtype fringe. – Hydrophobic attitude. 

It can be supposed that this anatomotype belongs to this family, in particular for the habitus. Also the mantle structure 

can be related to this genus and the emanating hyphae (Agerer 2006). The molecular analyses showed a similarity of 

100% with a species that belongs to the same genus and collected in a similar ecosystem (uncultered ectomycorrhiza 

Cortinarius sp. AY299227 in GenBank, see Tab. 1). 

 

Craterellus sp. (EDM41), Figs. 93, 94 

 

Basidiomycota, Agaricomycetes, Cantharellales, Cantharellaceae 

 

Colour: white. - Ramification: monopodial-pinnate. - Shape: not inflated, cylindric. – Mycorrhizal surface: smooth and 

opaque.  - Outer mantle (Fig. 93): pseudoparenchymatous type L (angular cells) with rare oily droplets. - Middle and 

inner mantle (Fig. 94): pseudoparenchymatous. – Exploration type: contact type to short distance. - Hydrophilic 

attitude. 

It can be supposed that this anatomotype belongs to this genus, because of the absence of particular anatomical features, 

for the mantle organisation and for the presence of oily droplets also reported in Craterellus tubaeformis (Bull.) Quél. + 
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Pinus sylvestris (Mleczko 2004). 

 

EDM47, Figs. 17, 18, 95-98 

 

Colour: brownish, with clear very tips. - Ramification: monopodial-pinnate. - Shape: straight, not inflated, cylindric. - 

Mycorrhizal surface: very spiny (Fig. 17). -  Outer mantle (Figs. 18, 95, 96): pseudoparenchymatous type L/D (angular 

cells with prominent cystidia type A). – Middle (Figs. 97, 98): mantle and inner mantle: pseudoparenchymatous. - 

Exploration type: short distance. – Hydrophilic attitude. 

Probably this species belongs to the Ascomycota and in particular to the genus Tuber, due to the presence of the same 

type of cystidia revealed in our specimen and  to the lack of clamps. Further investigations are necessary to classify this 

ectomycorrhiza. 

 

EDM65, Figs. 19, 99, 100 

 

Colour: whitish and slightly pinkish. - Ramification: monopodial-pinnate. - Shape: straight, not inflated, cylindric. - 

Mycorrhizal surface: silvery (Fig. 19). - Outer mantle (Fig. 99): plectenchymatous type A/B (ring-like arrangement of 

hyphal bundles or hyphae rather irregularly arranged and no special pattern discernible). - Middle mantle: 

plectenchymatous. - Inner mantle (Fig. 100): plectenchymatous. - Exploration type: medium distance subtype fringe. 

Further investigations are necessary to classify this ectomycorrhiza. 

 

EDM68, Figs. 20, 21, 101 

 

Colour: whitish and slightly orange. - Ramification: monopodial-pinnate. - Shape: straight not inflated cylindric. - 

Mycorrhizal surface: silvery (Fig. 20). - Rhizomorphs: whitish, type A (undifferentiated with hyphae rather loosely 

woven and of uniform diameter, with clamps), very frequent, origin not specific. - Outer mantle (Fig. 101) 

plectenchymatous type A/B (ring-like arrangement of hyphal bundles or hyphae rather irregularly arranged and no 

special pattern discernible). - Middle mantle: plectenchymatous. - Inner mantle (Fig. 21): plectenchymatous. - Slight 

matrix present in the mantle layers. – Exploration type: short distance. – Hydrophobic attitude. 

Further investigations are necessary to classify this ectomycorrhiza. 

 

Entoloma sp. (EDM36), Figs. 65-67  

 

Basidiomycota, Agaricomycetes, Agaricomycetidae, Agaricales, Entolomataceae 

 

Colour: pinkish withish. - Ramification:  irregularly-pinnate, dichotomous-like. - Shape: sinuous. - Mycorrhizal surface 

(Fig. 65): loosely stringy or loosely wolly. – Rhizomorphs: whitish, type A /B (according to Agerer 1991; 1995; Agerer 

1985-2006; Agerer & Rambold 2004-2007; Agerer & Iosifidu 2004). - Emanating hyphae not frequent. - Outer mantle 

(Fig. 66): plectenchymatous type A (ring-like arrangement of hyphal bundles or hyphae rather irregularly arranged and 

no special pattern discernible). - Middle and inner mantle plectenchymatous (Fig. 67). - Exploration type: medium 

distance smooth subtype. – Hydrophobic attitude. 
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It can be supposed that this anatomotype belongs to the genus Entoloma, for the habitus, for the outer mantle structure 

anf for the uniform-compact, stiff and projecting rhizomorphs, very similar to that reported in other species belongs to 

the same genus, for example in Entoloma sinuatum (Bull. Fr.) Kummer + Salix spec.  (Agerer 1997; 1998). 

 

Hydnum sp. (EDM37), Figs. 22-24 

 

Basidiomycota, Agaricomycetes, Cantharellales, Hydnaceae 

 

Colour: yellowish, with orange very tip. - Ramification: monopodial-pinnate, monopodial-pyramidal. -  Shape: straight , 

not inflated, cylindric. - Mycorrhizal surface: woolly, sometimes covered with soil particles (Fig. 22). -  Rhizomorphs: 

concolourous to mantle, repeatedly ramified into smaller filaments or infrequently at restricted points, smooth or hairy 

or densely enveloped by hyphae, undifferentiated, hyphae rather losely woven and of uniform diameter (type A) or 

slightly differentiated, central hyphae somewhat enlarged (type C). - Outer mantle (Fig. 23) plectenchymatous type A 

(ring-like arrangement of hyphal bundles) with slight matrix and oily droplets. - Middle mantle: plectenchymatous. - 

Inner mantle (Fig. 24): plectenchymatous/pseudoparenchymatous. - Exploration type: medium distance fringe subtype. - 

Hydrophobic attitude. 

The mantle organisation and the rhizomorph are very similar to the anatomical features reported in Hydnum rufescens + 

Picea  (Agerer et al. 1996; Kraigher & Agerer. 1996).  

 

Hygrophorus sp. (EDM26), Figs. 25-102-103 

 

Basidiomycota, Agaricomycetes, Agaricomycetidae, Agaricales, Hygrophoraceae 

 

Colour: brownish chestnut. - Ramification:  simple, rarely monopodial-pyramidal. - Shape: straight or bent, not inflated, 

cylindric. - Mycorrhizal surface (Fig. 25) : smooth sometimes with soil particles. - Outer mantle (Fig. 102) 

plectenchymatous, type C (gelatinous matrix between the hyphae) clamps very rare. - Middle mantle: plectenchymatous 

with gelatinous matrix. - Inner mantle (Fig. 103): plectenchymatous. - Exploration type: contact type. – Hydrophilic 

attitude. 

It can be supposed that this species belongs to this genus, for the thick gelatinous matrix, the mantle structure and for 

the very rare clamps. The anatomical features are similar to that reported in the description of Hygrophorus penarius 

(see Chapter 3), but in contrast to this species the measures of the hyphae are smaller. The molecular analyses 

confirmed only the genus (see Tab. 1) 

 

Inocybe sp. (EDM 71), Figs. 26, 104-107 

  

Basidiomycota, Agaricomycetes, Agaricomycetidae, Agaricales, Inocybaceae 

 

Colour: brownish-greenish. - Ramification: irregularly-pinnate, dichotomous-like. - Shape: straight or bent, or beaded - 

Mycorrhizal surface (Fig. 26): woolly. - Rhizomorphs (Fig. 107): concolourous to mantle; sometimes membranaceouly 

brownish, type A (undifferentiated with hyphae rather loosely woven and of uniform diameter). - Emanating hyphae: 

with clamps, membranaceously brownish. - Outer mantle (Fig. 104): plectenchymatous type E (hyphae arranged net-
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like, repeatedly and squarrosely branched) membranaceously brownish. -  Middle mantle (Fig. 105): plectenchymatous 

/pseudoparenchymatous membranaceously brownish. - Inner mantle (Fig. 106): plectenchymatous 

/pseudoparenchymatous  membranaceously brownish. - The colour of the mantles is darker at patches. - Exploration 

type: medium distance mat subtype. - Hydrophobic attitude. 

It can be supposed that this antomotype belongs probably to this genus for the typical outer mantle and of the 

rhizomorphs (similar to other species of the same genus reported in www.deemy.de). The molecular analyses 

confirmed only partially the best similarity with Inocybe fuscomarginata Kühner (UDB002156 in Unite, see Tab. 1).  

 

Inocybe sp. (EDM 22), Figs. 27-29 

 

Basidiomycota, Agaricomycetes, Agaricomycetidae, Agaricales, Inocybaceae 

 

Colour: brownish grey, with rosy very tip. - Ramification: monopodial-pinnate; monopodial-pyramidal. - Shape: 

straight, cylindric, not inflated. - Mycorrhizal surface (Fig. 27): loosely cottony. - Emanating hyphae: with clamps. - 

Outer mantle (Fig. 28): plectenchymatous type E (hyphae arranged net-like, repeatedly and squarrosely branched) 

membranaceouly brownish . -  Middle mantle: plectenchymatous/pseudoparenchymatous, membranaceously brownish. 

- Inner mantle (Fig. 29): plectenchymatous membranaceouly brownish. - Slightly gelatinous matrix present in the 

mantle layers. - Exploration type: short distance. - Hydrophilic attitude. 

It can be supposed that this antomotype belongs probably to this genus for the outer mantle,  similar to that in Inocybe 

avellana + Shorea (Ingleby K 1999). 

 

Laccaria sp. (EDM23), Figs. 30-33 

 

Basidiomycota, Agaricomycetes, Agaricomycetidae, Agaricales, Hydnangiaceae 

 

Colour: pinkish brown, brownish orange. - Ramification: monopodial-pyramidal. - Shape: straight, or bent, slightly 

tortuous. - Mycorrhizal surface (Fig. 30): loosely cottony. - Outer mantle (Fig. 31): plectenchymatous type B (hyphae 

rather irregularly arranged and no special pattern discernible). - Middle mantle (Fig. 32): plectenchymatous whitout 

pattern. - Inner mantle (Fig. 33): plectenchymatous, ring-like. - Exploration type: medium distance smooth subtype. – 

Hydrophlic attitude.  

It can be supposed that this species belongs to the genus Laccaria in particularly for the structure of the mantle layers: 

the plectenchymatous outer mantle with rather short, obtuse, even finger-like branches and the ring-like arrangement of 

the hyphae in the inner mantle. 

 

Lactarius sp. (EDM48), Figs. 34-36 

 

Basidiomycota, Agaricomycetes, Russulales, Russulaceae 

 

Colour: pinkish brown. - Ramification: monopodial-pyramidal. - Shape: straight. - Mycorrhizal surface (Fig. 34): 

smooth. - Outer mantle (Fig. 35): pseudoparenchymatous type Q (epidermoid cells bearing a hyphal net). - Middle 
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mantle: pseudoparenchymatous. - Inner mantle (Fig. 36): pseudoparenchymatous. - Laticifers: present in the mantle, 

straight and even. – Exploration type:  contact type. – Hydrophilic attitude. 

This anatomotypes belongs to the genus Lactarius, for the presence of laticifers. 

 

Pezizales (EDM67), Figs. 37, 108-111 

  

Ascomycota, Pezizomycetes, Pezizomycetidae, Pezizales, Pezizaceae 

 

Colour: orange-ochre. - Ramification: monopodial-pinnate. - Shape: straight, cylindric or tapering. - Mycorrhizal 

surface (Fig. 37): smooth, or loosely cottony. - Outer mantle (Figs. 108, 109): type Q, pseudoparenchymatous 

(epidermoid cells bearing a hyphal net), with prominent cystidia. - Middle mantle: pseudoparenchymatous. - Inner 

mantle (Fig. 110): pseudoparenchymatous. - Cystidia (Fig. 111): type N (capitate) on the outer mantle. - Cell walls of 

the angular cells and the net on the outer mantle: thick. – Exploration type:  short distance. – Hydrophilic attitude. 

There are no ectomycorrhizal species descriptions up to now about members of this family (De Roman et al., 2005). It 

can be supposed that this anatomotypes belongs to the Ascomycota for the typical anatomical features, but the genus is 

confirmed only partially (see Tab. 1). 

 

Ramaria sp. (EDM10), Figs. 38, 39, 112-114 

 

Basidiomycota, Agaricomycetes, Phallomycetidae, Gomphales, Gomphaceae 

 

Colour: whitish, brownish, yellowish. - Ramification: irregularly-pinnate, dichotomous-like. - Shape: straight, cylindric 

not inflated, or sinuous. - Mycorrhizal surface (Fig. 38): silvery, fan-like. - Rhizomorphs (Figs. 112, 114): margin not 

smooth, dividing  repeatedly into smaller filaments, slightly differentiated, central hyphae somewhat enlarged (type C). 

- Outer mantle (Fig. 113): type A/B (ring-like arrangement of hyphal bundles or hyphae rather irregularly arranged and 

no special pattern discernible) - Middle mantle: plectenchymatous - Inner mantle: plectenchymatous. - Cystidia (Fig. 

39):  type P as acanthocystidia on the rhizomorphs. - Slight gelatinous matrix and crystals on the rhizomorphs. - 

Exploration type: medium distance subtype mat.  - Hydrophobic attitude. 

It can be supposed that this anatomotypes belongs to this genus, for the habitus, the mantle structure with matrix but in 

particular for the rhizomorphs organisation and for the presence of the typical cystidia (Agerer 2006). 

 

Ramaria sp. (EDM58), Figs. 40, 115-117 

 

Basidiomycota, Agaricomycetes, Phallomycetidae, Gomphales, Gomphaceae 

 

Colour: whitish, pinkish. - Ramification: monopodial-pinnate. - Shape: straight, cylindric not inflated. - Mycorrhizal 

surface (Fig. 40): hairy, fan-like. – Rhizomorphs: sligthly differentiated, central hyphae somewhat enalarged (type C). - 

Outer mantle (Fig. 115): type A/B (ring-like arrangement of hyphal bundles or hyphae rather irregularly arranged and 

no special pattern discernible). - Middle mantle: plectenchymatous. - Inner mantle (Fig. 116): plectenchymatous. - 

Cystidia not observed. - Sclerotia (Figs. 40, 117): abundant and globular, whitish, with several crystals, on the 
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emanating hyphae. - Exploration type: medium distance subtype mat.  - Hydrophobic attitude. 

It can be supposed that this anatomotypes belongs to this genus, for the habitus, the mantle structure with matrix but in 

particular for the rhizomorphs structure (ramaroid), with ampullate hyphae (Agerer 2006). 

 

Sebacina sp. (EDM34), Figs. 41, 42, 118-120 

 

Basidiomycota, Agaricomycetes, Sebacinales, Sebacinaceae 

 

Colour: whitish, pinkish, yellowish. - Ramification: simple. - Shape: straight, cylindric not inflated. - Mycorrhizal 

surface (Fig. 41): loosely cottony. - Emanating hyphae (Fig. 120): with simple septa, thick cell walls; irregularly inflated 

or even beaded. - Outer mantle: type E (hyphae arranged net-like, repeatedly and squarrosely branched (Figs. 42; 118);  

surface of mantle characterized by emanating hyphae, thick wall with rare simple septa. - Middle mantle: 

plectenchymatous. - Inner mantle (Fig. 119): plectenchymatous. - Cystidia not observed.  – Exploration type: short 

distance. – Hydrophilic attitude. 

It can be supposed that this anatomotypes belongs to this genus for morphological features very similar to that fo other 

specimens and for the anatomy: the hyphae arrangement in the outer mantle with rather shor, obtuse, even finger-like 

branches is present also in Sebacina incrustans (Pers.) Tul. & C. Tul. + Picea abies, and for the clampless and smooth 

typical eamanating hyphae  (Agerer 2006). 

The molecular analyses confirmed only partially the family (see Tab. 1).  

  

Sebacinaceae (EDM11), Figs. 43-47 

 

Basidiomycota, Agaricomycetes, Sebacinales, Sebacinaceae 

 

Colour: orange. - Ramification: monopodial-pyramidal. - Shape: bent and tortuous, cylindric, not inflated. - Mycorrhizal 

surface (Fig. 43): very loosely cottony. - Emanating hyphae (Figs. 44, 47): with simple septa, straight or tortuous (thick-

walled and straight or ramified, or thin-walled and tortuous). - Outer mantle (Fig. 45): type B, surface of the mantle 

characterized by emanating hyphae, thicker with rare simple septa - Middle mantle: plectenchymatous. - Inner mantle 

(Fig. 46): plectenchymatous. - Cystidia (Fig. 47): slightly tapering, often rather similar to ends of normal hyphae, but 

mostly originating from a pseudoparenchyma. - Sclerotia (Fig. 44): yellowish, on the mantle, infrequent and globular. - 

Exploration type: short distance. – Hydrophilic attitude. 

It can be supposed that this anatomotype belongs to this genus, for the tipical emanating hyphae clampless and smooth 

and for the presence of the cystidia (Agerer 2006). The molecular analyses confirmed only partially the genus, showing 

a similarity of 94% with Sebacina epigaea (Berk. & Broome) Bourdot & Galzin (UDB000975 in Unite, see Tab. 1). 

 

Thelephoraceae (EDM63), Figs. 48, 121-125 

 

Basidiomycota, Agaricomycetes, Thelephorales 

 

Colour: greenish, brownish, older part blackish, yellowish points. - Ramification: monopodial-pyramidal. - Shape: 
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straight, cylindric not inflated. - Mycorrhizal surface (Fig. 48): densely grainy. - Rhizomorphs (Fig. 125): infrequent, 

thelephoroid type, with repeatedly ramified, densely entwined and glued peripheral hyphae, with nodia, conical 

structures, clamps. - Outer mantle (Fig. 122): pseudoparenchymatous star-like, with prominent cystidia, slightly 

gelatinous matrix on the star surface and small crystals. - Middle mantle (Fig. 123): pseudoparenchymatous. - Inner 

mantle (Fig. 124): pseudoparenchymatous. - Cystidia (Fig. 121): bent or curved with thick walls, sickle-shaped. - 

Mantle layers and emanating hyphae membranaceously dark brow. - Exploration type: medium distance smooth 

subtype. – Hydrophobic attitude.  

It can be supposed that this anatomotypes is a member of the Thelephorales, for the star-like structure in the outer 

mantle, with prominent cystidia, for the typical thelephoroid rhizomorphs and for the organs colour (Agerer 2006).  

 

Thelephoraceae (EDM66), Figs. 49, 51, 52, 126 

 

Basidiomycota, Agaricomycetes, Thelephorales 

 

Colour: dark brown, black. - Ramification: monopodial-pyramidal. - Shape: straight, cylindric not inflated. - 

Mycorrhizal surface (Fig. 49): densely grainy. - Rhizomorphs (Fig. 53): infrequent, thelephoroid type, with irregularly 

sinuous peripheral hyphae, nodia and conical structures, clamps. - Outer mantle (figs. 51): angular cells, bearing 

mounds of roundish cells (type K), angular cells with thick cell walls. - Middle mantle (Fig. 126): 

pseudoparenchymatous rosette-like. - Inner mantle (Fig. 52): plectenchymatous; mantle layers and emanating hyphae 

membranaceously brownish. - Exploration type: medium distance subtype smooth. – Hydrophobic attitude.  

It can be supposed that this anatomotype is a member of the Thelephorales, for the outer mantle, for the typical 

thelephoroid rhizomorphs and for the habitus (the colour and the ramification; Agerer 2006).  

 

Thelephorales (EDM64), Figs. 5, 68-71 

 

Basidiomycota, Agaricomycetes, Agaricomycetidae, Thelephorales  

 

Colour: orange-ochre, or yellow-brown with red spots. - Ramification: monopodial-pinnate, monopodial-pyramidal. - 

Shape: bent, sinuous. - Mycorrhizal surface (Fig. 5): loosely cottony. - Rhizomorphs (Fig. 71): brownish-orange, 

ramified repeatedly into smaller filaments type A (undifferentiated with hyphae rather loosely woven and of uniform 

diameter), anastomoses closed by a simple septum, with a short bridge or bridge almost lacking (contact-septum), with 

membranaceously brownish to yellowish content; emanating hyphae not frequent,  with clamps. - Outer mantle (Fig. 

68): plectenchymatous type A/B (ring-like arrangement of hyphal bundles or hyphae rather irregularly arranged and no 

special pattern discernible). - Middle (Fig. 69) and inner mantle (Fig. 70): plectenchymatous. -  Exploration type: 

medium distance subtype fringe. -  Hydrophobic attitude.  

It can be supposed that this anatomotype belongs to this order and probably to the genus Tomentellopsis (Thelephorales)  

for the hyphae arrangement of the outer mantle and for the rhizomorph structure.  This species showed also a similarity 

of 94% with the species Tometellopsis echinospora (Ellis) Hjortstam (sequence in Unite, see Tab. 1). 
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Thelephorales (EDM59), Figs. 6, 7, 72-74 

 

Basidiomycota, Agaricomycetes, Agaricomycetidae, Thelephorales  

 

Colour: pink, or pinkish-white; Ramification: irregularly-pinnate, dichotomous-like. - Shape: sinuous. - Mycorrhizal 

surface (Fig. 6): loosely cottony. - Rhizomorphs: orange, with ramification repeatedly into small filaments or, frequently 

at restricted points, type A (undifferentiated with hyphae rather loosely woven and uniform diameter), (Fig. 73) 

anastomoses closed by a simple septum, with a short bridge or bridge almost lacking (contact-septum), 

membranaceously red-pinkish (but not uniform, Fig. 7). - Emanating hyphae not frequent. - Outer mantle (Fig. 72): 

plectenchymatous type A/B (ring-like arrangement of hyphal bundles or hyphae rather irregularly arranged and no 

special pattern discernible). - Middle and inner mantle (Fig. 74): plectenchymatous. - Exploration type: medium 

distance subtype fringe. -  Hydrophobic attitude.  

It can be supposed that this anatomotype belongs to this order and probably to the genus Tomentellopsis (Thelephorlaes) 

for the hyphae arrangement of the outer mantle and for the rhizomorph structure (Agerer 2006).  

 

Tomentella sp. (EDM18), Figs. 54, 55, 127-129 

 

Basidiomycota, Agaricomycetes, Thelephorales, Thelephoraceae 

 

Colour: orange-reddish, brownish. - Ramification: monopodial-pyramidal. - Shape: straight, cylindric not inflated - 

Mycorrhizal surface (Fig. 54): loosely woolly. - Emanating hyphae: without clamps. - Rhizomorphs (Fig. 55) frequent, 

type B (undifferentiated; margins rather smooth; hyphae compactly arranged and of uniform diameter), anastomoses 

open with a long bridge. - Outer mantle (Figs. 127, 128): type B (hyphae rather irregularly arranged and no special 

pattern discernible), with the surface covered by emanating hyphae without clamps. - Middle mantle: plectenchymatous. 

- Inner mantle (Fig. 129): plectenchymatous; mantle layers and emanating hyphae membranaceously brownish. - 

Exploration type: medium distance fringe subtype. – Hydrophobic attitude.  

It can be supposed that this anatomotype is a member of the Thelephoraceae, for the outer mantle and for the emanating 

hyphae clampless and for the habit (Agerer 2006), and for the undifferentiated rhizomorphs not frequent for this genus, 

but present in Tomentella galzinii Bourd + Quercus, too (www.deemy.de). Furthermore the anatomical features are very 

similar to that identified as Tomentella sp. (EDM70).  

The molecular analyses confirmed the family, showing a similarity of 99% with Tomentella cinerascens (P. Karst.) 

Höhn. & Litsch. (UDB000241 in Unite, see Tab. 1) 

 

Tomentella sp. (EDM19), Figs. 56-58 

 

Basidiomycota, Agaricomycetes, Thelephorales, Thelephoraceae 

 

Colour: brown. - Ramification: monopodial-pyramidal. - Shape: straight, cylindric, not inflated or tapering. - 

Mycorrhizal surface (Fig. 56): loosely grainy and stringy. - Rhizomorphs: infrequent, thelephoroid type, with irregularly 

sinuous peripheral hyphae, nodia and conical structures, whith clamps. - Outer mantle: pseudoparenchymatous, angular 
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cells bearing prominent clavate cystidia. - Middle mantle (Fig. 58): between plectenchymatous and 

pseudoparenchymatous. - Inner mantle: plechtenchymatous with clamps. – Cystidia (Fig. 57): clavate, connected with a 

clamp to the mantle. - Mantle layers and emanating elements membranaceously brownish. – Exploration type: medium 

distance smooth subtype. – Hydrophilic attitude. 

It can be supposed that this anatomotypes is a member of the Thelephorales, for the outer mantle, similar to that 

reported in the group of Tomentella subtestacea and Tomentella pilosa (Agerer 2006), and also for the typical 

thelephoroid rhizomorphs and for the cystidia. The molecular analyses showed a similarity of 97% with Tomentella 

pilosa (Burt) Bourdot & Galzin (UDB000241 in Unite, see Tab. 1). 

 

Tomentella sp. (EDM46), Figs. 59, 61 

 

Basidiomycota, Agaricomycetes, Thelephorales, Thelephoraceae 

 

Colour: brown, blackish with whitish very tip. - Ramification: monopodial-pyramidal. - Shape: straight, cylindric, not 

inflated. - Mycorrhizal surface (Fig. 59): loosely cottony. - Rhizomorphs: infrequent, thelephoroid type, with irregularly 

sinuous peripheral hyphae, nodia and conical structures, with clamps. - Outer mantle (Fig. 61): plectenchymatous, type 

B (hyphae rather irregularly arranged and no special pattern discernible). - Middle mantle: plectencymatous. - Inner 

mantle: plechtenchymatous. - Mantle layers and emanating elements membranaceously brownish. – Exploration type: 

medium distance smooth subtype. – Hydrophilic attitude. 

It can be supposed that this anatomotype is a member of the Thelephorales, for the outer mantle very similar to that in 

Tomentella ferruginea (Pers.) Pat.  + Fagus sylvatica (Raidl & Müller 1996; Raidl 1998), for the similar thelephoroid 

rhizomorphs reported in this description.  

 

Tomentella sp. (EDM70), Figs. 60, 62-64, 130 

 

Basidiomycota, Agaricomycetes, Incertae sedis, Thelephorales, Thelephoraceae 

 

Colour: brownish, blackish - Ramification: simple, monopodial-pyramidal. - Shape: straight, cylindric not inflated. - 

Mycorrhizal surface (Fig. 60): loosely cottony. - Emanating hyphae (Fig. 62): without clamps, sometimes 

epimembranaceously brownish. - Rhizomorphs (Fig. 63): frequent, type B (undifferentiated; margins rather smooth; 

hyphae compactly arranged and of uniform diameter), with protuberances on the hyphae. - Outer mantle (Fig. 64): type 

B (hyphae rather irregularly arranged and no special pattern discernible), surface covered by emanating hyphae without 

clamps - Middle mantle: plectenchymatous - Inner mantle (Fig. 130): plectenchymatous. - Mantle layers and emanating 

hyphae membranaceously brownish. - Exploration type: short distance. – Hydrophilic attitude. 

This anatomotypes showed morphological and anatomical similarity with Tomentella sp. (EDM 18). For this reason it 

can be supposed that both belong to the same genus. 
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CHAPTER 3 
 
 

 
Hygrophorus penarius on beech: between mutualism and parasitism? 
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Abstract. The mycorrhizae of Hygrophorus penarius on Fagus sylvatica are described and 
compared to other species of the same genus and with unidentified mycorrhizae known from 
literature. The mycorrhiza of H. penarius is very similar to that of Entoloma saepium on Rosa sp., 
in that the fungus appears to prevent the formation of a root meristem and invades young root cells, 
in a parasitic-like behaviour, but dissimilar to E. saepium that destroys and digests the root apex. 
The Hartig net is not formed, although a very thick mantle is present that is composed of 
infrequently clamped hyphae embedded in a gelatinous matrix. To get more information about its 
behaviour the stable carbon and nitrogen isotope ratios of its mycorrhizae were studied, revealing a 
negative δ15N value, similar to that of non-mycorrhizal roots and of many typical ectomycorrhizae. 
δ13C values did not reveal important information. Due to the special type of interaction between the 
fungus and the root, a parasitic-like strategy for the studied H. penarius on beech can be 
hypothesized - at least under the considered growth conditions. 
 

 

 

Key words: ectomycorrhiza, mutualism, parasitism, induced resistance, isotopes, 15N, 13C, Fagus 

sylvatica. 

 

1 Introduction 

The definition of mycorrhiza is based on the concept of symbiosis sensu lato (de Bary, 1887) 

between a fungus and a plant, and in most cases mycorrhizae consist of a mutualistic relationship, 
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where both partners benefit (Smith & Read 1997). Notwithstanding this, in ectomycorrhizae it is 

often difficult to discern the exact nutrient pathways between the two symbionts and the direct and 

indirect benefits derived by each of the symbionts, as both physiological and environmental features 

dynamically influence the relationship (Ahmadijan &, 1997; Peterson et al., 2004). On this subject, 

the term “balanced mycorrhizae” well defines the conditions in which both organisms obtain 

essential resources through reciprocal exchanges (Brundrett 2004), the terms “exploitive 

mycorrhization” (Brundrett 2004) or “reciprocal exploitations” (Herre et al., 1999) are used when a 

unbalanced, mainly plant-directed, nutrient flow happens, while “reciprocal parasitism” (Peterson et 

al., 2004) can be used when the nutrient flow is mainly directed to the fungus, gradually 

destabilizing the partnership and approaching a parasitic behaviour. Anatomical examples of 

parasitic-like ectomycorrhizal infections are known on Fagus sylvatica, Rosa spp. and Prunus spp. 

(Götsche 1972; Agerer & Waller 1993; Kobayashi & Hatano 2001). 

From a behavioural point of view it was demonstrated that, in a mutualistic partnership, the balance 

of antagonism between plant and fungus could gradually tilt in favour of the second when the 

changed environmental or partner’s features (i.e. suboptimal ecological conditions, cell age) allow it 

to parasitize few or many cells, thanks to its phenotypic plasticity (Kuldau & Yates 2000; 

Jumpponen 2001; Sieber 2002). This depiction, anyway, is far from generalization, changing not 

only with the two involved species, but at least with their genotype and age, and with the changing 

environmental characters (Lu et al. 2004; Rodrigues et al. 2004). Furthermore, the fungal protrusion 

into single plant cells, not always defines a parasitic activity towards the whole plant: “induced 

resistance” is a physiological state of enhanced defensive capacity elicited by specific 

environmental stimuli (i.e. the exposition to a nonpathogenic organism), whereby the plant’s non-

specific and innate defences (i.e. phytoalexins production, cell’s lignification and/or suberization) 

strengthen against subsequent pathogenic challenges (Horsfall & Cowling 1980; Bailey 1985; Van 

Driesche & Bellows 1996; Sticher et al., 1997; van Loon et al., 1998).  

To this respect, the characterization of the nutritional attitude of an ectomycorrhizal fungus is of 
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major importance, and the presence, abundance and ratio of stable isotopes [15N (δ15N); 13C (δ13C)] 

in fungi may be a useful approach to define a mutualistic behaviour (Gebauer & Taylor 1999; 

Hobbie et al. 1999; 2001; 2002; Kohzu et al., 1999). 

The main goals of the research were to comprehensively describe the ectomycorrhiza of 

Hygrophorus penarius on Fagus sylvatica, and to compare its carbon and nitrogen isotopic 

signature to that of known ectomycorrhizal fungi and roots.  

 

2  Material and Methods 

The methods for characterization of EM are comprehensively described by Agerer (1991). Fresh 

material was studied regarding morphology, colour of hyphae, and chemical reactions; material 

fixed in FEA was applied to produce mantle preparations as well as for longitudinal sections. The 

drawings were made using a ZEISS Axioskop with Normarski’s Interference Contrast, at a 

magnification of 2000x with the aid of a drawing mirror, transferred on a transparent paper by 

Indian ink drawing devices, and finally reduced in magnification. 

Identification was possible by comparison of nuclear rDNA ITS sequences obtained from the 

mycorrhizal root tip and from the fruitbody. DNA extraction, PCR and sequencing methods follow 

Tedersoo et al. (2006). GenBank accession number of the EM sequence is EU444536. The 

reference specimens of the mycorrhizae and of the fruitbodies are deposited in PD (TeSAF 

Department herbarium; Holmgren et al. 1990). The ectomycorrhizal material was collected in Italy, 

Trento province (Trentino-Alto Adige Region), Val di Non, district Denno (46°14’ N; 10° 57’ E), 

beech coppice cut in 2004, mesic condition, 1050 m a.s.l., mineral soil, humus type Dysmull, 

limestone substrate, soil pH 5.3-6.0, Ntot 13,9-21,8, C/N 16-18, moisture 52-69,7, Corg 226-

395g/Kg. Myc. isol E. Di Marino, 12.06.2006 (older ontogenetical stage EDM 60 in FEA , Agerer 

1991, Reference specimen) and 9.05.2007 (younger ontogenetical stage).  

 

For isotopic studies, fruitbodies of the following provenances were used. Lactarius acris (Bolton) 
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Gray, Germany, Bavaria, Berchtesgarten National Park 1080 m a.s.l., leg. 12.09.1979 (in M); 

Hygrophorus russula (Schaeff.) Quél., Italy, Ferrara, Bosco Mesola, leg. 08.12.1999 (in PD); H. 

penarius Fr. collection 1, Italy, Pordenone, Barcis, 450 m a.s.l., leg. 08.12.1999 (PD); collection 2, 

Italy, Reggio Calabria, Ciciarella, leg. 06.10.1999 (in PD); collection 3, Italy, Bologna, Parco dei 

Gessi, leg 26.10.1994 (in PD). 

For analyses of 15N and 13C content, non-mycorrhizal dried roots, mycorrhizal tips and fruitbodies 

were ground to fine powder and analysed by a combined element analyser (EA3000, Euro Vector 

instruments and software, Milano, Italy) and isotope ratio mass spectrometer (IsoPrime, GV-

Instruments, Manchester, UK) for their C and N concentrations as well as for their 13C and 15N 

values. All isotope ratios were expressed in δ notation relative to the standards of PeeDee Belemnite 

(PDB; Dawson et al. 2002) for carbon and atmospheric N2 for nitrogen. The analyses were 

performed by the Centre of Life and Food Sciences Department of Ecology/Plant Ecophysiology 

(TMU Freising, Germany).  

 

3  Results 

Mycorrhiza of Hygrophorus penarius on Fagus sylvatica L. 

Morphological characters (Figs. 1a-c, 8-11) 

Mycorrhizal systems solitary or in few numbers, not or infrequently ramified, then irregulary 

pinnate, with distinct opaque mantle surface; cortical cells visible through the almost completely 

transparent mantle, mantle easily removable form the root as a gelatinous cap; mycorrhizal surface 

smooth, when older covered by sand and soil particles and hyphae; hydrophilic, of the short-

distance exploration type (Agerer 2001), transparent and colourless, the root below the mantle 

whitish and changing to black with age; side branches 0.5-4 mm long and 0.5-0.8 mm diam., 

straight or bent, not inflated, cylindrical. Emanating hyphae abundant and concentrated proximally 

in older tips; rhizomorphs and sclerotia lacking. 
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Anatomical characteristic in plan views (Figs. 2-5, 6a, b, 7, 13-17) 

Outer mantle layers  (Figs. 2, 3, 6b, 12, 13) with a surface covered by a very thick gelatinous matrix 

and with many soil particles and crystals; very loosely plectenchymatous, with a well extended 

gelatinous matrix between the hyphae (mantle type C, according to Agerer 1991, 1995, Agerer 

1987-2006, Agerer & Rambold 2004-2007); hyphae cylindrical, sometimes constricted at septa, 

inflated at clamps, often slightly ampullate at both sides of the septum; angles between hyphal 

junctions ca. 90°, rarely 45° or 120°, colourless; thinner hyphae 1-2 µm diam. with 0.1  µm wide 

walls, with infrequent simple septa and clamps; hyphae most frequently 4-7(9) µm diam. and with 

(10)30-60(100) µm long cells, walls thin, others with (1)2(5) µm wide walls, infrequent open 

anastomoses - Middle mantle layers (Figs. 4, 5) densely plectenchymatous, without pattern, with a 

very extended gelatinous matrix, hyphal surface smooth, but with ca. 5x10 µm large rhomboid 

crystals; walls 0.2-0.5 µm, cells (15)30-(60) µm long, (2)4-5 µm diam.; thicker fraction of hyphae 

more infrequent than in outer layer, with 2-3 µm thick walls, cells (5)7-9 µm diam., clamps present, 

simple or medallion-like, with rare open anastomoses. Inner mantle layers (Fig. 6a, 16, 17) densely 

plectenchymatous without pattern, colourless with gelatinous and thick matrix, hyphae (2.5)3.5-5(7) 

µm., with infrequent simple septa and smaller, ca. 3x7 µm large, rhomboid crystals. 

 

Anatomical characters of emanating elements  

Rhizomorphs not observed. - Emanating hyphae (Figs. 7, 14, 15) tortuous or irregularly inflated or 

even beaded, angle of ramification acute or approximately 90°, ramification adjacent to septum, 

hyphal ends simple or tortuous or screw-like; cell walls of tips as thick as remaining walls or 

thicker, with normal clamps or inflated without or with infrequent simple septa, sometimes out of 

the mantle but full immersed in the matrix,  with crystals and soil particles; hyphae (3)4-6(10) µm 

in diam., those lacking a gelatinous matrix reveal (0.5)2(3.5) µm thick walls, others have 2-3.5 µm 

wide walls and a matrix of 10-12(15) µm width, some lack a cell lumen and consist exclusively of 

cell wall material; in lateral view clamps with a hole, more or less than a semicircle, constricted at 
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contact point to subtending hyphal cell, hyphae at septa even; anastomoses open with a short bridge 

or bridge lacking, or closed by a simple septum and almost without a hyphal bridge; cystidia and 

chlamydospores not observed. 

 

Anatomical characters, longitudinal section 

Mantle plectenchymatous with gelatinous matrix, very wide, compact, (30)70(100) µm thick, 

different layers not discernable, colourless. Epidermal cells reacting against the hyphae (Fig. 21), 

by the formation of thicker cell walls (Figs. 19, 20) and sometimes by condensed tannins within the 

cells, forming apparently a “zone of defence” against the frequent intracellularly growing hyphae 

(Figs. 18, 19); outer root cell layers seem to be necrotic; root meristem and Hartig net not visible, 

vascular tissue reaching almost the tip of the mycorrhiza. 

In younger ontogenetical stages mantle with 25-30(40) µm less wide in comparison to that of the 

older stage, meristem not totally digested, but intracellular hyphae present in the cells of the 

meristem (Fig. 23).  

 

Colour reaction in  different reagents 

Mantle preparations: cotton blue: n.r. (no reaction); ethanol 70%: n.r.; FEA: n.r.; iron (II)sulphate: 

slightly greyish; lactic acid: n.r.; Melzer's reagent: n.r.; Congo red: n.r.; sulpho-vanillin: n.r., or with 

reddish spots within the matrix; KOH 10%: n.r.; guaiac: n.r..  

 

Autofluorescence 

Whole mycorrhiza: UV 254 nm: lacking; UV 366 nm: violet-blue. Mantle in section: UV-filter 340-

380 nm: slightly bluish; blue filter 450-490 nm: slightly yellowish; filter 530-560 nm: slightly 

reddish. 
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Isostope ratios (δ13C and δ15N) 

The results obtained comparing Hygrophorus penarius and Lactarius acris (Bolton) Gray 

fruitbodies of different provenances and ectomycorrhizae collected in the same time and in the same 

site are reported in tab. 1, showing higher δ15N values for L. acris, with H. penarius values close to 

the ones arising from non mycorrhizal root tips. Other trials did not give appreciable differences 

between species. 

 

4 Discussion 

The main anatomical features of Hygrophorus penarius on Fagus sylvatica are, firstly, the 

hydrophilic, colourless, transparent mantle with a gelatinous matrix containing variously thick 

hyphae with irregularly thickened walls forming a loosely plectenchymatous structure, secondly, 

intracellular hyphae that grow into the cells of the root tip, apparently preventing the root from 

forming a meristem, with the consequence that the elements of the central stele reach almost the 

very tip of the root, and, thirdly, the lack of a Hartig net with root cells reacting by thickening of 

their walls and producing tannic substances.  

The mycorrhizae of the genus Hygrophorus that have been characterized to date show some 

similarities with those of H. penarius, at least with respect to some mantle features. 

The mantle of Hygrophorus lucorum Kalchbr. + Larix decidua is with 60-70 µm also very wide 

(Treu 1990), but at least the outer mantle layers are pseudoparenchymatous, not gelatinous and 

emanating hyphae are not covered by a matrix. The mantle hyphae of the species described here are 

completely immersed in a gelatinous matrix, as previously observed for EM of Hygrophorus 

olivaceoalbus (Fr.) Fr. (sub nomine Piceirhiza gelatinosa, Agerer 1987-2006; Berg et al., 1989; 

Gronbach & Agerer 1986) + P. abies, but in contrast to H. penarius, the mantle hyphae of H. 

olivaceoalbus EM are arranged labyrinthine-like (Gronbach & Agerer 1986; Berg et al.,1989). 

Intracellular hyphae can also occur in H. olivaceoalbus, but they originate from the Hartig net that 

is often composed of several hyphal rows (Gronbach & Agerer 1986; Haug & Pritsch 1992). 



 

91 

Whether hyphae are growing within the very tip of this EM is unknown, as longitudinal sections 

through the meristem are not studied yet (Gronbach & Agerer 1986; Haug & Pritsch 1992). The 

outer mantle of H. pustulatus (Gronbach 1988; 1989) is not gelatinous and forms rhizomorphs. 

Gronbach (1988) reports for this species intracellular hyphae that can possess clamps within cortex 

cells, but they are restricted to cells enveloped by the Hartig net and are not growing within the very 

tip of the root.  

Additional EM species are known to form, mainly in old stages, intracellular structures (haustoria), 

but otherwise with features typical for EM associations, as reported for Elaphomyces granulatus Fr. 

(Piceirhiza glutinosa, Gronbach 1988, 1989; Haug & Pritsch 1992), Piceirhiza ascosphinctrina 

(Haug & Pritsch 1992), P. glutinosaesimilis (Berg 1989) and P. guttata (Berg 1989; Gronbach 1988, 

1989). Haustoria may be a lifelong attribute of several species with a typical Hartig net and an intact 

root meristem, as in Lactarius acris (Brand 1991), Quercirhiza ectendotrophica (Azul et al., 2001), 

Russula mairei Sing. (Brand 1991) and Tricholoma scioides (Secr.) Mart (Brand 1991).  

Stronger anatomical modifications were demonstrated in Entoloma saepium (Noulet & Dass.) 

Richon & Roze on both Rosa spp. and Prunus spp. (Waller & Agerer 1993), and in Entoloma 

clypeatum f. hybridum on Rosa multiflora (Kobayashi & Hatano 2001). Here, the outer cell layers 

and the Hartig net appeared modified, digested and incomplete, the distal parts of the tip 

degenerated, including the meristems and most of the cortical cells, and the intracellular hyphal 

presence left only cell remnants behind, indicating a parasitic behaviour. Götsche (1972) observed 

comparable features studying an unclassified EM with an ectendotrophic stage on F. sylvatica, 

where the fungus digested progressively the epidermal and the meristemic cells, the mantle lost its 

consistency and suberin layers were formed. However, detailed anatomical studies were not 

provided. 

Hygrophorus penarius on F. sylvatica appears poised between mutualism and parasitism. It lacks 

the Hartig net typical of ectomycorrhizal mutualists. Its intracellular colonization of plant cells (Fig. 

22), the partial digestion of cortical cells, and the prevention of meristematic tissue at least in later 
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ontogenetical stages are also more typical of parasites than of mutualists. The plant reaction to this 

colonization consisted of cell wall thickenings and tannic substances filling the cells.  

To evaluate the mutualistic activity of H. penarius, its δ15N and δ 13C isotope signatures were 

measured in root tips, mycorrhizae and fruitbodies. We compared these data with isotopic signatures 

in the mutualistic species Lactarius acris. 

The H. penarius EM showed a negative δ 15N value (-4‰), quite different from the mean value of 

5,7‰ as expected from a fruitbody of a mutualistic fungus (Hobbie et al. 2001; 2002) and closer to 

the ones obtained from non-mycorrhizal tips (tab. 1). Only a few symbiotic organs of 

ectomycorrhizal species have been investigated regarding δ 15N. Regardless of the season fine roots 

of beech trees had consistently a negative δ 15N between –3.6 and –5.0 ‰, and the values for EM 

figured between –3,2 and –5,2‰ (Haberer et al., 2007). Therefore, although positive δ 15N values 

have been reported for fruitbodies (Hobbie et al. 2001; 2002), the values for EM are almost 

identical to those of fine roots (Haberer et al., 2007). δ 15N values of H. penarius EM are also in the 

range of roots, and their δ 15N of fruitbodies are, although rather low in two samples (Tab. 1), as 

expected for EM fungal fruitbodies (Hobbie et al. 2001; 2000). More interestingly, the EM of 

Lactarius acris from the same site as those of H. penarius reveal a rather high positive value of 3.35 

‰. But this value resulted as that of H. penarius only form a single soil core, indicating, that 

comprehensive studies of several fruitbodies and of several EM of many species, are necessary until 

an isotopic contribution to the question, whether H. penarius behaves rather as a parasite than a 

typical mutualist, is possible.  

At present, only interpretative speculations on this partnership can be shaped, since many factors 

may have contributed to the observed relation, e.g. genotypes, source-link relationships, and 

exceptional soil and climatic conditions.  

As previously suggested in other ectomycorrhizal symbioses (Schwacke & Hager, 1992; Salzer et 

al., 1996), the wide and unspecific host reactions induced by H. penarius, could be effective against 

other microorganisms, in accordance with well known “induced resistance” strategies (Sticher et al., 
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1997; van Loon et al., 1998). 

Further anatomo-physiological investigations on H. penarius behaviour in different tip age and 

seasons, and on its potential ability to induced a non-specific plant resistance to rootlet’s parasites 

are therefore of main importance. 
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Fig. 1a-c. Habits. - Fig. 2. Mantle surface with an extended gelatinous matrix, with soil particles on 
its surface, clamps and some hyphae with (partially) thickened walls. - Fig. 3. Outer mantle layer 
plectenchymatous with very extended gelatinous matrix, hyphae with thin walls and others with 
irregularly thickened walls. - Fig. 4. Middle mantle layer plectenchymatous with a very extended 
gelatinous matrix, hyphae with crystals, clamp, and an anastomosis closed by a septum (asterisk); a 
few hyphae with irregularly thickened walls; part left below shows again a portion of the outer 
mantle layer. - Fig. 5. Middle mantle with very extended gelatinous matrix, rhomboid crystals on 
hyphae and soil particles incorporated in the matrix. - Fig. 6a. Inner mantle layer plectenchymatous 
with less extended gelatinous matrix, hyphae without clamps, simple septa very infrequent. – b. 
Hyphae with irregularly thickened walls. - Fig. 7. Emanating hyphae covered by a gelatinous 
matrix, with large clamps. All. figs. from EDM60a. - Figs. 8. Older ectomycorrhizae with emanating 
hyphae soil particles and sand. -  Fig. 9. Tip with matrix, and soil particles: the root below the 
mantle is dark. - Fig. 10. Tip with very thick matrix, sand particles on the surface: root is light- 
brown. - Fig. 11. Ectomycorrhizae of Hygrophorus penarius together with other types. – Fig. 12. 
Outer mantle, gelatinous matrix (Interference contrast).  – Fig. 13. Outer mantle: matrix and hyphae 
with clamps. (Interference contrast). – Fig. 14. Emanating hyphae in the matrix: hyphae with 
thicker walls (Interface contrast). – Fig. 15. Emanating hyphae with thicker walls and rest of the 
matrix (Interface contrast). - Fig. 16. Inner mantle with clamp and gelationous matrix (Interface 
contrast). – Fig. 17. Inner mantle (Interface contrast).- Fig. 18. Median longitudinal section (phase 
contrast): intracellular colonization of plant cells (arrow) and plant reaction (m: mantle). - Fig. 19. 
Median longitudinal section (phase contrast): reaction of the plant (m : mantle; v: vessel; w: thick 
walls; ta: condensed tannins). - Fig. 20. Median longitudinal section (phase contrast): intracellular 
hyphae (arrow) and thicker walls. - Fig. 21. Median longitudinal section (phase contrast): 
intracellular hyphae (arrow). - Fig. 22. Medial longitudinal section (phase contrast): partial 
digestion of cortical cells and prevention of the meristem tissue (older ontogenetical stage). - Fig. 
23. Median longitudinal section (phase contrast): meristem in the younger ontogenetical stage and 
intracellular hyphae (me: reduced meristem).  
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Tab. 1 Stable isotope analysis of beech roots (length = 2 mm) and of different ectomycorrhizae.  

Sample 

(roots/ECM) 

δ 15N δ 13C 14N : 15N 12C :13C 

Root (a) -3.31 -28.09 0.75 49.92 

H. penarius 

(a) 

-3.91 -26.84 0.90 42.44 

Lactarius 

acris (a) 

3.35 -26.04 2.12 43.59 

Root (b) -4.00 -28.36 0.73 50.83 

H. penarius 

(b) 

-4.00 -26.84 0.86 41.81 

Root (c) -3.56 -28.17 0.75 49.38 

H. penarius 

(c) 

-5.38 -26.71 0.86 39.65 

Sample 

(fruitbodies) 

δ 15N δ 13C 14N : 15N 12C :13C 

L. acris  3.54 -23.02 4.09 46.98 

H. russula  5.38 -25.71 4.27 37.47 

H. penarius 1  1.17 -24.72 4.65 43.40 

H. penarius 2  4.77 -22.40 5.56 40.47 

H. penarius 3  1.9 -23.29 3.11 38.00 

(a), (b), and (c) are different subsamples of a single soil core. 
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Figs. 1a, 1b, 1c. 
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Fig. 2. 
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Fig. 3. 
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Fig. 4. 
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Fig. 5. 
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Figs.: 6a, 6b. 
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Fig. 7. 
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Abstract 
 
The composition and the structure of the ectomycorrhizal (EM) community were investigated in 7 

European beech coppices with different rotation (2÷48 years) in northern Italy (Trentino-Südtirol 

region). To verify whether ectomycorrhization of root tips and the species vary according a 

reduction of the normal turn applied in these sites, the researches were carried on the spatial and 

vertical distribution of the EM species. Further ecological factors were considered to study 

variations according the site features like: slope, pH, C/N, Corg, Norg, soil moisture, exposure, 

altitude and bedrock type. The results demonstrated that tips vitality and ectomycorrhization degree 

did not change significantly either on the same tree, or among trees growing in the same stand, but 

only between the organic and the mineral soil. The ecological index of richness and evenness 

attested also only temporal variations, but they were not correlated with the coppice frequency or 

the slope.  

EM species composition didn't reveal a significant correlation with the shoot age but with other  site 

features as the slope and the soil moisture. A particular kind of“resilience” condition was supposed, 

but further studies are necessary to understand the possible application of the “Short rotation” 

practices in Beech stands as a sustainable activity, according to the new trends in EU energetic 

policies. 

 
Key words: EM community, coppice, short rotation, biomass, wood, energy, Fagus sylvatica. 
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1 Introduction 
 
The composition and richness of the ectomycorrhizal (EM) community has high functional 

significance in forest ecosystems (Peter et al., 2001). In fact, EM structures, morphologically and 

functionally changing with the fungal species, can acquire and transport water and nutrients from 

the soil to the plant, buffering short-time water stresses which often predispose the plant to decline 

or to a early senescence (Skinner & Bowen, 1974; Duddridge et al., 1980; Kammerbauer et al., 

1989; Unestam 1991, Smith & Read, 1997; Montecchio et al., 2000; Agerer, 2001, 2006; Werner et 

al., 2002). 

Diversities in EM community structure are a result of site feature, and different sets of species with 

their site-dependent abundances are possibly able to provide comparable benefits to EM plant 

communities growing in different sites (Erland & Taylor, 2002; Agerer & Göttlein, 2003; Baier et 

al., 2006). Tip vitality, degree of mycorrhization, EM richness, species composition and evenness, 

therefore, might be associated with different environmental variables (Koide et al., 1998; van der 

Heijden et al., 1999; Scattolin 2007; Scattolin et al., 2008b).  

Abiotic (i.e. soil, site and climatic features) and biotic (i.e. parasitic infections) factors can drive to 

direct or indirect effects on EM species diversity at community level (Bakker et al., 2000; Byrd et 

al., 2000; Peter et al., 2001; Erland & Taylor 2002; Lilleskov et al., 2002; Shi et al., 2002; Jany et 

al., 2003; Montecchio et al., 2004; Montecchio 2005), but little is know about the possible role of 

sylvicultural treatments at forest scale (Buèe et al., 2005; Mosca et al., 2007a, b). 

According to both European Union and Italian rules promoting the increase of renewable energetic 

resources availability (Bernetti et al., 2004) also through “short rotation coppices” policies, the 

main goal of the research was to verify the effects of both coppice frequency and site features in 

EM community structure and biodiversity, of healthy Beech forests. 

 

2 Methods 

Stand characteristics and sample collection 

The investigations were performed in 2005 and 2006 in 7 coeval beech (Fagus sylvatica L.) coppice 

stands growing in the Natural Park Adamello-Brenta (Northern Italy; 5.125.228 ÷ 5.125.666 N, 

1.654.361 ÷ 1.654.565 E) selected among the most productive and exploited in the Trentino-

Südtirol Region, where the officially fixed coppice frequency is 25 years (Provincia Autonoma di 

Trento, 2001; 1923; Sboarina  & Cescatti, 2004).  

To assess the EM spatial distribution, in 2005 four sites differing in coppicing age (coppiced 4 to 47 

years before) were selected and coded 1 to 4, respectively, while in 2006 three additional stands 

(coppiced 2 to 48 years before) were selected and coded 5 to 7. Stands older than 25-years-old were 

devoted to change to a high forest stand. The dominant humus form was classified according to 
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Jabiol et al. (2005), for each stand. It is reported together with other investigated environmental 

variables in Tab.1. 

In each plot, after a phytosanitary survey, 4 healthy stumps, undamaged by climatic events, with 

fully-developed crown, growing at least 15 m from the nearest EM plant, were randomly selected 

and coded. According to Scattolin et al. (2008a), in June and October 2005 (sites 1÷4) and in June 

2006 (sites 5÷7),  12 cylindrical soil cores (Ø 18 mm; 15 cm deep) were collected (100, 150 and 

200 cm from the collar, along N, E, S and W directions), stored in plastic pipes at 4 ±1 °C in the 

dark and used for EM classifications and statistical analyses.  

To investigate the EM vertical distribution, in October 2006 two more beech stumps were randomly 

selected in the sites 1÷5 according to the above reported methods. Four 2.5 x 2.5 cm soil samples 

including the mineral layer A, were collected along the four cardinal directions 150 cm from the 

base. Every sample was then vertically divided into 2 equal subsamples and separately preserved 

(subsamples a, b) as above reported. Subsamples a were then used for EM classifications and 

statistical analyses, while from the subsamples b the organic horizon O and the mineral horizon A 

were classified and chemical analyses on N tot, C/N, soil moisture (RH), pH were performed 

according to official methods (Repubblica Italiana, 1999). 

 

EM classification 

Within 12 days from sampling, from each core 10 fully developed rootlets with undamaged apical 

tips were randomly chosen and carefully cleaned. For the following spatial distribution analyses, the 

last tip was classified as not vital (NV), vital not-mycorrhizal (NM) and vital ectomycorrhizal (EM). 

For the vertical distribution analyses, only the mycorrhizal tips were considered, as not-vital 

mycorrhizal (NVM) and vital ectomycorrhizal (EM; Montecchio et al., 2004). 

Every EM tip was then classified anatomically and morphologically (Agerer 1991; Goodman et al., 

1996; Agerer 1987-2006; Brand, 1991a, b; Agerer & Rambold, 2004-2007), and the ones with 

uncertain classification were submitted to molecular analyses (Tedersoo et al., 2006). DNA 

extraction, amplification, sequencing were performed according to Benkeen (2004), while the 

sequence identification level was assigned to species level for similarity of 100%, to genus level 95-

99%, to family or ordinal level for < 95%, by means of both Genbank and Unite databases (Kõljalg 

et al., 2005). Anatomotypes detected with not enough tips to allow the molecular procedure, and the 

ones with uncertain results were classified by an alphanumerical code (EDMxx). 

All specimens were preserved in FEA (formaldehyde 40% : ethyl alcohol 50% : acetic acid 100% : 

= 5 : 90 : 5, v/v/v) solution and stored in the TeSAF Departmental herbarium, University of Padova. 
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EM spatial distribution  

The studies on spatial distribution were carried out by sampling collections of the first year (June 

and October 2007, sites 1÷4) and of the second year (June 2006, sites 5÷7). The NV, NM, EM 

absolute frequencies among samples from the same tree, among trees from the same site, and 

among sites were calculated (Scattolin et al., 2008b) and compared through the Kruskal-Wallis non-

parametric test and the χ2 test (P<0.05, SAS System, SAS Institute, Cary, NC, USA). 

As the autocorrelation among sampling points could influence the community structure, the Mantel 

Test was performed to test the null hypothesis of no relationships among samples from the same 

tree (McCune & Grace, 2002). The Sørensen similarity index was used to create the similarity 

matrix: 2a/(2a+b+c), where a= number of shared species, b= number of species unique to plot 1 

and c= number of species unique to plot 2 (Izzo et al., 2005). The Mantel Test (P<0.01; 

permutations=10000; R program, www.r-project.org vers. 2.5.1.) was used to compare EM species 

dissimilarity and linear distance matrixes between sampling points belonging to the same plant.  

To avoid seasonal effects in EM community structure, the EM absolute frequencies recorded in sites 

1÷4 in the two sampling periods were assembled (Baier et al., 2006).  

Relations among EM absolute frequency in each sample and coppice frequency (age), slope 

gradient, altitude, exposure, humus and bedrock type, were analysed by means of multivariate 

techniques : Detrended Correspondence (DCA; Hill & Gauch, 1980) and Canonical 

Correspondence Analyses (CCA; Hill 1979) were carried out (McCune  & Mefford, 1999; PC-

ORDTM vers. 5, MjM, Oregon) applying a power transformation (power = 0.50, square root) to 

reduce the number of interactions among the involved variables. During the preliminary analyses, 

the ecological factors investigated that were correlated with others, were excluded progressively, to 

prevent interpretation based on autocorrelation.  

To assess the type of distribution of the EM communities, the data belonging to the EM relative 

abundances in all plots were submitted to the Morisita's Index of Dispersion (MID; Morisita 1959; 

Sokal & Rohlf, 1981), due to its independency by the number of samples, density of the population 

studied, and sampling size (Krebs 1989). 

Biodiversity parameters for each EM community in all sites and samples were calculated by means 

of the Evenness and the Shannon-Weaver (1949) Index of Diversity using the absolute frequency of 

the species. 

 

EM vertical distribution 

EM and NVM absolute frequencies among samples from the same tree, among trees from the same 

site, among sites and between O and A soil horizons, were calculated and compared through the 

Kruskal-Wallis non-parametric test and the χ2 test as above reported.  
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Lacking significant differences among sampling directions (Mantel Test; Mc-Cune and Grace 

2002), EM and NVM data from each tree were gathered and the relative abundance (Σ EM/cm3 soil 

volume and Σ NVM/cm3 soil volume) were calculated and related to coppice age, slope gradient, 

altitude, humus, bedrock type, soil horizons (O, A), pH, moisture, Corg, Ntot, C/N by means of DCA 

and CCA, as above reported.  

Morisita's Index of Dispersion, Evenness and the Shannon-Weaver (1949) Index of Diversity using 

the absolute frequency of the species were calculated, too. 

 

3 Results 

EM community structure: spatial distribution 

Anatomical and molecular investigations revealed a total of 46 anatomotypes (Tab. 6). Among 

them, 3 were assigned to family or ordinal level (Boletales, Sebacinaceae, Thelephorales), 15 to a 

genus (Amphinema sp., Boletus sp., Cortinarius sp., Craterellus sp., Hydnum sp., Hygrophorus sp., 

Inocybe sp., Laccaria sp., Lactarius sp., Ramaria sp., Sebacina sp., Tomentella sp.), 17 to a species 

[Byssocorticium atrovirens (Fr.) Bondartsev and Singer ex Singer, Cenococcum geophilum Fr., 

Cortinarius bolaris (Pers.) Fr., Cortinarius cinnabarinus Fr., Cortinarius ionochlorus Maire, Genea 

hispidula Berk. ex Tul. and C. Tul., Hygrophorus penarius Fr., Lactarius acris (Bolton) Gray, L. 

pallidus W. Sounders and W. G. Sm., L. rubrocinctus Fr., L. subdulcis (Bull.) Gray, L. vellereus (Fr.) 

Fr., Piloderma croceum J. Erikss. and Hjortstam, Ramaria aurea (Schaeff) Quél, Russula illota 

Romagn., R. mairei Singer, Tricholoma acerbum (Bull.) Vent., T. sciodes (Pers.) C. Martin], 8 were 

previously described in detail on Fagus sylvatica [Fagirhiza cystidiophora (Brand 1991a), F. fusca 

(Brand 1991a), F. lanata (Brand 1991a), F. oleifera (Brand 1991a), F. pallida (Brand 1991a), F. 

setifera (Brand 1991a), F. spinulosa  (Brand 1991a), F. vermiculiformis (Jakucs 1998)], three were 

studied in all their features and their description by the first author is in progress for following 

(Fagirhiza byssoporioides, F. entolomoides, F. stellata), while one remained unknown (Tab. 7). 

Both in June and October, C. geophilum was the dominant species (19.2 %). C. geophilum, L. 

pallidus, L. vellereus and Hydnum sp. altogether represented 60.8% of the whole EM species, while 

8 Thelephoraceae represented 17.4%. The absolute abundance of the anatomotypes is reported in  

the table 2. 

In sites 5÷7 the investigations demonstrated the presence of 36 anatomotypes, the most of them 

previously detected in sites 1÷4. Additional anatomotypes were H. penarius, Fagirhiza arachnoidea 

(Brand 1991a), a Ramaria sp. and a species belonging to Thelephorales (Tab. 2).   

No EM spatial autocorrelation was found among samples from the same tree (Mantel test; P<0.05). 

The performed analyses demonstrated that NV, NM and EM do not differ significantly among 

samples belonging to the same tree (different directions and distances from the collar), among trees 
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belonging to the same site, and among sites (P<0.05). Furthermore, the same parameters did not 

differ significantly with both coppice age and bedrock type in all the 7 investigated sites (P<0.05). 

The DCA performed on the data-set collected in the 2005 (not showed here) demonstrated that the 

length of the main gradient was less than 2, and the total “inertia” (variance) in the species was 

0.7840. This analyses performed to evaluate a gradient in the EM spatial distribution with the 

bedrock type, shoot age, humus type, site slope gradient, altitude and exposure gave insignificant 

results.  

CCA (Tab. 8, Fig.1) revealed that the species were significantly correlated to the slope gradient and 

the humus form, while the bedrock type and the coppice age gave statistically insignificant effects 

(total inertia = 0.8079; eigenvalue of the 1st and 2nd axis 0.089 and 0.064, respectively). The 

correlation measured on the first axis ["intraset correlations" (ter Braak 1986)] showed that the 

species distribution was highly correlated with the slope (0.650), and that the second most 

important factor was the shoot age (0.312). A negative correlation revealed with the humus form ( -

0.706), while a opposite relation was found between slope gradient and humus form. The analyses 

on EM community in the site 1÷4 demonstrated also, that the species distribution was significantly 

related to the slope (Fig.1). Tomentella2 sp., e. g., demonstrated to prefer the plots with steeper 

slope, while Amphinema sp., Tomentella1 sp. and Entoloma2 sp. were primarily associated to plots 

with Amphimull/Dysmull humus type and flatter slope.  

Very similar results were obtained with the data set of the sampling in the 5÷7 sites (June 2006).  

No gradient was found using the same ecological factors (without power transformation, not shown 

here; total inertia 1.2647, gradient > 1). The results of the CCA performed on the data-set of the 

calcareous plots studied in 2006 (Tab. 9, Fig.2) confirmed also in this case, that the slope resulted to 

be the first important ecological factor involving the EM composition. It was revealed an opposite 

relation between slope gradient and shoot age (total inertia 1.0933; eigenvalue of the first and 

second axes 0.131 and 0.092, respectively), too. The intraset correlations (ter Braak 1986) showed 

that the species distribution was more related to the slope (0.503), with a negative correlation with 

the shoot age (-0. 890). One group of species, including Fagirhiza arachnoidea, Tomentella2 sp., 

Laccaria sp., Tricholoma acerbum) resulted to be associated to plots with high slope values and 

younger coppice. Vice versa, Ramaria2 sp., Ramaria1 sp., and Thelephorales1 sp. were mainly 

present in plots with flatter slope and older coppices. 

The MID index showed that the community structure was formed by species always aggregated in 

the three different collections (MID>1), when the test F was significant (Fo> 1.45): in the first 

collection (June 2005) this index was always significant (Fo> 1.45), in the second collection 

(October 2005) this index was significant for only 23 species compared to the total of 46 species,  

while for the last collection (June 2006) was significant for 19 species compared to  the total 29  
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species. The EM richness and evenness were different among sites regarding spatial distribution but 

it was never correlated with coppice age or slope (Tab. 3). 

 

EM community structure: vertical distribution 

Forty-three anatomotypes were distinguished from 45.946 root tips (Tab. 6) within the plots 1÷5. 

Among them, 7 were assigned to family or order level (Boletales, Sebacinaceae, Thelephoraceae), 

10 to genus (Boletus sp., Cortinarius sp., Hygrophorus sp.,  Laccaria sp., Ramaria sp., Sebacina 

sp., Tomentella sp.), 14 to species [Byssocorticium atrovirens (Fr.) Bondartev and Singer ex Singer, 

Cenococcum geophilum Fr., Cortinarius bolaris (Pers.) Fr., Cortinarius cinnabarinus Fr., 

Cortinarius infractus Berk., Cortinarius inochlorus Maire, Genea hispidula Berk. ex Tul. and C. 

Tul., Lactarius acris (Bolton) Gray, Lactarius pallidus W. Sounders and W. G. Sm., Lactarius 

subdulcis (Bull.) Gray, Ramaria aurea (Schaeff) Quél, Russula mairei Singer, Tricholoma acerbum 

(Bull.) Vent., Tricholoma sciodes (Pers.) C. Martin] and 10 [Fagirhiza arachnoidea (Brand 1991a), 

F. byssoporioides, F. entolomoides, F. fusca (Brand 1991a), F. lanata (Brand 1991a), F. oleifera 

(Brand 1991a), F. pallida (Brand 1991a), F. setifera (Brand 1991a), F. spinulosa (Brand 1991a), F. 

stellata] to anatomotypes not identified at species level, while 2 remained unknown (Tab. 6). 

With a proportion of 29.2%, Cenococcum geophilum was the dominant species regarding the total 

amount of ECM. C. geophilum, Lactarius pallidus, Cortinarius cinnabarinus and Hygrophorus1 sp.  

represented 42.6% of all the EM species within the plots, while the genus Lactarius alone stand for 

12.2% of the EM population, and the genus Cortinarius 11.4%. Furthermore the ten  

Thelephoraceae (F. fusca, F. lanata, F. spinulosa; F. stellata, Tomentella spp.) represented 11.5% of 

the total number of EM tips. In total, 46 different anatomotypes were found in the 7 stands (Tab. 6). 

The performed analyses demonstrated that among samples collected from the same tree (different 

directions), NVM and EM never differed significantly within the sites (Kruskal-Wallis Test, 

P<0.05). Also no significant differences for the vitality of the EM were observed between the two 

different soil horizons (Kruskal-Wallis Test, P<0.05), in contrast to the NVM amount, changing 

significantly with the soil layer because of the higher abundance of EM in the upper one (Kruskal-

Wallis Test , P< 0.05; χ2  test, P<0.05; Tab. 5). 

The species distribution mainly depends on soil moisture (DCA diagram, total inertia 1.2647 and 

length of gradient > 1; Fig. 3). On the first axis we found a positive trend with the sample moisture 

and a negative trend with the humus form. The species with more moisture in the samples are 

concentrated on the right of the diagram, and on the left the species with lower moisture in the 

sample and prefered plots with a humus form between Amphimull and Dysmull. The second less 

important trend (on the second axis) is related to the age of the coppice. From up to down the 

diagram shows a trend with shoot age: above the species of older sites, and below the species of 
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younger sites. In the CCA on the data set with assembled directions (Tab. 9, Fig.4), the species were 

segregated into groups depending mainly on soil moisture. Total inertia in the species data was 

1.0933 and the eigenvalue of the first and second axes were 0.131 and 0.092, respectively.  

The correlation measured on the first axis ["intraset correlations" (ter Braak 1986)] showed that the 

species distribution was more correlated to soil moisture with a value of 0.447. The second most 

important factor was the slope  with a value of 0.276, and the third factor was pH with a coefficient 

of 0.166. Negative correlations mainly with humus form with a coefficient of -0.684 were found. 

The C/N ratio showed also a negative correlation (-0.458), united with altitude (-0.104) and age 

(shoot age, -0.083). An opposite relation was found between soil moisture and the humus form.  

One species group, counting Tomentella2 sp., Cortinarius1 sp. and Fagirhiza arachnoidea, showed 

a clear preference for plots with higher soil moisture.  

A second group, including Ramaria2 sp. and Thelphoraceae2 were primarily found with 

Amphimull/Dysmull humus form and with lower soil moisture.  

The Shannon-Weaver index showed that the EM richness and the evenness were different in the 

sites, but not correlated with the age (shoot age) of the coppices (Tab. 3). Only when the last cut 

was applied 5 years ago richness and evenness are higher in the mineral horizon. The MID index 

was always > 1, showing a community structure with 39 species aggregated in the sites when the 

test F was significat (Fo >1.32; Tab. 5). 

 

4 Discussions 

The research was performed in Beech coppices of different age to verify the role of both coppice 

age and site features in EM community structure and biodiversity.  

The achieved results demonstrated that along a wide coppice age gradient (2 to 48 years, with 25 

years being the rule), tips’ vitality and mycorrhization change only in the vertical distribution with a 

major abundance of EM not vital in the organic soil layers (Tab. 5), as reported also in previously 

investigations (Baier et al., 2006). The ecological indexes attested that the richness and evenness 

varied only on the temporal scale (related to the different collections), but they were not correlated 

with the coppice age or the slope (Tab. 3), partly confirming available information from clear-

cutting and thinning experiments (Buée et al., 2005; Cline et al., 2005; Mosca et al., 2007a), and 

explainable with an hypothetical resilience, as an “adaptive diversity”.  

The multivariate analyses based on the ordination techniques, revealed that the slope was the mort 

important factor explaining the EM community in the spatial distribution in all the investigated 

coppices (Tabs.7, 8; Figs. 2, 3). The vertical distribution significantly was correlated only with the 

moisture (Tab. 9, Fig.4), probably due to the higher organic accumulation and moisture availability 

in the upper soil of the down slope, as reported by other authors (Binkley & Vitousek, 1989; Tateno 
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et al., 2004; Scattolin et al., 2008a). 

The other ecological variables like, altitude, exposure, humus, bedrock type, soil horizons (O, A), 

pH, Corg, and Ntot never acted as significant driving factors, due to their high correlations with the 

main factor showed in the ordination diagram and measured in the preliminary elaboration. In 

addition, the coppice age didn't explain alone the distribution of the EM species (Tabs. 7, 8, 9).   

According to previous results valid for different plant species (Grogan et al., 2000; Horton & Bruns, 

2001; Taylor 2002; Montecchio et al., 2004; Mosca et al., 2007a; Scattolin et al., 2008b), the EM 

community resulted to be characterized by few abundant species and many with a significantly 

lower abundance. In total 46, anatomotypes were observed, with a high proportion of  Thelephoroid  

and Cortinareaceous fungi. This composition is well-known thanks to recent researches, which 

showed the evidence of  EM frequently formed by the Basidiomycote order Thelephorales (Jakucs 

et al., 2005; Kõljalg et al., 2000; 2001; 2002). The presence of Cortinarius species was  also 

discussed, because these species appeared to be less dominant as mycelia than as root tips (Kjøller 

2006), instead. Cenococcum geophilum was the most frequently detected species in each site and in 

each period, both in dolomitic and calcareous sites, probably due to its amplitude and antagonistic 

behaviour versus other EM fungi (Jany et al., 2003; Koide et al., 2005).  

Certainly due to their high abundance, the most frequent EM species revealed to have an aggregated 

distribution, probably due to micro-scale effects (i.e. interactions among species) able to prevail on 

macro-scale features (i.e. humus and bedrock type), as reported by other authors (Bruns 1995; 

Toljander et al., 2006; Gebhardt et al., 2007).  

The results of the present study are not exhaustive, but they demonstrated that, in respect to the 

effect of non modifiable features as slope and soil moisture, the coppice age (2 to 48 years) in 

healthy Beeches doesn't have a primary, significant effect on the EM richness and the community 

structure. Unfortunately this is the first research on this topic, and the hypothesis of a long-term 

resilience acquired by an EM community living in old root system subjected to periodical thinning 

should be demonstrated. Moreover the application of the EM community like a index to understand 

the assessment of topsoil properties and the litter dynamic will need further research effort. It will 

be necessary to understand the possibility of a reduction of the organic layers already reported 

(Buckley 1992) and the lack of significant differences about the EM distribution, considering the 

organic and the mineral layers as a probable indirect effect of the coppicing.  

For assessing ecosystem resilience within the context of the global change,  the identification of the 

ecological features determining this “adaptive diversity” in EM communities, will have more and 

more importance (Dahlberg 2001). 

Taking into account the stability of the EM community as a possible indicator of plant health status 

(Wargo 1988; Fellner & Caisovà, 1994; Causin et al., 1996; Montecchio et al., 2004; Mosca et al., 
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2007a), “Short rotation” practices in Beech forests could be considered a sustainable activity, 

according to the new trends in EU energetic policies, aimed to promote the increase of renewable 

energetic resources availability (Cutini 2001). From this point of view, new guidelines could be 

provided for the sylviculture  management. Further investigations to verify if and how a high and 

repeated coppice frequency can drive to irreversible alterations in EM biodiversity are needed.  
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Site 

Last cut 
(year) 

Altitude (m 
a.s.l.) 

Slope 
(degrees) 

Exposure  
(degrees) 

 
Humus 

 
Bedrock 

1 1958 1157 6 116 Dysmull Calcareous 

2 1960 1134 37 166 Amphimull Dolomitic 

3 1985 1165 26 122 Amphimull/Dysmull Dolomitic 

4 2001 1166 16 105 Dysmull Calcareous 

5 1958 1180 5 107 Amphimull/Dysmull Calcareous 

6 1982 1200 17 110 Dysmull Calcareous 

7 2004 1050 14 103 Dysmull Calcareous 

 
Tab. 1: Main features of the 7 investigated stands. 

 
 

 

Anatomotypes and codex Abbr. Freq. A 

(2005, 2006) 
June 2005 October 2005  June 2006 

 MID Fo MID Fo Freq. MID Fo 

(EDM47) An47 21.006 12.826 11.497 -152.25  0.940* 2.569 -17.012 0.790* 

Amphinema sp.  Amphin 1.142 - - -141.375 0.882* - - - 

Boletaceae  Bol1 10.383 - - 30.588 2.604 4.416 -11.255 0.689* 

Boletus sp.  Bolrodo   0.32  109.8  9.840 -152.25 0.940* 0.5 - - 

Byssocorticium atrovirens  Byssatr 90.246  3.653 7.342 5.873 1.876 - - - 

Cenococcum geophilum  Cenoc 498.056  1.140 2.590 1.222 1.307* 245.316  0.849 0.728* 

Cortinarius1 sp.  Cor1 2.137  - - -9.176 0.933* - - - 

Cortinarius bolaris  Corbol 1.983 98.150 4.090 14.565 2.391 14.194 12.002 2.075 

Cortinarius cinnabarinus Corcinn 39.370 5.462 5.433 14.712 1.988 16.122 8.893 1.884 

Cortinarius inochlorus   Corinoc 24.152 12.453 7.610 11.464 1.471 1 - - 

Craterellus sp.  Cratell 17.795  17.227 13.383 - - 10.698 8.233 1.519 

Entoloma sp.  Entol2 15.634 27.967 19.785 - - - - - 

Fagirhiza arachnoidea  Faracnoid - - - - - 5.444 20.538 1.643 

Fagirhiza byssoporoides  Fbyssopo 6.775  - - 1.828 1.027* 4.575 -4.225 0.861* 

Fagirhiza cystidiophora  Fcystid 14.868 11.854 5.271 147.367 3.763 7.213 9.759 1.403* 

Fagirhiza entolomoides Entol1 72.676 10.963 15.826 3.987 1.654 18.471 4.030 1.392* 

Fagirhiza fusca  Ffusca 13.346  14.647 3.115 -3.427 0.808* 10.825 7.262 1.455 

Fagirhiza lanata  Flanata 8.318 182 6.837 14.084 1.553 - - - 

Fagirhiza oleifera  Foleifer 62.116  3.691 6.738 13.786 1.632 4.944 15.549 1.425* 

Fagirhiza pallida  Fpallida 37.613 5.022 6.110 -9.095 0.748* 6.714 26.187 1.183* 

Fagirhiza setifera  Fsetif 64.709  4.498 7.153 6.540 1.620 4.875 38.808 2.085 

Fagirhiza spinulosa Fspinul 9.433 42.645 12.681 -24.333 0.748* - - - 

Fagirhiza stellata  Tom3 9.089  15.245 4.473 -12.484  0.906* 2.75 40.623 1.513 

Fagirhiza vermiculiformis  Fvermi 6.248  23.636 3.690 -23.060 0.773* - - - 

Genea hispidula  Geneah 6.201 62.546 2.913 -8.131 0.786* 23.0583 0.806 0.968* 

Hydnum sp.  Hydnum 470.461 43.590 1075.184 - - 4.650 6.264 1.142* 

Hygrophorus penarius  Hygro2 - - - - - 17.694 12.799 2.459 

Hygrophorus sp.  Hygro1 40.666  7.287 9..326 8.478 1.336* 5.628 -6.266 0.750* 

Inocybe1 sp.  Inoc1 11.994 18.871 4..553 14.631 1.422 - - - 

Laccaria sp.  Lacc 22.523  9.450 6.507 21.166 1.558 10.958 20.253 2.420 

Lactarius acris  Lacacris 14.879 - - 6.257 1.452 4.375  8.491 1.187* 
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Lactarius rubrocinctus  Lrubroci 13.276  - - 20.805 2.748 - - - 

Lactarius sp.  Lacta1 2.592  - - -22.825 0.780* - - - 

Lactarius subdulcis  Lsubdul 61.827  6.657 7..354 10.156 2.739 47.480 3.789 1.960 

Lactarius vellereus  Lvell 482.126 15.061 6.157 10.883 1.584 17.527 42.601 6.093 

Piloderma croceum  Piloder 2.368  20.274 10.507 42.209 3.563 13.444 15.163 2.305 

Ramaria1 sp.  Ram1 47.336 13.801 6..671 4.532 1.712 5.888 6.065 2.066 

Ramaria aurea  Ramaur 5.652  74.224 11.154 -65.827 0.540* - - - 

Ramaria sp. Ram2 - - - - - 1 - - 

Russula illota  Rusill 38.205 49.512 8.480 22.371 2.682 - - - 

Russula mairei  Rusma 23.149 13.411 6.268 14.637 1.872 - - - 

Sebacina2 sp. Seba2 13.842 62.546 2.913 8.633 1.566 0.25 - - 

Sebacinaceae  Seba1 50.418 62.546 2.913 -16.925 0.862* - - - 

Tomentella4 sp. Tom4 10.120 - - 9.578 1.452 - - - 

Tomentella1 sp.  Tom1 3.142 51.824 6.925 - - 0.25 - - 

Tomentella2 sp.  Tom2 2.228 - - -13.386 0.897* 1 - - 

Thelephorales  Tomlo1 - - - - - 2.222 91.490 1.819 

Tricholoma acerbum  Tricacer 22.848 9.191 4.103 7.620 1.425* 1.25 -95.2  0.821* 

Tricholoma sciodes  Tricscio 93.017 18.157 16.615 2.228 1.506 12.325 13.858 2.078 

Tab. 2: AAbsolute abundance(June 2005 and October 2005). MID and test F for each sampling: *test F not 
significant ; p=0.05;  df1= ∞ ; df2= q-1, with q as the number of samples. 

 
 

 
 

Sampling  *Site 7 (14°) Site 4 (16°) Site 6 (17°) Site 3 (26°)  Site 2 (37°) Site 1 (6°)  Site 5 (5°) 

Spatial distribution  SH HSH SH HSH SH HSH SH HSH SH HSH SH HSH SH HSH 

June 2005 - - 2.280 0.485 - - 3.901 0.749 3.559 0.734 3.849 0.750 - - 
October 2005 - - 3.911 0.740 - - 3.759 0.745 4.278 0.798 3.717 0.719 - - 
June 2006 3.523 0.698 - - 2.979 0.585 - - - - - - 3.693 0.745 

Vertical distribution  Site 7 (14°) Site 4 (16°) Site 6 (17°) Site 3 (26°)  Site 2 (37°) Site 1 (6°)  Site 5 (5°) 

October 2006 SH HSH SH HSH SH HSH SH HSH SH HSH SH HSH SH HSH 

O Horizon - - 2.077 2.103 - - 2.813 0.640 2.318 0.458 1.827 0.380 2.659 0.540 

A Horizon - - 0.411 0.437 - - 3.138 0.660 2.127 0.484 1.600 0.364 2.373 0.540 

Tab. 3: Richness, diversity and evenness of the EM community for each sampling: SH= Shannon-Weaver Index; 
HSH=Evenness [chronosequence of the sites with the slope measured with ° (older coppices to younger)]. 

 
 

 Sites  1 2 3 4 5 1 2 3 4 5    

  Soil horizons O O O O O A A A A A MID Fo  

Abbrev Anatomotypes               

An65 EDM65 0 0 0 10 0 0 0 0 7 5 21.142 6.558 * 

An68 EDM68 0 0 7 0 0 0 0 0 0 0 74 74 * 

Bol1 Boletaceae  71 160 73 0 15 4 82 15 0 0 11.273 2.445 * 

Bolrodo Boletus sp.  0 0 0 105 0 0 0 0 55 1 39.901 21.730 * 

Byssatr 
Byssocorticium 
atrovirens  

23 10 9 1 1 0 1 3 9 5 10.273 2.178 * 

Cenoc Cenococcum geophilum  3330 2193 2019 3034 943 1638 1223 742 2714 445 3.778 1.105   

Cor1 Cortinarius1sp.  0 0 34 21 0 0 0 10 17 0 14.884 3.640 * 

Corbol Cortinarius bolaris  34 0 16 2 0 10 37 60 10 0 6.034 1.347 * 
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Corcinn Cortinarius cinnabarinus  36 32 18 0 233 15 43 173 128 113 4.306 1.149   

Corinfr Cortinarius infractus  0 28 1 8 0 0 0 1 89 0 17.976 4.947 * 

Corinoc Cortinarius inochlorus  2 15 48 22 21 3 0 10 17 0 10.081 2.129 * 

Faracnoid Fagirhiza arachnoidea  0 0 23 0 4 0 0 43 5 0 11.116 2.401 * 

Fbyssop Fagirhiza byssoporoides  0 0 18 37 0 0 0 12 1 18 12.034 2.668 * 

Entol1 Fagirhiza entolomoides 0 1 73 199 55 0 56 2 72 10 11.611 2.542 * 

Ffusca Fagirhiza fusca  8 0 0 52 0 3 0 0 14 8 25.033 8.912 * 

Flanata Fagirhiza lanata 3 3 8 3 4 2 1 20 37 4 11.704 2.569 * 

Foleifer Fagirhiza oleifera  0 36 2 23 0 26 0 0 65 3 12.115 2.692 * 

Fpallida Fagirhiza pallida  106 37 6 14 5 0 0 12 16 0 14.124 3.359 * 

Fsetif Fagirhiza setifera  19 0 55 87 0 0 9 71 2 0 9.603 2.014 * 

Fspinul Fagirhiza spinulosa  12 31 0 55 0 16 0 0 41 33 13.665 3.197 * 

Tom21 Fagirhiza stellata  0 80 0 0 7 0 20 66 0 7 11.119 2.402 * 

Geneah Genea hyspidula  8 0 0 18 0 4 6 0 0 0 8.164 1.703 * 

Hygro1 Hygrophorus sp. 86 6 282 66 2 15 12 40 105 7 8.509 1.772 * 

Lacc Laccaria sp. 18 11 0 131 7 0 0 14 106 3 15.920 4.049 * 

Lacris Lactarius acris  140 141 15 0 31 60 44 50 0 13 9.404 1.967 * 

Lpallid Lactarius pallidus  29 101 49 175 100 0 30 26 153 32 4.389 1.157  

Lsubdul Lactarius subdulcis  50 29 118 76 50 0 58 24 112 2 5.883 1.326  

Pezi1 Pezizales  10 13 0 12 0 13 26 0 0 0 10.321 2.190 * 

Ramaurea Ramaria aurea  10 0 0 0 0 0 0 0 0 0 74 74 * 

Ram1 Ramaria sp.  17 4 6 7 87 15 78 19 15 53 7.700 1.615 * 

Ram2 Ramaria sp.  262 0 0 8 0 42 37 1 0 0 17.049 4.528 * 

Rusma Russula mairei  6 25 1 6 3 2 6 14 10 3 19.588 5.733 * 

Seba2 Sebacina2 sp. 21 33 118 45 13 23 4 84 75 0 5.166 1.237  

Seba1 Sebacinaceae1  21 0 0 0 5 0 0 0 0 0 50.092 34.014 * 

Teleph1 Thelephoraceae  0 0 0 0 66 0 0 21 0 0 30.801 13.166 * 

Teleph2 Thelephoraceae  20 20 0 0 0 0 0 0 0 0 19.448 5.662 * 

Tom1 Tomentella1 sp.  44 15 0 0 48 5 21 0 5 3 11.014 2.373 * 

Tom2 Tomentella2 sp.  4 0 26 35 11 0 0 5 0 0 20.104 5.999 * 

Tom5 Tomentella5 sp. 0 2 0 0 0 0 0 0 0 0 74 74 * 

Tricacer Tricholoma acerbum  0 5 2 8 0 23 0 0 5 9 15.578 3.911 * 

Tomlo1 Thelephorales1 0 0 0 4 0 0 0 0 0 0 74 74 * 

Tomlo2 Thelephorales2 48 102 0 8 100 318 0 17 0 0 19.136 5.506 * 

Tricscio Tricholoma sciodes  27 0 0 27 0 13 9 25 8 0 7.128 1.514 * 

Tab. 4: Absolute abundance of the different anatomotypes in the soil horizons, MID and test F: *test F  
significant ; p=0.05;  df1= ∞ ; df2= q-1, with q as the number of samples. 
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Soil 

horizons 
 O A 

Trees Sites Vital Non-vital Vital Non-vital 

a 1 3294 1799 1540 629 

b 1 1171 665 710 289 

a 2 2254 1003 607 303 

b 2 1484 1918 34 40 

a 3 1271 2927 997 1737 

b 3 1756 537 583 739 

a 4 1832 1023 2150 1372 

b 4 2496 1613 1743 701 

a 5 1038 692 473 554 

b 5 773 998 304 378 

Tab. 5: Absolute abundance of the vital and non-vital EM in the vertical distribution in the soil. 
 

 
 

Fungal taxa Best match 
sequence 

1c 2c 3c Sitze 
(pair) 

E value Similarity Accession 
number 

Source(a) 

Amphinema sp.  - x   - - - - - 

Boletaceae1 Boletus aestivalis x 
 

x x ** 3E-73 90% EU444544 UNITE  
UDB000941 

Boletus2 sp.  Boletus rhodoxanthus x x x 661 0.0 99% EU444539 UNITE  
UDB001116 

Byssocorticium 
atrovirens  

- x x x - - - - - 

Cenococcum 
geophilum  

- x x x - - - - - 

Cortinarius  
inochlorus  

Cortinarius 
ionochlorus 

x x x 601 0.0 100% EU444542 UNITE  
UDB002105 

Cortinarius1 sp.  - x  x - - - - - 

Cortinarius bolaris  - x x x - - - - - 

Cortinarius 
cinnabarinus  

- x x x - - - - - 

Craterellus sp. - x x  - - - - - 

Cortinarius infractus  Cortinarius infractus   x 541 0.0 100% EU444553 UNITE 
UDB001161 

EDM47  - x x  - - - - - 

EDM65  - - - - - - - - - 

EDM68  - - - - - - - - - 

Entoloma2 sp.  - x   - - - - - 

Entolomatacea1  
(Fagirhiza 
entolomoides)* 

Entoloma sp. x x x 901 e-168 91% EU444549 UNITE 
 UDB000937 

Fagirhiza 
arachnoidea 

-  x x - - - - - 

Fagirhiza 
byssoporoides *  

Byssoporia terrestris 
fruitbody  

(SR1101 in M) 

 x x 541 - 99% EU444550 - 

Fagirhiza 
cystidiophora  

- x x x - - - - - 

Fagirhiza fusca  - x x x - - - - - 

Fagirhiza lanata  - x  x - - - - - 

Fagirhiza oleifera   - x x x - - - - - 

Fagirhiza pallida  - x x x - - - - - 

Fagirhiza setifera - x x  - - - - - 

Fagirhiza spinulosa   - x  x - - - - - 
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Tomentella3 
(Fagirhiza stellata)  * 

Tomentella 
subtestacea 

x x x 661 0.0 92% EU444548 UNITE  
UDB000034 

Fagirhiza 
vermiculiformis  

- x   - - - - - 

Genea hispidula  - x x x - - - - - 

Hydnum sp.   - x x  - - - - - 

Hygrophorus1 sp.  Hygrophorus sp. x x x ** 8e-75 96%  UNITE  
UDB000556 

Hygrophorus 
penarius *  

Hygrophorus 
penarius 

 x  481 0.0 100% EU444536 UNITE  
UDB000097  

Inocybe1 sp.  - x   - - - - - 

Laccaria  sp.  - x x x - - - - - 

Lactarius acris  - x x x - - - - - 

Lactarius pallidus  - x x x - - - - - 

Lactarius 
rubrocinctus  

- x   - - - - - 

Lactarius1 sp.  - x   - - - - - 

Lactarius subdulcis  - x x x - - - - - 

Lactarius vellereus - x x  - - - - - 

Piloderma croceum - x x  - - - - - 

Ramaria aurea  - x  x - - - - - 

Pezizales1  Peziza sp.    ** 3e-57 91% EU444547 UNITE 
UDB001572 

Ramaria2 sp. -  x x - - - - - 

Ramaria1 sp. Albatrellus critstatus x x x 331 2e-91 98 % EU444537 UNITE 
UDB001761 

Russula illota  - x   - - - - - 

Russula mairei  - x x x - - - - - 

Sebacina2 sp. Uncultured 
ectomycorrhiza 
(Sebacinaceae) 

x x x 541 0.0 95% EU444543 BLAST  
AJ879661 

Sebacinaceae1  Sebacina epigea x  x 541 0.0 94% EU444538 UNITE  
UDB000975 

Thelephoraceae1  - - - - - - - - - 

Thelephoraceae2  - - - - - - - - - 

Thelephorales1  -  x  ** - - EU444545 - 

Thelephorales2  Tomentellopsis 
echinospora 

  x 541 0.0 94% EU444546 UNITE 
UDB000191 

Tomentella1 sp.  Tomentella 
cinerascens 

x x x 481 0.0 99% EU444540 UNITE 
 UDB000232 

Tomentella2 sp.  Tomentella pilosa x x x 601 0.0 97% EU444541 UNITE  
UDB000241 

Tomentella4 sp. - x   - - - - - 

Tomentella5 sp.  - x  x - - - - - 

Tricholoma acerbum  - x  x - - - - - 

Tricholoma sciodes  - x x x - - - - - 

Table 6: EM anatomotypes: anatomical, morphological and molecular identification. (a)  Reference available on 
NCBI (www.ncbi.nih.gov/BLAST) or UNITE (www.unite.ut.ee) websites [*  Description in progress;**  Partial 

sequence available; 1c = first collection (2005); 2c = second collection (2006); 3c = third collection (vertical 
distribution); x = EM presence].
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Fig. 1: CCA joint biplot of the EM fungal community in the 1, 2, 3, 4 stands. Open triangles represent sampling 
position [a, b, c, d= stump; for EM species abbreviation see tabs. 1, 3]. Vectors indicate quantitative parameters 
[Slope; Age = coppice age; Humus = hymus types; for example: 2b = site 2, stump b]. Correlation measured 
["intraset correlations" (ter Braak, 1986)]: to slope with a value of 0.650, to the age with a value of 0.312;  
negative correlations mainly with humus form with a coefficient of -0.706. 
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Variable Axis 1 Axis 2 Axis 3 

1. Age 0.312 - 0.762 0.343 

2. Humus - 0.706 0.318 0.322 

3. Slope 0.650 0.342 0.431 

Tab. 7: Intraset correlations (Ter Braak 1986) Spatial distribution 2005. 

 
Fig. 2: CCA joint biplot derived from the EM fungal  community in the 5, 6, 7 stands. Open triangles represent 
the sampling position [a, b, c, d = stump; for abbreviation see tabs, 1, 3]. Vectors indicate quantitative 
parameters (Slope; Age: coppice age;  see Table 1). 
 
 

Variable Axis 1 Axis 2 Axis 3 

1. Age - 0.890 0.239 0.000 

2. Slope - 0.503 - 0.747 0.000 

 
Tab. 8. Intraset correlations (Ter Braak 1986) Spatial distribution 2006. 
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Fig. 3: DCA joint biplot of the EM fungal community, assembling in the data-set the sampling directions and the 
soil horizons in the 1, 2, 3, 4, 5 sites. Open triangles with different colours represent the sites with different 
bedrock types (for the site feature see tab. 1; for the species abbreviations see tab. 3). The vectors indicate the 
direction of the gradient explained with the following ecological factors: Moist = sample soil moisture; Age = 
coppice age; Humus = humus types; for example: 4aA = site 4, stump a, soil horizon A ].  
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Fig. 4: CCA joint biplot derived from the EM fungal  community in the 1, 2, 3, 4, 5 coppice stands. Open triangles 
represent sampling position [a, b = stump; for abbreviation see tabs. 1, 3]. Vectors indicate quantitative 
parameters [Moist = sample soil moisture; C/N = ratio Corg / Ntot; Humus = humus types; for example: 4aA = site 
4, stump a, soil horizon A ]. Correlation measured ["intraset correlations" (ter Braak, 1986)]: to soil moisture 
with a value of 0.470, to the slope with a value of 0.290, and  to the pH with a coefficient of 0.166;  negative 
correlations mainly with humus form with a coefficient of -0.684, with C/N ratio  (- 0.482),  with altitude (-0.110) 
and age (shoot age, -0.087).  
 

Variable Axis 1 Axis 2 Axis 3 

1.Ae - 0.083 -0.440 0.194 

2. Moist 0.447 -0.262 0.207 

3. C/N -0.458 -0.604 0.446 

4. pH 0.158 0.228 0.110 

5. Humus -0.651 0.551 0.226 

6. Alt -0.l04 -0.064 0.779 

7. Slope 0.276 -0.415 0.401 

Tab. 9. Intraset correlations (Ter Braak 1986) Vertical distribution 2006. 
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A rapid increase of scientific interest in the development and application of ecological indicators in 

the last 40 years, contributed to focus the researches on the measurement of indicator species to 

show similar ecological requirements. Detailed studies also of ectomycorrhizae (EM) of forest sites 

were initiated in the 1990s, in order to extend the results to bioindication. Here we report the 

preliminary investigations on  ecological features of EM species in seven Beech coppices of North 

Italy with different turns. Multivariate analyses (DCA and CCA) were performed to investigate  the 

spatial distribution and  the vertical distribution  to test the correlation of the species distribution 

with the exploration attitude and the hydrophilic or hydrophobic behaviour. The results attested a 

prevailing presence of hydrophilic species and a probably attitude to use the “medium-distance” 

exploration strategy. Interpretations of these correlations are still difficult. Further, similar studies in 

combination with the analysis of soil factors will possibly unravel the complex situation. No clear 

correlation was observed of the putatively ecologically important EM features with the age of the 

coppices.  

 

Introduction 
 
The past 40 years have seen a rapid increase of scientific interest in the development and 

application of ecological indicators. This focus on indicators derives from the need to assess 

ecological conditions to make regulatory, stewardship, sustainability, or biodiversity decisions. 

(Niemi et al., 2004). Environmental indicators should reflect all the elements of the causal chain 
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that link human activities to their ultimate environmental impacts, and the societal responses to 

these impacts (Smeets & Weterings, 1999). Ecosystem disturbance can be natural (e.g., fire, wind, 

and drought) and part of the functional attributes of ecosystems (Noss 1999), or it can be 

anthropogenic like  repeated coppicing. 

Most applications of ecological indicators have focused at the species level due to concerns arising 

from endangered species and species conservation issues (Fleischman et al., 2001). The 

measurement of an indicator species assumes that a single species represents many species with 

similar ecological requirements (Landres et al., 1988). As a consequence, detailed studies of 

ectomycorrhizae (EM) of forest sites were initiated in the 1990s, in order to apply the results to 

bioindication (Al Sayegh Petkovšek 1997; 2004; 2005; Al Sayegh Petkovšek & Kraigher, 2003; 

Erland & Taylor, 2002; Fellner & Peškova, 1995; Kraigher et al., 1996; Kraigher et al., 2006; 

Taylor & Alexander, 2005; Tayloret al., 2000). Many EM features are functionally important and 

they seem to play a particular ecological role: EM mantles could be a shelter against microbial 

attack (Werner et al., 2002) and might be a buffer against rapid loss of water, when the mantle 

hyphae form a gelatinous matrix (Agerer 2006), or they may provide a suitable surface for bacteria 

(Mogge et al., 2000; Schelkle et al., 1996; Timonen et al., 1998) that might be helpful for the 

formation of EM (Garbaye & Dopunnois, 1993) or for fixation of nitrogen (Amaranthus et al. 

1990). Smooth and hydrophilic mantles can directly acquire water and nutrients, while hydrophobic 

EM with well developed rhizomorphs can transport nutrients over distances of several decimetres 

(Kammerbauer et al., 1989; Schramm 1966; Skinner & Bowen, 1974, Unestam 1991; Agerer 2001). 

The species, which possess water repellence properties, seem to prefer highly areated soil in the 

conifer forest soils (Unestam 1991). In contrast to this behaviour, the ecological strategy of the 

hydrophilic EM is not very clear (Unestam 1991; Unestam & Stenström,1989; Stenström 1991). 

These hydrophilic mantles (e.g. many Lactarius species) appear to be a close control over the 

movement and the exchange of material through the mantle (Ashford et al., 1988), and are most 

likely responsible for the uptake of water and nutrients (Cairney & Burke, 1996).  

EM fungi probably control the interface between the soil environment and the host plant: the 

mantles may control the fluxes into and out of the root, the mycelium extending out from the mantle 

surface in the surrounding soil (the extramatrical mycelium) is considered to be the primary site for 

nutrient and water uptake (Taylor & Alexander, 2005). 

Some researches revealed that ectomycorrhizal species differ in their ability to exploit soil nutrients 

developing a range of anatomical structures (Agerer 2001) and this diversity might explain their 

distribution among different ecological niches (Bruns 1995; Dickie et al., 2002; Erland & Taylor,  

2002; Agerer 2006). 

The extension and the structure of this extramatrical mycelium is thought to be different among EM 
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fungal taxa (Agerer 2001; 2006). In this context the proposal to classify the EM fungal species 

according to their “exploration types” (Agerer 2001) by interpreting the anatomical features as 

ecological strategies to colonise the soil, becomes more and more important to understand the role 

of these organisms, appearing as key elements of forest nutrient cycles and strong diversity of forest 

ecosystem processes (Read et al., 2004).  

The mycelium formed hydrophilic structures seems to have substrate particles glued to their surface 

(Raidl 1997). Here we report on preliminary investigations on the ecological features of EM species 

(hydrophobicity and exploration types) in Beech coppices of North Italy.  

 

Experimental design 

The investigations on the spatial distribution were performed in 2005 and 2006 in 7 coeval beech 

[Fagus sylvatica L.] coppices 2- to 48-years-old growing in the Natural Park of Adamello-Brenta 

(Northern Italy; 5.125.228 ÷ 5.125.666 N, 1.654.361 ÷ 1.654.565 E), selected among the most 

productive and exploited in the Trentino-Südtirol Region (beech presence 85-90% Provincia 

Autonoma di Trento, 2001; Sboarina & Cescatti, 2004, climatic conditions tab.1). 

From these, in 2005, 4 sites differing in age of coppicing (coppiced in 1958, 1952, 1980, 2001, 

respectively) and bedrock type (dolomitic, calcareous) were selected and coded 1 to 4. In 2006, in 

order to verify the extendibility of the obtained results, 3 additional comparable stands growing at 

least 5 km far from the firsts were selected and coded 5 to 7 (coppiced in 1958, 1982, 2004, 

respectively).  

In each plot, 4 stumps apparently healthy, undamaged by climatic events, at least 15 m from the 

nearest EM tree, were randomly selected and coded. In June and October 2005 (sites 1÷4) and in 

June 2006 (sites 5÷7), from each stump 12 cylindrical soil cores (18 mm diameter; 15 cm deep) 

were collected (100, 150 and 200 cm from the collar, along N, E, S and W directions) and stored in 

plastic pipes at 4 ±1 °C in the dark. For each core, the humus form was classified according to 

Jabiol et al. (1995).  

In October 2006, investigation were performed on the EM vertical distribution in the sites 1÷5  . 

Soil samples of 2.5 x 2.5 cm were collected up to lowest mineral layer A (including the litter layer). 

The samples were collected at 150 cm from the base (below the canopy projection) and along the 

four cardinal directions. The organic horizon O and the mineral horizon A were accurately 

classified, and each sample was preserved as reported above.  

To investigate the spatial distribution, within 12 days from sampling, 10 rootlets with undamaged and 

fully developed apical tips were randomly chosen from every soil core and carefully cleaned. For 

each rootlet the last apex was distinguished as not vital (NV), vital not-mycorrhizal (NM), and vital 

ectomycorrhizal (EM). For the present analyses, only the vital ectomycorrhizal tips were 
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considered. 

Every EM apex was classified anatomically and morphologically (Goodman et al., 1996; Agerer 

1987-2006; Brand 1991; Agerer & Rambold, 2004-2007), and the ones with uncertain classification 

were submitted to molecular analyses (Gardes & Bruns, 1993; Beenken 2004; Tedersoo et al., 

2006), using 10 mycorrhizal apexes per anatomotype. The hydrophobicity according to Unestam 

(1991)and Agerer (2006) and the exploration types according to Agerer (2001) were also checked.  

DNA extraction, amplification, sequencing and assignation of sequence to taxa were performed 

according to Mosca et al. (2007). Anatomotypes detected with not enough apexes to allow the 

molecular procedure after the morphological one, and the ones which ITS sequence gave uncertain 

results were classified by an alphanumerical code (EDMxx).  

All specimens were preserved in FEA (formaldehyde 40% : ethyl alcohol 50% : acetic acid 100% : 

= 5 : 90 : 5, v/v/v) solution and stored in the TeSAF Departmental herbarium, University of Padova. 

Detrended Correspondence Analysis (DCA; Hill and Gauch, 1980) and Canonical Correspondence 

Analysis (CCA; Hill, 1979) were carried out considering the absolute abundance of EM in each 

sample (comp. Scattolin et al., 2008, total number of tips/soil core). A power transformation (power 

= 0.50, square root) was applied to the data set only for DCA reducing the number of the 

interactions and then applied also to perform the CCA. The 2 types of analyses were performed 

using PC-ORDTM (McCune & Mefford, 1999, version 5 for Windows, MjM, Oregon).  

For the vertical distribution the relative abundance  (Σ EM/cm3 soil volume and Σ NVM/cm3 soil 

volume) were calculated and used in the multivariate analyses. Due to the structure of the data-set, 

data regarding the sampling directions were gathered, as no significant differences were found in 

the EM community for this parameter. 

Relations between the ecological features (the hydrophobicity, according to Unestam 1991 and the 

exploration types according to Agerer 2001) and the species distribution, were tested using the 

Detrended Correspondence Analysis (DCA; Hill & Gauch, 1980) and the Canonical 

Correspondence Analysis (CCA; Hill, 1979), applying a power transformation (power=0.50, square 

root). To quantify the ecological factors we used these values: species hydrophobic =  0; species 

hydrophilic = 1; exploration type = 1: C = contact  type; 2: SD= short distance;  3 : MD sm= 

medium distance smooth; 4 : MD fr= medium distance fringe; 5 : MD mat= medium distance mat; 6 

: LD= long distance; 7: C/SD = between C/SD. To understand the correlation between the factors 

and the species, it is important to follow the vector direction: the values of  the vectors grow with 

the distance from the centroid (i.e. at the end of the vectors it can be found the hydrophilic species 

(value “1” of the first vector)  with a C/SD strategy (value “7” of the second vector). 

Due to the structure of the data-set, obtained from the investigation in the soils (in the year 2006, on 

the 1, 2, 3, 4, 5 sites) which consisted of several plots and rare species with low abundances and 
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only with one dominant species, we assembled the data regarding the sampling directions.  

 

Results and discussion 

The DCA performed on the data-set collected in the year 2005 and 2006 demonstrated no gradients 

in the EM spatial distribution related to the exploration types and the hydrophobicity (data not 

shown). 

But in the CCA results (fig.1) concerning the first collection (June 2005) in the sites S1, S2, S3, S4, 

the species were correlated to the exploration types, while the hydrophilic attitude gave lower 

effects on the EM species distribution (total inertia = 0.4377 ; eigenvalue of the 1st and 2nd axis 

0.058 and 0.002, respectively). The correlation measured on the first axis ["intraset correlations" 

(ter Braak, 1986)] showed that the species distribution was highly correlated with the exploration 

types (0.360), and a low negative correlation was revealed with the hydrophilic attitude ( -0.430). 

The species on the right part of the graphic showed a hydrophilic attitude and mainly a “medium-

distance” exploration type, but it was difficult to find a  real correlation with the site features, 

because they characterized only lowly the calcareous sites (S2, S3 with last cut in the year 1958 and 

in the year 2001 respectively). 

Contrasting results were obtained using the data-set of the second collection (October 2005, in the 

same sites). In the CCA (fig. 2) it is clear that the two ecological features investigated, were not 

well correlated with the species distribution. The total inertia measured was 0.3276; the eigenvalue 

of the 1st and 2nd axis 0.024 and 0.002, respectively. The species distribution is the same of the 

preceding summer: the hydrophobic species were separated from the hydrophilic species, but there 

are no positive correlations with the two mycorrhizal features investigated (- 0.335 for the 

hydrophobicity and – 0.069 for the exploration type). 

In the summer of the year 2006 the situation is very similar to that revealed in the preceding 

summer in the sites S5, S6, S7. The CCA (fig.3) showed a strong positive correlation with 

hydrophobicity behaviour. The total inertia measured was 0.2229 and the eigenvalue of the 1st and 

2nd axis 0.007 and 0.002, respectively. The correlation coefficients were very low: for the 

hydrophobicity it was 0.246, while for the exploration types -0.190. No clear correlation of the EM 

species and the site conditions had been obtained. 

A stronger correlation with the hydrophobicity was obtained with the vertical distribution: the total 

inertia was 0.5571, while the correlation with the hydrophobicity was 0.619 and -0.428 with the 

exploration types. The eigenvalue of the 1st and 2nd axis were 0.057 and 0.010, respectively. 

The EM species distribution seemed to be independent from the shoots age and from the 

environmental conditions measured up to now (results not shown), but more frequently correlated 

to the hydrophilic attitude (figs. 1, 3, 4), although the precipitation decrease was high in the two 
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sampling years (tab. 1). Only in October 2005 the exploration types confirmed a better correlation 

but not very significant with the EM species (fig. 2). Although the correlations with the sites were 

never high, the EM species with hydrophilic attitude and of the “medium-distance” strategy seemed 

to prefer the site S4 and S1 (dolomitic sites). The EM species formed for these reasons “micro-

communities”, that remained always constant. In the different collection times changed only the rate 

of the correlation with the ectomycorrhizal features. Further investigations are also necessary to 

understand whether or not there is a correlation of hydrophobicity/hydrophily and exploration types 

with the vertical distribution of EM species.  

In conclusion, these preliminary results could only attest a prevailing presence of hydrophilic 

species and a probably attitude to use the “medium-distance” exploration strategy, in the soil of 

beech coppices. Interpretations of these correlations are still difficult. Further, similar studies in 

combination with the analysis of soil factors will possibly unravel the complex situation. No clear 

correlation was observed of the putatively ecologically important EM features with the age of the 

coppices.  
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Month Cunevo 2005 Cunevo 2006 

 Tmax Tmin Pmm Tmax Tmin Pmm 

Mai 22.9 9.7 85 29.1 9.4 62.2 

June 26.8 13.6 39.5 26.8 12.5 35 

October 15.6 6.7 139.5 18.1 7.7 50.6 

 
Tab.1: Temperatures and precipitation in the sites  [ISMA (2007); Tmax = Maximum Temperature; Tmin= 
Minimum Temperature; Pmm= precipitation (mm)]. 
 

Fungal taxa Abbrev Exploration types Hydrophobicity 

Amphinema sp. (EDM50)  MD fr hydrophobic 

Boletaceae (EDM51) Bol1 LD hydrophilic 
Boletus sp. (EDM13) Bolrodo  LD hydrophobic 

Byssocorticium atrovirens (EDM17) Byssatr SD hydrophobic 

Cenococcum geophilum (EDM1) Cenoc SD hydrophilic 

Cortinarius  inochlorus (EDM27)  Corinoc MD fr hydrophobic 

Cortinarius (EDM57)sp.  Cor1 MD fr hydrophobic 

Cortinarius bolaris (EDM12) Corbol MD fr hydrophobic 

Cortinarius cinnabarinus (EDM5) Corcinn MD fr hydrophobic 

Cortinarius infractus (EDM62) Corinfr MD fr hydrophobic 

Craterellus sp. (EDM41)  Cratell C/SD hydrophilic 

EDM47  An47 SD hydrophilic 

EDM65  EDM65 MD fr hydrophobic 
EDM68  EDM68 SD hydrophobic 
Entoloma sp. (EDM36) Entol2 MD sm hydrophobic 

Fagirhiza entolomoides (EDM8 )* Entol1 MD sm hydrophilic 

Fagirhiza arachnoidea (EDM61) Faracnoid SD hydrophobic 

Fagirhiza byssoporoides (EDM55)*  Fbyssopo MD sm hydrophobic 

Fagirhiza cystidiophora (EDM33)  Fcystid SD hydrophilic 

Fagirhiza fusca (EDM40) Ffusca SD hydrophilic 

Fagirhiza lanata (EDM29) Flanata MD sm hydrophilic 

Fagirhiza oleifera (EDM2)  Foleifer C/SD hydrophilic 

Fagirhiza pallida (EDM25) Fpallida SD hydrophilic 

Fagirhiza setifera (EDM12) Fsetif SD hydrophilic 

Fagirhiza spinulosa (EDM3)  Fspinul SD hydrophilic 

Fagirhiza stellata (EDM21)* Tom3 MD sm hydrophobic 

Fagirhiza vermiculiformis (EDM42) Fvermi MD sm hydrophilic 

Genea hyspidula (EDM32) Geneah SD hydrophilic 

Hydnum sp. (EDM37)  Hydnum MD fr hydrophobic 

Hygrophorus sp. (EDM26)   Hygro1 C hydrophilic 
Hygrophorus penarius (EDM60 )*  Hygro2 SD hydrophilic 

Inocybe sp. (EDM22) Inoc1 SD hydrophilic 

Laccaria  sp. (EDM23)  Lacc MD sm hydrophilic 

Lactarius acris (EDM56)  Lacacris MD sm hydrophilic 

Lactarius pallidus (EDM6)  Lpallid MD sm hydrophilic 

Lactarius rubrocinctus (EDM53) Lrubroci MD sm hydrophilic 

Lactarius sp. (EDM48)  Lacta1 C hydrophilic 

Lactarius subdulcis (EDM4)  Lsubdul MD sm hydrophilic 

Lactarius vellereus (EDM45)  Lvell MD sm hydrophilic 

Pezizales (EDM 67) Pezi1 SD hydrophilic 
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Piloderma croceum EDM14) Piloder MD fr hydrophobic 

Ramaria aurea (EDM43) Ramaur MD mat hydrophobic 

Ramaria sp.(EDM58) Ram2 MD mat hydrophobic 

Ramaria sp. (EDM10) Ram1 MD mat hydrophobic 

Russula illota (EDM28) Rusill C hydrophobic 

Russula mairei (EDM31) Rusma C hydrophilic 

Sebacina sp.(EDM34) Seba2 SD hydrophilic 

Sebacinaceae (EDM11) Seba1 SD hydrophilic 

Thelephoraceae (EDM63) Teleph1 MD sm hydrophobic 
Thelephoraceae (EDM66) Teleph2 MD sm hydrophobic 
Thelephorales (EDM64) Toml2 MD fr hydrophobic 

Thelephorales (EDM59) Tomlo1 MD fr hydrophobic 

Tomentella  sp. (EDM18)  Tom1 MD fr hydrophobic 

Tomentella  sp. (EDM19) Tom2 MD sm hydrophilic 

Tomentella sp.(EDM46) Tom4 MD sm hydrophilic 

Tomentella sp.(EDM70)  Tom5 SD hydrophilic 
Tricholoma acerbum (EDM24) Tricacer MD fr hydrophobic 

Tricholoma sciodes (EDM39) Tricscio MD fr hydrophobic 

Tab. 2.: Exploration types of the anatomotypes and the relationship with the hydrophobicity [C= contact  type - 
SD= short distance;  MD sm= medium distance smooth; MD fr= medium distance fringe; MD mat= medium 
distance mat; LD= long distance]. 
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Fig.  1: CCA joint biplot of the EM fungal community in the S1, S2, S3, S4 stands in June 2005 (crosses). Open 

triangles represent the EM species. Vectors indicate the ecological features as quantitative parameters: the 

hydrophibicity attitude according to Unestam 1991 and the exploration type i.e. the potential exploration 

strategies in the soil according to Agerer 2001 [Hydroph = hydrophobicity; Expl = Exploration types; see Tab. 2]. 
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Fig.  2: CCA joint biplot of the EM fungal community in the  S1, S2, S3, S4 stands in October 2005. Open 

triangles represent the EM species. Vectors indicate the ecological features as quantitative parameters [Hydroph 

= hydrophibicity; Expl = Exploration types].  
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Fig.  3: CCA joint biplot of the EM fungal community in the S5, S6, S7 stands (crosses). Open triangles represent 

the EM species. Vectors indicate the ecological features as quantitative parameters [Hydroph = hydrophibicity; 

Expl = Exploration types]. 
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Fig.  4: CCA joint biplot of the EM fungal community in the S1, S2, S3, S4, S5 stands. Open triangles represent 

the EM species. Vectors indicate the ecological features as quantitative parameters [Hydroph = hydrophibicity; 

Expl = Exploration type; O, A : soil horizons; f. e. 5O= site S5 O organic horizon]. 
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CHAPTER 5 
 
 
 

“Fagirhiza entolomoides” + Fagus sylvatica (L.) 
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 V.le dell'Università, 16 - 35020 Legnaro (PD) – Italy 
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Garniga Terme (TN)- Italy 
3Organismic Biology: Mycology, Department Biology and GeoBio-CenterLMU, University of 
München, Menzinger Str., 67, D-80638, Germany 
 

 
Short description  
 
The ectomycorrhizae are characterized by very long mycorrhizal systems (up to 7 cm), with 

sinuous or tortuous, woolly, brownish pink mycorrhizal tips when younger, whitish or 

colourless when older. The root is frequently shining through the mantle. The outer mantle is 

loosely plectenchymatous with very wide hyphae of (5)6-(8) µm diam. that are arranged in 

parallel bundles and possess clamps. The middle mantle is similar to the other, with broad 

streaks of parallel hyphae of 5-7 µm diam. The inner mantle has also broad streaks of parallel 

hyphae, but they are with  4-5 µm diam. slightly thinner. Rhizomorphs are undifferentiated, 

very frequent, compact and are formed as stout, short, conical structures, (2)5-12(65) µm 

wide, rarely up to 90 µm. Sometimes a loose gelatinous matrix is visible on the surface of the 

outer mantle and on the rhizomorphs. The Hartig net is not uniform and is similar to that of 

other typical ectomycorrhizal species of the genus Entoloma. In particular as it is patchily 

distributed, but it is paraepidermal where present. 

 

Morphological characters (Figs. 1): Mycorrhizal systems irregular monopodial-pyramidal, up to 

70 mm long; with lots of stout rhizomorphs appearing as short, slenderly conical 

structures,hydrophilic, smooth subtype of medium-distance exploration type. - Main axes up to 0.5-

1 mm diam., tortuous and sinuous. - Unramified ends (0.5)4(5) mm long and 0.25 mm diam., not 

inflated, cylindric or tapering, whitish-pink due to root colour, brownish-pink when younger; 

distinct mantle surface visible, with semi-transparent mantle when older; cortical cells visible 

through older tips, not carbonizing, dots, cystidia and emanating hyphae lacking. - Surface of 
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unramified ends loosely stringy, densely or loosely woolly. – Rhizomorphs not differentiated, 

frequent, round or nearly so in cross-section, concolorous to the mantle, colourless, pinkish white, 

connection to the mantle distinct (Fig.1), distribution not specific; margin of rhizomorphs smooth. 

Lacking are nodia. – Sclerotia not found. 

 

Anatomical characters of mantle in plan views: Lacking are cells densely filled with oily 

droplets or cells homogeneously filled with brownish contents, blue granules, needle-like contents, 

drops of exuded pigment. - Outer mantle layers (Fig. 2a): plectenchymatous, hyphae arranged in 

parallel bundles, but no special pattern discernible (mantle type B, according to according to 

AGERER 1991, 1995, AGERER 1987-2006, AGERER & RAMBOLD 2004-2007); hyphae cylindric and 

constricted at septa or slightly inflated at middle portions, (5)6(8) µm diam., cells (11)35-60(70) µm 

long, smooth, with clamps, hyphae colourless or membranaceously slightly yellowish, walls  0.1-

0,5 µm thick, septa as thick than walls; a slightly gelatinous matrix present . - Middle mantle layers 

(Fig. 3a): plectenchymatous, with broad streaks of parallel hyphae; cells colourless, smooth, 5-7 µm 

diam., matrix lacking, cell walls up to 0.1-0.5 µm; anastomoses infrequent, open. - Inner mantle 

layers (Fig. 3b): plectenchymatous with broad streaks of parallel hyphae, hyphae 4-5 µm diam., 

hyphal portions (1)3-4(5) µm long, cell walls up to 0.1-0.5 µm, matrix lacking.  

 

Anatomical characters of emanating elements (Figs. 4): Lacking are gelatinized hyphae, drops of 

exuded pigment, and in IC strongly light reflecting crystals, internal nodia, and conical structures. - 

Rhizomorphs (Figs. 4) (2)5-12(65) µm diam., exceptionally up to 90 µm, undifferentiated, type A/B 

(according to AGERER 1991, 1995, AGERER 1987-2006, AGERER & RAMBOLD 2004-2007, AGERER 

& I OSIFIDOU 2004), hyphae of uniform diam., or slightly inflated at septum; central hyphae 2-4 µm 

diam., cell walls 0.2-0.5 µm, pores indistinct, septa with the same thickness as walls; cells 5-60 µm 

long, colourless or membranaceously yellowish; sometimes surface covered by a slightly gelatinous 

matrix, infrequently ramified (Fig. 2b). - Emanating hyphae not observed. – Cystidia not observed. 

- Chlamydospores not observed. 

 

Anatomical characters, longitudinal section: Mantle (30)40-70(100) µm wide, at very tip 25-70 

µm, plectenchymatous, different layers not discernible, but at points of the connection to 

rhizomorphs regular organization lacking; hyphae of the unlayered mantle tangentially (3)20-30(40) 

µm, radially (3)4-7(8) µm. - Tannin cells lacking, with calyptra cells. – Epidermal cells with Hartig 

net paraepidermal, not homogeneously distributed over the section, in part nest-like, i.e. only a few 

neighbouring epidermal cells with Hartig net present, cells rectangular or tangentially-oval to –
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elliptic, oriented parallel to the root, tangentially (40)60-80(140) µm, radially (15)20-30(35) µm. - 

ECt = 68, ECq = 2,9. - Hartig net in section hyphal cells roundish to cylindrical, in one row, (2)3-

4(6) µm thick; haustoria lacking. Hartig net in plan view a slightly ramified palmetti-type without 

septa, infrequently lobed, often only hypha-like and clamps visible, lobes (1.5)2-3(4) µm, broad.  

 

Colour reaction with different reagents: Mantle and rhizomorph preparations: KOH 10%: n. r. 

(no reaction); cotton blue: slightly bluish; ethanol 70%: n. r.; FEA: n .r.; iron (II) sulphate: slightly 

bluish; lactic acid: n. r.; Melzer's reagent: n.r.; sulpho-vanillin: mantle and rhizomorphs slightly 

reddish.  

 

Autofluorescence: Whole mycorrhiza: UV 254 nm: lacking; UV 366 nm: lacking. - Mantle in 

section: UV-filter 340-380 nm: very slightly bluish; blue-filter 450-490nm: very slightly yellowish; 

green filter 530-560 nm: very slightly reddish. – Rhizomorph in section: UV-filter 340-380 nm: 

slightly bluish, margin stronger; blue filter 450-490 nm: slightly yellowish, margin stronger; green-

filter 530-560 nm: n. r. 

 

Reference specimen: Italy, province Trient (Trentino-Alto Adige Region), Val di Non, district 

Denno (46°14’ N; 10°57’ E), beech coppice, more frequent in organic layers, 5.06.2005, myc. isol 

E. Di Marino, EDM 8 in FEA (in PD). – Additional specimens examined: Italy, province Trient 

(Trentino-Alto Adige Region), Val di Non, district Denno (46°14’ N; 10°57’ E), beech coppices, 

1050-1200 m a.s.l., June 2005, EDM 8a in FEA (in PD), October 2005 EDM 8b in FEA (in PD), 

May/June 2006, EDM 8c in FEA (in PD). – Soil conditions for all collections: mesic or xeric, pH of 

the soil 6-6.6, Ntot 6,7-15,9, C/N 17-18, Corg 111-279g/Kg; in mineral layers pH 5.2-6.5, Ntot 11,5-

26,3, Corg 259-434 g/Kg, C/N 16-19. 

 

DNA analyses: DNA-analyses, sequence evaluation and alignment were performed (EDM 8c) 

according to Tedersoo et al. (2006), best match in Unite 91% with UDB000937 Entoloma sp., 97% 

in NCBI BLASTn search in GenBank Uncultured ectomycorrhiza (Entolomataceae) AJ938003 18S 

rRNA gene (partial), 5.8S rRNA gene, 28S rRNA gene (partial), ITS1 and ITS2. Similarity of 86% 

with Entoloma sinuatum isolate AFTOL-ID 524 DQ486700 internal transcribed spacer 1, 5.8S 

ribosomal RNA gene, and internal transcribed spacer 2, complete sequence, and query coverage of 

95%. GenBank Accession number EU444549. 
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Discussion: 

This unidentified ectomycorrhiza is very similar to that of E. nitidum on Carpinus betulus 

(MONTECCHIO et al. 2006), as both are characterized by stout, conical rhizomorph-like structures on 

the surface of the mantle with no specific origin, and by epidermal cells that are visible through the 

mantle. The very long and loosely branched systems are also characteristic for both species and are 

exceptional for ectomycorrhizal systems (Agerer & Rambold 2004-2007). We therefore conclude 

that F. entolomoides is very likely formed by a species of the genus Entoloma. Differences between 

the two species regard the absence of a matrix and the occurrence of thicker cell walls in mantles 

and of thinner rhizomorphs in Entoloma nitidum. In addition, the hyphal orientation in the inner 

mantle layers of E. nitidum ectomycorrhizae is irregular or parallel, whereas in F. entolomoides it is 

always in parallel. Entoloma sinuatum on Salix (AGERER 1997; 1998) forms plectenchymatous 

middle mantle layers intermixed with pseudoparenchymatous portions, what is unknown in E. 

nitidum and F. entolomoides. Stout, conical rhizomorph-like structures are lacking in E. sinuatum, 

whereas undifferentiated rhizomorphs occur instead, accompanied by many emanating hyphae. The 

Hartig net of E. sinuatum is patchy, too, as in F. entolomoides. A matrix is only rarely visible on the 

rhizomorphs or on the mantle surface of F. entolomoides, as compared to E. sinuatum (AGERER 

1997). 

Other species, Entoloma alpicola (J. Favre) Bon & Jamoni  (GRAF & BRUNNER 1996), E. erophilum 

(Fr.) P. Karst. (ZEROVA &  ROZHENKO 1966), E. rhodopolium(Fr.) P. Karst. (MODESS 1941), and E. 

sericeum (Bull.) Quél. (ANTIBUS et al. 1981) are too briefly characterized for a comparison to the 

above mentioned ectomycorrhizae. 

A very peculiar situation is the parasitic behaviour of Entoloma clypeatum f. hybridum on Rosa 

multiflora (KOBAYASHI &  HATANO 2001) and of Entoloma saepium (Noulet & Dass) Richon & 

Roze on Rosa sp. and Prunus sp. (AGERER & WALLER 1993, AGERER 2006) that digests the root 

meristem. At least morphologically this mycorrhiza is very similar to that of Entoloma clypeatum 

on Prunus cerasus (ANDRUSZEWSKA &  DOMINIK  1971). 

In conclusion, the main features of F. entolomoides are similar to those reported for other species 

that belong to the genus Entoloma. But DNA-sequencing confirms only a similarity of of 91% and 

97% by BLASTn search in UNITE and in GenBank, respectively. This is the first description of an 

ectomycorrhiza of the genus Entoloma on Fagus (DE ROMAN et al. 2005; AGERER &  RAMBOLD  

2004-2007).  
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Captions: Figs. 1. - a, b, c. Habit. - Fig. 2 - a. Plan view of outer mantle layer. – b. Older conical 

rhizomorph-like structures with ramification. - Fig. 3 - a. Middle mantle layer with broad streaks of 

parallel hyphae, open anastomosis (asterisk) and clamps. –b. Inner mantle layer with broad streaks 

of parallel hyphae. - Fig. 4. Differently thick conical rhizomorph-like structures; ‘a’ in surface view 

(above) and optical section (below). - Fig. 5. Connection point of conical rhizomorph-like 

structures to the outer mantle where the hyphal structure is ring-like. All figs. from EDM 8a ( in 

PD). 
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Figs. 1a, 1b, 1c. 
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Figs. 2a, 2b. 
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Figs. 3a, 3b. 
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Figs. 4a, 4b. 
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Short description  
 
The ectomycorrhizae are irregularly pinnate or irregularly dichotomous, whitish greyish, 

when young loosely cottony, with a deep blue bruising reaction on the surface of rhizomorphs 

and mantle. When older, the blue zone becomes more distinct, and the ectomycorrhiza is 

woollier. The diagnostic characteristics are a plectenchymatous mantle with a very thick 

gelatinous matrix, octahedral crystals on the surface, and infrequent staghorn-shaped hyphae 

on the mantle surface. Rhizomorphs show a typical differentiation with closely packed, 

straight, parallel hyphae in the centre with infrequent clamps and a thin matrix, sheathed by 

a thin layer of narrow, entwining, thin-walled, rarely simple septate, clamp-less hyphae with a 

slightly gelatinous layer that occur together with some very infrequently branched hyphae;  

outer portions of the rhizomorphs with irregular cr ystals. The main features of this ecto-

mycorrhiza are similar to those reported for ectomycorrhizae of the genus Byssoporia. 

 
 

Morphological characters (Figs. 1): Mycorrhizal systems with 2-3 orders of ramification, (2)5-

14(18) side-branches per cm; hydrophobic, smooth subtype of medium-distance exploration type. - 

Main axes up to 8 mm long and 0.5 mm diam. - Unramified ends up to 1.7(2) mm long and 0.25 

mm diam., not inflated, straight and rarely bent, cylindric, with rounded tips, and with a constricted 

bluish base, whitish greyish with bluish spots; older parts more distinctly blue in patches. – Surface 

of unramified ends loosely cottony or woolly, very tip loosely cottony, with few emanating hyphae. 

– Rhizomorphs abundant in older mycorrhizal systems, whitish, quite compact, frequently and 

repeatedly branched, with hairy to woolly surface, originating at the very base of mycorrhizal 
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systems and at the very tips, connecting different systems; round in cross-section, turning bluish-

violet; concolourous to the mantle; distinct connection with the mantle. – Sclerotia not observed.  

 

Anatomical characters of mantle in plan views (Figs. 2, 5b): Cells without contents and hyphae 

without clamps. - Mantle surface with a thin to very thick gelatinous matrix between hyphae, with 

crystals; crystals octahedral to bipyramidal or acicular, regularly shaped crystals (2)4-7(8) µm, 

acicular crystals (2)4-11(13) µm long, with irregularly shaped, multiply branched cystidia-like 

hyphae of 1.5-3 µm diam., 15-20 µm long, without septa. - Outer mantle layers (Figs. 2) 

plectenchymatous, with slightly ring-like pattern and gelatinous, sometimes very thick matrix 

(mantle type A/C, according to AGERER 1991, 1995, AGERER 1987-2006, AGERER & RAMBOLD  

2004-2007); hyphae cylindric, not constricted at septa, irregularly shaped; simple septate; angles 

between hyphal junctions ca. 90-120°, membranaceously and plasmatically bluish due to bruising 

reaction, otherwise colourless, smooth, cell walls 0.2-0.5 µm; cells (2)4-5(6) µm diam., 20-25 µm 

long. - Middle mantle layers (Fig. 3a) plectenchymatous, slightly ring- to star-like, with infrequent 

simple septa, membranaceously and plasmatically bluish-violet due to bruising reaction, otherwise 

colourless, cell walls 0.2-0.5 µm, smooth, cells (2)3-5(8) µm diam., 15-20 µm long; with (2)4-5(8) 

µm large crystals. - Inner mantle layers (Fig. 3b) plectenchymatous, with occasionally ring-like 

arranged hyphae and gelatinous matrix, bruising reaction visible, too; all hyphae irregularly shaped, 

with infrequent simple septa, cells 3-4 µm., distance of hyphal septa 2.5-3.5 µm. 

 

Anatomical characters of emanating elements (Figs. 4, 5a, 6, 7): Lacking are gelatinized hyphae, 

ampullate hyphae, drops of secreted pigment, and in IC strongly light reflecting crystals, nodia and 

conical structures on rhizomorphs; cell walls smooth. - Rhizomorphs (Figs. 4, 5a, 6, 7) of type C 

(AGERER 1991, 1995, AGERER 1987-2006, AGERER & RAMBOLD 2004-2007; AGERER 1999; 

AGERER & IOSIFIDOU 2004), (20) 40-70(100)µm diam.; when young undifferentiated (Fig. 4), with 

open anastomoses, without clamps, cells of the peripheral hyphae occasionally irregularly shaped; 

thicker rhizomorphs covered with thin peripheral hyphae (Fig. 5a, 6,7), density increasing with 

thickness of rhizomorphs, below them with small irregularly shaped crystals; peripheral hyphae 2-3 

µm diam., some of them ramified and of cystidia-like shape, without clamps, rarely with simple 

septa, with slightly gelatinous surface, central hyphae somewhat enlarged with a slight gelatinous 

matrix, weakly inflated at the septa, with infrequent clamps, simple septa abundant, distance of 

septa (8)15-40 µm, cell walls 0.2-0.5 µm. - Emanating hyphae not frequent, tortuous, few 

irregularly branched, with slightly gelatinous surface, similar to those on mantle and rhizomorph 

surface, with simple septa, 2-2.5 µm diam. – Chlamydospores not observed. 
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Anatomical characters, longitudinal section: Mantle compressed and thin, 10-30 µm wide, very 

tips with 10(15)-20 µm thick mantle, twisted tips very frequent; different layers discernible; outer, 

middle and inner mantle layers plectenchymatous; outer mantle layer hyphae tangentially 2-4 µm 

and radially (8)10-12(15) µm; middle mantle layer hyphae tangentially 3-4 µm and radially (8)10-

12(15) µm, inner mantle layer hyphae tangentially 3-5 µm and radially 3-4 µm. – Tannin cells 

lacking. - Epidermal cells rectangular, tangentially (30)35-40(50) µm and radially (10)12-20(25) 

µm; ECt = 38, ECq = 0,4. - Hartig net in section paraepidermal; Hartig net in plan view of palmetti-

type, lobes without septa, lobes 1-2 µm broad. 

 

Colour reaction with different reagents: Mantle and rhizomorph preparations: cotton blue: 

slightly bluish; ethanol 70%: n.r.; FEA: n.r.; iron(II)sulphate: crystals dissolving; KOH 15%: deep 

blue pigment disappearing; lactic acid: blue pigment dissolving , crystals slowly dissolving; 

Melzer's reagent: n.r.; sulpho-vanillin: n.r., but mantle and rhizomorphs slightly rosy or reddish. 

 

 

Autofluorescence: Whole mycorrhiza: UV 254 nm: lacking; UV 366 nm: lacking; -Mantle in 

section: UV-filter 340-380 nm: bluish; blue-filter 450-490nm: yellowish; green filter 530-560 nm: 

reddish. – Rhizomorph in section: UV-filter 340-380 nm: slightly bluish, margin stronger; blue filter 

450-490 nm: slightly yellowish, margin stronger; green-filter 530-560 nm: slightly red. 

 

Reference specimen for  ectomycorrhiza: Italy, province Trient (Trentino-Alto Adige Region), Val 

di Non, district Denno (46°14’ N; 10°57’ E), beech coppice, 1050-1200 m a.s.l.; myc. isol E. Di 

Marino, 20.10.2005, EDM 55 in FAA in PD. – Additional specimens examined: Italy, province 

Trient (Trentino-Alto Adige Region), Val di Non, district Denno (46°14’ N; 10°57’ E), beech 

coppices of different ages, 1050-1200 m a.s.l.; myc. isol E. Di Marino, 20.10.2005, EDM 55a in 

FAA in PD. – Soil conditions for all collections: more frequent in mineral layers, mesic or xeric, pH 

of the soil 5,1-6,7, Ntot 3,8-15,6, C/N 15-18, Corg 61-241 g/Kg; in organic layers pH 4.2-5.6, Ntot 20-

22.6, Corg 361-392 g/Kg, C/N 17-18.  

 

DNA analyses: From the mycorrhizal root tips of F. byssoporioides obtained DNA was amplified 

and sequenced using the primers ITS1-F and ITS4. The applied methods of DNA extraction, PCR, 

and sequencing follow TEDERSOO et al. (2006). The PCR product of the targeted nuclear ITS rDNA 

(complete sequence of internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal 

transcribed spacer 2, flanked by partial sequences of 18S and 28S ribosomal RNA genes) has a size 

of 594bp. The GenBank accession number of F. byssoporioides ECM is EU444550. 
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A BlastN search was performed in GenBank using the sequence of the F. byssoporioides ECM as 

query. The retrieved matches had a maximum sequence identity of 87% at best. The best matches 

belong to samples of unidentified ectomycorrhizal fungi representing members of Leucogastra-

ceae, Albatrellaceae, and Agaricaceae as well as several isolates of Leucophleps spinispora. In the 

context of anatomy based similarities to Byssoporia the F. byssoporioides ECM sequence was 

compared to an unpublished ITS sequence (complete sequence of internal transcribed spacer 1 and 

5.8S ribosomal RNA gene, partial sequence of internal transcribed spacer 2; flanked by partial 

sequence of the 28S ribosomal RNA gene) with a length of 553bp. The latter sequence was 

generated from a Byssoporia terrestris fruitbody on Picea abies from Germany (SR 1101, in herb. 

S. Raidl) the associated ECM of which has been described by SCATTOLIN et al. (2006). Both 

sequences are nearly identical showing one differing base in the internal spacer region 1. 

Additionally, the BlastN search in GenBank using the F. byssoporioides ECM sequence as query retrieved 

the sequence from a B. terrestris fruitbody from Sweden (Hjm 18172, in herb. GB; accession 

number EU118608, see LARSSON 2007) with an identity value of 84% (query coverage 100%). The 

only Byssoporia sequence (UDB001766) deposited in UNITE (see Kõljalg et al. 2005) was generated 

from the same voucher specimen of B. terrestris. It includes the partial sequence of the 5.8S 

ribosomal RNA gene and the complete sequence of internal transcribed spacer 2 that compared with 

the covered part of the Fagirhiza byssoporioides ECM sequence produced an identity value of 91%.  

 

Discussion: This ectomycorrhiza on Fagus sylvatica is likely formed by a member of the genus 

Byssoporia, because of the peculiar anatomical features of the rhizomorphs, with a cover of 

peripheral, twisted hyphae. Up to now ectomycorrhizae of Byssoporia species were described only 

from gymnosperms (DE ROMAN et al. 2005). Five different varieties of Byssoporia terrestris + 

Pseudotsuga menziesii have been illustrated and described by ZAK (1969) and ZAK  & L ARSEN 

(1978). These five varieties are suggested to belong to three different species due to the diversity of 

peripheral hyphae (AGERER 2006). According to the description of the ectomycorrhizae of the 

different varieties of Byssoporia terrestris (ZAK 1969, ZAK & L ARSEN 1978), B. terrestris var. 

sublutea M.J. Larsen & Zak is the closest to Fagirhiza byssoporioides, as in both ectomycorrhizae 

the rhizomorphs are covered by strongly twisted, even corkscrew-like peripheral hyphae. Contrary 

to that variety, but, similarly to B. terrestris var. sartoryi (Bourdot & L. Maire) M.J. Larsen & Zak 

and B. terrestris var. lilacinorosea M.J. Larsen & Zak, F. byssoporioides reveals some staghorn-

like hyphae on the mantle surface and between the twisted peripheral rhizomorph hyphae. They do 

not form, however, a homogeneous cover as in the latter varieties. The ectomycorrhizae of B. 

terrestris described by SCATTOLIN et al. (2006) that could not be identified to variety-level, form 

typical cork-screw-like peripheral rhizomorph hyphae, more distinctly twisted than in F. 
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byssoporioides, have clamps and lack ramified peripheral hyphae. Both, however, turn blue after 

bruising. In addition, the outer mantle layers differ completely. That of B. terrestris sensu SCATTO-

LIN et al. (2006) is formed by mostly normal hyphae with some irregularly shaped hyphal struc-

tures, whereas the mantle of F. byssoporioides is exceptionally irregularly shaped with multiply 

branched cystidia-like hyphae. Regarding these anatomical differences the ECM of B. terrestris on 

Picea abies described by SCATTOLIN et al. (2006) and F. byssoporioides very likely represent 

different taxa although the ITS sequences generated from a B. terrestris fruitbody (DI MARINO 

unpublished) that was associated with its ectomycorrhizae on Picea abies (SCATTOLIN et al. 2006) 

and F. byssoporioides are nearly identical. Another reason for the – preliminary – classification of 

the ECM as a Fagirhiza is the extreme difference between the sequences from fruitbodies identified 

as B. terrestris in SCATTOLIN et al. (2006) (>99% sequence identity with F. byssoporioides) and 

LARSSON (2007) (84% sequence identity with F. byssoporioides), respectively. This discrepancy 

and the still very limited knowledge about relationships and taxonomy of Byssoporia accentuate the 

need for further detailed studies of this group. 

Apart from our collection, a bluish bruising reaction is only known from B. terrestris (SCATTOLIN et 

al. 2006), and B. terrestris var. satoryi (ZAK 1969). The rhizomorphs of B. terrestris var. satoryi are 

completely covered by typical staghorn-shaped hyphae, whereas in F. byssoporioides only a few 

peripheral hyphae are scarcely ramified and intermixed between the twisted hyphae. It can therefore 

be concluded, that F. byssoporioides is distinct from all hitherto characterized ecto-mycorrhizae of 

the genus Byssoporia. Crystals on rhizomorphs and mantles are not reported for either 

ectomycorrhiza, but ZAK (1969) and ZAK & L ARSEN (1978) reported on encrusted central and 

peripheral hyphae.  

The phenomenon of bluing, not necessarily a bruising reaction, as found in the genus Byssoporia is 

well known from some ectomycorrhizae of Boletales (AGERER 2006; AGERER &  RAMBOLD 2004-

2007): Alpova diplophleus (Zeller & Dodge) Trappe & Smith (MILLER et al. 1988, WIEDMER et al. 

2001), Chamonixia caespitosa Rolland (RAIDL  1999), and three Leccinum ectomycorrhizae 

described by MÜLLER &  AGERER (1990): L. hopolus (Rostk.) Watling, L. scabrum (Bull.: Fr.) S.F. 

Gray and L. variicolor Watling). However, Byssoporia ectomycorrhizae do not form highly 

differentiated rhizomorphs with central vessel hyphae (type F, according to AGERER 1987-2006) 

that are the main common feature of all ectomycorrhizae of the Boletales ss. Agerer (AGERER 1999, 

2006, AGERER &  IOSIFIDOU 2004). 
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Captions: Fig. 1. Habit. – Fig. 2. Outer mantle layer with ring-like arranged hyphae and with a 

gelatinous matrix between the hyphae and a thick gelatinous layer on the surface (shown only 

below) with bipyramidal to octahedral crystals. – Fig. 3 – a. Middle mantle layer, with a slight 

gelatinous matrix and occasionally ring- to star-like arranged hyphae. – b. Inner mantle layer with 

ring-like arranged hyphae and with a distinct gelatinous matrix. - Fig. 4. Thin, probably young 

rhizomorph composed of loosely packed hyphae; upper and more differentiated portion with 

crystals and a few peripheral hyphae; the dotted hypha represents the bluish colour after bruising, 

the asterisk an open anastomosis. – Fig. 5 – a. Rhizomorph in a middle developmental stage; 

central, densely arranged hyphae with irregularly shaped crystals and twisted peripheral hyphae, 

some of them scarcely ramified. -b. Surface of the mantle with staghorn-shaped, cystidia-like 

hyphae. – Fig. 6. Rhizomorph in a middle developmental stage; in optical section of the center, 

densely arranged hyphae, occasionally with clamps, with twisted peripheral hyphae, some of them 

scarcely ramified (asterisk). – Fig. 7. Plan view of a thick rhizomorph with distinctly twisted 

hyphae, some remind of a cork-screw; crystals below the peripheral hyphae visible. All figs. from 

EDM 55 (in PD). 
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“ Fagirhiza stellata” + Fagus sylvatica (L.) 
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Terme (TN)- Italy 
3Organismic Biology: Mycology, Department Biology and GeoBio-CenterLMU, University of 
München, Menzinger Str., 67, D-80638, Germany 
 

Short description  

 

The ectomycorrhizae are dark reddish-brown to blackish; older parts dark-brown to black ,at 

maturity, and where air included, with golden tint , monopodial-pyramidal. The mantle is 

pseudoparenchymatous, with ring- to star-like arrangement on the surface. The middle 

mantle layer is plectenchymatous, while the inner mantle is transitional between 

pseudoparenchymatous and plectenchymatous. Rhizomorphs dark brown, surface covered by 

irregularly shaped, repeatedly ramified, densely entwining thin, rarely septate peripheral 

hyphae, membranaceously brownish to yellowish, smooth; thinner rhizomorphs lack such 

hyphae or are only patchily coverered, hyphae with clamps, membranaceously brownish to 

yellowish. Nodia and conical structures at points of ramification present, slightly 

differentiated, with infrequent, homogeneously brownish filled hyphae . Cystidia are lacking. 

The peculiar characteristics, similar to those reported for some ectomycorrhizae of the genus 

Tomentella, are the net of hyphae on the mantle surface, consisting of stars connected by 

single hyphae or thin hyphal bundles, and the thelephoroid rhizomorphs.  

 

Morphological characters (Fig.1a): Mycorrhizal systems abundant, dense and compactly arranged, 

monopodial-pyramidal, medium distance exploration type of the smooth subtype. - Main axes 6 mm 

long and 0.4 mm diam., straight, up to 2 orders of ramification, with 3-4 side-branches per 10 mm. - 

Unramified ends up to1.5 mm long and 0.2- 0.3 mm diam., not inflated, cylindric, bent to tortuous. - 

Surface of unramified ends  dark reddish-brown to blackish; older parts dark-brown to black, very 
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tips reddish brown to blackish , with distinct mantle surface, covered by soil particles; cortical cells 

not visible and mantle not transparent; mycorrhizal surface loosely cottony, hydrophobic, silvery at 

patches with slightly golden tint. – Rhizomorphs round in cross-section, originating proximally; 

concolourous to the mantle, brown or dark brown, connection to the mantle distinct; margin of 

rhizomorphs smooth; frequently ramified at restricted points.-  – Sclerotia not observed. 

 

Anatomical characters of mantle in plan views: Lacking are cells densely filled with oily 

droplets, blue granules, needle-like contents, drops of exuded pigment, cell wall projections in 

pseudoparenchymatous cells. – Outer mantle layers (Figs. 2a, 3, 4) pseudoparenchymatous, with 

ring-like arranged hyphal bundles on the surface (often rather star-like; mantle type P, according to 

AGERER 1991, 1995, AGERER 1987-2006, AGERER & RAMBOLD  2004-2007); hyphae of the surface 

net cylindric, not constricted at septa, 1,5-4 µm wide, distance of septa 10-35 µm, with infrequent 

clamps; angles between hyphal junctions in the net ca. 45° and less up to 120°, membranaceously 

yellowish to brownish, smooth, cells walls 0.1- 0.5 µm thick; cells of the pseudoparenchymatous 

outer mantle layer (5)7-10(15) µm diam., (4)10-15(30) µm long, number of cells in a square of 

20x20 µm (15)17-20 (32); stars in plan view 15-30 µm in diam. Slight gelatinous matrix present 

only on the stars’ surface. Below the stars, the mantle presents epidermoid cells, (3)5-10 µm long, 

(4)5-7(10) µm diam. (Figs.5a, 5b) - Middle mantle layers (Fig. 1b) pseudoparenchymatous, 

membranaceously yellowish to brownish, cells 5-7(11) µm diam., (6)15(18) µm long, cell walls 0.2-

0.5 µm wide, smooth, gelatinous matrix is lacking; (13)16-23(29) cellsin a square of 20x20 µm. - 

Inner mantle layers (Fig. 2b) transitional between plectenchymatous and pseudoparenchymatous, 

membranaceously yellowish to brownish, cells (3)5-13(18) µm diam., (4)8-10(28) µm long, 

gelatinous matrix is lacking. 

 

Anatomical characters of emanating elements: Lacking are a gelatinous matrix, gelatinized 

hyphae, ampullate hyphae, drops of secreted pigment, in IC strongly light reflecting crystals, and 

intrahyphal hyphae. - Rhizomorphs (Figs. 6a,b, 7) of type C (6)15-25(35) µm diam, cells 

homogeneously filled with brownish contents rarely present, 2-3 µm wide, with clamps; 

rhizomorphs with nodia and conical structures at points of ramification, slightly differentiated, 

(AGERER 1991, 1995, AGERER 1987-2006, AGERER &  RAMBOLD  2004-2007; thelephoroid, AGERER 

1999; AGERER & IOSIFIDOU 2004), terminated very rarely by a single hypha; surface covered by 

irregularly shaped, repeatedly ramified, densely entwining thin, rarely septate, smooth hyphae, 

hyphae 1-2 µm wide; membranaceously brownish to yellowish, smooth, thinner rhizomorphs (up to 

30 µm) such hyphae lacking or covered only patchily; internal central hyphae (1)2-3(4) µm diam., 

walls 0.2- 0.5 µm wide, membranaceously brownish to yellowish, with clamps. - Emanating hyphae 
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not observed. – Cystidia not observed. - Chlamydospores not observed. 

 

Anatomical characters, longitudinal section: Mantle (25)30(45) µm wide, different layers not 

discernible; hyphae tangentially (3)4-6(7) µm, radially (3)4-6(7) µm. - Tannin cells lacking. – 

Epidermal cells tangentially-oval to elliptic or cylindrical and, when oriented-obliquely rectangular, 

tangentially (20)30-35(45) µm, radially (15)20-25(30) µm; ECt= ca. 30,5; ECq = 1,4. Hartig net in 

section paraepidermal, shape of hyphal cells around the epidermal cells beaded, in one row, (2)3-4 

µm wide. Hartig net in plan view of palmetti type, with 2-5 µmbroad lobes.  

 

Colour reaction with different reagents: Mantle and rhizomorph preparations: cotton blue: n.r. 

(no reaction); ethanol 70%: n.r.; FEA: n.r.; guaiac: n.r.. KOH 15%: n.r.; iron (II)sulphate: slightly 

greyish; sulpho-vanillin: n.r.; KOH 15%: n.r.; lactic acid: n.r., the golden colour is disappearing; 

Melzer's reagent: slightly greenish, due to the darkness of the mantle, it is difficult to interpret the 

reaction.  

 

Autofluorescence: Whole mycorrhiza: UV 254 nm: lacking; UV 366 nm: lacking. Mantle in 

section: UV-filter 340-380 nm: slightly whitish; blue filter 450-490 nm: slightly yellowish; filter 

530-560 nm: slightly reddish. Rhizomorph: n.r. 

  

Reference specimen for  ectomycorrhiza: Italy, province Trient (Trentino-Alto Adige Region), Val 

di Non, district Denno (46°14’ N; 10° 57’ E), beech coppice, 1050-1200 m a.s.l.; myc. isol. E. Di 

Marino, 20.06.2005, EDM 21 in FEA (in PD); it is supposed that this ECM is a member of the 

genus Tomentella due to similarities to already published descriptions of Tomentella ECM. – 

Additional specimens examined: Italy, province Trient (Trentino-Alto Adige Region), Val di Non, 

district Denno (46°14’ N; 10° 57’ E), beech coppices, 1050-1200 m a.s.l.; myc. isol. E. Di Marino, 

June 2005, EDM 21a in FEA (in PD), October 2005 EDM 21b in FEA (in PD), May/June 2006, 

EDM 21c in FEA (in PD). – Soil conditions of all collections: mesic or xeric, in mineral layers, pH 

of the soil 4,8-5,9, Ntot 4,6-5,2, C/N 18,5-21, Corg 82-108 g/Kg; in organic layers pH 4,8-6, Ntot 8,6-

26,5, Corg 108-382 g/Kg, C/N 16-18. 

 

DNA analysis: Sequencing and alignments were done according to the method applied by  Tedersoo 

et al. (2006). GenBank Accession number EU444548. 

 

Discussion: Fagirhiza stellata on Fagus sylvatica is similar to some ectomycorrhizae of the genus 

Tomentella, that are still unidentified (DE ROMAN et al. 2005; Agerer & Rambold 2004-2007). Here 
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we compare F. stellata with Quercirhiza stellata. (DE ROMAN et al. 2002), Quercirhiza 

nodulosomorpha (AZUL et al. 1999), and Quercirhiza summatriangularis (AZUL et al. 2006), 

because they are brownish or blackish, and form an outer mantle with a hyphal net on a 

pseudoparenchyma. 

Quercirhiza. stellata differs from F. stellata by its star-like arranged angular cells of the outer 

mantle layer, and by a plectenchymatous inner mantle layer with ring-like arranged hyphae. The 

cell walls of the outer mantle layers of Q. stellata are often thick and dark at intersection areas of 

the cells, whereas those of F. stellata lack dark intersections as well as thick walls. Furthermore, F. 

stellata differs regarding middle mantle layers from Q. stellata in the lack of thick walls and dark 

intersections between the cells. In contrast to F. stellata, emanating hyphae and rhizomorphs are not 

found in Q. stellata. 

In contrast to F. stellata, Q. nodulosomorpha possesses prominent cystidia. The middle mantle 

layer of Q. nodulosomorpha is densely plectenchymatous to almost pseudoparenchymatous with 

star-like arranged cells, the inner mantle presents a dense plectenchyma, and differs regarding both 

layers from F. stellata. Thelephoroid rhizomorphs, with nodia and conical side-branches occur in 

both ectomycorrhizae. 

A pseudoparenchymatous outer mantle is present in Q. summatriangularis as well as in F. 

stellata. But in contrast to F. stellata that bears ring-like often rather star-like arranged hyphal 

bundles on the surface, the mantle of Q. summatriangularis is covered by a distinct hyphal net 

forming triangular rings, with crystals at places. Exclusively the hyphal net of F. stellata possesses 

a slight matrix on its surface. The middle mantle layer of F. stellata reveals a pseudoparenchyma, 

whereas that of Q. summatriangularis is plectenchymatous and consists of short, irregularly shaped 

hyphae. The inner mantle layer of the latter ectomycorrhiza is completely plectenchymatous, 

whereas that of F. stellata forms a transitional type between a plectenchyma and a 

pseudoparenchyma and shows granular contents in some hyphae. Rhizomorphs could not be found 

in Q. summatriangularis. 

 

The DNA sequence of the ectomycorrhiza presented here agrees best with that of Tomentella 

subtestacea Bourdot & Galzin and T. bryophila (Pers.) M. J. Larsen that are both deposited in 

UNITE (KÕLJALG et al. 2005). The sequence comparison retrieved similarity values of 92% and 

91%, respectively. But BLASTn searches in GenBank yielded no unambiguous results. The highest 

similarity values with the query sequence generally received sequences of Tomentella species, the 

best of them being T. bryophila (98%) with a query coverage of only 91%, however. 
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Captions: Figs. 1 – a. Habit. - b. Pseudoparenchymatous middle mantle layer. - Fig. 2-a. Plan view 

of outer mantle, at one place with slightly larger cells surrounding smaller ones (such structures 
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occur preferentially below stars of the surface net). - b. Inner mantle layer: transitional type 

between pseudoparenchymatous and plectenchymatous, showing some large cells (often occurring 

below stars of the surface net). - Fig. 3. Plan view of the star-like arranged hyphal surface net with 

bundles of hyphae connecting the stars, stars sometimes connected only by solitary hyphae. - Fig. 

4-a. Open anastomosis with a short bridge, and a hypha showing a globularly inflated cell. - b. 

Hyphal surface net connected to the pseudoparenchyma of the outer mantle layer. Fig. 5-a. Plan 

view of mycorrhizal surface with a star showing a slight matrix. - b. Epidermoid to irregularly 

shaped cells beneath a star of the surface net (the same position as ’a’). - Fig. 6 - a. Rhizomorph 

with one hypha homogeneously filled by brownish contents  -b. Thinner rhizomorph with nodium 

and conical structure, together with infrequently septate peripheral hyphae. - Fig. 7. Thick 

rhizomorph partially covered by thin hyphae (above), the optical section (below) shows a hypha 

with clamp. All figs. From EDM 21a (in PD). 
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Figs. 1a, 1b. 
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Figs. 2a, 2b. 
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Fig. 3. 
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Figs. 4a, 4b. 
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Figs. 5a, 5b. 
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Fig. 6. 
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Fig. 7. 
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Abstract 

The ectomycorrhizal status of Sistotrema muscicola is shown the first time unequivocally, although 

already before sistotremoid DNA had been extracted from ectomycorrhizae (ECM). The ECM are 

irregularly monopodial-pyramidal, whitish ochre to yellow ochre, and woolly. When older the ecto-

mycorrhizae become more greyish and silvery at some patches. Diagnostic anatomical characteris-

tics are irregularly inflated emanating hyphae and rhizomorph hyphae, ampullately inflated clamps, 

and the occurrence of yellow drops within the hyphae. The plectenchymatous mantle shows ring-

like arranged hyphae, and a slightly gelatinous matrix. The ECM of S. muscicola are compared to 

those of other species that form distinctly ampullate hyphae in rhizomorphs, too. The anatomically 

most similar ECM to those of Sistotrema muscicola are those of Hydnum repandum. 

 

Introduction 

Results of different DNA-based phylogenetic studies recently confirmed that the genus Sistotrema 

is a member of the cantharelloid clade (Binder et al. 2005; Hibbett and Binder 2002; Larsson et al. 

2004; Moncalvo et al. 2006). According to them the cantharelloid clade comprises the genera 

Botryobasidium, Clavulina, Haplotrichium, Hydnum, Membranomyces, and Sistotrema (Larsson et 

al. 2004), Botryobasidium, Cantharellus, Ceratobasidium, Hydnum, and Sistotrema (Binder et al. 

2005), Botryobasidium, Cantharellus, Clavulina, Craterellus, Hydnum, Multiclavula, Sistotrema, 

Tulasnella, and Uthatobasidium (Hibbett and Binder 2002) or Botryobasidium, Cantharellus, Cera-

tobasidium, Clavulina, Craterellus, Hydnum, Membranomyces, Multiclavula, and Sistotrema (Mon-
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calvo et al. 2006). 

In case of some of these genera the ectomycorrhizal status of representative species has already 

been proven by identification and anatomical characterization of their ectomycorrhizae. This applies 

to Hydnum repandum L. (Agerer et al. 1996), Cantharellus cibarius Fr. (Danell 1994; Froideveaux 

1975; Mleczko 2004a; Moore et al. 1989; Zak 1973), Cantharellus formosus Corner (Countess and 

Goodman 2000), and Craterellus tubaeformis (Bull.) Quél. (Fransson 2004; Mleczko 2004b; Trappe 

et al. 2000). For Clavulina cristata (Holmsk.) J. Schröt. the obtained DNA sequences suggest an 

ectomycorrhizal status of at least that member of the genus (Buée et al. 2005, 2007; Dickie et al. 

2002; Ogawa 1984; Tedersoo et al. 2003). The remaining genera placed in the cantharelloid clade 

are still waiting for an unequivocal proof that they contain ectomycorrhizal species. 

Based on the comparison of DNA obtained from fruitbodies of  Sistotrema muscicola (Pers.) S. 

Lundell and S. alboluteum (Bourdot & Galzin) Bondartsev & Singer and that from ectomycor-

rhizae collected below these basidiomata Nilsson et al. (2006) reported on the ectomycorrhizal sta-

tus of these Sistotrema species. In this context provided accompanying colour pictures of the puta-

tive S. muscicola mycorrhiza show habit and mantle surface of a dark brown ECM with superficial 

colourless mycelium and an inflated portion at a hyphal septum, which is regarded as a feature typ-

ical for Sistotrema mycelia.  

In the present contribution we now provide unequivocal evidence that Sistotrema muscicola is 

an ectomycorrhizal species. 

 

Material and methods 

The characterization of ECM is comprehensively described in Agerer (1991). Fresh material was 

studied regarding morphology, colour of hyphae, and chemical reactions; material fixed in FEA (see 

Agerer 1991) was used for anatomical studies by the aid of a ZEISS Axioskop with Normarski’s 

Interference Contrast connected to a drawing mirror. All drawings were made at a magnification of 

2000×, subsequently transferred to transparent paper, and finally reduced in mag-nification. 

Identification was possible by the comparison of newly generated nuclear rDNA ITS sequences 

bounded by primers ITS1-F and ITS4 (Gardes and Bruns 1993; Vilgalys and Hester 1990; White et 

al. 1990; for primer sequences also see http://pmb.berkeley.edu/~bruns/tour/primers.html and 

http://www.biology.duke.edu/fungi/mycolab/primers.htm) obtained from the mycorrhizal root tips 

and from the fruitbody that had been collected in close vicinity. For the determination of the fruit-

bodies Eriksson et al.(1984) and Jülich (1984) were used. The applied methods of DNA extraction, 

PCR, and sequencing follow Tedersoo et al. (2006). GenBank accession numbers of the generated 

sequences of Sistotrema muscicola are 1052862 (fruitbody) and 1052863 (ECM). Reference 

specimens of the mycor-rhizae and the fruitbodies are deposited in M (see Holmgren et al. 1990). 
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The collection data of the characterized material are as follows: Italy, province of Parma (Emilia-

Romagna Region), Vighini, south of Borgotaro, northern exposed slope, Castanea sativa forest, ca. 

820 m NN, leg. et det. R. Agerer, 30. 10. 2006 (fruitbody RA 14583, ectomycorrhizae RA 14583a). 

 

Results 

Description of Sistotrema muscicola + Castanea sativa L. ectomycorrhizae 

 

Morphological characters (Figs. 1a, b): Mycorrhizal systems whitish ochre, the older parts greyish 

and silvery at places; with 1−2 orders of ramification, 8−9 side branches per cm; medium-distance 

stringy exploration type, hydrophobic. − Main axes up to 3 mm long and (0.3)0.5−0.4(0.6) mm 

diam. - Unramified ends white ochre, up to (0.4)0.5−1.3 mm long and 0.3−0.5 mm diam., bent and 

tortuous, not inflated; older tips greyish. – Surface of unramified ends woolly, very tip not smooth, 

with a lot of emanating hyphae forming fans. – Rhizomorphs very abundant in older mycorrhizal 

systems, whitish, woolly, originating also at the very tips of mycorrhizal systems; flat in cross-sec-

tion, whitish; not distinctly connected to the mantle. − Sclerotia not observed.  

Anatomical characters of mantle in plan views (Figs. 2-5): Mantle surface hyphae with many 

yel-low oily droplets, with a slightly gelatinous matrix between hyphae, with clamps. − Outer 

mantle layers (Fig. 2) plectenchymatous, with ring-like pattern and slightly gelatinous matrix 

(mantle type A/C and at places B/C, according to Agerer 1991, Agerer 1987-2006, Agerer and 

Rambold 2004-2007); hyphae cylindric, not constricted at septa, irregularly shaped; simple septate 

and with infre-quent clamps; angles between hyphal junctions ca. 45-90°, membranaceously 

yellowish, smooth, contents with droplets, cell walls thin; cells (2)3−4(5) µm diam. − Middle 

mantle layers (Fig. 3) plectenchymatous, slightly ring-like, with simple septa, membranaceously 

yellowish, containing fewer droplets than hyphae of the outer mantle; hyphae cylindric, not 

constricted at septa, irregu-larly shaped, cell walls thin, smooth, cells (3)4−5(7) µm diam. − Inner 

mantle layers (Fig. 4) plec-tenchymatous, with occasionally ring-like arranged hyphae and slightly 

gelatinous matrix, hyphae cylindric, not constricted at septa, membranaceously yellowish, 

irregularly shaped with infrequent simple septa, hyphae with some internal droplets; cell walls thin, 

smooth, cells (2)3−4(5) µm diam. − Very tip (Fig. 5) with many clamps and droplets within the 

hyphae, with slightly gelatinous ma-trix; cells of the outer mantle (3)4−5(6) µm diam., cell walls 

thin; cells of the inner mantle (1)2−3(5) µm wide. 

Anatomical characters of emanating elements (Figs. 6-8): Rhizomorphs with slightly gelatinous 

matrix, of type C (Agerer 1991, Agerer 1987-2006, Agerer and Rambold 2004-2007, Agerer and 

Iosifidou 2004), also called ramarioid (Agerer 1999), (20)45−75(120) µm diam., with open anasto-
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moses or closed by a clamp; clamps very frequently strongly inflated; middle portions of hyphae 

often inflated, there (6)7−8(9) µm diam., not inflated portions 4−5 µm diam.; thinner rhizomorphs 

undifferentiated, 13−15 µm diam. (Fig. 8), with clamps but without irregularly inflated hyphal 

portions, cells of the peripheral hyphae occasionally irregularly shaped; cell walls thin. − Emanat-

ing hyphae (Fig. 7) frequent, few of them with irregularly branched, irregularly inflated hyphal 

portions similar to those on the surface of thicker rhizomorphs, with simple septa, and with ampul-

lately inflated clamps, inflated hyphal portions (6)7−8(9) µm diam., not inflated portions 4−5 µm 

diam. – Chlamydospores not observed. 

Anatomical characters, longitudinal section: Tannin cells lacking. − Mantle not compact, thin, 

15−20 µm wide, very tips with 12.5−15 µm wide mantle; different layers not discernible; hyphae 

tangentially (1.2)2.5−3.5(5) µm and radially (1.5)2−2.5 µm. − Hyphal cells around epidermal cells 

roundish, in one row. − Epidermal cells radially-oval to elliptic, oriented obliquely, tangentially 

(5)8−11(15) µm, radially (25)30−40(45) µm; ECt = 8.6 µm , ECq = 0.25. − Hartig net in section pa-

raepidermal. − Hartig net in plan view of palmetti-type, lobes without septa, lobes (1.2)2.5−3 µm 

broad. 

Colour reaction with different reagents: Mantle and rhizomorph preparations: cotton blue: 

slightly bluish; FEA: the oily droplets not visible; lactic acid: n.r.; Melzer's reagent: n.r. 

Autofluorescence: Rhizomorph in section: UV-filter 340-380 nm: n.r; blue filter 450-490 nm: n.r.; 

green-filter 530-560 nm: n.r. 

DNA sequence data: 

PCR products of the targeted ITS rDNA (complete sequence of internal transcribed spacer 1, 5.8S 

ribosomal RNA region, and internal transcribed spacer 2, flanked by partial sequences of 18S and 

28S ribosomal RNA genes, respectively) obtained from fruitbody and ECM material of Sistotrema 

muscicola have a size of 563 bp (fruitbody; RA 14583) and 553 bp (ECM; RA 14583a). Both are 

nearly identical with a sequence identity of >99% corresponding to three differing bases, one in the 

5.8S region, two in the internal spacer region 2, which may be due to sequencing and/or sequence 

editing errors. 

BlastN searches were performed both in GenBank and UNITE (see Kõljalg et al. 2005) using the 

newly generated sequences of the Sistotrema muscicola fruitbody and ECM as query. The thereby 

retrieved best matches had a maximum sequence identity of at the most 92%. With values of 92%, 

89%, 88% compared to the S. muscicola fruitbody sequence and 91%, 88%, 87 % compared to the 

S. muscicola ECM sequence, respectively, the three most similar sequences (AY702760, 

AB251813, and AB211250) were generated from samples of indetermined, ectomycorrhizal fungi. 

So far published, completely identical ITS sequences (AJ606040, AJ606041) obtained from fruit-
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bodies and ECM determined as S. muscicola in Nilsson et al. (2006) retrieved identity values of 

87% or 86%, respectively, compared with the fruitbody and ECM sequences of the here character-

ized S. muscicola specimen. 

 

Discussion 

The relatively moderate identity values of the ITS sequences obtained from fruitbody material of 

the here characterized S. muscicola specimen (RA14583) and the previously published S. muscicola 

collection (Nilsson et al. 2006) rise questions regarding the currently applied species concept of and 

putative areal and/or host related differences within this taxon, especially as they correspond to 

slight variations of morphological and anatomical characters. The sequence data of the latter were 

obtained from Finn-ish material on Alnus, whereas our collection was found in northern Italy in a 

Castanea sativa stand. Sistotrema muscicola as characterized by Eriksson et al. (1984) forms basi-

dia with consistently six sterigmata, those of our collection possess predominantly eight of them. 

Although the hymenium is described as “hydnoid-irpicoid with teeth 1-2 mm long, cylindrical, con-

ical or more or less flattened, or poroid, at first reticulate with thin, fimbriate or more or less lacer-

ate dissepiments” (Eriksson et al. 1984), our collection is definitely reticulate or shallowly poroid 

(Figs. 9, 10). Spore characteristics and other anatomical features, on the other hand, fit well those 

published by Eriksson et al. (1984). Putative taxonomic consequences of these observed intraspecif-

ic differences require more detailed studies using additional data, however.  

The ECM of Sistotrema muscicola belong to a group of species that form ampullate inflations 

within rhizomorphs mostly below a simple hyphal septum or with the incorporation of clamps.  

This characteristic is most typically presented also by members of Gomphales, Clavariadelphus 

pistillaris (L.) Donk (Iosifidou and Raidl 2006), Gautieria inapire Palfner & E. Horak (Agerer 1999; 

Palfner 2001; Palfner and Horak 2001), Gomphus clavatus (Pers.) Gray (Agerer et al. 1998), 

Ramaria aurea (Schaeff.) Quél. (Agerer 1996a), R. flavo-saponarea R.H. Petersen (Scattolin and 

Raidl 2006), R. largentii Marr & D.E. Stuntz (Agerer 1996b), R. spinulosa (Pers.) Quél. (Agerer 

1996c), R. subbotrytis (Coker) Corner (Agerer 1996d), Geastrales, Geastrum fimbriatum Fr. 

(Agerer and Beenken 1998), Hysterangiales, Hysterangium stoloniferum Tul. & C. Tul (Raidl and 

Agerer 1998), and Hydnaceae, Hydnum repandum L. (Agerer et al. 1996). 

Gomphales, Geastrales and Hysterangiales form a well defined anatomy-based relationship that 

under inclusion of the saprotrophic orders Phallales and Gastrosporiales has been established as a 

new superorder Gomphanae in Agerer (1999) as well as Agerer and Iosifidou (2004). Based on re-

sults of molecular analyses this group including the Phallales was later defined as subclass Phallo-

mycetidae within the Agaricomycetes by Hosaka et al. (2006). Hydnum repandum is not related to 

the Phallomycetidae as this species belongs to the cantharelloid clade (Hibbett 2006; Moncalvo et 
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al. 2006) or Cantharellales (Hibbett 2006), respectively. 

Sistotrema and Hydnum with ampullate hyphae in rhizomorphs are both members of the can-

tharelloid clade. Ectomycorrhizal rhizomorphs of Cantharellus cibarius (Mleczko 2004a) also form 

slightly inflated clamps, and Craterellus lutescens, a species that lacks rhizomorphs (Mleczko 

2004b), shows those on the ECM mantle surface. Ampullately inflated hyphae are also reported for 

Clavulina spp. (Breitenbach & Kränzlin 1986). Although such inflations have been evolved inde-

pendently at least three times as they occur in rhizomorphs of species in the trechisporoid clade 

(Agerer and Iosifidou 2004; Nilsson et al. 2006) and in Gastrosporium, too (Iosifidou and Agerer 

2002), this special anatomical feature can, at least according to the present state of knowledge, be 

considered as a common character of the ectomycorrhizal members of the cantharelloid clade. 

Apart from the typical ampullate inflations the ECM of Sistotrema muscicola are characterized 

by their woolly surface, the whitish ochre to yellow ochre colour that becomes more greyish and 

silvery at some patches, and by a plectenchymatous mantle with ring-like patterns together with a 

slightly gelatinous matrix and yellowish droplets within the hyphae. The occurrence of yellowish 

droplets is a feature that also occurs in ECM of Cantharellus cibarius (Mleczko 2004a). 

Most frequently the colour of the substrate mycelium of fruitbodies – no matter if growing 

superficially or within the substrate – corresponds to the colour of the ECM. Generally, dark brown 

ECM are not formed by species that possess colourless or slightly yellowish hyphae, and, vice 

versa, all hitherto identified and described dark brown ECM are the symbiotic organs of fungi with 

brown hyphae (Agerer 1987-2006, Agerer 2006, Agerer 2007, Agerer, unpubl., Agerer and Ram-

bold 2004-2007). Therefore, the picture of ECM that has been attributed to Sistotrema muscicola by 

Nilsson et al. (2006) is very likely the result of a misidentifcation. Quite frequently ECM of differ-

ent fungal species can be overgrown by mycelium of a diversity of fruitbodies. This is obviously the 

case in the microscopical picture in Nilsson et al. (2006) that shows a typical Sistotrema hypha lay-

ing loosely on the mantle surface of a dark brown ECM. It seems comprehensible that DNA may 

more easily be extracted from thin-walled, living hyphae that envelope a foreign dark brown ECM 

than from the underlying ECM composed of thick-walled hyphae with often degenerated cyto-

plasm. 

The current study, therefore, presents the first unequivocal report that the genus Sistotrema 

contains at least one ectomycorrhizal species, although molecular evidence suggested this ecologi-

cal status before (Nilsson et al. 2006). 

Sistotrema muscicola ECM clearly differ from all hitherto described ECM of the genera Clava-

riadelphus, Gautieria, Geastrum, Gomphus, Hysterangium, and Ramaria (Agerer 2006, Agerer & 

Rambold 2004-2007) by the lack of oleoacanthocystidia and/or oleoacanthohyphae and by thin-

walled cells with yellowish contents. Much more difficult is the distinction from ECM of Hydnum 
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repandum, as the latter forms yellowish drops within the hyphae, too. Unlike Sistotrema muscicola 

H. repandum shows rough hyphae and orange irregularly shaped or crystal-like encrustations on the 

hyphal surface, however. Additionally, rhizomorphs of H. repandum provide on their peripheral hy-

phae sometimes very thin branches that are unknown in Sistotrema muscicola. 
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Figure legends 

 

Fig. 1a, b Habit of monopodial-pyramidal mycorrhizal systems with many rhizomorphs. (Fig. from 

RA 14583a). Fig. 2 Outer mantle layer with irregularly inflated hyphae, containing oil droplets, 

embedded in a slightly gelatinous matrix. Hyphae mostly simple septate, one large clamp evident. 

(Fig. from RA 14583a).Fig. 3 Middle mantle layer with irregularly inflated, simple septate hyphae 

with oil droplets, em-bedded in a matrix. (Fig. from RA 14583a).Fig. 4 Inner mantle layer with 

irregularly inflated, simple septate hyphae with oil droplets, embed-ded in a matrix. (Fig. from RA 

14583a). Fig. 5 Mantle surface of very tip with hyphae embedded in a slightly gelatinous matrix, 

clamps and simple septa as well as oil droplets within hyphae. (Fig. from RA 14583a). Fig. 6 

Surface of a thicker rhizomorph with a slightly gelatinous matrix, simple septa as well as large 

clamps, and with some ampullate inflations. (Fig. from RA 14583a). Fig. 7 Optical section (below) 

through a thicker rhizomorph with the typical ampullate inflations at the septa or under 

incorporation of clamps; hyphae embedded in a gelatinous matrix; surface of the rhizomorphs 

(above). (Fig. from RA 14583a). Fig. 8 Surface of a thin rhizomorph and ampullately inflated 

portions of emanating hyphae. (Fig. from RA 14583a).Fig. 9 Resupinate fruitbody with reticulate, 

shallowly poroid hymenophore. Scale bar=5 mm. (Fig. from RA 14583). Fig. 10 Resupinate 

fruitbody with reticulate, shallowly poroid hymenophore. Scale bar=1 mm. (Fig. from RA 14583) 
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Fig. 2. 
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Conclusions 
 
 
 
 
 
 
 

 
The EM (ectomycorrhizae) communities can be strongly influenced by a range of forest 

management practices (reviewed by Jones et al., 2003) and in particular numerous field researches 

reported as harvesting outcomes declines of EM diversity. Harvesting significantly decreased the 

thickness of the humus layer as well as decreasing the number of EM root tips both metre root 

length and per unit humus volume, like to reported by Mahmood et al. (1999), in a swedish spruce 

forest. 

Other sylvicultural practises have an impact on the main parameters of the EM community: i.e.  the 

abundance and diversity of mycorrhizal fungi are generally negatively affected by clear-cutting, and 

its main disturbance effect on the community are quantified as a loss of inoculation potential n, 

or/and due to the decrease in inputs of carbon from host plants, or/and a combination of drastic 

changes in the environmental conditions (Orlander et al., 1990; Sutton 1993; Hagerman et al., 

1999; Durall et al., 1999; Byrd et al., 2000; Cline et al., 2005). Also strong thinning can modify the 

ectomycorrhizal community structure as reported for old Beech stands (Buée et al., 2005) and in a 

declining pedunculate oak forest (Mosca et al., 2007).  

The aim of these researches was to understand the possible effects of coppicing on the EM 

community structure in 7 different Beech  stands but comparable (for the main stand features and 

the beech presence), chosen for their high productivity and for their very frequent utilization  since 

the past.  Following the objectives fixed by the Kyoto Protocol, the European Union and the Italian 

Government promoted actions towards the development of renewable resources (Bernetti et al., 

2004). Short rotation coppices could be important instruments to enforce these policies. In these 

context  the possibility to reduce the rotation also in Beech stands with sustainable effect on the 

ecosystem and without a loss of biodiversity could be a new opportunity of study.     

In the present work the results confirmed the ectomycorrhizal community structure investigated in 7 

beech coppices of different age was typical with respect of the occurrence of few abundant species 

and many others with significantly lower abundance as reported in precedent investigations 

(Grogan et al., 2000; Horton & Bruns, 2001; Taylor, 2002; Montecchio et al., 2004; Mosca et al., 

2007; Scattolin et al., 2008). A dominance of Thelephoroid and Cortinareaceous fungi was also 

observed. This composition is well-known, because recent studies discussed the evidence of that 
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EM are frequently formed by the Basidiomycote order Thelephorales (Jakucs et al., 2005; Kõljalg 

et al., 2000; 2001; 2002) and by the presence of Cortinarius species, (Kjøller 2006). Cenococcum 

geophilum was the most frequently detected species in each site and in each sample date, whether 

occurring in dolomitic and calcareous sites, probably due to its known ability to produce antifungal 

compounds active against several filamentous fungi (Koide et al., 2005) and to its high drought 

tolerance (Neves Machado, 1995; Jany et al., 2003). Morphological, anatomical and molecular 

investigations revealed a total of 60 anatomotypes. Of these 35 were unknown on Fagus sylvatica 

up to now (De Roman et al., 2005). 7 not described ectomycorrhizae were assigned to family or 

ordinal level (Thelephorales, Boletales, Pezizales, Sebacinaceae, Thelephoraceae), 19 to genus 

(Amphinema sp., Boletus sp., Cortinarius sp., Craterellus sp., Entoloma sp., Hydnum sp., 

Hygrophorus sp., Inocybe sp., Laccaria sp., Lactarius sp., Ramaria sp. Sebacina sp., Tomentella 

sp.),  3 to species (Cortinarius ionochlorus, Cortinarius infractus, Hygrophorus penarius), 3 

ectomycorrhizae not identified at present were described  in detail (Fagirhiza byssoporioides, 

Fagirhiza entolomoides, Fagirhiza stellata), while 3 remained unidentified. 

The achieved results demonstrated that along a wide coppice frequency gradient (2 to 48 years, with 

25 years being the rule), the main EM community parameters,  like tips’ vitality and 

mycorrhization, changed only in the vertical distribution with a major abundance of EM not vital in 

the organic soil layers confirming only partially the work of other authors (Baier et al. 2006). 

Moreover the ecological indexes attested that the richness and evenness varied only on the temporal 

scale (related to the different collections), but they were not correlated with the coppice frequency 

or the slope, partly confirming available information from clear-cutting and thinning experiments 

(Buée et al., 2005; Cline et al., 2005; Mosca et al., 2007), and explainable with an hypothetical 

resilience, as an “adaptive diversity”.  

No relevant differences in the EM spatial and vertical distribution with the shoot age were revealed 

in the two years of the research, leading to the hypothesis that the coppice treatment in these Beech 

stands, did not have a significant and direct effect on the EM richness and community structure 

since 2 to 48 years from coppicing. In fact the multivariate analyses demonstrated that the EM 

presence, richness and distribution was never mainly associated  with the shoot age, but strongly 

related to stands conditions like slope steepness and  the soil moisture. Also the ecological features 

of the EM species like the hydrophobicity or the exploration types (Agerer 2001) didn't define 

particular conditions in the soil correlated to the coppices effect. Due the high presence of 

hydrophilic EM species equal distributed in all the sites, it was impossible to find a clear correlation 

between these ecological features and the coppicing frequency.   

Furthermore, when the MID (Morisita index) was applied with significant results, the most frequent 

species always revealed an aggregated distribution (in the vertical distribution MID was always 
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significant showing 39 species aggregated in the sites, for the first spatial collection in June 2005 it 

was  significant for all species, in the second collection, in October 2005, this index was significant 

for only 23 species compared to the total of 46 species collected, while for the last collection in 

June 2006, it was significant for 19 species compared to 29 total species) supporting the hypothesis 

that micro-scale effects (i.e. antagonistic interactions among species) prevail on macro-scale 

features (i.e. humus and bedrock type, plant age) as previously shown (Bruns 1995; Toljander et al., 

2006; Gebhardt et al., 2007).   

Bruns (1995) in fact attested  the very different physical-chemical situations present in a  forest soil 

contribute to create this spatial heterogeneity, and it is involved in the maintenance of high ECM 

fungal diversity, as confirmed also by other works (Toljander et al., 2006; Gebhart et al., 2007). But 

only few studies have examined the micro-spatial distribution of individual ECM species in relation 

to soil factors, as a possible result of the ecosystem resilience (Toljander et al., 2006; Gebhart et al., 

2007; Mosca et al., 2007; Scattolin et al., 2008).    

The response of the EM community to the repeated manipulation of litter and humus layers, that 

was documented to be strongly through coppicing (Buckley 1992), needs more detailed 

investigations, because in this study no clear differences were found between the organic and 

mineral soil layers, contrasting previously results (Kuyper & Landeweert, 2002; Baier et al., 2006).  

Taking into account the stability of the EM community as a possible indicator of plant health status 

(Wargo 1988; Fellner & Caisovà, 1994; Causin et al., 1996; Montecchio et al., 2004; Mosca et al., 

2007, Scattolin et al., 2008), “Short rotation” practices in Beech forests could be considered a 

sustainable activity, according to the new trends in EU energetic policies, aimed to promote the 

increase of renewable energetic resources availability (Cutini 2001). From this point of view, new 

guidelines could be provided for the sylviculture  management. For assessing ecosystem resilience 

within the context of the global change,  the identification of the ecological features determining 

this “adaptive diversity” in EM communities, will have more and more importance (Dahlberg 

2001).Further investigations to verify if and how a high and repeated coppice frequency can cause 

irreversible alterations in EM biodiversity are needed.   

The results here reported, on the mycorrhizae of Hygrophorus penarius on Fagus sylvatica seems to 

be more important not only for the systematic aspects but also from the ecological point of  view.  

This mycorrhizae was described and compared to other species,  and showed a similar behaviour  to 

that of Entoloma saepium on Rosa sp.  Like E. saepium, H. penarius showed an attitude to digest 

the root meristem and the young root cells, in a parasitic-like activity. The Hartig net was not 

formed, although a very thick gelatinous mantle composed by infrequently clamped hyphae 

embedded in a very distinctive matrix providing the mycorrhiza with an almost transparent mantle 

was present. To get more information about its behaviour  the stable carbon and nitrogen isotope 
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ratios of its mycorrhizae were studied, revealing a negative δ15N values, similar to that of non-

mycorrhiza roots and of many typical ectomycorrhizae.  δ13C values did not reveal important 

information.. 

As previously suggested in other ectomycorrhizal symbioses (Schwacke & Hager 1992; Salzer et 

al., 1996), the wide and unspecific host reactions induced by H. penarius, could be effective against 

other microorganisms, in accordance with well known “induced resistance” strategies (Sticher et al., 

1997; van Loon et al., 1998). 

Further anatomo-physiological analyses on H. penarius behaviour in different tip age and seasons, 

and on its potential ability to induced a non-specific plant resistance to possible parasites are 

therefore of main importance. 

This work reports also 2 descriptions of new ectomycorrhizal species: Pseudotomentella humicola 

on Picea abies and Sistotrema muscicola on Castanea sativa. P. humicola is now the third species 

of this genus, proven to form ectomycorrhizae apart from P. tristis and P. larsenii, while the 

ectomycorrhizal status of Sistotrema muscicola is shown for the first time unequivocally, although 

already previously sistotremoid DNA had been extracted from ectomycorrhizae.  
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Abstract – The ectomycorrhizal community structure in Beech coppices of different age  

 
The species composition of ectomycorrhizal (ECM) fungal communities can be strongly influenced 

by the sylvicultural practises, abiotic and biotic factors, which determine interactions among the 

species. In order to determine the influence of the coppicing on EM community, shoot age,  bedrock 

types, exposure, slope, humus features, soil conditions, sampling points locations were taken into 

account as the most representative and influencing factors in these soil ecological dynamics. In 

summer 2005, 2006 and 2007, in 7 [2-48-years-old] Beech [Fagus sylvatica (L.) Karst.] coppices 

located in the Province of Trento (northern Italy), a monitoring on the the root tipes was applied to 

compare these sites, and to give an additional instrument like a synthetic biological indicator for the 

traditional management strategies.  

In the present study the results confirmed the ectomycorrhizal community structure investigated in 

7 beech coppices of different age was typical with the occurrence of few abundant species and 

many others with significantly lower abundance. Cenococcum geophilum was the most frequently 

detected species in each site and in each sample date. Morphological, anatomical and molecular 

investigations revealed a total of 60 anatomotypes. Of these 35 were unknown on Fagus sylvatica 

up to now. The investigations on the community composition can be considered a great contribution 

to the biodiversity of the Beech forest, with four detailed species descriptions: Fagirhiza 

byssoporioides, Fagirhiza entolomoides, Fagirhiza stellata and Hygrophorus penarius. Additional 

investigations using stable isotopes were necessary to understand the parasitic attitude shown by 

this species in these coppices. 

The investigation of the ECM community composition (species richness evenness, and dispersion, 

vitality and rate of mycorrhization) in relation to shoot age and to the main ecological factors 

revealed the absence of  a real reaction to the coppicing, and the major importance of the slope or 

other ecological conditions to understand the species distribution.  

An aggregation of the species was releaved, but the species features  didn't show a clear correlation 

with the ecological stand conditions, concerning the spatial distribution and the soil horizons.  

The results suggest that the coppice treatment in Beech, didn't have a significant effect on the EM 

community structure since 2 until 48 years from coppicing. Considering the stability of the EM 

community as a bioindicator of the ecosystem resilience, it can be supposed that a rational 

coppicing treatment could be a sustainable human activity, compatible with the ecosystem dynamics 

under these environmental conditions. Two more EM descriptions were performed: 

Pseudotomentella humicola on Picea abies and Sistotrema muscicola on Castanea sativa.
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Riassunto –  La struttura della comunità ectomicorrizica in cedui di faggio di diversa età. 
 
 

La composizione e la struttura delle comunità ectomicorriziche (EM) possono essere fortemente 

influenzate dalle pratiche selvicolturali, che si aggiungono ad altri fattori abiotici e biotici, che 

determinano le interazioni tra le specie. Sono stati compiuti degli studi per determinare l'effetto 

della ceduazione sulla comunità EM, considerando principalmente l'età dei polloni (epoca 

dell'ultima ceduazione), tipo di substrato, l'esposizione, la pendenza dei siti, le caratteristiche delle 

forme di humus, del suolo e le condizioni di prelievo, perché meglio descrivevano la dinamica 

ecologia del suolo. E' stato realizzato un monitoraggio sfruttando un campionamento basato sullo 

studio degli apici radicali, effettuando diversi prelievi negli anni 2005, 2006 e 2007 in cedui di 

faggio[Fagus sylvatica (L.) Karst.] (ceduati 2-48 anni fa) situati nella provincia di Trento (Nord 

Italia). Lo scopo dello studio alla base di questo monitoraggio è stato di fornire uno strumento 

addizionale (come l'indice di stato ectomicorrizico) a quelli usati tradizionalmente per la gestione di 

questi siti. La struttura della comunità EM nei cedui oggetto di studio è apparsa riconducibile a 

quella tipicamente riportata in letteratura, con presenza di poche specie frequenti e una maggioranza 

di specie rare. Cenococcum geophilum è la specie dominante in tutti i campionamenti e in tutti i siti. 

Le analisi morfologiche, anatomiche e molecolari hanno permesso di definire 60 anatomotipi. 

Queste ricerche hanno contributo allo studio della biodiversità nei boschi di faggio, con 35 specie 

mai osservate fino ad ora. Tra queste, 4 specie sono state descritte in dettaglio: Fagirihiza 

byssoporioides, F. entolomoides, F. stellata e Hygrophorus penarius.  

Quest'ultima specie è stata oggetto di ulteriori indagini, impiegando anche saggi agli isotopi, perché 

ha manifestato un'attitudine parassitaria nel 2006 e nel 2007. Gli studi condotti sui principali 

parametri che permettono di definire la struttura di una comunità EM (come la ricchezza di specie, 

la dispersione delle stesse, la vitalità e il grado di micorrizazione) in relazione all'età dei polloni e ai 

fattori ecologici principali, ha permesso di definire un'assenza di reazione da parte della comunità 

stessa alla ceduazione. La distribuzione delle specie è maggiormente correlata ad alcune variabili 

stazionali (pendenza e umidità), che alla frequenza di ceduazione. E' stata rilevata un'aggregazione 

delle specie nei siti, ma nessuna chiara correlazione tra concerne le caratteristiche ecologiche delle 

stesse e le condizioni stazionali, sia per quanto riguarda la distribuzione superficiale sia per la 

distribuzione secondo il profilo umico. I risultati preliminari di questo studio suggeriscono l'ipotesi 

che la ceduazione in boschi di faggio con queste caratteristiche stazionali, non abbia alcun effetto 

significativo sulla struttura della comunità EM per un'età del ceduo compresa tra i 2 e i 48 anni. Se 

si considera inoltre la stabilità del consorzio EM come bioindicatore della resilienza dell'ecosistema, 

si può supporre che la razionale ceduazione possa costituire in questi siti, un esempio d’attività 

selvicolturale sostenibile. 



 

230 

Grazie alle ricerche condotte in questi tre anni, è stato inoltre possibile realizzare altri due 

contributi, allo studio della diversità delle specie ectomicorriziche nelle foreste temperate e boreali,  

riportati in questa tesi: le descrizioni della specie Pseudotomentella humicola su Picea abies e della 

specie Sistotrema muscicola su Castanea sativa. 
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