
Markov Decision Processes With Uncertain Parameters

DISSERTATION

zur Erlangung des Grades eines

DOKTORS DER NATURWISSENSCHAFTEN

der Technischen Universität Dortmund
an der Fakultät für Informatik

im Rahmen des Graduiertenkollegs 1855 „Diskrete Optimierung technischer Systeme unter
Unsicherheit“ der DFG

von
Dimitri Scheftelowitsch

Dortmund
2018

Tag der mündlichen Prüfung: 3. Mai 2018

Dekan: Prof. Dr.-Ing. Gernot A. Fink

Gutachter: Prof. Dr. Peter Buchholz (Technische Universität Dortmund), Prof. Dr. Holger
Hermanns (Universität des Saarlandes)

Contents

List of Figures ii

List of Tables iv

Acknowledgments v

Abstract vii

1 Introduction 1
1.1 Motivation . 2
1.2 Structure of the thesis . 3
1.3 Definitions and notation . 4
1.4 Basic concepts of computational complexity theory 6
1.5 Markov decision processes and extensions 8
1.6 Stochastic games . 17
1.7 Multi-objective optimization . 22

2 Theory of parametric models 25
2.1 Background . 25
2.2 Finite-horizon properties . 30
2.3 Stochastic games and limit-average reward properties 33
2.4 Multi-objective approaches . 40
2.5 Extending the model . 51

3 Algorithms for multi-objective problems 65
3.1 Stochastic multi-scenario optimization . 65
3.2 Pareto frontier enumeration . 73

4 A case study 87
4.1 Model details . 87
4.2 Towards an uncertain MDP . 89
4.3 Evaluation . 95

5 Discussion 105
5.1 Conclusions . 105
5.2 Future work . 106

A Concurrent MDP algorithms evaluation 109

Bibliography 119

i

List of Figures

1.1 A Markov decision process with a non-convergent policy 11
1.2 The solution space of a multi-objective optimization problem 23

2.1 A visualization of the reduction from DHP . 31
2.2 Construction from Theorem 2.3.7 . 40
2.3 Construction from Theorem 2.4.1 . 43
2.4 Construction from Theorem 2.4.2 . 46
2.5 The variable gadget . 48
2.6 The clause gadget . 49
2.7 First part of the reduction in Theorem 2.5.1 . 54
2.8 A gadget forcing λi P t0, 1u . 54
2.9 (Incomplete) construction for Theorem 2.5.2 . 56
2.10 Main proof idea of Theorem 2.5.3 . 57
2.11 Illustration of the geometrical figure in proof of Theorem 2.5.3 59

3.1 Performance of the heuristic for stationary policies as a function of scenarios . . 73
3.2 Performance of the heuristic for stationary policies as a function of states 73
3.3 Performance of the heuristic for pure policies as a function of scenarios 74
3.4 Performance of the heuristic for pure policies as a function of states 74
3.5 Cpheuristic, evolutionaryq in dependence of state space size 83
3.6 Cpevolutionary, heuristicq in dependence of state space size 84
3.7 Mean time for a policy in dependence of problem size 85
3.8 Evaluation of the ANTG model . 86

4.1 Visualization of operational, maintenance and repair phases in a single component 89
4.2 Evaluation of the composed component model with 2 components, 4 operational

phases each, and one repair worker. 99
4.3 Evaluation of the composed component model with 3 components, 2 operational

phases each, and one repair worker. 101
4.4 Evaluation of the composed component model with 3 components, 4 operational

phases each, and one repair worker. 103

ii

List of Algorithms

1 Dynamic programming algorithm for optimization of finite-horizon total
expected reward . 12

2 Dynamic programming algorithm for optimization of expected discounted
reward . 13

3 Generalized policy iteration scheme . 13
4 Subsection 9.2.1, [Put94]: Policy iteration for the expected average criterion

in MDPs . 14
5 Finite-horizon expected total reward optimization algorithm for stochastic

games . 20
6 Finite-horizon expected total reward optimization algorithm for stochastic

games . 20
7 Optimal policies for the expected average reward criterion, general scheme 21
8 Optimal policies for the expected average reward criterion, perfect informa-

tion version . 21
9 Interval value iteration . 30
10 Policy iteration for expected average reward in BMDPs 38
11 Exact computation of PPareto and VPareto . 51
12 Percentile optimization in the simple case . 64
13 Local optimization heuristic for concurrent MDPs 71
14 Local pure policy optimization heuristic for concurrent MDPs 71
15 A heuristic for PPareto and VPareto . 76
16 Policy iteration to heuristically compute PPareto and VPareto 78
17 The SPEA2 evolutionary multiobjective optimization heuristic 80
18 A simple sampling procedure to compute the minimal rate of a given phase-

type distribution . 92

iii

List of Tables

3.1 Performance comparison of SPEA2 and Algorithm 16 81

4.1 State and action space sizes of the generated models 96
4.2 Non-dominated solution of the composed component model with 2 components,

2 operational phases each, and one repair worker. 97
4.3 Concurrent MDP evaluation of the composed component model with 2 compo-

nents, 2 operational phases each, and one repair worker. 97
4.4 Concurrent MDP evaluation of the composed component model with 2 compo-

nents, 4 operational phases each, and one repair worker. 97
4.5 Concurrent MDP evaluation of the composed component model with 3 compo-

nents, 2 operational phases each, and one repair worker. 98
4.6 Concurrent MDP evaluation of the composed component model with 3 compo-

nents, 4 operational phases each, and one repair worker. 98

A.1 CMDP algorithms for γ “ 0.9 on stochastic models 110
A.2 CMDP algorithms for γ “ 0.9 on deterministic models 112
A.3 CMDP algorithms for γ “ 0.999 on stochastic models 114
A.4 CMDP algorithms for γ “ 0.999 on deterministic models 116

iv

Acknowledgments

Here I would like to mention all the people who have made this work possible. I am
particularly thankful to Prof. Dr. Peter Buchholz for his comprehensive support and advice
and to Prof. Dr. Holger Hermanns for a very productive month in Saarbrücken. Individual
thanks goes also to my mentor who has given useful general hints on research structure
and scientific procedures, Prof. Dr. Thomas Schwentick.

I also want to thank Iryna Dohndorf and Jan Kriege for the comments on the various
aspects of my thesis, productive discussions, and for being patient and fun officemates.

Furthermore, I would like to thank my friends for their support during the time. Specifi-
cally, I want to thank Klaus Aehlig and Moritz von Looz for the opportunities to co-operate
in giving courses on games on graphs and Markov chains, respectively. I also would like to
mention the various discussions on PhD-related topics, different scientific approaches and
academic life in general with Carsten Burgard, Gottfried Herold, and Lucie Plaga.

Last but not least, I want to thank my family for their faith in me, and their advice and
support over the whole course of my life and education until now.

v

Abstract

Markov decision processes model stochastic uncertainty in systems and allow one to con-
struct strategies which optimize the behaviour of a system with respect to some reward
function. However, the parameters for this uncertainty, that is, the probabilities inside a
Markov decision model, are derived from empirical or expert knowledge and are them-
selves subject to uncertainties such as measurement errors or limited expertise. This work
considers second-order uncertainty models for Markov decision processes and derives
theoretical and practical results.

Among other models, this work considers two main forms of uncertainty. One form is a
set of discrete scenarios with a prior probability distribution and the task to maximize the
expected reward under the given probability distribution. Another form of uncertainty is a
continuous uncertainty set of scenarios and the task to compute a policy that optimizes the
rewards in the optimistic and pessimistic cases.

The work provides two kinds of results. First, we establish complexity-theoretic hard-
ness results for the considered optimization problems. Second, we design heuristics for
some of the problems and evaluate them empirically. In the first class of results, we show
that additional model uncertainty makes the optimization problems harder to solve, as they
add an additional party with own optimization goals. In the second class of results, we
show that even if the discussed problems are hard to solve in theory, we can come up with
efficient heuristics that can solve them adequately well for practical applications.

vii

1

Introduction

No decision is also a decision, and
almost always the worst possible one.

— Folklore

MOST aspects of everyday life are, in one way or another, connected to decisions, i. e.,
choices between several alternative actions. Simplest examples include the decision

which book to buy, what to wear, whether to repair a slight malfunction in one’s car or not
etc. One challenging aspect of these choices is that the direct consequences lie in the future
and cannot be foreseen from the time point of the decision. Another challenge lies in the
mere fact of different possible outcomes some of which may be more preferential to the
decision making agent than others.

In the domain of philosophy and economics, investigation of different aspects of choice
is known as decision theory [Han95]. From the perspective of decision theory, to solve the
second challenge means to quantify all possible outcomes with a value function which not
only provides an order of preferences, but also numerical values which correspond to
rewards for each outcome. These rewards can correspond to financial benefits, but they may
also represent some other, abstract units of utility. Then, given a function that maps possible
actions to their respective outcomes, one can compute the optimal action that maximizes the
composition of the outcome and value functions. The unpredictability of the outcomes can
be modeled by means of probability theory, designing the outcome as a random variable.

In this setting, different mathematical formalisms can be considered which yield different
decision models. The models may vary in the value function, the number of agents or
other parameters. For example, one can think of an adversary who may make decisions
on her own in order to pursue her own goals which are orthogonal to the goals of the
agent whose actions one wants to optimize. A fairly popular mathematical model for
one-party decision making under stochastic uncertainty is the Markov decision process (MDP)
formalism [Put94, Kal16] which, informally, encompasses a notion of a controlled Markov
chain with additional rewards which are paid out depending on the current state of the
chain. The benefits of this formalism are twofold: First, the formalism itself allows one
to model practical applications in a direct manner, and, second, efficient algorithms exist
which compute optimal policies, i. e., sequences of actions in dependence on the current
state.

What we want to do in this work is to consider additional notions of model uncertainty
in Markov decision processes. Briefly, model uncertainty deals with the case where the
parameters of the underlying mathematical model are not known exactly. In the case of
decision theory, this means that the outcomes of a specific action are uncertain in the sense
that even the probability distribution that defines the outcome is not precisely known. From
the mathematical viewpoint, our desire is to formalize this notion of model uncertainty
and find algorithms which compute policies that are robust against this uncertainty (for a
well-defined notion of robustness).

1

1. INTRODUCTION

1.1 Motivation

In order to motivate additional model uncertainty in Markov decision models, we provide
an example.

Suppose a fictional company, Electric Till Corporation (ETC [Ste00]), is employing large
computer systems for large-scale parallel computing tasks such as deep learning, computer
vision and text recognition. These computer systems consist of a number of similar com-
ponents which are bought from one supplier, Forsooth Heavy Industries (FHI) [vL13]. As
the reader may know from her own experience, computer systems may suddenly fail and
generally require regular maintenance, and thus ETC needs a maintenance schedule for
its computer systems which allocates (limited) maintenance personnel to the machinery,
judging from typical failure times and signs of malfunctioning.

Mathematically, up to this point, this problem can be formulated as a Markov decision
process which can be solved with existing methods [Put94, Kal16]. However, in our case,
the supplier, FHI, cannot provide constant quality, be it for fabrication process features or
varying QA standards in the supply chain [WBG06]. In any case, some of the supplied
computers may fail early while some others may not require maintenance for a longer time
than initially planned. This means that the behaviour, and thus the mathematical model
of a single component, is subject to an uncertainty which cannot be resolved a priori by
means of the model itself. Considering only the average performance also may not help
here, as the costs of missing a failure may be prohibitively high compared to the costs of
extra maintenance.

From this problem formulation, the ETC house expert whose task is to devise a mainte-
nance schedule can pursue two different paths. On the one hand, she can consider several
archetypal behaviour scenarios of the supplied hardware, such as fast failure, low main-
tenance, or need for frequent maintenance yet low failure rates if maintenance is regular.
The difficulty here lies in possible incomparability of the scenarios: an optimal strategy for
one scenario may behave badly in the other scenario. In this setting, she can search for a
maintenance policy that accounts for the relative frequency of the possible scenarios.

On the other hand, the decision maker can, from her observations, define a continuous
space of possible modes of operation which also can account for possibly unseen yet
probable behaviours. The main difference here is that the number of possible scenarios is
infinite and the worst and best scenario are not necessarily a priori known. Here, multiple
optimization goals are possible. The expert may search for the policy which is best in the
pessimistic case, possibly at the cost of smaller maintenance intervals and higher load on
the maintenance personnel, she also may search for a policy which is best in the optimistic
case, cutting maintenance costs. Or she may search for a compromise between the two and
possibly other scenarios in pursuit for a policy which behaves well in all cases without
sacrificing too much.

In both cases, modeling is performed by admitting uncertainty at the level of the model;
the uncertainty cannot be expressed with the means of the initial modeling formalism.
In the language of Markov decision processes as base model, model uncertainty means
uncertainty in the transition probabilities between states and the rewards. Especially the
uncertainty in the transition probabilities offers a challenge both from the modeling and
the algorithmic aspects, as the uncertainty has to be formalized in a suitable mathematical
model and the policy optimization problems in these models are different from those known
in the MDP literature. Knowing what algorithms are suitable and what their efficiency
limits in terms of time complexity are is important, both from the theoretical point of view
as well as from that of the ETC’s expert.

This thesis aims at solving these challenges from several different directions. First,
we discuss mathematical formalisms that capture model uncertainty in Markov decision
processes. Second, we derive complexity-theoretic results which establish lower and upper
bounds for the respective optimization problems. Third, we design practically applicable

2

1.2. Structure of the thesis

algorithms for the two main problems: the multi-scenario optimization problem and
the multi-objective Pareto frontier enumeration problem. Fourth, we derive a complex
maintenance and repair model and its interpretations in both perspectives on uncertainty
and apply our algorithms on it.

1.2 Structure of the thesis

Beside the current chapter which serves as an introduction into the topic and motivates
further research, this thesis consists of two significant parts that represent two main research
directions.

In the first part, Chapter 2, the theoretical properties of parameter uncertainty on the
complexity of Markov decision problems are explored. We consider state-of-the-art work
and models such as those defined in [GLD00, FV97, SL73, WED94, DM10] and present own
research on the matter. The own research part concentrates around hardness results which
show algorithmic limits of finite-horizon and multi-objective optimization approaches and
of related uncertainty models. This contribution is based on the conference article [Sch15],
the theoretical parts of [SBHH17] and [BS17a], and some previously unpublished remarks.

In the second part, Chapter 3, we present approaches to multi-objective optimization
perspectives for uncertain Markov decision models. There, we present algorithms for vari-
ous formulations of the multi-objective approach, their properties, and their experimental
evaluation. This part is based on the practical parts of [SBHH17] and [BS17a]. In contrast to
the previous chapter, the main results are empirical in their nature; the algorithms that are
presented are judged by their performance on random data sets. The reasons for that lie in
lack of efficient algorithms for the underlying problems, be it for theoretical hardness or for
general lack of theoretical results.

The third part, Chapter 4, contains an application of the algorithms designed in the pre-
vious chapter. While in chapter 3, the main emphasis was on performance of the individual
algorithms, here, we consider a complete path from an abstract problem formulation to the
solution. In detail, we consider a model of composed components that degrade individually
but can be repaired. In the model, the number of maintenance workers is limited, which
limits the number of components that can be in maintenance mode simultaneously. We
design uncertain Markov decision models which capture this behaviour and apply our
algorithms to them.

Finally, in Chapter 5, we summarize and discuss the presented results. Specifically,
we consider applications and possibilities to extend the methods to other problems and
settings; furthermore, we consider possible future work on other problems in the general
setting of MDPs under uncertainty.

1.2.1 Personal contribution

One of the three publications that serve as a basis for this work, namely [SBHH17], has
been completed in co-operation with other researchers. My individual contribution to this
publication is the following.

• Algorithm 11 along with the optimality proof (Lemma 2.4.5, Theorem 2.4.6),

• Algorithm 15,

• Algorithmic optimizations and parallelization of Algorithm 16,

• Evaluation of Algorithm 16.

3

1. INTRODUCTION

1.3 Definitions and notation

Prior to discussing formalisms and results, we define the mathematical concepts that will
be used in this thesis. The main purpose of this section is two-fold: from the mathematical
point of view, we introduce the concepts that we base our results on; from a “technical”
point of view, we introduce notation and identifiers. Concerning mathematical notation,
we adhere to the following conventions.

• N is the set of natural numbers, that is t1, 2, . . .u. The set of natural numbers with
zero is written as N0.

• R is the set of real numbers. Non-negative reals are designated with Rě0.

• For n P N, we abbreviate the set t1, . . . , nu by rns.

• If X is a set, then P pXq is the power set of X.

• For sets A, B, the set AZ B is the disjoint union of A and B, a set with the properties
pAZ Bq zA “ B and pAZ Bq zB “ A.

• Identifiers like ~v, denote vectors; if ~v is an n-dimensional vector, then ~vp1q, . . . ,~vpnq
are the entries of ~v.

• Matrices are written in bold script, such as M. The dimensions of a matrix M are
pˆ q if M has p rows and q columns.

• For matrices M P Rpˆq with dimensions pˆ q (i. e., with p rows and q columns), we
designate the row vectors of M with the notation Mp1‚q, . . . , Mpp‚q. The column vec-
tors of M are designated by Mp‚1q, . . . , Mp‚qq; the individual entries are designated
with Mpi, jq for i P rps, j P rqs.

• For square matrices M P Rnˆn, the dimension of M is denoted by dim M :“ n.

• Special vectors are~1 and~0 which are column vectors of ones resp. zeros and~ei, column
basis vectors with a one in the i-th position and zeros everywhere else. When the
dimension is ambiguous, it is stated explicitly.

• The scalar product between two vectors ~u,~v P Rn, is designated by ~u ¨~v and evaluates
to

ř

iPrns ~upiq~vpiq.

• By stochastic matrices and vectors we designate non-negative matrices A and vectors
~v with unit (row) sum, that is, A~1 “~1 and ~v~1 “ 1.

• Special matrices are I, the identity matrix and 0, the zero matrix. Where ambiguity
may arise, a subscript will denote the dimensions of the matrix.

• The operator b denotes the Kronecker product, that is, for two matrices A P Rmˆn, B,
the expression Ab B is

¨

˚

˚

˝

Ap1, 1qB . . . Ap1, nqB
...

. . .
...

Apm, 1qB . . . Apm, nqB

˛

‹

‹

‚

.

• The Kronecker sum, denoted by ‘, defines, for two square matrices A, B the expres-
sion Ab Idim B ` Idim A b B.

4

1.3. Definitions and notation

• For two functions f , g : N Ñ N, it is f pnq “ O
`

gpnq
˘

if there exist c P Rě0, N P N

such that for all natural numbers n with n ą N it is f pnq
gpnq ă c.

• For a set A, its Kleene closure A˚ is the set of all finite sequences of values from A, that is,
finite tuples pa1, a2, . . . , anqwith n P N0 and ai P A. This especially includes the empty
tuple ε. The set of all non-empty sequences over A is then given by A` “ A˚z tεu.

1.3.1 Useful concepts of probability theory

As major parts of our contribution will, in one way or another, be dealing with probabilities,
we briefly introduce the most important parts of probability theory we use.

Definition 1.3.1 (Probabilities). Let Ω be a set, A Ă P pΩq and P : A Ñ R. The triple
pΩ,A, Pq is a probability space if the following conditions are met.

• H, Ω P A.

• If X P A, then also ΩzX P A

• If Xi P A holds for each Xi in the sequence pXiqiPN, then YiPNXi P A.

• P pΩq “ 1, P pHq “ 0.

• If Xi P A holds for each Xi in the sequence pXiqiPN and Xi X Xj “ H for all i, j P N,
then P pYiPNXiq “

ř

iPN P pXiq.

The first three conditions ensure that the set of events A is a σ-algebra on Ω, and the last
two conditions define P as a probability measure on A.

Definition 1.3.2 (Conditional probability). For a probability space pΩ,A, Pq and two events
A, B, the conditional probability of A given B, denoted P

`

A | B
˘

is PpAXBq
PpBq .

In the sequel, we shall often adhere to the notation Pr rAs, which designates the
probability of some event A, given as a logical expression. This notation is short for
Ppset of events where A is trueq in a suitable probability space.

Definition 1.3.3 (Random variable). A random variable is a function X : Ω Ñ R where
pΩ,A, Pq is a probability space. Often a random variable is defined by introducing a
probability density function fX : B Ñ R such that B Ď R,

ş

B fXpxqdx “ 1 and PrrX P Ms “
PpMq “

ş

M fXpxqdx.

In our discussions, we mostly skip the formal foundations and use a more simple
notation. If the probability space is obvious from the given context, we write Pr rXs for
the probability of the event X. In some cases, to clarify that a specific probability space
pΩ,A, Pq is to be used, we use the notation PrXPA r¨s, or, if the context associates a unique
identifier x with a probability space, Prx r¨s.

For the sake of completeness, we introduce Markov chains as the basis for generalized
Markov models. The introduction of Markov chains also introduces some terminology that
will be used in this thesis.

Definition 1.3.4 (Discrete-time Markov chain). Let n P N, S “ rns be a set of states,
~q “

`

q1, . . . , qn
˘

P Rn a stochastic vector, and P P Rnˆn a stochastic matrix. Then the
sequence pXtpS, P,~qqqtPN of random variables on S is defined as follows.

Pr
“

X1pS, P,~qq “ s
‰

“ qs

Pr
”

Xi`1pS, P,~qq “ s | XipS, P,~qq “ s1
ı

“ Pps1, sq
(1.1)

5

1. INTRODUCTION

We call such a sequence a Markov chain on S with transition probability matrix P and initial
distribution~q.

The individual states in a Markov chain can be classified with respect to their reachability
properties. We call a state i in a Markov chain

• absorbing, if the transition probability (or rate) to a state j ‰ i from state i is zero,

• reachable from state j, if there is a path with nonzero transition probability (rate) from
state i,

• recurrent, if the probability to return to i is 1,

• transient, if i is not recurrent.

1.4 Basic concepts of computational complexity theory

In this work, we also discuss computational complexity aspects of some problems which
arise in the discussion of bounded-parameter Markov decision processes. In order to
do this, we need to introduce several terms which help us to define the complexity of a
problem precisely. A more thorough introduction can be found e.g., in the book of Arora
and Barak [AB09], here, we concentrate on the important results.

Complexity theory deals, in general, with the resource requirements that are imposed
when a certain problem has to be solved. To establish upper and lower bounds for needed
resources, we need to formally define the notion of a problem. Intuitively, we associate a
problem with deciding if an element x of some larger set X is also an element of a subset
Y Ď X. For convenience, our definition imposes more structure upon X.

Definition 1.4.1 (Languages and problems). Let Σ be a finite set. We then call Σ an alphabet
and L Ď Σ˚ a formal language over Σ which may contain finite words of the form w “

σ1σ2 . . . σn such that σi P Σ, i P rns, |w| :“ n. The word problem for a given language L is the
task to decide, for a word w P Σ˚, if w P L. Furthermore, we define a computational problem
to be a language L together with the word problem for L.

In the future, we use less formal language to discuss problems, however, if we talk
about a problem, we implicitly assume that it can be stated as a word problem; thus,
problems are by default decision problems. It is easy to see that this view is limited and does
not (obviously) capture usual computational tasks such as computing a matrix product.
However, this perspective is still sufficiently expressive: it is possible to restate almost all
known problems as decision problems by asking a sequence of binary decision questions
about each bit of the output.

The central notion in computational complexity is the idea of a reduction. Reductions
introduce a partial order on problems and allow one to meaningfully compare problems
with respect to their hardness and to say things like “Problem X is not harder than problem
Y”.

Definition 1.4.2 (Reduction). Let L1, L2 be languages over alphabets Σ1, Σ2. A reduction
from L1 to L2 is a function f : Σ˚1 Ñ Σ˚2 that satisfies w P L1 ô f pwq P L2.

To define complexity, i. e., the amount of needed resources, we now face the problem of
picking a machine model on which the time and space requirements are measured. It is not
obvious that machine models have similar expressive power and it is even less obvious that
same problems require similar space and time on different machine models. However, all
general-purpose computation models (except for possibly quantum computers [Sho94]) do
not falsify the (extended) Church-Turing thesis [vEB90].

6

1.4. Basic concepts of computational complexity theory

Conjecture 1.4.1 (Extended Church-Turing thesis). The intuitive notion of computability
is equivalent to the formal notion of computability on a Turing machine; furthermore,
every deterministic machine model can be simulated on a Turing machine with at most
polynomial space and time costs, measured as function of input word length |w|.

Hence, we assume our machine model to be a random access machine (RAM) with
constant costs for any arithmetic and memory access operation. The polynomial slowdown
mentioned in the extended Church-Turing thesis also motivates a notion of “acceptable” or
“efficient” complexity: we consider a problem to be efficiently solvable if the computational
problem can be decided in polynomial time, as polynomial speedups and slowdowns are
due to machine model.

Definition 1.4.3 (Polynomial reductions and the class P). Let L1, L2 be languages. If there
exists a reduction f from L1 to L2 which can be computed in polynomial time with respect
to input size, then we write L1 ďp L2 and say that f is a polynomial reduction.

The class P (“polynomial”) is the class of all problems that can be solved in polynomial
time.

Often, however, problems are not known to be in P. Sometimes this can be proven by
showing exponential lower bounds; in some cases, there are no obvious hints. A large
number of interesting and relevant computational problems are known to belong to NP, a
superset of P which is similar to P insofar as it extends P by non-deterministic additional
information, or advice. Intuitively, NP allows one to “guess” an advice string of at most
polynomial length with which, then, the problem can be solved in polynomial time.

Definition 1.4.4 (Non-determinism and the class NP). The class NP (“non-deterministically
polynomial”) is the class of all problems that can be solved with a non-deterministic RAM
in polynomial time, i.e., a language L over Σ is in NP if and only if for each x P L there is a
y P Σ˚, |y| “ |x|Op1q such that the language L1 “ px, yq is in P.

The classes P and NP are important in the sense that P captures the problems which can
be solved efficiently while the class NP captures the problems for which a solution can be
efficiently verified. NP obviously contains P but there are no results that imply P “ NP or
P ‰ NP. As previously noted, there are several important and interesting computational
problems in NP for which no polynomial algorithm is known; furthermore, some of these
are problems which are as complex as any other problem in NP. This notion is formalized
with the help of reductions.

Definition 1.4.5 (Hardness and completeness). Let L be a language, F a set of reductions,
and C any complexity class. If, for any L1 P C there is a reduction f P F from L1 to L, then L
is said to be C-hard under F; if L is C-hard and L P C, then L is said to be C-complete under F.

We restrict ourselves to the class of polynomial reductions, so, whenever we argue about,
say, NP-hardness, then we mean NP-hardness under polynomial reductions.

Many decision versions of mathematically interesting combinatorial problems are NP-
complete; among others, deciding if a graph contains a Hamiltonian path, a cycle of at most
given weight, or a complete subgraph of a given size, deciding if a set of integers has a
subset whose sum has a given value, or deciding if a Boolean formula is satisfiable [Kar72].
For several problems for bounded-parameter Markov decision processes, we show that
they are NP-hard or NP-complete, too, by reducing from known NP-hard problems. Many
years of research did not deliver a polynomial-time algorithm for any of these and many
other NP-complete problems. This gives a reason to assume that P ‰ NP implying that
there is no algorithm that can efficiently solve all instances of any NP-hard problem.

It is worth noting that being NP-hard does not make a problem intractable in practice;
many NP-hard problems such as Boolean satisfiability or traveling salesperson problems

7

1. INTRODUCTION

allow for heuristics that can solve many large instances efficiently [MZ09, Hel00]; however,
a large worst-case lower bound implies at least potential problems and prohibitively slow
computation of exact solutions on some large instances. In this work, we see that some of
the considered problems are NP-hard or NP-complete which is in many cases a sufficient
justification to switch to generic methods such as mathematical programming and use
mathematical programming solvers as subroutines. Such subroutines are called oracles in
the complexity theory world and with the help of oracles, more important problem classes
can be captured.

Definition 1.4.6 (Oracles and Σp
2). Let L, L1 be languages and C a complexity class. If L can

be decided with an algorithm that calls to a subroutine that decides L1, and the complexity
of the algorithm except for the call to this subroutine is in C, then L can be decided with a
CL1 algorithm, a C algorithm with an oracle for L1.

The class NPNP, the class of all non-deterministically polynomial algorithms with an
oracle for an NP-complete problem, is also known as the class Σp

2 .

1.5 Markov decision processes and extensions

We now introduce the formalism around which this thesis is centered. Informally, a Markov
decision process is a Markov chain with rewards and the possibility to select, after each
transition, the transition probabilities from some pre-defined set. We briefly cover the terms
and main results on Markov decision processes. A more in-depth discussion on the general
formalism can be found in [Put94, Kal16].

1.5.1 The model

Definition 1.5.1 (Markov decision/reward process). Given a set of states S “ rns, a stochas-
tic transition matrix P P Rnˆn with row sum 1, a reward vector ~r P Rn, and an initial
distribution vector ~q P R1ˆn

ě0 with ~qJ~1 “ 1, a Markov reward process is a tuple pS, P,~r,~qq
that defines a sequence of random variables pXiqiPN where Pr rX1 “ ss “ ~qpsq, and Xi`1 for
i P N is subject to the probability distribution Pr

“

Xi`1 “ s | Xi “ s1
‰

“ Pps, s1q.
For a set of states S “ rns, actions A “ rms, a reward vector~r P Rn, m stochastic transition

matrices T “
!

P1, . . . , Pm
)

Ă Rnˆn, and a stochastic vector ~q, a Markov decision process is

a tuple pS, A, T,~r,~qq which, for a sequence of actions patqtPN P AN, defines sequences of
random variables pXtq and pRtq where X1 P S is set according to Pr rX1 “ ss “ ~qpsq, and
Xi`1 for i P N is subject to the probability distribution Pr

“

Xi`1 “ s | Xi “ s1, ai
‰

“ Paips, s1q;
furthermore, Rt is defined as Rt “~rpXiq.

For convenience, in the Markov decision process context, we write Pr
“

s1 | s, a
‰

for
Paps, s1q to designate the transition probabilities as probabilities and not just as real numbers.

1.5.2 Alternative definitions and formalisms

In literature such as [Put94], one often defines Markov decision processes in a different
fashion. Especially, it is often assumed that a one-time reward not only depends on the state
one is starting from, but also on the state after the transition and the action the controller
has performed. Here, we want to argue that mathematically, our model also covers this
case. Suppose there is a function R : Sˆ Aˆ S Ñ R such that Rps, a, s1q is the reward we
get after transitioning from s to s1 after choosing action a.

Then, we introduce a virtual state s̃ps, a, s1q for all triples ps, a, s1q P S ˆ A ˆ S such
that after selecting an action a P A, the system transitions first into the state s̃ps, a, s1q
with the respective probability Pr

“

s1 | s, a
‰

and then transitions into s1 with probability 1

8

1.5. Markov decision processes and extensions

(independent of the action selected in s̃ps, a, s1q), generating the reward Rps, a, s1q. Together,
we derive an MDP

ˆ

SZ
!

s̃ps, a, s1q | s, s1 P S, a P A
)

, A, T,~r,~q
˙

with

Paps, s̃ps, a, s1qq “ Pr
”

s1 | s, a
ı

Paps̃ps, a, s1q, s1q “ 1

~rps̃ps, a, s1qq “ Rps, a, s1q
~rpsq “ 0 for s P S

Thus, we can efficiently eliminate a possible dependence of the rewards from the after-
transition states. We note that this equivalence works by also transforming the goal function;
in a way, the concept of “model equivalence” is similar to the concept of reduction we have
defined above in the context of computational complexity.

We observe furthermore that our definition does not allow for states to have differing
numbers of possible actions. However, this limitation can be ignored by using one action
more than one time in states which have less than the maximal number of actions. In some
of our proofs we will construct Markov decision processes which have different numbers of
actions in different states; however, as it has been said, these MDPs can be represented with
the formalism above.

1.5.3 Policies and objectives

For a Markov decision process (and its variants), several performance criteria have been
proposed. We discuss some of these criteria in the context of Markov decision processes with
uncertain parameters. The most important term in this context is the term of a policy which
can be judged upon with the help of one of the introduced performance criteria. Informally
speaking, a policy defines actions that shall be performed given a certain condition; formally,
a policy is a function f : S` ˆ A Ñ R that maps (finite) histories of states to probability
distributions on the action space. A policy f generates, for a Markov decision process
M “ pS, A, T,~r,~qq an immediate reward at step i

rp f q
i “

ÿ

aPA

f ppH, siq, aq ¨ rsi

if si is the current state and H P S˚ is the sequence of states preceding si.
We call a policy f

• stationary if it depends only on the current state, i. e., if it is f ppH, sq, aq “ f ppH1, sq, aq
for all H, H1 P S˚.

• deterministic if it always maps a history to a Dirac distribution, i. e., f p¨, aq P t0, 1u,

• pure if it is stationary and deterministic,

• mixed if it is stationary, but not pure.

To clarify the nomenclature, we denote general policies with Latin identifiers, such as f ;
for pure policies, we use Greek identifiers, such as π or σ. Stationary policies are denoted
with capital Greek identifiers such as Π. Furthermore, we introduce short notation for
stationary and pure policies: we write πpsq for the action a where πp¨, s, aq “ 1 and Πps, aq
for Πpp¨, sq, aq.

9

1. INTRODUCTION

It is easy to see that a stationary policy π induces a Markov reward process with
transition matrix Ppπq and reward vector~r, as the transition probabilities under π depend
only on the current state; this makes it mathematically easier to handle stationary policies;
thus, the interest in stationary policies is justified from an “internal”, mathematical as well
as from an “external”, user-centric point of view.

Having defined the notion of a policy, we now introduce tools which can measure the
performance of a given policy f in a given Markov decision process

`

S, A, T,~r,~q
˘

.
Many performance measures we define depend on one free parameter we have only

briefly mentioned, namely the initial distribution. Different initial distributions will lead
to different distributions over the random states in the state sequence, and thus, lead to
different rewards. For performance measures that depend on the initial distribution, it
is possible to aggregate all initial distributions by computing the performance measure v
for every starting state, i. e., by computing a function vp f qpsq “

”

vp f q | X1 “ s
ı

that maps
states to the reward measure with this starting state. This function is called a value vector
~vp f q P Rn and, in many cases, finding a policy that maximizes the reward measure for one
specific initial distribution also yields a policy that optimizes the value vector as a whole.
In the following discussion, we understand under “optimization”, unless explicitly stated
otherwise, maximization of the value vector. This means that an optimal policy f adheres to
f “ arg max f ~qJ~vp f q. This notion of optimality implies that there may exist more than one
policy which is optimal. Sometimes we might be interested in stationary or pure policies
only; then, the existence of an optimal pure or stationary policy means the existence of a
policy which is optimal in the sense defined above and, additionally, is pure or stationary.

Expected total reward A straightforward performance indicator is the expected total reward
defined by the term

vp f q
Σ “ Ex

»

–

8
ÿ

i“1

rp f q
i

fi

fl . (1.2)

We note that this sum does not need to converge. It does not converge if there exists
at least one recurrent state with positive reward, and in general, convergence can only
be guaranteed if there exist absorbing states with zero reward which are reached with
probability 1. This puts a limitation on the nature of models we can consider.

Expected finite-horizon total reward To keep the mathematical properties of the expected
total reward measure but to ensure also finiteness we can truncate the computation of the
expected total reward after a fixed amount of steps. This amount N P N is called a horizon,
and the reward term turns out to be

vp f q
N “ Ex

»

–

N
ÿ

i“1

rp f q
i

fi

fl . (1.3)

Expected average reward One useful property of the expected total reward is that this
measure represents the behaviour of a policy in the infinite. For this task, we introduce two
performance criteria that work independent of the nature of the underlying MDP model
and converge at all times. Both of them are motivated by the expected total reward measure.
As the latter does not need to be finite, it can be made finite by considering the average gain
for a time step in the long run. This measure, the expected average reward or expected gain, can
be formalized by

vp f q
8 “ Ex

»

– lim
NÑ8

1
N

N
ÿ

i“1

rp f q
i

fi

fl . (1.4)

10

1.5. Markov decision processes and extensions

It can be shown [LL69] that this limit always exists for stationary policies and that there

exists an optimal stationary policy, that is, a stationary policy f “ arg max
f : vp f q

8 exists
vp f q
8 .

Computing the expected average reward is non-trivial for general non-stationary policies
as the limit in (1.4) does not need to exist; here, we show how it can be computed for a
stationary policy f . Following [Put94], it is possible to show that the expected average

reward ~vp f q
8 has the following properties.

Pp f q~vp f q
8 “ ~vp f q

8

~r´~vp f q
8 ` Pp f q~h “~h

(1.5)

The vector~h is also known as the bias vector and describes the state-dependent constant

term in the formula~hpsq ` t~vp f q
8 psq for the expected gain after t steps, starting in state s.

Expected discounted reward There are two downsides of the expected gain measure.
First, it is not guaranteed that the limit in (1.4) converges for general, not necessarily
stationary policies. For example, consider a two-state MDP that is depicted in Fig. 1.1. The
states offer rewards of ´1 and 1, respectively, and it is possible to move to either of these
states arbitrarily. In this MDP, one can devise a policy f˘ with the following behaviour: For
i P N0, the policy stays for 2i time steps in s1, gathering a total reward of ´2i, and then,
f˘ stays for 2i time steps in s2, gathering a total reward of 2i. Then f˘ returns to s1 and
stays there for 2i`1 steps, gathering a total reward of ´2i`1 and so on. For k P N0, the total
reward after 2p2k`1´ 1q steps will be then zero, and the total reward after 2p2k`1´ 1q` 2k`1

steps will be ´2k`1. Hence, the average reward after N steps is then, depending on N,
somewhere between 0 and ´1{3 and the limit in (1.4) does not exist.

s1 : ´1 s2 : 1

a

b

a

b

Figure 1.1: A Markov decision process with a non-convergent policy

Second, the expected average measure does not differentiate between early and future
gains. To cope with both issues, we can introduce a discount factor γ P r0, 1q which describes
the “importance damping” of gains, i. e., how much less important tomorrow’s profits in
comparison to those of today are.

To address these issues we introduce a different performance indicator, the expected
discounted total reward

vp f q
γ “ Ex

»

–

8
ÿ

i“1

γi´1rp f q
i

fi

fl . (1.6)

We note that this sum always converges as there exists an upper bound on the reward (since
we consider finite-state MDPs). Furthermore, one can show that for stationary policies, the
optimal policies for γ Ñ 1 converge to optimal policies for the expected average reward
measure if the rewards are bounded [LL69] (which is always the case for finite-state and
finite-action models).

Remark. In the fully general case, a policy can depend on the complete history of a Markov
decision process. However, in many applications, it may require infinite memory and thus,

11

1. INTRODUCTION

it seems natural to consider policies that depend only on the current state. The optimality
of such policies depends largely on the kind of optimality measure; for some optimality
measures such as the expected gain and expected discounted total reward, there exists
an optimal deterministic policy that only depends on the current state [Put94]; for other
measures, only policies with access to the full history are optimal.

1.5.4 Optimization of Markov decision processes

For the reward measures described above, there exist several general algorithms that
find optimal policies efficiently. We briefly describe them and their properties; a more
detailed discussion can be found in [Put94]. Without limitation of generality we consider
maximization to be the main optimization direction; for minimization, symmetric arguments
apply.

Dynamic programming and value iteration For total reward measures, the dynamic
programming approach is straightforward as well as efficient. Intuitively, the approach
consists of computing the optimal decision “in the end” where no further decisions can
be made and then, by backwards induction, find optimal decisions for the preceding step
under the assumption that the next step has been computed optimally. Together, this yields
Algorithm 1.

Algorithm 1 Dynamic programming algorithm for optimization of finite-horizon total
expected reward

function FINITEHORIZONDYNAMICPROGRAMMING(S, A, T,~r, N)
for s P S do ~vN Ð~r
for i “ N ´ 1, . . . , 1 do

for s P S do
~vipsq Ð~rpsq `maxaPA Paps‚q~vi`1 Ź Compute the expected value
f pi, sq Ð arg maxaPA Paps‚q~vi`1

return ~v1, f

This approach is also known as value iteration. One can observe from the structure of
the algorithm that the resulting policies depend on the state and the time step, and are
deterministic. The algorithm needs N iterations of the outer loop and in each of these
iterations, |S| inner loop iterations. Together, this makes O

`

N ¨ |S||A|
˘

time steps.
A similar approach can be used for optimizing the expected discounted reward. There,

we do not have a finite amount of steps, but a convergence guarantee that stems from
Banach’s fixed point theorem [Cie07]. The modified algorithm is presented in Alg. 2. The
algorithm stops when the difference between the successively computed vectors v and v1

is smaller than εp1´γq
2γ , which implies, after Theorem 6.3.1 in [Put94], that the difference

between the resulting vector v and the true value vector defined in (1.6) is at most ε
2 for a

given precision parameter ε ą 0. The difference between the value vector of the resulting
policy π and the value vector of an optimal policy will be at most ε.

For convenience, we provide the main argument for this statement. Banach’s fixed point
theorem states, that for a norm‖¨‖ on Rn and a contraction mapping L : Rn Ñ Rn which
satisfies‖Lp~vq ´ Lp~uq‖ ď γ‖~v´~u‖ for some γ P r0, 1q, a unique fixed point ~v˚ exists with
Lp~v˚q “ ~v˚ which can be computed by iteratively applying LpLp. . . Lp~vqqq for any vector ~v.
Let ~v0 “ ~v and ~vn “ Lp~vn´1q for n P N. Using the properties of contraction mappings and

12

1.5. Markov decision processes and extensions

the triangle inequality, it is possible to derive∥∥~v˚ ´~vn`1
∥∥ “∥∥Lp~v˚q ´~vn`1

∥∥
ď
∥∥Lp~v˚q ´ Lp~vn`1q

∥∥`‖Lp~vn`1q ´~vn`1‖
“
∥∥Lp~v˚q ´ Lp~vn`1q

∥∥`‖Lp~vn`1q ´ Lp~vnq‖
ď γ

∥∥~v˚ ´~vn`1
∥∥` γ‖~vn`1 ´~vn‖ô∥∥~v˚ ´~vn`1

∥∥ ď γ

1´ γ
‖~vn ´~vn`1‖ .

This means that if‖~vn ´~vn`1‖ ď εp1´γq
2γ , then |~v˚ ´~vn`1| ď ε

2 .

Algorithm 2 Dynamic programming algorithm for optimization of expected discounted
reward

function VALUEITERATION(S, A, T,~r, γ)
~v,~v1 Ð~0 P Rn

while δ ě
εp1´γq

2γ do
for s P S do

~v1psq Ð~rpsq ` γ maxaPA Paps‚q~v
πpsq Ð arg maxaPA Paps‚q~v

δ Ð maxsPS
∣∣~vpsq ´~v1psq

∣∣
~v Ð ~v1

return ~v, π

We note that the policy computed by Alg. 2 is pure. In fact, it can be shown that for this
performance measure, there always exists an optimal pure policy that corresponds to the
fixed point of the outer loop in Alg. 2.

Policy iteration A similar result can be shown for the expected average reward measure:
in this case, too, there always exists an optimal pure policy. Furthermore, a locality property
can be shown: a pure policy which cannot be optimized by changing its behaviour in one
state, i .e. a locally optimal policy, is also globally optimal. This gives rise to the policy
iteration approach which is a local improvement algorithm for policies which yields optimal
policies for the expected average reward and expected discounted reward measures. In the
pseudo-code description, the concrete reward measure is designated by a function v.

Algorithm 3 Generalized policy iteration scheme
function POLICYITERATION(S, A, T,~r,~q, v)

π Ð~0 Ź Initialize an arbitrary policy
while π changes do

for ps, aq P Sˆ A do
π1 Ð π
π1psq “ a
if vpπ

1qpS, A, T,~r,~qq ą vpπ
1qpS, A, T,~r,~qq then

π Ð π1
return π

The general scheme is depicted in Algorithm 3 where v is an arbitrary optimality
criterion for pure policies. The concrete formulation of the algorithm may vary with the
optimality criterion. So, for the expected average reward, the policy iteration algorithm has
the following form [Vei66, Put94].

13

1. INTRODUCTION

Algorithm 4 Subsection 9.2.1, [Put94]: Policy iteration for the expected average criterion in
MDPs

1: function AVERAGEPOLICYITERATION(M “ pS, A, T,~r,~qq)
2: n Ð 0, select an arbitrary decision rule π0
3: repeat
4: Compute ~g P Rn,~h P Rn such that Pπn~g “ ~g,~rπn ´~g`

`

Pπn ´ I
˘

~h “~0
5: Choose a πn`1 that satisfies

πn`1 P arg max
π

Pπ~g, (1.7)

keeping πn`1 “ πn, if possible.
6: if πn`1 “ πn then
7: Choose a πn`1 that satisfies

πn`1 P arg max
π

´

~rπ ` Pπ
~h
¯

, (1.8)

keeping πn`1 “ πn, if possible.
8: n Ð n` 1
9: until πn “ πn´1

10: return πn

Linear programming formulations As with most optimization problems, there also exists
a linear programming formulation for Markov decision problems [Man60, d’E63, Put94,
DD05]. The problem of interest here is optimizing the expected discounted reward measure.
Its main property is that the value vector ~vpΠq for a (stationary) policy Π can be written
as a solution of a linear equation system~r` γPpΠq~vpΠq “ ~vpΠq where PpΠq is defined by
PpΠqps‚q “

ř

aPA Πps, aqPaps‚q. This yields a linear program which computes the optimal
value vector; this formulation has been derived by Manne [Man60].

min~1J~v
s.t.

~r` γPa~v ď ~v @a P A
(1.9)

The corresponding dual linear program has been introduced by d’Epenoux [d’E63,
Kal83].

max
ÿ

sPS

ÿ

aPA

xs,a~rpsq

s.t.
ÿ

aPA

xs,a ´ γ
ÿ

aPA,s1PS

Paps1, sqxs1,a “ ~qpsq @s P S

xs,a ě 0 @ps, aq P Sˆ A

(1.10)

This formulation has several interesting properties. First, the goal function coefficients in
the primal LP can be arbitrary non-negative values and lead to the same value of ~v. Second,
the optimal policy can be read from the solution by looking at the rows of the primal LP
that are tight; if the constraint

~rpsq ` γPaps‚q~v ď ~vpsq (1.11)

is tight, that is, if it is~rpsq ` γPaps‚q~v “ ~vpsq, then the optimal policy selects the action a in
state s. Third, by complementary slackness, the variables xs,a in the dual formulation that

14

1.5. Markov decision processes and extensions

correspond to the rows in (1.9) are nonzero if and only if the constraint (1.11) is tight. This
means that the variable xs,a in the dual formulation can be used as “decision variable” that
is nonzero if and only if the optimal policy selects the action a in state s. However, these
are not decision variables in the sense of combinatorial optimization, as they do not have
to be integral. The most common interpretation for these variables is that they describe
“discounted visitation frequencies” of states that contribute to the cumulative reward.

Nevertheless, there are ways to derive integral variables from the variables of the dual
formulation [DD05]. A simple way to do so is by introducing additional integer variables
ds,a P t0, 1uwith the constraints ds,a “ 1 ô xs,a ą 0; alternatively, an equivalent constraint is
ds,a “

xs,a
ř

a1PA xs,a1
. In general, this constraint cannot be written as a linear inequality; however,

here we know that xs,a has an upper bound of 1
1´γ as the rewards from a state s are bounded

by ~rpsq
1´γ . This allows us to impose the constraint ds,a ¨

1
1´γ ě xs,a for all ps, aq P Sˆ A and

ř

aPA ds,a “ 1 for all s P S. Together, we can derive the following mixed-integer linear
program.

max
ÿ

sPS

ÿ

aPA

xs,a~rpsq

s.t.
ÿ

aPA

xs,a ´ γ
ÿ

aPA,s1PS

Paps1, sqxs1,a “ ~qpsq @s P S

ÿ

aPA

ds,a “ 1 @s P S

ds,a ě p1´ γqxs,a @ps, aq P Sˆ A
xs,a ě 0 @ps, aq P Sˆ A
ds,a P t0, 1u @ps, aq P Sˆ A

(1.12)

From the complexity-theoretic point of view, it is easy to see that almost all MDP
problems can be solved in polynomial time. As we extend the MDP formalism, an important
question is if this property can be kept.

1.5.5 Continuous-time processes and uniformization

A large body of research deals with the question what happens if the transition times in a
Markovian decision process are not equal but also distributed according to a memoryless
distribution which depends on the state (and sometimes the selected action). Following this
research question, one arrives at the continuous-time MDP model. Its main characteristic is
that the evolution of the underlying system is defined by a system of (linear) differential
equations. In the next paragraphs, we give a brief overview of the formalism and describe a
method to analyse some aspects of continuous-time MDPs with algorithms for discrete-time
Markov decision processes.

Continuous-time Markov chains Similarly to a discrete-time Markov chain, one can de-
fine continuous-time Markov chains where the transition times are governed by exponential
distributions. Concretely a continuous-time Markov chain can be represented by a stochas-
tic vector ~q0 P R1ˆn and a rate matrix Q P Rnˆn for which the properties Q~1 “ ~0 and
Qpi, jq ě 0 for all i ‰ j with i, j P rns hold.

The evolution of a continuous-time Markov chain can be described as follows. The
system stays in a state s P S for a time interval which is negative exponentially distributed
with rate Qps, sq and then performs a transition to another state s1 with probability Qps,s1q

´Qps,sq .

15

1. INTRODUCTION

A global representation of this dynamics is the differential equation [Kol31]

d~pptq
dt

“ ~pptqQ

~pp0q “ ~q
(1.13)

where ~pptq is the probability distribution of the Markov chain being in a given state at time
t. The solution to this equation is ~pptq “ ~q exppQtq where the matrix exponential exppMq is
defined by the infinite sum

exppMq “
8
ÿ

i“0

Mi

i!
. (1.14)

Continuous-time Markov decision processes With a continuous-time Markov chain for-
malism, we arrive at a formalism for continuous-time MDPs.

Definition 1.5.2. Given a Markov decision process
`

S, A, T,~r,~q
˘

and a vector ~β P Rn with
~β ą 0, a continuous-time Markov decision process (CTMDP) is a tuple

´

S, A, T,~r,~q,~β
¯

. A
CTMDP defines not only a sequence of states as described in Def. 1.5.1, but also a sequence
of sojourn times pYtqtPN where Yt is exponentially distributed with parameter ~βpXtq.

Together, they define a family of random variables pYxqxPRě0
with Yx “ Xt if

ř

t1ăt Yt1 ă

x and
ř

t1ďt Yt1 ě x.

This definition expands the MDP formalism by the notion of transition times. It is easy
to see that the system retains its Markovian property: The sojourn time does not depend
on the starting point of the observation. Mathematically speaking, for an exponentially
distributed transition time Y it is Pr rY ě xs “ Pr

“

Y ě T` x | Y ě T
‰

for all x ě 0, T ě 0.
The finite-horizon total reward for a time horizon T in this model is formalized by the

integral expression
ż T

0
~rpYxqdx (1.15)

which allows us to derive the expected average total reward

lim
TÑ8

1
T

ż T

0
~rpYxqdx (1.16)

and the expected discounted total reward with a discount rate α ą 0

ż 8

0
expp´αxq~rpYxqdx. (1.17)

Uniformization Analysing continuous-time MDPs means, in the most general case, ana-
lyzing a continuous-time system that is governed by a set of differential equations [Put94];
especially the finite-horizon case is less simple to analyse as the number of transitions in a
finite time interval can be unbounded. We note here that even for the finite-horizon case
optimal policies can be computed [BDS17b], but as our main results consider “stationary”
optimality criteria such as the expected discounted total reward and the expected average
reward, we provide a tool that enables to analyse continuous-time MDPs with discrete-time
methods with respect to these criteria [Put94].

The uniformization technique amounts to two steps: First, the stochastic process is
transformed into a process with uniform sojourn time distribution in all states. Second, as
the sojourn times are distributed equally, the expected rewards in each state are computed

16

1.6. Stochastic games

and only the transition probabilities with these new rewards are considered, which allows
one to use discrete-time methods.

Informally, the first step of the uniformization procedure transforms the continuous-time
process into another continuous-time process where the transition events occur with equal
frequency in each state. For this, the transition probabilities are modified in order to keep
the total sojourn time.

Concretely, to transform a continuous-time MDP pS, A, T,~r,~q,~βq into a discrete-time
MDP pS, A, Tu,~ru,~qq, the following steps have to be made. First, the uniformization rate
β˚ ě maxiPS ~βpiq is chosen. Then, a CTMDP pS, A, Tu,~r,~q, β ~̊1q is computed by defining
Tu “

!

P1
u , . . . , Pm

u

)

with

Pa
ups, s1q “

$

’

&

’

%

1´ p1´Paps,sqq~βpsq
β˚ s “ s1

Paps,s1q~βpsq
β˚ s ‰ s1

(1.18)

Then, the rewards have to be adjusted. For the expected average total reward, we set

~rupsq “
~rpsq
β˚

. (1.19)

For the expected discounted total reward, we set

~rupsq “
~rpsq

β˚ ` α
(1.20)

and introduce the discount factor γ “
β˚

β˚`α . It can be shown that a stationary policy will
yield for these uniformized processes the same optimality values as for the original CTMDPs,
which allows us to use discrete-time analysis methods in order to find optimal policies for
the expected average and expected discounted reward criteria [Ser79, Put94].

1.6 Stochastic games

It is easy to see that we can consider a Markov decision process as a game where the
controller can choose actions and the randomness chooses following states. This view can
be generalized in a natural way to more parties. For us, of special interest is the two-player
case, where two parties can control the system, the controller (CON) and Nature (NAT).

In the literature [Sha53, FV97], these processes are known as stochastic games. Informally,
in a stochastic game, CON and NAT choose from two pools of available actions; the action
pair combined with the current state defines a probability distribution on the next state and
a reward value.

Definition 1.6.1 (Stochastic game). For a set of states S “ rns and two action sets AC, AN ,
a stochastic game is a tuple pS, AC, AN , P,~rC,~rN ,~qqwhere P : Sˆ AC ˆ AN Ñ S Ñ R is, for
every triple ps, aC, aNq, a probability distribution on states,~q P Rn is a stochastic vector, and
~rN ,~rC P Rn are reward vectors.

The semantics of a stochastic game is straightforward: At each discrete time step t, t P N,
the formal system is in a state s P S. CON chooses an action aC from the controller action
set AC and NAT chooses an action aN from the nature action set AN . Then, an immediate
reward prC, rNq “

`

~rCpsq,~rNpsq
˘

is being paid off; CON gains~rCpsq reward units and NAT
gains~rNpsq reward units. Then, the system performs a transition to a state s1 P S with
probability Pps, aC, aNqps1q. Formally, a stochastic game together with a sequence of action
pairs paC,i, aN,iqiPN define a sequence pXiqiPN of random variables with the distributions

17

1. INTRODUCTION

Pr rX1 “ ss “ ~qpsq and Pr
“

Xi`1 “ s1 | Xi “ s, aC,i “ aC, aN,i “ aN
‰

“ Pps, aC, aNqps1q. The
sequence pXiqiPN also defines a sequence of random reward pairs prC,i, rN,iqiPN with rC,i “

~rCpXiq and rN,i “~rNpXiq.
It is important to distinguish an important subclass of stochastic games with special

semantics: In a perfect information stochastic game, NAT and CON perform actions by
alternating their moves, that is, both players can observe the results of each other’s action
before making the next move. This is modeled by separating the state set S into two disjoint
subsets, the controller set SCON and the nature set SNAT with S “ SCON Z SNAT; the semantics
is such that Pps, aC, aNq “ Pps, aC, a1Nq for s P SCON and all aN , a1N P AN , and, symmetrically,
Pps, aC, aNq “ Pps, a1C, aNq for s P SNAT and all aC, a1C P AC.

For a stochastic game, the most interesting question is if there is a policy for CON which
maximizes her overall performance measure while NAT tries to maximize her own overall
performance measure. The answer to this question mainly depends on the structure of~rN
and~rC and the chosen optimality criteria. For the latter, we assume that the optimality
criteria are the same for both players (and have the same optimization direction), that is, if
prC,iqiPN and prN,iqiPN are the payoff sequences for each of the players, then the optimality
criterion can be described by a single function v : RN Ñ R such that the goal function vC
for CON is vpprC,iqiPNq and the goal function vN for NAT is vpprN,iqiPNq. For the former, we
consider two cases that are most important to us, namely, the cooperative and the competitive
cases.

The cooperative case ~rC ě~0,~rN “~rC

The competitive case ~rC ě~0,~rN “ ~́rC

It is easy to see that in the cooperative case, there is no conflict in the goals of CON and
NAT. This means that finding the optimal policy for the cooperative case can be performed
with the methods known from Markov decision process optimization. In fact, replacing both
players with one party leaves us with a Markov decision process (under the assumption
that the optimality criteria for both players are the same).

Optimal policies for stochastic games Previously, we have established that cooperative
stochastic games are equivalent to Markov decision processes. Here, we consider competi-
tive stochastic games and briefly outline the most important algorithms that find optimal
policies. A more complete discussion is available in the original work of Shapley [Sha53]
and in the textbook of Filar and Vrieze [FV97]; the facts that are mentioned here are reduced
to the ones we need in the rest of our work.

A policy pair in a stochastic game is a pair of functions fC : S` ˆ AC Ñ r0, 1s , fN : S` ˆ
AN Ñ r0, 1s that define probability distributions over actions in dependence of previous

visited states and random reward sequences prp fC , fNq
C,i qiPN, prp fC , fNq

N,i qiPN. In analogy to the
MDP case, we assume that there exists an optimality criterion that yields real values

vp fC , fNq
C , vp fC , fNq

N which describe the goal functions of the two players for each policy. We call
a policy pair p f ˚C , f ˚Nq optimal, if the following conditions are met.

• v
p f˚C , f˚N q
C ě v

p fC , f˚N q
C for each fC : S` ˆ AC Ñ r0, 1s

• v
p f˚C , f˚N q
N ě v

p f˚C , fNq

N for each fN : S` ˆ AN Ñ r0, 1s

Now we consider different optimality criteria and the corresponding algorithms. The
optimality criteria are similar to those defined for Markov decision processes.

18

1.6. Stochastic games

The finite horizon total expected reward criterion For a finite horizon N P N, the finite
horizon total expected reward criterion for stochastic games is defined by

vp fC , fNq
C,N “ Ex

»

–

N
ÿ

i“1

rp fC , fNq
C,i

fi

fl

vp fC , fNq
N,N “ Ex

»

–

N
ÿ

i“1

rp fC , fNq
N,i

fi

fl

(1.21)

In the sequel, we only give the optimality criterion for CON, as the criterion for NAT is
defined symmetrically.

To compute an optimal policy pair for the finite horizon total expected reward criterion,
we perform a similar procedure to the one in Algorithm 1, adjusted for the two-player case.
In fact, the most challenging task here is to compute a decision rule that is optimal, as we
move from a simple maximization problem to a max-min problem.

In order to derive a solution, we consider simple one-step two-player games first.

Definition 1.6.2 (One-step game). For finite action spaces AC “ rmCs, AN “ rmNs, a one-
step game is defined by a matrix C P RmCˆmN with the following semantics: If CON chooses
action aC P AC and NAT chooses action aN P AN , then the payoff for CON is CpaC, aNq and
the payoff for NAT is ´CpaC, aNq.

An optimal policy for a one-step game can then be computed by solving the following
linear program.

max v
s.t.

v ď
ÿ

aCPAC

~xpaCqCpaC, aNq @aN P AN

ÿ

aCPAC

~xpaCq “ 1

~x ě~0

(1.22)

The result of this optimization problem is the value of the matrix game defined by C; the
optimal policy is given implicitly in the decision vector ~x. We observe that ~x does not
necessarily have to define a Dirac distribution; hence, for general stochastic games policies
may not necessarily be deterministic.

This result can be used in order to derive optimal policies for stochastic games with
arbitrary finite horizons. In detail, knowing the optimal policy for future steps in step n
and the corresponding value vps1, n` 1q of all states s1 P S in the n` 1st step, the choice for
players CON and NAT in state s corresponds exactly to a one-step game with matrix Cn,s
which is defined by Cn,spaC, aNq “

ř

s1PS Pps, aC, aN , s1qvps1, i` 1q.
For perfect information stochastic games, the structure of the optimization problem

given in (1.22) becomes radically simpler. In CON-controlled states, the matrix C has equal
columns, and the optimal action is the one that chooses the row with the greatest value. In
NAT-controlled states, C has equal rows and, hence, v will be the minimal value that can
result from an action of NAT. In both cases, the resulting policies for CON and NAT are
deterministic.

This gives rise to the following general algorithm inspired by Alg. 1.

19

1. INTRODUCTION

Algorithm 5 Finite-horizon expected total reward optimization algorithm for stochastic
games

function GAMEFINITEHORIZON(S, AC, AN , P,~rC,~rN , N)
~vN Ð~rC
for i P tN ´ 1, . . . , 1u do

for s P S do
for paC, aNq P AC ˆ AN do

CpaC, aNq Ð
ř

s1PS Pps, aC, aN , s1qvps1, i` 1q
v1,~xs,i Ð solution of LP in (1.22)
~vipsq Ð~rCpsq ` v1

Πi Ð
`

~xs,i
˘

sPS

return ~v1,
`

Π1, . . . , ΠN´1
˘

The runtime of this algorithm is polynomial in |S|, |AC|, |AN|, and N.

The expected discounted reward criterion For the expected discounted reward criterion,
we can apply the same reasoning we used in the preceding discussion. The optimality
criterion is defined by

vp fC , fNq
C,γ “ Ex

»

–

8
ÿ

i“1

γi´1rp fC , fNq
C,i

fi

fl . (1.23)

Analogously, we obtain an algorithm that computes optimal value vectors.

Algorithm 6 Finite-horizon expected total reward optimization algorithm for stochastic
games

function GAMEDISCOUNTING(S, AC, AN , P,~rC,~rN , γ)
~v,~u Ð~0
while δ ą

εp1´γq
2γ do

for s P S do
for paC, aNq P AC ˆ AN do

CpaC, aNq Ð
ř

s1PS Pps, aC, aN , s1q~vps1q
δ Ð maxsPS|~vpsq ´~upsq|
v1,~xs Ð solution of LP in (1.22)
~upsq Ð~rCpsq ` γv1

Π Ð p~xsqsPS
~v Ð ~u

return ~v, Π

Again, the convergence of this algorithm can be shown with Banach’s fixed point
theorem: The convergence rate of the value vectors is γ, and we can again apply the
argument in Theorem 6.3.1 from [Put94] to show the error bound of ε

2 . However, there
do not exist superior algorithms. Optimization of infinite-horizon stochastic games, even
perfect-information stochastic games, is a major open problem [BV07] related to other
“game-like” problems such as parity games [Obd06] or mean-payoff games [ZP96], and it is
still unclear whether it can be done in polynomial time independently of the discount factor
γ. It is known that optimization of discounted perfect-information zero-sum two-player
stochastic games is in NPX coNP [Con92], which is supposed to be generally “easier” than
NP-hard problems, but no polynomial-time results are known.

20

1.6. Stochastic games

The average total reward criterion This criterion is defined by

vp fC , fNq
C,8 “ lim

NÑ8

1
N

Ex

»

–

N
ÿ

i“1

rp fC , fNq
C,i

fi

fl . (1.24)

In analogy to Markov decision processes, our approach is to consider the expected
discounted reward criterion for a sequence of discount factors γ1, γ2, . . . with γ1 ă γ2 ă

. . . and limiÑ8 γi “ 1. It can be shown [MN81] that the sequence of resulting policies
converges; furthermore, the convergence holds also for the value vectors multiplied by
p1´ γq. This results in the following algorithm.

Algorithm 7 Optimal policies for the expected average reward criterion, general scheme
function GAMEDISCOUNTINGLIMIT(S, AC, AN , P,~rC,~rN)

i Ð 0,~v Ð8

while δ ą ε do
γ Ð 1´ 2´i

~u, Π Ð GAMEDISCOUNTINGpS, AC, AN , P,~rC,~rN , γq
~v1 Ð p1´ γq~u
δ Ð

∥∥~v´~v1
∥∥

~v Ð ~v1

i Ð i` 1
return ~v, Π

However, this algorithm amounts to iterative computation of Algorithm 6. Furthermore,
the current upper bound for the computation of the value (and thus, the optimal policy) of
a general zero-sum stochastic game is in EXPTIME [CMH08], which is a very pessimistic
estimate. Hence, we describe a specialized algorithm for perfect information zero-sum
stochastic games which also yields pure policies [LL69]. It is ideologically similar to the
policy iteration scheme given in Alg. 3. The idea behind it is technically simple: If one
player, say, CON, has already committed to the policy, then from the perspective of NAT the
problem reduces to optimizing a Markov decision process. The same happens if the players
are switched, as the scenario is symmetrical, and the decisions are not simultaneous. This
allows us to optimize the policies for each of the players independently. Intuitively, the
algorithm alternates between computation of the optimal policy for CON and NAT with
γ Ñ 1 until the policies do not change.

Algorithm 8 Optimal policies for the expected average reward criterion, perfect information
version

function PI-GAMEDISCOUNTINGLIMIT(S “ SC Z SN , AC, AN , P,~rC,~rN)
i Ð 0, v Ð8

πC, πN Ð~0 Ź Initialize arbitrary policies
while δ ą ε do

γ Ð 1´ 2i

πC Ð arg maxπ vpπ,πNq
C,γ , πN Ð arg maxπ vpπC ,πq

N,γ

v1 Ð p1´ γqvpπC ,πNq
C,γ

δ Ð
∣∣v´ v1

∣∣
v Ð v1, i Ð i` 1

return pπC, πNq

21

1. INTRODUCTION

1.7 Multi-objective optimization

A significant part of this work deals with properties of multi-objective problems. Prior to
this, we give an overview of this topic. In many optimization problems in the engineering
context, one seeks to optimize several measures, such as costs and time, simultaneously.
Mathematically speaking, one may say that the optimization problem has a formulation

max cpxq
s.t.

x P X
(1.25)

where X is a subset of Rn and c : Rn Ñ Rm is a vector-valued function. Often, X is given by
an indirect definition, such as

X “

x P Rn | gpxq ě 0
(

where g : Rn Ñ R is a problem-specific constraint function.
This immediately implies further questions. As the set of values of c is vector-valued and

not totally ordered, it is unclear what to consider a maximum. Hence, the problem (1.25) is
not well-defined unless there are further assumptions.

The Pareto frontier Given a multi-objective optimization problem such as (1.25), one can
proceed mathematically and observe that since the element-wise order relation ď on Rm is
not total, then there is a set P Ď X with the property that for each x P P, there is no other x1 P
X with a better goal function value cpx1q, i. e., P “

x | Ex1 P X : cpx1q ě cpxq ^ cpx1q ‰ cpxq
(

.
The set P is then called the non-dominated set or Pareto frontier. Then, the problem (1.25) can
be interpreted as the task of finding the set P.

The complexity of computing the set P is, however, dependent on its size. It is easy to
see that if there is an exponential number of non-dominated values, then the complexity of
finding P is also at least exponential. However, this is a very coarse approach. For problems
with large output sizes, there has been proposed a finer classification [PY00].

• If it is possible to enumerate the desired set P “ tx1, . . . , xNu in such a way that
the computation of the i` 1st element xi`1 takes only polynomial time in terms of
problem size, given the elements x1, . . . , xi, then the complexity of enumerating P is
polynomial delay (PD).

• If it is possible to enumerate the desired set P “ tx1, . . . , xNu in such a way that
the computation of the i` 1st element xi`1 takes only polynomial time in terms of
problem size and i, given the elements x1, . . . , xi, then the complexity of enumerating
P is incremental polynomial time (IPT).

The focus on enumeration problems in this classification is motivated by practice: In
most cases, even if the Pareto frontier is exponentially large, to compute at least a subset in
polynomial time in order to give the decision maker useful options is considered useful;
if the enumeration problem is at least in IPT, then the corresponding algorithm can be
stopped after a sufficient number of solutions has been generated, without having to wait
until the exponentially large Pareto frontier has been fully computed.

Canonical problem Another approach to a multi-objective problem such as (1.25) may
be to define a value y and ask to find a value x P X such that cpxq ě y. This is known as
the canonical optimization problem. In many cases, the canonical optimization problem is
NP-hard even if optimizing every single component of c is easy, as the function c can be
designed in such a way that it captures multiple components of a problem in a sufficiently
structured way [Ehr05].

22

1.7. Multi-objective optimization

Scalarization A structurally simple way of dealing with a multi-objective optimiza-
tion problem lies in converting it into a single-objective one by assigning weights ~w “

pw1, . . . , wmq P Rm to the individual components of the objective function and optimizing
~wcpxq. This approach is especially fruitful for linear problems. Furthermore, as for each
vector ~w the solution of the scalarized problem lies in the Pareto frontier, then one may
also consider finding all possible solutions of the scalarized problem with the weighting
vector as a free parameter. It is easy to see that the resulting set W is a subset of the Pareto
frontier; furthermore, one can see that in the objective function space, the values of W span
the convex hull of P. A visualization of the relation between P and W can be seen in Fig. 1.2:
the dots are the images of P, and the line spans the images of W. For multi-objective linear
problems, there exists a generic “off-the-shelf” algorithm that computes the set W of the
extreme points on the convex hull [Ben98]. We note that, unfortunately, in our setting, it is
not applicable, as most of the problems considered in this thesis are non-linear.

y2

y1

Figure 1.2: The solution space of a multi-objective optimization problem

23

2

Theory of parametric models

Nothing is more practical than a good
theory.

— Kurt Lewin

IN this chapter, we discuss the properties of models that arise when the standard MDP
model as described in [Put94] is extended with parameter uncertainty in transition

probabilities and, possibly, rewards. First, we discuss known previous work on parametric
models. It turns out that the model introduced in [GLD00] which is called bounded-parameter
Markov decision processes is practical to use as a base for further extensions. Then, we
explain known properties of this model, including the interval value iteration algorithm
for the expected discounted reward criterion. Proceeding to own work, we first show
partial equivalence to stochastic games, which also solves the problem of finding an optimal
policy for the expected average reward criterion and then turn to the finite-horizon reward
criterion. Dealing further with the model, we consider multi-objective problems that arise
in its context and their complexity-theoretic properties.

Concerning the structure of this chapter, we introduce the formalism, survey known
results and discuss possible alternatives to it in Section 2.1. Then, in Sections 2.2 and 2.3,
we consider alternative optimality models to the expected discounted reward criterion.
In Section 2.4, we discuss a related multi-objective optimization problem and respective
solution approaches, and, finally, Section 2.5 introduces and analyses more general models
of parameter uncertainty.

This chapter is based on the publications [Sch15, SBHH17, BS17a].

2.1 Background

The main motivation in the uncertainty models we discuss in this chapter is the insight that
the parameters (and, most notably, the transition probabilities) in a Markov decision process
are derived from empirical data and are therefore subject to loss of precision. Reasoning
about this, a valid idea is to consider stochastic processes that may have varying parameters,
or, speaking in terms of mathematical optimization, of an uncertainty set of parameters. This
leads us into the domain of robust optimization, optimization of a function where we control
only a part of the input while the rest of it is controlled by an adversary that tries to counter
our optimization effort. If solved, such a problem will yield a pessimistic solution that is
always feasible and optimal for each decision of a potential adversary.

However, adversaries do not need to play optimally. When modeling the environment
as an adversary, we have to keep in mind that it does not inherently want to minimize our
objective function, and therefore, a pessimistic solution may be too conservative. This may
lead us to the question of finding policies that are “nearly always good”; however, this is
a very vague term. In the following discussion, we consider two alternative definitions
that try to capture this idea. The first is the concept of percentile optimization, that assumes

25

2. THEORY OF PARAMETRIC MODELS

a probability distribution on the uncertainty set and declares the goal to optimize the
probability of reaching a given objective. While being intuitive, this definition implies
optimization of volumes, which is an inherently hard problem. Another option is to
consider performance in different scenarios as individual goal functions and optimize them
all. The latter approach leads to multi-objective optimization, where the optimal solution
is not necessary unique and optimality may not be a total order, leading to a (possible
exponentially large) solution set. To evade this, one can consider a weighted sum of the
goal functions, which together yields a stochastic multi-scenario optimization problem. This
multi-scenario problem can be considered for several MDPs with shared state and action
spaces which are grouped together in a concurrent MDP, and extended to the BMDP setting
with the pessimistic and optimistic solution as (partial) objective functions. In both cases,
the goal is to optimize a weighted sum of resulting value vectors.

2.1.1 Basic formalisms

In our further discussion, we use the uncertainty model introduced in [GLD00], the
bounded-parameter Markov decision process. The formalism describes a set of Markov
decision processes that is given by upper and lower bounds on transition probabilities. The
original publication [GLD00] also included bounds on rewards on the formalism; in this
work, we consider the rewards to be certain.

Definition 2.1.1 (Bounded-Parameter Markov decision/reward process [GLD00]). Given a
set of states S “ rns, a pair of matrices PÙ “ pPÓ, PÒq, an initial distribution ~q P Rn, and a

reward vector~r P Rn, a bounded-parameter Markov reward process is a tuple
´

S, PÙ,~r,~q
¯

that

defines a set of Markov reward processes
!

pS, P,~r,~qq | PÓ ď P ď PÒ
)

.
Analogously, for a set of states S “ rns, actions A “ rms, a reward vector~r P Rn, an

initial distribution~q P Rn, and m pairs of transition matrices TÙ “
!

P1
Ù

, . . . , Pm
Ù

)

Ă Rnˆn, a

bounded-parameter Markov decision process MÙ “

´

S, A, TÙ,~r,~q
¯

is a set of Markov decision
processes

"

pS, A, T,~r,~qq | T “
!

P1, . . . , Pm
)

, Pa
Ó ď Pa ď Pa

Ò ^ Pa~1 “~1, a P A
*

.

As previously noted, this definition assumes that the rewards are certain, in contrast
to the definition in [GLD00]. We argue that this does not reduce modeling power with the
following construction. We introduce, for each state s three states, a low-reward state sÓ, a
high-reward state sÒ, and a non-determinism state s̃ where for every action a, the probability
bounds for transitioning to a state t̃ in sÓ and sÒ are identical to the probability bounds for
transitioning from s to t under a and the probability bounds intervals for transitioning from
s̃ to sÓ and sÒ are r0, 1s for every action. This way, the states sÓ and sÒ can model uncertain
rewards.

In this work, we talk about the “average performance” of bounded-parameter Markov
decision processes; to do this, we need to extend the original formalism with a probability
measure on the set of possible transition matrices. This probability measure will be mostly
used to compute ExMPMÙrP

as, the expected value of the transition matrices over the whole
uncertainty set which produces an “average” MDP Mˆ “ ExMPMÙrMs. Extending the
formalism, we arrive at the following definition.

Definition 2.1.2 (Stochastic BMRP, BMDP [SBHH17]). For a bounded-parameter Markov
reward process

´

S, PÙ,~r,~q
¯

and a probability density function p on the set

P̃ “
!

P | PÓ ď P ď PÒ ^ P~1 “~1
)

26

2.1. Background

a stochastic bounded-parameter Markov reward process (SBMDP) is the tuple
´

S, PÙ,~r,~q, p
¯

. In a
similar fashion, adding a probability measure on the transition matrices for each action we
can define a stochastic bounded-parameter Markov decision process

´

S, A, TÙ,~r,~q, p
¯

where p is
a probability density measure on

P̂ “
ą

aPA

!

Pa | Pa
Ó ď Pa ď Pa

Ò ^ Pa~1 “~1
)

.

An SBMDP induces an “average” MDP Mˆ “ pS, A, Tˆ,~r,~qqwith Tˆ “
!

P1, . . . , Pm
)

and

pP1, . . . , Pmq “ ExprP P P̂s “
ż

P̂
PppPqdP

Given an uncertainty set of possible models, the main question is now to devise a notion
of optimality for a policy. In the most trivial case, one could optimize policies for the average
MDP Mˆ; however, there is not much mathematical value in the problem, as computing
an expected value and optimizing an MDP is possible with well-known mathematical
methods.

Hence, we consider the complete uncertainty set MÙ of Markov decision processes and
seek for policies that are, with respect to the chosen optimality criterion, either

• optimal for all realizations of an MDP M P MÙ or

• optimal if M P MÙ optimizes the reward criterion, too.

Mathematically speaking, we search for policies fÓ, fÒ which fulfill

fÓ “ arg max
f

min
MPMÙ

~vp f qpMq,

fÒ “ arg max
f

max
MPMÙ

~vp f qpMq.
(2.1)

for a value function ~vp f qpMq that maps the policy f and the MDP M to the value of f in M.

For convenience, we designate by ~vp f q
Ó

,~vp f q
ˆ ,~vp f q

Ò
the value vectors

min
MPMÙ

~vp f qpMq,~vp f qpMˆq, max
MPMÙ

~vp f qpMq.

We call these values the worst case, average case, and best case, respectively; in some cases
alternative terms such as pessimistic and optimistic value are used for the lower bound and
the upper bound terms.

Furthermore, we consider the multi-scenario optimization setting. There, the uncertainty
set is discrete and consists of finitely many scenarios which may occur when the policy is
executed. Mathematically, it translates into a set of several MDPs which have common
action and state spaces but different transition probabilities and rewards.

Definition 2.1.3. For K P N, letM “ tM1, . . . , MKu be a set of K MDPs with a common
state space S and action space A. We callM a concurrent Markov decision process. We
designate its transition probability matrices by Pa

k and its reward vectors by~rk where k P rKs
is the index of the MDP Mk PM and a P A the corresponding action. For a policy f we
write

~vp f q
1 , . . . ,~vp f q

K “ ~vp f qpM1q, . . . ,~vp f qpMKq

for the value vectors resulting from f in the MDPs M1, . . . , MK.

27

2. THEORY OF PARAMETRIC MODELS

2.1.2 Similar models

One may encounter different notions of uncertainty in MDPs in literature. One of the earliest
extensions the Markov decision process formalism with uncertainty can be found in the
work of Silver [Sil63]. The author considers a perspective where the transition probabilities
are uncertain with a given probability distribution and tries to infer the true transition
probabilities and optimize the outcomes from runtime behaviour.

The robust perspective, building on Silver’s foundations, has been introduced by Satia
and Lave [SL73]. They considered Silver’s model with convex uncertainties (Markov decision
processes with imprecise probabilities, MDP-IP) over the transition probabilities and formulated
the robust optimization problem in the framework of stochastic games introduced by
Shapley [Sha53]. Also, a policy iteration procedure for the expected discounted reward
criterion has been proposed in this work. Later, White and El-Deib [WED94] developed a
value iteration procedure for the same problem and showed its convergence. In these works,
uncertainty is being assumed to be convex, that is, for a state s and action a, the uncertainty
set Ua

s for the transition probability vector Paps‚q is assumed to be convex. This work is
also important from the perspective that it (at least implicitly) states the main assumption
in the uncertainty model: The uncertainty sets are independent across different states and
actions. This assumption, better known as the rectangularity property, has been discussed in
the work of Iyengar [Iye05].

More work on the rectangularity property has been done by Wiesemann et al. [WKR13].
There, the authors describe a more general rectangularity property where the uncertainty
sets for the transition probabilities from a given state can depend on the chosen action in
this state but not on other states. This property is motivated by the perspective of modeling
uncertain Markov decision processes from long-time observation of a system behaviour
under varying policies. The methods of Wiesemann et al. allow one to derive an uncertainty
region with given confidence from historical observations and compute a robust policy for it;
the efficiency of the provided algorithms varies depending on the shape of the uncertainty
set.

A different approach to deriving MDPs from historic data has been undertaken by
Nilim and El Ghaouli [NG05] where a likelihood function on the transition frequency
matrix has been defined. Given a likelihood threshold which serves as a lower bound for the
likelihood function, it is possible to define an uncertainty set in this setting and to compute
corresponding robust policies.

From the application perspective, robust MDP models have been applied in a discussion
of multi-armed bandit problems [CD15] and product line design problems with model
uncertainty [BM17].

Several works are related to concurrent MDPs. A more general notion is a Markov
decision process with coupling constraints, which is often motivated by combining several
MDPs into one. An ILP formulation of specially constrained MDPs can be found in the
paper of Dolgov and Durfee [DD05]; an approach to merge MDPs to control several parallel
tasks with constraints on the action space can be observed in [SC97]. For MDPs with
coupling constraints, mathematical relaxations of the exact optimization problems have
been considered by Hawkins [Haw03] and Adleman and Merserau [AM08] where the global
optimization problem is decomposed into smaller sub-problems, based on the coupling
constraints. A tighter upper bound for the decomposition approach has been given by
Bertsimas and Mišić [BM16]. A further coupled MDP formalism are multi-agent models
where agents perform a joint task on a shared state space and the reward function depends
on the combined decision of all agents [GKP01].

There exist also several applications of multi-scenario stochastic models which are not
directly related to Markov decision models [RW91]. Examples include product line design
problems [BM17] and healthcare decision making [BST16] where different scenarios of
system evolution are defined and optimization of a compromise strategy is performed.

28

2.1. Background

The framework of Givan et al. [GLD00] we are using here is derived from a state
aggregation approach [DGL97, BDFS17] and assumes interval-like uncertainties. In theory,
the algorithms for the robust optimization problem for BMDPs are computationally not
much less complex than those for MDP-IPs, and in our further discussion we use BMDPs
while keeping in mind that the same approach is in most cases transferable to the MDP-IP
model.

Recently, there has been some effort in the direction of percentile optimization [DM10]
for uncertain MDP models. In a way, we may perceive this as the continuation of work
began by Silver, however, percentile optimization is inherently a hard problem that can be
solved only for very specific probability distributions.

The multi-objective perspective for MDPs has been explored largely in the context of
Markov decision processes with multi-objective rewards. White shows in [Whi82] a value
iteration-based method to compute the Pareto frontier for MDPs with vector-valued rewards,
which, however, may yield non-stationary policies; this approach has been extended to
stochastic games by [CMH08]. A policy iteration-based IPT algorithm to enumerate the
Pareto frontier is presented in [WdJ07], which, however, has been shown to work only with
deterministic Markov decision processes. Different scalarization approaches that formalise
the notion of a “compromise policy” have been explored by [PW10]. Following up on this,
a large body of work exists on computing all compromise policies for a given scalarization
metric [BN08, RSS`14, RWO13]. Further research concerns itself with complex Boolean
queries for policies that yield minimal or maximal rewards [HHH`17].

Our work, as stated, uses mostly the model of Givan et al. and the concurrent MDP
model. However, other ideas (such as convexity of the uncertainty set or the existence of a
probability distribution over the uncertainty set) are considered in this chapter. Furthermore,
we see in Sec. 2.5 what happens if we depart from the rectangularity assumption.

2.1.3 Interval value iteration

The work [GLD00] makes an important contribution to BMDP theory by developing an
algorithm that computes fÓ and fÒ for the expected discounted reward criterion. Here, we
present the algorithm as well as the arguments for correctness. In later discussion, we infer
the same properties by showing a fully general (partial) equivalence result.

The core of the algorithm (Alg. 9) is a modified value iteration with an additional opti-
mization step inside the value iteration. For better readability, the extra part is highlighted
as an additional function INTERVALVALUE in lines 13–27 which is dependent on the param-
eter b P tÓ, Òu. This parameter steers the bound that is computed: if b “Ó, then we compute

the optimal lower bound (and, implicitly, the optimal policy for it), i. e., fÓ and ~vp f q
Ó

. If b “Ò,

we compute, respectively, fÒ and ~vp f q
Ò

.
Looking more carefully at the interval value iteration algorithm, we see that the function

INTERVALVALUE computes, depending on b,

opt~p:~p ~̈1“1,PÓps‚qď~pďPÒps‚q
p~p ¨~vq,

where opt “ min, if b “Ó, and opt “ max otherwise. We note here that this procedure
is very similar to the value iteration algorithm for perfect-information stochastic games;
later, we elaborate on this more. What we also see here is that the policy computed by this
algorithm is stationary and deterministic, and the algorithm itself relies on the convergence
of ~v until a pre-defined precision is reached. The convergence holds by application of
Banach’s fixed point theorem; the convergence rate can be shown to be γ and the optimal
policy is independent of~q [GLD00]; this allows one again to argue, similarly to the argument
for the MDP value iteration algorithm, that the difference between the computed vector ~v
and the value vector of the optimal policy will be at most ε

2 .

29

2. THEORY OF PARAMETRIC MODELS

Algorithm 9 Interval value iteration
1: function INTERVALVALUEITERATION(S, A, TÙ,~r, γ, b P tÓ, Òu)
2: δ Ð8

3: π Ð~0 P AS

4: ~v Ð~0
5: while δ ą

εp1´γq
2γ do

6: for s P S do
7: a Ð maxaPA INTERVALVALUEps, Pa

Ó
, Pa
Ò

,~r, γ,~v, bq

8: ~v1psq Ð INTERVALVALUEps, Pa
Ó

, Pa
Ò

,~r, γ,~v, bq
9: πpsq Ð a

10: δ Ð maxsPS

∣∣∣~v1psq ´~vpsq
∣∣∣

11: ~v Ð ~v1
12: return ~v, π

13: function INTERVALVALUE(s, Pa
Ó

, Pa
Ò

,~r, γ,~v, b)
14: if b “Ó then
15: ps1, s2, . . . , snq Ð ascending order of states with respect to ~v
16: else
17: ps1, s2, . . . , snq Ð descending order of states with respect to ~v
18: ~p Ð PÓps‚q P Rn Ź Initialize transition probability vector
19: r Ð 1´~p ¨~1
20: for s1 P ps1, . . . , snq do
21: if r ą 0 then
22: m Ð PÒps, s1q ´~pps1q
23: d Ð min tm, ru
24: ~pps1q Ð ~pps1q ` d
25: r Ð r´ d
26: v Ð ~p ¨~v
27: return~rpsq ` γv

It is worth noting that, since the algorithm relies on convergence with the rate γ, its
runtime is polynomial if γ is constant. The time complexity of Algorithm 9 is, to be precise,
O
´

|S|2 log |S||A| log ε´log|~r|
log γ

¯

. In general, this running time complexity is not polynomial and
one could ask oneself if there are faster algorithms that find optimal policies for the expected
discounted reward in BMDPs. Later on, we derive results that answer this question, at least
partially.

2.2 Finite-horizon properties

Previous results on uncertain MDPs are mostly concerned with the expected discounted
reward measure. However, there are at least two more different optimality criteria we are
interested in. For now, we consider the finite-horizon expected total reward. In particular,
we show that it is, in contrast to optimization problems for “stationary” criteria such as
expected discounted reward, computationally hard to find optimal policies. The reason for
it lies in the observation that optimal policies for the finite-horizon total reward criterion
are local, while the choice of one specific MDP from the uncertainty set is global.

We consider the complexity of the following problem: Given a bounded-parameter
Markov decision process MÙ and a number of steps N P N in binary encoding, what is the
optimistically optimal policy for the total reward over the finite horizon N? For a hardness
result, we reformulate this question into a decision problem.

30

2.2. Finite-horizon properties

Theorem 2.2.1. For a constant numerical precision, a given minimum reward ~u P Rn, and a
given horizon N P N (in binary encoding), deciding if the optimistically optimal policy in a given
bounded-parameter Markov decision process MÙ with n states has expected total reward of at least ~u
in N time steps is NP-complete.

Before proving the statement above, we provide an intuition for the hardness of the
problem. The problem basically asks for an optimistic Markov decision process from a
set of MDPs given by a bounded-parameter Markov decision process. The problematic
aspect is time: As we specifically consider a finite time horizon, at different time steps
different actions in one state may lead to better performance. However, as we have to find
one globally optimal MDP, the usual approach of considering each time step individually,
beginning from the last one, may lead to inconsistent assignments of transition probabilities
across different states. Hence, the usual dynamic programming approach does not work.
On the other hand, exploiting the dependencies in the same state between different time
steps leads to the desired hardness result.

Proof. We show NP-hardness first. Intuitively, our result relies on the need, for any algo-
rithm that solves the given problem, to enforce equal parameter values in the optimistic
Markov decision process at all time steps. This adds sufficient structure to the problem to
encode global constraints that make NP-hard problems so hard.

We perform a reduction from the directed Hamiltonian path problem (DHP) which
is known to be NP-complete [GJ79]. Let a graph G “ pV, Eq be an instance of DHP. We
construct an intermediate graph G1 “ pV1, E1q as follows: V1 is obtained from V by adding
two special vertices s and t, and E1 is obtained from E by adding for each vertex v P V
two edges, ps, vq and pv, tq. Having defined G1, we derive a bounded-parameter Markov
decision process MG`

Ù
from G by using V1 as the state set, defining a single action a for each

state, making t an absorbing state and setting the intervals for the transition probabilities to
r0, 1swherever an edge in E1 exists.

The reward function is defined as follows. We introduce transition-dependent rewards,
as an MDP with transition-dependent rewards can, by construction in subsection 1.5.2, be
transformed into an MDP with state-dependent rewards. For each edge in E, the reward
is 1. For all outgoing edges ps, vq P E1 from s, the reward is 0, and for all edges pv, tq P E1

from V to t, the reward is 1.5; for the edge pt, tq, the reward is 0. It is easy to see that this is a
polynomial-time construction.

Gs t

0

0
0

1
1

1

1 1

1

1.5

1.5
0

Figure 2.1: A visualization of the reduction from DHP

We observe that there exists a directed Hamiltonian path in the graph G1 if and only
if there is a directed Hamiltonian path in the graph G: the only possibility to construct a
directed Hamiltonian path in G1 is to start at s, construct a directed Hamiltonian path in G,
and end in t. We also see that if there exists a directed Hamiltonian path in G1, then it is
possible to derive a Markov decision process M P MG`

Ù
with expected total reward |V| ` 1

2
over time horizon |V| ` 1 by setting the transition probabilities to form a Hamiltonian path
in G1.

31

2. THEORY OF PARAMETRIC MODELS

If there is no directed Hamiltonian path in G1, then the expected reward is strictly less
than |V| ` 1

2 . To show this, we first note that no path of length |V| ` 1 that starts in s can
yield a reward greater than |V| ` 1

2 , since, after reaching t, no further reward can be gained
and before reaching t, one has only |V| ´ 1 transitions to gain nonzero reward which can
be only 1 per transition. It follows now that in order to achieve expected reward |V| ` 1

2 ,
all paths of nonzero probability have to return a reward of |V| ` 1

2 . But, if this is the case,
and no directed Hamiltonian path exists, every path of nonzero probability must contain
a loop. If there exists a path p “ ps, . . . , tq with a loop pv1, v2, . . . , v1, vkq, then there must
be also a shorter path p1 that can be obtained from p by contracting the loop to a simple
subpath pv1, vkq and extending it at the sink state t. So, another path is created which,
by construction, has nonzero probability and yields a reward strictly less than |V| ` 1

2 .
Thus, the expected total reward is less than |V| ` 1

2 which is a contradiction to the initial
conjecture.

We complete the proof by showing that the problem belongs to NP. Since the precision
is constant, the number of bits that describe the distribution for the transition probabilities
is at most polynomial in the input length, and thus, it is possible to non-deterministically
guess the transition probability matrices P1, . . . , Pm in polynomial time. To verify that the
expected total reward will be at least R, one can use dynamic programming to compute the
rewards iteratively for the time steps N, N ´ 1, . . . , 1.

The construction from Theorem 2.2.1 makes stronger statements possible. It is easy
to observe that the construction from Theorem 2.2.1 did not rely on multiple possible
actions, thus transforming the bounded-parameter Markov decision process into a bounded-
parameter Markov reward process or a bounded-parameter Markov decision process with
a fixed policy.

Corollary 2.2.2. For a given BMDP MÙ with n states, N P N, ~u P Rn, and a given policy f ,
deciding if the optimistic expected total reward over a finite horizon N under f is at least ~u is
NP-complete.

The idea from Theorem 2.2.1 allows us to show a lower bound for the complexity of
determining a pessimistically optimal policy.

Theorem 2.2.3. Given a reward ~u P Rn, and a finite horizon N P N, deciding if a given BMDP
MÙ with n states has a lower reward bound of at most ~u in N time steps is NP-complete.

Proof. We present a construction similar to the one shown in Theorem 2.2.1. We construct a
BMDP MG´

Ù
analogously to MG`

Ù
, but with an extra state t1 and differences in rewards: The

rewards for the transitions from s to v P G are 1{2. The rewards inside G and from G to t
are set to 1{2, the reward for the transition from t to t1 is 0 and the reward for transitioning
from t1 to t1 is 1. The only possible transition from t leads to t1. It is easy to see that if
there is a directed Hamiltonian path in G, then there is an MDP M P MG´

Ù
that follows

this path with probability 1 and gets a reward 1{2 ¨ |V| for the time horizon |V| ` 2, starting
from s. Conversely, if there is an MDP M P MG´

Ù
that has expected reward at most 1{2 ¨ |V|

over time horizon |V| ` 2, then it must contain a deterministic path from s to t with |V| ` 2
vertices; otherwise the reward will be either at least |V|`1

2 if the MDP induces a loop inside

the graph G and at least |V|2 ` 1 if the path ends in the vertex t1 prematurely. The rest follows
analogously from the arguments used in Theorem 2.2.1.

Since the decision problem of finding a lower bound for all policies is at least as hard as
finding a lower bound for one fixed policy, we infer the NP-hardness of finding a “worst-
case” MDP for a finite time horizon. This implies optimization hardness of a given BMDP
over a finite time horizon.

32

2.3. Stochastic games and limit-average reward properties

Corollary 2.2.4. For a given BMDP MÙ with n states, ~u P Rn, and a given finite time horizon
h P N, it is NP-hard to decide either if

• there is a policy f such that there is an MDP M P MÙ such that the expected total reward
over the horizon h under f is at least ~u or

• there is a policy f such that for all MDPs M P MÙ, the expected total reward over the horizon
h under f is at least ~u.

We sketch the proof. Since it is NP-hard to decide if a BMDP MÙ with a (possibly
nonstationary) policy f has a lower reward bound of at least R or at most R´ 3ε after h
steps, starting from a state s, we construct a BMDP M1

Ù
that has the following structure: In a

special state q, one can perform two actions, a and b. If a is taken, we certainly transition
to the state s of MÙ with reward 0. Starting from s, the policy f is applied. If b is taken,
we transition to a sink state t with reward R´ 2ε. Thus, a policy f 1 in M1

Ù
that yields a

worst-case reward of at least R´ ε after h` 1 steps would imply a lower bound on the
reward in MÙ under f of at least R.

Upper bound for the pessimistic optimization problem It is easy to see that a Σp
2 algo-

rithm can decide if there is a policy that gives a reward of at least R for all MDPs M P MÙ:
First, we non-deterministically guess a policy f . Then, we non-deterministically decide
if, for all MDPs M P MÙ the expected total reward in M under f is at least R. This, how-
ever, leaves a gap between NP and Σp

2 and leads to the question of the exact complexity
of the problem. Here, we close this gap and show that the discussed problem is “just”
NP-complete.

Theorem 2.2.5. Given a BMDP MÙ with n states, a finite time horizon N P N, and a value vector
~u P Rn, deciding if, over the time horizon N, the robust policy for MÙ yields a reward of at most ~u is
NP-complete.

Proof. Since NP-hardness follows from Theorem 2.2.3, we only have to show that there
exists a non-deterministic polynomial-time algorithm which decides the desired property.

First, we observe that deciding if there is an MDP M P MÙ such that an optimal policy
for M yields a reward of at most ~u can be done in non-deterministic polynomial time: After
guessing a Markov decision process M, we can find an optimal finite-horizon policy f for M
and decide if f yields a reward of at most ~u in polynomial time with a standard dynamical
programming algorithm [Put94].

To prove correctness of this construction, we observe that if there exists a Markov deci-
sion process M P MÙ with value of at most ~u for an optimal policy f , then the pessimistically
optimal policy f ˚ will yield a reward of at most ~u on M. Minimizing over M P MÙ, we con-
clude that the pessimistically optimal policy f ˚ will also yield at most ~u for the pessimistic
MDP.

2.3 Stochastic games and limit-average reward properties

We observe that the BMDP formalism has several intuitive similarities with the general
notion of stochastic games. In this section, we discuss these similarities and derive an
equivalence result. This result allows us to reason about a wide class of optimality criteria
and transfer established algorithms for stochastic games to the BMDP model. Furthermore,
we establish complexity lower bounds for some problems for bounded-parameter MDPs by
showing a relation to problems for stochastic games.

First of all, we can, reasoning on an intuitive level, interpret a bounded-parameter
Markov decision process as a stochastic game where the reward vectors~rC,~rN conform to
either

33

2. THEORY OF PARAMETRIC MODELS

• ~rN “~rC “~r, if we seek to optimize the optimistic performance measure or

• ~rN “ ~́rC “ ~́r, if we seek to optimize the pessimistic performance measure.

Then, the set of possible Markov decision processes that is described by a bounded-
parameter Markov decision process MÙ “ pS, A, TÙ,~r,~qq can be interpreted as an action
space for NAT while the original action space A of a bounded-parameter Markov decision
process can be interpreted as an action space for CON in a perfect-information stochastic
game. Moreover, the action space for NAT can be reduced even further, as in most cases
it is easier to deal with discrete action spaces and the action space A for CON is, in most
applications, also discrete. For each action a P A and each state s P S, the possible transition
probability matrix rows Paps‚q are constrained by the stochasticity condition Paps‚q ¨~1 “ 1
and by the inequality conditions Pa

Ó
ps‚q ď Paps‚q ď Pa

Ò
ps‚q. From a geometric point of

view, these conditions form together a polytope of possible values for Paps‚q. This implies
that there are points ~pa

1, . . . ,~pa
k such that Paps‚q can be written as a convex combination

řk
i“1 λi~pa

i ,
řk

i“1 λi “ 1. We can interpret this property in a way that, if CON chooses the
action a, there are k actions ba

1, . . . , ba
k available for NAT such that the transition probability

distribution vector for ba
i is ~pa

i , for i P rks. By allowing NAT to choose a randomized pol-
icy, we can model the complete polytope of feasible values for ~p. We note here that this
construction is not complete; below we explain it in a more detailed way.

Having established the similarities between bounded-parameter Markov decision pro-
cesses and stochastic games, we point out the main difference: In a general stochastic game,
NAT does not need to follow a stationary policy and, hence, the transition probabilities
from the same NAT-controlled state can be different after every transition; in contrast,
in a bounded-parameter Markov decision process, the policy of NAT is stationary. This
difference indirectly affects several results in this work, making some problems harder to
solve from a computational complexity point of view. We already have seen that on the one
hand, upper and lower bounds for the expected total reward after N steps in a BMDP are
computationally hard to find. However, we see in this section that this difference does not
play a significant role for “stationary” reward measures such as the expected discounted
reward measure or the expected average total reward measure.

Although some of the results and methods for general stochastic games will not be
applicable in the BMDP scenario, we can easily observe that bounded-parameter Markov
decision processes and other similar formalisms are similar to stochastic games: more
precisely, a bounded-parameter Markov decision process is a perfect-information stochastic
game where NAT has to choose a stationary policy before the game is played. Thus, we
can (where applicable) use the stochastic game formalism in order to reuse results and
algorithms that find optimal policies.

This observation can be formalized as follows.

Theorem 2.3.1. Let C : X ˆ Y˚ Ñ X˚ be a mapping with CpX, py1, . . . , ylqq “ pykqkPrls,ykPX
which restricts a sequence to a subsequence of values from a given set X.

For a given bounded-parameter Markov decision process MÙ “

´

S, A, TÙ,~r,~q
¯

there exists
a perfect-information stochastic game G with state space SG “ SZ SN , action spaces AC “ A
for CON resp. AN for NAT, such that for each Markov decision process M P MÙ there exists a
stationary policy τpMq for NAT with the following properties.

1. The probability distribution of sequences of states under any BMDP policy f : S` ˆ A Ñ

r0, 1s in M is equivalent to the probability distribution of sequences of CON-controlled
states under the policy pair p fG, τpMqq with fGpps1, . . . , slq, aq “ f pCpS, ps1, . . . , slqq, aq
where the sequence CpS, ps1, . . . , slqq “ psiqiPrls,siPS is the sequence ps1, . . . , slq limited to
CON-controlled states only and s1 P S.

34

2.3. Stochastic games and limit-average reward properties

2. For any policy fG : S`G ˆ AC Ñ r0, 1s and any state s1 P S, the probability distribution of
sequences of CON-controlled states under the policy pair p fG, τpMqq is equivalent to the
probability distribution of sequences of states under the policy f in M where f is defined
by f pζ “ ps1, s2, . . . , slq, aq “ fGpξ “ ps1, . . . , s2, . . . , slq, aq where si P S for all i and
ζ “ CpS, ξq.

Proof. We start with defining G. As already stated, G has the state space SG “ SZ SN with
SN “ Sˆ A and the action space A for CON. The transition from s P S with actions a P A
will lead directly to ps, aq P SN . For NAT, we construct the action space as follows. For each
state s P S and action a P A, we define the transition polytope

Ps,a “
!

~p | Pa
Óps‚q ď ~p ď Pa

Òps‚q,~p~1 “~1
)

. (2.2)

By definition, Ps,a is a convex, bounded polytope. Let ~ps,a
1 , . . . ,~ps,a

ms,a be the extreme points

of Ps,a. Since Ps,a is bounded, it is Pa “ conv
´

~ps,a
1 , . . . ,~ps,a

ms,a

¯

where convp~p1, . . . ,~pkq is the
convex hull of the points ~p1, . . . ,~pk. Finally, we set AN , the action space for NAT, to be
AN “

”

max

ms,a | s P S, a P A
(

ı

, and set the transition probability PG to

PGps, aC, aN , s1q “

$

’

’

&

’

’

%

1 s P S, aC P A, s1 “ ps, aCq

~ps˚,b
a1 ps

1q s “ ps˚, bq P Sˆ A, a1 “ min
`

ms˚,b, aN
˘

0 otherwise
(2.3)

We now show the existence of the mapping τ from an arbitrary M P MÙ to stationary
policies of NAT. Let M P MÙ. Then, in each state s P S, for each action a P A of the controller,
the row of the transition probability matrix Paps‚q is a convex combination of ~ps,a

1 , . . . ,~ps,a
ms,a ,

i. e., Paps‚q “
řms,a

i“1
~λs,apiq~ps,a

i with~λs,a ¨~1 “ 1. This corresponds to a stationary policy of
NAT in G; indeed, it is easy to see that the stationary policy τpMq of NAT in G that is defined
by the distribution vectors~λs,a in state s and CON action a yields, by construction, exactly
the same transition probabilities to the next CON-controlled state, yielding, by the Markov
property, identical distributions on sequences of CON-controlled states. Extending the result
to randomized policies yields the first part of the statement.

As for the second part of the statement, we show that the policy f yields the same
transition probabilities. By construction of PG, any policy pair p fG, τq in G yields sequences
of states s1, s2, . . . P S`G where each CON-controlled state si is followed by a NAT-controlled
state si`1 and vice versa. We compute now the probability PrGrs1 | s, as of landing in the
state s1 P S after CON selects action a P A in state s P S. It is PrGrs1 | s, as “ PrGrs1 |
ps, aq, τpMqs ¨ PrGrps, aq | s, as “ PrMrs1 | s, as ¨ 1 “ PrMrs1 | s, as where PrM is the probability
to arrive in s1 after selecting a in s in the MDP M and PrG is the transition probability in G.
Together with the Markov property, this yields the second statement.

It follows furthermore that, if we set

~rCpsq “

#

~rpsq s P SC

0 otherwise,
(2.4)

then, the probability distribution of the reward sequences in CON-controlled states will be
identical to the reward sequence in the MDP. Furthermore, since each play will alternate
between CON-controlled states and NAT-controlled states, the reward sequences for CON
will predictably depend on the reward sequence in the MDP.

This proof serves as a vehicle to use the stochastic game approach wherever it yields
stationary policies for NAT. Note, however, that the rewards for NAT are not defined yet;

35

2. THEORY OF PARAMETRIC MODELS

to finalize the construction and introduce rewards for NAT, we transfer the two robust
optimization scenarios we have introduced in the BMDP model to the stochastic games
setting.

max-min scenario The min-max scenario corresponds to optimizing a policy subject to the
pessimistic realization of a BMDP. It is easy to see that this scenario corresponds to
setting the rewards in the stochastic game to r for CON, and ´r for NAT whenever the
reward is r in the BMDP, and, hence, to the competitive stochastic game scenario.

max-max scenario The max-max scenario corresponds to optimizing both the MDP and a
policy such that both yield maximal rewards. This scenario corresponds to rewards
fulfilling the property~rC “~rN “~r wherever the BMDP reward vector is~r. However,
the max-max scenario can also be seen as an MDP since the goal functions for both
players are indistinguishable.

In both scenarios, we set~rCpsq “~rNpsq “ 0 for NAT-controlled states s P SN .
Since stochastic games in these two scenarios are symmetrical (for sufficiently well-

behaved optimality criteria, that is, for reward criteria that are symmetrical for CON and
NAT), the existence of optimal stationary policies for NAT also implies the existence of
optimal stationary policies for CON; this means that any optimality criterion for which
optimal stationary policies exist in stochastic games will also yield optimal stationary
policies for BMDPs. Hence, we can use the following results from [LL69, FV97].

Theorem 2.3.2 (Theorem 1, [LL69]). For any zero-sum two-player perfect-information stochastic
game, there exists an optimal policy pair pπ, τq for the expected average reward criterion such that
π and τ are pure policies of CON and NAT, respectively.

Theorem 2.3.3 ([Sha53], Theorem 3.1.1, [FV97]). For any zero-sum two-player stochastic game,
there exists an optimal policy pair pΠ, Θq for the expected discounted reward criterion such that Π
and Θ are stationary policies of CON and NAT, respectively. If the game has the perfect information
property, then there also exist pure optimal policies π, τ for this criterion.

We note that for these optimality criteria, we have to take care of the reward distribution.
As the rewards are being generated only in CON-controlled states, the corresponding
distribution changes, and with it, the value of the aggregated reward measure. We have
to formally show that these changes do not affect the order of policies with respect to the
optimality criteria.

Lemma 2.3.4. The mapping in Theorem 2.3.1 and (2.4) is monotone with respect to the expected
average reward objective function. With respect to the expected discounted reward goal function,
monotonicity can be maintained by adjusting the discount factor γ to γ1 “

?
γ.

Proof. We note that the values of the rewards are kept, but in each play of the game, the
rewards are generated only in every second state. Then, we can derive for the two given
optimality criteria the following arguments.

Expected average reward It is easy to see that the expected average reward in the game
for CON will be exactly the half of the expected average reward in the BMDP.

36

2.3. Stochastic games and limit-average reward properties

Expected discounted reward Let priqiPN and psiqiPN be sequences of rewards in the BMDP.
For the expected discounted reward measure, we observe that

8
ÿ

i“1

γi´1ri ě

8
ÿ

i“1

γi´1si ô

8
ÿ

i“1

´

?
γ2
¯i´1

ri ě

8
ÿ

i“1

´

?
γ2
¯i´1

si ô

8
ÿ

i“1

γ1
2i´2ri ě

8
ÿ

i“1

γ1
2i´2si,

which means that the order of the expected discounted reward measures in the derived
stochastic game is kept.

These results yield, with the help of Theorem 2.3.1, the following results. The first result
concerns itself with the expected discounted reward criterion and can also be found in other
publications, such as [GLD00]. However, the proof there required more technical work,
that, in a sense, has already been done. Here, we can abstract away from the nature of the
solution procedure, and rely on existing results for stochastic games.

Corollary 2.3.5. For any BMDP, there exists a pure optimal policy π for the expected discounted
reward criterion in the min-max and the max-max scenarios.

The second result directly translates Theorem 2.3.2 to the BMDP scenario.

Corollary 2.3.6. For any BMDP, there exists a pure optimal policy π for the expected average
reward criterion in the min-max and the max-max scenarios.

It is possible to automatically derive an optimization procedure from this result. In
the most naïve case, we can use Theorem 2.3.1 to transform a given BMDP to a stochastic
game and compute an optimal policy for it. The complexity of this approach depends
on the complexity of the transformation and the complexity of computing an optimal
policy for a stochastic game. The complexity of computing an optimal policy for the
expected average and expected discounted reward optimality criteria in a stochastic game
is still not fully determined; the best known upper bound is sub-exponential and the
corresponding decision problem is known to be in NPX coNP [BV07]. The complexity of
the transform itself depends on the size of the resulting stochastic game, most importantly
on |AC| “ maxsPS,aPA ms,a. This value depends on the number of vertices of the polytope
given by Eq. (2.2). This polytope is known in the literature as the intersection between a
hyperplane (in our case, the stochasticity constraint) and a hypercube (in our case, given by
the upper and lower bounds) and there exist upper bounds on the number of its vertices.
In [O’N71] the upper bound is established to be Kpnq “

`

n´ tn{2u
˘ ` n

tn{2u

˘

; furthermore, this
bound is tight. Unfortunately, this number is exponential in n and we are interested in
finding a better suited method. We show now how to keep the action space for NAT in an
implicit representation, without having to compute |AN| stochastic vectors ~ps,a

1 , . . . ,~ps,a
ms,a

explicitly.
For the expected discounted reward criterion, we observe that the value iteration proce-

dure in a perfect-information stochastic game relies only on computing the value

min
aNPAN

~rNpsq `
ÿ

s1PS

Pps, ¨, aN , s1q~vps1q.

37

2. THEORY OF PARAMETRIC MODELS

Rephrasing this expression in terms of linear operators, the optimization problem looks like
minaNPAN~rNpsq `~ps,aN ¨~v for transition probability vectors ~ps,aN that describe the transition
probability from a NAT-controlled state s if NAT picks the action aN . Here, we see that we
optimize a linear function over all vectors ~ps,aN . If the set of vectors is given implicitly by
some linear inequality A~p ě~b, the complexity of this optimization step is still polynomial.
Hence, the value iteration procedure for the expected discounted reward criterion can be
performed efficiently.

For the expected average reward criterion, the approach we show is a straightforward ap-
plication of policy iteration for zero-sum stochastic games with perfect information [BR14]1.
The approach in [BR14] relies on iterative policy improvements for MDPs; here, we show
that it can be performed efficiently, even if AN is given implicitly, as in our case, by a set
of linear constraints. In the loop of the policy iteration procedure, we first choose a policy
π for CON that is optimal under the current policy τ of NAT. Then, we choose a policy
τ1 that optimizes the actions of NAT under π. This reduces the problem to finding an
optimal policy for an MDP under the expected average reward criterion. In [Vei66, Put94],
Algorithm 4 is proposed as a policy iteration procedure for MDPs.

Note that in the optimization steps (1.7) and (1.8), there is no need to iterate over all
possible decision rules. In step (1.7), ~g is fixed, and Pπ is variable; in step (1.8), analogously,
~h is fixed, and Pπ together with ~rπ are variable. Both optimizations are, in fact, linear
programs, which means that the optimization steps can be performed in polynomial time
depending on the number of overall constraints. Since the number of constraints that define
the action space for NAT is polynomial, it is possible to efficiently implement policy iteration
to optimize the expected average reward for BMDPs. The resulting procedure is depicted in
Algorithm 10. It is easy to see that the optimization steps in (2.5) and (2.6) can be performed
efficiently, as the optimization problem amounts to a linear program with a polynomial
number of constraints and variables.

Algorithm 10 Policy iteration for expected average reward in BMDPs
1: function BMDPAVERAGEPOLICYITERATION(MÙ, opt P tmax, minu)
2: n Ð 0, select an arbitrary MDP M0 P MÙ.
3: repeat
4: πn Ð MDPAVERAGEPOLICYITERATIONpMq
5: Compute ~g P Rn,~h P Rn such that PM

πn~g “ ~g,~rπn ´~g`
´

PM
πn ´ I

¯

~h “~0
6: Choose a Mn`1 that satisfies

Mn`1 P arg optM PM
πn~g, (2.5)

keeping Mn`1 “ Mn, if possible.
7: if Mn`1 “ Mn then
8: Choose a Mn`1 that satisfies

Mn`1 P arg optM

´

~rπn ` PM
πn
~h
¯

, (2.6)

keeping Mn`1 “ Mn, if possible.
9: n Ð n` 1

10: until Mn “ Mn´1
11: return πn

1The cited approach works well for a slightly larger class of stochastic games, perfect information games are a
special case of it.

38

2.3. Stochastic games and limit-average reward properties

Lower bounds for BMDP problems In the preceding discussion, we have successfully
transferred results on stochastic games to bounded-parameter MDPs. However, we already
have noted that the complexity of the policy optimization problems for stochastic games
we have relied on is not known to be polynomial [BV07]. A question arises if it is possible
to do better, to derive an algorithm that performs asymptotically better, exploiting some
structure of BMDPs. We show now that this is not the case, that is, every stochastic game
can be transformed into a bounded-parameter Markov decision process with a sufficiently
similar probability distribution on state and reward sequences.

Theorem 2.3.7. Let G “ pSG, AC, AN , P,~rC,~rN ,~qq be a perfect-information zero-sum stochastic
game. Then there exists a bounded-parameter MDP MÙ “ pSM Ě SG, A, TÙ,~qq and an isomorphic
mapping E from policies for CON in G to policies in MÙ such that for every stationary policy τ of
NAT, an MDP M “ Mpτq P MÙ with the following property exists.

For every policy pair p f , τq with f : S`G ˆ AC Ñ r0, 1s a policy of CON in G, the policy
Ep f q : S`M ˆ A Ñ r0, 1s yields the same distribution of sequences of states from SG in the MDP
Mpτq.

To prove the statement, we present a construction that transforms actions of NAT into
parameter uncertainty in the bounded-parameter MDP.

Proof. We present a BMDP MÙ with O
`

|AN | ¨|SG|
˘

states and an action space A “ AC. The
idea of the construction is to allow for the uncertainty in the BMDP to represent the action
space of NAT. To do this, we introduce additional states S̄ “ SN ˆ AN where SN Ď SG are
the NAT-controlled states. Furthermore, for each CON-controlled state sC P S, we introduce
an additional state ŝC. The transition probability intervals in the BMDP are defined by

Paps, ps, aNqq P r0, 1s if s P SN , a P AC, aN P AN

Papps, aNq, s1q “ Pps, ¨, aN , s1q if s P SN , a P AC, aN P AN , s1 P SG

Paps, ŝq “ 1 if s P SC, a P AC

Papŝ, s1q “ Pps, a, ¨, s1q if s P SC, s1 P SG, a P AC

An illustration of the construction can be seen in Fig. 2.2. Furthermore, we define the reward
vector~rpsq by

~rpsq “

#

~rCpsq s P SG

0 otherwise.

We observe that each stationary policy for NAT can be transformed into a realization
of the interval uncertainty by choosing the corresponding transition probabilities from
states sN P SN . Furthermore, we observe, by analogy to Theorem 2.3.1, that the probability
distribution of state sequences is preserved. For two states s, s1 P SG we have the following
two cases.

Case 1 If s P SC, then the transition probability to s1 is Pps, a, ¨, s1q. In the BMDP MÙ, the
transition probability from s to s1 is Paps, ŝq ¨ Papŝ, s1q “ 1 ¨ Pps, a, ¨, s1q.

Case 2 If s P SN , then the transition probability to s1 is
ř

aPAN
f ps, aqPps, ¨, a, s1q for a station-

ary policy f with
ř

aPAN
f ps, aq “ 1 for all s P SN . Then there exists an MDP M P MÙ

with transition probability Paps, ps, aqq “ f ps, aq and Papps, aq, s1q “ Pps, ¨, a, s1q. By law
of total probability, it is Prrs1 | s, f s “

ř

aPAN
f ps, aqPps, ¨, a, s1q in M.

Together, this yields the statement.

Theorem 2.3.7 allows us now to derive the following results.

39

2. THEORY OF PARAMETRIC MODELS

sN

sN , a1

. . .

sN , an

sC ŝC s1

r0, 1s

r0, 1s

PpsC, ¨, a1, sCq

PpsC, ¨, an, sCq

1 a : PpsC, a, ¨, s1q

Figure 2.2: Construction from Theorem 2.3.7

Corollary 2.3.8. The problem of computing an optimal policy for the expected discounted reward
criterion for bounded-parameter Markov decision processes is polynomially reducible to the problem
of computing an optimal policy for the expected discounted reward criterion in zero-sum perfect-
information stochastic games and vice versa; hence, the problems are equivalent under polynomial-
time reductions.

Corollary 2.3.9. The problem of computing an optimal policy for the expected average reward
criterion for bounded-parameter Markov decision processes is polynomially reducible to the problem
of computing an optimal policy for the expected average reward criterion in zero-sum perfect-
information stochastic games and vice versa; hence, the problems are equivalent under polynomial-
time reductions.

The construction above helps to prove both results, but in each case we need a slightly
different argument. For both optimality criteria, we observe that each sequence of l states
in a play of the game yields a sequence of 2l states in the BMDP, where every second state
comes from SG with the corresponding rewards and all other states yield reward zero. Now
we differentiate between the optimality criteria.

Proof of Corollary 2.3.8. For the expected discounted reward measure, the construction re-
quires changes to the discount factor, in analogy to the discussion above. Setting the
discount factor to γ1 “

?
γ in the BMDP yields the equivalence with respect to the reward

measure and thus, equivalence with respect to policy optimality.

Proof of Corollary 2.3.9. For the expected average reward criterion, we see that this yields
a factor of exactly 1

2 in the reward measure, which means equivalence with respect to
optimality.

2.4 Multi-objective approaches

In this section, we consider a different perspective on bounded-parameter MDPs. We
have seen that BMDPs themselves define robust optimization problems. Here, we take the
perspective that has also been explored in [KKST13] which connects research on robust
optimization with research on multi-objective problems. The work in [KKST13] has dis-
cussed general robust linear programs; here, we apply similar ideas to (non-linear) BMDP
problems. Concerning optimality criteria, we consider here only the expected discounted
reward measure with a given discount factor γ P r0, 1q. Knowing that the reward measure

40

2.4. Multi-objective approaches

is non-ambiguous, here we use ~v for the reward vector instead of ~vγ to reduce notation
load.

Our discussion here starts with the observation that each policy π for a given BMDP
MÙ yields at least two value vectors, ~vpπq

Ó
and ~vpπq

Ò
for the (policy-dependent) minimal

and maximal MDPs MÓ
pπq, MÒ

pπq P MÙ, respectively. Later in this section, we consider
stochastic BMDPs that introduce, following the same considerations, a third value vector
~vpπqˆ that corresponds to the performance of π in the “expected” MDP Mˆ P MÙ.

This observation yields a further perspective with respect to applications. In previous
sections, we consider only lower and upper bounds, resulting in computation of policies
that are optimal in the “best case” and the “worst case”. Yet, in an uncertainty setting, rarely
the worst or best case scenarios actually happen; hence, if the controller chooses the robust
policy, she will likely miss the opportunity to attain higher rewards, and if she chooses the
optimistic policy, she will likely lose in the long run. Hence, knowing that all scenarios are
possible, the controller might be then interested in a “compromise” policy π that yields
acceptable value vectors ~vpπq

Ó
,~vpπq
Ò

for both scenarios.
From this discussion, several problems arise: First, how can the resulting value vectors

be aggregated? Second, is it possible to compute optimal policies with respect to this
aggregation function and what is the structure of the resulting optimization problem?

In this section, we consider the theoretical properties of the raised problems. That is, we
derive here general complexity results and/or point to exact algorithms which might be
not too efficient. In Chapter 3, we consider practical, mostly heuristic, implementations
and present empirical results from experiments. This section is based on the publica-
tions [SBHH17, BS17a].

2.4.1 Initial considerations

Before we discuss further details, we explain specific properties of the raised problems.
In the introductory chapter, we have discussed general properties of multi-objective op-
timization and we have formulated solution approaches for Markov decision processes;
in the beginning of this chapter, we have discussed bounded-parameter Markov decision
processes. For this section, we present a model that is slightly more general model than
bounded-parameter MDPs.

Stochastic BMDPs Our motivation to extending the BMDP model lies in the requirement
to capture the “average” performance of a system. While a BMDP can deliver upper and
lower performance bounds, often also the expected case is of interest. Here, we use the
SBMDP model we have introduced in the beginning; knowing the expected-case MDP in
the SBMDP, we can derive, for a policy π, not only the bounds ~vpπq

Ó
and ~vpπq

Ò
, but also the

average value ~vpπqˆ . Intuitively, this model expansion does not add to the hardness of the
general optimization problem yet extends the model to capture more applications.

Problem formulations From the discussion in Sec. 1.5, we can see that the optimal policy
is non-linear in the value vector. Furthermore, this shows that additional constraints on
the policy, such as equality of actions in different states, cannot be incorporated into the LP
easily and without considerable costs in terms of additional complexity. This observation
will be important when we consider the stochastic optimization problem. But prior to
discussion of problem properties, we define the problems we discuss here precisely.

Definition 2.4.1 (Multi-objective SBMDP problems). Given a stochastic bounded-parameter
MDP pS “ rns, A, TÙ,~r,~q, pq, we define the following problems.

41

2. THEORY OF PARAMETRIC MODELS

Canonical multi-objective decision problem Given vectors uÓ, uˆ, uÒ P Rn, decide if a
policy f exists such that it is

~vp f q
Ó
ě uÓ,~v

p f q
ˆ ě uˆ,~vp f q

Ò
ě uÒ. (2.7)

Stochastic optimization decision problem Given a value u P R and a weight vector ~w “
´

wÓ, wˆ, wÒ
¯

P R3, decide if there is a policy f such that it is

ÿ

sPS

~qpsq
ˆ

wÓ~v
p f q
Ó
psq `wˆ~v

p f q
ˆ psq `wÒ~v

p f q
Ò
psq

˙

ě u (2.8)

Stochastic optimization problem For a given weight vector ~w “
´

wÓ, wˆ, wÒ
¯

, compute
a policy f such that

f “ arg max
f

ÿ

sPS

~qpsq
ˆ

wÓ~v
p f q
Ó
psq `wˆ~v

p f q
ˆ psq `wÒ~v

p f q
Ò
psq

˙

(2.9)

Pareto frontier enumeration problem Compute the set of policies F such that

@ f P F :E f 1 : S˚ ˆ A Ñ r0, 1s : ~vp f 1q
Ó

ě ~vp f q
Ó
^~vp f 1q

ˆ ě ~vp f q
ˆ ^~vp f 1q

Ò
ě ~vp f q

ˆ ^

p~vp f 1q
Ó

‰ ~vp f q
Ó
_~vp f 1q

ˆ ‰ ~vp f q
ˆ _~vp f 1q

Ò
‰ ~vp f q

Ò
q.

(2.10)

The resulting set F is also called the Pareto frontier.

Convex hull enumeration problem Compute all policies H such that every policy in H is
the solution of the stochastic optimization problem.

For the practical part of this work, we are interested in pure optimal policies, reducing the
search space to a finite (yet still exponentially large) set. For this special case, we introduce
additional notation. The Pareto frontier of pure policies is designated by PPareto and the
corresponding set of value vectors is designated by VPareto.

As for the complexity discussion, we consider mixed stationary policies, as additional
constraints on the search space may artificially harden the problem, as it is the case, for
example, in linear programming.

2.4.2 Canonical decision problem

First, we establish complexity bounds for the canonical optimization problem. We prove
that it is NP-complete when we restrict ourselves to pure policies and NP-hard in the general
case.

It has been shown by [CMH06] that the corresponding decision problem is NP-hard
for multi-objective MDPs which have a multi-objective reward. The following theorem
shows that the hardness result also holds for SBMDPs even if rewards do not depend on
the chosen action and even if only two objectives are constrained by the decision problem.

Theorem 2.4.1. The canonical multi-objective decision problem for pure policies is NP-complete.

Proof. The stated problem is obviously in NP because a policy for an SBMDP can be evalu-
ated in polynomial time. As for NP-hardness, we show a reduction from the subset sum
problem. Given a subset sum instance M “ tm1, . . . , mnu, we construct an SBMDP and two

42

2.4. Multi-objective approaches

vectors ~v1,~v2 such that there is a policy π with ~vpπq
Ó
ě ~v1,~vpπqˆ ě ~v2 if and only if there is a

subset I Ď rns such that
ř

iPI mi “
1
2
řn

i“1 mi.
The SBMDP which we construct will have an arbitrary nonzero discount factor γ P

p0, 1q, 4n` 1 states which have the identifiers t and qi, sˆi, sÓi, sÒi for i P rns. The general
idea of the reduction is the following: The SBMDP proceeds through all states qi and
ends up in the absorbing state t. In the state qi, it is possible to choose between the
(adjusted for the discount factor) reward pairs p0, 2miq and pmi, miqwith the first component
being the pessimistic and the second component being the average (in the SBMDP sense)
reward. This way, a pure policy π will induce a subset I Ď rns such that the expected total
rewards, if one starts in state q1, will be~vpπq

Ó
pq1q “

ř

iRI mi and~vpπqˆ pq1q “
řn

i“1 mi`
ř

iPI mi.
Technically, we model this by enabling two actions in states qi, a and b. These actions do
not generate rewards, but lead to different outcomes: The action a leads to either sÓi or sÒi,
with probability in the interval r0, 1s and the expected value for this probability being 1{2; all
actions from these two states lead, in turn, to qi`1 (or t, if i “ n), and the difference between
the states sÓi and sÒi lies in the reward: the reward in sÓi is 0, the reward in sÒi is 4mi

γ2i´1 . The
action b leads to the state sˆi unconditionally with reward 0, and all actions from sˆi lead
to the state qi`1, if i ă n, or t, if i “ n, with reward mi

γ2i´1 .

Finally, we define the expected discounted rewards we would like to get with a pure
policy π. It should be 1

2
ř

iPrns mi in the worst case and 3
2
ř

iPrns mi in the average case.

qi : 0

sÒi : 4mi
γ2i´1sÓi : 0

sˆi : mi
γ2i´1

qi`1 : 0

a

b

p “ 1
¨, p “ 1

p P r0, 1s , pˆ “ 1{2p P r0, 1s , pˆ “ 1{2

¨, p “ 1

¨, p “ 1

Figure 2.3: Construction from Theorem 2.4.1

It is easy to see that the construction can be done in polynomial time. We show now
its correctness. For every subset I Ď rns we define a policy πI with πIpqiq “ a if i P I and
πIpqiq “ b if i R I. The expected discounted total reward for policy πI in state q1 will then
be

ÿ

iPI

2γ2i´1 ¨
mi

γ2i´1 `
ÿ

iPrnszI

γ2i´1 ¨
mi

γ2i´1 “
ÿ

iPrns

mi `
ÿ

iPI

mi

43

2. THEORY OF PARAMETRIC MODELS

in the average case and
ř

iPrnszI γ2i´1 ¨
mi

γ2i´1 “
ř

iPrnszI mi in the pessimistic case. If there
is a subset I Ď rns such that

ř

iPI mi “
ř

iPrnszI mi, then there is a policy πI that yields the
requested expected discounted rewards. Furthermore, as any pure policy π induces a subset
I Ď rns by defining i P I ô πpqiq “ a, the existence of a pure policy π with the requested
expected discounted rewards implies the existence of a subset with sum 1

2
ř

iPrns mi.
It is easy to see that the proof technique can also be applied to the combination of

optimistic and expected-case measures, and optimistic and pessimistic measures.

For the general stationary case, we consider a slightly different construction.

Theorem 2.4.2. The canonical multi-objective decision problem is NP-complete for general station-
ary policies.

Proof. We perform a similar reduction from the subset sum problem. Now, our SBMDP will
have 4n` 1 states

S “

qi | i P rns
(

Z

!

sÓi | i P rns
)

Z

!

sÒi | i P rns
)

Z

sˆi | i P rns
(

Z tsu

with the following properties. For m1i “ mip1´ γ2q, the rewards are zero in states s, sÓi, qi,
and 2m1i in states sÒi, and m1i in states sˆi for i P rns. Again, we have two actions, a and b,
which differ only in states qi: It is

P¨Óps, qiq “ P¨ˆps, qiq “ P¨Òps, qiq “
1
n

,

P¨ÓpsÒi, qiq “ P¨ˆpsÒi, qiq “ P¨ÒpsÒi, qiq “ 1,

P¨ÓpsÓi, sÓiq “ P¨ˆpsÓi, sÓiq “ P¨ÒpsÓi, sÓiq “ 1,

Pb
Ópqi, sˆiq “ Pb

ˆpqi, sˆiq “ Pb
Òpqi, sˆiq “ 1,

and

Pa
Ópqi, sÓiq “ Pa

Ópqi, sÒiq “ 0,

Pb
ˆpqi, sÓiq “ Pb

ˆpqi, sÒiq “ 1{2,

Pb
Òpqi, sÓiq “ Pb

Òpqi, sÒiq “ 1,

as depicted in Fig. 2.4. We now show the properties of the reduction. If the given subset sum
instance allows for a subset I Ď rns such that

ř

iPI mi “
1
2
ř

iPrns mi, then the induced pure
policy πI which selects action a in si iff i P I will yield an expected discounted reward of
γ2

n

´

ř

iPI 2mi `
ř

iPrnszI mi

¯

“
3γ2

2n
ř

iPrns mi in the best case and γ2

n
ř

iPrnszI mi “
γ2

2n
ř

iPrns mi

in the worst case in state s.
Conversely, for any stationary policy f we have in state qi a probability pi to choose

action b. Then, for the worst-case expected discounted reward ~vÓpqiq in this state will hold

~vÓpqiq “ piγpm1i ` γ~vÓpqiqq ô

~vÓpqiq “
piγm1i

1´ piγ2

which, derived with respect to pi, yields

B~vÓpqiq

Bpi
“

γm1i
`

1´ piγ2
˘2

44

2.4. Multi-objective approaches

For the best-case expected discounted reward, we have, analogously,

~vÒpqiq “
p2´ piqγm1i

1´ γ2 ,

B~vÒpqiq

Bpi
“ ´

γm1i
1´ γ2 .

Considering the sum of the values, we observe that

Bp~vÒpqiq`~vÓpqiqq
Bpi

“ γm1i

¨

˝

´1
1´ γ2 `

1
`

1´ piγ2
˘2

˛

‚.

Setting the derivative to zero, we have

1´ γ2 “
´

1´ piγ
2
¯2
ñ

b

1´ γ2 “ 1´ piγ
2 ô

1´
a

1´ γ2

γ2 “ pi

where the first implication follows from γ P r0, 1q , pi P r0, 1s. Furthermore, substituting
t :“ 1´ γ2, we have

pi “
1´

?
t

1´ t
“

1
1`

?
t

for t P p0, 1s. It is easy to see that this implies 0 ă pi ď 1, so a possible maximum may lie
between zero and one. However, considering the second derivative, we observe that

B2
´

~vÒpqiq `~vÓpqiq
¯

Bp2
i

“
2γ3m1i

`

1´ γ2
˘3

which is positive and implies a local minimum. This means that the maximal values of
ř

iPrns~vÒpqiq `~vÓpqiq lie at pi P t0, 1u. This means that a policy can achieve

~vÒpsq ě
γ2

2n

ÿ

iPrns

mi,~vÓpsq ě
3γ2

2n

ÿ

iPrns

mi

only if there exists a subset I Ď rnswith
ř

iPI mi “ 1{2
ř

iPrns mi.

2.4.3 Stochastic optimization and the multi-scenario problem

In this section, we consider the stochastic optimization problem applied to the multi-
objective perspective on CMDPs and SBMDPs. More formally, the problem statement
for stochastic bounded-parameter MDPs sounds like this: Given a stochastic BMDP
´

S “ rns, A “ rms, PÙ,~r,~q, p
¯

and a weighting vector ~w “
´

wÓ, wˆ, wÒ
¯

for the individual

performance metrics, we seek to optimize~qV pπq~w where V pπq “
´

~vpπq
Ó

,~vpπqˆ ,~vpπq
Ò

¯

P Rnˆ3

is the matrix that is built from the value vectors that result from applying the policy π and
computing the optimistic, average, and pessimistic rewards.

We have seen in the proof of Theorem 2.4.2 that the stochastic optimization problem is
NP-hard for stationary policies. We formally capture this result.

45

2. THEORY OF PARAMETRIC MODELS

qi : 0

sÒi : 2m1isÓi : 0

sˆi : m1is : 0

a

b

p “ 1

¨, p “ 1

p P r0, 1s , pˆ “ 1{2p P r0, 1s , pˆ “ 1{2

¨, p “ 1

¨, p “ 1

¨, p “ 1

Figure 2.4: Construction from Theorem 2.4.2

Corollary 2.4.3. The stochastic optimization decision problem for stationary and pure policies in
BMDPs is NP-complete.

Proof. We consider the same construction that has been used in the proof of Theorem 2.4.2.

From the properties of the problem shown above, the condition ~vÓpsq`~vÒpsq
2 ě

γ2

n
ř

iPrns mi is
equivalent to the existence of a subset I Ď rnswith

ř

iPI mi “
1
2
ř

iPrns mi.

By carefully studying the stochastic optimization problem, it is possible to see that
solving it also means solving a related but not exactly equal problem in multi-scenario
optimization. That is, given a set M “ tM1, . . . , MKu of MDPs, one looks for a policy
that performs well on all of them, using as performance measure a scalarization metric.
However, the stochastic optimization problem for BMDPs seems to be slightly harder than
the stochastic multi-scenario optimization for two MDPs. The reason for this assumption is
the following: In the stochastic multi-scenario setting, the MDPs for which a shared policy
has to be found and optimized are already known. In contrast, in the stochastic BMDP
setting, there not only are coupling constraints on actions in different states, but there also
is a task to simultaneously compute the MDPs which optimize the value vector for the
computed policy in different directions. This means optimization of a two-stage min max
(or max min, depending on the formulation) problem, with potential integer or non-linear
constraints.

However, even in the seemingly easier multi-scenario case for concurrent Markov
decision processes, we can show a hardness result. For it, we formalize the problem.

Definition 2.4.2. Given a concurrent Markov decision processM “ tM1, . . . , MKu, and a
weight vector ~w P RK, we call the optimization problem

max
f

ÿ

kPrKs

~wpkq~vp f q
k

the multi-scenario stochastic optimization problem. The set of policies may be restricted to
general stochastic or pure policies.

The problem turns out to lose the structure of the usual MDP problems, especially, the
unimodality property is lost. This means that a locally optimal policy may not be globally

46

2.4. Multi-objective approaches

optimal, and, furthermore, this also means that the optimal policy may not be pure. This
can be seen in the following example.

Let us consider a concurrent MDPM “ tM1, M2u with S “ r2s, A “ ta, bu. We define
the reward vectors to be~r1 “ p0, 3qJ ,~r2 “ p3, 9qJ. For the transition probability matrices,
we set

Pa
1 “ Pb

2 “

ˆ

1 0
1 0

˙

and Pb
1 “ Pa

2 “

ˆ

0 1
0 1

˙

where the matrix Pa
1 corresponds to the action a in the first MDP and so on. The discount

factor is γ “ 0.9 and the weights are ~w “
`

7{10, 3{10
˘

,~q “
`

2{3, 1{3
˘J. We observe that the

weighted sum for the policy πaa “ pa, aq is 26.5, for the policy πab “ pa, bq it is 24.8, and for
the policy πba “ pb, aq it is 25.3. This means that πaa is locally optimal. However, the policy
πbb “ pb, bq yields a weighted sum of rewards of 29.2, which is the global maximum for
pure policies.

Having seen that the stochastic optimization problem for concurrent MDPs does not
have the unimodality property, we show its theoretical hardness.

Definition 2.4.3 (Multi-scenario stochastic optimization decision problem). Given a concur-
rent MDPM and real (represented withO pNMKq bits) vectors and numbers ~w P RK, g P R,

decide if there is a stationary policy f P P such that
řK

k“1 ~wpkq
ˆ

ř

sPS~qpsq~v
p f q
k psq

˙

ě g.

The first part of our NP-completeness proof is to show that the given problem is, in fact,
in NP. One can see that the representation of a stationary policy is polynomial as long as
the representation of a real number is assumed to consume O pNMKq bits. Then one can
define a non-deterministic algorithm that guesses a policy by guessing O pNMKˆ NMq
bits that represent NM real numbers which define a stationary policy f and then verifies
that f fulfills the relation above.

Now we can prove the more interesting part of the completeness statement.

Theorem 2.4.4. The decision problem defined in Def. 2.4.3 is NP-complete.

Proof. We perform a reduction from 3-SAT. Given a 3-SAT instance with n variables
x1, . . . , xn and m clauses C1, . . . , Cm where each clause contains three literals, we construct
a concurrent MDPM “ tM1, M2u consisting of two MDPs, a vector ~w P R2 and a real
number g P R such that the instance will be satisfiable if and only if there is a stationary
policy f for concurrent MDP that yields the value g.

The first part of our construction are the states. They are arranged in three groups.

• First, we create specially designated sink states s0, s1 that yield 0 resp. 1 reward units
in both MDPs.

• Then, we transfer the variables of the Boolean satisfiability problem into states of the
MDPs: for each variable x we create two states sx, s1x in both MDPs. The reward is 0 in
states sx and 1 in states s1x.

• Last, we create states for clauses: for each clause C, a state sC is created. Again, the
reward in sC is zero for all clauses.

The second part of the construction are the actions. We create three actions A “ t1, 2, 3u
with the following semantics.

• In the sink state s0, it is Pa
k ps0, s0q “ 1 for all a P A and Mk PM.

47

2. THEORY OF PARAMETRIC MODELS

• In the variable states, we define

P1
1 psx, s1xq “ P2

1 psx, s0q “ P3
1 psx, s0q “ 1

and
P1

2 psx, s0q “ P2
2 psx, s1xq “ P3

2 psx, s1xq “ 1,

that is, we define actions in sx to lead to different outcomes in the MDPs. The
motivation is to force a mutually exclusive choice of values for the Boolean variables
in the concurrent MDP. In the auxiliary variable states, it is Pa

k ps
1
x, sxq “ 1 for all actions

a P A and MDPs k PM; the idea behind these states is to exploit non-linearity of the
problem. The construction is visualized in Fig. 2.5 where the upper part corresponds
to the first MDP M1 and the lower part corresponds to the second MDP M2 inM.

• In the clause states, we define actions as follows. In a clause C “ L1 _ L2 _ L3, the
chosen action represents the literal that evaluates to true. Hence, we define Pa

k pC, sq
by setting Pa

k pC, sq “ 1 in the cases

– La “ x, k “ 1, s “ sx

– La “ x, k “ 1, s “ s0

– La “ x, k “ 2, s “ sx

– La “ x, k “ 2, s “ s0

A graphical sketch of this setup can be seen in Fig. 2.6. Again, the upper part of the drawing
corresponds to the first MDP inM while the lower part corresponds to the second MDP.

The idea behind this construction is to infer functions β : t1, . . . , nu Ñ t0, 1u that map
variables to values and ν : t1, . . . , mu Ñ t1, 2, 3u that map the clauses to the satisfying
variables. This is done to create a mapping from policies to variable assignments in the SAT
problem. Furthermore, we define the initial distribution~q with~qpsCq “ 1{m for all clauses C
for both MDPs and weights ~w “ p1{2, 1{2q. Concerning the value, we set an auxiliary constant

α :“ 1
1´γ2 and the required value g :“ γ2α

2 where γ P p0, 1q is a non-zero discount factor in
the concurrent MDP.

sx : 0s1x : 1 s0 : 0

1

2, 3¨

¨

sx : 0s1x : 1 s0 : 0

2, 3

1¨

¨

Figure 2.5: The variable gadget

We prove the validity of the reduction. First, we show that if there is an assignment
β : t1, . . . , nu Ñ t0, 1u that satisfies the SAT instance, then there also exists a pure policy

π : S Ñ A such that
řK

k“1 ~wpkq
ř

sPS~qpsq~v
p f q
k psq ě g. We construct the policy in two steps.

In the first step, we set πpsxq “ 1 ô βpxq “ 1 for all variables x. In the second step, it
follows from the existence of a satisfying assignment that in each clause, a literal is satisfied,
defining a function ν : t1, . . . , mu Ñ t1, 2, 3u that defines the number of a satisfied literal in
every clause. Thus, we set πpsCq “ a ô νpCq “ a.

48

2.4. Multi-objective approaches

x1 _ x3 _ x4 sx1 s0 sx4

1
2

3

x1 _ x3 _ x4 s0 sx3

1

2
3

Figure 2.6: The clause gadget

We verify that the constructed policy yields the given value. As in each clause the
satisfying literal is chosen, the value of this state will be 0 in one MDP and γ2α in the other
one.

Now we show that if there is no satisfying assignment, then the value of the concurrent
MDP will be lower than g. Given any assignment β and any assignment ν, the induced
policy will lead from at least one clause state to the sink state s0 with nonzero probability
in both MDPs, yielding a lower value. However, we must take care of stationary but not
pure policies that still might induce the desired value. One can observe that if the stationary
policy is not pure in a state sx for a variable x, then the cumulative discounted reward in
this state is pγ

1´p2γ2 for some real 0 ă p ă 1. Deriving the value of a clause state from which
one can arrive to this variable state, we get a summand

1
2

˜

pγ2

1´ p2γ2 `
p1´ pqγ2

1´ p1´ pq2γ2

¸

Let f ppq “ p
1´p2γ2 `

1´p
1´p1´pq2γ2 . Computing the derivative, we obtain

f 1ppq “
2γ2 p

`

1´ γ2 p2
˘2 ´

2γ2p1´ pq2
`

1´ γ2p1´ pq2
˘2 `

1
1´ γ2 p2 ´

1
1´ γ2p1´ pq2

which has its roots at

1
2

,
1˘

b

1´ 4γ´2 ` 4γ´2
a

4´ γ2

2
,

1˘ i
b

1´ 4γ´2 ` 4γ´2
a

4´ γ2

2
.

The only roots of interest are the real ones, and thus, we investigate the pair

1˘
b

1´ 4γ´2 ` 4γ´2
a

4´ γ2

2
. (2.11)

It can be seen that for 0 ă γ ă 1, the value
a

4´ γ2 is at least
?

3 ą 1, and the root term
in (2.11) is thus greater than one. This means that the whole term (2.11) is either greater
than one or negative. Hence, the possible extreme points of f in r0, 1smay lie at 0, 1, or 1{2.
We can see that f p0q “ f p1q “ q while f p1{2q “ 1

1´1{4γ2 ă q. Hence, a non-pure policy in
a variable state will have a lower cumulative discounted reward. Concerning the clause
states, we observe that a non-pure policy cannot yield higher rewards than a pure one,
as the expected discounted reward in a clause state is linear in the expected discounted
rewards in the following variable states; the clause states are not visited again.

49

2. THEORY OF PARAMETRIC MODELS

2.4.4 Finding pure Pareto-optimal policies

We conclude the discussion on multi-objective perspectives on BMDPs by deriving an
algorithm that computes the set PPareto exactly. The algorithm is based on policy iteration
and works as follows: For each currently computed policy, neighbour policies with a
Hamming distance of 1 are computed, and those policies that are not worse than the policy
they are derived from are kept. This continues for |S| steps, and the resulting non-dominated
policies are the Pareto frontier.

The correctness of this approach is shown by proving the following lemma on the
structure of PPareto. Intuitively, we show that for each policy, there exists a “path” of policies
to any policy on the Pareto frontier on which any policy is not worse than its predecessor
in all components, i. e., there always is at least a partial improvement. The proof is a
consequence of general MDP and stochastic game theory.

Lemma 2.4.5. Let P “ pS, A, TÙ,~r,~q, pq be a SBMDP. Let furthermore π, π1 be two pure
policies where π1 lies on the Pareto frontier. Then there exists a finite sequence of pure policies
π “ π0, π1, . . . , πN “ π1 where dpπi, πi`1q “ 1,~vpπiq ą ~vpπi`1q and, additionally, N ď |S|.

Proof. We provide a proof by induction on dpπ, π1q. For dpπ, π1q P t0, 1u, the statement
holds obviously.

For dpπ, π1q “ c ą 1, the induction hypothesis is that the statement holds for c ´ 1.
This means that for each policy π1 with distance dpπ1, π1q “ c´ 1 there exists a sequence
of policies π1, π2, . . . , πc “ π1 such that for any two adjacent policies πi, πi`1 it is ~vpπiq ą

~vpπi`1q.
To show the induction step, we must infer the statement for dpπ, π1q “ c. Suppose now

for the sake of contradiction that it is not the case. We observe that under this assumption,
for each state s P S, the policy πps,π1psqq that results from changing π in state s to choose

action π1psq results in a value vector that is dominated by ~vpπq, i. e., ~vpπq ą ~vpπ
ps,π1psqqq. Let

us now consider a restricted SBMDP P rπ,π1s “ pS, Arπ,π1s, Trπ,π1s
Ù

,~r,~q, prπ,π1sq where the

available actions are only those used in either π or π1, that is, Arπ,π1s “ ta, bu and the

matrices P in Trπ,π1s
Ù

are constructed with

Prπ,π1sa
Ó

ps‚q “ Pπpsq
Ó

ps‚q, Prπ,π1sa
Ò

ps‚q “ Pπpsq
Ó

ps‚q,

Prπ,π1sb
Ó

ps‚q “ Pπ1psq
Ó

ps‚q, Prπ,π1sb
Ò

ps‚q “ Pπ1psq
Ó

ps‚q

The reward vector is kept.
It is easy to see that the policies π and π1 can be executed in the new SBMDP P rπ,π1s. As

all action changes from π lead to smaller value vectors in each component, we can see that
π is locally optimal for each component, and thus, π is optimal for all components. Hence,
π is an optimal policy in P rπ,π1s. Furthermore, π1 is then dominated by π in all states and
all components in P rπ,π1s as well as in P . Consequently, π1 cannot lie on the Pareto frontier,
which contradicts the initial assumption.

As we have arrived at a contradiction, we it follows that there must exist a state s where
it is ~vpπq ą ~vpπ

ps,π1psqqq, and, since dpπps,π1psqq, π1q “ c´ 1 and dp¨, ¨q can never exceed |S|,
there exists, by induction hypothesis, a sequence of policies πps,π1psqq “ π1, π2, . . . , πc “ π1

for which it is ~vpπiq ą ~vpπi`1q. As dpπ, πps,π1psqqq “ 1, this concludes the proof.

This result directly leads to Algorithm 11 which is, as already said, based on policy
iteration and (partially) breadth-first search.

It remains now to prove correctness of Algorithm 11.

50

2.5. Extending the model

Algorithm 11 Exact computation of PPareto and VPareto

1: function PURE-OPT-EXACT(P “ pS, A, TÙ,~r, pq, γ)
2: P0 Ð

arbitrary policy
(

Ź initialize current policy set
3: F Ð P0 Ź initialize the Pareto frontier
4: for i P r|S|s do
5: Pi Ð YπPPi´1

!

π1 | dpπ, π1q “ 1,~vπ ą ~vπ1
)

6: F Ð POpFY Piq

7: return F

Theorem 2.4.6. Algorithm 11 correctly computes PPareto.

Proof. The correctness of this algorithm is guaranteed by Lemma 2.4.5. In detail, Algo-
rithm 11 stores a set P of policies. In the i-th step, the set P is updated with policies that
have distance 1 from already computed policies in P and distance i from π0; a further
constraint restricts the policies to be non-dominated by their “parent” in P. This way, after i
steps P contains all policies with distance i from π0 that follow a non-dominated path. By
computing the non-dominated subset of currently found policies in line 6, we maintain a
set of mutually non-dominated policies that are reachable on a non-dominated path from
π0. By Lemma 2.4.5, this captures all policies from PPareto.

2.5 Extending the model

In this section, we consider possible extensions of the bounded-parameter model, includ-
ing different reward measures. Motivated by the assumption that the dimension of the
uncertainty set is less than the number of states, we propose a formalism that introduces a
parameter space with dimension k ă |S| along with a mapping from the parameter space to
an uncertainty setM of MDPs and consider several reward measures on it.

Specifically, we assume that an uncertainty set of Markov decision processes M is
extended by a probability distribution in form of a probability density function

p : MÑ R,
ż

M
ppMqdM “ 1

and, similar to our approach in Sec. 2.4, we search for a trade-off policy f . However, now f
should optimize the probability of a given value vector ~v with respect to p. More generally,
the problem can be stated as follows [DM10].

Definition 2.5.1 (Percentile optimization). Let M be a set of MDPs with n states and a
shared action space, p a probability density function onM, ~v P Rn and f a policy. We call
`

M, p
˘

an stochastic MDP.
The worst-case set 9M~v, f ĎM is the set of all Markov decisison processes M PM for

which the value vector ~vp f qpMq in M under f fulfills ~vp f qpMq ě ~v.
For a given probability q P r0, 1s and a given value vector ~v P Rn, the percentile opti-

mization problem is the problem of deciding if a worst-case set 9M~v, f with
ş

9M~v, f
ppMqdM ě q

exists.

It is easy to see that for arbitrary probability density functions p this problem can
get arbitrarily hard, and a hardness result for such an unrestricted problem may not be
surprising. Thus, we restrict the problem to a more handy subclass we have hinted at in the
beginning of this section.

51

2. THEORY OF PARAMETRIC MODELS

Definition 2.5.2 (Parameterized MDP). For a state set S “ rns, an action set A “ rms, and
a reward vector~r, a parameterized Markov decision process is a set M̃ of Markov decision
processes with common state space S, action space A, reward vector~r, a probability dis-
tribution p : r0, 1sk Ñ R, and a surjective mapping F : r0, 1sk Ñ M̃ with the following
properties.

• p is a uniform distribution on r0, 1sk.

• The mapping F maps values λ1, . . . , λk P r0, 1sk to transition probability matrices
affinely, that is, F has the form F : r0, 1sk ˆ A Ñ Rnˆn

ě0 and can be represented by
pk` 1q|A| real matrices

!

`

Pa
0 , ∆a

1, . . . , ∆a
k
˘

| a P A
)

where the base matrices Pa
0 are stochastic matrices for all a P A and for the influence

matrices ∆a
i the constraints

∆a
i
~1 “~0 @a P A, i P rks (2.12)

min
λ1,...,λkPr0,1sk

¨

˝Pa
0 ps, s1q `

k
ÿ

i“0

λi∆a
i ps, s1q

˛

‚ě 0 @a P A, s P S, s1 P S (2.13)

hold. Then F can be represented by

Fpλ1, λ2, . . . , λk, aq “ Pa
0 `

k
ÿ

i“1

λi∆a
i

The arguments of F in this setting are called parameters.
Analogously, one can define parameterized Markov reward processes.

The constraint (2.13) requires that any affine combination of the base matrix and the
influence matrices is a non-negative matrix, the constraint (2.12) implies that each such
affine combination will have row sum 1. This constaint implies that the influence and
base matrices are dependent on each other; by doing this, this constaint ensures that for
any choice of parameters λ1, . . . , λk P r0, 1sk, the resulting transition probability matrix
Fpλ1, . . . , λk, aqwill be stochastic. The constraint (2.13) is equivalent to

Pa
0 ps, s1q `

k
ÿ

i“0

minp0, ∆a
i ps, s1qq ě 0

for all s, s1 P S, which makes it easy to verify.
To provide an intuition for parameterized MDPs, we provide an example first. Consider

a two-state two-action model with S “ r3s, A “ r2s, reward vector~r “ p1, 3, 2qJ and the
following transition probability matrices, written as functions of parameters λ1, λ2 P r0, 1s.

Fpλ1, λ2, 1q “ P1pλ1, λ2q “

¨

˝

λ1 1´ λ1 0
1{2` λ1{2 0 1{2´ λ1{2

1{2` λ1{6´ λ2{4 1{4´ λ1{6 1{4` λ2{4

˛

‚,

Fpλ1, λ2, 2q “ P2pλ1, λ2q “

¨

˝

1{2` λ1{2 1{2´ λ1{2 0
λ2 1´ λ2 0

1´ λ1 λ1{2 λ1{2

˛

‚

52

2.5. Extending the model

In the representation defined above, it is

P1
0 “

¨

˝

0 1 0
1{2 0 1{2
1{2 1{4 1{4

˛

‚, ∆1
1 “

¨

˝

1 ´1 0
1{2 0 ´1{2
1{6 ´1{6 0

˛

‚, ∆1
2 “

¨

˝

0 0 0
0 0 0
´1{4 0 1{4

˛

‚,

P2
0 “

¨

˝

1{2 1{2 0
0 1 0
1 0 0

˛

‚, ∆2
1 “

¨

˝

1{2 ´1{2 0
0 0 0
´1 1{2 1{2

˛

‚, ∆2
2 “

¨

˝

0 0 0
1 ´1 0
0 0 0

˛

‚

What we can see in this example is that one parameter can steer the behaviour of the
model in arbitrarily many states and actions. Generalizing this observation, we can say
that the PMDP formalism reduces the number of dimensions in the uncertainty model,
however, it adds complexity in the form of additional constraints. The intuition is that a
parameter λi can influence several transitions in different states; that is, we cannot rely on
dynamic programming, as the assumption of independence of different states and actions,
the rectangularity property [Iye05], does not hold. This means that a local maximization
or minimization of a parameter does not necessarily imply a global maximization or
minimization of all components in the value vector. This perspective is somewhat similar
to the reasoning behind the hardness result in Theorem 2.2.1. Here, we show that even
for a mathematically simpler performance measure, the expected discounted total reward,
computing bounds and performing percentile optimization is computationally hard. The
presented hardness results are worst case results, which means that the PMDP model allows
for hard instances to be constructed. In the cases where the rectangularity property holds, it
is still possible to apply suitable efficient algorithms; however, the generality of the model
also allows one to construct instances which are as computationally complex as instances
for NP-hard problems.

2.5.1 Hardness of robust optimization

First, we show that in the most general case, computation of lower and upper bounds is
NP-complete.

Theorem 2.5.1. For a given parameterized Markov reward process and a vector ~v, deciding if the
maximal expected total discounted reward is greater than ~v is NP-complete.

Proof. We describe a reduction from 3´SAT. Given a 3´SAT instance φ “ C1 ^ ¨ ¨ ¨ ^ Cm
with m clauses Ci, i P rms and variables x1, . . . , xn, we construct a PMRP with m` 5n` 2
states ts1, . . . , sm, s`, s´u Y

!

qi
j | j P r5s, i P rns

)

, an arbitrary discount factor γ P p0, 1q, and
n parameters λ1, . . . , λn. The states s` and s´ are absorbing; the only nonzero reward
is generated in state s` and is defined to be 1. For the transition probabilities, we set
Pr

“

s´ | si, Ci “ L1 _ L2 _ L3
‰

“ p1 ` p2 ` p3 where

pj “

#

1
3 ´

1
3 λt Lj “ xt

1
3 λt Lj “ xt

and Pr
“

s` | si, Ci “ L1 _ L2 _ L3
‰

“ q1 ` q2 ` q3 where

qj “

#

1
3 λt Lj “ xt
1
3 ´

1
3 λt Lj “ xt,

for j P t1, 2, 3u; an illustration can be observed in Fig. 2.7. It is easy to see that if λi P r0, 1s
for all i P rns, the constraints 0 ď p1 ` p2 ` p3 ď 1 and 0 ď q1 ` q2 ` q3 ď 1 hold,
satisfying (2.13).

53

2. THEORY OF PARAMETRIC MODELS

x1 _ x2 _ x3 : 0s` : 1 s´ : 0
1`λ1´λ2`λ3

3

2´λ1`λ2´λ3
3

1 1

Figure 2.7: First part of the reduction in Theorem 2.5.1

One can immediately observe that if there exists a satisfying assignment for φ, then
there also exists an assignment for λ1, . . . , λk such that λi P t0, 1u and the expected total
discounted reward ~v˚ is at least 1

3 ¨
γ

1´γ in states si, i P rns. Conversely, if φ is unsatisfiable,
then there exists no assignment for λ1, . . . , λk such that λi P t0, 1u and ~v˚ ě ~v. However,
this disregards the possibility for the parameters to be fractional, and one can immediately
see that setting λ1 “ λ2 “ . . . “ λn “

1
2 delivers a total expected discounted reward of

1
2 ¨

1
1´γ ¨ pγ, . . . , γ, 1, 0qJ. To disallow this, we add, for each i P rns, a gadget as depicted in

Figure 2.8. The only nonzero reward in this gadget is in state qi
5, which is reached with

probability 1´ λi ` λ2
i “ 1´ λi p1´ λiq which is maximal if λi is either 1 or 0; by requiring

the expected discounted total reward in state qi
1 to be exactly γ2 ¨ 1

1´γ we can effectively
restrict λi to t0, 1u, which completes the argument.

qi
1 : 0 qi

2 : 0

qi
3 : 0

qi
4 : 0

qi
5 : 1

1

1

λi

1´ λi

1´ λi

λi

1

Figure 2.8: A gadget forcing λi P t0, 1u

Completeness follows analogously from the arguments in Theorem 2.2.1.

2.5.2 Hardness of percentile optimization

We observe that optimizing the expected discounted rewards for parameterized Markov
decision processes can be considered a subclass of the polynomial optimization problem
which is also NP-hard [MK87]. This yields an intuitive argument that the percentile opti-
mization problem is at least as hard. Formally, we show via a reduction that deciding if the
worst-case set is not empty is NP-hard.

Theorem 2.5.2. The optimization of the probability of reaching a certain minimal expected dis-
counted total reward in a parameterized Markov decision process is NP-hard, even if the transition
probabilities for each action depend on at most one parameter.

Proof. We show a reduction from 3´SAT. Given a 3´SAT instance φ consisting of k variables
and n clauses C “ tC1, . . . , Cnu such that the clause Ci contains literals Li

1, Li
2, Li

3, we
construct a PMDP with n ` 2 states S “ tu, du Z C and k parameters λ1, . . . , λk. In the
following, we use the same symbols to describe both states and clauses; the meaning will
be in each case given by the context. The states u and d are both absorbing with exactly one
action; the reward in u is 1 and the reward in d is 0. In any other state Ci P C, there are three
available actions that correspond to the three literals Li

1, Li
2, Li

3 P Ci; the reward in Ci is 1. As

54

2.5. Extending the model

before, we overload the meaning of symbols and, dependent on context, describe actions or
literals with the same symbols. Additionally, we assume that the instance contains clauses
of the form xi _ xi for each variable xi.

The transition probabilities are as follows: For state Ci and action Li
j, the probability of

the next state being u is either

Case 1 λr, if Li
j is a positive literal that corresponds to the variable xr or

Case 2 1´ λr, if Li
j is a negative literal that corresponds to the variable xr.

The probability of the next state being d is set to the respective inverse, either

Case 1 1´ λr, if Li
j is a positive literal that corresponds to the variable xr or

Case 2 λr, if Li
j is a negative literal that corresponds to the variable xr.

Before we complete the reduction, we observe: The expected discounted total reward
will be maximized in all states if the policy f leads to u with a high probability; however, to
do this, f must imply a consistent variable assignment for the underlying 3´SAT instance.

We set the discount factor to γ “ 1{2 and a minimal discounted total reward vector ~u to
be 2 in state u, 0 in state d and 5{3 in all other states. Now we show that the probability of
gaining a reward of at least ~u is positive if and only if the instance for 3´SAT is satisfiable.

“ð” Suppose the given instance for 3´SAT is satisfiable. Then, there is a satisfying as-
signment α : t1, . . . , ku Ñ t0, 1u. In every clause Ci P C we can then choose a literal
Li

j such that α |ù Li
j and thus, we can choose the corresponding action Li

j in the
corresponding state Cj; this way, the probability over the parameters λ1, . . . , λk for
the transition probability from Ci to u to be at least 2{3 is 1{3, and thus, there exists a
parameter set with nonzero measure where the expected discounted total reward of
1` 2{3 ¨ γ ¨ 2 “ 5{3 is reached.

“ñ” Suppose the given instance for 3´SAT is unsatisfiable. Then, no deterministic policy
f can induce a consistent assignment and there will be two states Ci, Ci1 with actions
corresponding to literals xj in Ci and xj in Ci1 . It is easy to see that for every value of
λj, either the probability to transition from Ci to u is less than 2

3 or the probability to
transition from Ci1 to u is less than 2

3 . Then, the worst-case set where a reward of at
least ~u is gained is empty.

For randomized policies, we compute the measure of the induced worst-case sets
and show that it will be smaller than the worst-case set in the case if a satisfy-
ing assignment exists. Suppose that for variable xi, the probability that the ac-
tion corresponding to xi is chosen is 0 ă p ă 1. Then to maximise the worst-
case set measure, the corresponding action in the clause xi _ xi has to be chosen
also with probability p; then, the projection of the worst-case set on λi is given by
Λi “

λ | p1´ pqλ` pp1´ λq ě 2{3
(

X r0, 1s. The inequalities can be transformed

into λp1´ 2pq ě 2{3´ p. For p ă 1{2, we derive 1 ě λ ě
2{3´p
1´2p “

1
2 `

1
6 ¨

1
1´2p and

the measure µ´ppq “ minp0, 1
2 ´

1
6 ¨

1
1´2p q. For p ą 1{2, it is analogously µ`ppq “

minp0, 1
2 `

1
6 ¨

1
1´2p q. The derivatives (in the differentiable part) are zero or

dµ´

dp
“ ´

1
6
¨

˜

´
´2

p1´ 2pq2

¸

“ ´
1
3
¨

1
p1´ 2pq2

ă 0,
dµ`

dp
“

1
3

1
p1´ 2pq2

ą 0,

yielding maximal values for µ˘ at p P t0, 1u. This implies that the maximal possible
measure of the worst-case set of 1

3k is not reachable if the given instance is unsatisfiable.

55

2. THEORY OF PARAMETRIC MODELS

u : 1

C1 “ x1 _ x3 _ x4 : 1

d : 0

x1, 1´ λ1

x3, 1´ λ3

 x4, λ4

x1, λ1
x3, λ3

x4, 1´ λ4

Figure 2.9: (Incomplete) construction for Theorem 2.5.2

It is easy to see that this result relies on the possibility to cut the k-dimensional parameter
space with hyperplanes in an exponential number of regions. For a fixed number of
parameters this idea cannot work, at least not in its unmodified form, because, if the
number of dimensions is fixed, the space can be cut only in a polynomial number of
segments (more precisely, n planes can dissect Rk in O

´

nk
¯

regions). Now, we show that
even for a constant number of dimensions (at least 2) yet their influence is unconstrained,
the percentile optimization problem is NP-hard.

Theorem 2.5.3. Deciding if reaching a certain minimal expected discounted total reward is possible
with a given probability p in a parameterized Markov decision process is NP-hard in the general
case, if there are at least two parameters.

Proof. We again construct a reduction to 3´SAT. As before, we assume a 3´SAT instance
φ consisting of k variables X “ tx1, . . . , xru and n clauses C “ tC1, . . . , Csu such that the
clause Ci contains literals Li

1, Li
2, Li

3. Without limitation of generality we assume that φ
contains, for each variable xi, a clause xi _ xi _ xi; this is a technical requirement that will
be useful in the proof of the reduction. We generate a PMDP with two parameters λ1, λ2
and 2k` n` 2 states, n of which correspond to the clauses in φ.

The general idea is, again, to use the actions to encode both the satisfying assignment
and its verification. Similarly to the proof of Theorem 2.5.2, we construct a PMDP with
a value vector; the constraints for the parameters that follow from the construction will
describe a polygon of known size such that by choosing a value of a variable xi to be either
0 or 1, one would simultaneously choose one of two adjacent boundaries of the polygon,
as shown in Figure 2.10. In a simple case of a 4k-gon, choosing 0 or 1 for xi will yield one
of the two hyperplanes λ1 cos α` λ2 sin α ď 1

4 `
1
2 pcos α` sin αq or λ1 cos β` λ2 sin β ď

1
4 `

1
2

`

cos β` sin β
˘

with α “
2¨p4i`1qπ

4k and β “
2¨p4i`2qπ

4k , respectively. Other boundaries
will be forced by additional states with exactly one action. This way, an assignment will
translate to k boundaries of a regular 4k-gon, while the other 2k boundaries will be enforced.
A policy will describe, as in Theorem 2.5.2, a (possibly contradictory) assignment that
satisfies all clauses.

It is easy to see that, if the assignment is non-contradictory, the area of the polygon will
equal to the area of the regular 4k-gon with inner radius 1{4 plus k times the area of the gray
triangle in Figure 2.10. Applying basic trigonometry, we derive this area to be

4r
ˆ

1
4

˙2
tan

π

4r
` r ¨

ˆ

1
4

˙2
tan2 π

4r
tan

π

2r
“

r
4

tan
π

4r
` r ¨

ˆ

1
4

˙2
tan2 π

4r
tan

π

2r
.

56

2.5. Extending the model

x1 “ 0x1 “ 1

x2 “ 0 x2 “ 1

Figure 2.10: Main proof idea of Theorem 2.5.3

Now we construct the PMDP that enforces a similar construction. Since it is technically
nontrivial to describe arbitrary hyperplanes of the form

!

~x |~cJ~x “ d
)

with arbitrary coeffi-
cients in~c when only non-negative coefficients 0 ď λ1, λ2 ď 1 with an upper bound of 1 are
allowed, we use a slightly different polygon. Furthermore, the structure of the underlying
satisfiability instance has to be encoded in the MDP problem.

• Two states, u and d, are absorbing such that the cumulative reward in u is 1 and in d,
respectively, 0.

• For i P rks, we define values

α´i :“
2 ¨ p4i` 1qπ

16k
,

α`i :“
2 ¨ p4i` 2qπ

16k
,

ψ´i :“
2 ¨ p4iqπ

16k
,

ψ`i :“
2 ¨ p4i` 3qπ

16k
.

We observe that these values lie in the interval
“

0, π{2
‰

, where the sine and cosine
are both positive; we also see that this construction describes the first quadrant of a
regular 16k-gon; it is easy to see that the main properties of this figure are the same.

• For i P rks, we construct states ai, bi. The states ai and bi have only one action; the
transition probabilities are

Pr
“

u | ai, ¨
‰

“
1
?

2

´

λ1 cos ψ´i ` λ2 sin ψ´i

¯

Pr
“

u | bi, ¨
‰

“
1
?

2

´

λ1 cos ψ`i ` λ2 sin ψ`i

¯

Pr
“

d | ai, ¨
‰

“ 1´
1
?

2

´

λ1 cos ψ´i ` λ2 sin ψ´i

¯

Pr
“

d | bi, ¨
‰

“ 1´
1
?

2

´

λ1 cos ψ`i ` λ2 sin ψ`i

¯

57

2. THEORY OF PARAMETRIC MODELS

The minimal discounted reward from ai and bi is set to γ

2
?

2
. The idea behind these

states is to create the “static” boundaries of the figure which cannot be changed with
a decision. In the visualization in Figure 2.10, these boundaries are on the sides of the
polygon. Here, these constraints create boundaries in the parameter space of the form

γ
?

2

´

λ1 cos ψ`i ` λ2 sin ψ`i

¯

ě
γ

2
?

2
ô

λ1 cos ψ`i ` λ2 sin ψ`i ě
1
2

which corresponds to the space outside of the first quadrant of a regular 16k-gon with
radius 1{2.

• For j P rns, we construct states sj that correspond to clauses in the 3´SAT instance. In

each state sj, three actions are available that correspond to the literals Lj
1, Lj

2, Lj
3 in the

clause Cj. The transition probabilities are

Pr
”

u | sj, L
ı

“

$

&

%

1?
2

´

λ1 cos α`i ` λ2 sin α`i

¯

L “ xi

1?
2

´

λ1 cos α´i ` λ2 sin α´i

¯

L “ xi

In analogy to the preceding discussion, we install a minimal expected discounted
reward of γ

2
?

2
. This ensures the constraint

1
2
ď

#

λ1 cos α`i ` λ2 sin α`i L “ xi

λ1 cos α´i ` λ2 sin α´i L “ xi

We show now the correctness of this construction. If a policy yields a satisfying assign-
ment, then the volume of the worst-case set will be at least 1´ p4kA` kSq, where A is the
area of an isosceles triangle T with top angle 2π

16k and side length 1{2, and S is the area of an
isosceles triangle with base length sin π

16k (which corresponds to the base length of T) and
top angle π´ 2α. One can see that it is A “ 1

4 sin π
16k cos π

16k and S “ 1
4 sin2 π

16k ¨ tan π
16k .

If there is no satisfying assignment, then there are two cases that have to be considered.

Case 1 The policy is pure and implies a contradicting assignment. Then the volume of
the worst-case set will be less than 1´ p4kA` kSq, as the additional constraints will
exclude one of the polygons of area S.

Case 2 The policy is not pure in one of the states that corresponds to a clause of the form
xi _ xi _ xi. We compute the resulting area of the corresponding part of the polygon.
As the worst-case set is defined by the difference of a part of a 16k-gon and the unit
rectangle, we compute the area of the parameter space which is excluded by the chosen
policy. The constraint has then the form λ1ppd1 ` p1´ pqe1q ` λ2ppd2 ` p1´ pqe2q ě z
where d1, d2 and e1, e2 are the coordinates of D resp. E in Figure 2.11, p P r0, 1s, and the
resulting linear combination is the point X in Figure 2.11. The constraint is represented
in the figure by the line YZ. The point X1 is the intersection of the constraint with the
normal. It is easy to see that the distance |OX1| is equal to the distance |OD| scaled by
the inverse of the distance |OX|.

Our area of interest equals to the area of the polygon OAYZC in Figure 2.11, which is
the difference between the area of the triangles OX1Y1 and OX1Z1 and the area of the
orange triangles AYY1 and CZZ1. In order to compute the complete area, we compute
first several important values.

58

2.5. Extending the model

O

A

B

CD E

X1

α β

δ

X
Y

Z
Z1

Y1

Figure 2.11: Illustration of the geometrical figure in proof of Theorem 2.5.3

First, we observe that the figure depends on the radius r0 “ |OD| and the angles α and
β. β and r0 are given, and the only variable value is α. Knowing this, we can derive
the different lengths and angles in the figure. The angle δ equals β

2 ´ α, and knowing

this angle, we can derive the lengths |OX| “ |OD| cos β
2

cos δ and |OX1| “ |OD| |OD|
|OX| “

r0 cos δ

cos β
2

.

This yields the sum of the areas of the triangles OX1Y1 and OX1Z1 to be

A0pδq “
|OX1|2 tan

`

β` δ
˘

` |OX1|2 tan
`

β´ δ
˘

2
“
|OX1|2

2

´

tan
`

β` δ
˘

` tan
`

β´ δ
˘

¯

“
r2

0 cos2 δ

2 cos2 β
2

´

tan
`

β` δ
˘

` tan
`

β´ δ
˘

¯

.

Now we compute the areas of the triangles CZZ1 and AYY1. First, we compute the
angles.

>Z1CZ “ >YAY1 “
π´ β

2
,

>AY1Y “ π´>OX1Y1 ´>AOX1 “ π´
π

2
´
`

β´ δ
˘

“
π

2
´
`

β´ δ
˘

>CZ1Z “
π

2
´
`

β` δ
˘

>CZZ1 “ π´>Z1CZ´>CZ1Z “ π´
π´ β

2
´

ˆ

π

2
´
`

β` δ
˘

˙

“
3β

2
` δ

>AYY1 “
3β

2
´ δ.

Then, we compute the lengths of the sides |AY1| and |CZ1|. It is

|AY1| “ |OY1| ´ |OA| “
|OX1|

cos
`

β´ δ
˘ ´

r0

cos β
2

“
r0 cos δ

cos
`

β´ δ
˘

cos β
2

´
r0

cos β
2

.

59

2. THEORY OF PARAMETRIC MODELS

and, analogously,

|CZ1| “
r0 cos δ

cos
`

β` δ
˘

cos β
2

´
r0

cos β
2

.

The area of these two triangles is then

A1pδq “
|AY1|2 sin π´β

2 sin
´

π
2 ´

`

β´ δ
˘

¯

2 sin
´

3β
2 ´ δ

¯ `

|CZ1|2 sin π´β
2 sin

´

π
2 ´

`

β` δ
˘

¯

2 sin
´

3β
2 ` δ

¯

“
r2

0
2
¨

¨

˝

cos δ

cos
`

β´ δ
˘

cos β
2

´
1

cos β
2

˛

‚

2
cos β

2 cos
`

β´ δ
˘

sin
´

3β
2 ´ δ

¯ `

`
r2

0
2
¨

¨

˝

cos δ

cos
`

β` δ
˘

cos β
2

´
1

cos β
2

˛

‚

2
cos β

2 cos
`

β` δ
˘

sin
´

3β
2 ` δ

¯

“
r2

0

2 cos β
2

¨

¨

˚

˚

˝

´

cos δ´ cos
`

β´ δ
˘

¯2

cos
`

β´ δ
˘

sin
´

3β
2 ´ δ

¯ `

´

cos δ´ cos
`

β` δ
˘

¯2

cos
`

β` δ
˘

sin
´

3β
2 ` δ

¯

˛

‹

‹

‚

Now we can derive the formula for the area of interest, which is Apδq “ A0pδq´ A1pδq.
The derivative of this function is

dA
dδ

¨
2 cos β

2
r2

0
“
´2 cospδqptanpβ` δq ` tanpβ´ δqq sinpδq

cos
´

β
2

¯

`
cos2pδqptan2pβ` δq ´ tan2pβ´ δqq

cos
´

β
2

¯

´
2pcospδq ´ cospβ´ δqqp´ sinpδq ´ sinpβ´ δqq

cospβ´ δq sin
´

3β
2 ´ δ

¯

`
pcospδq ´ cospβ´ δqq2 sinpβ´ δq

cos2pβ´ δq sin
´

3β
2 ´ δ

¯

´

pcospδq ´ cospβ´ δqq2 cos
´

3β
2 ´ δ

¯

cospβ´ δq sin2
´

3β
2 ´ δ

¯

´
2pcospδq ´ cospβ` δqqp´ sinpδq ` sinpβ` δqq

cospβ` δq sin
´

3β
2 ` δ

¯

´
pcospδq ´ cospβ` δqq2 sinpβ` δq

cos2pβ` δq sin
´

3β
2 ` δ

¯

`

pcospδq ´ cospβ` δqq2 cos
´

3β
2 ` δ

¯

cospβ` δq sin2
´

3β
2 ` δ

¯

Computing the zeros of this function with Maple [Map14], we obtain

dA
dδ
pδq “ 0 ô δ P

"

0,˘
π

2
, π

*

60

2.5. Extending the model

All zeros besides 0 are outside of the range
”

´
β
2 , β

2

ı

for β ă π, and the second

derivative at β
2 is negative. This means that for δ “ 0, the complement of the worst-

case set is maximized, and the worst-case set itself is minimized. This concludes the
proof.

The proofs allow us to derive results for the finite-horizon total reward measure. The
idea is straightforward: As all paths in the parameterized Markov decision processes that
occur in our constructions lead in a finite number of steps to an absorbing state, we can also
consider the total reward over a finite horizon that is equal to the maximal path length to
an absorbing state. This leads to the following corollary.

Corollary 2.5.4. Optimizing the probability of reaching a certain minimal expected total reward
over a finite horizon in a parameterized Markov decision process is NP-hard in the worst case if
either of the following statements is true.

• The number of parameters is at least two and the transition probabilities for each action depend
on an unconstrained number of parameters.

• The transition probabilities for each action depend on at most one parameter, but the number of
parameters is unconstrained and the number of nonzero rows in the corresponding influence
matrices is unconstrained.

If the transition probabilities for each action and each state depend on at most one
parameter and each parameter influences at most one state, then the rectangularity property
holds and efficient algorithms for policy optimization for the expected discounted reward
and the expected average reward measures exist.

Upper bounds Since percentile optimization involves solving function problems, upper
bounds seem nontrivial. With an oracle that can compute the continuous distribution
function for the value vector, percentile optimization can be performed with a NP algorithm
by guessing a sufficiently good policy. For a constant discount factor and polynomial
precision, even non-stationary policies can be represented in polynomial space; thanks to
the oracle, verification of the policy can be done in polynomial time.

Corollary 2.5.5. Deciding if the probability of reaching a certain minimal expected total reward
over a finite horizon in a PMDP can be surpassed with a policy is NP-complete under the conditions
in Corollary 2.5.4 if there exists an oracle for the continuous distribution function on the PMDP.

2.5.3 Relevance to computational geometry

It is easy to see that Theorem 2.5.2 and Theorem 2.5.3 share a common idea and a common
construction that is more general and can be applied outside of the usual Markov decision
process context. It is possible to extract this idea in form of a corollary.

Definition 2.5.3. Let P1,P2, . . . ,Pn be finite sets of halfspaces which are bounded by hy-
perplanes in Rk and V P R a real number. We call the problem of deciding if there is a set of
halfspaces P1, . . . , Pn such that Pi P Pi and the volume of the intersection

!

x | x P Xn
i“1Pi

)

is at least V the polytope volume optimization problem.

Corollary 2.5.6. The polytope volume optimization problem is NP-hard, even if at most one of two
simplifying conditions is met:

• Each hyperplane is orthogonal to a basis vector~ei.

61

2. THEORY OF PARAMETRIC MODELS

• The number of dimensions k is fixed and it is k ě 2.

We furthermore can show that the conditions for NP-hardness are tight.

Theorem 2.5.7. For a constant number of dimensions k, if each hyperplane is orthogonal to a basis
vector~ei, then the polytope volume optimization problem can be solved in polynomial time.

Proof. The first observation on our way to the proof is that if each hyperplane that bounds a
halfspace is orthogonal to a basis vector, then the resulting polytope will be a box, with the
volume

śk
i“1pui ´ liq, where ui is the tightest upper bound for the i-th coordinate inside the

box and li is the respective tightest lower bound. This reduces the problem to optimizing
each difference ui ´ li individually. We now show that there are only polynomially many
options for the upper and lower bounds for each coordinate.

We compute, for all i P rks, the number Ni of possible feasible intervals

Ii :“
"

”

l1
i , u1

i

ı

, . . . ,
”

lNi
i , uNi

i

ı

*

for the coordinate xi: For any assignment of hyperplanes π P P1ˆ¨ ¨ ¨ˆPn, there will be one
set P` that defines the tightest upper bound for xi and at most one set P´ that defines the
tightest lower bound for xi; these bounds are defined solely by the selected hyperplane in
the respective sets. Since in each set, there can be only polynomially many halfspaces, there
can be at most m :“

řk
i“1 |Pi| lower and m upper bounds for each coordinate. Combining

all sets and all coordinates together, we get an upper bound of
´

řk
i“1 |Pi|

¯k
for the total

number of possible bounding polytopes, which is polynomial in the input size if k is
constant.

However, not every polytope P P

I1, . . . , Ik | Ii P Ii, i P rks
(

that results from a possible
combination of intervals in I1, . . . , Ik can be the result of a valid selection of halfspaces
since the halfspaces can be taken from one set; thus, we will have to additionally check
for feasibility, which can be done by keeping a data structure that maps upper and lower
bounds to the respective pair of set P and halfspace.

This consideration delivers an algorithm to find the largest bounding polytope. First, we
compute the sets I1, . . . , Ik which can be done in timeO

`

m log m
˘

and then, we can sort the
set

I1, . . . , Ik | Ii P Ii, i P rks
(

with respect to the volume of the polytope. This can be done

in time O
´

k ¨mk log m
¯

; then, we can check for every polytope beginning with the smallest

if it corresponds to a valid assignment. The total time complexity is thus O
´

k ¨mk log m
¯

which is polynomial for fixed k; furthermore, the chosen perspective makes the polytope
volume optimization problem fixed-parameter tractable.

2.5.4 The simple case: One-state one-parameter models

We finish this section with a discussion of a simple case of percentile optimization in
stochastic MDPs. Here, we assume that there exists only one state where the transition
probabilities are uncertain and k “ 1, i.e., that the set Ta of all transition matrices can be
expressed as

Pa
0 ` λ~ei~za | λ P r0, 1s

(

for some i P S where ~za is a row vector subject to
~za~1 “ 0 and Pa

0 pi‚q `~z ě~0. For the influence matrix ∆a “~ei~za, it is rk ∆a “ 1 as ∆a has only
one nonzero row. Then, given a sum of expected discounted total rewards d, we compute
a parameter value λ such that the relation d “~1J

`

I ´ γPa
0 ´ γλ∆a˘´1

~r holds. Using the
result in [Mil81] and the fact that rk ∆a “ 1, we obtain

d “~1J

¨

˚

˝

`

I ´ γPa
0
˘´1

`

`

I ´ γPa
0
˘´1

λγ∆
`

I ´ γPa
0
˘´1

1` tr
´

λγ∆a
`

I ´ γPa1
˘´1

¯

˛

‹

‚

~r

62

2.5. Extending the model

By linearity of tr p¨q and general properties of linear operators, we can further simplify
the term and solve it for λ.

d “~1J

¨

˚

˝

`

I ´ γPa
0
˘´1

`
λ ¨

`

I ´ γPa
0
˘´1

γ∆a `I ´ γPa
0
˘´1

1` λγ tr
´

∆a
`

I ´ γPa
0
˘´1

¯

˛

‹

‚

~r

“~1J
`

I ´ γPa
0
˘´1

~r`
λγ~1J

`

I ´ γPa
0
˘´1 ∆a `I ´ γPa

0
˘´1

~r

1` λγ tr
´

∆a
`

I ´ γPa
0
˘´1

¯

Introducing the variables

α “ γ~1J
`

I ´ γPa
0
˘´1 ∆a `I ´ γPa

0
˘´1

~r,

β “~1J
`

I ´ γPa
0
˘´1

~r,

g “ tr
´

∆
`

I ´ γPa
0
˘´1

¯

,

we get

d´ β “ α ¨
λ

1` λg
ô

λα “ pd´ βq ` pd´ βq ¨ λg ô

λ
`

α´ pd´ βq ¨ g
˘

“ pd´ βq ô

λ “
d´ β

α´ pd´ βq ¨ g
,

(2.14)

thus inferring a term for the value of λ from a given expected discounted total reward
d. Using the fact that the mapping (2.14) is continuous and the values of α, β, and
g are independent of d, we can establish the following for the cumulative probability
PrM,p

”

d P
“

d´, d`
‰

ı

:

Pr
M,p

„

d P
”

d´, d`
ı

“ Pr

«

x P
„

λ
´

d´
¯

, λ
´

d`
¯

ff

“

ż λpd`q

λpd´q
pλ pxqdx

“

ż

d`´β

α´pd`´βq¨g

d´´β

α´pd´´βq¨g

pλ pxqdx,

(2.15)

where pλ is the continuous distribution function of the sole parameter λ, the values α, β,
and g are as defined above and d´ and d` are such that x´β

α´px´βq¨g P r0, 1s.

Example 2.5.1. We can compute the exact value of the integral (2.15) for several probability
distributions. For the uniform distribution λ „ Upλ´, λ`qwe have

Pr
M,p

„

d P
”

d´, d`
ı

“

ż

d`´β

α´pd`´βq¨g

d´´β

α´pd´´βq¨g

pλ pxqdx “ x

∣∣∣∣∣
d`´β

α´pd`´βq¨g

d´´β

α´pd´´βq¨g

¨
1

λ` ´ λ´

“
1

λ` ´ λ´
¨

˜

d` ´ β

α´ pd` ´ βqg
´

d´ ´ β

α´ pd´ ´ βqg

¸

.

63

2. THEORY OF PARAMETRIC MODELS

From an applied perspective, we might be interested in modeling uncertainty and thus, the
distribution of λ with a “practical” probability distribution such as the Beta distribution.
Then, for parameters a ą 0, b ą 0 and λ „ Betapa, bqwe get

Pr
M,p

„

d P
”

d´, d`
ı

“

ż

d`´β

α´pd`´βq¨g

d´´β

α´pd´´βq¨g

pλ pxqdx

“

B
ˆ

d`´β
α´pd`´βqg ; a, b

˙

´ B
ˆ

d´´β
α´pd´´βqg ; a, b

˙

Bpa, bq

where Bpa, bq “ ΓpaqΓpbq
Γpa`bq is the beta function and

Bpx; a, bq “
ż x

0
ta´1 p1´ tqb´1 dt

is the incomplete beta function.

Using the method discussed above, we can now compute “almost robust” policies
which are characterized by a minimal expected total discounted reward d´ if, for all
policies, uncertainty occurs in at most one state and has a linear form. Furthermore, we
consider a special case where the policy does not change with λ, if the action in state s is
constant. This can be done by extension of general MDP and BMDP methods as follows.
From BMDP theory [GLD00], we know that the maximal and minimal values are observed
at extreme values of λ, as the choice of λ that maximizes or minimizes the value depends on
the order of the values in the states. Hence, if s is the state where the uncertainty can occur,
then, for each action a and the two extreme cases of the uncertainty, that is, λ P t0, 1u, we
can compute the value da,λ if λ is fixed and the action in s is set to a. Thus, we can compute,
given d´, the values

qa “ Pr
M,p

„

d P
”

d´, maxpda,0, da,1q
ı

,

obtaining the optimal action a˚ “ arg maxa qa. The whole procedure, takes |A| MDP
optimizations and |A| evaluations of Eq. 2.15, which, given an integration oracle for the
density function p, can be performed in polynomial time. Together, we obtain the following
algorithm.

Algorithm 12 Percentile optimization in the simple case
function PERCENTILEOPTIMIZATION(S, A, s, pPa

0 qaPA, p∆aqaPA,~r, γ)
for a P A, λ P t0, 1u do

~va,λ Ð ~vγwith parameter λ and πpsq “ a
πa Ð optimal policy with πpsq “ a

for a P A do
qa Ð PrM,p

”

d P
“

d´, maxpda,0, da,1q
‰

ı

a˚ Ð arg maxa qa
return πa˚

64

3

Algorithms for multi-objective problems

The difference between theory and
practice is smaller in theory than in
practice.

— Roger Pate

NOW we turn our attention to the practical part of our results. In particular, we consider
the multi-objective problems mentioned in Chapter 2. We have seen there that they

are theoretically hard to solve, but now we present algorithms that aim to be practically
efficient. In the first part of this chapter, we consider different approaches to the multi-
scenario stochastic optimization problem for concurrent Markov decision processes which we
have introduced in Sec. 2.4. Then, we consider the enumeration problem for the Pareto frontier
for stochastic bounded-parameter MDPs. There, we consider algorithms that compute the
Pareto frontier, i. e., the set of all non-dominated policies in value vector space. In both cases,
we consider the expected discounted reward optimality measure with a given discount
factor γ P r0, 1q.

The results are based on the findings in [SBHH17, BS17a]. Here, they have, in contrast to
the results in the previous chapter, mostly empirical nature, as we consider algorithms for
computationally hard problems. This means that we design heuristic algorithms and evalu-
ate them empirically, by defining test cases, running in silico experiments, and describing
the performance of different algorithmic approaches on the considered test cases.

3.1 Stochastic multi-scenario optimization

First, we discuss the stochastic multi-scenario optimization problem whose theoretical proper-
ties are discussed in the previous chapter. Here, we consider the practical possibilities to
optimize the weighted sum of rewards in concurrent MDPs. We design and empirically
compare several algorithms that optimize the weighted sum of rewards in several inde-
pendent MDPs with shared state and action spaces under a shared policy. We concentrate
ourselves on pure and stationary policy classes, as non-stationary policies are hard to store
in practice.

In the previous chapter (Def. 2.1.3), we define a concurrent MDP to be a collectionM
of finitely many, K P N MDPs with a common state space S “ rns, a common action space
A “ rms, a common initial distribution~q P Rn, non-negative reward vectors prkqkPrKs and
transition probability matrices pPa

k qaPA,kPrKs. In the following paragraphs, we solve the
stochastic multi-scenario optimization problem as defined above. As Theorem 2.4.4 shows,
the corresponding decision problem is NP-hard and there is little hope for a polynomial-time
optimization algorithm. Hence, we turn to generic methods. In the following discussion,
we apply generic-purpose methods for the stochastic optimization problem as described in
Def. 2.4.2 and compare their performance empirically.

65

3. ALGORITHMS FOR MULTI-OBJECTIVE PROBLEMS

A QCLP formulation Before we consider more problem-specific formulations, we first
derive a constrained mathematical program. Starting with a linear program for a single
MDP as given in Eq. (1.9), we consider policy matrices Π P Rnˆm where Πps, aq is the
probability to choose action a in state s under a given stationary policy Π. We introduce the
matrices PΠ

k P Rnˆn and CΠ
k P Rnˆn with

PΠ
k ps, s1q “

ÿ

aPA

Πps, aqPa
k ps, s1q

and
CΠ

k “ I ´ γPΠ
k

for k P rKs, with which we define the following mathematical optimization program

max
Π

¨

˚

˝

min
~vk

ÿ

kPrKs

~wpkq~qJ~vk

˛

‹

‚

s.t.

CΠ
k ~vk ě~rk @k P rKs
ÿ

aPA

Πps, aq “ 1 @s P S

Πps, aq ě 0 @s P S, a P A

(3.1)

This formulation is a two-stage non-linear program with 2Kn`nm inequality constraints
and n equality constraints. The non-linearity can be explicitly seen in the first set of
constraints, CΠ

k ~vk ě~rk, where the left hand side contains products of variables from Π and
~vk.

To constrain non-linearity and generality of the program, we first get rid of the min-max
term. To do so, we use the dual LP formulation (1.10) for the MDP optimization problem
and obtain the following optimization problem.

max
Π

¨

˚

˝

max
~xk

ÿ

kPrKs

~wpkq~xJk~rk

˛

‹

‚

s.t.

pCΠ
k q
J~xk “ ~q @k P rKs

ÿ

aPA

Πps, aq “ 1 @s P S

Πps, aq ě 0 @s P S, a P A

(3.2)

Having got rid of the min-max goal, we can re-formulate the problem as a quadratically
constrained linear program (QCLP) [BV04, ABZ07]. For this, we observe that the non-linear
inequality constraints have a bilinear term on the left hand side. Defining the matrix

As,k “

¨

˚

˚

˝

~es ´ γP1
k ps‚q

...
~es ´ γPm

k ps‚q

˛

‹

‹

‚

66

3.1. Stochastic multi-scenario optimization

and observing that

CΠ
k “

¨

˚

˚

˝

Πp1‚qA1,k
...

Πpn‚qAn,k

˛

‹

‹

‚

we can represent each inequality constraint as
ÿ

s1PS

~xkps1q
ÿ

aPA

Πps1, aqAs1,kpa, sq “
ÿ

s1PS

~xkps1qΠps1‚qAs1,kp‚sq ď ~wpkq~qpsq. (3.3)

All these inequality constraints are at most bilinear in the variables ~xk and Π, and can thus
be represented as a quadratic constraint in the following way. For a combined variable
vector ~yk “

´

Πp1‚q, . . . , Πpn‚q,~xJk
¯

P Rpmn`nqˆ1 and a combined objective vector ~ck “
´

0, . . . , 0,~rJk
¯

we define matrices Fs,k for which the constraint (3.3) can be represented with
1
2~ykFs,k~yJk ď ~wpkq~qpsq. By defining

Gs,k “

¨

˚

˚

˚

˚

˚

˝

A1,kp‚sq 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 An,kp‚sq

˛

‹

‹

‹

‹

‹

‚

P Rnmˆn

and

Fs,k “

˜

0 Gs,k
GJs,k 0

¸

P Rpnm`nqˆpnm`nq

we obtain the following QCLP.

max p~c1, . . . ,~cKq
`

~y1, . . . ,~yK
˘J

s.t.
1
2
~ykFs,k~yJk ď ~wpkq~qpsq @s P S, k P rKs

Πps‚q~1 “ 1 @s P S
Πps, aq ě 0 @s P S, a P A
~xkpsq ě 0 @s P S, k P rKs

(3.4)

A general argument for the usage of constrained classes of mathematical programming
formulations is the possibility to solve them more efficiently. Most prominently, this is the
case for linear and convex programs, that is, optimization problems where the constraints
describe a convex set and the objective function is convex [NN94]. Furthermore, it is known
that quadratically constrained linear programs are also convex if the quadratic constraint
matrices are positive definite. Unfortunately (and not much surprisingly, considering the
hardness result above), the matrices Fs,k are indefinite in the general case. In this situation,
we resort to non-problem-specific approaches for general quadratically constrained LPs,
such as those described in [QBM12].

A general non-linear formulation If we are not constrained by specific classes of mathe-
matical programming problems, we can use most general formulations and feed them into
general global optimizers, providing them additionally with information on partial deriva-
tives, that is, B f p~xq

B~xpiq , if f is the function to optimize and ~x is the vector of input variables. In
the following, we provide such a formulation alongside with partial derivatives.

67

3. ALGORITHMS FOR MULTI-OBJECTIVE PROBLEMS

In our formulation we represent the policy Π directly as a set of decision variables Π, as
discussed above. Knowing that the value vector ~vpΠq adheres to ~vpΠq “ pI ´ γPΠq´1~r, we
can derive the following mathematical program for a given weight vector ~w P RK.

max f pΠq “
ÿ

kPrKs

~wpkq~qJ~vΠ
k

s.t.

PΠ
k ps, s1q “

ÿ

aPA

Πps, aqPa
k ps, s1q @s, s1 P S, k P rKs

pI ´ γPΠ
k q~v

Π
k “~rk @k P rKs

Πps, aq ě 0 @s P S, a P A
ÿ

aPA

Πps, aq “ 1 @s P S

(3.5)

Additionally, we have to provide partial derivatives B~vΠ
k psq

BΠps,aq . For this, we observe that
computing the partial derivatives implies computing the derivative of a matrix inverse.
Let CΠ

k “ pI ´ PΠ
k q
´1. If we change Πps, aq by adding λ, we hereby add λ~esPa

k ps‚q to PΠ
k ,

and, equivalently, λ~esp~eJs ´ γPa
k ps‚qq to the matrix pI ´ γPΠ

k q we have to invert. This is a
rank-one update, for which we can apply the formula from [Hag89] that describes the result
of a matrix inversion after a rank-` update. For a rank-one update of a matrix M in the i-th
row by a (transposed column) vector ~xJ, it is

pM `~ei~xJq´1 “ M´1 ´
M´1~ei~xJM´1

1`~xJM´1~ei

“ M´1 ´
M´1p‚iq~xJM´1

1`~xJM´1p‚iq

Applying this to the function f pΠq that is given in (3.5), we derive the following. For

Π1ps1, a1q “

#

Πps, aq ` λ s1 “ s^ a “ a
Πps1, a1q otherwise

we have

f pΠ1q “ f pΠq ´ λ
K
ÿ

k“1

~wpkq~qJCΠ
k p‚sqp~eJs ´ γPa

k ps‚qqC
Π
k ~rk

1` λp~eJs ´ γPa
k ps‚qqC

Π
k p‚sq

(3.6)

if the resulting inverse matrix exists for the given value of λ. Hence, the partial derivatives
of f pΠq are, by computing limλÑ0

f pΠ1q´ f pΠq
λ ,

B f pΠq
BΠps, aq

“ ´

K
ÿ

k“1

~wpkq~qJCΠ
k p‚sq

´

~eJs ´ γPa
k ps‚q

¯

CΠ
k ~rk (3.7)

and the gradient is

∇ f pΠq “

¨

˝´

K
ÿ

k“1

~wpkq~qJCΠ
k p‚1qp~e

J
1 ´ γP1

k p1‚qqC
Π
k ~rk, ,

. . . ,

´

K
ÿ

k“1

~wpkq~qJCΠ
k p‚nqp~eJn ´ γPm

k pn‚qqC
Π
k ~rk

˛

‚

(3.8)

68

3.1. Stochastic multi-scenario optimization

Together, the functions f , ∇ f , and the constraints can be passed to a non-linear global
optimization routine. The constraints are now linear, however, at the cost of the goal
function complexity.

A mixed-integer linear program formulation If we constrain ourselves to pure policies
only, we may use integer programming approaches. We remember that for general MDPs,
it is possible, starting with the dual LP for MDPs (1.10), to derive integer decision variables,
and, thus, an integer programming formulation (1.12). For concurrent MDPs, the integer
program (1.12) can be extended. We get the following mixed-integer program.

max
K
ÿ

k“1

~wpkq
ÿ

sPS

xk,s,a~rkpsq

s.t.
ÿ

aPA

xk,s,a ´ γ
ÿ

aPA,s1PS

Paps1, sqxk,s1,a “ ~qpsq @s P S, k P rKs

ÿ

aPA

ds,a “ 1 @s P S

ds,a ě p1´ γqxk,s,a @s P S, a P A, k P rKs
ds,a P t0, 1u @s P S, a P A

(3.9)

By using common decision variables ds,a, we ensure that xk,s,a ą 0 holds if and only if
ds,a “ 1, as xk,s,a has an upper bound of 1

1´γ . This ILP has Kmn real variables, mn Boolean
variables, pK` 1qn equality constraints, and Kmn inequality constraints. This means that
instances with large state and action spaces are computation-heavy and may be intractable
for analysis even with modern (M)ILP solvers on large machines [SAB`15].

Local optimization heuristics Knowing that none of the exact formulations of the stochas-
tic multi-scenario optimization problem can be solved quickly, we turn to heuristics that
promise adequate performance in exchange for a sacrifice in solution quality. In particular,
we consider local optimization methods that iteratively improve a policy until no further
simple, local improvement is possible. As the problem we face is non-unimodal in the
general case, this does not guarantee an optimal policy. Later we empirically evaluate how
big our sacrifice in precision here is.

The local optimization methods are based on the mathematical program (3.5). First, we
consider a policy matrix Π and what happens if we apply local modifications to it. Let s P S
be a state, a, a1 P A be actions, and λ P

“

0, Πps, aq
‰

. Let furthermore Π1 result from Π by
setting Π1ps, aq to zero and adding Πps, aq to Πps, a1qwith

Π1pt, bq “

$

’

’

&

’

’

%

0 t “ s^ b “ a
Πps, aq `Πps, a1q s “ t^ b “ a1

Πpt, bq otherwise

In analogy to our observations in the derivation of the gradient of f in (3.6), the change
from Π to Π1 performs a rank-one update to the matrices we invert in the mathematical
program, and we can again use the formula from [Hag89]. The difference now is that we
not only change Πps, aq, but also simultaneously change Πps, a1q; so, in the computation of
the resulting value of f we have to adjust the formulas we have derived in (3.6) accordingly.

69

3. ALGORITHMS FOR MULTI-OBJECTIVE PROBLEMS

Let ~uk “ γpPa1
k ps‚q ´ Pa

k ps‚qq, then we have, in analogy to (3.6),

f pλΠ1 ` p1´ λqΠq “
K
ÿ

k“1

~wpkq~qJpI ´ γPkq
´1~rk

“

K
ÿ

k“1

~wpkq~qJCλΠ1`p1´λqΠ
k ~rk

“ f pΠq ´
K
ÿ

k“1

λ
~wpkq~qJCΠ

k p‚sq~ukCΠ
k ~rk

1` λ~ukCΠ
k p‚sq

(3.10)

We observe that λ is a free parameter in this term that can be locally optimized. Now let

ζk “ ~wpkq~qJCΠ
k p‚sq~ukCΠ

k ~rk,

ηk “ ~ukCΠ
k p‚sq

Furthermore let gk be the difference in the k-th MDP. It is now

gkpλq “ ´
λζk

1` ληk

and

f pλΠ1 ` p1´ λqΠq “ f pΠq `
K
ÿ

k“1

gkpλq

To optimize the reward locally, it is now needed to optimize the function

gpλq “
K
ÿ

k“1

gkpλq (3.11)

Its derivatives are
g1kpλq “

´ζk
p1` ληkq

2 and g2k pλq “
´2ζkηk
p1` ληkq

3

Extreme values of (3.11) are found either at the endpoints, i. e., at λ P

0, Πps, aq
(

or at the
points where gk fulfill

K
ÿ

k“0

g1kpλq “ 0 and
K
ÿ

k“0

g2k pλq ă 0

As finding the roots of the first derivative implies finding roots of the term

K
ÿ

k“1

ζk
ź

k1‰k

p1` ληkq
2, (3.12)

which is a polynomial of degree 2K´ 2, the roots in question can be computed efficiently,
for example, with the Jenkins-Traub algorithm [JT70, PTVF07] for K ď 20 [Goe94] or other
numerical methods for greater values of K [KVY11].

Suppose now that λ˚ is the extremal point of (3.11). Then, the new policy matrix Π1 can
be computed from Π by changing Πps, aq by ´λ˚ and Πps, a1q by λ˚. The resulting value of
the objective function is then given by f pΠq ` gpλ˚q.

Considering local optimality, let Π and Π1 be given such that Πps1‚q “ Π1ps1‚q for all
s1 ‰ s. Then the differences γpPΠ1

k ps‚q´PΠ
k ps‚qq between the matrices to be inverted can be

expressed by
ř

iPI λi~uk,i where each ~uk,i has the form ~uk,i “ γpPai
k ps‚q ´ P

a1i
k ps‚qq for some

70

3.1. Stochastic multi-scenario optimization

λi P r0, 1s , ai, a1i P A and some index set I,|I| ď |A|. As the matrix update is still rank-one,
we have

f pΠ1q “ f pΠq ´
ÿ

iPI

λi

K
ÿ

k“1

~wpkq~qJCΠ
k p‚sq~uk,iCΠ

k ~rk

1` λi~uk,iCΠ
k p‚sq

which implies that at least one of the inner sums has to be positive, if f pΠ1q ą f pΠq.
Conversely, if for some state s P S no pair of actions a, a1 exists where Πps, aq ą 0 and (3.10)
yields a better objective function value, then the decision in state s is optimal.

Together, this results in Algorithm 13 that searches for locally optimal stationary policies.
The algorithm looks for states where an action pair can be found such that gpλ˚q ą 0 is
observed and loops until no improvement can be made.

Algorithm 13 Local optimization heuristic for concurrent MDPs
1: function CPOLICYOPT(~w,~q, ppPa

k qaPA,~rkqkPt1,...,Ku)
2: Π Ð 0 P Rnˆm

3: Πp‚1q “~1
4: Compute CΠ

1 , . . . , CΠ
K

5: repeat
6: for s P S do
7: for a P

a P A | Πps, aq ą 0
(

do
8: for a1 P A, a1 ‰ a do
9: λ˚ “ arg maxλ gpλq

10: if λ˚ ą 0 then
11: Πps, aq Ð Πps, aq ´ λ˚

12: Πps, a1q Ð Πps, a1q ` λ˚

13: Update CΠ
1 , . . . , CΠ

K with (3.10)
14: Break
15: until Π does not change
16: return Π

If only pure policies have to be computed, a variant of Alg. 13 can be used that is
provided as Algorithm 14. It considers only pure policies and, hence, only improvements
with λ “ 1.

Algorithm 14 Local pure policy optimization heuristic for concurrent MDPs
1: function CPUREPOLICYOPT(~w,~q, ppPa

k qaPA,~rkqkPt1,...,Ku)
2: Π Ð 1

m 1 P Rnˆm

3: Compute CΠ
1 , . . . , CΠ

K
4: repeat
5: for s P S do
6: Let a P A be such that Πps, aq “ 1
7: for a1 P A, a1 ‰ a do
8: Evaluate gp1qwith (3.10)
9: if gp1q ą 0 then

10: Πps, aq Ð 0
11: Πps, a1q Ð Πps, a1q ` λ
12: Update CΠ

1 , . . . , CΠ
K with (3.10)

13: Break
14: until Π does not change
15: return Π

71

3. ALGORITHMS FOR MULTI-OBJECTIVE PROBLEMS

Evaluation The algorithms are implemented in C using several optimization libraries. For
mixed-integer programming, CPLEX [IBM15] is used. The quadratically constrained linear
program is, as it has been mentioned, not convex, which implies that generic non-linear
routines are needed. Using the COBYLA [Pow94] method from the NLOpt [Joh14] library
delivers here the most promising results. For the derivative-based non-linear optimization
formulation, the code uses the Ipopt [Wä02] with the HSL [hsl17] library for low-level
optimization routines. The local search heuristics are written from scratch and use linear
algebra and polynomial solving primitives from the GNU scientific library (GSL) [Con16]
and the Intel MKL [int17] implementation of basic linear algebra subroutines (BLAS). The
roots of the polynomial (3.12) are computed with the standard formulas if the degree of the
polynomial is smaller than 3. Further code optimization include caching of the ~uk vectors
and the values of η and ζ from (3.10) to avoid unnecessary re-computation of already known
values. The code base for the algorithms can be found at [SB17], the test case generator
and data analysis routines can be found at [Sch17a]. The results are generated with the
collider [Sch17b] tool. All results are produced on a machine with two 10-core Intel Xeon
E5-2690 v2 CPUs running at 3.00GHz clock rate and 126GB of RAM; the total time needed
for producing the results is around two weeks.

The evaluation describes the behaviour of algorithms on two distributions of instances.
One set of instances is generated by taking random dense stochastic matrices as probability
distributions and uniformly distributed reward vectors. The second set of test cases is
generated by creating random deterministic MDPs, that is, transition matrices with random
unit row vectors. Furthermore, different discount factors γ P t0.9, 0.999u are considered.

In total, 30 runs for each parameter set have been performed. Every algorithm had
a time budget of 5000s and, in the case of iterative solvers (that is, for the heuristics and
NLP and QCLP formulations), 10 000 function evaluations to complete; if the algorithm
did not converge and failed to produce any result, the run was flagged as erroneous. The
results can be observed in tables A.1–A.4 in Appendix A. In the tables, t and σt denote,
respectively, the average and the standard deviation of non-erroneous runs’ runtimes, err
denotes the absolute number of instances with failures (which were only observed during
the runs of the QCLP solver), and diff denotes the average relative difference to the optimal
solution across the runs. A visualization of the results is available in Figure 3.1–Figure 3.4.
In these plots, the performance of the heuristic approaches is compared to the one of the
respective exact algorithms (MIP and NLP). The dots correspond to the averages, the dashed
lines correspond to the interpolated performance, the error bars depict measured standard
deviations.

There are several observations to be made with these results. First, the gradient-based
non-linear program and CPLEX deliver the best policies. Additionally, the non-linear
solver often converges quickly, but the convergence time varies greatly across launches.
The gradient-free QCLP formulation, in contrast, seems to be ill-suited for the task as the
solver does not converge in many cases1. The local optimization heuristic in Alg. 13 is
generally faster than the non-linear solver, but slows down on larger action spaces; the
mean deviation of the heuristic solution from the optimal solution is very small and lies
almost always under 2%, often even under 1%.

A similar picture arises with pure policies. Here, all algorithms converge, but CPLEX
takes significantly more time, using the allowed time budget on models with more than 20
states with only an insignificant improvement over the local heuristic. The optimization
logs show that on these instances, CPLEX arrives at a reasonably good solution very fast
and takes a long time closing a very small (around 1%) gap between the upper and the
lower bound. Again, the local search heuristic takes more time with larger action spaces.

Comparing the performance on different discount factors, we do not observe a major
difference. Another picture occurs when comparing the performance on deterministic and

1This behaviour was responsible for the rather long time for evaluation.

72

3.2. Pareto frontier enumeration

stochastic CMDP models: One can see that deterministic models take more time to be
optimized, and the heuristics sacrifice more in terms of solution quality.

In all cases, the heuristics seem well-suited to be used, especially on larger state and
action spaces. When comparing the two heuristics, a further observation can be made. As
one can see, the pure policy optimization heuristic has a slightly poorer solution quality,
but is around four times faster. The reason lies in a simplified test for possible improvement
and less iterations until an improvement is actually found. This means that for even larger
state and action spaces, using the heuristic from Algorithm 14 may be preferential if a slight
sacrifice (of about 1%) in the quality of the resulting policy can be made.

2.0 2.5 3.0 3.5 4.0 4.5 5.0
scenarios

0

25

50

75

100

125

150

175

200

CP
U

tim
e

(s
ec

)

NLP
heuristic

(a) CPU time in dependence of scenarios for sta-
tionary policies

2.0 2.5 3.0 3.5 4.0 4.5 5.0
scenarios

0.002

0.003

0.004

0.005

0.006

0.007

0.008

De
vi

at
io

n
fro

m
 o

pt
im

um
 (r

el
at

iv
e)

heuristic

(b) Relative deviation from the optimum in depen-
dence of scenarios for stationary policies

Figure 3.1: Performance of the heuristic for stationary policies as a function of scenarios

0 50 100 150 200 250 300
states

0

100

200

300

400

500

600

700

800

CP
U

tim
e

(s
ec

)

NLP
heuristic

(a) CPU time in dependence of states for station-
ary policies

0 50 100 150 200 250 300
states

0.000

0.002

0.004

0.006

0.008

0.010

De
vi

at
io

n
fro

m
 o

pt
im

um
 (r

el
at

iv
e)

heuristic

(b) Relative deviation from the optimum in depen-
dence of states for stationary policies

Figure 3.2: Performance of the heuristic for stationary policies as a function of states

3.2 Pareto frontier enumeration

Now we consider the enumeration problem for the set of non-dominated policies for the
multi-scenario stochastic MDPs. This section is based on the publication [SBHH17] and
extends it with some minor remarks.

73

3. ALGORITHMS FOR MULTI-OBJECTIVE PROBLEMS

2.0 2.5 3.0 3.5 4.0 4.5 5.0
scenarios

0

500

1000

1500

2000

2500

CP
U

tim
e

(s
ec

)

MIP
heuristic

(a) CPU time in dependence of scenarios for pure
policies

2.0 2.5 3.0 3.5 4.0 4.5 5.0
scenarios

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

De
vi

at
io

n
fro

m
 o

pt
im

um
 (r

el
at

iv
e)

heuristic

(b) Relative deviation from the optimum in depen-
dence of scenarios for pure policies

Figure 3.3: Performance of the heuristic for pure policies as a function of scenarios

0 50 100 150 200 250 300
states

0

1000

2000

3000

4000

5000

CP
U

tim
e

(s
ec

)

MIP
heuristic

(a) CPU time in dependence of states for pure
policies

0 50 100 150 200 250 300
states

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

De
vi

at
io

n
fro

m
 o

pt
im

um
 (r

el
at

iv
e)

heuristic

(b) Relative deviation from the optimum in depen-
dence of states for pure policies

Figure 3.4: Performance of the heuristic for pure policies as a function of states

We begin our discussion with noting that the computation of all Pareto optimal policies
in multi-objective MDPs, as given in Eq. 2.10, is a computational and algorithmic challenge.
Since the number of optimal policies can be large or even infinite (if non-stationary policies
are considered), one can usually not expect to compute the whole set of Pareto optimal
policies. Here, we devise algorithms which heuristically compute sets of non-dominated
policies which are, in turn, likely to belong to the Pareto frontier, efficiently.

Currently, there are several approaches in literature to solve this problem for multi-
objective MDPs, which are MDPs with several reward vectors but one fixed transition
probability distribution function. Hence, the approaches in [PW10, BN08, CMH06, Whi82,
WdJ07, RWO14] consider an MDP setting with multi-objective rewards. In the SBMDP
setting and for the enumeration problem, we have to face optimization of, ultimately,
several MDPs with related but not identical transition probabilities; furthermore, the MDPs
for which the optimization has to take place also have to be computed separately, as they
depend on the chosen policy, which makes the general problem harder to solve.

Here, we limit ourselves to only pure policies. However, a problem we are faced with is
that even considering only pure policies might yield an exponential runtime. Even the most
efficient algorithm that enumerates all pure Pareto optimal policies has to compute them

74

3.2. Pareto frontier enumeration

all, and this numer is bounded only by O
´

|A||S|
¯

. We suspect that for most non-trivial
SBMDP models, the number of Pareto optimal policies is still much too large to compute
them all; however, we expect that many policies show similar behaviour and considering
all of them is not necessary for practical purposes.

3.2.1 The algorithm

From a practical point of view it should be sufficient to compute a subset of the Pareto
optimal policies if the corresponding value vectors are equally distributed over the Pareto
frontier. Equally distributed means here that the nearest-neighbour distances between the
corresponding value vectors are similar.

A valid initial approach is here to consider value and policy iteration and base the
algorithms on these ideas. In literature, this approach has been undertaken by [WdJ07]
where all value vectors from VPareto have been computed. However, even disregarding
theoretical correctness, value iteration has the major disadvantage that the number of
intermediate value vectors can become prohibitively large even before the policies will be
completely evaluated. It is possible to stop the value iteration at some point when one
believes that the Pareto frontier is approximated sufficiently well, but this raises several
questions. First, the resulting policies themselves have to be fully evaluated and their value
vectors may significantly differ from the intermediate values. Second, equal policies with
differing value vectors have to be treated adequately. Third, it is hard to get a guarantee that
the resulting policies in value vector space will be approximated sufficiently well by the
current policy set and, furthermore, the approximation bounds for the true Pareto frontier
have to be proven separately. Finally, the policies generated in such a way may not be pure.
Hence, we consider an approach based on policy iteration similar to the one described in
Algorithm 11.

The main disadvantage of Algorithm 11 is its runtime complexity. In the (algorithmic)
worst case, the algorithm will produce large numbers of temporarily optimal policies that
will be dominated by a few Pareto-optimal policies in the end, making the worst-case
complexity O

´

|A||S|
¯

, which is then theoretically independent of the final size of PPareto.
A further problem is that even if the number of Pareto optimal policies is this large, PPareto

may have Hamming distance |S|2 from the initial policy, which implies exponential runtime
even before the first Pareto optimal policy is generated. To circumvent this, we propose
a slightly different algorithm that computes a set of policies that seem to be a reasonably
good approximation of PPareto. It is important to note that the following approach is an
heuristic; later, we discuss its empirical quality.

Solution approach Our heuristic is based on a simplification of Algorithm 11. The sim-
plification lies in including only those policies into the non-dominated set that are not
dominated by previously computed policies. This step radically decreases the number of
candidate policies and decreases the runtime at the cost of possible imprecision. The main
steps of the simplified method are outlined in Algorithm 15.

We briefly analyse the complexity of the proposed algorithm. In lines 4–6, |P| “

O
`

|F||S||A|
˘

policies are generated. Policy evaluation is possible in Op |S|2
´ log γ q time steps.

The complexity of computing the resulting non-dominated set that will replace F is, with

efficient data structures to compute the Pareto frontier [ZTCJ15], Op |F||S|
3|A|

´ log γ ` p|F||S||A|q2q.

Thus, the total runtime can be bounded by OpRppI|S||A|q2 ` I|S|3|A|
´ log γ qq, if R is the result set

size and I is the size of the largest intermediate set of non-dominated solutions. This implies
cubic complexity in the size of the largest intermediate set in the worst case. Heuristically,
it seems also intuitive to assume that I cannot be much larger than the resulting set, i. e.,

75

3. ALGORITHMS FOR MULTI-OBJECTIVE PROBLEMS

Algorithm 15 A heuristic for PPareto and VPareto

1: function PURE-OPT-HEURISTIC(P “ pS, A, TÙ, RÙ, Prq, γ)

2: F Ð
!

πÒ

)

Ź initialize the Pareto frontier
3: repeat
4: for π P F do
5: P Ð

π1 | dpπ, π1q “ 1
(

Ź consider all neighbours
6: F Ð POpFY Pq Ź keep only non-dominated in F
7: until no new policies are added to F
8: return F

I and R are coupled by the relation I ď cR where c is a small constant. This assumption
reduces the runtime to

O
˜

R3|S|2|A|2 `
R2|S|3|A|
´ log γ

¸

which is roughly cubic in the resulting set size and quadratic in the size of state and action
spaces for constant discount factors as it is |S|, |A| “ opRq.

An important feature of the algorithm is that it can be terminated when the non-
dominated set F reaches a predefined size; at this point, the generated policies can be
guaranteed to be mutually non-dominated. In our implementation, we keep this feature,
but also introduce additional sophistication for performance reasons as well as to yield a
more evenly distributed non-dominated set.

Implementation The practical implementation includes two additional improvements
over Algorithm 15. First, the set of the initial solutions contains not arbitrary policies,
but the policies which are optimal for the pessimistic, the optimistic and the average
cases. It is easy to see that these policies definitively belong to PPareto. We denote by
pπ,~vpπq

Ó
,~vpπqˆ ,~vpπq

Ò
q the tuple containing the policy π and the corresponding value vectors.

Let pπÓ,~v
pπÓq

Ó
,~v
pπÓq
ˆ ,~v

pπÓq

Ò
q, pπˆ,~vpπˆq

Ó
,~vpπˆqˆ ,~vpπˆq

Ò
q, and pπÒ,~v

pπÒq

Ó
,~v
pπÒq
ˆ ,~v

pπÒq

Ò
q be the poli-

cies and value vectors resulting from the optimization of the lower bound, average case
and upper bound of the discounted reward, respectively. It is known that these policies are
in PPareto. Starting with them makes the algorithm walk through the policy space from the
extreme points of the Pareto frontier, which, as we hope, yields an evenly distributed (in
value vector space) non-dominated set of policies.

Second, we improve on the policy evaluation step to classify candidate policies in order
to evade additional policy evaluations. Here, our idea is the following observation. We
define first for a policy π and a state-action pair ps, aq the gradient with

gradpπ, s, aq “

¨

˝~rpsq ` γ min
~pPSpPa

Ó
ps‚q,Pa

Ò
ps‚qq

~p~vpπq
Ó
´~vpπq

Ó
psq,

~rpsq ` γPa
ˆps‚q~v

pπq
ˆ ´~vpπqˆ psq,~rpsq ` γ max

~pPSpPa
Ó
ps‚q,Pa

Ò
ps‚qq

~p~vpπq
Ò
´~vpπq

Ò
psq

˛

‚

(3.13)

where Sp~p1,~p2q is the set of stochastic row vectors between ~p1 and ~p2 defined by

Sp~p1,~p2q “
!

~p P R1ˆn | ~p~1 “ 1^~p1 ď ~p ď ~p2

)

If, for some policy π, a state s and an action a P Aztπpsqu can be found such that

gradpπ, s, aq ąP p0, 0, 0q (3.14)

76

3.2. Pareto frontier enumeration

then a policy πps,aq can be defined with πps,aqptq “ πptq for t ‰ s and πps,aqpsq “ a and it is
ˆ

~vpπ
ps,aqq

Ó
,~vpπ

ps,aqq
ˆ ,~vpπ

ps,aqq
Ò

˙

ąP

´

~vpπq
Ó

,~vpπqˆ ,~vpπq
Ò

¯

. We define an operator

π1 “ popt
´

π,~vpπq
Ó

,~vpπqˆ ,~vpπq
Ò

¯

that generates a new policy from π by selecting for each s an action a for which the
relation (3.14) holds, whenever this is possible and keeping π otherwise.

The function popt considers only pairs ps, aq where the gradient is non-negative and
non-zero. If the gradient contains no positive elements, then the corresponding policy πps,aq

is dominated by π. If the gradient is non-negative and non-zero, then πps,aq dominates π. In
all other cases, some components of the value vectors are improved over their predecessors
and other will become worse in comparison to the value vectors associated with π.

From the gradient, the direction of the different value vectors of a new policy can be
estimated without evaluating it fully. Policy evaluation is performed by a function eval
which solves the following three sets of equations to compute the value vectors for some
pure policy π.

~vpπq
Ó
“~r` γ min

PPPpπq
Ù

´

P~vpπq
Ó

¯

,

~vpπqˆ “~r` γPpπqˆ ~vpπqˆ ,

~vpπq
Ò
“~r` γ max

PPPpπq
Ù

´

P~vpπq
Ò

¯

(3.15)

The equations for the average values are the standard MDP equations and define a set of
linear equations which can be solved with standard means. For the vector of the pessimistic
and optimistic values, a fixed-point iteration is performed. First, the vector ~vpπq

Ó
(resp. ~vpπq

Ò
)

is initialized with an arbitrary value, then, the minimum (or maximum) is computed and
with this minimum (or maximum), a new vector is computed which is then used to find
a new minimum (or maximum). This procedure defines a sequence of value vectors that
converges to a unique fixed point, as follows from the interval value iteration procedure
described in Algorithm 9 in [GLD00]. In fact, this is an application of the interval value
iteration algorithm for an action space with one element.

In the following procedure, given in Algorithm 16 we use a set PV that contains tuples
pπ,~vpπq

Ó
,~vpπqˆ ,~vpπq

Ò
q. Additionally, we use a set P where all evaluated policies are stored in

order to avoid a re-evaluation of a policy.
The algorithm itself is an optimized version of the policy iteration approach in Algo-

rithm 15 to heuristically computePPareto and the corresponding value vectors. In the current
description, new policies are generated starting from available policies by maximizing one
direction of the gradient; one can also think of other, more sophisticated strategies to derive
promising policies. The algorithm stops if in the current set of non-dominated policies, the
neighbours of each policy are either explored or dominated. A further stopping condition
is if a predefined number of policies is explored, that is, if |PV| surpasses a given threshold.

As the algorithm is a heuristic, it is difficult to argue about guaranteed performance
in terms of quality of the output, that is, if the resulting policies Pr “

π | pπ, ¨, ¨, ¨q P PV
(

fulfill PPareto Ď Pr and Pr Ď PPareto. It is still possible to make several observations. The
main difference between Algorithm 16 and Algorithm 11 lies in the bookkeeping that
disallows Algorithm 16 to explore policies that are already evaluated, or, more importantly,
are dominated by some other already explored policy. By doing this, Algorithm 16 may
ignore policies that are dominated yet lead (by choosing an appropriate sequence of policy
changes) to the Pareto frontier; if there are no other ways to the Pareto frontier, this makes
the output of Algorithm 16 incomplete. On the other hand, one can provide an heuristic

77

3. ALGORITHMS FOR MULTI-OBJECTIVE PROBLEMS

Algorithm 16 Policy iteration to heuristically compute PPareto and VPareto

1: function PURE-OPT-PRACTICAL-HEURISTIC(P “ pS, A, TÙ, RÙ, Prq, γ)

2: PV Ð

"

pπÓ,~v
pπÓq

Ó
,~v
pπÓq
ˆ ,~v

pπÓq

Ò
, pπˆ,~vpπˆq

Ó
,~vpπˆqˆ ,~vpπˆq

Ò
q, pπÒ,~v

pπÒq

Ó
,~v
pπÒq
ˆ ,~v

pπÒq

Ò
q

*

3: P Ð
!

πÓ, πˆ, πÒ

)

4: while |PV| ămax. number of policies do
5: Π “ H

6: for π P PV and all ps, aqwhere πps,aq R P do
7:

´

gpπ,s,aq
Ó

, gpπ,s,aq
ˆ , gpπ,s,aq

Ò

¯

“ gradpπ, s, aq

8: Π “ ΠY

pπ, s, a
˘

u

9: if no non-negative gradient exists for pπ, s, aq P Π then
10: break (all Pareto optimal solutions have been found)
11: for g P

!

gÓ, gˆ, gÒ
)

do

12: if gpπ,s,aq ă~0 exists then
13: pπ, s, aq Ð arg maxpπ,s,aqPΠ

!

gpπ,s,aq
)

14: π1 Ð πps,aq

15: repeat
16: p~vpπ

1q

Ó
,~vpπ

1q
ˆ ,~vpπ

1q

Ò
q Ð evalpP , π1q

17: π1 Ð popt
ˆ

π1,~vpπ
1q

Ó
,~vpπ

1q
ˆ ,~vpπ

1q

Ò

˙

18: until π1 does not change

19: PV Ð PO
ˆ

PV Y tpπ1,~vpπ
1q

Ó
,~vpπ

1q
ˆ ,~vpπ

1q

Ò
qu

˙

P “ PY tπ1u

20: if PV was not changed then
21: break (all new policies are explored or dominated)
22: return PV

argument: Since the initial set of policies contains known “extreme points” πÓ, πˆ, πÒ, the
policies that are found by Alg. 16 in realistic settings will stem from a gradual transition
from one extreme policy to another, as, following Lemma 2.4.5, there always exists a path of
policies that improves one of the objectives until an optimum is reached. This way, we can
expect that in real-life problems, the resulting set Pr will cover the Pareto frontier or at least
the space between the value vectors

ˆ

~v
pπÓq

Ó
,~v
pπÓq
ˆ ,~v

pπÓq

Ò

˙

,
ˆ

~vpπˆq
Ó

,~vpπˆqˆ ,~vpπˆq
Ò

˙

,
ˆ

~v
pπÒq

Ó
,~v
pπÒq
ˆ ,~v

pπÒq

Ò

˙

adequately, i. e., the resulting set of value vectors will be evenly distributed in the space
between the extreme value vectors stemming from πÓ, πˆ, πÒ. Furthermore, we expect that
for practical problems, the following assumption will hold: If for a set of policies P it is
P Ď PPareto and P contains not all Pareto optimal policies, then there exists a policy π P P
and a state-action pair ps, aq P Sˆ A such that πps,aq R P and πps,aq is not dominated by any
other policy in P. This especially means that there always is a “globally” non-dominated
path of policies from a set P of mutually non-dominating policies to a policy in PParetozP if
PPareto ‰ P. We expect that this assumption holds for practical instances. Furthermore, we
conjecture that our assumption is also true for the problem in general.

78

3.2. Pareto frontier enumeration

Concerning the general complexity of Algorithm 16, we note that, as this is a variation
of Alg. 11, the same reasoning applies. However, the practical complexity should be lower
than that of Alg. 11, as less SBMDP evaluations have to be performed.

3.2.2 Evaluation

We present a series of experiments where we consider several questions. First, we compare
the performance of Algorithm 16 against a black-box multi-objective optimization method
as reference. We choose SPEA2 [ZLT01] as reference since it is a well-studied, simple black-
box optimization algorithm with practical use [LMSM14]. Second, we evaluate the general
performance of the algorithm with respect to problem size and the number of computed
solutions. Third, we test our algorithm on a small example from the literature.

For the evaluation, we use a machine with an eight-core Intel Core i7-4790 CPU and
16 GB RAM. We set a time limit of 1000 s for SPEA2 and a limit for Algorithm 16 of
50 000 checked policies. The archive size for SPEA2 is set to 50 000. Concerning the im-
plementations, we use OpenMP parallelization methods to use multiple CPU cores when
possible. Furthermore, we use advanced numerical algorithms to evaluate (3.15). Specif-
ically, for large instances, we substitute the direct LU solver [Ste94] by preconditioned
GMRES [Saa93, Ste94] with an ILU0-preconditioner. The code and testing infrastructure are
available at [SB17, Sch17a].

The SPEA2 algorithm In detail, SPEA2 works, as each black-box algorithm, with potential
solution from some solution space I. The algorithm keeps two sets of candidate solutions:
a population P and an archive A where the non-dominated solutions are stored. In each
iteration of the optimization cycle, A is updated with non-dominated elements of P. Then,
a selection step takes place in which first, all elements of AY P are assigned a fitness value
and then, the solutions with lower fitness values are chosen to generate new solutions by
application of mutation and crossover operators2. The newly generated solutions are then
the new population.

The distinctive feature of this algorithm is its approach to fitness evaluation: The fitness
of an individual solution p depends on the strength of other solutions p1 that cover, i. e.
dominate or are equal to p. The strength itself is defined as the number of covered solutions;
thus, the non-dominated solutions have maximal strength and minimal fitness values by
definition, otherwise the ranking aims at picking more diverse solutions, i. e., solutions
that are more evenly distributed in the objective value space. A formal description of the
heuristic is given in Algorithm 17.

In our SPEA2 implementation for multi-objective SBMDP optimization, we use problem-
specific mutation and crossover operators. As possible solutions are pure policies, and,
ultimately, integer vectors, the operators can be defined in a straightforward fashion.
Mutation affects a decision in one state with probability 1{n, if n is the number of states in
the MDP, and replaces the previous action in the policy with a uniformly randomly chosen
one. Crossover takes two “parent” policies and chooses for the result an action from either
of the original policies with probability 1{2.

The Multi-Server Queue Model For the first case study, we choose a parameterizable
model instances of which can be easily generated. Concretely, we consider a multi-server
queue model where servers can be switched off to save energy and switched on if the load
in the system increases. Such queues are abstract models for server farms [GHA10]. The
goal of this model is to find a compromise between small response times and low energy
consumption; the uncertainty lies in the model dynamics.

2Minimizing the fitness value (instead of intuitive maximizing) is due to traditions in optimization, where
minimization problems are considered natural.

79

3. ALGORITHMS FOR MULTI-OBJECTIVE PROBLEMS

Algorithm 17 The SPEA2 evolutionary multiobjective optimization heuristic
1: function SPEA2(Npopulation P N, Narchive P N, T P N)
2: P Ð initial population of size Npopulation
3: A ÐH

4: t Ð 0
5: k Ð t

b

Npopulation ` Narchiveu

6: p Ð selection pressure ą 1
2

7: while true do
8: Initialize working set W Ð PY A
9: Calculate for each i P W its strength Spiq “

∣∣∣ j | j P W ^ i ě j
(

∣∣∣ where ě is the
dominance relation.

10: Calculate for each i P W its raw fitness Rpiq “
ř

jPW,jěi Spjq
11: Calculate for each i P W the distance σkpiq to its k-th nearest neighbour in the

objective space
12: Calculate for each i P W its fitness Fpiq “ Rpiq ` 1

σkpiq`2
13: A Ð POpWq Ź Copy all non-dominated solutions into the archive
14: Truncate A to Narchive items
15: if t ě T or other termination criteria are met then
16: return A
17: M ÐH Ź initialize mating pool
18: while |M| ă Npopulation do
19: i, j Ð random solutions from A
20: M Ð MY

!

with probability p the solution with lower fitness from

i, j
(

)

21: P Ð recombination and mutation on M
22: t Ð t` 1

We consider a system where customers arrive according to a Poisson process with rate
λ and require an exponentially distributed service with mean µ´1. As our algorithms are
designed for discrete-time BMDPs, we apply uniformization as described in (1.18) and (1.20)
in order to derive a discrete model where the probability of arrival of a customer in a time
unit is p, the service probability is q and, thus λ and µ are multiples of p´1 resp. q´1. The
system has a capacity of m and contains c servers. Each server can be in one of three states
on, off and start. A server can be switched off after the end of a service or if it is idle. A
server that is switched off immediately changes its state from on to off. Servers in state
off can be switched on which means that they change their state to start. The duration
of the starting period is exponentially distributed with rate ν, then the server changes its
state to on and is ready to serve customers. A state of the system can be described by
pi, j, k, lq where i P r0, ms describes the number of customers, j, k, l include the number of
servers in state on, start and off, respectively. Consequently, j` k` l “ c has to hold. The
number of states equals n “ pm` 1qpc` 2qpc` 1q{2. The reward in the state pi, j, k, lq equals
pm´ iq{pjω1` kω2` lω3qwhere ω1, ω2, ω3 describe the energy consumption in the on, start,
and off state.

The transition probabilities in this model are fixed for constant λ, µ, ν, m, c; in order
to introduce uncertainty in the form of bounds, we set the upper bound Pa

Ò
by adding

random Gaussian noise with mean 0.01 and variance 0.005 to the “theoretical” transition
probabilities in Pa

ˆ defined above. The lower bounds Pa
Ó

is generated analogously by
subtracting Gaussian noise, also with mean 0.01 and variance 0.005 from the transition
probabilities. All bounds are guaranteed to lie between 0 and 1.

80

3.2. Pareto frontier enumeration

Comparison to a generic heuristic As multi-scenario optimization for (stochastic) BMDPs
is a new problem with little research on the topic, we choose to compare our approach to
a black-box heuristic for lack of other known approaches. More specifically, we compare
our algorithm to SPEA2 as it is a well-studied evolutionary optimization algorithm that
is specifically designed to compute non-dominated sets for multi-objective optimization
problems.

Comparison metrics To quantify performance differences, we use the coverage metric
that has been introduced in [ZT99]. This performance metric is designed to compare two
output sets of (heuristic) multi-objective optimization algorithms on the same problem and
computes the fraction of one output set that is covered (that is, is dominated by or equal
to) by an element of the other output set. Concretely, for two sets of vectors X and Y, the
coverage metric CpX, Yq is defined by

CpX, Yq “

∣∣∣ y P Y | Dx P X : x ě y
(

∣∣∣
|Y|

. (3.16)

CpX, Yq “ 1 means that all points in Y are dominated by or equal to points in X whereas
CpX, Yq “ 0 means that no point in Y is covered by a point in X. It is worth noting that the
coverage metric is asymmetric and in most cases complete information about the dominance
relation between X and Y can be derived only from both CpX, Yq and CpY, Xq.

Results The results of the comparison can be found in Figures 3.5 and 3.6. The first
figure describes the coverage metric where the first argument is the policy set computed by
Alg. 16, the second figure describes the converse. In the run, SPEA2 always uses the time
budget of 1000s while Alg. 16 never takes more than 330s.

The numeric results can be observed in Table 3.1. The number t denotes the test case
number, T the time in seconds that Algorithm 16 has used. The times for SPEA2 are not
shown as the algorithm stops on the timeout condition. PH and PS are the sets of computed
policies by our heuristic (Alg. 16) resp. by SPEA2 (Alg. 17); |PH| and |PS| are then the
respective numbers of policies computed by each algorithm. C denotes the coverage metric
as defined in (3.16): CpPH , PSq denotes of the coverage of PH by PS, and vice versa, CpPS, PHq

denotes the coverage of PH by PS.

Table 3.1: Performance comparison of SPEA2 and Algorithm 16

m c |S| t T (Alg. 16) |PH| (Alg. 16) |PS| (SPEA2) CpPH , PSq CpPS, PHq

2 1 9 1 0.1 4 661 1.0 1.0
2 0.03 4 831 1.0 1.0
3 ă 0.01 2 557 1.0 1.0
4 ă 0.01 8 1168 1.0 1.0

2 2 18 1 0.04 144 700 1.0 0.0
2 0.02 90 273 1.0 0.0
3 0.01 16 399 1.0 0.0
4 0.06 192 235 1.0 0.0

2 3 30 1 3.16 2048 1385 1.0 0.0
2 8.83 3456 1678 1.0 0.0
3 27.9 6480 2304 1.0 0.0
4 32.09 6912 2289 1.0 0.0

3 1 12 1 0.01 4 498 1.0 1.0
2 ă 0.01 8 562 1.0 1.0
3 ă 0.01 8 494 1.0 1.0
4 ă 0.01 8 663 1.0 1.0

81

3. ALGORITHMS FOR MULTI-OBJECTIVE PROBLEMS

m c |S| t T (Alg. 16) |PH| (Alg. 16) |PS| (SPEA2) CpPH , PSq CpPS, PHq

3 2 24 1 30.01 10368 1987 1.0 0.0
2 1.21 1728 1586 1.0 0.0
3 0.95 1536 1834 1.0 0.0
4 0.57 1024 1227 1.0 0.0

3 3 40 1 134.25 38626 3904 1.0 0.0
2 170.0 43446 1448 1.0 0.0
3 163.02 43555 3407 1.0 0.0
4 158.31 40326 2234 1.0 0.0

4 1 15 1 0.01 16 298 1.0 0.8125
2 ă 0.01 8 412 1.0 0.75
3 ă 0.01 4 839 1.0 0.5
4 ă 0.01 12 193 1.0 0.583

4 2 30 1 124.77 17281 1372 1.0 0.0
2 15.94 6144 1680 1.0 0.0
3 0.86 1152 2679 1.0 0.0
4 0.18 256 1145 1.0 0.0

4 3 50 1 182.5 44040 3110 1.0 0.0
2 202.11 43835 2873 1.0 0.0
3 209.75 39181 1345 0.9993 0.0
4 196.69 39348 2720 1.0 0.0

5 1 18 1 0.01 16 1466 1.0 0.25
2 0.01 16 1138 1.0 0.3125
3 0.01 32 1545 1.0 0.21875
4 0.01 16 1375 1.0 0.0625

5 2 36 1 172.42 44852 1931 1.0 0.0
2 37.11 8192 2310 1.0 0.0
3 102.63 13824 1867 1.0 0.0
4 128.32 38334 1970 0.9995 0.0

5 3 60 1 195.88 43520 3555 1.0 0.0
2 233.39 41321 3594 1.0 0.0
3 203.18 41957 2995 1.0 0.0
4 186.82 36129 2493 1.0 0.0

6 1 21 1 0.02 64 605 1.0 0.09375
2 0.01 32 977 1.0 0.03125
3 0.01 64 1130 1.0 0.03125
4 0.01 64 756 1.0 0.0625

6 2 42 1 193.48 43583 2307 0.9996 0.0
2 197.19 46716 2687 1.0 0.0
3 148.53 41420 1631 1.0 0.0
4 254.92 18432 2657 1.0 0.0

6 3 70 1 355.77 40955 2563 1.0 0.0
2 321.47 41570 2506 1.0 0.0
3 330.95 41739 3310 1.0 0.0
4 330.95 36618 3288 1.0 0.0

It is easy to see that Algorithm 16 almost always delivers a significantly better perfor-
mance with respect to both time complexity as well as quality of computed policies. In detail,
in almost all test instances Algorithm 16 computes a set of policies that completely covers
all solutions generated by SPEA2; the evolutionary heuristic, however, never produces a
policy that strictly dominates a policy from Alg. 16 and is only able to yield comparable
solutions on small instances with state space size of at most 20.

82

3.2. Pareto frontier enumeration

10 20 30 40 50 60 70
states

0.5

0.6

0.7

0.8

0.9

1.0

C(
IP

T,
 S

PE
A2

)

Figure 3.5: Cpheuristic, evolutionaryq in dependence of state space size

Comparison to an exact computation For some instances, we furthermore compare
the performance of Algorithm 16 to the exact approach in Algorithm 11. Concretely, we
consider the case m “ 2, c “ 3. It turns out that for this case, the coverage metric is always
1. This suggests that Algorithm 16 may compute the complete Pareto frontier not only
heuristically but also in theory. This is, however, a conjecture subject to further investigation.
Formally, the conjecture can be stated as follows.

Conjecture 3.2.1. Let P Ă Ppure. If for every π P P and every π1 P Ppure with dpπ1, πq “ 1
holds that

~vpπ
1q

Ó
ď ~vpπ

˚q

Ó
,~vpπ

1q
ˆ ď ~vpπ

˚q
ˆ ,~vpπ

1q

Ò
ď ~vpπ

˚q

Ò

for some other π˚ P P, then P “ PPareto.

Time complexity As the number of policies is bounded by an upper limit of 50 000 and
|A| “ op|S|q, the complexity can be roughly estimated by a cubic term in |S|. For practical
applications, we are also interested in runtimes on real-life instances. To get an impression,
we estimate the complexity by considering a number of test cases in a different, but more
general and scalable model.

Grid model We consider here a model that resembles a grid with n ¨ m states S “
!

si,j | i P rns, j P rms
)

and m actions A “ rms. The rewards for actions in each state are
normally distributed with mean 100 and variance 20. The transition probabilities are
also chosen randomly according to the Dirichlet distribution. Concretely, the transition
probability vector from state si,j to states sminpn,i`1q,j1 for action a is Dirichlet-distributed

83

3. ALGORITHMS FOR MULTI-OBJECTIVE PROBLEMS

10 20 30 40 50 60 70
states

0.0

0.2

0.4

0.6

0.8

1.0

C(
SP

EA
2,

 IP
T)

Figure 3.6: Cpevolutionary, heuristicq in dependence of state space size

with concentration parameters
`

αa
1, . . . , αa

m
˘

where αa
j1 “ 10 if a “ j1 and αa

j1 “ 1 otherwise
which yields an (expected) 10 times larger probability to land in si`1,a than in other states.
The upper and lower bounds are, as before, generated by adding and subtracting Gaussian
noise.

Complexity We present the results in graphical form. The results themselves stem
from runs of Algorithm 16 on instances of the grid model with up to 400 states, with n and
m between 5 and 20. For each pair of values pn, mq, we create 4 instances to achieve a more
representative data set. Our algorithm stops when either no non-dominated policy can be
created or when the limit of 50 000 evaluated policies is reached.

The results can be seen in Fig. 3.7. The red dots are the empirical data, the blue bars
describe the mean along with a confidence interval that stems from a (scaled) t-distribution
guess. The green line is the cubic regression term for convenience. The runtime complexity
is polynomial, as the total number of policies that can be evaluated is bounded from above.
The more interesting details in Fig. 3.7 are the values: One can see that even on large
instances, the mean time until a non-dominated solution is generated lies under a second.
This means that it is possible to incrementally compute the Pareto frontier, stopping the
computation when the controller believes that the current set of policies is acceptable.

3.2.3 The Model of Autonomous Non-deterministic Tour Guides

Our second case study is inspired by “Autonomous Nondeterministic Tour Guides” (ANTG)
in [CRI07, HHS16]. Models in [CRI07] are MDPs. In our experiment, we insert some
uncertainties into the original MDP which integrate into the problem setting.

84

3.2. Pareto frontier enumeration

50 100 150 200 250 300 350 400
states

0.00

0.05

0.10

0.15

0.20

0.25

se
co

nd
s/

po
lic

y

Figure 3.7: Mean time for a policy in dependence of problem size

The ANTG case study models a complex museum with a variety of collections. Due to
the popularity of the museum, there are many visitors at the same time. Different visitors
may have different preferences of arts. We assume the museum divides all collections into
different categories which are separated into different rooms, and visitors can choose what
they would like to visit and pay tickets according to their preferences. In order to obtain
the best experience, a visitor can, prior to her visit, assign a predefined weight to each
category denoting her preferences to the museum, and then design the best strategy for
a visit. The problem with this approach is that the preference weights depend on many
time-dependent factors such as price, weather, or the length of queue at that moment and
are hard to compute in advance. In order to account for this, we allow uncertainties of
preferences such that their values may lie in an interval and ask for the best strategies for a
given museum. The solution in the form of the best policy or policies can then be used by
the museum’s administration for fare design decisions or load analysis; for a visitor, the
policies can serve as a decision support for optimal museum experience.

For simplicity we assume all collections are organized in an nˆ n square with n ě 10.
Let m “ n´1

2 . We assume all collections at pi, jq are assigned with a weight 1 if |i´m| ą n
5

or
∣∣j´m

∣∣ ą n
5 , with a weight 2 if |i´m| P p n

10 , n
5 s or

∣∣j´m
∣∣ P p n

10 , n
5 s; otherwise they

are assigned with a weight interval r3, 4s. In other words, we expect collections in the
middle to be more popular and subject to more uncertainties than others. Furthermore, we
assume that people at each location pi, jq have two non-deterministic choices: either move
to the north and east, that is, pminpn, i` 1q, minpn, j` 1qq or to the north and west, that is,
pminpn, i` 1q, maxp0, j´ 1qq if i ě j, while if i ď j, they can move either to the north and east,
pminpn, i` 1q, minpn, j` 1qq, or to the south and east, that is, pmaxp0, i´ 1q, minpn, j` 1qq.
The transitions also depend on the location of the collection. For the collections in the middle,

85

3. ALGORITHMS FOR MULTI-OBJECTIVE PROBLEMS

the main direction of transition is chosen with probability r0.8, 1s while the probability
to move to some other neighbour collection is r0, 0.2s. In the expected case, we set the
probability to move to the collection in the main direction to 0.8 and distribute the remaining
probability mass evenly among other neighbour collections. For collections outside the
middle, the main direction (for example, north and west) is chosen with probability 1.

Therefore a model with parameter n has n2 states in total and roughly 2n2 transitions,
2% of which are associated with uncertain weights and uncertain transition probabilities.
Notice that a transition with uncertain weights essentially corresponds to several transitions
with concrete weights.

We define a reward structure denoting the reward one can obtain by visiting each
collection. For simplicity, we let the reward be the same as the weight of a collection. We
can ask for the optimal policy for the expected discounted reward criterion, that is, in
the scenario where it is preferable to make better rewarding moves early, which seems to
be intuitively consistent with what museum visitors want to experience, if one assumes
scarcity of cognitive resources [LKS`17].

Evaluation of the ANTG model We present an evaluation of the model for 10 ď n ď 20,
with the results depicted in Fig. 3.8. Again, the algorithms stop after no new policy can
be constructed or after the number of evaluated policies exceeds 50 000. For convenience,
the runtime and the number of policies are plotted in dependence of the number of states,
which is n2. We see that on large instances, the problem structure yields a large number of
optimal policies, thus increasing the required runtime. On small instances, however, the
number of optimal policies generated is small, which allows for a fast computation of the
Pareto frontier. Furthermore, we see that the Pareto frontier is small when n is odd, which
can be explained as an inherent property of the model; this also means that for odd n, the
choice among the optimal policies is small and (cognitively) easier for the controller.

100 150 200 250 300 350 400

0

2,000

4,000

n2

t(
se

c)

0

0.5

1

1.5

2

¨104

#p
ol

ic
ie

s

t
#policies

Figure 3.8: Evaluation of the ANTG model

86

4

A case study

Don’t tell me the moon is shining;
show me the glint of light on broken
glass.

— Anton Chekhov

IN this chapter, we present an application of our algorithms to a more involved model in
contrast to “playground” models which we have used for performance evaluation. The

model which we choose for analysis is a multi-component system with several degradation
stages of the individual components which occur according to a phase-type distribution.
We perform an analysis of this model by transforming it into concurrent and stochastic
bounded-parameter models, applying our analysis techniques and, finally, comparing the
resulting policies.

4.1 Model details

We consider a continuous-time model of M P N components where each component with a
given index i P rMsmay proceed through Ni P N stages of degradation, called operational
phases oi,1, . . . , oi,Ni . In each operational phase, the component may either change into an
operational phase that corresponds to a higher degree of degradation or fail completely.
Failure is modeled as a replacement process in a dedicated renewal phase ni after which the
component restarts in the operational phase oi,Ni that corresponds to a “new” state of the
component. Furthermore, a maintenance action on the i-th component can be undertaken,
which moves the i-th component into a maintenance phase mi,j from the operational phase
oi,j. In this phase, maintenance is performed which moves the i-th component into an oper-
ational stage which corresponds to a smaller degree of degradation after the maintenance
process is done. Thus, the total set of phases of the i-th component can be described by
Si “

!

oi,Ni , mi,Ni , . . . , mi,2, oi,1, ni

)

. We note that with this definition, there is no maintenance
phase that can be reached from operational phase with the highest degree of degradation,
and hence, no phase mi,1 in the model.

In detail, the operational, repair, and replacement processes are modeled as absorbing
Markov chains. The (positive real-valued) probability distribution associated with the
absorption time in a Markov chain is known in literature as a phase-type distribution
(PHD) [Neu79]. In general, phase-type distributions are very popular in modeling and
analysis literature for applicability of analytical methods [He14] as well as for being a
flexible modeling tool [BKF14, BKS14]. We note that approaches to approximate transition
time distributions with the help of phase-type distributions have been previously considered
in [YS04]; algorithms for the resulting semi-Markov decision processes where the Markovian
property holds for the transition probabilities, but not for transition times, have been
experimentally evaluated in [BDS17a]. For further reference on semi-Markov processes and
their applications, we refer to [KBT75, Bar08]; here, we consider Markov decision models.

87

4. A CASE STUDY

Mathematically, a phase-type distribution can be represented by a subgenerator matrix
D P Rnˆn and a vector ~φ P R1ˆn

ě0 with the constraints ~φ~1 “ 1, D~1 ď 0, and Dpi, jq ě 0 ô
i ‰ j. This representation induces also a vector ~d “ ´D~1. The matrix D can be seen as a
submatrix of a rate matrix Q P Rpn`1qˆpn`1q in a continuous-time Markov chain with

Q “

˜

D ~d
0 0

¸

.

Using the solution of the CTMC differential equation in (1.13) using matrix-exponential
expressions as defined in (1.14), we can derive the corresponding probability density
function pptq and the cumulative distribution function Fptq.

pptq “ ~φ exppDtq~d (4.1)

Fptq “ 1´~φ exppDtq~1 (4.2)

For the i-th component and the j-th operational phase, the sojourn time is modeled by a
phase-type distribution with representation pDi,j

o ,~φi,j
o q. On an operational phase change, the

controller may choose to repair the component. This choice invokes a maintenance process
which lasts for a time that is distributed according to a PHD with a representation pDi,j

r ,~φi,j
r q,

if repair occurred after the j-th operational phase. If no maintenance is performed, the
component eventually fails and is replaced; similarly, the failure process in this failure phase
is modeled by a PHD with representation pDi

f ,~φi
f q. The failure probability for the i-th

component in the j-th operational phase is fi,j, with fi,1 “ 1. For compactness reasons we
define f̄i,j :“ 1´ fi,j. Note that this implies no maintenance phase after the operational
phase with index 1.

The rewards of the i-th component are given by ro,i,j for the j-th operational phase and
by rr,i,j for the j-th maintenance phase mi,j; r f ,i denotes the (usually negative) reward in the
failure state. Figure 4.1 depicts the inner workings of a single component.

We note that up to now, the consequences of degradation and maintenance are determin-
istic. To model stochastic transitions, we introduce a strictly lower triangular degradation
matrix Hi P RNiˆNi where Hips, tq describes the probability to change to the t-th operational
phase after the s-th operational phase is completed. Mathematically, we have to enforce the
constraints Hips‚q~1 “ 1 for all s ą 1. Semantically, one can assume that components only
degrade, that is, Hips, tq ą 0 holds only for s ą t. For example, in a component with four
operational phases, the degradation matrix can look like

Hi “

¨

˚

˚

˝

0 0 0 0
1 0 0 0

0.1 0.9 0 0
0.01 0.1 0.89 0

˛

‹

‹

‚

.

In a similar way, consequences of maintenance actions can be modeled by an upper trian-
gular repair matrix Ri P RNiˆNi where the value Rips, tq denotes the probability of returning
to the t-th operational phase from the s-th maintenance phase. Again, the mathematical
constraint on this matrix is Rips‚q~1 “ 1 for s ą 0 (as there is no maintenance phase with
index 1). A semantic constraint that can be imposed is that maintenance cannot degrade
a component, which translates to the condition that Rips, tq ą 0 holds only for s ď t. An
example repair matrix in a component with four operational phases is given below.

Ri “

¨

˚

˚

˝

0 0 0 0
0 0.5 0.4 0.1
0 0 0.6 0.4
0 0 0 1

˛

‹

‹

‚

88

4.2. Towards an uncertain MDP

Di
f ,~φi

f

Di,1
o ,~φi,1

o

Di,2
o ,~φi,2

o

Di,3
o ,~φi,3

o

Di,2
r ,~φi,2

r

Di,3
r ,~φi,3

r
init

fi,1 “ 1

fi,2

fi,3

f̄i,3

f̄i,2

repair

repair

ignore

ignore

Figure 4.1: Visualization of operational, maintenance and repair phases in a single compo-
nent

4.2 Towards an uncertain MDP

A naïve model can describe an M-component system by considering, first,
śM

i“1p2Niq

observable phases that can be identified with tuples ps1, . . . , sMq which describe individual
states of each component. Each observable phase ps1, . . . , sMq can then be identified with
a product state space of the underlying phase-type distributions of size

śM
i“1pdim Di,siq if

Di,si is the subgenerator matrix of the phase-type distribution in phase si. It is easy to see
that, while being complete, this model grows exponentially large with growing number
of components. In order to illustrate the size of the resulting model, we sketch a complete

89

4. A CASE STUDY

construction first and then discuss possibilities to reduce the model size by sacrificing some
of the precision and explicitly assuming that decisions depend on the current (operational)
phase but not on the detailed state of the phase-type distribution processes.

4.2.1 Sketch of a complete MDP model

In detail, a state of one component can be modeled as one state in a continuous-time Markov
decision process with

řNi
j“0 dim Di,j states.

The states are encoded as follows: The first pdim Di,Ni
o q states correspond to the Nith

operational phase, the next pdim Di,Ni
r q states correspond to the Nith repair phase, the next

pdim Di,Ni´1
o q states correspond to the Ni ´ 1st operational phase and so on, with the last

pdim Di
f q states corresponding to the failure phase. The process starts in the first state block,

with the initial distribution vector being φ
i,Ni
o b~e1,Ni .

Concerning the transition rate matrices, we first describe how the “ignore” action affects
the dynamics of the system. In the “ignore” case, the transition rate matrix has the shape

Qignore
i “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Di,Ni
o 0 HipNi, Ni ´ 1q f̄i,Ni

~di,Ni
o ~φi,Ni´1

o . . . fi,Ni
~di,Ni

o ~φi
f

RipNi, Niq~d
i,Ni
r ~φi,Ni

o Di,Ni
r RipNi, Ni ´ 1q~di,Ni

r ~φi,Ni
o . . .

...
...

. . .
0 . . . Di,1

o ~di,1
o ~φi

f
~di

f
~φi,Ni

o 0 . . . 0 Di
f

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

while for the “repair” action, we have

Qrepair
i “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

Di,Ni
o ~di,Ni

o ~φi,Ni
r 0 . . . 0

RipNi, Niq~d
i,Ni
r ~φi,Ni

o Di,Ni
r RipNi, Ni ´ 1q~di,Ni

r ~φi,Ni
o . . .

...
. . .

0 . . . Di,1
o ~di,1

o ~φi
f

~di
f
~φi,Ni

o 0 . . . Di
f

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

We note here that the upper rows of the transition rate matrices correspond to the phases
with higher indices. This also means that the matrices Ri and Hi which describe the stochas-
tic consequences of maintenance and degradation, are read in the “opposite” direction, that
is, the entries in lower rows of Ri and Hi influence the entries in the upper rows of Qignore

i

and Qrepair
i .

The reward vector~ri is then

~ri “

ˆ

ro,i,Ni
~1J

dim D
i,Ni
o

, rr,i,Ni
~1J

dim D
i,Ni
r

, . . . , ri, f~1
J

dim Di
f

˙J

.

Then, to model the complete system, one combines the matrices with Kronecker opera-
tors. The matrix for the global “ignore” action is

Qignore “
M
à

i“1
Qignore

i ,

90

4.2. Towards an uncertain MDP

the transition rate matrix for the “repair component i” action is

Qrepair,i “

¨

˝

i´1
à

j“1
Qignore

j

˛

‚‘Qrepair
i ‘

¨

˝

M
à

j“i`1
Qignore

j

˛

‚.

The transition rate matrix for the action “repair components Z “ ti1, . . . , i`u” with i1 ă i2 ă
¨ ¨ ¨ ă i`, if such an action is part of the system, is

Qrepair,Z “

¨

˝

i1´1
à

j“1
Qignore

j

˛

‚‘Qrepair
i1

‘

¨

˚

˚

˝

`´1
à

k“1

¨

˚

˝

¨

˝

ik`1´1
à

j“ik`1
Qignore

j

˛

‚‘Qrepair
ik`1

˛

‹

‚

˛

‹

‹

‚

‘

‘

¨

˝

M
à

j“i``1
Qignore

j

˛

‚.

The combined reward vector~r is defined by

~rpps1, . . . , sMqq “

M
ÿ

i“1

~ripsiq.

Analogously, one can define the matrices for the individual “repair” actions; modeling a
limited maintenance resource can be done by not allowing further “repair” actions in states
of the system where no additional maintenance can be performed.

4.2.2 Model aggregation

We observe that the complete model has the downside of suffering from the notorious state
space explosion that occurs in most Markov models where several dimensions of state space
are combined. Furthermore, the resulting optimal policy may depend on the states of the
phase-type processes in each operational phase, which, however, are modeling artifacts and
do not correspond to physical properties of the system. To cope with the latter issue, we
assume that the controller’s decisions depend only on the current operational phase of each
component.

Following this assumption, and in order to keep the analysis computationally tractable,
we consider a state space reduction method which approximates the phase-type distribu-
tions by exponential distributions, reducing the model size of a sigle component to 2Ni
states and the model size of M components to

śM
i“1p2Niq. This number is still very large

for M " 2, but this at least allows us to analyse two- and three-component systems.

Rate bounds for phase-type distributions In order to compute bounds for a phase-type
distribution with representation pD,~φq, we have to compute rates λÓ and λÒ that approxi-
mate the time-dependent rate

λptq “
~φ expptDq~d
~φ expptDq~1

(4.3)

by bounding it from above and below with

λÓ ď
~φ expptDq~d
~φ expptDq~1

ď λÒ (4.4)

91

4. A CASE STUDY

Little can be said about the matrix expptDq, as a phase-type distribution can approximate
any other distribution with positive real support [O’C99]. However, we observe that
~φ expptDq~1 is the sum of the entries of the vector ~φ expptDq. Knowing that the vector
~φ expptDq is nonnegative, we conclude that ~ψptq “

~φ expptDq
~φ expptDq~1

is a distribution vector, i. e.,

~ψptq ě ~0, ~ψptq~1 “ 1. Thus, λptq is the product of a stochastic vector and ~d, which can be
bounded by

min
iPrns

~ei~d ď ~ψptq~d ď max
iPrns

~ei~d “ λÒ. (4.5)

However, the lower bound approximation for λptq in (4.5) may be of little use to us, as
the lower bound may be zero, if ~d “ ´D~1 has a zero entry. In this case, one can resort to an
empirical sampling procedure such as the one described in Algorithm 18. This algorithm,
given a discretization precision δ, iteratively computes the minimal value of λptq as defined
in (4.3) for t “ iδ, i P N. This is repeated for all values of i until the residual probability
mass 1´ Fptq is lower than a predefined threshold ε. Fptq is here the continuous distribution
function of the phase-type distribution, as defined in (4.2). Finally, Algorithm 18 yields a
lower bound λÓ for the time-dependent rate λptq.

Algorithm 18 A simple sampling procedure to compute the minimal rate of a given phase-
type distribution

1: function PHASETYPELOWERBOUND(~φ, D, δ, ε)
2: P Ð 0, i Ð 0
3: λÓ Ð8

4: while P ą ε do Ź Iterate only until the residual probability mass is significant
5: P Ð ~φ exppDiδq~1 Ź Compute the residual probability mass

6: λptq Ð
~φ expptDq~d
~φ expptDq~1

7: λÓ Ð min
!

λptq, λÓ

)

8: i Ð i` 1
return λÓ

Furthermore, the average rate λˆ can be computed with

λˆ “ ´p~φD´1~1q´1. (4.6)

Having approximated the phase-type distributions in the operational phases by exponen-
tial distributions, we derive a stochastic bounded-parameter MDP model and a concurrent
MDP model. The concurrent MDP model consists of several MDPs that correspond to
different approximations of the phase-type distributions. That is, if we approximate the
phase-type distribution pDi,j,~φi,jq with an exponential distribution with rate λi,j, we get,
for a single component, the following transition rate matrices for the “ignore” and “repair”
actions. Again, we keep the state ordering we described previously: the first state corre-
sponds to the Nith operational phase, the second state corresponds to the Nith maintenance

92

4.2. Towards an uncertain MDP

phase and so on, with the 2Nith state corresponding to the failure and replacement phase.

Q̃ignore
i “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

´λ
i,Ni
o 0 λ

i,Ni
o HipNi, Ni ´ 1q f̄i,Ni . . . λ

i,Ni
o fi,Ni

λ
i,Ni
r RipNi, Niq ´λ

i,Ni
r λ

i,Ni
r RipNi, Ni ´ 1q . . .

...
...

. . .
0 . . . ´λi,1

o λi,1
o

λi
f 0 . . . 0 ´λi

f

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

Q̃repair
i “

¨

˚

˚

˚

˚

˚

˚

˚

˝

´λ
i,Ni
o λ

i,Ni
o 0 . . . 0

λ
i,Ni
r RipNi, Niq ´λ

i,Ni
r λ

i,Ni
r RipNi, Ni ´ 1q . . .

...
. . .

0 . . . ´λi,1
o λi,1

o
λi

f 0 . . . 0 ´λi
f

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

(4.7)

The reward vector~si in the i-th component is defined by

~si “
´

ro,i,Ni , rr,i,Ni , ro,i,Ni´1, . . . , ro,i,1, ri, f

¯J

. (4.8)

Composition with limited maintenance resources If the number of components which
can be in a maintenance phase is unbounded, then there is little motivation in considering
composed models: The optimal policy for one component can be just executed in parallel for
every component. The use of a combined state space becomes justified when the amount of
repair resources is limited. We model this limitation by allowing at most L P N components
to be in maintenance phases.

In order to compose the components with the limitation of at most 1 ď L ď M compo-
nents in maintenance phases, we proceed as follows. For simplicity, we assume that the
replacement process in the failure phase can be entered by any number of components
simultaneously. Otherwise, it is easy to see that if the number of simultaneously repairable
components is limited, the number of reachable states is reduced; the total number of states
in the aggregated model is then

M
ź

i“1

Ni `
ÿ

SĎrMs : |S|ďL

¨

˝

ź

jPS

Nj ´ 1

˛

‚

¨

˚

˝

ź

iPrMszS

Ni

˛

‹

‚

which can be bounded by
´

řL
k“0

`M
k
˘

¯

śM
i“1 Ni. For L ! M{2, this is less than the number of

all states in the unrestricted model, which is 2M śM
i“1 Ni. In order to compute the transition

matrices Q̄ignore,L, Q̄repair,L in the reduced state spaces efficiently, we propose the following
approach. Intuitively, the idea is to compute the reachable state space for increasing number
of components and truncating the matrices if the corresponding states are not reachable.

For i P rMs, we define the sets TL
i , CL

i , and CL by

TL
1 “ S1, TL

i`1 “

ps1, . . . , si`1q P Ti ˆ Si`1 | at most L items are maintenance phases
(

,

CL
i “

ps1, . . . , siq P Ti | exactly L items are maintenance phases
(

,

and CL “ CL
M. Here, the set TL

i is the set of reachable phases in the first i components.
The set CL

i is the set of phases in the first i components where L components are already
in maintenance phases; for simplicity we assume that no further maintenance operation

93

4. A CASE STUDY

can then be applied. Then, the transition rate matrices for the individual actions can be
computed iteratively by setting

Q̄ignore,L
1 “ Q̃ignore

1

Q̄ignore,L
i`1 “

´

Q̄ignore,L
i ‘ Q̃ignore

i`1

¯

|Ti`1

XL,i
i “

´

Q̄ignore,L
i´1 ‘ Q̃repair

i

¯

|Ti

XL,i
j`1 “

´

XL,i
j ‘ Q̃ignore

i`1

¯

|Tj`1

Q̄ignore,L “ Q̄ignore,L
M

Q̄repair,L,ips‚q “

#

XL,i
M ps‚q s R CL

Q̄ignore,Lps‚q s P CL

(4.9)

where A|S is the matrix A constrained to the rows and columns from the set S. If more
than one component can be sent into maintenance simultaneously, then the transition
rate matrix Q̃repair,L,Z for the action “send components Z “ ti1, . . . , i`u with |Z| ď L and
i1 ă i2 ă ¨ ¨ ¨ ă i` into maintenance” can be computed analogously as follows. As in (4.9),
we compute a set of helper matrices

´

XZ,L
j

¯

i1´1ďjďM
by

XL,Z
j “

$

’

’

’

&

’

’

’

%

Q̄ignore,L
i´1 j “ i1 ´ 1

´

XL,Z
j´1 ‘ Q̃repair

i

¯

|Tj j P Z
´

XL,Z
j´1 ‘ Q̃repair

i

¯

|Tj j P ti1 ` 1, . . . , Mu zZ

(4.10)

and define a helper function m :
Ś

iPrMs Si Ñ rMswith

mps1, s2, . . . , sMq “

i | si is a maintenance phase
(

which computes the set of components currently in maintenance phases. From this we can
derive the transition rate matrix

Q̃repair,L,Zps‚q “

#

XL,Z
M ps‚q |mpsq Y Z| ď L

Q̃ignore,Lps‚q otherwise
(4.11)

The reward vector in this continuous-time process is~s with~sps1, . . . , sMq “
řM

i“1~sipsiq.
We observe that for every choice of exponential distribution parameters, we get a

continuous-time MDP with at most M ` 1 different actions and transition probability
matrices

Pignore,L, Prepair,1,L, . . . , Prepair,M,L

that are generated from the action matrices

Q̄ignore,L, Q̄repair,1,L, . . . , Q̄repair,M,L

by deriving the exponential distribution parameter ~β “ diag
´

´Q̄ignore,L
¯

1 and setting

Paps, s1q “

$

&

%

Q̄aps,s1q
~βpsq

s ‰ s1,

0 s “ s1.

1or any other matrix, as the sojourn times in each state have the same distribution independent of the action

94

4.3. Evaluation

We note that the exact values in Pa are dependent on the choice of the distribution
parameters, and, ultimately, on the rate approximations for the phase-type distributions.
Choosing minimal, maximal, and average rates as aggregates for the PH distributions, we
obtain in total at most 3

řM
i“1 Ni scenarios which we can consider as a concurrent MDP.

Usually, we are interested in a limited number of scenarios in order to simplify decision
making. Here, it seems natural to choose minimal, maximal, and average rates for all
distributions, which results in three scenarios.

Pessimistic scenario Choose the maximal rate for the degradation processes and the mini-
mal rate for the repair and replacement processes

Optimistic scenario Choose the minimal rate for the degradation processes and the maxi-
mal rate for the repair and replacement processes

Average scenario Choose the average rates for all processes

For the stochastic bounded-parameter model, the upper and lower bounds can be
derived as follows. By choosing the maximal and minimal rate bounds as computed by (4.5)
and Algorithm 18, we obtain two Markov decision processes with corresponding transition
probability matrices Pa

max, Pa
min. The lower and upper bound matrices Pa

Ó
, Pa
Ò

can be then
computed element-wise with

Pa
Óps, s1q “ min

!

Pa
maxps, s1q, Pa

minps, s1q
)

,

Pa
Òps, s1q “ max

!

Pa
maxps, s1q, Pa

minps, s1q
)

.

The average scenario described above, derived from the average rate model, serves as the
average case in the stochastic BMDP.

Using the uniformization technique described in subsection 1.5.5, we can translate this
continuous-time model into a discrete-time model with equal distribution over sequences
of states, which allows us to analyse it with the methods discussed in the previous chapter.

4.3 Evaluation

We consider two and three-component models with two and four operational phases in
each component. The goal of this experiment is to observe how well the algorithms perform
in practice and what kind of solutions they generate. For the CMDP model, the topic of
interest is the performance of the compromise policy against the scenario-specific policies
in each scenario. For the BMDP model, the question of interest is the shape and size of the
Pareto frontier.

Model parameters We consider a general model for a varying number of operational
phases and components and one simultaneous maintenance dispatch which is computed
deterministically. The parameters of the model are the number of operational phases N P N

and the number of components M P N. Only one maintenance process can be launched
with an action. Given these numbers, we compute a component with N operational phases
with the following transition rates and rewards and initial distribution vector~q “~e1. To keep
things simple, we consider deterministic transitions after degradation and maintenance.

95

4. A CASE STUDY

M N states actions
2 2 15 3
2 4 55 3
3 2 54 4
3 4 350 4

Table 4.1: State and action space sizes of the generated models

Di,j
o “

¨

˝

´j j 0
0 ´j j
0 0 ´j

˛

‚,~φi,j
o “ p1, 0, 0q

Di,j
r “ 10 ¨Di,j

o ,~φi,j
r “ p1, 0, 0q

Di
f “

¨

˚

˚

˝

´3 2.9 0 0
0 ´1 0.9 0
0 0 ´0.5 0.4
0 0 0 ´1.0

˛

‹

‹

‚

,~φi
f “ p1, 0, 0, 0q

fi,j “
1
j

Ri “

ˆ

0 0
0 I

˙

Hi “

ˆ

0 0
I 0

˙

ro,i,j “ 10´
1
j
, rr,i,j “

ro,i,j

2
, r f ,i “ 0

Experiment setup We generate the composed component model for N P t2, 4u and M P

t2, 3u and transform it into a BMDP and CMDP model as described above. The set of
non-dominated solutions is computed with Algorithm 16. A solution to the concurrent
MDP with three scenarios (fast degradation and slow maintenance, average case and slow
degradation and fast maintenance) with respective weights p0.3, 0.4, 0.3q is generated by
Algorithm 14. It is important to note here that the CMDP and BMDP results are not
necessarily comparable to each other, as the lower bound for the value in a BMDP can be
achieved in our model by not only fast degradation, but also fast maintenance in operational
phases oi,1 that correspond to nearly dysfunctional components. We describe thus results
for the different optimization procedures individually.

Results The models have three and four actions and between 15 and 350 states (cf. Ta-
ble 4.1). On the reference machine with an Intel Xeon E5-2690v2 CPU with 3.0GHz and
126GB RAM, the CMDP algorithms are able to compute the result in under one minute
for all instances, while the BMDP algorithm needs five hours to complete on the largest
instance and under one minute on all other instances.

For BMDPs, a set of three-dimensional result values that correspond to the pessimistic,
average, and optimistic values of the policy in the state s “ po1,N1 , o2,N2 , . . . , oM,NMqwhere
all components are new is computed. Here, we give its projections on two dimensions in
three plots. In the first plot, we show the performance of the policies in the pessimistic
case and the average case. In the second plot, we show the performance of the policies in
the average case and the optimistic case. In the third plot, the projection on the optimistic
and pessimistic cases is shown. As the plots show two-dimensional projections of three-

96

4.3. Evaluation

vpes vavg vopt
545.822 1177.582 1899.990

Table 4.2: Non-dominated solution of the composed component model with 2 components,
2 operational phases each, and one repair worker.

πCompromise πPessimistic πAverage πOptimistic
vpes 569.044 53 569.044 53 564.984 63 499.345 18
vavg 1177.582 47 1143.101 26 1177.582 47 893.532 51
vopt 1899.970 09 1899.970 09 1899.970 08 1899.970 09

Table 4.3: Concurrent MDP evaluation of the composed component model with 2 compo-
nents, 2 operational phases each, and one repair worker.

πCompromise πPessimistic πAverage πOptimistic
vpes 581.289 22 582.674 27 581.289 15 571.317 13
vavg 1354.232 28 1202.471 53 1354.232 27 1145.747 65
vopt 1949.991 21 1949.991 21 1949.991 21 1949.991 21

Table 4.4: Concurrent MDP evaluation of the composed component model with 2 compo-
nents, 4 operational phases each, and one repair worker.

dimensional values, some of the policies might seem dominated in the figures while in
reality, they are non-dominated either in other projections or in states different from the
initial state.

For the model with two components and two operational phases each, only one non-
dominated solution has been generated. The resulting values can be seen in Table 4.2.
The difference in values between this table and Table 4.3 is explained by noting that the
pessimistic scenario in the BMDP model depends on the policy and may differ from the
pessimistic scenario in the concurrent MDP model.

The results can be seen in Figure 4.2–Figure 4.4. The blue dots depict the computed
solutions in value space. Note that as the values are three-dimensional and some of them are
non-dominated in components that correspond to other states than s, some of the computed
policies may seem dominated in the two-dimensional projections.

One can see in these figures that the BMDP problem yields a multitude of non-dominated
solutions with different values. In the case where the relative costs of the best and worst
cases are not known to the user initially, she can in each individual case select a solution
that suits her needs best from the non-dominated set.

For CMDPs, we compare the solution to the concurrent MDP problem to the best
solution in each individual scenario, with the results visible in Table 4.3–Table 4.6. The
rows of the table correspond to the scenarios (pessimistic scenario: fast degrading and slow
maintenance, average scenario: average rates, optimistic scenario: slow degrading and fast
maintenance) and the columns correspond to the computed policies (compromise policy
and the policies optimal for the individual scenarios). The entries of the tables correspond
to the achieved values in the respective scenarios by the corresponding policies. We observe
that the computed compromise policy behaves well in all situations. This means that in
the case where the relative costs of the worst, best and average cases are known and the
scenarios which provide these cases are also known, the solution of the concurrent MDP
formulation can be used in all situations without sacrificing much in comparison to the
optimal solution and surpassing the policy for an “average” scenario.

Summing up, we can say that our approaches are suitable to compute adequate policies
for realistic models.

97

4. A CASE STUDY

πCompromise πPessimistic πAverage πOptimistic
vpes 1984.301 52 1996.445 31 1914.444 55 1649.699 97
vavg 2735.989 54 2403.179 11 2735.989 54 2350.537 65
vopt 3799.700 48 3799.700 48 3799.700 47 3799.700 23

Table 4.5: Concurrent MDP evaluation of the composed component model with 3 compo-
nents, 2 operational phases each, and one repair worker.

πCompromise πPessimistic πAverage πOptimistic
vpes 2819.329 31 2834.989 59 2154.405 26 1825.5998
vavg 2988.009 42 2873.922 78 3039.021 19 2452.738 66
vopt 3898.511 07 3898.511 07 3899.613 43 3899.613 43

Table 4.6: Concurrent MDP evaluation of the composed component model with 3 compo-
nents, 4 operational phases each, and one repair worker.

400 600 800 1000 1200 1400 1600 1800
min

1290

1300

1310

1320

1330

1340

1350

av
g

(a) Minimum and average values.

98

4.3. Evaluation

1290 1300 1310 1320 1330 1340 1350
avg

0.083

0.084

0.085

0.086

0.087

0.088

0.089

0.090

0.091

m
ax

+1.9499e3

(b) Average and maximum values.

400 600 800 1000 1200 1400 1600 1800
min

0.083

0.084

0.085

0.086

0.087

0.088

0.089

0.090

0.091

m
ax

+1.9499e3

(c) Minimum and maximum values.

Figure 4.2: Evaluation of the composed component model with 2 components, 4 operational
phases each, and one repair worker. 99

4. A CASE STUDY

1470 1480 1490 1500 1510 1520 1530 1540
min

2550

2600

2650

2700

av
g

(a) Minimum and average values.

100

4.3. Evaluation

2550 2600 2650 2700
avg

0.0675

0.0700

0.0725

0.0750

0.0775

0.0800

0.0825

0.0850

m
ax

+3.7999e3

(b) Average and maximum values.

1470 1480 1490 1500 1510 1520 1530 1540
min

0.0675

0.0700

0.0725

0.0750

0.0775

0.0800

0.0825

0.0850

m
ax

+3.7999e3

(c) Minimum and maximum values.

Figure 4.3: Evaluation of the composed component model with 3 components, 2 operational
phases each, and one repair worker. 101

4. A CASE STUDY

1500 1600 1700 1800 1900
min

2800

2850

2900

2950

3000

3050

av
g

(a) Minimum and average values.

102

4.3. Evaluation

2800 2850 2900 2950 3000 3050
avg

0.083

0.084

0.085

0.086

0.087

0.088

0.089

0.090

0.091

m
ax

+3.8999e3

(b) Average and maximum values.

1500 1600 1700 1800 1900
min

0.083

0.084

0.085

0.086

0.087

0.088

0.089

0.090

0.091

m
ax

+3.8999e3

(c) Minimum and maximum values.

Figure 4.4: Evaluation of the composed component model with 3 components, 4 operational
phases each, and one repair worker. 103

5

Discussion

Failure is not an option—it is
mandatory. The option is whether or
not to let failure be the last thing you
do.

— Howard Tayler

We briefly overview our results. No scientific work, especially no PhD thesis, is a
monolithic piece of research. A PhD thesis in computer science is in most cases a compilation
of several publications with some further results on top, and this work is no exception; it
also cannot be claimed that this work closes all questions on model uncertainty in Markov
decision processes for good1. To put this in a less philosophical manner, this work extends
previous literature, answers some of newly arisen questions, and motivates further research.
Here, we discuss our results in the previous research context and consider possible future
research directions.

5.1 Conclusions

This work started as an investigation of model uncertainty in MDPs. Basic formalisms which
capture this notion have been considered by Silver [Sil63], Satia and Lave [SL73], White
and El-Deib [WED94], Givan et al. [GLD00], and many others such as [Iye05]. The goal of
this work was to establish theoretical and practical results for the different formalisms of
model uncertainty in MDPs, with an emphasis on the bounded-parameter MDP and the
concurrent MDP models.

Theoretical results In the beginning, we pursued the theoretical implications of uncer-
tainty in Markov decision processes, including the aforementioned models, but also para-
metric formalisms and related questions. This has led to a set of theoretical results which
we have discussed in chapter 2 and which can be summarized as follows. First, bounded-
parameter models (and some other models with convex uncertainty sets) can be reduced
to zero-sum two-player stochastic games with perfect information and vice versa, which
establishes some (albeit already proven) results on stationary policies with zero further cost.
Second, additional extensions of the uncertainty model which allow dependencies in the
transition probabilities across states result in NP-hard decision problems. Generalizing the
result, we can conclude that violation of the Markovian assumption in the model makes
policy optimization a hard task. Moreover, the Markovian assumption is violated when
considering the finite-horizon expected total reward criterion on the bounded-parameter
(BMDP) uncertainty model, which also leads to NP-hardness of policy optimization. Third,

1To quote an acquaintance who put it more laconically: “Remember, a dissertation does not need to be the last
word on the topic, not even your last word.”

105

5. DISCUSSION

multi-scenario optimization problems also turned out be theoretically hard. In detail, hard-
ness of optimization of a single policy for multiple (at least two) MDPs with shared state and
action spaces (stochastic multi-scenario MDP problem) has been shown, as well as hardness
of finding a policy for a BMDP subject to given value vector constraints. Finally, we extend
the bounded-parameter MDP model to capture a prior distribution on the uncertainty set
in order to allow for more multi-objective applications.

Algorithms The hardness results in chapter 2 have motivated us to consider empirical
approaches to uncertain MDP problems, with focus on the expected discounted reward
optimality criterion. In chapter 3, we have picked out two problems from multi-scenario
optimization and have applied methods from algorithm engineering to them. For the
stochastic multi-scenario MDP problem, we have discussed different exact and heuristic
approaches; it turns out that the heuristics are significantly faster in terms of time complexity
and do not sacrifice much of the solution quality.

The second problem in chapter 3 is the Pareto frontier enumeration problem for BMDPs
(and their extension, stochastic BMDPs), if the optimistic, pessimistic and average cases
are considered simultaneously, resulting in a multi-objective problem. For this problem,
we design an algorithm that is theoretically correct as well as an heuristic. Unfortunately,
the theoretically correct algorithm cannot be applied in practice for reasons of prohibitive
complexity, but the evaluation of the heuristic shows, again, promising and practically
usable results.

Applications In chapter 4 we have considered a complex stochastic model of several
components sharing limited maintenance resources. Given the model, we have derived
concurrent and bounded-parameter MDP formulations for the problem of finding an
optimal maintenance schedule. Furthermore, for some instances of this problem, we have
applied the algorithms derived in chapter 3 and showed the numerical results. It turns
out that the BMDP formulation yields a large number of mutually non-dominated policies
from which the user may select the one that suits her best. For the solution of the CMDP
formulation we can say that it behaves well in all given scenarios, in contrast to the scenario-
specific policies.

5.2 Future work

Obvious starting points for future work on uncertain MDPs are different optimality criteria.
For instance, one may ask for optimal policies in the case of hyperbolic discounting or other
aggregated measure of an infinite sequence of rewards. However obvious, these questions
seem to be more of an academic interest to a researcher, as common MDP literature [Kal83,
Put94, Kal16] concerns itself mainly with finite-horizon, expected average and expected
discounted reward criteria.

A question that has been raised while submitting some of the results from chapter 3 by
a reviewer was to consider the formalism of stochastic BMDPs in a different fashion. As
a SBMDP is, ultimately, a set of MDPs MÙ with a prior distribution with some density p,
one can ask for a policy that maximises the reward measure subject to the distribution, that
is, given a reward measure v : MÙ ˆ F Ñ R, maximize

ş

MÙ
vpM, f qppMqdM, where F is a

set of policies. This is, ultimately, a continuous stochastic programming problem, which
boils down to volume optimization. While it is widely assumed that volume optimization
is a computationally hard problem [Kha93], knowledge about the empirical performance of
current approaches would be beneficial. A positive result would encourage a comparison
to the BMDP algorithms presented in chapter 3, a negative result would show that this
approach does not scale to practical problems.

106

5.2. Future work

We note here that our current results already allow one to approximate the solution
of the continuous stochastic optimization problem. A valid solution approach would
be to subdivide the uncertainty set into a finite number of subsets and solve a discrete
stochastic optimization problem for aggregates over these subsets. It is easy to see that
the latter sub-problem is exactly the stochastic multi-scenario problem for MDPs we have
considered in the first part of chapter 3. The quality of this approximation depends largely
on the properties of the probability distribution over the uncertainty set; for a continuous
probability density function the limit of the approximation (with number of subsets of the
uncertainty set going to infinity) is exactly the desired value, but the convergence speed is
not clear and subject to future research.

Furthermore, for the stochastic optimization problem for bounded-parameter MDPs,
where a weighted sum of the lower bound, upper bound, and average value has to be
optimized, the same approach can be used without much change if the MDPs from the
uncertainty set which provide lower and upper bounds are independent of the chosen
policy, that is, if there exist global MDPs MÓ, MÒ P MÙ which minimize resp. maximize the
value function for all policies. For general BMDPs, this problem is open yet we conjecture
that a policy iteration-based approach would still be suitable, at least as a heuristic.

Similar questions, of course, could be asked for other NP-hard problems we have
discussed in chapter 2. Again, empirical performance measurements are an interesting topic
for future work. In particular, we believe that it is possible to devise an efficient algorithm
for the following problem: Given a BMDP and a constraint v on a value function for the
lower or upper bound, optimize the other value function. Formally speaking, the task is to
compute

max
πPPpure,~qJ~vpπq

Ò
ěv

~qJ~vpπq
Ó

and, symmetrically,
max

πPPpure,~qJ~vpπq
Ó
ěv

~qJ~vpπq
Ò

.

We believe that it is possible to solve this problem with a policy iteration-like approach
efficiently [BS17b].

Furthermore, there is always a question of further applicability of established results.
We believe that the empirical results from chapter 3 can be applied to multi-objective MDPs
which are modeled as MDPs with more than one reward component. Existing literature on
that topic concentrates on deterministic MDPs [PW10] and stochastic optimization problems
in this context [RSS`14, RWO14] or, in our view, largely theoretical value iteration-like
approaches [Whi82] and we believe it would be fruitful to transfer our approaches to plain
multi-objective MDP models.

107

A

Concurrent MDP algorithms evaluation

There is no data like more data.

— Robert Mercer

On the following pages, we present the data obtained while evaluating the algorithms
for concurrent Markov decision process optimization.

109

A. CONCURRENT MDP ALGORITHMS EVALUATION

Ta
bl

e
A

.1
:C

M
D

P
al

go
ri

th
m

s
fo

r
γ
“

0.
9

on
st

oc
ha

st
ic

m
od

el
s

Pa
ra

m
et

er
s

C
Po

lic
yO

pt
,A

lg
.1

3
C

Pu
re

Po
lic

yO
pt

,A
lg

.1
4

Q
C

LP
(3

.4
)

M
IP

(3
.9

)
N

LP
(3

.5
),

(3
.8

)
K

n
m

t
σ

t
di

ff
t

σ
t

di
ff

t
σ

t
er

r
di

ff
t

σ
t

di
ff

t
σ

t
di

ff
2

2
2

0.
01

s
0.

00
s

0.
15

%
0.

01
s

0.
00

s
0.

16
%

0.
13

s
0.

18
s

0
0.

01
%

0.
03

s
0.

04
s

0.
16

%
0.

01
s

0.
00

s
0.

13
%

2
2

3
0.

01
s

0.
00

s
0.

10
%

0.
01

s
0.

00
s

0.
13

%
0.

26
s

0.
24

s
0

0.
01

%
0.

03
s

0.
01

s
0.

13
%

0.
01

s
0.

00
s

0.
09

%
2

2
5

0.
01

s
0.

00
s

0.
00

%
0.

01
s

0.
00

s
0.

01
%

0.
53

s
0.

18
s

0
0.

00
%

0.
04

s
0.

02
s

0.
01

%
0.

02
s

0.
00

s
0.

00
%

2
5

2
0.

01
s

0.
00

s
0.

00
%

0.
01

s
0.

00
s

0.
00

%
1.

84
s

1.
09

s
0

0.
00

%
0.

06
s

0.
05

s
0.

00
%

0.
01

s
0.

00
s

0.
00

%
2

5
3

0.
01

s
0.

00
s

0.
02

%
0.

01
s

0.
00

s
0.

02
%

3.
82

s
1.

14
s

0
0.

01
%

0.
11

s
0.

08
s

0.
00

%
0.

02
s

0.
01

s
0.

00
%

2
5

5
0.

01
s

0.
00

s
0.

00
%

0.
01

s
0.

00
s

0.
00

%
7.

49
s

2.
03

s
0

0.
08

%
0.

17
s

0.
10

s
0.

00
%

0.
02

s
0.

01
s

0.
01

%
2

10
2

0.
01

s
0.

00
s

0.
00

%
0.

01
s

0.
00

s
0.

00
%

18
.0

2s
2.

66
s

0
0.

04
%

0.
12

s
0.

08
s

0.
00

%
0.

03
s

0.
05

s
0.

00
%

2
10

3
0.

01
s

0.
00

s
0.

00
%

0.
01

s
0.

00
s

0.
00

%
23

.3
0s

5.
96

s
0

0.
11

%
0.

29
s

0.
10

s
0.

00
%

0.
02

s
0.

00
s

0.
00

%
2

10
5

0.
01

s
0.

00
s

0.
00

%
0.

01
s

0.
00

s
0.

00
%

47
.3

8s
7.

53
s

0
0.

27
%

0.
44

s
0.

08
s

0.
00

%
0.

03
s

0.
01

s
0.

00
%

2
20

2
0.

01
s

0.
00

s
0.

00
%

0.
01

s
0.

00
s

0.
00

%
12

6.
27

s
8.

69
s

0
0.

18
%

0.
42

s
0.

11
s

0.
00

%
0.

05
s

0.
08

s
0.

00
%

2
20

3
0.

01
s

0.
00

s
0.

00
%

0.
01

s
0.

00
s

0.
00

%
17

7.
77

s
31

.8
1s

0
0.

37
%

0.
90

s
0.

53
s

0.
00

%
0.

05
s

0.
05

s
0.

00
%

2
20

5
0.

03
s

0.
00

s
0.

00
%

0.
01

s
0.

00
s

0.
00

%
31

1.
98

s
31

.3
9s

0
0.

80
%

7.
56

s
12

.1
8s

0.
00

%
0.

08
s

0.
11

s
0.

00
%

2
50

2
0.

03
s

0.
00

s
0.

00
%

0.
02

s
0.

00
s

0.
00

%
15

49
.5

7s
78

.0
2s

15
0.

90
%

13
.8

3s
13

.5
7s

0.
00

%
0.

94
s

1.
44

s
0.

00
%

2
50

3
0.

05
s

0.
01

s
0.

00
%

0.
02

s
0.

00
s

0.
00

%
20

42
.4

8s
14

7.
55

s
19

1.
92

%
14

28
.8

9s
20

62
.7

3s
0.

00
%

0.
84

s
2.

03
s

0.
00

%
2

50
5

0.
20

s
0.

02
s

0.
00

%
0.

04
s

0.
01

s
0.

00
%

47
57

.3
1s

28
8.

29
s

19
3.

00
%

44
98

.3
9s

15
00

.0
1s

0.
00

%
0.

72
s

1.
33

s
0.

00
%

2
10

0
2

0.
12

s
0.

01
s

0.
00

%
0.

06
s

0.
01

s
0.

00
%

49
85

.5
4s

N
/A

29
1.

19
%

37
22

.9
5s

21
01

.8
5s

0.
00

%
5.

12
s

11
.2

6s
0.

00
%

2
10

0
3

0.
29

s
0.

03
s

0.
00

%
0.

10
s

0.
02

s
0.

00
%

N
/A

N
/A

30
N

/A
43

30
.5

9s
16

95
.8

2s
0.

00
%

8.
45

s
29

.6
3s

0.
00

%
2

10
0

5
1.

26
s

0.
10

s
0.

00
%

0.
19

s
0.

04
s

0.
00

%
N

/A
N

/A
30

N
/A

48
35

.5
2s

83
2.

06
s

0.
01

%
12

.1
4s

37
.1

6s
0.

00
%

2
20

0
2

1.
06

s
0.

14
s

0.
00

%
0.

42
s

0.
12

s
0.

00
%

N
/A

N
/A

30
N

/A
49

64
.1

5s
22

.5
7s

0.
00

%
65

.9
9s

18
6.

64
s

0.
19

%
2

20
0

3
3.

06
s

0.
30

s
0.

00
%

0.
63

s
0.

24
s

0.
00

%
N

/A
N

/A
30

N
/A

47
63

.1
1s

88
0.

47
s

0.
01

%
19

.7
9s

28
.0

1s
0.

00
%

2
20

0
5

10
.7

8s
0.

56
s

0.
00

%
1.

31
s

0.
34

s
0.

00
%

50
30

.3
4s

N
/A

29
1.

74
%

49
87

.0
8s

1.
65

s
0.

02
%

16
1.

92
s

36
9.

07
s

0.
00

%
2

30
0

2
4.

46
s

0.
55

s
0.

00
%

1.
32

s
0.

55
s

0.
00

%
49

99
.9

5s
2.

88
s

28
0.

76
%

49
65

.7
1s

20
.8

3s
0.

00
%

36
9.

16
s

79
8.

14
s

0.
22

%
2

30
0

3
12

.7
2s

0.
84

s
0.

00
%

2.
61

s
0.

94
s

0.
00

%
50

13
.4

4s
N

/A
29

1.
07

%
48

28
.5

8s
84

2.
55

s
0.

01
%

12
06

.5
3s

13
72

.5
5s

0.
32

%
2

30
0

5
42

.1
5s

2.
23

s
0.

00
%

4.
39

s
1.

89
s

0.
00

%
51

05
.9

8s
25

.3
7s

29
0.

75
%

49
86

.8
3s

1.
61

s
0.

02
%

19
6.

75
s

24
3.

60
s

0.
00

%
3

2
2

0.
01

s
0.

00
s

0.
04

%
0.

01
s

0.
00

s
0.

19
%

0.
24

s
0.

28
s

0
0.

00
%

0.
03

s
0.

05
s

0.
19

%
0.

01
s

0.
00

s
0.

02
%

3
2

3
0.

01
s

0.
00

s
0.

01
%

0.
01

s
0.

00
s

0.
01

%
0.

40
s

0.
28

s
0

0.
01

%
0.

03
s

0.
02

s
0.

01
%

0.
02

s
0.

00
s

0.
00

%
3

2
5

0.
01

s
0.

00
s

0.
00

%
0.

01
s

0.
00

s
0.

00
%

0.
80

s
0.

38
s

0
0.

02
%

0.
05

s
0.

02
s

0.
00

%
0.

02
s

0.
00

s
0.

01
%

3
5

2
0.

01
s

0.
00

s
0.

01
%

0.
01

s
0.

00
s

0.
01

%
3.

57
s

1.
86

s
0

0.
01

%
0.

08
s

0.
05

s
0.

00
%

0.
01

s
0.

00
s

0.
00

%
3

5
3

0.
01

s
0.

00
s

0.
00

%
0.

01
s

0.
00

s
0.

00
%

7.
06

s
0.

87
s

0
0.

01
%

0.
23

s
0.

07
s

0.
00

%
0.

02
s

0.
00

s
0.

00
%

3
5

5
0.

01
s

0.
00

s
0.

00
%

0.
01

s
0.

00
s

0.
00

%
11

.6
6s

3.
04

s
0

0.
23

%
0.

36
s

0.
07

s
0.

00
%

0.
02

s
0.

01
s

0.
01

%
3

10
2

0.
01

s
0.

00
s

0.
00

%
0.

01
s

0.
00

s
0.

00
%

35
.4

4s
2.

77
s

1
0.

04
%

0.
31

s
0.

08
s

0.
00

%
0.

02
s

0.
01

s
0.

00
%

3
10

3
0.

01
s

0.
00

s
0.

00
%

0.
01

s
0.

00
s

0.
00

%
47

.2
8s

7.
36

s
0

0.
17

%
0.

52
s

0.
15

s
0.

00
%

0.
03

s
0.

04
s

0.
00

%
3

10
5

0.
02

s
0.

00
s

0.
00

%
0.

01
s

0.
00

s
0.

01
%

82
.8

7s
14

.4
6s

1
0.

15
%

1.
26

s
0.

87
s

0.
00

%
0.

04
s

0.
04

s
0.

00
%

3
20

2
0.

01
s

0.
00

s
0.

00
%

0.
01

s
0.

00
s

0.
00

%
24

7.
76

s
27

.5
9s

6
0.

43
%

0.
78

s
0.

34
s

0.
00

%
0.

04
s

0.
03

s
0.

00
%

3
20

3
0.

02
s

0.
00

s
0.

00
%

0.
01

s
0.

00
s

0.
00

%
30

0.
79

s
47

.5
8s

3
0.

76
%

7.
55

s
6.

25
s

0.
00

%
0.

07
s

0.
07

s
0.

00
%

3
20

5
0.

07
s

0.
01

s
0.

00
%

0.
01

s
0.

00
s

0.
00

%
45

3.
55

s
66

.3
4s

12
1.

58
%

20
2.

32
s

31
4.

09
s

0.
00

%
0.

13
s

0.
15

s
0.

00
%

3
50

2
0.

04
s

0.
00

s
0.

00
%

0.
03

s
0.

00
s

0.
00

%
37

86
.0

2s
16

4.
11

s
27

1.
67

%
18

95
.6

7s
23

13
.6

9s
0.

00
%

0.
90

s
1.

87
s

0.
00

%

110

K
n

m
t

σ
t

di
ff

t
σ

t
di

ff
t

σ
t

er
r

di
ff

t
σ

t
di

ff
t

σ
t

di
ff

3
50

3
0.

09
s

0.
01

s
0.

00
%

0.
04

s
0.

01
s

0.
00

%
42

82
.3

0s
31

7.
32

s
28

2.
62

%
49

35
.9

5s
27

0.
49

s
0.

00
%

2.
64

s
8.

75
s

0.
00

%
3

50
5

0.
48

s
0.

04
s

0.
00

%
0.

06
s

0.
01

s
0.

00
%

49
87

.5
7s

1.
05

s
25

3.
59

%
49

88
.4

6s
1.

31
s

0.
00

%
4.

38
s

11
.8

1s
0.

00
%

3
10

0
2

0.
19

s
0.

02
s

0.
00

%
0.

10
s

0.
02

s
0.

00
%

N
/A

N
/A

30
N

/A
49

65
.7

0s
21

.0
6s

0.
00

%
7.

74
s

20
.7

0s
0.

02
%

3
10

0
3

0.
51

s
0.

05
s

0.
00

%
0.

16
s

0.
02

s
0.

00
%

N
/A

N
/A

30
N

/A
49

84
.4

3s
4.

53
s

0.
01

%
5.

74
s

9.
13

s
0.

00
%

3
10

0
5

2.
37

s
0.

21
s

0.
00

%
0.

28
s

0.
05

s
0.

00
%

N
/A

N
/A

30
N

/A
49

87
.5

7s
1.

27
s

0.
03

%
28

.1
5s

74
.3

0s
0.

00
%

3
20

0
2

1.
67

s
0.

18
s

0.
00

%
0.

76
s

0.
18

s
0.

00
%

49
65

.2
4s

16
.1

9s
28

50
.3

1%
49

66
.3

9s
20

.1
8s

0.
00

%
23

0.
30

s
42

2.
91

s
0.

28
%

3
20

0
3

4.
70

s
0.

46
s

0.
00

%
1.

09
s

0.
33

s
0.

00
%

50
09

.9
1s

3.
82

s
28

99
.9

0%
49

82
.7

8s
4.

44
s

0.
06

%
12

6.
32

s
31

6.
00

s
0.

00
%

3
20

0
5

17
.1

1s
0.

91
s

0.
00

%
1.

99
s

0.
49

s
0.

00
%

N
/A

N
/A

30
N

/A
49

87
.4

8s
1.

73
s

0.
16

%
24

9.
27

s
45

2.
84

s
0.

00
%

3
30

0
2

6.
98

s
0.

73
s

0.
00

%
2.

67
s

0.
75

s
0.

00
%

N
/A

N
/A

30
N

/A
49

66
.6

2s
20

.0
3s

0.
00

%
58

8.
26

s
12

18
.5

4s
0.

18
%

3
30

0
3

19
.9

6s
1.

21
s

0.
00

%
4.

55
s

1.
33

s
0.

00
%

N
/A

N
/A

30
N

/A
49

83
.4

6s
4.

18
s

0.
06

%
17

00
.0

3s
20

21
.0

5s
0.

28
%

3
30

0
5

66
.0

8s
3.

00
s

1.
57

%
7.

91
s

2.
32

s
1.

57
%

50
22

.8
9s

87
.0

7s
29

0.
00

%
49

84
.2

4s
4.

21
s

1.
73

%
71

1.
06

s
12

76
.5

5s
1.

57
%

5
2

2
0.

01
s

0.
00

s
0.

02
%

0.
01

s
0.

00
s

0.
06

%
0.

46
s

0.
47

s
0

0.
00

%
0.

03
s

0.
02

s
0.

06
%

0.
01

s
0.

00
s

0.
01

%
5

2
3

0.
01

s
0.

00
s

0.
02

%
0.

01
s

0.
00

s
0.

01
%

0.
89

s
0.

58
s

0
0.

01
%

0.
03

s
0.

02
s

0.
01

%
0.

01
s

0.
00

s
0.

00
%

5
2

5
0.

01
s

0.
00

s
0.

01
%

0.
01

s
0.

00
s

0.
04

%
1.

58
s

0.
77

s
0

0.
00

%
0.

07
s

0.
05

s
0.

04
%

0.
02

s
0.

00
s

0.
00

%
5

5
2

0.
01

s
0.

00
s

0.
01

%
0.

01
s

0.
00

s
0.

01
%

9.
92

s
4.

36
s

0
0.

20
%

0.
17

s
0.

05
s

0.
01

%
0.

02
s

0.
01

s
0.

01
%

5
5

3
0.

01
s

0.
00

s
0.

01
%

0.
01

s
0.

00
s

0.
01

%
18

.0
2s

2.
33

s
0

0.
05

%
0.

36
s

0.
05

s
0.

01
%

0.
02

s
0.

01
s

0.
00

%
5

5
5

0.
02

s
0.

00
s

0.
01

%
0.

01
s

0.
00

s
0.

03
%

24
.6

0s
6.

00
s

0
0.

37
%

0.
54

s
0.

08
s

0.
01

%
0.

02
s

0.
01

s
0.

01
%

5
10

2
0.

01
s

0.
00

s
0.

01
%

0.
01

s
0.

00
s

0.
01

%
94

.2
4s

8.
17

s
2

0.
13

%
0.

40
s

0.
07

s
0.

01
%

0.
05

s
0.

06
s

0.
01

%
5

10
3

0.
01

s
0.

00
s

0.
00

%
0.

01
s

0.
00

s
0.

00
%

11
3.

01
s

19
.2

2s
6

0.
51

%
0.

89
s

0.
32

s
0.

00
%

0.
05

s
0.

09
s

0.
00

%
5

10
5

0.
05

s
0.

01
s

0.
00

%
0.

01
s

0.
00

s
0.

00
%

16
6.

78
s

32
.4

3s
3

0.
51

%
8.

02
s

5.
49

s
0.

00
%

0.
04

s
0.

03
s

0.
00

%
5

20
2

0.
01

s
0.

00
s

0.
00

%
0.

01
s

0.
00

s
0.

00
%

68
8.

23
s

14
8.

87
s

21
1.

07
%

3.
02

s
1.

63
s

0.
00

%
0.

07
s

0.
06

s
0.

00
%

5
20

3
0.

03
s

0.
00

s
0.

00
%

0.
01

s
0.

00
s

0.
00

%
73

5.
80

s
48

.3
2s

17
1.

48
%

64
.4

6s
72

.2
5s

0.
00

%
0.

17
s

0.
19

s
0.

00
%

5
20

5
0.

16
s

0.
01

s
0.

00
%

0.
02

s
0.

00
s

0.
00

%
98

9.
43

s
81

.1
6s

22
2.

62
%

42
09

.9
0s

14
99

.1
6s

0.
00

%
0.

37
s

0.
92

s
0.

00
%

5
50

2
0.

06
s

0.
01

s
0.

00
%

0.
04

s
0.

01
s

0.
00

%
N

/A
N

/A
30

N
/A

47
03

.4
8s

10
31

.8
9s

0.
00

%
5.

51
s

15
.5

4s
0.

00
%

5
50

3
0.

16
s

0.
02

s
0.

00
%

0.
06

s
0.

01
s

0.
00

%
N

/A
N

/A
30

N
/A

49
84

.5
2s

4.
39

s
0.

00
%

1.
10

s
1.

08
s

0.
00

%
5

50
5

0.
89

s
0.

07
s

0.
00

%
0.

09
s

0.
01

s
0.

00
%

N
/A

N
/A

30
N

/A
49

87
.8

2s
1.

46
s

0.
01

%
8.

12
s

19
.7

1s
0.

00
%

5
10

0
2

0.
33

s
0.

03
s

0.
00

%
0.

17
s

0.
02

s
0.

00
%

49
89

.0
3s

N
/A

29
0.

79
%

49
65

.2
7s

22
.1

8s
0.

01
%

8.
77

s
17

.4
6s

0.
02

%
5

10
0

3
0.

95
s

0.
08

s
0.

00
%

0.
27

s
0.

04
s

0.
00

%
49

91
.0

8s
5.

48
s

28
1.

15
%

49
84

.1
0s

4.
14

s
0.

03
%

11
.9

3s
12

.9
8s

0.
00

%
5

10
0

5
4.

30
s

0.
33

s
0.

00
%

0.
55

s
0.

09
s

0.
00

%
49

90
.0

6s
2.

93
s

28
1.

55
%

49
87

.3
9s

1.
62

s
0.

13
%

41
.8

0s
88

.6
4s

0.
00

%
5

20
0

2
2.

81
s

0.
32

s
0.

00
%

1.
25

s
0.

30
s

0.
00

%
N

/A
N

/A
30

N
/A

49
67

.7
7s

19
.8

1s
0.

00
%

31
0.

89
s

62
6.

46
s

0.
21

%
5

20
0

3
8.

31
s

0.
83

s
0.

00
%

2.
14

s
0.

48
s

0.
00

%
N

/A
N

/A
30

N
/A

49
83

.5
5s

4.
02

s
0.

10
%

50
0.

51
s

88
2.

03
s

0.
16

%
5

20
0

5
30

.0
6s

1.
26

s
0.

00
%

4.
00

s
0.

80
s

0.
00

%
N

/A
N

/A
30

N
/A

49
89

.2
0s

3.
27

s
0.

25
%

69
3.

50
s

11
88

.7
3s

0.
00

%
5

30
0

2
12

.0
3s

1.
34

s
0.

00
%

4.
78

s
1.

22
s

0.
00

%
N

/A
N

/A
30

N
/A

49
70

.9
8s

17
.9

8s
0.

00
%

75
4.

66
s

17
00

.5
4s

0.
13

%
5

30
0

3
34

.6
6s

1.
99

s
0.

00
%

8.
71

s
1.

92
s

0.
00

%
50

00
.4

9s
15

.8
1s

30
N

/A
49

83
.0

3s
4.

58
s

0.
10

%
23

78
.4

1s
24

99
.4

0s
0.

25
%

5
30

0
5

11
7.

77
s

4.
50

s
0.

00
%

16
.2

8s
3.

51
s

0.
00

%
49

90
.1

2s
3.

73
s

30
N

/A
49

89
.1

4s
0.

99
s

0.
29

%
18

89
.3

3s
21

65
.5

8s
0.

24
%

111

A. CONCURRENT MDP ALGORITHMS EVALUATION

Ta
bl

e
A

.2
:C

M
D

P
al

go
ri

th
m

s
fo

r
γ
“

0.
9

on
de

te
rm

in
is

ti
c

m
od

el
s

Pa
ra

m
et

er
s

C
Po

lic
yO

pt
,A

lg
.1

3
C

Pu
re

Po
lic

yO
pt

,A
lg

.1
4

Q
C

LP
(3

.4
)

M
IP

(3
.9

)
N

LP
(3

.5
),

(3
.8

)
K

n
m

t
σ

t
di

ff
t

σ
t

di
ff

t
σ

t
er

r
di

ff
t

σ
t

di
ff

t
σ

t
di

ff
2

2
2

0.
01

s
0.

00
s

0.
14

%
0.

01
s

0.
00

s
0.

26
%

0.
10

s
0.

16
s

0
0.

19
%

0.
02

s
0.

01
s

0.
26

%
0.

01
s

0.
00

s
0.

13
%

2
2

3
0.

01
s

0.
00

s
0.

19
%

0.
01

s
0.

00
s

1.
32

%
0.

12
s

0.
16

s
0

0.
00

%
0.

02
s

0.
01

s
1.

32
%

0.
01

s
0.

01
s

0.
03

%
2

2
5

0.
01

s
0.

00
s

0.
09

%
0.

01
s

0.
00

s
0.

15
%

0.
41

s
0.

24
s

0
0.

00
%

0.
03

s
0.

02
s

0.
15

%
0.

02
s

0.
01

s
0.

07
%

2
5

2
0.

01
s

0.
00

s
0.

93
%

0.
01

s
0.

00
s

0.
96

%
1.

21
s

0.
81

s
0

0.
11

%
0.

03
s

0.
03

s
0.

77
%

0.
02

s
0.

00
s

0.
48

%
2

5
3

0.
01

s
0.

00
s

0.
27

%
0.

01
s

0.
00

s
1.

07
%

3.
11

s
1.

43
s

0
0.

09
%

0.
06

s
0.

06
s

0.
40

%
0.

02
s

0.
01

s
0.

08
%

2
5

5
0.

01
s

0.
00

s
0.

46
%

0.
01

s
0.

00
s

1.
06

%
6.

99
s

1.
53

s
0

0.
59

%
0.

13
s

0.
07

s
0.

53
%

0.
03

s
0.

01
s

0.
37

%
2

10
2

0.
01

s
0.

00
s

0.
21

%
0.

01
s

0.
00

s
1.

28
%

18
.3

4s
1.

78
s

0
0.

52
%

0.
08

s
0.

05
s

0.
51

%
0.

02
s

0.
01

s
0.

16
%

2
10

3
0.

01
s

0.
00

s
0.

09
%

0.
01

s
0.

00
s

0.
27

%
25

.9
5s

3.
47

s
0

0.
58

%
0.

24
s

0.
11

s
0.

07
%

0.
03

s
0.

01
s

0.
40

%
2

10
5

0.
01

s
0.

00
s

0.
19

%
0.

01
s

0.
00

s
0.

76
%

44
.5

1s
5.

50
s

0
2.

17
%

0.
31

s
0.

09
s

0.
19

%
0.

06
s

0.
14

s
0.

11
%

2
20

2
0.

01
s

0.
00

s
0.

13
%

0.
01

s
0.

00
s

1.
16

%
12

8.
16

s
9.

53
s

0
1.

35
%

0.
26

s
0.

07
s

0.
10

%
0.

24
s

1.
11

s
0.

37
%

2
20

3
0.

01
s

0.
00

s
0.

29
%

0.
01

s
0.

00
s

0.
72

%
17

7.
28

s
26

.7
0s

0
1.

87
%

0.
43

s
0.

08
s

0.
09

%
0.

04
s

0.
01

s
0.

12
%

2
20

5
0.

03
s

0.
00

s
0.

47
%

0.
01

s
0.

00
s

0.
63

%
28

1.
89

s
19

.6
4s

0
3.

81
%

1.
16

s
0.

68
s

0.
03

%
0.

91
s

2.
78

s
0.

30
%

2
50

2
0.

02
s

0.
00

s
1.

02
%

0.
01

s
0.

00
s

1.
17

%
12

28
.9

7s
27

6.
58

s
17

16
.1

5%
1.

11
s

0.
59

s
0.

03
%

0.
83

s
3.

63
s

0.
30

%
2

50
3

0.
05

s
0.

01
s

0.
39

%
0.

01
s

0.
00

s
0.

70
%

18
38

.6
7s

21
7.

44
s

13
14

.9
0%

20
.1

1s
36

.6
3s

0.
01

%
0.

17
s

0.
10

s
0.

43
%

2
50

5
0.

18
s

0.
02

s
0.

44
%

0.
02

s
0.

01
s

1.
08

%
45

10
.6

4s
38

3.
20

s
12

29
.5

6%
27

04
.1

6s
20

36
.7

0s
0.

01
%

0.
26

s
0.

14
s

0.
70

%
2

10
0

2
0.

12
s

0.
02

s
0.

50
%

0.
05

s
0.

02
s

1.
13

%
49

72
.1

3s
3.

98
s

27
27

.6
1%

41
.8

2s
11

0.
17

s
0.

02
%

3.
78

s
16

.8
1s

0.
39

%
2

10
0

3
0.

35
s

0.
05

s
0.

35
%

0.
09

s
0.

03
s

0.
68

%
49

86
.9

6s
N

/A
29

35
.4

7%
35

51
.6

1s
21

09
.5

9s
0.

00
%

4.
81

s
20

.1
3s

0.
41

%
2

10
0

5
1.

37
s

0.
10

s
0.

52
%

0.
18

s
0.

05
s

0.
41

%
49

91
.0

9s
0.

70
s

27
40

.2
5%

49
82

.8
5s

13
.3

1s
0.

00
%

16
.6

0s
43

.2
2s

0.
41

%
2

20
0

2
1.

45
s

0.
23

s
0.

37
%

0.
53

s
0.

23
s

0.
59

%
N

/A
N

/A
30

N
/A

43
84

.6
9s

15
05

.3
6s

0.
00

%
33

.6
1s

11
0.

80
s

0.
32

%
2

20
0

3
5.

06
s

0.
65

s
0.

47
%

1.
10

s
0.

42
s

0.
78

%
N

/A
N

/A
30

N
/A

49
87

.5
5s

2.
75

s
0.

01
%

82
.2

9s
19

8.
82

s
0.

34
%

2
20

0
5

13
.7

3s
0.

71
s

0.
47

%
1.

81
s

0.
64

s
0.

49
%

N
/A

N
/A

30
N

/A
49

86
.5

4s
1.

82
s

0.
00

%
11

5.
10

s
25

7.
24

s
0.

46
%

2
30

0
2

7.
05

s
0.

83
s

0.
44

%
3.

41
s

2.
16

s
0.

64
%

N
/A

N
/A

30
N

/A
49

61
.2

3s
12

.3
5s

0.
00

%
40

1.
08

s
70

5.
86

s
0.

23
%

2
30

0
3

25
.0

0s
2.

12
s

0.
64

%
5.

61
s

2.
12

s
0.

79
%

N
/A

N
/A

30
N

/A
49

86
.3

6s
3.

36
s

0.
00

%
89

8.
27

s
11

14
.7

8s
0.

25
%

2
30

0
5

57
.9

9s
2.

62
s

0.
51

%
9.

07
s

2.
88

s
0.

41
%

N
/A

N
/A

30
N

/A
48

84
.5

8s
53

8.
21

s
0.

00
%

59
9.

02
s

10
45

.0
3s

0.
34

%
3

2
2

0.
00

s
0.

00
s

0.
34

%
0.

01
s

0.
00

s
0.

80
%

0.
14

s
0.

24
s

0
0.

01
%

0.
02

s
0.

01
s

0.
80

%
0.

02
s

0.
01

s
0.

30
%

3
2

3
0.

01
s

0.
00

s
0.

57
%

0.
01

s
0.

00
s

0.
95

%
0.

26
s

0.
19

s
0

0.
04

%
0.

03
s

0.
02

s
0.

93
%

0.
02

s
0.

01
s

0.
27

%
3

2
5

0.
01

s
0.

00
s

0.
13

%
0.

01
s

0.
00

s
0.

73
%

0.
53

s
0.

22
s

0
0.

04
%

0.
03

s
0.

02
s

0.
73

%
0.

02
s

0.
01

s
0.

01
%

3
5

2
0.

01
s

0.
00

s
0.

55
%

0.
01

s
0.

00
s

1.
50

%
1.

97
s

1.
05

s
0

0.
63

%
0.

05
s

0.
03

s
1.

45
%

0.
02

s
0.

01
s

0.
28

%
3

5
3

0.
01

s
0.

01
s

0.
51

%
0.

01
s

0.
00

s
1.

44
%

6.
08

s
1.

87
s

0
0.

20
%

0.
14

s
0.

10
s

1.
18

%
0.

02
s

0.
01

s
0.

23
%

3
5

5
0.

01
s

0.
01

s
1.

28
%

0.
01

s
0.

00
s

1.
19

%
11

.3
0s

2.
45

s
0

0.
84

%
0.

30
s

0.
10

s
0.

57
%

0.
03

s
0.

01
s

0.
41

%
3

10
2

0.
01

s
0.

00
s

1.
07

%
0.

01
s

0.
00

s
2.

14
%

36
.6

6s
2.

27
s

0
1.

30
%

0.
18

s
0.

07
s

0.
67

%
0.

03
s

0.
01

s
0.

71
%

3
10

3
0.

01
s

0.
00

s
0.

67
%

0.
01

s
0.

00
s

2.
59

%
46

.8
2s

7.
90

s
0

2.
00

%
0.

37
s

0.
07

s
0.

39
%

0.
03

s
0.

01
s

0.
69

%
3

10
5

0.
02

s
0.

01
s

1.
28

%
0.

01
s

0.
00

s
1.

79
%

75
.9

7s
9.

70
s

0
2.

97
%

0.
56

s
0.

15
s

0.
04

%
0.

04
s

0.
01

s
1.

10
%

3
20

2
0.

01
s

0.
00

s
0.

76
%

0.
01

s
0.

00
s

1.
45

%
24

7.
40

s
39

.8
7s

1
3.

25
%

0.
39

s
0.

10
s

0.
12

%
0.

03
s

0.
01

s
0.

35
%

3
20

3
0.

02
s

0.
00

s
1.

35
%

0.
01

s
0.

00
s

1.
58

%
30

9.
74

s
65

.6
8s

2
6.

07
%

1.
05

s
0.

54
s

0.
12

%
0.

05
s

0.
02

s
0.

69
%

3
20

5
0.

06
s

0.
01

s
1.

05
%

0.
01

s
0.

00
s

1.
16

%
48

4.
39

s
75

.5
7s

2
9.

11
%

13
.7

0s
23

.5
3s

0.
08

%
0.

40
s

1.
82

s
0.

67
%

3
50

2
0.

03
s

0.
01

s
0.

96
%

0.
01

s
0.

01
s

1.
71

%
26

48
.9

8s
90

8.
89

s
26

29
.9

2%
20

.1
7s

25
.1

3s
0.

05
%

0.
17

s
0.

10
s

0.
46

%

112

K
n

m
t

σ
t

di
ff

t
σ

t
di

ff
t

σ
t

er
r

di
ff

t
σ

t
di

ff
t

σ
t

di
ff

3
50

3
0.

08
s

0.
01

s
1.

17
%

0.
02

s
0.

00
s

1.
12

%
35

90
.4

0s
48

3.
84

s
25

32
.7

7%
17

57
.3

5s
19

28
.3

8s
0.

01
%

1.
34

s
5.

88
s

0.
52

%
3

50
5

0.
42

s
0.

02
s

0.
98

%
0.

04
s

0.
01

s
1.

06
%

49
86

.7
1s

0.
99

s
24

38
.6

4%
49

05
.6

1s
45

3.
92

s
0.

02
%

1.
37

s
5.

46
s

0.
88

%
3

10
0

2
0.

19
s

0.
03

s
0.

58
%

0.
09

s
0.

03
s

1.
28

%
N

/A
N

/A
30

N
/A

44
66

.8
6s

12
44

.7
2s

0.
01

%
1.

46
s

1.
68

s
0.

50
%

3
10

0
3

0.
65

s
0.

10
s

1.
20

%
0.

16
s

0.
05

s
1.

44
%

N
/A

N
/A

30
N

/A
49

85
.9

2s
3.

58
s

0.
01

%
7.

37
s

29
.0

1s
0.

77
%

3
10

0
5

2.
52

s
0.

22
s

0.
72

%
0.

29
s

0.
10

s
1.

01
%

N
/A

N
/A

30
N

/A
49

88
.3

6s
2.

59
s

0.
01

%
17

.9
1s

47
.8

1s
0.

90
%

3
20

0
2

2.
33

s
0.

32
s

0.
79

%
1.

37
s

0.
39

s
0.

97
%

N
/A

N
/A

30
N

/A
49

57
.3

8s
14

.4
1s

0.
00

%
54

.0
0s

17
5.

51
s

0.
40

%
3

20
0

3
8.

48
s

0.
84

s
1.

20
%

2.
32

s
0.

63
s

1.
24

%
N

/A
N

/A
30

N
/A

49
86

.4
0s

3.
24

s
0.

01
%

14
1.

53
s

33
4.

81
s

0.
83

%
3

20
0

5
22

.1
7s

1.
15

s
0.

76
%

3.
78

s
0.

91
s

0.
99

%
N

/A
N

/A
30

N
/A

49
85

.3
5s

1.
94

s
0.

00
%

37
1.

15
s

59
4.

26
s

0.
65

%
3

30
0

2
11

.7
8s

1.
17

s
0.

87
%

6.
38

s
2.

17
s

0.
87

%
N

/A
N

/A
30

N
/A

49
64

.2
7s

11
.9

1s
0.

01
%

42
3.

54
s

76
7.

27
s

0.
57

%
3

30
0

3
39

.3
8s

2.
77

s
0.

85
%

10
.9

3s
2.

13
s

1.
24

%
N

/A
N

/A
30

N
/A

49
85

.9
2s

3.
34

s
0.

03
%

10
53

.0
2s

15
31

.6
7s

0.
53

%
3

30
0

5
95

.0
3s

4.
86

s
0.

88
%

20
.1

6s
4.

65
s

0.
96

%
N

/A
N

/A
30

N
/A

49
81

.7
8s

2.
41

s
0.

00
%

13
20

.1
1s

17
87

.2
5s

0.
67

%
5

2
2

0.
01

s
0.

00
s

0.
05

%
0.

01
s

0.
00

s
0.

72
%

0.
42

s
0.

32
s

0
0.

06
%

0.
03

s
0.

03
s

0.
52

%
0.

01
s

0.
00

s
0.

04
%

5
2

3
0.

01
s

0.
00

s
0.

05
%

0.
01

s
0.

00
s

1.
10

%
0.

56
s

0.
33

s
0

0.
05

%
0.

03
s

0.
02

s
1.

10
%

0.
02

s
0.

00
s

0.
04

%
5

2
5

0.
01

s
0.

00
s

0.
01

%
0.

01
s

0.
00

s
0.

87
%

1.
25

s
0.

66
s

0
0.

35
%

0.
07

s
0.

06
s

0.
87

%
0.

02
s

0.
01

s
0.

30
%

5
5

2
0.

01
s

0.
00

s
0.

16
%

0.
01

s
0.

00
s

1.
64

%
8.

26
s

3.
41

s
0

1.
25

%
0.

09
s

0.
05

s
1.

01
%

0.
02

s
0.

00
s

0.
19

%
5

5
3

0.
01

s
0.

00
s

0.
78

%
0.

01
s

0.
00

s
2.

95
%

15
.9

6s
4.

59
s

0
0.

85
%

0.
28

s
0.

08
s

1.
64

%
0.

03
s

0.
01

s
0.

69
%

5
5

5
0.

03
s

0.
01

s
0.

90
%

0.
01

s
0.

00
s

2.
78

%
25

.1
5s

2.
09

s
0

0.
93

%
0.

47
s

0.
08

s
0.

85
%

0.
03

s
0.

01
s

0.
48

%
5

10
2

0.
01

s
0.

00
s

0.
89

%
0.

01
s

0.
00

s
2.

48
%

94
.8

2s
15

.4
0s

3
2.

12
%

0.
30

s
0.

09
s

1.
07

%
0.

03
s

0.
01

s
0.

54
%

5
10

3
0.

02
s

0.
01

s
0.

58
%

0.
01

s
0.

00
s

4.
22

%
11

8.
39

s
18

.8
7s

0
5.

79
%

0.
59

s
0.

14
s

0.
84

%
0.

04
s

0.
01

s
0.

87
%

5
10

5
0.

06
s

0.
01

s
0.

97
%

0.
01

s
0.

00
s

2.
17

%
16

5.
02

s
32

.1
8s

2
6.

29
%

2.
85

s
1.

38
s

0.
50

%
0.

05
s

0.
02

s
1.

28
%

5
20

2
0.

01
s

0.
01

s
1.

25
%

0.
01

s
0.

00
s

2.
52

%
56

5.
03

s
12

0.
32

s
19

6.
05

%
0.

80
s

0.
31

s
0.

27
%

0.
05

s
0.

02
s

0.
59

%
5

20
3

0.
04

s
0.

01
s

1.
00

%
0.

01
s

0.
00

s
2.

56
%

76
9.

73
s

10
6.

37
s

20
11

.7
5%

13
.1

9s
13

.7
5s

0.
19

%
0.

07
s

0.
01

s
0.

74
%

5
20

5
0.

18
s

0.
03

s
1.

72
%

0.
01

s
0.

00
s

2.
33

%
11

10
.3

0s
86

.8
6s

17
15

.2
4%

48
0.

61
s

62
5.

97
s

0.
04

%
0.

11
s

0.
05

s
0.

82
%

5
50

2
0.

06
s

0.
02

s
1.

22
%

0.
02

s
0.

01
s

2.
64

%
N

/A
N

/A
30

N
/A

67
9.

38
s

81
7.

30
s

0.
01

%
0.

25
s

0.
11

s
0.

87
%

5
50

3
0.

20
s

0.
03

s
1.

43
%

0.
03

s
0.

01
s

2.
11

%
49

85
.4

0s
N

/A
29

29
.3

8%
49

85
.9

3s
4.

40
s

0.
01

%
0.

31
s

0.
08

s
1.

39
%

5
50

5
1.

10
s

0.
10

s
1.

86
%

0.
06

s
0.

01
s

1.
89

%
N

/A
N

/A
30

N
/A

49
86

.7
3s

0.
85

s
0.

06
%

1.
07

s
2.

41
s

1.
55

%
5

10
0

2
0.

35
s

0.
05

s
1.

02
%

0.
15

s
0.

05
s

1.
57

%
N

/A
N

/A
30

N
/A

49
23

.3
4s

94
.5

2s
0.

02
%

2.
93

s
4.

08
s

0.
71

%
5

10
0

3
1.

30
s

0.
14

s
1.

51
%

0.
29

s
0.

08
s

1.
68

%
N

/A
N

/A
30

N
/A

49
84

.4
8s

3.
34

s
0.

02
%

3.
33

s
1.

31
s

1.
21

%
5

10
0

5
5.

53
s

0.
26

s
1.

28
%

0.
58

s
0.

10
s

1.
59

%
N

/A
N

/A
30

N
/A

49
86

.7
4s

1.
34

s
0.

04
%

7.
29

s
6.

46
s

0.
98

%
5

20
0

2
4.

04
s

0.
42

s
1.

16
%

2.
38

s
0.

85
s

1.
39

%
N

/A
N

/A
30

N
/A

49
58

.9
6s

14
.5

6s
0.

02
%

40
.4

3s
28

.9
2s

0.
65

%
5

20
0

3
15

.1
2s

1.
38

s
1.

18
%

4.
30

s
1.

04
s

1.
89

%
N

/A
N

/A
30

N
/A

49
85

.6
7s

2.
95

s
0.

04
%

70
.1

7s
46

.2
8s

0.
77

%
5

20
0

5
41

.7
3s

1.
89

s
1.

12
%

7.
46

s
1.

31
s

1.
41

%
N

/A
N

/A
30

N
/A

49
84

.5
9s

1.
73

s
0.

05
%

18
5.

70
s

22
2.

72
s

0.
98

%
5

30
0

2
20

.0
8s

1.
82

s
0.

94
%

11
.9

6s
2.

91
s

1.
65

%
N

/A
N

/A
30

N
/A

49
58

.0
7s

15
.0

2s
0.

00
%

49
3.

13
s

88
7.

17
s

0.
74

%
5

30
0

3
69

.0
9s

4.
86

s
1.

18
%

22
.2

5s
4.

01
s

1.
59

%
N

/A
N

/A
30

N
/A

49
85

.3
0s

2.
95

s
0.

10
%

17
03

.4
5s

20
32

.9
3s

0.
73

%
5

30
0

5
17

0.
09

s
8.

94
s

1.
08

%
37

.7
1s

6.
28

s
1.

23
%

N
/A

N
/A

30
N

/A
49

86
.5

4s
1.

31
s

0.
02

%
15

79
.8

2s
19

72
.9

0s
0.

73
%

113

A. CONCURRENT MDP ALGORITHMS EVALUATION

Ta
bl

e
A

.3
:C

M
D

P
al

go
ri

th
m

s
fo

r
γ
“

0.
99

9
on

st
oc

ha
st

ic
m

od
el

s

Pa
ra

m
et

er
s

C
Po

lic
yO

pt
,A

lg
.1

3
C

Pu
re

Po
lic

yO
pt

,A
lg

.1
4

Q
C

LP
(3

.4
)

M
IP

(3
.9

)
N

LP
(3

.5
),

(3
.8

)
K

n
m

t
σ

t
di

ff
t

σ
t

di
ff

t
σ

t
er

r
di

ff
t

σ
t

di
ff

t
σ

t
di

ff
2

2
2

0.
01

s
0.

00
s

0.
01

%
0.

01
s

0.
00

s
0.

11
%

0.
19

s
0.

16
s

0
13

.5
6%

0.
02

s
0.

01
s

0.
11

%
0.

01
s

0.
00

s
0.

00
%

2
2

3
0.

01
s

0.
00

s
0.

03
%

0.
01

s
0.

00
s

0.
04

%
0.

43
s

0.
18

s
0

4.
10

%
0.

03
s

0.
01

s
0.

04
%

0.
02

s
0.

00
s

0.
00

%
2

2
5

0.
01

s
0.

00
s

0.
02

%
0.

01
s

0.
00

s
0.

02
%

0.
75

s
0.

21
s

0
7.

60
%

0.
04

s
0.

03
s

0.
02

%
0.

02
s

0.
01

s
0.

01
%

2
5

2
0.

01
s

0.
00

s
0.

00
%

0.
01

s
0.

00
s

0.
00

%
1.

73
s

0.
93

s
0

2.
69

%
0.

04
s

0.
02

s
0.

00
%

0.
02

s
0.

00
s

0.
00

%
2

5
3

0.
01

s
0.

00
s

0.
01

%
0.

01
s

0.
00

s
0.

01
%

3.
08

s
1.

34
s

0
11

.5
5%

0.
10

s
0.

06
s

0.
01

%
0.

02
s

0.
00

s
0.

00
%

2
5

5
0.

01
s

0.
00

s
0.

00
%

0.
01

s
0.

00
s

0.
01

%
7.

08
s

1.
67

s
0

3.
20

%
0.

21
s

0.
09

s
0.

00
%

0.
02

s
0.

01
s

0.
02

%
2

10
2

0.
01

s
0.

00
s

0.
01

%
0.

01
s

0.
00

s
0.

01
%

18
.8

0s
5.

24
s

0
0.

13
%

0.
13

s
0.

09
s

0.
01

%
0.

02
s

0.
00

s
0.

01
%

2
10

3
0.

01
s

0.
00

s
0.

01
%

0.
01

s
0.

00
s

0.
01

%
28

.7
2s

4.
64

s
0

0.
51

%
0.

28
s

0.
10

s
0.

01
%

0.
02

s
0.

01
s

0.
01

%
2

10
5

0.
01

s
0.

00
s

0.
01

%
0.

01
s

0.
00

s
0.

00
%

50
.5

0s
13

.3
8s

0
0.

75
%

0.
44

s
0.

12
s

0.
00

%
0.

02
s

0.
00

s
0.

00
%

2
20

2
0.

01
s

0.
00

s
0.

05
%

0.
01

s
0.

00
s

0.
05

%
14

2.
11

s
40

.9
0s

0
0.

10
%

0.
41

s
0.

09
s

0.
05

%
1.

48
s

7.
99

s
0.

05
%

2
20

3
0.

01
s

0.
00

s
0.

00
%

0.
01

s
0.

00
s

0.
00

%
21

1.
66

s
56

.5
4s

3
0.

22
%

1.
10

s
1.

33
s

0.
00

%
0.

03
s

0.
00

s
0.

00
%

2
20

5
0.

03
s

0.
00

s
0.

00
%

0.
01

s
0.

00
s

0.
00

%
40

3.
56

s
72

.5
5s

0
0.

21
%

9.
08

s
9.

00
s

0.
00

%
0.

04
s

0.
01

s
0.

00
%

2
50

2
0.

03
s

0.
00

s
0.

03
%

0.
02

s
0.

00
s

0.
03

%
17

68
.3

3s
32

1.
01

s
23

0.
14

%
11

.2
6s

14
.9

3s
0.

03
%

0.
09

s
0.

11
s

0.
03

%
2

50
3

0.
05

s
0.

01
s

0.
03

%
0.

03
s

0.
01

s
0.

03
%

35
83

.9
4s

52
0.

03
s

22
0.

06
%

15
09

.4
7s

19
79

.0
4s

0.
03

%
0.

11
s

0.
10

s
0.

03
%

2
50

5
0.

21
s

0.
01

s
0.

00
%

0.
04

s
0.

01
s

0.
00

%
49

08
.5

0s
22

1.
20

s
22

0.
51

%
38

89
.1

1s
19

62
.8

6s
0.

00
%

0.
15

s
0.

09
s

0.
00

%
2

10
0

2
0.

13
s

0.
01

s
0.

02
%

0.
07

s
0.

01
s

0.
02

%
49

88
.8

1s
1.

36
s

23
0.

53
%

41
59

.9
8s

18
22

.1
5s

0.
03

%
0.

64
s

1.
51

s
0.

02
%

2
10

0
3

0.
31

s
0.

03
s

0.
00

%
0.

10
s

0.
02

s
0.

00
%

49
86

.2
5s

3.
93

s
24

0.
65

%
45

13
.0

3s
14

53
.3

9s
0.

00
%

0.
70

s
0.

78
s

0.
00

%
2

10
0

5
1.

20
s

0.
08

s
0.

00
%

0.
18

s
0.

05
s

0.
00

%
49

86
.2

8s
3.

91
s

28
2.

90
%

48
45

.0
1s

78
3.

31
s

0.
01

%
1.

24
s

1.
38

s
0.

00
%

2
20

0
2

1.
28

s
0.

17
s

0.
00

%
0.

41
s

0.
13

s
0.

00
%

49
95

.8
2s

4.
71

s
26

1.
04

%
45

99
.4

0s
12

10
.5

8s
0.

00
%

2.
99

s
4.

33
s

0.
00

%
2

20
0

3
3.

26
s

0.
29

s
0.

00
%

0.
70

s
0.

28
s

0.
00

%
50

01
.2

1s
12

.1
3s

22
1.

64
%

46
62

.9
2s

12
33

.6
5s

0.
01

%
5.

34
s

5.
96

s
0.

00
%

2
20

0
5

9.
65

s
0.

43
s

0.
00

%
1.

18
s

0.
48

s
0.

00
%

50
38

.4
5s

35
.3

4s
26

2.
11

%
48

27
.5

1s
87

3.
36

s
0.

02
%

6.
75

s
6.

87
s

0.
00

%
2

30
0

2
5.

47
s

0.
63

s
0.

00
%

1.
38

s
0.

57
s

0.
00

%
50

21
.0

9s
20

.3
6s

20
0.

91
%

46
66

.6
0s

11
98

.9
8s

0.
00

%
9.

81
s

11
.2

5s
0.

00
%

2
30

0
3

13
.8

9s
1.

20
s

0.
00

%
2.

65
s

1.
12

s
0.

00
%

50
63

.9
6s

37
.9

2s
25

1.
20

%
49

85
.6

5s
1.

30
s

0.
01

%
14

.3
6s

16
.4

6s
0.

00
%

2
30

0
5

38
.5

1s
2.

07
s

0.
00

%
4.

14
s

1.
98

s
0.

00
%

50
40

.0
3s

37
.8

9s
20

9.
20

%
49

82
.8

3s
5.

59
s

0.
03

%
28

.3
2s

36
.8

4s
0.

00
%

3
2

2
0.

01
s

0.
00

s
0.

00
%

0.
01

s
0.

00
s

0.
01

%
0.

32
s

0.
22

s
0

18
.5

3%
0.

03
s

0.
04

s
0.

01
%

0.
01

s
0.

00
s

0.
00

%
3

2
3

0.
01

s
0.

00
s

0.
00

%
0.

01
s

0.
00

s
0.

02
%

0.
56

s
0.

30
s

0
14

.2
6%

0.
03

s
0.

02
s

0.
02

%
0.

02
s

0.
00

s
0.

00
%

3
2

5
0.

01
s

0.
00

s
0.

00
%

0.
01

s
0.

00
s

0.
05

%
1.

17
s

0.
30

s
0

4.
40

%
0.

05
s

0.
03

s
0.

05
%

0.
02

s
0.

01
s

0.
25

%
3

5
2

0.
01

s
0.

00
s

0.
00

%
0.

01
s

0.
00

s
0.

00
%

3.
50

s
2.

00
s

0
2.

26
%

0.
08

s
0.

04
s

0.
00

%
0.

02
s

0.
00

s
0.

00
%

3
5

3
0.

01
s

0.
00

s
0.

00
%

0.
01

s
0.

00
s

0.
00

%
6.

75
s

1.
90

s
0

0.
61

%
0.

20
s

0.
07

s
0.

00
%

0.
02

s
0.

00
s

0.
00

%
3

5
5

0.
01

s
0.

00
s

0.
03

%
0.

01
s

0.
00

s
0.

05
%

11
.0

6s
3.

07
s

0
2.

34
%

0.
34

s
0.

07
s

0.
01

%
0.

02
s

0.
01

s
0.

02
%

3
10

2
0.

01
s

0.
00

s
0.

02
%

0.
01

s
0.

00
s

0.
02

%
39

.6
0s

10
.5

1s
2

0.
15

%
0.

28
s

0.
07

s
0.

02
%

0.
02

s
0.

00
s

0.
02

%
3

10
3

0.
01

s
0.

00
s

0.
00

%
0.

01
s

0.
00

s
0.

00
%

58
.5

5s
12

.8
5s

1
0.

19
%

0.
43

s
0.

07
s

0.
00

%
0.

02
s

0.
00

s
0.

00
%

3
10

5
0.

02
s

0.
00

s
0.

01
%

0.
01

s
0.

00
s

0.
01

%
95

.1
3s

15
.0

3s
5

0.
20

%
1.

33
s

1.
20

s
0.

00
%

0.
03

s
0.

01
s

0.
01

%
3

20
2

0.
01

s
0.

00
s

0.
00

%
0.

01
s

0.
00

s
0.

00
%

29
0.

71
s

58
.6

6s
9

0.
14

%
0.

71
s

0.
25

s
0.

00
%

0.
02

s
0.

01
s

0.
00

%
3

20
3

0.
02

s
0.

00
s

0.
00

%
0.

01
s

0.
00

s
0.

00
%

38
2.

45
s

99
.4

9s
9

0.
27

%
6.

85
s

6.
44

s
0.

00
%

0.
03

s
0.

01
s

0.
00

%
3

20
5

0.
07

s
0.

01
s

0.
00

%
0.

02
s

0.
00

s
0.

00
%

65
5.

95
s

18
0.

59
s

14
0.

21
%

28
6.

39
s

43
1.

43
s

0.
00

%
0.

04
s

0.
01

s
0.

00
%

3
50

2
0.

04
s

0.
01

s
0.

04
%

0.
02

s
0.

00
s

0.
04

%
39

04
.6

1s
30

3.
57

s
26

0.
01

%
12

81
.2

8s
18

46
.0

0s
0.

04
%

0.
08

s
0.

02
s

0.
04

%

114

K
n

m
t

σ
t

di
ff

t
σ

t
di

ff
t

σ
t

er
r

di
ff

t
σ

t
di

ff
t

σ
t

di
ff

3
50

3
0.

10
s

0.
01

s
0.

00
%

0.
03

s
0.

01
s

0.
00

%
49

88
.7

9s
1.

20
s

26
0.

32
%

44
33

.8
2s

15
01

.2
5s

0.
00

%
0.

12
s

0.
03

s
0.

00
%

3
50

5
0.

49
s

0.
04

s
0.

00
%

0.
06

s
0.

01
s

0.
00

%
49

86
.9

1s
4.

19
s

23
0.

46
%

49
88

.9
6s

0.
74

s
0.

00
%

0.
23

s
0.

26
s

0.
00

%
3

10
0

2
0.

21
s

0.
02

s
0.

00
%

0.
10

s
0.

01
s

0.
00

%
N

/A
N

/A
30

N
/A

48
53

.4
0s

70
9.

60
s

0.
00

%
0.

71
s

0.
93

s
0.

00
%

3
10

0
3

0.
58

s
0.

05
s

0.
00

%
0.

16
s

0.
03

s
0.

00
%

49
95

.7
3s

N
/A

29
1.

21
%

49
88

.1
0s

0.
98

s
0.

00
%

0.
99

s
1.

03
s

0.
00

%
3

10
0

5
2.

47
s

0.
14

s
0.

00
%

0.
31

s
0.

04
s

0.
00

%
N

/A
N

/A
30

N
/A

49
87

.6
1s

1.
06

s
0.

04
%

2.
11

s
1.

79
s

0.
00

%
3

20
0

2
1.

99
s

0.
25

s
0.

00
%

0.
70

s
0.

16
s

0.
00

%
50

12
.9

2s
N

/A
29

0.
83

%
49

82
.4

7s
3.

56
s

0.
00

%
9.

21
s

17
.6

0s
0.

00
%

3
20

0
3

5.
11

s
0.

43
s

0.
00

%
1.

16
s

0.
28

s
0.

00
%

50
10

.2
8s

20
.0

5s
27

1.
26

%
49

87
.6

8s
0.

90
s

0.
06

%
7.

00
s

7.
71

s
0.

00
%

3
20

0
5

17
.1

1s
0.

68
s

0.
00

%
2.

09
s

0.
60

s
0.

00
%

50
71

.7
7s

5.
09

s
28

1.
74

%
49

86
.9

2s
3.

14
s

0.
12

%
79

.4
1s

29
8.

69
s

0.
00

%
3

30
0

2
8.

52
s

0.
76

s
0.

01
%

2.
72

s
0.

78
s

0.
01

%
50

34
.5

9s
35

.2
3s

23
0.

60
%

49
81

.2
2s

3.
70

s
0.

01
%

60
.3

7s
99

.7
3s

0.
01

%
3

30
0

3
22

.5
6s

2.
00

s
0.

40
%

4.
63

s
1.

29
s

0.
40

%
50

89
.2

8s
80

.8
4s

25
0.

88
%

49
87

.6
2s

0.
94

s
0.

44
%

23
.4

9s
24

.2
3s

0.
40

%
3

30
0

5
63

.7
7s

2.
82

s
0.

00
%

9.
40

s
2.

78
s

0.
00

%
50

42
.4

6s
93

.0
5s

18
26

.1
6%

49
80

.5
4s

6.
59

s
0.

26
%

64
.3

2s
77

.0
7s

0.
00

%
5

2
2

0.
01

s
0.

00
s

0.
00

%
0.

01
s

0.
00

s
0.

06
%

0.
50

s
0.

28
s

0
10

.5
6%

0.
03

s
0.

02
s

0.
06

%
0.

01
s

0.
00

s
0.

00
%

5
2

3
0.

01
s

0.
00

s
0.

00
%

0.
01

s
0.

00
s

0.
11

%
0.

86
s

0.
43

s
0

2.
33

%
0.

05
s

0.
03

s
0.

11
%

0.
02

s
0.

00
s

0.
02

%
5

2
5

0.
01

s
0.

00
s

0.
01

%
0.

01
s

0.
00

s
0.

08
%

1.
83

s
0.

72
s

0
3.

96
%

0.
09

s
0.

05
s

0.
08

%
0.

02
s

0.
00

s
0.

08
%

5
5

2
0.

01
s

0.
00

s
0.

01
%

0.
01

s
0.

00
s

0.
02

%
11

.9
7s

5.
18

s
2

0.
02

%
0.

13
s

0.
06

s
0.

02
%

0.
02

s
0.

00
s

0.
01

%
5

5
3

0.
01

s
0.

00
s

0.
00

%
0.

01
s

0.
00

s
0.

01
%

19
.3

2s
4.

60
s

3
0.

07
%

0.
31

s
0.

06
s

0.
01

%
0.

02
s

0.
00

s
0.

00
%

5
5

5
0.

02
s

0.
00

s
0.

03
%

0.
01

s
0.

00
s

0.
01

%
26

.2
8s

4.
63

s
3

0.
80

%
0.

47
s

0.
06

s
0.

01
%

0.
02

s
0.

00
s

0.
02

%
5

10
2

0.
01

s
0.

00
s

0.
01

%
0.

01
s

0.
00

s
0.

01
%

11
3.

23
s

15
.7

9s
8

0.
03

%
0.

39
s

0.
05

s
0.

01
%

0.
02

s
0.

00
s

0.
01

%
5

10
3

0.
02

s
0.

00
s

0.
00

%
0.

01
s

0.
00

s
0.

00
%

13
7.

64
s

22
.0

4s
14

0.
09

%
0.

83
s

0.
21

s
0.

00
%

0.
02

s
0.

00
s

0.
00

%
5

10
5

0.
07

s
0.

02
s

0.
01

%
0.

01
s

0.
00

s
0.

01
%

20
9.

59
s

29
.5

5s
14

0.
15

%
7.

38
s

6.
34

s
0.

00
%

0.
03

s
0.

00
s

0.
00

%
5

20
2

0.
02

s
0.

00
s

0.
00

%
0.

01
s

0.
00

s
0.

00
%

76
7.

41
s

23
1.

43
s

18
0.

03
%

2.
17

s
0.

94
s

0.
00

%
0.

03
s

0.
01

s
0.

00
%

5
20

3
0.

04
s

0.
01

s
0.

02
%

0.
01

s
0.

00
s

0.
02

%
10

85
.7

6s
65

.1
3s

22
0.

03
%

92
.2

8s
67

.4
7s

0.
02

%
0.

04
s

0.
01

s
0.

02
%

5
20

5
0.

20
s

0.
02

s
0.

02
%

0.
02

s
0.

00
s

0.
02

%
14

97
.9

3s
32

4.
21

s
23

0.
45

%
35

65
.0

1s
18

08
.8

8s
0.

02
%

0.
06

s
0.

01
s

0.
02

%
5

50
2

0.
07

s
0.

01
s

0.
00

%
0.

04
s

0.
00

s
0.

00
%

49
86

.7
2s

N
/A

29
0.

09
%

48
71

.3
2s

45
1.

94
s

0.
00

%
0.

12
s

0.
02

s
0.

00
%

5
50

3
0.

18
s

0.
02

s
0.

00
%

0.
06

s
0.

01
s

0.
00

%
49

88
.8

4s
1.

61
s

28
0.

37
%

49
87

.8
7s

1.
09

s
0.

00
%

0.
19

s
0.

07
s

0.
00

%
5

50
5

1.
00

s
0.

05
s

0.
00

%
0.

10
s

0.
01

s
0.

00
%

N
/A

N
/A

30
N

/A
49

88
.2

1s
1.

22
s

0.
01

%
0.

40
s

0.
30

s
0.

00
%

5
10

0
2

0.
39

s
0.

04
s

0.
00

%
0.

17
s

0.
02

s
0.

00
%

N
/A

N
/A

30
N

/A
49

82
.3

4s
3.

65
s

0.
00

%
1.

12
s

1.
43

s
0.

00
%

5
10

0
3

1.
01

s
0.

09
s

0.
04

%
0.

28
s

0.
05

s
0.

04
%

49
91

.0
7s

N
/A

29
0.

00
%

49
87

.6
5s

0.
83

s
0.

06
%

1.
62

s
1.

23
s

0.
04

%
5

10
0

5
4.

50
s

0.
31

s
0.

00
%

0.
52

s
0.

06
s

0.
00

%
49

84
.0

9s
N

/A
29

1.
85

%
49

87
.5

4s
1.

34
s

0.
16

%
4.

64
s

4.
92

s
0.

00
%

5
20

0
2

3.
26

s
0.

43
s

0.
00

%
1.

30
s

0.
22

s
0.

00
%

N
/A

N
/A

30
N

/A
49

82
.6

4s
3.

95
s

0.
04

%
22

.5
5s

37
.2

1s
0.

00
%

5
20

0
3

8.
82

s
0.

77
s

0.
00

%
2.

28
s

0.
49

s
0.

00
%

51
30

.0
7s

N
/A

29
1.

00
%

49
87

.8
1s

2.
36

s
0.

11
%

18
.8

4s
23

.9
2s

0.
00

%
5

20
0

5
29

.5
9s

1.
37

s
0.

00
%

4.
01

s
0.

84
s

0.
00

%
N

/A
N

/A
30

N
/A

49
85

.7
2s

4.
25

s
0.

28
%

32
.4

2s
30

.8
4s

0.
00

%
5

30
0

2
13

.8
8s

1.
12

s
0.

83
%

4.
68

s
1.

04
s

0.
83

%
51

52
.6

1s
15

.0
6s

28
0.

00
%

49
84

.1
9s

4.
10

s
0.

88
%

24
.4

1s
21

.6
1s

0.
83

%
5

30
0

3
36

.2
2s

2.
31

s
10

.2
6%

8.
78

s
1.

88
s

10
.2

6%
50

78
.6

8s
12

8.
00

s
19

0.
00

%
49

87
.1

3s
1.

51
s

10
.3

4%
30

2.
16

s
94

2.
93

s
10

.2
6%

5
30

0
5

10
8.

95
s

4.
72

s
0.

72
%

16
.0

4s
3.

26
s

0.
72

%
49

93
.1

2s
2.

05
s

13
55

.3
1%

49
79

.2
6s

6.
12

s
1.

15
%

18
2.

41
s

30
5.

18
s

0.
72

%

115

A. CONCURRENT MDP ALGORITHMS EVALUATION

Ta
bl

e
A

.4
:C

M
D

P
al

go
ri

th
m

s
fo

r
γ
“

0.
99

9
on

de
te

rm
in

is
ti

c
m

od
el

s

Pa
ra

m
et

er
s

C
Po

lic
yO

pt
,A

lg
.1

3
C

Pu
re

Po
lic

yO
pt

,A
lg

.1
4

Q
C

LP
(3

.4
)

M
IP

(3
.9

)
N

LP
(3

.5
),

(3
.8

)
K

n
m

t
σ

t
di

ff
t

σ
t

di
ff

t
σ

t
er

r
di

ff
t

σ
t

di
ff

t
σ

t
di

ff
2

2
2

0.
01

s
0.

00
s

0.
00

%
0.

01
s

0.
00

s
0.

00
%

0.
35

s
0.

18
s

0
4.

75
%

0.
02

s
0.

01
s

0.
00

%
0.

01
s

0.
00

s
0.

00
%

2
2

3
0.

01
s

0.
00

s
0.

95
%

0.
01

s
0.

00
s

1.
18

%
0.

40
s

0.
19

s
0

13
.9

9%
0.

03
s

0.
01

s
1.

18
%

0.
02

s
0.

01
s

0.
00

%
2

2
5

0.
01

s
0.

00
s

0.
63

%
0.

01
s

0.
00

s
1.

85
%

0.
75

s
0.

13
s

0
10

.6
9%

0.
03

s
0.

02
s

1.
85

%
0.

02
s

0.
01

s
0.

01
%

2
5

2
0.

01
s

0.
00

s
1.

02
%

0.
01

s
0.

00
s

2.
06

%
1.

77
s

0.
83

s
0

16
.5

0%
0.

03
s

0.
02

s
1.

39
%

0.
03

s
0.

01
s

0.
11

%
2

5
3

0.
01

s
0.

00
s

0.
55

%
0.

01
s

0.
00

s
1.

83
%

3.
23

s
1.

11
s

0
20

.2
5%

0.
04

s
0.

03
s

1.
66

%
0.

03
s

0.
01

s
0.

26
%

2
5

5
0.

01
s

0.
00

s
0.

73
%

0.
01

s
0.

00
s

1.
01

%
5.

97
s

1.
56

s
0

22
.6

5%
0.

06
s

0.
03

s
0.

93
%

0.
04

s
0.

01
s

0.
00

%
2

10
2

0.
01

s
0.

00
s

1.
41

%
0.

01
s

0.
00

s
4.

10
%

16
.3

7s
3.

65
s

0
14

.9
9%

0.
06

s
0.

04
s

2.
25

%
0.

05
s

0.
05

s
0.

02
%

2
10

3
0.

01
s

0.
00

s
0.

81
%

0.
01

s
0.

00
s

1.
89

%
24

.3
0s

3.
29

s
0

17
.4

4%
0.

11
s

0.
06

s
0.

81
%

0.
05

s
0.

02
s

0.
48

%
2

10
5

0.
01

s
0.

00
s

0.
52

%
0.

01
s

0.
00

s
1.

31
%

41
.7

6s
2.

59
s

0
21

.2
8%

0.
26

s
0.

10
s

0.
14

%
0.

07
s

0.
05

s
0.

24
%

2
20

2
0.

01
s

0.
00

s
0.

80
%

0.
01

s
0.

00
s

1.
27

%
12

3.
18

s
14

.3
4s

3
15

.4
8%

0.
12

s
0.

06
s

0.
26

%
0.

08
s

0.
09

s
0.

53
%

2
20

3
0.

01
s

0.
00

s
0.

47
%

0.
01

s
0.

00
s

0.
82

%
15

8.
55

s
7.

99
s

2
20

.4
3%

0.
35

s
0.

09
s

0.
13

%
0.

08
s

0.
04

s
0.

55
%

2
20

5
0.

03
s

0.
01

s
0.

94
%

0.
01

s
0.

00
s

0.
82

%
27

8.
54

s
11

.9
8s

0
31

.2
3%

0.
62

s
0.

30
s

0.
00

%
0.

19
s

0.
41

s
1.

10
%

2
50

2
0.

03
s

0.
01

s
0.

52
%

0.
01

s
0.

00
s

1.
41

%
15

42
.7

6s
13

8.
87

s
21

27
.6

2%
0.

64
s

0.
27

s
0.

03
%

0.
18

s
0.

10
s

1.
21

%
2

50
3

0.
06

s
0.

01
s

0.
96

%
0.

02
s

0.
01

s
1.

61
%

21
38

.3
0s

13
5.

94
s

18
27

.7
5%

3.
04

s
2.

02
s

0.
00

%
0.

54
s

1.
15

s
1.

03
%

2
50

5
0.

21
s

0.
02

s
0.

29
%

0.
03

s
0.

01
s

0.
38

%
43

99
.1

7s
46

1.
27

s
21

33
.8

0%
12

3.
94

s
45

0.
40

s
0.

02
%

1.
49

s
5.

18
s

0.
40

%
2

10
0

2
0.

22
s

0.
05

s
0.

18
%

0.
07

s
0.

03
s

1.
16

%
N

/A
N

/A
30

N
/A

17
6.

94
s

90
2.

74
s

0.
01

%
1.

33
s

0.
61

s
0.

44
%

2
10

0
3

0.
55

s
0.

11
s

1.
19

%
0.

13
s

0.
06

s
0.

36
%

49
88

.4
1s

N
/A

29
33

.5
2%

77
8.

50
s

16
39

.4
0s

0.
00

%
9.

68
s

27
.9

1s
0.

70
%

2
10

0
5

1.
54

s
0.

18
s

0.
20

%
0.

21
s

0.
07

s
0.

28
%

49
90

.9
7s

2.
52

s
28

43
.1

2%
35

14
.6

7s
20

82
.8

4s
0.

00
%

23
.1

9s
41

.8
5s

0.
49

%
2

20
0

2
4.

04
s

0.
96

s
0.

16
%

0.
94

s
0.

37
s

0.
45

%
N

/A
N

/A
30

N
/A

24
39

.5
4s

24
20

.7
6s

0.
00

%
85

.7
3s

19
9.

13
s

0.
87

%
2

20
0

3
8.

87
s

1.
80

s
0.

36
%

1.
47

s
0.

58
s

0.
31

%
N

/A
N

/A
30

N
/A

39
66

.6
7s

19
66

.5
7s

0.
00

%
78

.4
0s

17
0.

08
s

0.
77

%
2

20
0

5
17

.3
8s

2.
83

s
0.

21
%

2.
82

s
1.

07
s

0.
32

%
N

/A
N

/A
30

N
/A

44
95

.8
5s

15
01

.1
0s

0.
00

%
19

7.
26

s
24

1.
89

s
0.

47
%

2
30

0
2

21
.1

6s
4.

48
s

0.
18

%
5.

65
s

1.
78

s
0.

44
%

N
/A

N
/A

30
N

/A
43

51
.0

8s
15

15
.8

3s
0.

00
%

25
2.

28
s

52
6.

35
s

0.
78

%
2

30
0

3
42

.7
9s

9.
28

s
0.

51
%

8.
08

s
3.

38
s

0.
58

%
N

/A
N

/A
30

N
/A

45
09

.9
5s

14
61

.0
3s

0.
00

%
62

0.
38

s
85

6.
25

s
0.

30
%

2
30

0
5

71
.0

3s
8.

92
s

0.
43

%
13

.9
5s

4.
86

s
0.

41
%

N
/A

N
/A

30
N

/A
41

96
.9

0s
18

01
.8

5s
0.

00
%

99
4.

34
s

10
72

.4
2s

1.
00

%
3

2
2

0.
01

s
0.

00
s

0.
16

%
0.

01
s

0.
00

s
0.

50
%

0.
30

s
0.

21
s

0
5.

59
%

0.
03

s
0.

02
s

0.
50

%
0.

02
s

0.
01

s
0.

01
%

3
2

3
0.

01
s

0.
00

s
0.

30
%

0.
01

s
0.

00
s

1.
39

%
0.

54
s

0.
22

s
0

11
.9

5%
0.

03
s

0.
02

s
1.

39
%

0.
02

s
0.

01
s

0.
00

%
3

2
5

0.
01

s
0.

00
s

0.
27

%
0.

01
s

0.
00

s
2.

10
%

0.
93

s
0.

32
s

0
11

.9
4%

0.
04

s
0.

02
s

2.
10

%
0.

03
s

0.
01

s
0.

17
%

3
5

2
0.

01
s

0.
00

s
0.

17
%

0.
01

s
0.

00
s

3.
71

%
2.

87
s

1.
37

s
0

13
.1

7%
0.

04
s

0.
03

s
3.

39
%

0.
03

s
0.

01
s

0.
12

%
3

5
3

0.
01

s
0.

01
s

0.
97

%
0.

01
s

0.
00

s
5.

11
%

6.
25

s
1.

45
s

0
16

.2
3%

0.
08

s
0.

04
s

3.
08

%
0.

04
s

0.
03

s
1.

23
%

3
5

5
0.

02
s

0.
02

s
0.

96
%

0.
01

s
0.

00
s

3.
68

%
10

.2
8s

1.
68

s
0

20
.5

3%
0.

20
s

0.
09

s
2.

55
%

0.
05

s
0.

03
s

0.
75

%
3

10
2

0.
01

s
0.

01
s

0.
38

%
0.

01
s

0.
00

s
6.

19
%

34
.6

3s
7.

93
s

0
14

.2
5%

0.
11

s
0.

05
s

3.
00

%
0.

07
s

0.
11

s
0.

66
%

3
10

3
0.

02
s

0.
03

s
1.

82
%

0.
01

s
0.

00
s

3.
54

%
45

.0
3s

7.
57

s
0

13
.3

9%
0.

29
s

0.
09

s
2.

03
%

0.
08

s
0.

05
s

0.
59

%
3

10
5

0.
05

s
0.

02
s

1.
04

%
0.

01
s

0.
00

s
3.

40
%

68
.8

7s
5.

67
s

2
25

.7
5%

0.
50

s
0.

15
s

1.
12

%
0.

14
s

0.
19

s
0.

32
%

3
20

2
0.

03
s

0.
01

s
1.

23
%

0.
01

s
0.

00
s

4.
89

%
25

0.
55

s
34

.1
0s

13
16

.1
2%

0.
34

s
0.

07
s

1.
63

%
0.

12
s

0.
10

s
1.

00
%

3
20

3
0.

04
s

0.
02

s
1.

39
%

0.
01

s
0.

00
s

3.
55

%
30

6.
79

s
26

.1
0s

8
23

.3
2%

0.
98

s
0.

36
s

0.
24

%
0.

12
s

0.
08

s
1.

40
%

3
20

5
0.

13
s

0.
07

s
1.

04
%

0.
01

s
0.

00
s

0.
94

%
48

8.
24

s
12

.3
8s

9
30

.9
0%

2.
67

s
2.

87
s

0.
09

%
0.

17
s

0.
15

s
1.

20
%

3
50

2
0.

13
s

0.
08

s
0.

83
%

0.
01

s
0.

00
s

2.
10

%
40

20
.5

6s
25

.9
4s

28
27

.8
6%

3.
57

s
3.

26
s

0.
21

%
1.

06
s

1.
68

s
0.

76
%

116

K
n

m
t

σ
t

di
ff

t
σ

t
di

ff
t

σ
t

er
r

di
ff

t
σ

t
di

ff
t

σ
t

di
ff

3
50

3
0.

25
s

0.
11

s
1.

42
%

0.
02

s
0.

01
s

1.
70

%
44

42
.9

9s
N

/A
29

28
.4

2%
34

6.
99

s
90

6.
95

s
0.

04
%

0.
57

s
0.

42
s

1.
14

%
3

50
5

0.
74

s
0.

21
s

0.
44

%
0.

05
s

0.
01

s
0.

74
%

49
85

.2
3s

5.
53

s
27

34
.9

8%
42

49
.9

3s
16

53
.4

9s
0.

03
%

1.
41

s
1.

77
s

1.
16

%
3

10
0

2
0.

88
s

0.
56

s
0.

94
%

0.
11

s
0.

03
s

2.
05

%
N

/A
N

/A
30

N
/A

26
35

.5
7s

22
89

.2
8s

0.
01

%
3.

25
s

1.
65

s
0.

77
%

3
10

0
3

1.
70

s
0.

63
s

0.
94

%
0.

23
s

0.
07

s
1.

12
%

N
/A

N
/A

30
N

/A
48

19
.8

8s
89

7.
47

s
0.

00
%

5.
55

s
4.

93
s

1.
67

%
3

10
0

5
3.

58
s

0.
73

s
1.

13
%

0.
40

s
0.

08
s

0.
74

%
N

/A
N

/A
30

N
/A

49
87

.6
6s

1.
93

s
0.

00
%

10
.1

5s
7.

91
s

1.
37

%
3

20
0

2
11

.2
3s

3.
73

s
0.

97
%

1.
72

s
0.

44
s

1.
16

%
N

/A
N

/A
30

N
/A

46
30

.0
2s

12
57

.9
2s

0.
00

%
43

.2
6s

45
.6

3s
1.

90
%

3
20

0
3

18
.3

4s
4.

23
s

1.
14

%
3.

17
s

0.
95

s
0.

67
%

N
/A

N
/A

30
N

/A
49

87
.9

1s
1.

93
s

0.
01

%
12

7.
20

s
20

8.
02

s
1.

13
%

3
20

0
5

31
.1

4s
4.

19
s

0.
93

%
6.

61
s

1.
55

s
0.

48
%

N
/A

N
/A

30
N

/A
49

85
.0

1s
1.

86
s

0.
00

%
31

7.
84

s
43

0.
49

s
1.

62
%

3
30

0
2

44
.7

6s
12

.0
2s

0.
64

%
9.

94
s

3.
09

s
0.

90
%

N
/A

N
/A

30
N

/A
49

73
.3

9s
9.

33
s

0.
00

%
27

4.
08

s
38

3.
98

s
1.

16
%

3
30

0
3

87
.8

7s
16

.2
6s

0.
78

%
19

.5
1s

5.
17

s
1.

02
%

N
/A

N
/A

30
N

/A
49

86
.0

5s
1.

13
s

0.
00

%
36

5.
82

s
24

1.
72

s
1.

45
%

3
30

0
5

13
4.

40
s

19
.4

4s
1.

01
%

27
.4

2s
6.

02
s

0.
61

%
N

/A
N

/A
30

N
/A

49
77

.9
1s

1.
62

s
0.

00
%

10
42

.5
2s

10
38

.3
3s

1.
13

%
5

2
2

0.
01

s
0.

00
s

0.
04

%
0.

01
s

0.
00

s
1.

16
%

0.
66

s
0.

37
s

0
7.

38
%

0.
04

s
0.

02
s

1.
16

%
0.

02
s

0.
01

s
0.

00
%

5
2

3
0.

01
s

0.
00

s
0.

17
%

0.
01

s
0.

00
s

2.
65

%
0.

90
s

0.
40

s
0

10
.9

8%
0.

04
s

0.
02

s
2.

65
%

0.
02

s
0.

01
s

0.
08

%
5

2
5

0.
07

s
0.

34
s

0.
18

%
0.

01
s

0.
00

s
3.

63
%

1.
96

s
0.

47
s

0
11

.7
9%

0.
05

s
0.

03
s

3.
63

%
0.

03
s

0.
01

s
0.

11
%

5
5

2
0.

01
s

0.
01

s
0.

04
%

0.
01

s
0.

00
s

5.
32

%
9.

39
s

3.
58

s
0

8.
74

%
0.

08
s

0.
05

s
4.

57
%

0.
04

s
0.

01
s

0.
41

%
5

5
3

0.
04

s
0.

10
s

1.
40

%
0.

01
s

0.
00

s
7.

01
%

16
.2

8s
4.

37
s

0
10

.1
1%

0.
26

s
0.

09
s

6.
12

%
0.

05
s

0.
02

s
0.

60
%

5
5

5
0.

18
s

0.
58

s
1.

21
%

0.
01

s
0.

00
s

6.
28

%
24

.1
6s

2.
84

s
5

14
.9

4%
0.

38
s

0.
08

s
4.

53
%

0.
08

s
0.

05
s

0.
71

%
5

10
2

0.
05

s
0.

05
s

1.
37

%
0.

01
s

0.
00

s
9.

17
%

91
.8

7s
16

.2
7s

7
12

.1
3%

0.
29

s
0.

07
s

6.
53

%
0.

18
s

0.
25

s
0.

43
%

5
10

3
0.

11
s

0.
12

s
0.

65
%

0.
01

s
0.

00
s

7.
73

%
11

6.
75

s
10

.0
7s

8
12

.9
4%

0.
57

s
0.

23
s

4.
63

%
0.

50
s

1.
34

s
0.

64
%

5
10

5
0.

36
s

0.
31

s
1.

76
%

0.
01

s
0.

00
s

4.
48

%
15

9.
57

s
26

.0
0s

12
22

.2
8%

1.
32

s
0.

90
s

1.
48

%
0.

28
s

0.
28

s
0.

42
%

5
20

2
0.

25
s

0.
24

s
0.

74
%

0.
01

s
0.

00
s

6.
71

%
69

8.
50

s
15

4.
70

s
22

20
.2

7%
0.

64
s

0.
30

s
2.

97
%

0.
87

s
0.

91
s

1.
54

%
5

20
3

0.
58

s
0.

48
s

1.
89

%
0.

01
s

0.
00

s
7.

38
%

81
0.

26
s

37
.6

0s
26

23
.2

2%
13

.3
6s

41
.8

3s
1.

15
%

0.
71

s
0.

79
s

1.
36

%
5

20
5

1.
47

s
0.

85
s

1.
33

%
0.

01
s

0.
00

s
3.

29
%

10
95

.9
6s

34
.2

2s
26

34
.0

0%
64

.9
7s

26
4.

12
s

0.
16

%
0.

90
s

1.
43

s
1.

14
%

5
50

2
1.

04
s

0.
79

s
1.

67
%

0.
02

s
0.

01
s

5.
30

%
N

/A
N

/A
30

N
/A

21
.5

6s
50

.8
8s

0.
20

%
3.

59
s

4.
95

s
1.

65
%

5
50

3
1.

88
s

0.
92

s
2.

24
%

0.
04

s
0.

01
s

3.
47

%
N

/A
N

/A
30

N
/A

40
43

.3
3s

16
22

.2
4s

0.
07

%
2.

87
s

3.
10

s
2.

48
%

5
50

5
4.

78
s

2.
07

s
1.

58
%

0.
08

s
0.

03
s

2.
38

%
N

/A
N

/A
30

N
/A

49
77

.7
4s

12
.2

5s
0.

02
%

3.
47

s
4.

71
s

1.
39

%
5

10
0

2
4.

84
s

2.
99

s
1.

03
%

0.
20

s
0.

06
s

2.
66

%
N

/A
N

/A
30

N
/A

49
73

.4
0s

9.
24

s
0.

02
%

33
.9

2s
62

.7
7s

1.
86

%
5

10
0

3
6.

83
s

2.
22

s
2.

21
%

0.
47

s
0.

12
s

1.
93

%
N

/A
N

/A
30

N
/A

49
87

.3
6s

2.
00

s
0.

00
%

20
.2

2s
32

.2
7s

2.
48

%
5

10
0

5
13

.0
9s

5.
72

s
1.

40
%

0.
92

s
0.

18
s

1.
50

%
49

97
.7

3s
N

/A
29

43
.9

2%
49

86
.6

8s
1.

35
s

0.
00

%
20

.4
6s

17
.6

5s
2.

20
%

5
20

0
2

31
.5

5s
12

.1
0s

1.
49

%
3.

62
s

0.
78

s
2.

12
%

N
/A

N
/A

30
N

/A
49

72
.2

3s
9.

61
s

0.
00

%
11

6.
99

s
11

0.
23

s
1.

46
%

5
20

0
3

53
.4

2s
18

.3
8s

1.
67

%
7.

55
s

2.
06

s
1.

83
%

N
/A

N
/A

30
N

/A
49

87
.0

3s
0.

83
s

0.
00

%
20

7.
14

s
23

2.
72

s
2.

00
%

5
20

0
5

74
.0

8s
12

.7
4s

0.
80

%
12

.0
0s

2.
49

s
1.

37
%

N
/A

N
/A

30
N

/A
49

84
.0

7s
2.

47
s

0.
00

%
34

7.
10

s
26

7.
83

s
2.

53
%

5
30

0
2

12
7.

82
s

43
.5

6s
1.

22
%

22
.0

7s
4.

45
s

1.
95

%
N

/A
N

/A
30

N
/A

49
71

.3
3s

11
.3

0s
0.

00
%

62
8.

76
s

45
1.

35
s

1.
66

%
5

30
0

3
21

8.
41

s
47

.1
8s

1.
69

%
40

.7
6s

9.
63

s
1.

41
%

N
/A

N
/A

30
N

/A
49

85
.1

3s
1.

22
s

0.
00

%
67

5.
07

s
44

6.
59

s
2.

11
%

5
30

0
5

29
3.

08
s

56
.8

9s
1.

73
%

70
.1

5s
16

.5
5s

1.
29

%
N

/A
N

/A
30

N
/A

49
80

.2
4s

4.
44

s
0.

00
%

18
13

.8
4s

11
22

.0
5s

2.
08

%

117

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.

[ABZ07] Christopher Amato, Daniel S. Bernstein, and Shlomo Zilberstein. Solving
POMDPs using quadratically constrained linear programs. In Manuela M.
Veloso, editor, IJCAI 2007, Proceedings of the 20th International Joint Conference on
Artificial Intelligence, Hyderabad, India, January 6-12, 2007, pages 2418–2424, 2007.

[AM08] Daniel Adelman and Adam J. Mersereau. Relaxations of weakly coupled
stochastic dynamic programs. Operations Research, 56(3):712–727, 2008.

[Bar08] Vlad Barbu. Semi-Markov chains and hidden semi-Markov models toward applications
their use in reliability and DNA analysis. Springer, New York, 2008.

[BDFS17] Peter Buchholz, Iryna Dohndorf, Alexander Frank, and Dimitri Scheftelowitsch.
Bounded aggregation for continuous time Markov decision processes. In 14th
European Performance Engineering Workshop. Springer LNCS, 2017.

[BDS17a] Peter Buchholz, Iryna Dohndorf, and Dimitri Scheftelowitsch. Analysis of
Markov decision processes under parameter uncertainty. In 14th European
Performance Engineering Workshop. Springer LNCS, 2017.

[BDS17b] Peter Buchholz, Iryna Dohndorf, and Dimitri Scheftelowitsch. Optimal de-
cisions for continuous time Markov decision processes over finite planning
horizons. Computers & Operations Research, 77:267 – 278, 2017.

[Ben98] Harold P. Benson. An outer approximation algorithm for generating all efficient
extreme points in the outcome set of a multiple objective linear programming
problem. Journal of Global Optimization, 13(1):1–24, Jan 1998.

[BKF14] Peter Buchholz, Jan Kriege, and Iryna Felko. Input Modeling with Phase-Type
Distributions and Markov Models. Springer International Publishing, 2014.

[BKS14] Peter Buchholz, Jan Kriege, and Dimitri Scheftelowitsch. Model checking
stochastic automata for dependability and performance measures. In 44th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN 2014, Atlanta, GA, USA, June 23-26, 2014, pages 503–514. IEEE, 2014.

[BM16] Dimitris Bertsimas and Velibor V. Mišić. Decomposable Markov decision
processes: A fluid optimization approach. Operations Research, 64(6):1537–1555,
2016.

[BM17] Dimitris Bertsimas and Velibor V. Mišić. Robust product line design. Operations
Research, 65(1):19–37, 2017.

119

BIBLIOGRAPHY

[BN08] Leon Barrett and Srini Narayanan. Learning all optimal policies with multiple
criteria. In William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors,
ICML, volume 307 of ACM International Conference Proceeding Series, pages 41–47.
ACM, 2008.

[BR14] Matthew Bourque and T. E. S. Raghavan. Policy improvement for perfect
information additive reward and additive transition stochastic games with
discounted and average payoffs. Journal of Dynamics and Games, 1(3):347–361,
2014.

[BS17a] Peter Buchholz and Dimitri Scheftelowitsch. Computation of Weighted Sums
of Rewards for Concurrent MDPs. submitted for publication, ?(?), 2017.

[BS17b] Peter Buchholz and Dimitri Scheftelowitsch. Light robustness in the optimiza-
tion of Markov decision processes with uncertain parameters. submitted for
publication, 2017.

[BST16] Dimitris Bertsimas, John Silberholz, and Thomas Trikalinos. Optimal healthcare
decision making under multiple mathematical models: application in prostate
cancer screening. Health Care Management Science, pages 1–14, 2016.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, New York, NY, USA, 2004.

[BV07] Henrik Björklund and Sergei Vorobyov. A combinatorial strongly subexponen-
tial strategy improvement algorithm for mean payoff games. Discrete Applied
Mathematics, 155(2):210 – 229, 2007. 29th Symposium on Mathematical Founda-
tions of Computer Science MFCS 2004.

[CD15] Felipe Caro and Aparupa Das Gupta. Robust control of the multi-armed bandit
problem. Annals of Operations Research, pages 1–20, 2015.

[Cie07] Krzysztof Ciesielski. On stefan banach and some of his results. Banach J. Math.
Anal., 1(1):1–10, 2007.

[CMH06] Krishnendu Chatterjee, Rupak Majumdar, and Thomas A. Henzinger. Markov
decision processes with multiple objectives. In Bruno Durand and Wolfgang
Thomas, editors, STACS, volume 3884 of Lecture Notes in Computer Science,
pages 325–336. Springer, 2006.

[CMH08] Krishnendu Chatterjee, Rupak Majumdar, and Thomas A. Henzinger. Stochas-
tic limit-average games are in EXPTIME. Int. J. Game Theory, 37(2):219–234,
2008.

[Con92] Anne Condon. The complexity of stochastic games. Information and Computation,
96(2):203 – 224, 1992.

[Con16] GSL Project Contributors. GSL - GNU scientific library - GNU project - free
software foundation (FSF). http://www.gnu.org/software/gsl/, 2016.

[CRI07] Andrew S. Cantino, David L. Roberts, and Charles L. Isbell. Autonomous
nondeterministic tour guides: improving quality of experience with TTD-
MDPs. In AAMAS, page 22. IFAAMAS, 2007.

[DD05] Dmitri A. Dolgov and Edmund H. Durfee. Stationary deterministic policies
for constrained MDPs with multiple rewards, costs, and discount factors. In
Leslie Pack Kaelbling and Alessandro Saffiotti, editors, IJCAI-05, Proceedings of
the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh,

120

http://www.gnu.org/software/gsl/

Bibliography

Scotland, UK, July 30-August 5, 2005, pages 1326–1331. Professional Book Center,
2005.

[d’E63] F. d’Epenoux. A probabilistic production and inventory problem. Management
Science, 10(1):98–108, 1963.

[DGL97] Thomas L. Dean, Robert Givan, and Sonia M. Leach. Model reduction tech-
niques for computing approximately optimal solutions for Markov decision
processes. In Dan Geiger and Prakash P. Shenoy, editors, UAI ’97: Proceedings
of the Thirteenth Conference on Uncertainty in Artificial Intelligence, Brown Univer-
sity, Providence, Rhode Island, USA, August 1-3, 1997, pages 124–131. Morgan
Kaufmann, 1997.

[DM10] Erick Delage and Shie Mannor. Percentile optimization for Markov decision
processes with parameter uncertainty. Operations Research, 58(1):203–213, 2010.

[Ehr05] Matthias Ehrgott. Multicriteria Optimization. Springer-Verlag Berlin Heidelberg,
2005.

[FV97] Jerzy Filar and Koos Vrieze. Competitive Markov Decision Processes. Springer
New York, 1997.

[GHA10] Anshul Gandhi, Mor Harchol-Balter, and Ivo J. B. F. Adan. Server farms with
setup costs. Perform. Eval., 67(11):1123–1138, 2010.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractibility, A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[GKP01] Carlos Guestrin, Daphne Koller, and Ronald Parr. Multiagent planning with
factored MDPs. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahra-
mani, editors, Advances in Neural Information Processing Systems 14 [Neural
Information Processing Systems: Natural and Synthetic, NIPS 2001, December 3-8,
2001, Vancouver, British Columbia, Canada], pages 1523–1530. MIT Press, 2001.

[GLD00] Robert Givan, Sonia M. Leach, and Thomas L. Dean. Bounded-parameter
Markov decision processes. Artif. Intell., 122(1-2):71–109, 2000.

[Goe94] S. Goedecker. Remark on algorithms to find roots of polynomials. SIAM Journal
on Scientific Computing, 15(5):1059–1063, 1994.

[Hag89] William W. Hager. Updating the inverse of a matrix. SIAM Review, 31(2):221–
239, 1989.

[Han95] Sven Ove Hansson. Decision theory – a brief introduction. Technical report,
1995.

[Haw03] Jeffrey Thomas Hawkins. A Lagrangian decomposition approach to weakly coupled
dynamic optimization problems and its applications. PhD thesis, 2003.

[He14] Qi-Ming He. Fundamentals of Matrix-Analytic Methods. Springer-Verlag New
York, 2014.

[Hel00] Keld Helsgaun. An effective implementation of the Lin-Kernighan traveling
salesman heuristic. European Journal of Operational Research, 126(1):106–130,
2000.

[HHH`17] Ernst Moritz Hahn, Vahid Hashemi, Holger Hermanns, Morteza Lahijanian,
and Andrea Turrini. Multi-objective robust strategy synthesis for interval
Markov decision processes. CoRR, abs/1706.06875, 2017.

121

BIBLIOGRAPHY

[HHS16] Vahid Hashemi, Holger Hermanns, and Lei Song. Reward-bounded reacha-
bility probability for uncertain weighted MDPs. In International Conference on
Verification, Model Checking, and Abstract Interpretation, pages 351–371. Springer,
2016.

[hsl17] HSL. A collection of Fortran codes for large scale scientific computation. http:
//www.hsl.rl.ac.uk/, 2017.

[IBM15] IBM Corp. CPLEX. https://www.ibm.com/analytics/cplex-optimizer,
2015.

[int17] Intel Math Kernel Library. http://software.intel.com/en-us/articles/
intel-mkl/, 2017.

[Iye05] Garud N. Iyengar. Robust dynamic programming. Mathematics of Operations
Research, 30(2):257–280, 2005.

[Joh14] Steven G. Johnson. The nlopt nonlinear-optimization package. http://
ab-initio.mit.edu/nlopt, 2014.

[JT70] Michael A. Jenkins and Joseph F. Traub. A three-stage algorithm for real
polynomials using quadratic iteration. SIAM journal on Numerical Analysis,
7(4):545–566, 1970.

[Kal83] Lodewijk C. M. Kallenberg. Linear programming and finite Markovian control
problems. Amsterdam : Mathematisch Centrum, 1983. Slightly revised version
of PhD thesis.

[Kal16] Lodewijk C. M. Kallenberg. Markov decision processes. https://www.math.
leidenuniv.nl/~kallenberg/Lecture-notes-MDP.pdf, October 2016.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller and James W. Thatcher, editors, Complexity of Computer Computations,
The IBM Research Symposia Series, pages 85–103. Plenum Press, New York,
1972.

[KBT75] Vladimir S. Korolyuk, Stepan M. Brodi, and Anatoly F. Turbin. Semi-Markov
processes and their applications. Journal of Soviet Mathematics, 4(3):244–280, Sep
1975.

[Kha93] Leonid Khachiyan. Complexity of polytope volume computation. In János
Pach, editor, New Trends in Discrete and Computational Geometry, volume 10 of
Algorithms and Combinatorics, pages 91–101. Springer Berlin Heidelberg, 1993.

[KKST13] Kathrin Klamroth, Elisabeth Köbis, Anita Schöbel, and Christiane Tammer.
A unified approach for different concepts of robustness and stochastic pro-
gramming via non-linear scalarizing functionals. Optimization, 62(5):649–671,
2013.

[Kol31] Andrei Kolmogoroff. Über die analytischen methoden in der Wahrschein-
lichkeitsrechnung. Mathematische Annalen, 104(1):415–458, Dec 1931.

[KVY11] Narayan Kamath, Irina Voiculescu, and Chee K. Yap. Empirical study of
an evaluation-based subdivision algorithm for complex root isolation. In
Proceedings of the 2011 International Workshop on Symbolic-Numeric Computation,
SNC ’11, pages 155–164, New York, NY, USA, 2011. ACM.

122

http://www.hsl.rl.ac.uk/
http://www.hsl.rl.ac.uk/
https://www.ibm.com/analytics/cplex-optimizer
http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-mkl/
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt
https://www.math.leidenuniv.nl/~kallenberg/Lecture-notes-MDP.pdf
https://www.math.leidenuniv.nl/~kallenberg/Lecture-notes-MDP.pdf

Bibliography

[LKS`17] Joel Lanir, Tsvi Kuflik, Julia Sheidin, Nisan Yavin, Kate Leiderman, and Michael
Segal. Visualizing museum visitors’ behavior: Where do they go and what do
they do there? Personal Ubiquitous Comput., 21(2):313–326, April 2017.

[LL69] Thomas M. Liggett and Steven A. Lippman. Stochastic games with perfect
information and time average payoff. SIAM Review, 11(4):604–607, 1969.

[LMSM14] Pascal Libuschewski, Peter Marwedel, Dominic Siedhoff, and Heinrich Müller.
Multi-objective, energy-aware GPGPU design space exploration for medical or
industrial applications. In 2014 Tenth International Conference on Signal-Image
Technology and Internet-Based Systems, pages 637–644, Nov 2014.

[Man60] Alan S. Manne. Linear programming and sequential decisions. Management
Science, 6(3):259–267, 1960.

[Map14] Maplesoft. Maple user manual, September 04 2014.

[Mil81] Kenneth S. Miller. On the inverse of the sum of matrices. Math. Mag., 54(2):67–
72, 1981.

[MK87] Katta G. Murty and Santosh N. Kabadi. Some NP-complete problems in
quadratic and nonlinear programming. Mathematical Programming, 39(2):117–
129, Jun 1987.

[MN81] Jean-François Mertens and Abraham Neyman. Stochastic games. International
Journal of Game Theory, 10:53–66, 1981.

[MZ09] Sharad Malik and Lintao Zhang. Boolean satisfiability from theoretical hardness
to practical success. Commun. ACM, 52(8):76–82, 2009.

[Neu79] Marcel F. Neuts. A versatile Markovian point process. Journal of Applied
Probability, 16(4):pp. 764–779, 1979.

[NG05] Arnab Nilim and Laurent El Ghaoui. Robust control of Markov decision
processes with uncertain transition matrices. Operations Research, 53(5):780–798,
2005.

[NN94] Yurii Nesterov and Arkadii Nemirovskii. Interior-Point Polynomial Algorithms in
Convex Programming. Society for Industrial and Applied Mathematics, 1994.

[Obd06] Jan Obdržálek. Algorithmic Analysis of Parity Games. PhD thesis, University of
Edinburgh, 2006. Submitted: January 31, 2006. Examined: May 29, 2006.

[O’C99] Colm Art O’Cinneide. Phase-type distributions: open problems and a few
properties. Communications in Statistics. Stochastic Models, 15(4):731–757, 1999.

[O’N71] Patrick E. O’Neil. Hyperplane cuts of an n-cube. Discrete Mathematics, 1(2):193 –
195, 1971.

[Pow94] Michael J. D. Powell. A Direct Search Optimization Method That Models the
Objective and Constraint Functions by Linear Interpolation, pages 51–67. Springer
Netherlands, Dordrecht, 1994.

[PTVF07] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge
University Press, New York, NY, USA, 3 edition, 2007.

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., New York, NY, USA, 1994.

123

BIBLIOGRAPHY

[PW10] Patrice Perny and Paul Weng. On finding compromise solutions in multiobjec-
tive Markov decision processes. In Helder Coelho, Rudi Studer, and Michael
Wooldridge, editors, ECAI, volume 215 of Frontiers in Artificial Intelligence and
Applications, pages 969–970. IOS Press, 2010.

[PY00] Christos H. Papadimitriou and Mihalis Yannakakis. On the approximability
of trade-offs and optimal access of web sources. In 41st Annual Symposium on
Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach,
California, USA, pages 86–92. IEEE Computer Society, 2000.

[QBM12] Andrea Qualizza, Pietro Belotti, and François Margot. Linear programming
relaxations of quadratically constrained quadratic programs, chapter Mixed Integer
Nonlinear Programming, pages 407–426. Springer, 2012.

[RSS`14] Diederik Marijn Roijers, Joris Scharpff, Matthijs T. J. Spaan, Frans A. Oliehoek,
Mathijs de Weerdt, and Shimon Whiteson. Bounded approximations for linear
multi-objective planning under uncertainty. In Steve Chien, Minh Binh Do,
Alan Fern, and Wheeler Ruml, editors, ICAPS. AAAI, 2014.

[RW91] R. Tyrrell Rockafellar and Roger J.-B. Wets. Scenarios and policy aggregation in
optimization under uncertainty. Math. Oper. Res., 16(1):119–147, 1991.

[RWO13] Diederik M. Roijers, Shimon Whiteson, and Frans A. Oliehoek. Computing
convex coverage sets for multi-objective coordination graphs. In Patrice Perny,
Marc Pirlot, and Alexis Tsoukiàs, editors, ADT, volume 8176 of Lecture Notes in
Computer Science, pages 309–323. Springer, 2013.

[RWO14] Diederik M. Roijers, Shimon Whiteson, and Frans A. Oliehoek. Linear support
for multi-objective coordination graphs. In Proceedings of the 2014 Interna-
tional Conference on Autonomous Agents and Multi-agent Systems, AAMAS ’14,
pages 1297–1304, Richland, SC, 2014. International Foundation for Autonomous
Agents and Multiagent Systems.

[Saa93] Youcef Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J.
Scientific Computing, 14(2):461–469, 1993.

[SAB`15] Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, Thorsten Koch,
and Michael Winkler. Solving open MIP instances with paraSCIP on supercom-
puters using up to 80,000 cores. Technical Report 15-53, ZIB, Takustr. 7, 14195
Berlin, 2015.

[SB17] Dimitri Scheftelowitsch and Peter Buchholz. Bounded-parameter and concur-
rent MDP analysis tool. https://gitlab.com/dreval/bmdp-analysis, 2017.
Accessed: 2016-11-22.

[SBHH17] Dimitri Scheftelowitsch, Peter Buchholz, Vahid Hashemi, and Holger Her-
manns. Multi-criteria approaches to Markov decision processes with uncertain
transition parameters. In VALUETOOLS 2017: 11th EAI International Conference
on Performance Evaluation Methodologies and Tools, December 5–7, 2017, Venice,
Italy. ACM, New York, USA, 2017.

[SC97] Satinder P. Singh and David Cohn. How to dynamically merge Markov decision
processes. In Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors,
Advances in Neural Information Processing Systems 10, [NIPS Conference, Denver,
Colorado, USA, 1997], pages 1057–1063. The MIT Press, 1997.

124

https://gitlab.com/dreval/bmdp-analysis

Bibliography

[Sch15] Dimitri Scheftelowitsch. The complexity of uncertainty in Markov decision
processes. In SIAM Conference on Control & its Applications CT15, Paris, France,
July 2015.

[Sch17a] Dimitri Scheftelowitsch. Bounded-parameter and concurrent MDP testing in-
frastructure. https://gitlab.com/dreval/bmdp-python-scripts, 2017. Ac-
cessed: 2016-11-22.

[Sch17b] Dimitri Scheftelowitsch. collider: An in silico experimental infrastructure.
https://gitlab.com/dreval/collider, 2017.

[Ser79] Richard F. Serfozo. An Equivalence between Continuous and Discrete Time
Markov Decision Processes. Operations Research, 27(3):616–620, 1979.

[Sha53] Lloyd S. Shapley. Stochastic games. Proceedings of the National Academy of
Sciences, 39:1095–1100, 1953.

[Sho94] Peter W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th Annual Symposium on Foundations of Computer
Science, pages 124–134, Nov 1994.

[Sil63] Edward A. Silver. Markovian Decision Processes with Uncertain Transition Prob-
abilities of Rewards. Technical report (Massachusetts Institute of Technology.
Operations Research Center). M.I.T. Operations Research Center, 1963.

[SL73] Jay K. Satia and Roy E. Lave. Markovian decision processes with uncertain
transition probabilities. Operations Research, 21(3):728–740, 1973.

[Ste94] William J. Stewart. Introduction to the numerical solution of Markov Chains. Prince-
ton University Press, 1994.

[Ste00] Neal Stephenson. Cryptonomicon. Arrow, London, 2000.

[vEB90] Peter van Emde Boas. Machine models and simulation. In Handbook of Theo-
retical Computer Science, Volume A: Algorithms and Complexity (A), pages 1–66.
1990.

[Vei66] Arthur F. Veinott. On finding optimal policies in discrete dynamic programming
with no discounting. Ann. Math. Statist., 37(5):1284–1294, 10 1966.

[vL13] Moritz v. Looz. Discovery of latent features and clusters based on similarities
in brain function. Diploma thesis, Karlsruhe Institute of Technology, Institut
für Theoretische Informatik, Fakultät für Informatik, 2013.

[WBG06] Charles M. Weber, C. Neil Berglund, and Patricia Gabella. Mask cost and prof-
itability in photomask manufacturing: An empirical analysis. IEEE Transactions
on Semiconductor Manufacturing, 19(4):465–474, Nov 2006.

[WdJ07] Marco A. Wiering and Edwin D. de Jong. Computing optimal stationary
policies for multi-objective Markov decision processes. In ADPRL 2007, IEEE
International Symposium on Approximate Dynamic Programming and Reinforcement
Learning, pages 158–165, April 2007.

[WED94] Chelsea C. White and Hany K. El-Deib. Markov decision processes with
imprecise transition probabilities. Operations Research, 42(4):739–749, 1994.

[Whi82] D. J. White. Multi-objective infinite-horizon discounted Markov decision pro-
cesses. Journal of mathematical analysis and applications, 89(2):639–647, 1982.

125

https://gitlab.com/dreval/bmdp-python-scripts
https://gitlab.com/dreval/collider

BIBLIOGRAPHY

[WKR13] Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust Markov decision
processes. Mathematics of Operations Research, 38(1):153–183, 2013.

[Wä02] Andreas Wächter. An Interior Point Algorithm for Large-Scale Nonlinear Opti-
mization with Applications in Process Engineering. PhD thesis, Carnegie Mellon
University, 2002.

[YS04] Håkan L. S. Younes and Reid G. Simmons. Solving generalized semi-Markov
decision processes using continuous phase-type distributions. In Deborah L.
McGuinness and George Ferguson, editors, Proceedings of the Nineteenth National
Conference on Artificial Intelligence, Sixteenth Conference on Innovative Applications
of Artificial Intelligence, July 25-29, 2004, San Jose, California, USA, pages 742–748.
AAAI Press / The MIT Press, 2004.

[ZLT01] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the
Strength Pareto Evolutionary Algorithm. Technical Report 103, Gloriastrasse
35, CH-8092 Zurich, Switzerland, 2001.

[ZP96] Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs.
Theoretical Computer Science, 158(1):343 – 359, 1996.

[ZT99] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: a
comparative case study and the strength Pareto approach. IEEE Trans. Evolu-
tionary Computation, 3(4):257–271, 1999.

[ZTCJ15] Xingyi Zhang, Ye Tian, Ran Cheng, and Yaochu Jin. An efficient approach
to nondominated sorting for evolutionary multiobjective optimization. IEEE
Trans. Evolutionary Computation, 19(2):201–213, 2015.

126

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	Motivation
	Structure of the thesis
	Definitions and notation
	Basic concepts of computational complexity theory
	Markov decision processes and extensions
	Stochastic games
	Multi-objective optimization

	Theory of parametric models
	Background
	Finite-horizon properties
	Stochastic games and limit-average reward properties
	Multi-objective approaches
	Extending the model

	Algorithms for multi-objective problems
	Stochastic multi-scenario optimization
	Pareto frontier enumeration

	A case study
	Model details
	Towards an uncertain MDP
	Evaluation

	Discussion
	Conclusions
	Future work

	Concurrent MDP algorithms evaluation
	Bibliography

