Combinatorial Theory

John N. Guidi
Lecture Notes - Fall 1998
MIT Course 18.315
Professor Gian-Carlo Rota

This publication is dedicated to John N. Guidi (1954-2012) whose remarkable almost "verbatim" notes in Prof. Gian-Carlo Rota's courses in 1998 at MIT faithfully reproduce both the content and erudition of Rota's famous lectures just before Rota's premature death in 1999.

John N. Guidi
Research Affiliate
Department of Mathematics
Room 2-363A
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139
USA
Email: guidi@math.mit.edu

Copyright ©2002 John N. Guidi. All rights reserved.

These Lecture Notes originated from the lectures presented by Gian-Carlo Rota, Professor of Applied Mathematics, for graduate course 18.315-Combinatorial Theory, which he taught at MIT, during the Fall 1998 semester. Topics covered included sets, relations, enumeration, order, matching, matroids, and geometric probability. These Lecture Notes were produced from notes I made during class, audio recordings I made of lectures, as well as clarifications and expansions I made of the material presented, after the fact. These Lecture Notes were not reviewed by Professor Rota and should not be considered endorsed by him.

I had an ulterior motive for writing these up. I found this a particularly useful way to profoundly understand the material (or, as Professor Rota was fond of saying, "to really rub it in"). My goal was not to provide verbatim transcriptions of the lectures, but rather to provide a set of comprehensive notes, including some of the oral commentary, of the material presented in class. I hope to have captured a bit of the spirit of these lectures and to have introduced only a limited number of errors.

I wisl to thank a number of people. Richard Stanley, who is the Norman Levinson Professor of Applied Mathematics, is my host at MIT. I am deeply grateful for his interest, efforts on my behalf, and encouragement. Daniel Kleitman, who is the Chairman of Applied Mathematics Committee at MIT, has been most supportive. Jeff Lieberman, who was a student at MIT in this course, graciously, provided me with a copy of his notes. His notes were often helpful when I struggled to understand a point and my own were unclear.

Gian-Carlo Rota died around April 19, 1999 (an obituary and other materials about his life and career have been made available by Richard Stanley at http://www-math.mit.edu/~rstan/rota.html). I am grateful to Professor Rota for enthusiastically sharing his wealth of knowledge about combinatorics and mathematics, in general. His many lessons, regarding both content and manner, on education, scholarship, and research were enlightening and enduring. His kindness and generosity are appreciatively acknowledged. He was a superb teacher, in the truest sense of the word. He is sorely missed.

Professor Rota was keen for me to complete thesc Lecture Notes, as he also felt that others might find them useful. I regret that he never saw this volume. I like to think he would have been pleased.

John N. Guidi
March 20, 2002

Note: within the body of the text, pagination is of the form [lecture.page]. For example, page [3.5] refers to the fifth page of the third lecture, which was given on September 14, 1998.

Contents

Exercises xvi
Chapter I - Sets + Relations + Enumeration
Lecture 1 - [9/9/98]

1. Sets 1
2. Operations on Sets 1
3. Sheffer Stroke 1
4. Conditional Disjunction 3
5. Symmetric Difference 4
6. Boolean Function 6
6.1 Disjunctive Normal Form 6
7. Infinite Distributive Laws for Sets 8
Lecture 2 - [9/11/98]
8. Theory of Relations 10
9. Bipartite Graph 10
10. Inverse Relation 13
11. Function 13
12. Composition of Relations 14
13. Symmetric Relation 15
14. Incidence Matrix 15
7.1 Marginals 16
15. Algebra of Relations 18
16. Equivalence Class 20
17. Partition of a Set 20
18. Boolean Algebra 21
19. Complete Boolean Subalgebra and Partitions of a Set Bijection 22
Lecture 3 - [9/14/98]
20. Theory of Relations (cont'd) 24
21. Equivalence Relations, Partitions, and Complete Boolean Subal- gebras are Cryptomorphic 26
22. Basic Enumeration 28
23. Stirling Numbers of the Second Kind 29
24. Difference Operator 32
25. Identity involving Polynomials and Derivatives 33
26. Stirling Numbers of the Second Kind - a Second Formula 34
27. Stirling Numbers of the Second Kind - a Third Formula 36
28. Total Number of Partitions of a Set 37
Lecture 4 - [9/16/98]
29. Basic Enumeration (cont'd) 39
30. Dobinski's Formula 40
31. Dobinski's Formula - Another Way 43
32. Multisets 45
33. Partition of an Integer 48
34. Type of a Partition 48
35. Ferrers Relation 49
36. Compositions of an Integer 51
37. Number of Partitions of a Given Type 52
Lecture 5 - [9/18/98]
38. Basic Enumeration (cont'd) 53
39. Type of a Partition 53
40. The Twelvefold Way 55
41. Interpretation of Function 56
4.1 Distribution 56
4.2 Occupancy 57
4.3 Search 58
42. Disposition 59
43. Dispositions with Given Occupation Numbers 61
44. Functions with Given Occupation Numbers 62
45. Cycles of a Permutation 64
Lecture 6 - $[9 / 21 / 98]$
46. The Twelvefold Way (cont'd) 67
47. Function 67
2.1 Arbitrary 67
2.2 Mono 68
2.3 Epi 69
48. Central Problem of Enumeration 70
49. Back to Relations 72
50. Composition 72
51. Equivalence Relations and Partitions 73
52. Independent Relations 75
53. Commuting Equivalence Relations 77
Lecture 7 - [9/23/98]
54. Median 79
55. Conditional Disjunction 79
56. Commuting Equivalence Relations (cont'd) 80
57. Mme. Dubreil's Theorem 84
58. Example - Equivalence Relations and Vector Space 85
Lecture 8 - [9/25/98]
59. Commuting Equivalence Relations (cont'd) 88
60. Examples of Commuting Equivalence Relations 89
2.1 Vector Space 89
2.2 Normal Subgroups 90
2.3 Ideals of a Ring 90
61. The "Pointless" Point of View 91
3.1 Relation 92
3.2 Function 94
3.3 Independent Equivalence Relations 96
3.4 Commuting Equivalence Relations 96
62. Measure 97
Lecture 9 - [9/28/98]
63. The "Pointless" Point of View (cont'd) 99
1.1 Example - Measure 100
1.2 Example - Interval 101
64. Boolean σ-algebra 102
65. Markov Chain 105
66. Relation of a Set to Itself 106
67. Edge-Vertex Incidence Matrix 106
Chapter II - Order
Lecture $10-[9 / 30 / 98]$
68. Totally Unimodular Matrix 109
1.1 Example - Integer Programming 111
69. The Language of Order 113
70. Covered Relation 114
71. Partially Ordered Set 114
72. Hasse Diagrams 114
73. Example Poset - Relation 115
74. Chain 115
Lecture 11 - [10/2/98]
75. The Language of Order (cont'd) 117
1.1 Maximal Chain 117
1.2 Rank 118
1.3 Atom 118
1.4 Coatom 119
1.5 Disjoint Sum 119
1.6 Product 119
1.7 sup 120
1.8 inf 120
76. Lattice 121
77. Dedekind Algebraic Axiomization of Lattice 121
78. Distributive Lattice 124
79. Order Preserving 125
80. Famous Examples of Posets and Lattices 125
6.1 Boolean Algebra of Subsets of a Set 125
6.2 Family of all Boolean Subalgebras of a Set 125
6.3 All Partitions of a Set 125
Lecture 12 - [10/5/98]
81. Maximum Element 126
82. Quasi-ordered 126
83. Distributive Lattice 127
3.1 Family of all Order Ideals of a Poset 128
84. Partitions and Boolean Subalgebras 129
85. Lattice of Partitions of a Set 131
86. Lattice of Partitions of an Integer 132
6.1 Bad 132
6.2 Good 132
87. Dominance Order 133
88. Ferrers Matrix 133
89. Ortho Complement 134
Lecture 13-[10/7/98]
90. Dominance Order 135
91. Convexity 137
92. Lattice of Faces of n -simplex 139
93. Lattice of Faces of n-cube 139
94. Family of all Convex Closed Sets 141
95. Lattice of Polyconvex Sets 142
Lecture 14 - [10/9/98]
96. Projective Space 143
97. Lattice of Subspaces 143
2.1 Modular Law 144
2.2 Complements 145
98. von Staudt - von Neumann Theorem 146
99. Sublattices 147
100. Isomorphism of Lattice of Subspaces and Lattice of Partitions 148
101. Linear Lattice 150
102. Projective Space (cont'd) 151
Lecture 15 - [10/13/98]
103. Projective Space (cont'd) 152
104. von Staudt - von Neumann Theorem 153
105. Equivalence Classes in Projective Space 154
106. Desargues' Theorem 156
107. Lattice of Subspaces and Lattice of Partitions 158
5.1 Join in the Lattice of Partitions 158
108. Theorem of B. Jónsson 159
Lecture 16 - [10/14/98]
109. Future Topics 160
110. Jónsson's Generalization of Desargues' 'Theorem 160
111. Modular Identity and Linear Lattices 161
112. Desargue's Theorem for Linear Lattices 164
113. Ortho Complement 166
Lecture 17 - [10/16/98]
114. Modular Law 167
115. Pappus' Theorem - Part I 168
116. Pascal's Theorem 168
117. Pappus' Theorem - Part 2 170
118. von Staudt - von Neumann Theorem 171
5.1 Addition using Joins and Meets 171
119. Bricard's Theorem 174
Chapter III - Matching
Lecture 18 - [10/19/98]
120. Matching Theory 175
121. Set Function 176
2.1 Submodular Set Function 176
2.2 Deficiency 177
2.3 Tight Set 177
122. Theorems due to Ore 178
3.1 Theorem 1-Tight Sets 178
3.2 Theorem 2 - Complement of Minimum Tight Set 178
3.3 Theorem 3-Marginals 179
3.4 Theorem 4-Minimum Deficiency 180
3.5 Theorem 5-Zero Minimum Deficiency 181
3.6 Theorem 6 - The Marriage Theorem 181
123. Examples 181
4.1 Classical Example 181
4.2 System of Distinct Representatives 182
4.3 Covering Amputated Chess Board with Dominoes 182
124. Birkhoff - von Neumann Theorem 184
Lecture 19 - [10/21/98]
125. Matching Theory (cont'd) 185
126. Marriage Theorem 186
127. Birkhoff - von Neumann Theorem 186
3.1 Birkhoff's Proof 187
3.2 von Neumann's Proof 190
128. Doubly Stochastic Probability Measure 191
129. Muirhead's' Inequality 192
Lecture 20 - [10/26/98]
130. Marriage Theorem 195
131. Muirhead's Inequality 196
132. Existence of a Doubly Stochastic Matrix 197
133. Hilbert's 17th Problem 200
134. Convex Function 202
135. Proof - Muihead's Inequality 203
Lecture 21 - [10/28/98]
136. Proof - Marriage Theorem 205
137. Dilworth's Theorem 209
138. Second Proof - Marriage Theorem 212
Lecture 22 - [10/30/98]
139. Dilworth's Theorem (conclusion) 215
1.1 Hasse Diagram 215
1.2 Example - Boolean Algebra 216
140. Sperner's Theorem 217
2.1 LYM Inequality 217
141. Conjecture - Lattice of Partitions 220
142. The Young Lattice 222
143. Greene - Kleitman Bracketing Algorithm 223
Lecture 23-[11/2/98]
144. Complete Chain in the Young Lattice 226
145. Matching Theory 229
146. Notation - Inverse Relation 231
147. Structure of a Relation 232
Chapter IV - Matroids
Lecture 24 - [11/4/98]
148. Matroids 235
149. Triality Principle 236
150. Distinct Representatives 237
151. Rank Function 239
152. Matroid Results 239
5.1 Proposition 1 - Rank of Set augmented by One Element 239
5.2 Theorem 1-The Whitney Property 240
5.3 Theorem 2 - Extended Whitney Property 241
5.4 Proposition 2 - Rank Upper Bound is Set Size 242
5.5 Proposition 3 - Independent Sets and Subsets 242
5.6 Theorem 3 - Exchange Property 243
5.7 Theorem 4 - Bases of the Same Matroid 244
5.8 Proposition 4 - Size of every Maximal Independent Set 245
5.9 Proposition 5 - Contraction 245
Lecture 25-[11/6/98]
153. Theory of Matroids (cont'd) 247
154. Independent 247
155. Basis 248
156. The Whitney Property 249
157. Extended Whitney Property 249
158. Theorem of Whitney 250
159. Matroid Examples - Intended 250
7.1 Projective Space 251
7.2 Arrangements of Hyperplanes 255
7.3 Graphs 256
160. Four Color Conjecture 259
161. Matroid Examples - Non-standard 260
Lecture 26 - [11/9/98]
162. Original Example of a Matroid 262
163. Matroid Representation Theorems 263
164. Graphic Matroids 265
165. Independent Sets and Graphic Matroids 268
166. Rado's Theorem 271
5.1 Example - Graphs 271
5.2 Example - Vector Space 272
167. Intervals and Partially Ordered Sets 273
168. Intervals in the Lattice of Partitions 273
Lecture 27-[11/13/98]
169. The Theory of Matroids (cont'd) 276
170. Rado's Theorem 277
171. Normalization Theorem 281
Lecture 28-[11/16/98]
172. Rado's Theorem 286
173. Normalization Theorem 287
174. Relations, Matroids, and Matching 287
175. Partial Matching 289
176. Matching within Blocks of a Partition 292
177. Two Matroids on the Same Set 293
178. Geometric Lattice 296
Lecture 29 - [11/18/98]
179. Orthogonality 298
180. Independent Sets in Orthogonal Matroids 302
181. Closure 305
3.1 The Closure Theorem 306
3.2 Example 1 - Topology 307
3.3 Example 2 - Steinitz Exchange Property 307
3.4 Example 3-Convex Closures 309
3.5 Example 4 - Order Ideals 309
3.6 Example 5 - Matroids 310
Lecture 30 - [11/20/98]
182. Closure 311
183. Topological Closure 311
184. Closures associated with Matroids 312
185. Closures define Lattices 316
186. Geometric Lattices 317
187. Birkhoff Covering Property and Geometric Lattices 318
188. Closure Examples - with a Twist 321
7.1 Multigraph 321
7.2 Linear Algebra 322
189. Matroid Operations on Geometric Lattices 322
8.1 Restriction 322
8.2 Contraction 323
Lecture 31 - [11/23/98]
190. Geometric Lattices 325
191. Birkhoff Covering Property 326
192. Graphs and Restrictions of the Lattice of Partitions 328
193. Big Theorems of Matroid Theory 329
4.1 Four Color Conjecture 329
4.2 Hadwiger's Conjecture 330
4.3 Duffin's Theorem 330
4.4 Matroids and Fields 332
4.5 Tutte's Theorems 333
4.6 Kung's Theorem 334
Chapter V - Geometric Probability
Lecture 32 - [12/2/98]
194. Geometric Probability 335
195. Measure 336
196. Lattice of all Polyhedra 338
197. Measures in One Dimension 339
198. Continuous Invariant Measures as Linear Combinations 340
6, Measures in Arbitrary Dimensions 342
199. Fundamental Fact of Theory of Integration 343
200. Euler Characteristic 345
8.1 Parallelism with Volume 346
Lecture 33 - [12/4/98]
201. Geometric Probability (cont'd) 347
202. Euler Characteristic and Volume 348
203. Invariant Measure 350
204. Euler Characteristic and Topology 351
205. Combinatorial Measure Theory 352
206. Fundamental Theorem - Euler Characteristic 354
207. Euler - Schläfli - Poincaré Formula 357
7.1 Example 358
208. Klee's Theorem 359
Lecture 34 - [12/7/98]
209. Combinatorial Measure Theory (cont'd) 362
210. Product Measures 364
2.1 Tensor Product 365
211. Main Theorem of Geometric Probability 368
212. Example in 3 Dimensions 369
213. Extending Intrinsic Volumes to Polyconvex Sets 369
214. Continuous Analog of Factorial 371
Lecture 35 - [12/9/98]
215. Geometric Probability (cont'd) 373
216. Extension of Measures 374
2.1 Example-3 Dimensions 374
217. Crucial Lemma 377
218. Kinematic Formula 380
219. Picking a Line at Random 382
5.1 Measure of Set of Complete Chains 385

$$
\text { Index . } 388
$$

Note: within the body of the text, pagination is of the form [lecture.page]. For example, page [3.5] refers to the fifth page of the third lecture, which was given on September 14, 1998.

Exercises

1.1 The only binary operations among sets by which all Boolean operations are defined 2
1.2 Conditional disjunction may be used to define all Boolean operations 4
1.3 Every Boolean function can be expressed in disjunctive nor- mal form 6
1.4 Distributive laws and doubly infinite families of sets 8
***2.1 Ternary relations 17
2.2 Study relations satisfying a certain self composition property 19
3.1 Counterexample of complements of a relation 25
3.2 Unions and intersections with compositions of relations 26
3.3 Stirling numbers of the second kind and the inclusion-exclusion principle 37
4.1. Find the recursion formula for the Bell numbers using linear functionals 45
4.2 Transpose of the incidence matrix of a Ferrers relation 50
5.1 Derive the relationship between sizes of blocks and multiplic- ities of multisets in the partition of an integer 54
5.2 Verify this portion of the Twelvefold Way table 66
6.1 Inequivalent ways of taking a given size multiset from a set 68
6.2 Inequivalent ways of placing distinguishable balls into distin- guishable boxes, where each box is occupied 69
6.3 Inequivalent ways of placing indistinguishable balls into dis- tinguishable boxes, where each box is occupied 69
6.4 Inequivalent ways of placing distinguishable balls into indis- tinguishable boxes, where each box is occupied 69
*6.5 Write up the central problem of enumeration, elegantly 70
***6.6 Count the number of equivalence classes among relations 71
**6.7 Find easy necessary and sufficient conditions for two relations to commute 73
6.8 Make precise and then prove how independent partitions can be represented 75
6.9 Composition of equivalence relations on independent parti- tions is the universal relation 76
7.1 State correctly and prove that the median defines union, in- tersection, and the distributive law 79
*7.2 Construct a system of axioms for conditional disjunction, analogous to those of Birkhoff, for the median 80
**8.1 Find a search theoretic meaning for two commuting equiva- lence relations 88
8.2 Prove that the family of normal subgroups of a group are such that any two provide commuting equivalence relations 90
8.3 Inverse function is always a homomorphism of Boolean algebras 95
8.4 Independence is equivalent to the pointless property of Boolean subalgebras 96
*8.5 Prove Yan's Theorem when the underlying set is finite 96
8.6 Show by example that the measure of the empty set does not follow from the modular property 97
8.7 Show that every measure satisfies the inclusion-exclusion for- mula 97
9.1 The measure of the complement of a set 100
9.2 The edge-vertex incidence matrix of a graph (i.e., relation without loops) is totally unimodular 107
*9.3 Find a structure theory for sesquicommuting relations 108
9.4 Necessary and sufficient conditions for a relation to be a Fer- rers relation 108
10.1 Totally unimodular matrixes where determinant is zero 111
*10.2 Relations with the same marginals are obtained from each other by a series of switches 112
11.1 Dual to identity satisfied when lattice is distributive 124
**12.1 Give a structural characterization of the dominance order 134
13.1 Lattice of order ideals, ortho complements, and antichains 136
*13.2 Theorem of Gale - Ryser 136
*13.3 Rewrite the structural characterization of the lattice of faces of a cube 141
***13.4 Develop cubical logic 141
14.1 Equivalence relations and join 149
**15.1 Give an analytic proof of Desargues' Theorem 157
**15.7 Help me finish my paper on joins in the lattice of partitions 158
16.1 Theorem of Kakutani - Mackey 166
*17.1 Find a high school proof of Bricard's Theorem 173
**18.1 Characterize the submodular set functions that come from a relation 177
19.1 Write up von Neumann's proof of the Birkhoff - von Neumann Theorem 190
*20.1 From the Birkhoff - von Neumann Theorem, deduce the Mar- riage Theorem 195
22.1 Prove Gordon's Lemma 221
***23.1 Construct a continuous lattice with levels equal to the normal function 228
23.2 Get a new proof of Sperner's Theorem from the fact about order ideals whose sets of maximal elements are maximum size antichains 231
23.3 From the theorem about minimum deficiency sets, get a new proof of Dilworth's Theorem 231
23.4 Inverse relation and minimum deficiencies 232
*23.5 Universal matrix decomposition of a relation 232
25.1 Families of independent sets and rank functions 248
25.2 Axiomatize matroids in terms of bases 249
25.3 Prove Whitney's Theorem 250
28.1 Gale - Ryser Theorem revisited 294
**28.2 Generalize Gale - Ryser to induced matroids 295
${ }^{* *} 28.3$ Get switches, involving marginals, as a consequence of the general theory of matroids 295
29.1 The orthogonal matroid of a planar graphic matroid 301
30.1 Every finite set endowed with a closure satisfies the Steinitz Exchange Property defines a matroid 313
30.2 Meets and joins with closures define lattices 316
30.3 A natural condition on lattices involving closures 316
30.4 Prove the Steinitz Exchange Property 319
30.5 Prove Whitney's Theorem 320
30.6 Upper segments of a geometric lattice correspond to contrac- tions 323
30.7 Every element of a geometric lattice is the meet of a set of hyperplanes 323
31.1 A necessary and sufficient condition for a matroid to be rep- resentable over a Galois field with 2 elements 332
31.2 Modular elements in the lattice of partitions 333
32.1 Irrespective of how you express the simple functional as a linear combination of indicator functions, you always get the same integral 344
32.2 A linear functional is well defined on the vector space of sim- ple functions 344
33.1 Prove Pettis' Theorem 352
33.2 Use complements to uniquely extend a measure to a distribu- tive lattice 353
34.1 What product measures are all about 365
34.2 The closest you can come to the distributive law with the lattice of all subspaces 370
**35.1 Find a simple proof of the Crucial Lemma 378
**35.2 Compute the intrinsic volumes of an n-simplex 378
**35.3 Uniqueness of intrinsic volumes on the lattice of polyhedra 379
***35.4 Work out the intrinsic volumes on spheres 379
**35.5 The continuous analog, using continuous binomial coefficients, of the binomial theorem 385
***35.6 Given two polyhedra in n dimensions, when can the first becut up into a finite number of pieces and then be used toconstruct the other . 386

Stars are used to rank the exercises in the following manner:
unstarred Ordinary exercise, as you might expect in an introductory course.

* Difficult exercise that requires some serious thinking.
** If worked out, the exercise might make a publishable paper.
*** Possible topic for a Ph.D. thesis.

John Guidi

Chapter One: Sets and Relations
We want to review in detail the Boolean algebra of sets.

$$
S=\operatorname{set}
$$

We denote by $P(S)$ the family of all subsets of S such a family is often called The Boolean algebra of subsets.
τ
because, as you will see, there are other Boolean algebras.

Most of you are familiar w/ the elementary operations on sets, but we have to review them carefully, because we will use them in an unusual way. Operations on sets:
union: $A \cup B$
intersection: $A \cap B$
complement: A^{C}
I don't need to explain what these mean.
I assume you are familiar with these operations.
You are also familiar w/ some of the results of these
In particular:
$\phi=$ empty set
$\phi^{c}=S=\widehat{1}$

The complement of the empty set is the Universal sat. And for reasons that we will see later, is sometimes written as $\hat{1}$.

Let's define another operation:
Shaffer stroke:

$$
A / B=A^{c} \cap B^{c}
$$

This was discovered in 1913 by Prof. Sheffer. The Sheffer Stroke has a very peculiar property:

It can be used to define every other operation among sets,

The Sheffer Stroke suffices to define all Boolean operations on sets, to wit:

$$
\text { complement: } A \mid A=\underbrace{A^{c} \cap A^{c}}_{\text {by definition }}=A^{C}
$$

So the complement of a set is defined as "A, skeffer Strake, itself"
intersection: $(A \mid A) /(B \mid B)=A^{C} / B^{C}$ we've just seen that:

$$
A \mid A=A^{C}
$$

$$
\begin{aligned}
& =A^{c c} \cap B^{c c} \\
& =A \cap B
\end{aligned}
$$

union: $(A \mid B)\left|(A \mid B)=\left(A^{C} \cap B^{C}\right)\right|\left(A^{C} \cap B^{C}\right)$
From above, we have that this is:

$$
\begin{aligned}
& =\left(A^{C} \cap B^{C}\right)^{C} \\
& =A \cup B \quad \text { (from de Morgan's Laws) }
\end{aligned}
$$

Finally, even the null set can be defined using the Shaffer Stroke:

$$
\begin{aligned}
A \mid(A \mid A) & =A \mid A^{C} \\
& =A^{c} \cap A^{c c} \\
& =A^{c} \cap A \\
& =\phi
\end{aligned}
$$

- Excercise 1.1:

Now youve heard what I just said and I know what you are thinking: "Gee, maybe there are many other operations' like that."
The only operations (binary) among sets by which all boolean-operatioas may be defined are:
the sheffer stroke and

$$
A / B=A^{C} \eta B^{C}
$$

These are the only 2 binary operations for which all
sets are defined.
Prove this. This was a research paper published in 1913,
why did we say binary here?
Because the operations of union and intersection are operations that involve 2 variables. Hence the word binary.

Note: The null set can be viewed as an operation of picking a special element. In this sense, it is a zeromary operation.

This idea $c_{a n}$ be generalized, and we probably will.
Exercise 1.1 shows that the only 2 binary operations that give equivalent algebraic systems are the Shaffer stroke and \downarrow :

$$
\text { Boolean Algebra }=\begin{gathered}
\text { Binary ops: } \\
\text { Unary ops: } \\
\text { Zeroany } o p s
\end{gathered}\left\{\begin{array}{c}
U, \cap \\
c \\
\phi
\end{array}\right\}=\left\{\begin{array}{c}
1 \\
c \\
\phi
\end{array}\right\}=\left\{\begin{array}{c}
\downarrow \\
c \\
\phi
\end{array}\right\}
$$

and further, these are the only two single binary operations $(1, \downarrow)$ that give you Boolean Algebra.

Now, I know what you are think
 Let's see one. The esebmot famous one.

$$
\begin{aligned}
& \text { Conditions Disjunction: } A, B, C \subseteq S \\
& {[A, B, C]=(A \cup B) \cap(A \cup C) \cap(B \cup C)} \\
& {[A, B, C]=\left(B^{C} \cap A\right) \cup(B \cap C)}
\end{aligned}
$$

		1
- Exercise $1.2: 9 / 98$		
Conditioned disjunction may be used to define all Boolean operations.		

This is a very interesting remark. Prove it.
Are there any other operations on sets worth talking about?
Yes.
Another famous operation (perhaps the moot famous one).

- Symmetric Difference of sets:

$$
A+B=\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)
$$

We can visualize this as follows:

$\left(A \cap B^{c}\right)$
$\left(A^{C} \cap B\right)$

The symmetric difference (t) are the elements that belong to either one of $A \circ r B$, bat not both.

$$
\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)
$$

This was discovered fairly late in the game, by an American mathimatican Marshall Harvey Stone.
Why is this operation important?
There is an extremely important property, which I watt to emphasize.
Properties of Symmetric Difference:
Commutative: $\quad A+B=B+A$
Associative: $A+(B+C)=(A+B)+C \longleftarrow\left\{\begin{array}{l}\text { work this out. } \\ \text { It's not sol obvious }\end{array}\right\}$
So, it behaves like addition. But, not completely:

implies sone advanced matherentics

- Remark:

The family of subsets $P(S)$ with + (symmetric difference) and. "intersection) gives you a commutative ring, where every element is idempotent

$$
A \cdot A=A
$$

Furthermore, from + (symmetric difference) and \cdot (intersection), you can derive the Boolean operations.
intersection: $A \cap B=A \cdot B$
union : $A \cup B=A+B+A \cdot B$

$$
\begin{aligned}
& =(A+B)+A \cdot B \\
& =(A+B)+(A \cap B)
\end{aligned}
$$

Proof by Picture:

$(A+B)$
$A \cdot B=A \cap B$

$$
A \cup B=A+B+A \cdot B
$$

complement: $A^{C}=\hat{1}+A$

$$
\begin{aligned}
& =\hat{1}+A \\
& =\left(\hat{1} \cap A^{c}\right) \cup\left(\hat{X}^{C} \cap A\right) \\
& =A^{c}
\end{aligned}
$$

- Boolean function:

Anything you can obtain by iterated applications of the Boolean operations.

$$
\text { Ex: } P\left(A_{1}, A_{2}, A_{3}\right)=\left(\left(A_{1} \cup A_{2}\right) \cap A_{3}^{c}\right) \cup\left(A_{1} \cap A_{3}\right)
$$

$\left\{\begin{array}{l}\text { These kinds of functions are very common, for example, in } \\ \text { switching theory. }\end{array}\right.$
We can simplify, using the distributive law, to get:

$$
=\left(A_{1} \cap A_{3}^{c}\right) \cup\left(A_{2} \cap A_{3}^{c}\right) \cup\left(A_{1} \cap A_{3}\right)
$$

I.. a similes way, any Hokan function can be simplified as a union of intersections of sets and af complements, by using the distributive law.
This standard form is known as:
Disjunctive Normal Form

- Disjunctive Normal Form of a Boolean function $Y\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is the irredundant union of expressions of the form:

$$
A_{1}^{ \pm} \cap A_{2}^{ \pm} \cap \ldots \cap A_{n}^{ \pm}
$$

$\tau_{\text {each }} A_{i}$ appease once and only once

$$
\begin{aligned}
& A_{i}^{+}=A_{i} \\
& A_{i}^{-}=A_{i}^{c}
\end{aligned}
$$

Note: Assure you have simplified to a union of intersections.
If some of the intersections consist of less than n terms, each intersection
$*=$ dent can be placed in standard form, as for the following example:

$$
\begin{aligned}
\vec{A}_{2}^{*} \cap \ldots \cap A_{n}^{*} & =\left(A_{2}^{*} \cap \ldots \cap A_{n}^{*}\right) \cap \hat{1} \\
& =\left(A_{2}^{*} \cap \ldots \cap A_{n}^{*}\right) \cap\left(A_{1}^{+} \cup A_{1}^{-}\right) \\
& =\left(A_{1}^{+} \cap A_{2}^{*} \cap \ldots \cap A_{n}^{*}\right) \cup\left(A_{1}^{-} \cap A_{2}^{*} \cap \ldots \cap A_{n}^{*}\right)
\end{aligned}
$$

standard form

Example:
Disjunctive Normal Form of the Boolean function:

$$
\begin{aligned}
P\left(A_{1}, A_{2}, A_{3}\right)= & \left(\left(A_{1} \cup A_{2}\right) \cap A_{3}^{c}\right) \cup\left(A_{1} \cap A_{3}\right) \\
= & \left(A_{1} \cap A_{3}^{c}\right) \cup\left(A_{2} \cap A_{3}^{c}\right) \cup\left(A_{1} \cap A_{3}\right) \\
= & \left(A_{1} \cap A_{2} \cap A_{3}^{c}\right) \cup\left(A_{1} \cap A_{2}^{c} \cap A_{3}^{c}\right) \cup \\
\text { same } & =\left(A_{1} \cap A_{2} \cap A_{3}^{c}\right) \cup\left(A_{1}^{c} \cap A_{2} \cap A_{3}^{c}\right) \cup \\
& \left(A_{1} \cap A_{2} \cap A_{3}\right) \cup\left(A_{1} \cap A_{2}^{c} \cap A_{3}\right) \\
= & \left(A_{1} \cap A_{2} \cap A_{3}\right) \cup\left(A_{1} \cap A_{2} \cap A_{3}^{c}\right) \cup \\
& \left(A_{1} \cap A_{2}^{c} \cap A_{3}\right) \cup\left(A_{1} \cap A_{2}^{c} \cap A_{3}^{c}\right) \cup \\
& \left(A_{1}^{c} \cap A_{2} \cap A_{3}^{c}\right)
\end{aligned}
$$

- Exercise 1,3

Show that every Boolean function can be expressed in Disjunctive
Normal Form (kind of easy)

Historical Digression
When Bodean algebra was being developed in the first half of the century; poole often did things like this. One of the mort remarkable fats that was performed was an achievement of the mothention E. L. Post.
Let me toll you informally what he did.
Take a finite number of Boolean functions,

$$
\varphi_{1}\left(A_{1}, \ldots, A_{k}\right), \varphi_{2}\left(A_{1}, \ldots, A_{k}\right), \ldots, \varphi_{n}\left(A_{1}, \ldots, A_{k}\right)
$$

Then you allow functions composition of these Boolean functions, in arbitrary When is it true that, by toking function -l compositions of these Boolean functions, you can express any Boolean function, what so wee.

To that end, when is it true that I take functional compositions of Boolean functions and get union, intersection, and complement.
Post computed all possible sets of Bodean. functions and there are 86 of them. Since he did this, his work can be greatly simplified.
But at his tine, this was a great achievement.
For examples: (1) the Sheffer stake is a binary Boolean function that generates all Boolean functions.
(2) the \downarrow is a binary Boolean function that generates all Boolean functions.
(3) The Conditional Disjunction is a ternary Boolean function that generates all Boolean functions
\vdots
(86)

Post worked this all out in 200 pages.
Infinite Distributive Laws for Sets $\sim\binom{$ this is something you probably haven't }{ encountered. }
The distributive laws:

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
$$

We then generalize this to an infinite family of sets A :

$$
A \cap\left(\bigcup_{i \in I} A_{i}\right)=\bigcup_{i \in I}\left(A \cap A_{i}\right)\left\{\begin{array}{l}
\text { this is true for any family } \\
\text { of sets } A_{i} \text {, in finite, or not. }
\end{array}\right.
$$

- Exercise 1.4 :

Now, let's jazz it up,
Suppose we have a doubly infinite family of sots.
And we have:
$\bigcup_{i \in I}\left(\bigcap_{j \in J} A_{i j}\right)$, where $A_{i j} \subseteq S_{\text {probably infinite }}$
How can we interchange union and intersection in this equation?

Let's denote by:
$J^{I}=$ the set of all functions from I to J
then:

$$
\begin{aligned}
\bigcup_{i \in I}\left(\bigcap_{j \in J} A_{i j}\right)= & \bigcap_{\varphi \in J^{I}}\left(\bigcup_{i \in I} A_{i, \varphi(i)}\right) \\
& \uparrow_{\varphi \text { ranges over all functions from } I \text { to } J}
\end{aligned}
$$

This is not so easy to see at first.
Let's look at an example:

$$
\bigcup_{i \in\{1,2\}}\left(\cap_{j \in\{1,2,3\}} A_{i j}\right)=\left(A_{11} \cap A_{12} \cap A_{13}\right) \cup\left(A_{21} \cap A_{22} \cap A_{23}\right)
$$

This is already in disjunctive normal form, We rewrite this wy our goal of exchanging
union and intersection.

$$
\begin{aligned}
&=\left(\left(A_{11} \cap A_{12} \cap A_{13}\right) \cup A_{21}\right) \cap \\
&\left(\left(A_{11} \cap A_{12} \cap A_{13}\right) \cup A_{22}\right) \cap \\
&\left(\left(A_{11} \cap A_{12} \cap A_{13}\right) \cup A_{23}\right) \\
& \frac{I}{1} \rightarrow \frac{J}{1}=\frac{\left(A_{11} \cup A_{21}\right) \cap\left(A_{12} \cup A_{21}\right) \cap\left(A_{13} \cup A_{21}\right) \cap}{3} \begin{aligned}
& \varphi(1)=\{1,2,3\} \\
& \varphi(2)=\{1,2,3\} \\
&\left(A_{11} \cup A_{22}\right) \cap\left(A_{12} \cup A_{22}\right) \cap\left(A_{13} \cup A_{22}\right) \cap \\
&\left(A_{11} \cup A_{23}\right) \cap\left(A_{12} \cup A_{23}\right) \cap\left(A_{13} \cup A_{23}\right) \\
&= \cap \\
& \\
& \varphi \in J^{I}\left(\bigcup_{i \in I} A_{i, \varphi(i)}\right)
\end{aligned}
\end{aligned}
$$

John Guide.

The Theory of Relations (beginning)
Last time, we studied some of the classical properties of the algebra of sets. Boolean algebras of all subsets of a set (finite or in finite)
$\pi\left\{\begin{array}{l}\text { We will later see that the algebraic properties of union }, \text { intersection, complement } \\ \text { actually can be used to a astradty characterize the } \\ \text { Boolean algebra. }\end{array}\right\}$
This is a tremendous discovery in mathematics
We begin wy one of the most important notions of combinatorics.
A notion that is given about 16 different names.
I have chosen the term relation, because it is the oldest-going back t Aristotle. This is one of the oblast concepts of mathematics. Even older than the concept of function.

What is a relation?

$$
S=a \operatorname{set}
$$

$T=$ another sat
A relation R is a subset of $S \times T$
relation $R \subseteq S \times T$
Now you say. "What's the big deal?"
The big deal is this.

$$
\left.\begin{array}{ll}
a \in S ; b \in T, & (a, b) \in R \\
& \tau_{\text {ordered pair }}
\end{array} \begin{array}{ll}
a \in S \text { and } b \in T \text { and } \\
\text { the pair belongs } t R
\end{array}\right\}
$$

We also write:

$$
a \in S, b \in T, a, R b \longleftarrow\left\{\begin{array}{l}
a \text { is related to } b \\
\text { relation } R
\end{array}\right.
$$

Bipartite Graph of R
Corresponding to a relation is a bipartite graph.
We have, here, the situation where we are describing concepts that are mathematically identical, yet psychologically diffecart.
The bipartite graph is strictly speaking, the same as a relation.
Bat you visualize the bipartite gro 'differathy.
\mathcal{L} that's the difference

You draw a set of vertices, corresponding to the set S.
You draw a sot of vertices, corresponding to the set T.
If an element $a \in S$ and an e/omient $b \in T$ belong t the relation $\underbrace{(a, b) \in R}_{\text {or, } a R b}$, ${ }_{\text {then }}^{(\text {we draw an edge connecting } a \text { and } b \text {. }}$
In this way you visualize the relation as a bipartite graph.

So, the theory t bipartite graphs is the same as the theory of relationce

- Another name used for relation, especially by geometers, is: "correspondence"

What are examples of relations? A Mickey Meuse example is worthwhile t consider,
Example 1

$$
\begin{aligned}
& T=a \text { set } \\
& S \subseteq P(T)
\end{aligned}
$$

$\uparrow S$ is some family of subsets of T
Any family of subsets of T defines a relation R as follows:

$$
\begin{aligned}
& s \in S, t \in T \\
& (s, t) \in R \Longleftrightarrow t \in S
\end{aligned}
$$

$$
\uparrow
$$

s is related t t by R whenever t belongs in S.
The picture is:

- Can every relation be represented in this way?

Answer - No
Assume we have subsets A and C that are related to the same elements

A is related to a set of elements of $T(\{2,3\}) T$
C is collated t a set of elements of $T \quad(\{2,3\})^{\top}$

Thus $A+C$ have to be the same subset

$$
A=C
$$

This dispute goes back 2000 years,
Allow me this philosophical digression.
Not every relation can be represented $\operatorname{s} \xi_{(T)}$ in example 1.
Because in a relation, 2 elements $s=\$(T)^{n}$ be related t the same things: In which case you are forced to call these 2 elements the same sets.
Are we in the presence of a generalization of the notion of set?
Not quite.
Lat's see what happens.
For relation $R \subseteq S \times T$,
set $R(a)=\{b \in T:(a, b) \in R\}$

$\begin{aligned} & \text { A relation mag be represented } \\ & \text { as a family, of subsets of } T\end{aligned} \Leftrightarrow R(a)=R(c)$ for $a, c \in S \xrightarrow{\text { inplios }} a=c$ as a family, s subsets of $T \Longleftrightarrow R(a)=A(c)$ for $a, c \in S \Rightarrow a=c$

This is what we just said at the top of the page, but in more formal language.

- Relations arise in the most disparate circumstances.

Recelth) computer sciatists get ho ld of the theory of relations.
why? (i) Because relations express the most primitive notions we can think of. Example:

$$
\text { Boys } x \text { Girls }
$$

etc.
${ }_{12}$ Relations are a universal concept.

- Where does Aristotle come in?
(This is more philosistly than mathematics)
Aristotle comes in as a philosophical dispute over defining a. set by the extent -us- the intent

An other example:
You can take a number of attributes that determine some set of peale. Then you can take a number of completely different attributes that determines exactly the same set of people.

Even though as sots, these Attributes are equal $\{a, b, c, d\}=\{x ;\{, r, b\}$, their properties may be different.
Therefore; you supplement the concept of a set by the concept of a relation.
$\tau_{R \neq R^{\prime}}$
The concept of relation has the advantage that one can defies:
Inverse relation
$R^{R^{-1}}$ notation is preferred to

$$
\begin{aligned}
& \begin{array}{l}
R^{-1} \subseteq T \times S: R^{-1}=\{(b, a):(a, b) \in R\} \\
R^{-1} \text { is a relation butwem } \\
T \text { and } S
\end{array} \\
& R^{-1} \text { for the inverse relation. } \\
& \text { See [23.6] for discussion. }
\end{aligned}
$$

Function
You can view a function as a special kind of relation
A function is a relation R sit. if $c, d \in R(a)$ then $c=d$ and $R \subseteq S \times T$: for every $a \in S, R(a) \neq \phi$
In other words: for ever vertex of S, there issues $\frac{\text { exactly }}{13}$ ane edge. $\}$ balls (S) into lox es (T)

- The inverse of a function is not a function.

It is a relation
function $f: i_{L}$ i \geq

$$
f^{-1}: \frac{\dot{x} \dot{\tau} i}{\tau}
$$

Not a function
It is a relation.
The next concept wo meet:
Composition of relations
Given relation $R \subseteq S \times T$ and another relation $R^{\prime} \subseteq T \times U$
Then we define:
$R \circ R^{\prime}=\left\{(a, c)\right.$: there is a $b \in T$ sot. $(a, b) \in R$ and $\left.(b, c) \in R^{\prime}\right\}$
We can visualize the composition of relations as:

An important class of relations consists of the relation of a set with itself. Special Case:

$$
R \subseteq S \times S \longleftarrow\left\{\begin{array}{l}
\text { "relation } R \text { on a set } S " \text { " contrasted with } \\
R S S \times T \text { aka "relation } R \text { from set } S \text { set } T "
\end{array}\right\}
$$

In this special case, we can represent the relation not only as a bipartite graph, but as an oriented' graph.
Namely, you visualize the relation as follows:

$$
\begin{array}{cc}
\rightarrow b & Q \\
\begin{array}{c}
(a, b) \in R
\end{array} & c \\
\left\{\begin{array}{l}
\text { an orictel arrow } \\
\text { from a to } b
\end{array}\right\} & (c, c) \in R
\end{array}
$$

The Theory of Oriented Graphs is the sames as the Theory of Relations of Sets w/ themselves. It's just a matter of wording.
Some people like to talk allot oriented graphs - good.
Some people like to talk about relations ofraphs - goods whemselves - good. $\}$. They are the

- When $R \subseteq S \times S$, the relation is symmetric when:

$$
R=R^{-1}
$$

In terms of bipartite graphs:

A symmetric relation $R \subseteq S \times S$ has a simpler graphical representation.

it doesn't matter in which orientation you are, because the relation is symmetric.

The Theory of Unorieted Graphs is the Theory of Symmetric relations of sets
They are one and the same.
I don't like to talk about graphs, I like tr talk about relations.
So you are stuck wy it.

$$
R \subseteq S \times S
$$

- Furthermore, if the relation has the property that it is anti-reflexive:

$$
(a, a) \notin R \text { for any } a \in S
$$

$\underset{a}{x} \longleftarrow$ no loops.
The graph is called a linear graph,
Associated w/ a relation, we have the incidence matrix of a relation.
Given $R \subseteq S \times T,|S|<\infty,|T|<\infty \quad \underset{\sim}{\text { cardinality }}$ ot set $<\infty=$ finite sat $^{\text {sen }}$ then the incidence matrix of R is a matrix of O and 1

$$
s\left[\begin{array}{c}
1 \\
x_{a b}
\end{array}\right] \quad \begin{array}{r}
\text { if }(a, b) \in R, \text { set } x_{a b}=1 \\
(a, b) \& R,
\end{array}
$$

	There is a whole schod that talks about nothing except matrices of o's and i's.
The theory of matrices of o's and i's is cryptomorphic to the theory of relations.	

- If you look at a matrix from the point of vise of its incident matrix, then it becomes natural to associate with the matrix its marginals.

Marginals of R
t the term originated in statistics
You take the sum of all the is in a row and write it to the left. " " " " " " " " " " column " " " at the top. So, it's the row sums and the column sums of the incidence matrix.

From the point if vier of graph theory, how do we view the marginds?

$$
\frac{111 \quad 13}{\alpha \beta \gamma} \text { column sums }
$$

A pow sump is the number of edges emanating from a given vertex. of S.

$$
\operatorname{cow}_{-} \operatorname{sum}(c)=4 \longleftarrow \text { degree of vertex } c
$$

A column sum is the number of edges incident on a given vertex of T.

$$
\begin{gathered}
\text { column-sum }(i)=3 \\
\sum_{s \in S} \text { row_sum }(s)=\sum_{t \in T} \text { column-sum }(t)
\end{gathered}
$$

- Next Monday, we will answer the following interesting question:

Given 2 sets of Integers, when is there a relation that has those sets of Integers as marginals?
This is a very important question, which has a very elegant answer.

- *** Exercise 2.1:

Why don't we define ternary relations?
What were just defined is a binary relation.
We define a ternary relation as:

$$
R \subseteq S \times T \times 4
$$

It's a very nice definition.
No one has ever been able to find a non-trivial property of ternary relations.
The situation is even worse than that.
Let me define a special kind of relation.
$R \subseteq 5 \times S$ is a permutation iff $\frac{\text { all its marginals equal } 1}{\tau}$
What does that mean?
It means that every element maps into a unique element of S.

You are permuting the elements.

Part 1: Find a non-trivid property of ternary relations.
Part 2: Find the right ternary analogue of a permutation.
What do we mean by right?
Well, when you vie found it,
, you will know.
I've known some very good mathematicians who've worked on this for 10 years wo success.
mark mayer, for example, worked very hard.
We will see 'later, when we do the Birkhoff - ven Newman Theorem that this pattern comes up.

			2.9	
	Continuing w/ our laundry list of definitions:	$9 / 4 / 98$		

- If we take a symmetric relation a reflexive relation can be defined b_{y} introducing 2 special kinds of relations:
- Identity Relation

$$
I \subseteq S \times S \quad I=\{(a, a): a \in S\} \quad S\left[\begin{array}{ccc}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- Universal Relation
incidence matrix of I

$$
U_{s} \leq s \times s \quad U_{s}=\{(a, b): a, b \in S\}
$$

$s\left[\begin{array}{ccc}s \\ 1 & \cdots & 1 \\ \vdots & & \\ 1 & \cdots & 1\end{array}\right]$
incidence matrix of U_{s}
Algebra of relations
There is such a thing as an algebra of relations.
We define this in terms of relations of a set into itself, even though some of these operations can be defined for relations of a set into another set.
if $R, R^{\prime} \subseteq S \times T$
then you can define: $R \cup R^{\prime}$
union of the elements of the relations.
You take the edgers and join them together. If go have a double edge, you reduce it to a single edge.

Ex:

- $R \cap R^{\prime}$
using $R+R^{\prime}$ from above $\Rightarrow-$

$R \cap R^{\prime}$

The algebra of relations with a set into itself has all the Boolean operations and compositions.
Mathenticans, starting in 1870 and through to 1993 , tried t study all the identities that hold, with the Boolean operations and composition.
And they thought:
Just as we can characterize the algabia of sots by the Bor lean operations [p1.7-8],
Perhaps we can characterize the algebra of relations by the Boulboun opections. and composition.

$$
(u, n, c, 0) \stackrel{?}{\Rightarrow} \text { alluidentities of relations }
$$

\sum

$$
\left\{\begin{array}{l}
\text { this effort failed. } \\
\text { It was proved that it is impossible } t \\
\text { characterize the algal of relations w/ } \\
\text { the Boolean operations and composition. }
\end{array}\right\}
$$

Now continuing we our definitions:

$$
R \subseteq S \times 5
$$

R is reflexive if $R \supseteq I \longleftarrow R$ is contained in the Identity relation, which means for every $a \in S$, the pair $(a ; a) \in R$
symmetric if $R=R^{-1}$
transitive if $R \circ R \subseteq R \longleftarrow$ ie., if $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$,
That's what $R \circ R \subseteq R$ says, in a concise and efficient way.

- Exercise 2.2 There was a research pere, some time ago, from UNC that studied this, Study properties of relations satisfying $R \circ R \circ R \subseteq R$
There are some remarkable properties. 19

	A relation R on a set S that is reflex is an equivalence relation,
$R \subseteq S \times S$ where	$R \supseteq I$,
	$R=R^{-1}$,
	$R \circ R \subseteq R$

A relation R on a sot S that is reflexive, symmetric, and transitive. is an equivalence relation.
$R \subseteq S \times S$ where $R \supseteq I$,

$$
\begin{aligned}
& R=R^{-1}, \\
& R \circ R \subseteq R
\end{aligned}
$$

R is an equivalence relation.

- Equivalence class of an equirdence relation
equivalence classes $=$ maximal subsets B of S sit. for $a, c \in B$, we have
- An equisederre class is always non-empts $a R_{c}$
- Any two equivalence closes are disjoint:

$$
U B_{K}=S
$$

$$
\left\{\begin{array}{l}
\text { the union of all equivalence classes (i.e., maximal subsets of } S \text {) } \\
\text { giver } S \text {. }
\end{array}\right.
$$

Therefore, the equivalence classes of an equivalence relation. define what is known as a partition of a set S.

Partition of a set
Partition of S

$$
\pi=\{B: B \subseteq S\}
$$

if $B, B^{\prime} \in \pi$ and $B \neq B^{\prime}$ then $B \cap B^{\prime}=\phi$ if $B \in \pi$ then $B \neq \phi$

$$
\bigcup_{\beta \in \pi} B=S
$$

Next ta set, the notion of a partition is the next mort important notion in combinatorics.

Notice, again, the same sort of strange phenomenon (ice., relation: bipartite graph [p 2,1]):

- The notion of a partition and the notion of an equivalence relation are mathematically equivalent, though pschologictly different.
- Every partition defines an equivalence relation:

Given a partition π, set $\sim_{\pi}=$ equivalence relation defined $b_{p} \pi$

- Every equivalence relation defines a partition:

Given an equivalence relation R, set $\pi_{R}=$ partition defined by R
Were not going to give examples of all of these, as you are going tr see hundreds of them. Also, you should be slightly familiar wo these notions, Were just filing in the gaps. Now let's go back to Boolean algebra for 5 minutes,
Boolean Algebra (contd)
Consider the Boolean algebra of all subsets of a set S.
Let's define the notion of Boolean subalgedra of sets.
A Boolean subalgebra $B^{\text {script }}$ of $P(S)$ is a subfamily of $P(s)$ containing $\phi ; S$, and closed under arbitrary (even infinite) u, n, c.

To stress the fact that you are allowed to take infinite unions and intersections, we sometimes say this is a:

Complete Boolean subalgebra
τ shorthand for permission to take arbitrary unions intersections.

- There is a remarkable relationship between the family of all Boolean subulgebims of $P(s)$ and the family of all partitions. We now make this explicit.

Q $=$ given Boolean subalgebra of $P(S)$

Let's take:
$a \in S$
aA
$A \in R$
$a \in A$
and we also take: $b \in S$
nA
$A \in R$
$b \in A$
these 2 intersections will be either
identical or disjoint. $\longleftarrow\left\{\left\{\begin{array}{l}\text { I leave it for you to } \\ \text { realize. that. }\end{array}\right\}\right.$
What is a set of this form?
A set of this form is the minimal elements of the Boolean subalgebira $B .\left\{\begin{array}{|c}\text { a }\end{array}\right.$
And we ensure that it is non-empty ty making it contain a. $\left.\}^{4}\right\} \begin{aligned} & A \in R\end{aligned}$
So if we take z different minimal nonempty elements of the Boolean subalgobra B, they will be disjoint.
That's obvious.
If you don't see it, sit down and realize it.
There fore, the minimal nonempty members of Q are a

- Therefore, we have the following result:

Every Boolean subalgobra is completely determined by the partition.
If you find the partition, you find the Boolean subalgebra.
There is a $\mid-1$ correspondence between the Boolean subalgebra of $P(S)$ and the partitions of S.

We will see next time this bijective correspondence is also order inverted.
Above proves the entire resht because it's so obvious.
And I hope it's obvious to you, Tor.
The essence of the result is that:
you have 2 different Boolean subalgebras \Longleftrightarrow you have 2 different partitions I leave it to you to verify that this is so.
I also leave it to you to prove:
Given $\pi \in \prod[s]$ we define a Boolean subalgebra of $P(S)$ consisting of all unions of members of π.

Reasoned Review \leftarrow a phrase the French often use
So for, we have been studying sets and relations.

$$
S=\text { set }
$$

$P(s)=$ Boolean algebra of all subsets of s
The most important fact about this Boolean algebra, whid I keep insisting upon, is that you can take arbitrary unions and intersections.
This docs nt happen for other Boolean algebras, S. this is an exceptional boolean algebra.
For this reason we call it complete
t ie., arabic $t_{\text {reit }}$ unions + intersection,

- Then we studied relations:

$$
R \subseteq S \times T
$$

And, in particular, we discussed a relation R on the sat S :

$$
R \subseteq S \times S
$$

For the following, assume $R \subseteq S \times S$:

- The family of relations on $S(s a y)$ is a complete Boolean algebra $P(S \times S)$, which, in audition to union, intersection, and complement, has the additional operation of composition:

$$
R \circ R^{\prime}
$$

Every relation has an inverse relation:

$$
R^{-1} \text { exists }
$$

The family of relations on S is a complete Boolean algebra, with two additional operations:
(1) binary operation of composition

- and (2) inverse
$\hat{T}_{\text {NB }}$: inverse is quite different than the complement.
observe that you have R^{c}, which is the comp tenet of the relations between the sots.
$(U, n, c,-1,0) \Rightarrow$ complete Boolean algebra

	$B \subseteq S$	
	with $A \subseteq S$, we define:	$9 / 14 / 98$
$R(A)=\{b:(a, b) \in R\}$		

Then we have:

$$
R(A \cup B)=R(A) \cup R(B)
$$

Note $\Rightarrow R(A \cap B) \neq R(A) \cap R(B)$ and we have:

$$
R(A \cap B) \subseteq R(A) \cap R(B)
$$

Consider the exam- le:

$$
\begin{aligned}
& A=\{a\} \cap C \\
& B=\{b\} \\
& R(\underbrace{A \cap B}_{\{a\} \cap\{b\}=\phi}) \subseteq \underbrace{R(A)}_{\{c\}} \cap \underbrace{R(B)}_{\{c\}} \\
& R(\phi)=\phi \\
& \quad \phi \subseteq\{c\}
\end{aligned}
$$

- Exercise 3.1
$N_{N}=R\left(A^{c}\right) \neq(R(A))^{c}$
Find a counter example.
- Exercise 3.2

Note that $\left(R \cup R^{\prime}\right)$ is a relation - you put all the edges together.
If you compose this with another relation $R^{\prime \prime}$, nothing wring happens,

$$
\left(R \cup R^{\prime}\right) \circ R^{\prime \prime}=\left(R \circ R^{\prime \prime}\right) \cup\left(R^{\prime} \circ R^{\prime \prime}\right)
$$

And similarity:

$$
\left(R \cap R^{\prime}\right) \circ R^{\prime \prime}=\left(R \circ R^{\prime \prime}\right) \cap\left(R^{\prime} \circ R^{\prime \prime}\right)
$$

Prove these.
These are pretty much all the identities satistided linking Boolean operations with composition.

- To be honest, there is an additional operation among relations that has been studied, burt it's a little hairy to discuss at this point. People like Ladon + Tarsi looked at this.
ω_{e} continue our reasoned review.
After this, we discussed equivalence relations,
- Special relations: $R \subseteq S \times S$
- universal relation $U_{S}=S \times S \Leftarrow\left\{\begin{array}{l}\text { every passille pair is in } \\ \text { the universal relation }\end{array}\right\}$
- identity relation $I=\{(a, a): a \in S\}$.
- equivalence relation
(a) $R \geqq I$
reflexive
(z) $R=R^{-1}$ symmetric
(3) $R \circ R \subseteq R$. transitive
- Equivalence relations, partitions, complete Boleyn subalgobiras

$$
R \quad \pi \quad R
$$

These 3 concepts ane coptomorphic
$\left\{\begin{array}{l}\text { as I love to say. } \\ \text { This is a word which will remain admirably undefined. }\}\end{array}\right\}$

-

-

Starting: w/ an equivalence relation R, we get the partition π of equivalence classes. [2, 11]

Conversely, given partition π, we get equivaleve relation R_{π}, where turd elf met, are eqniviontant, if they are in the same block
of the partition.

$$
\begin{aligned}
& \text { (ain } \\
& \begin{array}{l}
(a, b),(b, a) \in R_{\pi} \\
(a, c),(c, a), \quad R_{\pi} \\
(b, c),(a, b) \in
\end{array}
\end{aligned}
$$

Given a Boolean sububedra B, take the minimal elemuts of the Boolean subalget ta $[P$? 13$]$.
Any two minimal dement are disjoint (otherwise their intersection would be more minimal).
Take the dispint minimal elements that cover sot S. There disjoint minimal elements form a partition of the sot S.

Conversely; if you are given a partition, you take all sets that are unions of blocks of the partition.

That's a complete Boolean subalgalra $[p-2.13-14]$.

So you go ring-around-the-rosie.
The three concepts are equivalent.

Basic enumeration
Take set S finite $|S|<\infty,|s|=n$

- How many subsets of Stare there? You've known this since the age of 5 ,

$$
|P(s)|=2^{n}
$$

How many subsets of S are there wo k elements?
You've also known this sine the cradle.

$$
\left|\left\{A: A \subseteq S_{k \leq n}:|A|=k\right\}\right|=\binom{n}{k}
$$

Big deal.
I assume you already know this.
Now, let's turn the screw.
Let's do the same thing for partitions.
Here we have a finite set:
$S=\cdots \cdot .$.
And here we have the partitions:

$$
\pi=\underbrace{\bullet 0}_{\text {blocks }} 000
$$

Now we ask:
How many partitions of S are there?
How many partitions of S are there w/ k blocks? $\left\{\begin{array}{l}\text { Bread }+ \text { butter questions. }\end{array}\right.$

- The number of partitions, of the set S, with k blocks

$$
=S(n, k)
$$

\uparrow Stirling numbers of the $2 \underline{\text { nd }}$ kind (I'm very sorry. It's not my fart.)
(That's the way g they are called.

So, our objective is tr find some formula for the Stirling numbers of the $z^{\text {ad }}$ kind. Guess hiv were going to that? Balls into boxes. You knew that was coming. Lat's consider. the sets and the partition the set T.

$$
\begin{aligned}
& \ldots . . .15 \mid=n \\
& |T|=x
\end{aligned}
$$

$$
\left\{\begin{array}{l}
t \text { the number of elements in the set } T \text {. } \\
x \text { is an unusund way of denoting an integer. }\}
\end{array}\right.
$$

Then we take functions from Soto T, where S is the balls (distinguishable) and T is the bros (distringuishalle)
The number of functions from S to $T=x^{n} \sim \overbrace{x \cdots x}^{n}$

$$
\left\{\begin{array}{l}
\text { each ball can go intr one of } \\
\text { o bores } \\
\text { other ball' irrespective of wharve gene. }
\end{array}\right.
$$

The number of monomorphic functions from S to T is:

$$
\overbrace{x(x-1)(x-2) \cdots(x-n+1)}^{n \text { terms }}=(x)_{n} \longleftarrow \overbrace{}^{*} \text { lower factorid } n "
$$

After X^{n}, the lower factorials are the most important polynomials.
Now, we use linear algebra.
$\begin{array}{l}\text { I could compote the formica for the Stirling numbers directly } \\ \text { But Ind rather use linear algebra. }\end{array}$ (set 18.313 Super class 2 nites $)$

Let $R[x]=$ vector space of all polynomials $p(x)$ $\left(\begin{array}{l}\text { all our vector spaces will have real coefficients, } \\ \text { unless other wise specified. }\end{array}\right.$
t all polynomials in x w/ real coefficients.
A basis of $R[x]$ is $1, x, x^{2}, \ldots$
\uparrow sit .f vectors that are (a) linearly independent
(L) Span the vector space

Another basis of $R[x]$ is $1, x,(x)_{2},(x)_{3}, \ldots$

Fine.
why am I saying all this?
For the follow: reason.

$$
\operatorname{ker}(t)
$$

Given $f: S \rightarrow T$, one defines the kernel of f, say π_{f}, as the partition of S whose blocks are the sets:

$$
f^{-1}(b), b \in T
$$

whenever $\left|f^{-1}(b)\right| \neq \phi$
The inverse function f^{-1} of elements (ie,, Hocks) of T, which are sets that are dirigoint, form a linear function.

Every frimection has a Kernel, which is a partition.
To every function, you associate 2 things:
$\left.\begin{array}{l}\text { (1) } \text {) mage - which is a subset of } T \\ \text { (2) Kernel }- \text { which is a partition of } S\end{array}\right\}$ duals
Philosopticlly, anything you can say about subset of T, you can turn int saying something
about about puntitims of S.
That's the guiding principle.
Example:

			$9 / 14 / 98$	3.8
	OK, So what? Now we ask:			

How many functions are there w/ a given kernel?
The number of functions whose kernel is the partition π of S is:
$(x)_{|\pi|} \longleftarrow x$ lower factorial number of blocks of π
Why? Because you treat each block as an element.
And you just pat each, block in a different box.
Since every function has a kernel, we obtain the following important identity:

You can split the RHS sum in many ways.
In particular, you can split it by taking all partitions π that have k blocks.
The number of partitions of S that have k blocks is just the stirling number of the $2 n$ - kind $-S(n, k)$.

$$
=\sum_{k=1}^{n} S(n, k)(x)_{k}
$$

And we have our identity:
(*) $x^{n}=\sum_{k=1}^{n} S(n, k)(x)_{k}$

This is a purdy numerical identity between polynomials.

	\mid
From this identity, we need to get the formula for the Stirring numbers of the Here's how we do it.	$9 / 14 / 98$

From this identity, we need to get the formula for the Stirling numbers of the $2=1$ kind.
Here's how we do it.
Difference Operator
The difference operator is defined as:

$$
\Delta p(x)=p(x+1)-p(x)
$$

So, we have:

$$
\begin{aligned}
\Delta(x)_{k} & =(x+1)_{k}-(x)_{k} \\
& =(x+1)(x) \cdots(x-k+2) \\
(x)_{k-1} & \underbrace{(x)(x-1) \cdots(x-k+2)}_{(x)_{k-1}}(x-k+1) \\
& =((x+1)-(x-k+1))(x)_{k-1} \\
\Delta(x)_{k} & =k(x)_{k-1} .
\end{aligned}
$$

Delta acts on the lower factorials like the derivative acts on monomials.

$$
\begin{aligned}
\Delta:(x)_{k} & : D: x^{k} \\
k(x)_{k-1} & : k x^{k-1}
\end{aligned}
$$

Iterating the perter Δ gives:

$$
\Delta^{\dot{j}}(x)_{k}=(k)_{j}(x)_{k-j}
$$

We nite that:

$$
\Delta \dot{r}(x)_{k}=\left\{\begin{array}{l}
0 \text { if } j>k \\
k!\text { if } j=k \\
(k)_{j}(x)_{k-j} \text { if } f_{j<k}
\end{array}\right.
$$

In all cases, we have:

$$
\begin{aligned}
& \begin{array}{ll}
\text { In all cases, we have: } & \begin{array}{ll}
\text { Kronecker Death } \\
& \left.\Delta^{j}(x)_{k}\right]_{x=0}=k!\delta_{j k}
\end{array} \\
& \begin{array}{l}
\text { if } j>k, \Delta^{j}(x)_{k}=0 \\
\\
\text { if } j<k, \Delta^{j}(x)_{k}=
\end{array}
\end{array} \\
& \text { if } j<k ; \Delta^{j}(x)_{k}=(k)_{j}(x)_{k-j} \\
& \begin{array}{l}
=(k)_{j} x^{7}(x-1)_{k-j-1} \\
=0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l|l}
& \\
\text { Now we apply } \Delta^{\gamma} t \text { both sides of equation (} * \text {) and set } x=0 .
\end{array} \\
& {\left[\Delta \dot{j} x^{n}\right]_{x=0}=\left[\Delta^{j}\left(\sum_{k=1}^{n} S(n, k)(x)_{k}\right)\right]_{x=0}} \\
& =\sum_{k=1}^{n} S(n, k)\left[\Delta^{j}(x)_{k}\right]_{x=0} \\
& =\sum_{k=1}^{n} S(n, k) k!\delta_{j k} \\
& \tau \\
& \delta_{j k}=0 \text { except whin } j=k, \\
& \begin{array}{l}
\text { so only a single term survives } \\
\text { the summation, }
\end{array} \\
& {\left[\Delta \dot{+} x^{n}\right]_{x=0}=S(n, j)_{j}!}
\end{aligned}
$$

And this gives us an expression for the Stirling numbers of the $2^{\text {ned }} \mathrm{Kind}$:

$$
S(n, j)=\frac{\left[\Delta^{j} x^{n}\right]_{x=0}}{j!}
$$

\uparrow the number of partitions of the set $S(|S|=n)$ with j blocks.
Because of this expression, the British call the Stirling numbers of the $2^{\text {nd }}$ Kind: "The differences of zero"

- Now, let's look at one of the mort important identities in mothomatics.

Given $p(x), q(x) \in R[x] \longleftarrow p(x)$ and $q(x)$ are polynomids w/
It is clear what we mean by $P(D)$, where $D=\frac{d}{d x}$ (the derivative); Just replace the powers of x by the powers of D.
The following identity is one of the most useful that occurs throughout algebra, linear algebra:

$$
[p(D) q(x)]_{x=0}=[q(D) p(x)]_{x=0}
$$

Proof:
By linearity, we only need to prove this when $p(x)$ is some power of x and
$g(x)$ is some power of x. $g(x)$ is some power of x.
So we check when: $p(x)=x^{n}$

$$
\begin{aligned}
& \text { LAS: } q(x)=x^{k} \\
& {[p(D) q(x)]_{x=0}=\left[D^{n} x^{k}\right]_{x=0} \longleftrightarrow\left[\begin{array}{l}
\text { if } n 2 k \text {, you diffintitate the bell out of } \\
\text { it and the resat is } 0 \\
\text { if } n<k, \text { the resulting polynomial is some } \\
\text { monoxide in } x \text {, and since } x=0, \text { the } \\
\text { result is } 0 . \\
\text { if } n=k, D^{n} x^{n}=n!
\end{array}\right]}
\end{aligned}
$$

similarity:
RUS:

$$
\begin{aligned}
{[q(D) p(x)]_{x=0} } & =\left[D^{k} x^{n}\right]_{x=0} \\
& =k!\delta_{n k}
\end{aligned}
$$

And we have the tautology:

$$
n!\delta_{k_{n}}=k!\delta_{n k} \longleftarrow \begin{gathered}
0=0 \quad \text { for all } n \neq k \\
n!=n!\text { for } n=k
\end{gathered}
$$

so it checks,

- Something I forgot to tell you.

Taylor's formula.

$$
\Delta=e^{D}-I
$$

Why?

$$
p(x+1)=\sum_{j=0}^{\infty} \frac{D^{j}}{j!} \rho(x)
$$

from Taylor's formula:

$$
p(u)=\sum_{j=0}^{\infty} \frac{D^{j} p(c)}{j!}(u-c) \gamma
$$

Let $u=x+1$
we can write this as:

$$
c=x
$$

$$
p(x+1)=e_{p}^{D}(x)
$$

$$
p(x+1)=\sum_{j=0}^{\infty} \frac{D j}{j!} p(x)
$$

The difference operator gives:

$$
\begin{aligned}
\Delta p(x) & =p(x+1)-p(x) \\
& =e^{D} p(x)-p(x) \\
\Delta p(x) & =\left(e^{D}-I\right) p(x) \quad \Rightarrow \quad \Delta=e^{D}-I
\end{aligned}
$$

We can get gunther expression for the Stirling numbers. f the $Z^{\text {ned }} k i d$ as follows.
Recall [p3.10]:

$$
S(n, j)=\frac{\left[\Delta^{j} x^{n}\right]_{x=0}}{j!}
$$

We can express the numerator, using the fact that $\Delta=e^{D}-I$, as:

$$
\left[\Delta^{\dot{j}} x^{n}\right]_{x=0}=[\underbrace{\left(e^{D}-I\right)^{j}}_{p(D)} \underbrace{x^{n}}_{q(x)}]_{x=0}
$$

We make use of the identity proved on $[p, 10-11]$, namely:

$$
\begin{aligned}
& {[p(D) q(x)]_{x=0}=[g(D) p(x)]_{x=0} } \\
& p(D)=\left(e^{D}-I\right)^{j} \Rightarrow p(x)=\left(e^{x}-1\right)^{\dot{\gamma}} \\
& q(x)=x^{n} \Rightarrow g(D)=D^{n} \\
&= {\left[D^{n}\left(e^{x}-1\right)^{j}\right]_{x=0} }
\end{aligned}
$$

And this gives us a second formula for Stirling numbers of the $2^{\text {nd }}$ kind:

$$
S(n, j)=\frac{\left[D^{n}\left(e^{x}-1\right)^{\dot{j}}\right]_{x=0}}{j!}
$$

- A third expression for the Stilling numbers of the $2^{\text {nd }}$ kind

Define the shift operator E as:

$$
E_{p(x)}=p(x+1)
$$

Thus:

$$
\begin{aligned}
\Delta=E-I \longleftarrow \Delta p(x) & =p(x+1)-p(x) \\
& =E p(x)-p(x) \\
4 p(x) & =(E-I) p(x) \quad \Rightarrow \Delta=E-I
\end{aligned}
$$

$$
\Delta^{\dot{j}}=(E-I)^{\dot{\gamma}}
$$

We expand this by the binomial theorem

$$
=\sum_{i=0}^{\dot{5}}\binom{j}{i}(-1)^{j-i} E^{i}
$$

Recalling our first expression for stirling numbers of the ind kind $[\mathcal{P} 3,10]$:

$$
\begin{aligned}
& S(n, j)=\frac{\left[\Delta^{j} x^{n}\right]_{x=0}}{j!} \\
&=\frac{1}{j!}[\sum_{i=0}^{j}\binom{j}{i}(-1)^{j-i} \underbrace{E^{i} x^{n}}]_{x=0} \\
& E^{i} x^{n}=(x+i)^{n} \\
&=\frac{1}{j!}\left[\sum_{i=0}^{j}\binom{j}{i}(-1)^{j-i}\left(x^{0}+i\right)^{n}\right]_{x=0}
\end{aligned}
$$

And we obtain our third expression:

$$
S(n, j)=\frac{1}{j!} \sum_{i=0}^{j}\binom{j}{i}(-1)^{j-i} i^{n}
$$

			$9 / 14 / 98$	3.14

- Exercise 3.3

The formula we have just proved:

$$
S(n, j)=\frac{1}{j!} \sum_{i=0}^{j}\binom{j}{i}(-1)^{j-i} i^{n}
$$

reminds us of the inclusion-exclusion formula.
Prove this by the inclusion-exclusion principle uses onto functions (This can be given a direct combinatorial proof) use mciusion-exdusion to compute \# onto by takin number that exclude a specify element- take union = four that exude some element and then complearent

- Now we address the question of the total number of partitions. stirling \# $2^{\text {nd }}$ al and. This is more complicated.
We can make use of $S(n, k)$ t write the equation:

$$
\begin{gathered}
\text { Total \# of partitions of } \\
\text { an } n \text { element set }
\end{gathered}=\sum_{k=1}^{n} S(n, k)
$$

$B_{n} \longleftarrow$ we give this the name B_{n}.
These are called the Bell numbers,
W_{2} go back to the vector space $R[x]$.
Because this is a vector space, we can define a linear functional on this vector space.
You define a linear functional by telling what it does for every element of a basis. By so doing, since the basis spans the vector space, you've implicitly defined the linear functional over the whole vector space.

Define linear functional L on $R[x]$ by setting:

$$
L(\underbrace{(x)_{n}})=1, \quad n=0,1,2, \ldots
$$

polynomials $(x)_{m}, n=0,1,2, \ldots$ are a basis for the vector space $R[x]$
Now watch.
This is ratty cute.
Recall $[p$ 3.8] our formula for the total number of functions from S t T :

$$
x^{n}=\sum_{n \in \pi[5]}(x]_{|n|}
$$

$$
\begin{aligned}
& \quad \\
& \quad \begin{aligned}
& A_{\mu r l} l y \\
& L\left(x^{n}\right)=L\left(\sum_{\pi \in \pi} \text { both sides: }(x)_{|\pi|}\right) \\
&=\sum_{\pi \in \pi[s]} L\left((x)_{|\pi|}\right)
\end{aligned}
\end{aligned}
$$

When you apply the operator L to the RHS above, every partition gives you a contribution of 1 .
This is because $L\left((x)_{n}\right)=1$, since $(x)_{n}, n=0,1,2, \ldots$ is a basis.
So the sum on the RHS is the number of partitions. This is exactly what we are after,

$$
=B_{n}
$$

Thus, we have a formula for the Bell numbers:

$$
B_{n}=L\left(x^{n}\right)
$$

That's the formula.
It's a nice formula.
Now I know that you want something numerical.
You're not used to seeing formulas w/ linear functionals.
So nat time, well rehash this wo linear functionals.

John Guidi
guidiemath_mit.edu $\quad 18.315$
Basic enumeration (contd)
We continue our study of the enumeration of the partitions of a set.
We recall that:

$$
S=\operatorname{set} \text { (finite or infinite) }
$$

$\pi[S]=$ set of all partitions of S
Last time, we defined the Bell numbers as the number of elements of $\Pi[5]$:

$$
B_{n}=|\Pi[s]|
$$

Bell numbers
The Stirling numbers of the 2 nd kind, which we studied last time, are the analogues for partitions of the binomial coefficients.
The Bell numbers are analogues for partitions of 2^{n} :

Last time we saw a formula for the Bell numbers. You take:
$R[x]=$ vector space of polynomials in x
Linear functional L is defined by setting:

$$
L\left((x)_{n}\right)=1, n=0 ; 1,2 ; \ldots
$$

A linear functional is well defined, once it is defined on the elements of a basie. As it is here.

Therefore, the linear functional is wall defined on the vector space $R[x]$
From the Fundamental Identity we established last time $[p 3.8]$:

$$
x^{n}=\sum_{\pi \in \pi[s]}(x)_{|\pi|}
$$

We applied the linear functional $L t$ both sides, we observed:

$$
\begin{aligned}
L\left(x^{n}\right) & =L\left(\sum_{\pi \in \Pi[s]}(x)_{|\pi|}\right) \\
& =\sum_{\pi \in \Pi[S]} L\left((x)_{|\pi|}\right) \longleftarrow\left\{\begin{array}{r}
\text { and since } L\left((x)_{n}\right)=1, \\
n=0,1,2, \ldots \\
\text { the RUMs adds a count of } \\
1 \text { for each partition. }
\end{array}\right\} \\
& =B_{n}
\end{aligned}
$$

And so we obtain immediately:

$$
B_{n}=L\left(x^{n}\right)
$$

[That this formula is not explicit is a predjudice.
Because you are used to seeing formulas in terms of something a sse. In reality, this is as acceptable a formula as a formula given by a generating function, or any other thing.
You can work w/ it.

- But let's give in to our predjudice and give it more explicitly.

The explicit formula is:
Dobinski's formula - an explicit formula for the Bell numbers

$$
B_{n+1}=\frac{1}{e}\left(1^{n}+\frac{2^{n}}{1!}+\frac{3^{n}}{2!}+\frac{4^{n}}{3!}+\cdots\right)
$$

It's not even obvious that this is an integer!
Prot
Let's prove this.
First we notice that:

$$
\begin{aligned}
e & =1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{1}{k!}
\end{aligned}
$$

$$
\Longleftarrow\left[\begin{array}{c}
\text { Taylor expansion: } \\
f(x)=\sum_{k=0}^{\infty} \frac{f^{[k]}(c)}{k!}(x-c)^{k} \\
\text { with: } f(x)=e^{x} \\
x=1 \\
c=0 \\
e=\sum_{k=0}^{\infty} \frac{1}{k!}
\end{array}\right]
$$

$$
\begin{aligned}
& \frac{(k)_{3}}{k!}=\frac{k /(k-l)(k-k)}{k(k-1)(k-2)(k-3) \cdots 1}=\frac{1}{(k-3)!} \\
& \frac{(k+1)_{3}}{(k+1)!}=\frac{(k+1) k /(k-1)}{(k+1) k(k-1)(k-2) \cdots 1}=\frac{1}{((k+1)-3)!} \\
& =1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots \\
& \sum_{k=0}^{\infty} \frac{(k)_{3}}{k!}=e
\end{aligned}
$$

$\left.\begin{array}{l}\text { For clarity, I did this for lower factorial 3. } \\ \text { But the reasoning arks for any n. } \\ \text { Therefore, we have the following: }\end{array}\right\}$

In combinatorics, proofs are often clearer if you do them for one example and. then generalize.

$$
\begin{aligned}
\sum_{k=0}^{\infty} \frac{(k)_{n}}{k!} & =e \\
1 & =\frac{1}{e} \sum_{k=0}^{\infty} \frac{(k)_{n}}{k!}
\end{aligned}
$$

But what is 1 ?
$1=L\left((x)_{n}\right), \leftarrow$ Because that is my pleasure.
That is how I defined the lineor functional L.
watch how this unfolds.

$$
\begin{array}{ll}
\quad \begin{array}{ll}
L\left((x)_{n}\right) & \\
\hline L\left((x)_{n}\right) & =\frac{1}{e} \sum_{k=0}^{\infty} \frac{(k)_{n}}{k!} \\
\sum_{n=0}^{j} a_{n} L\left((x)_{n}\right) & =\sum_{n=0}^{j} a_{n}\left(\frac{1}{e} \sum_{k=0}^{\infty} \frac{(k)_{n}}{k!}\right) \\
\sum_{n=0}^{j} L\left(a_{n}(x)_{n}\right) & =\frac{1}{e} \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{n=0}^{j} a_{n} 1 \\
\sum_{n=0}^{j}(k)_{n} \\
\sum_{n=0}^{j+a_{n}} a_{n} 1 \\
\underbrace{j}(x)_{n}) & =\frac{1}{e} \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{n=0}^{j} a_{n}(k)_{n}
\end{array}, l
\end{array}
$$

Since the $(x)_{n}, n=0,1,2, \ldots$ are a basis for the vector space $R[x]$, any pignomial can be writer in this form.
Namely:

$$
p(x)=\sum_{n=0}^{\dot{j}} a_{n}(x)_{n} \quad\left\{\begin{array}{l}
\text { Note, then, that: } \\
p(k)=\sum_{n=0}^{\dot{k}} a_{n}(k)_{n}
\end{array}\right.
$$

This gives:

$$
L(p(x))=\frac{1}{e} \sum_{k=0}^{\infty} \frac{1}{k!} p(k)
$$

And the above is true for any polynomial $p(x)$.
We choose: we choose:

$$
\begin{aligned}
& f(x)=x^{n} \\
& L\left(x^{n}\right)=\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!}
\end{aligned}
$$

And, as we've already shown, $B_{n}=L\left(x^{n}\right)$, which gives:

$$
B_{n}=\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!}
$$

For many yours, this formula appeared to me very mysterious		

Then, one day, I realized it was trivial.
That's what happens in mathematics.
It just tore a long time for ma realize that it was trivial.
Let me to you that it is trivial.
Let us demythologize the proof.
To do so requires that you know a little probability.
If you don't know any probability, take a nap.
Let $X=$ Poisson random variable of intensity 1

$$
\begin{aligned}
P(X=k) & =\left\{\begin{array}{cc}
\frac{\lambda^{k}}{k!} e^{-\lambda} & \text { if } k \geqslant 0 \\
0 & \text { if } k<0
\end{array}\right. \\
E(X) & =\sum_{k=-\infty}^{\infty} k P(X=k) \\
& =\sum_{k=0}^{\infty} k \frac{1}{k!} e^{-1} \\
& =\frac{1}{e} \sum_{k=1}^{\infty} \frac{1}{(k-1)!}, e \\
E(X) & =1
\end{aligned}
$$

Recall that $E\left(c X^{n}\right)=\sum_{k=-\infty}^{\infty} k \cdot P\left(c X^{n}=k\right)$

$$
=\sum_{k=-\infty}^{\infty} k P\left(X=\frac{1}{c} \sqrt[n]{k}\right)
$$

charge of variables $k \leftarrow c k^{n}$

$$
E\left(c x^{n}\right)=\sum_{k=-\infty}^{\infty} c k^{n} P(x=k)
$$

Now me consider the expectation of the lower factorid of this Poisson random variable :

$$
\begin{aligned}
& E\left((X)_{n}\right)=\sum_{k=-\infty}^{\infty} k P\left((X)_{n}=k\right) \\
& =\sum_{k=-\infty}^{\infty}(k)_{n} P(X=k) \\
& =\sum_{k=0}^{\infty}(k)_{n} \frac{1}{k!} e^{-1} \\
& =\underbrace{\frac{1}{e} \sum_{k=0}^{\infty} \frac{(k)_{n}}{k!}} \\
& \text { and we just should that } \\
& \text { this is } 1 \text { [} 4.3 \text {. } \\
& E\left((X)_{n}\right) \pm 1
\end{aligned}
$$

$\tau_{\text {so }}$ the expectation of the lower factoid of the Poisson random variable $\omega /$ intasity $\lambda=1: s 1$.
This is known in statistics as the factorial moment of this random variable.
It follows that:
-

$$
\begin{aligned}
E\left(X^{n}\right) & =\sum_{k=-\infty}^{\infty} k P\left(X^{n}=k\right) \\
& =\sum_{k=-\infty}^{\infty} k^{n} P(X=k) \\
& =\sum_{k=0}^{\infty} k^{n} \frac{1}{k!} e^{-1} \\
E\left(X^{n}\right) & =\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!} \longleftarrow \text { But this is Pobinskis format. }
\end{aligned}
$$

| $\underbrace{B_{n}}_{L\left(x^{n}\right)}=\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!} \quad$ and $E\left(X^{n}\right)=\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!}$ |
| :--- | :--- |
| $\quad L\left(x^{n}\right)=E\left(X^{n}\right)$ |

So we have:

$$
\begin{aligned}
& L\left(x^{n}\right) \\
& L\left(x^{n}\right)=E\left(x^{n}\right) \\
& {\left[\begin{array}{l}
\text { And we hove that the linear functional of } x^{n} \text { is } \\
\text { the same as the expectation for that random variable }
\end{array}\right]}
\end{aligned}
$$

This is about as simple a number as we hare for the Bell numbers.

- Exercise 4.1

Find the recursion formula for the Bell numbers, using linear functionds. Namely, show that:

$$
B_{n+1}=\sum_{k=0}^{n}\binom{n}{k} B_{k}
$$

- Now let's consider some finer enumerations.

Wove enumerated partitions by the number of blocks:
$S(n, k)=$ number of petitions of set with k blocks
stirling numbers
of the zen kind
And wive enumerated the total number of partitions:
$B_{n} \quad=$ number of partitions of set
Bell number
What other things are of interest?
Let's look at a partition of a set.
$\because \odot \odot \odot \odot \odot$
There is 1 block w/ 3 elements, 2 blocks w/ 2 elements, 4 blocks w/ 1 element.

The finer count on a partition counts how many blocks there are w/ each number of elements.
Let's make that precise:
if $\pi \in \prod[s]$, then the type of π is the multiset of integers:

$$
\{|B|: \underset{\substack{\text { block }}}{B \in \pi}\}
$$

Now, we have to say a few words about multisats,
I_{n} other words, you take the number of elements of each block.
This gives you a $\frac{\text { family } \frac{f}{t} \text { integers. }}{\hat{\imath}}$
this family is not a set.
Because some of the integers may be repented.
For example, the type of the partition is: $\{3,2,2,1,1,1,1\}$

A digression on multisets.
Muttisets in the $19^{\text {th }}$ century were called "combinations"
τ Hence the words permutations and
Let $T=$ set combinations.

A multiset M is a function from $T t_{0} \mathbb{N}$. For $t \in T$, we have $m(t)$, the multipkity of t in the multiset m.
$\left\{\begin{array}{l}\text { In other words, } m(t) \text { tolls you how many times element } t \text { appears in } \\ \text { the multiset } M \text {. }\end{array}\right.$
We say:
$\underbrace{|M|<\infty}_{\text {multiset } m \text { is }}$ when. $\sum_{t \in T} m(t)<\infty$
$\underline{f \text { finite }}$
For $t \& T, m(t)=0$.

This is the ally rigorous definition I can give, other than the handwaving definition you are accustomed to.
There is an algebra of multisets.
Just as we have seen for sets, where there is an algebra (ie, Boolean algebra), there is an algebra of cultists,'
But, for historical reasons, the algebra of multisets is much lass developed than the'algelra of sots.
I wait t defer this discussion.
Let's paine for a minute and realize that this is an accident of history. In nature, multisots occur as frequently as sots.
Statisticians talk about:
$\begin{array}{cl}\text { sampling wo replacement } & \rightarrow \text { sets } \\ w / " N\end{array}$
Multisets are a very natural concept.
It's an accident of history thant the foundations of mathematics has been developed in terms if sets, rather than multisets.
You caper imagine a different evolutionary pattern, where, the foundations of mathematics :might have been developed using the notion of multisets as the fundamental notion and the notion of sets is something you think about later.

More about this later.

- Now, back te partitions:

$$
\{|B|: \dot{B} \in \pi\}
$$

The type of a partition of a finite set is a multiset of Integers.
what k ind of a multiset of integers?
A multiset of integers, whose elements add up to the number of elements of the set S.

$$
\sum_{\begin{array}{c}
B \in \pi \\
\begin{array}{c}
\text { block of partition } n
\end{array} \\
\text { of set } S
\end{array}}|B|=\underbrace{}_{\begin{array}{c}
\text { number of elements } \\
\text { in set } s
\end{array}}
$$

Warming:
It is unfortunate, but the word partition is used in 2 different senses.
It's not my faint.
And up until 20 years ago, people systematically confused the 2 notions,
People confused partition of a number w/ partition of a sot.
But the names have stuck.

- A partition of an integer $n \in \mathbb{N}$ is a multiset of positive integers, whose sum equals n.
For example, for $n=5$, you can list all possible partitions of 5 :

5	$\{5\}$
$4+1$	$\{4,1\}$
$3+2$	$\{3,2\}$
$3+1+1$	$\{3,1,1\}$
$2+2+1$	$\{2,2,1\}$
$2+1+1+1$	$\{2,1,1,1\}$
$1+1+1+1+1$	$\{1,1,1,1,1\}$

The order of the summands does not matter, because these are multisetse. It's just convenient t arrange the summand in non-increasing order.

The theory. f partitions of a number is one of the most developed branches of mathematics and the intersection of combinatores and number theory.
There are some extremely deep results.
Some of which are due Srinivasa Ramanujan, the great Indian mathematican.
Some of the deepest results in both combinatorics and number theory are results from the positions of a number.

Unfortunately, there is no simple formula for the number of partitions of an integer. There is a genomiting function, but I dent want to do this yet.

Note that:

- the type of $\pi \in \Pi[s]$ is a partition of the integer in

Now we come to something that sounds trivial and people take for granted for a long time until someone comes along and says:
"Hey, wait a minute. Is this really trivial?"
Then all hall breaks lose.

There are 2 notations t denote the type of a partition π :

$$
\{|B|: B \in \pi, \pi \in \mathbb{T}[S]\}
$$

(1) You take the multisat, whose elements are the sizes of the blocks, and arrange them in non-increasing order.

$$
\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots
$$

where $\lambda_{i}>0$ and $\sum_{i} \lambda_{i}=n$
(2) Look at all the sizes of the blocks.

Then count how many blocks there are w/ 1 elemat $\left(r_{1}\right)$,
2 elements (r_{2}), etc.
(learly, this gives the same information as notation (1).
The standard notation here is (again, don't blame me):

$$
\underbrace{2^{r_{2}} \ldots}_{\substack{r_{1} \\ w / 1 \text { books } \\ 1^{r_{1}}}}
$$

So, these are 2 notations for the same concept.
The 1^{s+} notation leads tr a graphical representation that is extremely useful.
Ferrers relation of a partition of an integer n
As you recall, a relation may be defined. by its incidence matrix.
It is the relation. whose incidence matrix is represented as follows. First we have the marginals:

Firers Matrix of a relation

You get a matrix where the set of. nonzero entries are contained in each other.

The matrix becomes more sparse as you go down the rows.
$\left(\begin{array}{l}\text { If doesn't matter if you consider this an } \\ \text { infinite matrix fitted w/ O's, or a finite } \\ \text { matrix. }\end{array}\right)$

Warning:
In all the books, the ferris relation is written w/ dots, instead of is +0 's. Ex:

$$
\sqrt{\bullet \cdot}
$$

Example:
Consider the following partitions of the integer $n=7$ and their associated incidence

$$
\begin{array}{cc}
\{3,2,1,1\} & \{4,3\} \\
\lambda_{1}=3 & \left.\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & \\
1 & & 0 \\
1 & &
\end{array}\right]
\end{array}
$$ matrices of the Ferrers relations:

Remark
The transpose of the incidence matrix of a Ferrets relation is the Ferrets relation of another partition
τ this is called the dual partition
This is extremely important.
If $F=$ Ferrers relation of a partition:

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right), \quad \lambda_{1} \geqslant \lambda_{2} \geqslant \ldots, \sum_{i} \lambda_{i}=n
$$

then the transpose matrix F^{*} is the Ferress relation of a partition λ^{*}, called the dual partition.

- Exercise 4.2

Given $\underline{\lambda}^{*}=\left(\lambda_{1}^{*}, \lambda_{2}^{*}, \ldots\right), \lambda_{1}^{*} \geqslant \lambda_{2}^{*} \geqslant \ldots, \sum_{j} \lambda_{j}^{*}=n$
Express λ_{j}^{*} in terms of λ_{L}
This is a crisis you all must go through.
Some things I can not show yon. You hare to do it yourself.

- Again, there is no easy formula for the partitions of an integer. Next 'time, I will show you a famous formula, due to Euler. But it is anything but trivial.
Very hard.
Unbelievable.
But let's digress.
What do you do in math when you find a hard problem?
You try τ make it easy. Right?

Since it is so hard to find the number of partitions of an integer n, let's change the problem a little bit.

Compositions of an integer n
Compositions of n are partitions of integer n, where the order of the summand natter.'

A linearly ordered set of positive integers, whose sum equals n.
For example: $n=3$

$\frac{\text { partitions }}{3}$	$\{3\}$		
$2+1$	$\{2,1\}$		
$1+1+1$	$\{1,1,1\}$	\left\lvert\,	$\frac{\text { compositions }}{3}$
:---:			
$2+1$			
$1+2$			
$1+1+1$	\(\leftrightarrows\left\{\begin{array}{l}these have different 		

linear orders.\end{array}\right\}\right.\).

Now, we can answer the question:
How many compositions of the integer n into k summands are there?
Answer: $\binom{n-1}{k-1}$
That's easy.
See how easy things get when you linearly order them?
That's always the case,
"When things are tough, order things linearly."
Proof
n dots
Place stoppers between the dots to delineate the ordered summands.

$\left.\begin{array}{l}\text { With } n \text { dots, there are } n-1 \text { positions to place stoppers. } \\ \text { Ti get } k \text { summand, you need to use } k-1 \text { stoppers. } k-1 \text { stoppers } \\ \text { So we have a set of } n-1 \text { positions and a set of } k-1\end{array}\right\} \quad\binom{n-1}{k-1}$ So we have a set of $n-1$
to put in these positions.

- But, we haven't solved our problem.

Revisiting uar original problem:
We know that a partition has a type:

$$
\{|B|: B \in \pi, \pi \in \mathbb{T}[S]\} \longleftarrow \sum_{B \in \pi}|B|=n=|s|
$$

The tyre of a partition is a partition of the integer n.
How many partitions are there of a given type?
Example: Given the type $\{3,2,2,1\}$,
how many partitions are there of a set $|5|=8$ that have this type?

etc,
I wart to d_{0} this with equivalence relations.
Theorem
The number of partitions of S, with $|S|=n$, of type $1^{r_{1}} 2^{r_{2}} \ldots$ equals:

$$
\frac{n!}{(\underbrace{(1))^{r_{1}} r_{1}!} \underbrace{(2!)^{r_{2}} r_{2}!} \underbrace{(3!)^{r_{3}} r_{3}!\cdots}}
$$

This is the famous formula for the number of partitions of a set with a given type.
We will prove this formula next time.
Then well soy a few extra things about enumerative facts about partitions.
Then will go back to relations and finish wo the algebra of relations.
Then we start a major chapter -namely, matching theory.
t. This is a central chapter in combinatories.

Basic enumention (contd)
What we are seeing now is to be considered extremely elementary material. If you think this is hard, "you ain't seen nothing yet."
Last time, we stated, who proof, the following fact:
Given $S=$ finite set, $|S|=n$
We are studying the family of all partitions of S.
$\pi[s]$
And we have seen that:

$$
\left\{\begin{array}{l}
\text { And we have seen that: } \\
\begin{array}{l}
\text { Bell numbers } \\
B_{n}
\end{array}=\text { how many partitions there are of set } S \\
\left.\left.\begin{array}{l}
\text { Stirling numbers of } \\
\text { the second Kind } \\
S(n, k)
\end{array}\right\} \begin{array}{l}
\text { how many partitions there are of set } S
\end{array}\right\}
\end{array}\right\}
$$

\uparrow aka the differences of zero, if you are British.
Now, we are going to determine::
how many partitions there are of set S with a given type
Recall that the type of a partition ir is the multiset:

$$
\{|B|: B \in \pi\}
$$

\uparrow
this notation for multisats imitates
the notation for sets.
It should be kept in mind that some of the entries in the multiset may be multiple, as we discussed.

The type of a partition π is a partition of the integer n :

$$
(\sec [p 4.9-10])
$$ that the term position is used in 2 completely different, senses.

- The type is denoted in one of 2 ways [p 4.11] (There are no established names for these mes)
(1) $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots$
where $\lambda_{i}>0$ and $\sum_{i} \lambda_{i}=n$
The λ_{i} are the sizes of the blocks, of the partition, in non-decreasing order. the $|B|$, the elements of the multiset

This is associated w/ a Ferrers relation, which I will write the British way:

$$
\begin{aligned}
& \lambda_{1} \cdots \lambda_{1} \text { dots } \\
& \lambda_{2} \cdots \lambda_{2} \text { dots }
\end{aligned}\left\{\begin{array}{l}
\text { Dots stand for the ones of } \\
\text { the incidence matrix of } \\
\text { the relation. }
\end{array}\right.
$$

(2) $1^{r_{1}} 2^{r_{2}} 3^{r_{3}} \ldots$

Where r_{i} is the multiplicity i (ie., ri sis the number of elements i in the multiset).

In other words, r_{1} is the number of blocks of the partition having $\frac{1}{2}$ element. etc.

- Exercise 5.1

Derive the relationship between λ_{i} and r_{i}

- We stated last time, w/o proof, that:

$$
\begin{align*}
& \text { The number of partitions of the } \tag{x}\\
& \text { set } S \text { of type } 1^{r_{1}} 2^{r_{2}} 3^{r_{3}} \ldots
\end{align*}=\frac{n!}{(1!)^{r_{1}} r_{1}!(2!)^{r_{2}} r_{2}!\cdots}
$$

unfortuatidy; these numbers don't have a name.

- If you add all these numbers over all types, you got the Bell numbers:

This is a fantastic identity, which is impossible to derive, unless you know
where it comes from.

If you add all these numbers over all types hawing k blocks, you get the stirling numbers of the second kind:

- Identify (*) can be established by handwaving, but I'd rather establish it by more rigorous methods.
more order t lead up this identity, lets digress on:
The Twelvefold Way
\uparrow this term wis weal by Richard P. Stanley, when he took this course back in 1967. t keep the twelvefold wang.
Joel Spencer took the course in 1963 and the term "twelvefold way" is attributed to him .
The 13 II time I tangle this course was 1963.
The $2^{\text {nd }}$ time was 1967 .
(for those of you who have taken 18.313-Probabil:t, this will be familiar)
\rightarrow We have: $\quad \rightarrow \underset{\sim}{ } \rightarrow$

We consider all functions from S to T :
T^{S} denotes all functions from S to T
A function is, after all, a relation $[p 2.4]$, so you
can consider the function as a graph. can consider the function' as a graph.

- There are infinitely many ways of interpreting the concept of a function, depending on what business you are in.
(1) Distribution $\quad \begin{aligned} & \text { This is the typical situation where the same } \\ & \text { mathematical concept is given different }\end{aligned}$
(2) Occupancy
(3) Search $\frac{\text { mathematical concept is given different }}{\text { psychological senses. }}$ psychological senses.
From these psychological senses, we get completely different problems.
(1) Distribution interporataion of a function
sat $S=$ set of balls

$$
T=\text { set of boxes }
$$

function = disposition (the way of placing) of the balls int the boxes
From the distribution point of view, one question that we can ask is that of occupation numbers:

$$
\theta_{t}: t \in T
$$

Occupation Number
θ_{t} is the number. of balls that end up in the box labelled t
In some cases, we label elements of $S \Rightarrow 1 ; 2, \ldots, n$. In some cases, we label things And elemats of $T \Rightarrow 1,2, \ldots, x$. completely differat.

- (2) Occupancy interpretation of a function.
$S=$ viewed as a linearly ordered set of places.
$T=$ alphabet

function $=$ word
Example from above:

$$
\text { function }=\text { baa } \ldots
$$

Note that this is mathematically identical to the distribution interpretation, but psychologically, completely different.
(3) Search interpretation of a function
T This comes from information theory $\left\{\begin{array}{l}\text { which is extremely impotent nowadays, } \\ \text { for reasons which will become dear. }\end{array}\right\}$ The devil chooses an $\underbrace{\text { element of } S}_{s_{0}}$ wo telling you.

$$
T=\text { answers }
$$

function = questions

You ask a question and the devil has to give you the correct answer. That means the devil has t give you the block wi m which the element chosen by' the devil lies, when you ask the appropriate question.

So the chute idea of Information Theory (or the theory of search) is that you dispose of certain questions that are restricted by the problem at haul and you try
to determine the element chosen by the devil effectively. to determine the element chosen by the devil effectively.
(we will discuss this later in greater detail)
(see 18.313 Probability superclass 4 notes [4/24/98.1-13])

- I. wish I could give you 12 different interpctations of a function. If wee kook our hoods to thor, we can come up w/ 20 different interpretations of the same concept of function.
- Lot's go back t the first interpoctation - that of distribution.

Then we can ask the question :
How many functions are there w/ given occupation numbers?

- First, lit's give the wronging proof.

This is a very important mistake.
Write down this mistake.
First, I say 2 functions are equivalent if they have the same occerption numbers. Then, I consider equivalence doses of functions.
τ if you try this, you doit get an integer.
So it's wrong.

To do this correctly, you have to introduce another notion
And again, this proves to be the tip of an iceberg:
Disposition
Again, we can give different, interpretations of $\frac{\text { disposition }}{\text { We can consider disposition from the point of view of: }}$
We can consider disposition from the point of view of:
(1) distribution
-or -
(3) occupancy

- First, a handiwaring definition, from the point of view of distribution:

Disposition = placement of the balls into the boxes and, after you place the balls intr the boxes, you look at the balls in each box and' you. linewhy order them.

$$
\left\{\begin{array}{l}
\text { So } 2 \text { dispositions are different if the } \\
\text { linear order of some box or other is different, } \\
\text { even though the occupation numbers many } \\
\text { be the same. }
\end{array}\right\}
$$

An occupancy interpretation is simple to give:
Disposition $=$ take the kernel of the function, which is a partition [p3.7], and on each block of the kernel, you put a linear order

kernel of f, π_{f}, is the partition of S whose blocks are the sets:

$$
f^{-1}(b), b \in T
$$

whenever $\left|f^{-1}(b)\right| \neq \emptyset$

- Disposition \triangleq A function, together with a linear order on each block 'f its Kernel.
(The number of dispositions from S to T equals: $\frac{19 / 18198}{\underbrace{x(x+1)(x+2) \cdots(x+n-1)}_{n \text { terms }}} \underbrace{x^{(n)} \text {-or } \quad\langle x\rangle_{n}}<$

These are 2 notations that are customary.
Prot Proof by picture.
As often happens in combinatories, there is a proof that you airy out by drawing a picture..

$$
\frac{\downarrow}{a} \cdot \frac{\downarrow}{b} \quad T \longleftarrow\left\{\begin{array}{l}
\text { ditto for elements of } T . \\
w / \text { labels } a, b, \ldots, c
\end{array}\right\}
$$

Now, we place the balls intr the bries so that the elements (ie., balls) within each box are linearly ordered.
Whenever a ball is placed in a box, the line it is placed onto is cut into two.

Then the next ball placed in this brxdcan either go before or after ball i.

Thus, after placing ball 1, from the example above, we have:
After:

$$
\overbrace{a}^{2} \cdots{ }_{b}^{-1}, \cdots \quad-\quad|T|=x
$$

The next ball placed can go into any of the $x-1$ boxes the ball was not placed in, or either of 2 places (either before, in after) in the same box the first' ball was placed:

So, every time you place a ball, you increase the number of lines by 1 .
And now you gat it:
The number f dispositions of $=\overbrace{x(x+1)(x+2) \cdots(x+n-1)}^{n}$ n balls into x boxes

$$
=\langle x\rangle^{n}
$$

That's elementary.
Now, let's ask the question I really wat to ask:
What is the number of dispositions of S w occupation numbers $\theta_{1}, \theta_{2}, \ldots, \theta_{x}$?
(Say $\theta_{i}>0$)
\uparrow we can assume, $\xrightarrow{W L O G}$, that there are no empty boxes.
Answer: n !
No, I did not make a mistake.
The number of dispositions w/ given occupation numbers is the same irrespective of the assignment of the occupation numbers
This is an inherent, fundamental property.
Don't you ever forgot this.
It creeps into all sorts of arguments.
So if you assign the ocengetion numbers $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{x}\right)$, where you have n balls, and you want t count the number of dispositions w/ these given occupation numbats, it is always the same.
\uparrow the number of permutations of $n \quad(n=$ size of domain $S)$
Proof A nice combinatorial proof
First, I write down all the permutations of S :

Then place the occupation numbers as stoppers.

The n! permutations don't know where the occupation numbers are being placed.
3 Permutations don't thin k !
If you write all the permutations + place these stripers, you get all the dispositions w/ these occupation numbers. And all the escape ton numbers.

Now, we return to counting functions w/ given occupation numbers. We stated earlier:

The number of functions w/ given occupation numbers $\theta_{1}, \theta_{2}, \ldots, \theta_{x}$, where $\theta_{1}+\theta_{2}+\ldots+\theta_{x}=n$, is:

$$
\binom{n}{\theta_{1}, \theta_{2}, \ldots, \theta_{x}} \hookleftarrow \underset{\text { mutinomial }}{\text { coefficient }}=\frac{n!}{\theta_{1}!\theta_{2}!\cdots \theta_{x}!}
$$

Proc
Let's take the set of all dispositions of S into T and define an equivalence relation on dispositions.

Let d, d^{\prime} be dispositions $\longleftarrow \int$ function from $S t_{0} T$ (i.e., $[n] \rightarrow[x]$), () $\left\{\begin{array}{l}\text { Truther wo a linear order on the } \\ \text { elements of each pre-image } d^{-1}(y), y \in[x]\end{array}\right\}$
Define equivalence relation R s.t.

$$
d R d^{\prime}
$$

when d and d^{\prime} lave the same occupation sets.
Example:

$$
\begin{array}{ll}
d(1)=2 & d^{\prime}(1)=2 \\
d(2,3)=1 & d^{\prime}(3,2)=1
\end{array}
$$

$$
[
$$

diffract linear orders

There we have that:
An equivalence class of dispositions $w /$ the same occupation sets is a function, wo occupation sets:

$$
d^{-1}(1), d^{-1}(2), \ldots, d^{-1}(x)
$$

An equivalence class is a set of dispositions with the same occupation sets.
You take all the dispositions that have the same occupation sets.
What do those dispositions have in common?
They define the same function, because the order within an occupation sat does not matter.
In other words: ,
An equivalent class corresponds to a unique function

		unique function	$9 / 18 / 98$	5.11

For each possible vector of occupation sets $\left(d^{-1}(1), d^{-1}(z), \ldots, d^{-1}(x)\right)$, there is an equivalence class.
How many elements are there in an equivalence class?
Such an equivalence class has:
$\theta_{1}!\theta_{2}!\ldots \theta_{x}!$ elements
where $\theta_{1}=\left|d^{-1}(1)\right|, \theta_{2}=\left|d^{-1}(2)\right|, \ldots, \theta_{x}=\left|d^{-1}(x)\right|$ $\theta_{1}, \theta_{2}, \ldots, \theta_{x}$ are the occupation numbers
$\theta_{1}!\theta_{2}!\cdots \theta_{x}!$ elements, since we can have all possible permutations of elements in each set $d^{-1}(i)$.

Thus, every equivalence class is comprised of $\theta_{1}!\theta_{2} \mid \ldots \theta_{x}$! dispositions.

$$
\left\{\left\{\begin{array}{c}
\text { unique vector ot occupation, sots } \\
\left(d^{-1}(1), d^{-1}(2), \ldots, d^{-1}(x)\right)
\end{array}\right\}\right.
$$

Fix, the occupation numbers $\theta_{1}, \theta_{2}, \ldots, \theta_{x}$,
Wive already shown that the total number of dispositions from $S \nleftarrow T$ is $[p$ 5.9]:

And since each equivalence class is comprised of a unique set of $\theta_{1}!\theta_{2}!\ldots \theta_{x}$! dispositions, we have:

And; since each equivalence class corresponds to a unique function:

$$
\begin{aligned}
& \text { number of functions } \\
& w \text { given ocapoction numbers } \\
& \theta_{1}, \theta_{2}, \ldots, \theta_{x}
\end{aligned}=\frac{n!}{\theta_{1}!\theta_{2}!\cdots \theta_{x}!}
$$

A remark about permutations of S		
$n!=$ number of permutations of S		
$n-\|s\|=n$		

$$
\text { ex: } \omega=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 3 & 1 & 4 & 2
\end{array}\right)
$$

We define an equivalence relation on S by setting:

$$
s R_{w} s^{\prime} \text { ff } s w^{i} s^{\prime}
$$

\uparrow for some power i of the permutation w

So if s can be mapeol to s' for some power i of permutation w, we say s is equivalence related to s. 5.12

A remark about permutations of S
$n!$ number of permutations of $S \longleftarrow|S|=n$

Equiudence classes are cycles of permutation w.
Example:

$$
\begin{aligned}
& \omega=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \\
& \underbrace{\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)}_{w} \cdot\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\underbrace{\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)}_{w} \cdot\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\underbrace{\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)}_{w^{3}} \cdot\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\underbrace{\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)}_{w} \\
& E_{\text {equivalence }}\left(\text { lass of } w=\left\{\left(\begin{array}{ll}
1 & 2 \\
2 & 3 \\
2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)\right\}\right.
\end{aligned}
$$

This, the cycles of a permutation define a partition of S, ie,, the underlying partition π_{w} of w.

As me discussed $[p 2,11]$, the equivalence classes of an equivalence halation define
a partition.
The blocks of the permutation π_{w} are the transitivity classes.

$$
\text { A permutation is cyclic if } \pi_{w}=\hat{1} \Longleftarrow\left\{\begin{array}{l}
\text { infer } \\
\text { whenever the underlying partition is } \\
\text { the trivial partition (II) with only } \\
\text { one block }
\end{array}\right\}
$$

- How many cyclic permutations are there on a set w/ n elements?
'(n-1)!

Because they are cyclic, you have to go round + round. You can think of the elements disposed on the vertices of an n-gon. So the number of different cyclic permutations is the same as the number of different ways of placing elements $\{1, \ldots, n\}$ on the vertices of $a_{n} n$-gone. τ independently of rotation

So, you might as well fix the element 1, and then place the remaining $n-1$ elements arbitrary.

$\therefore(n-1)!=\underset{\substack{\text { number of } \\ \text { on a set different } \\ \therefore \text { cyclic } \\ n \text { elements }}}{\substack{\text { permutations }}}$

- Now, we can go back to The Twelvefold Way

You have 2 sets S and T and a function f You want to count the number of inequivalat functions

Why "Twelvefold"?

monomorphism (ovie-t-ona) epimorphism (onto.)

indistinguishable

$$
3 \times 2 \times 2=12
$$

The " a, b, c 's" of combinaterics is t learn t count using all these possibilities. We've already encomenterad most of them, so it's.only a matter of identifying. prychologieally which is which.

Verify the following portion of the Twelvefold Way table: ** ${ }^{\prime}$ " S
$\frac{\text { elementrof } S}{\text { distinguishable }} \quad \frac{\text { elements of } T}{\text { distinguishable }}$
$\frac{\text { function } f}{\text { arbitrary }}$
mono
epis
number of inequivalent functions
x^{n}
$(x)_{n}$
$x!S(n, x)$
\uparrow
$\left(\begin{array}{c}S(n, x) \text { is a } \\ \text { Stirlingnuber of } \\ \text { the } t^{n} d \\ k i n d\end{array}\right)$

The Twelvefold way (concluded)
Well touch very briefly on this topic because it's covered in Professor stanley's book. I want to mention that many of these topics in combinaturics are covered in Professor stanley's look, which is very well written and readily available, And, therefore, I will not deal in this course, with any topic that is covered in Professor Stanley's book. This course is disjoin from Prifoser Stanley's back - except for definitions, There is no point in my waiting your time lecturing on static you can read in a will written book.
I assume you are reading this book (Enumentive Combinatorics, Cambridge Universist Press) on the side - for fun. Some of the things I say assume, tacitly, that you are familiar with certain things in Stanley's book.
The only thing in Stanley's book that we will cover in this course is the Twelvefold $W_{\text {an }}$ - largely for sentiputal reasons.

- The Twelvefold Way is simply a list of enumerations of objects into functions:
\#cases:

$$
\frac{\text { balls }}{\left\{\begin{array}{l}
\text { distinguishable } \\
\text { indistinguishable }
\end{array}\right\}}
$$

$$
\frac{\text { boxes }}{\left\{\begin{array}{l}
\text { distinguishable } \\
\text { indistinguishable }
\end{array}\right\}}
$$

$$
\frac{\text { functions }}{\left\{\begin{array}{l}
\text { arbitrary } \\
\text { mon n }(1-1) \\
\text { eph }(\text { onto })
\end{array}\right\}}
$$

$$
2 x 2 x
$$

Let's examine sone of these:
2) function arbitrary:

$$
\begin{aligned}
& S=b_{\text {owls }} \quad|S|=n \quad \text { As usual, you have a sat oof balls }
\end{aligned}
$$

YOu are putting indistinuishalle balls into distinguishable boxes; whet does that mean? It means that all the data are the occupation numbers of the boxes: Every, box has a certain number of checks, which correspond t the number of indistinguishable balls we put, into that box. And the number of checks must add us $t o n$. That's what it means to pit insisting wishalle balls it distinguishable boxes. So, you have the set T and you place n checks in the elements of T.
What does this mean?
You are taking a multiset ont of the sat T, as previously defined.
Placing a indistinguishable bills ito x distinguishable boxes is jut a fanciful way of saying that you are taking a multiset of size n out of as et of size x. And everybody knows how many there are:

$$
\left\langle\begin{array}{l}
x \\
n
\end{array}\right\rangle=\frac{\langle x\rangle_{n}}{n!}=\frac{x(x+1) \ldots(x+n-1)}{n!}
$$

- Exercise 6.1

Prove that the number of inequivalent ways of taking a multiset of size ant of a set of size $x=\binom{x}{n}$.
If you don't know this, prove it as an exercise.
ii) function mono:

That is interesting. Again, you are putting indistinguishable bulls into distinguishable boxes. But every box can have at most one ball.
what dos that mean?
That's just a fanciful way of saying we have x boxes and we check n of them. That's called the binomial ceeficint, for the last 3,000 years.
iii) function ep:

$\frac{\text { \#inequivalont functions }}{S(n, x) x!}$
This means you areplecingn distinguishable bats inter x distinguish ale boxes and every box is ocanied.
every box is occopiodi this (erg, Lecture 3).

- Exercise 6.2

Double check that the inequivalent functions of placing distinguishable bills inter x distinguishable boxes, where each box is occupled (ice., epa. function) is:

$$
S(n, x) x!
$$

- Exercise 6.3
indistinguishable
distinguishable

For an api function, work out the \#inequivalent ways of placing n indiutingucsbolle bolls into x distinguishable boxes, where each box is occupied, is:

$$
\left\langle\begin{array}{c}
x \\
n-x
\end{array}\right\rangle
$$

Now, let's make the boxes indistinguishable.
The only case that is interesting is pt The other ones are trivial.
function ep:
$\frac{\text { balls }}{\text { distinguishable }} \frac{\text { boxes }}{\text { indistinguishable }}$.

- Exercise 6.4:

Double check above.
indistiognisholte indistinguishalk

Pinequivalent functions

$$
S(n, x)
$$

This means, essentially, you are taking partitions
of the balls, as the boxes are in distinguishable, of the balls, as the boxes are in distinguishable, Number of rations. fa set of n elements into
x blocks.
\square
This corresponds to partitions of a number, Partition fin integer x int n parts, as previmably discussed.

That's pretty much the table. I suggest you draw a table for yourself and study it by yourself.
Now - why did I do this silly stuff?

- I want to state the Central Problem of Enumeration

Fortunately, solved - but, unfortunately, never well written on any wheres.
Therefore, $\frac{1}{}$ assign it t you as a starred problem,
Every year I teach this course I tell myself I will rewrite that.
I've never done it.
It's a very interesting problem. It will take a very nice research paper to write a Treatement of thisprrblem - elegmithy if course. There are many inelegant
treatements of this problem in the literature. treatements of this problem in the literature.

- Exercise 6.5

Write up the central problem of enumeration, elegant ty.
Let's put it, first, informally.

The balls are of differenT colors. Two bells of the same colter are indistinguishable,
The boxes are of different shapes. Two boxes of the same shape are indutinguishalle.
There are n balls and x boxes.
How many ways are these of placing the balls inter the boxes ?
\leftarrow
Let me restate this rigorously:
\because Consider functions $f \in T^{S}$ colors
given a partition π of S and
a partition π^{\prime} of T shapes

How can we say that two functions are the same if they place balls of the same color into boxes of the same shape?
We say that in a toilet trained way.

We say that:
$f R f^{\prime}$ whenever ω^{\prime} of $f_{0} \omega^{i}=f^{\prime}$

That menus if you permute the balls according to the permutation ω and then you, permute the boxes according to the permutation ω^{\prime}, you get f.

$$
f R f^{\prime}
$$

\uparrow this gives you an equivalence relation among functions
The Central Problem of Enumeration is the problem of con ting the number of equimberve class,
Let's.jazz this up and make it a 3 stared problem:

- Exercise $6.6 * * *$

Develope a similar theory for relations. \longleftarrow This is hard If you want to work on this
There are really 2 steps,
First of all, you are given 5 and T. problem, see me, There arc papers on
this and you shouldhit be work ing in a

Then yon consider relations bowen the mr. vacuum. Till give you the references.
relation - a ball can go inter seven bines
It is very easy count all relations. Trivial.
But, it is very hard to count all relations with given marginals
Count relations $R \subseteq 5 \times T$ with given marginals
given * edges issuing from each ball and \# edges coming into each box.
Then wat t count the number of relations with there 2 numbers:
This is extremely difficult.

If you wart t make this cu tougher, then you make the balls partial distinguislanale and the boxes partially distinqusistalie - like we did for a function
You put a partition on the balls and a partition on the boxes.
Then yon define an equivalence relation, just as we defined for a function.
Excerpt the equivalence relation is among, relations;
Then you count the number of equivalence classes,
No one has ever done that, But it would be: very nice if you did it.
I promised to tell you the easiest part of this problem, which is the Theorem of Gale-Ryser.
Theorem of Gale-Ryser
The necessary and sufficient conditions on marginals so that there exists a relation with these numbers.
$t_{\text {you cant just give any numbers and expect relations } t r \text { exist. }}$
There are very subtle necessary and sufficient conditions, which were discovered
father late in the game,
You will see that. We dent have the instruments yet.
So there you are. Here's some work for you.
Don't just solve problems, I should give you only unsolved problems,
After all, this is a graduate course, What are we here for? The Mickey Mouse staff?
That's the end of enumeration, Let's ga back to pure combinatories.
This course will oscillate between one chapter in pure combinaterics anal one chapter in enumerative combinaterice.

- Back to Relations

Let's consider relations of a set with itself, for simplicity,

$$
R \subseteq S \times S
$$

As we have seen, the sat of relations is a Boolean algebra, because where there are relations there ane also sets.
This Boolean algebra is endowed with an additional operation:
Composition: $R \circ R^{\prime}$
Composition of relations con be visualized in many ways. Two ways:

1) analog, for relations, to composition of functions,
2) arelation is the combinatorial analog of a matrix and
3) aralation is the combinatorial analog of a matrix and \quad composition is the continatorial andog of the

Weill make this last statement more preciser For the moment, just take iT as it is,
** Exercise 6.7
Wen say that two relations commute if:

$$
R \circ R^{\prime}=R^{\prime} \circ R
$$

Find easy necessary and sufficient conditions for two relations to commute.
\uparrow probably hopeless, but I'll assign it to you anyway.
It would be nice if there were such things.
A equivalence relation $R \lll S \leq S$
reflexive r $R \geq I$
symmetric. $R=R^{-1}$
transitive $\quad R \circ R \subseteq R$

If R is an equivalence relation, then associate to R :
$\operatorname{parition~}^{\pi_{R} \in \prod[S]}$
partition of S inter equivalence classes
This is one of the most primitive notions of mankind. Balls are identified by color. Two bells with the same color are in the same equivalence class,
We will also see that partitions are the kernels of functions.
Given $f: S \rightarrow T$, the kernel of f is a partition of S The kernel of f is defined as the equivelonee relation R_{f} :

$$
a R_{f} b \underset{\imath_{i f f}}{\Longleftrightarrow} f(a)=f(b)
$$

The equivalence classes are the blocks.

Very nice. Now you rember ont we said. One of the interpellations of the notion of function is in search therery, information theory. Where f is computed as a question and T is
the set of answers,
And the devi! is thinking of an element of S, which you try $t r$ guess by asking the question.
The question. has k answer exactly which blok (what color) the unknown element is and which block of the kernel of f the unknown element lies in.
So, you have to ask, in general, several questions.
We look at partitions from the point of views of information theory (ie., partitions as Kernels of functions $)$. We are led to ask certain questions appoint then,
Suppose we have thor question g $\left(f, f^{\prime}\right)$.
They would have two keels $\left(\pi, \pi^{\prime}\right)$.

If you ask both questions, you get the meet of two partitions (the intersection of all the passible blocks), You get finer, more information.
Now, let's ask the following question about questions:
When is it that the answer to question f gives you no information whatsoever
to the answer to question f ?
Is there a condition on the kernels $\pi+\pi^{\prime}$ that ensures that the answer to one question bears no relevance whatsoever to the answer to the second question 3 (I would not have asked this question if the en sower was nit positive)
We say that partitions $\pi+\pi^{\prime}$ are independent when, for every block B and C :

$$
B \in \pi, C \in \pi^{\prime}, B \cap C \neq \phi
$$

This is the toilat trained way of saying that the two questions are completely independent.
Why 6 Why?
Because if any two blocks meet, say the devil has chosen an element of the block B ' it can be in any of the blocks of π^{\prime}, because every block of π^{\prime} meets with block B. So you havre no information what soever.

To visualize indiendent partitions like this:

Exercise 6.8
Independent partitions can always be represented that way. Make that precise, then prove it,

This is an extremely important concept - independent partitions. It's made stranger in probability, where you have the concept of stochastic independence.

- From the point of view of relations, how do you write the fact that they are independent?
$R=$ equivalence relation

How do we visualize this?
Remember. $[2.9]$ that we defined the universal relation on a set B.
All possible pairs. An element of B is connected with everything else.

$$
U_{B}=B \times B
$$

An equivalence relation somehow comes from piecing together universal relations of your-blecks we have rte define what we mean L_{y} this.

I'm sure you are wondering what I am up tie
I am up to something.
Given: Relations R_{B} on disjoint sets $B \in \pi \ll$ partition
then define the disjoint sum:
$R={ }_{B \in \pi}^{\oplus} R_{B}$ is the unique relation set. $\left.R\right|_{B}=R_{B}$

- If R is an equivalence relation:

$\begin{array}{ll}1 & 1 \\ 6 & 1\end{array}$

$$
R=\underset{B \in \pi_{R}}{\infty} U_{B}
$$

This is a triviality. The disjoint sum of the universal relation within each block.

- Observe that if π and π^{\prime} are independent partitions

$$
R_{\pi} \cdot \circ R_{\pi^{\prime}}=U_{5}
$$

- Exercise 6.9

Prove the preceding.
Upon learning of this concept of independent relations, you are tempted to say "this is a universal concept that occurs everywhere in nature.
But nature is more sophisticated than that i. It's almost the universal concept
It's. not true that independent relations occur in nature.
What accuiss in nature is a slight variant of independent relations, which we are now going t study in some detail.

- Universal concept -exactly when is it that two equivalence relations commute

That's the universal concept.
If you don't like it, go to church and complain.
I didn't invent the world. That's the way it is. I just tell you what is true.
We will study pairs of commenting equivalence relations.
I will sadistically with hold all examples until the end.

$$
R \circ R^{\prime}=R^{\prime} \circ R
$$

Who would ever think that this weirdo is what you find everywhere?
Notice that the concept is stated in terms of equivalence relations, not in terms of partitions:
Int's a little more complicated to state in terms of partitions. But were leading up to that, stating the above in terms of the underlying partitions.
Let's first prove the following proposition:
Proposition
Two equivalence relations R and $R^{\prime} \frac{\text { commute if }}{\lambda} \underbrace{R \circ R^{\prime}}_{\text {composition }}$ is an equiudence relation,
Proof:

1. If $R \circ R^{\prime}$ is an equivalence relation:

$$
\begin{aligned}
R \circ R^{\prime} & =\left(R \circ R^{\prime}\right)^{-1} \\
& =R^{\prime-1} \circ R^{-1} \\
& =R^{\prime} \circ R
\end{aligned}
$$

symmetric property of equivalence relations valid for amy two relations assuming R and R^{\prime} are equivalence relations, symmetric property gives;

$$
\begin{aligned}
& R^{\prime-1}=R^{\prime} \\
& R^{-1}=R
\end{aligned}
$$

Hence, equivalence relation R commutes with equivalence relation R^{\prime}.
Weill do the converse next time.

I gave the wrong definition for Conditional Disjunction earlier $[1,3]$ ．
I told y on there were times that exercises were assigned in 1951 ，And I didn＇t do it． Since then，I＇ve had a hangup about this probleon．Therefore，every time I state this problem，I make a mistake．
When I realized that the exercise I had assigned was wrong I pent ed out of my．files Professor Church＇s original paper．And，for the first time in mu life， I my invented it．Sure enough，there a mistake in it．So I ended my hang ap 15 minutes ago．I should have done that a long time ago．
It＇s not a big error．At any rate，what I did was confuse 2 different concepts．There are two different ternary operations among sets．Both of which are used by people，
－The one Ingave you is called not Condition d Disjunction－as I said，I was wrong．Its called the median．That＇s what I assigned to you $[1,4$ Exercise 1，2］． That＇s due tor Birkhoff．I cloaked up Birkhoff＇s paper，which I happen to have because I inherited all of his papers when he died and－sure enough II there was the median and a whole set of axioms for the median．You define a distributive lattice of sets by axioms on the median alone．
－Conditional Dicinoction is a different operation．I＇m not sure where Church git it Com． But it was never used much．I rememberiwho invented it．It was post．The great American logician Post had classified all possible sets of Boolean functions，which can he used to generate Boolean algebra．An incredible tour de force．Among these is Conditional Disjunction．
Postwas a very real mane Ill explain the compotation．
All his life he tough t at City College in New York．He truant like 16．hrs／week．
Cry College in Now York，at that time，was where all the poor，brilliant standeats in the city of New York went．There were no scholarships to go To MIT．They had To go to City College．It was a very intense experience at that time，est the 1930＇s， $40{ }^{\circ}$ ， 50% ，to be an undergraduate in City College in N．Y ，
I was once invited to give a lecture at the National Academy of Sciences．It was with a group of logicians．So I mentioned the American logician post At the and of the lecture， 15 people came up and said＂I took calarilus with post．＂I didn＇t know he was that good．
The collected papers of Post are a good sized volumes．There＇s only ane thing． Half of the volume is one paper，which he winked on for about 15 years．The paper is called＂The Theory of Multi－graups．：＂In this paper，Past tries 倍 extend the notion of group To an nary operation．Al died this cleverly．An nary operation with which you can generalize all the basic concepts of grow theory．He white ap the paper and，just before he wet te press he discovered that his n－arioperation could be reduced tr a binary operation．So te putt a lithe fostnote－to that effect．Because of that，it＇s not right，but the content of post＇s solution is still correct．

- Median

$$
\begin{aligned}
(A, B, C)= & (A \cap B) \cup(A \cap C) \cup(B \cap C) \\
& \text { an easy compilation shows: } \\
= & (A \cup B) \cap(A \cup C) \cap(B \cup C)
\end{aligned}
$$

Given median, $\phi, \hat{1}$ (universal set), Binkhoff shows how to define U, \cap, and the distributive law.
distributive lattices
Birkhoff axioms for the median include:

$$
\begin{aligned}
& (\phi, A, \hat{1})=A \\
& (A, B, A)=A \\
& (A, B, C)=(C, A, B)=(B, C, A) \\
& ((A, B, C), D, E)=((A, D, E), B,(C, D, E))
\end{aligned}
$$

- Exercise 7.1

State correctly and prove that the median defines. U, n, and the distributive law.

- Conditional Disjination (due to Alonzo Church, from Alabama. One of the greatest)

$$
[A, B, C]=\left(B^{C} \cap A\right) \cup(B \cap C)
$$

Church write in terms of logic, instead of in terms of sets.
For example:
For example:

$$
\text { if } C \text { True } \Rightarrow B T_{\text {me }}
$$

if A The $\Rightarrow B$ False
Conditional Disjunction, ϕ, and \hat{I} generate Boolean Algebra.

$$
B^{c}=[\hat{I}, B, \phi]
$$

U and \cap are an easy matter,
Unfortunately, he doesn't state the axioms.

- Exercise Z. 2

Construct a system of axioms for conditional disjunction, analogous to what Birkhoff did fir the median,
It would be nice to have such a system of axioms. I donn know if anyone has ever dine this.

What's coming

1. Commuting equivalence relations
2. The "pointless" point of view
3. The language r of order and lattices

Commuting equivalence relations (cont d)
Given: $R, R^{\prime}=$ equivalence relations.
Associate corresponding positions π and π^{\prime}.
π and π 'are independent when
for every $B \in \pi$ and
for every $C \in \pi^{\prime}$
we have $B \cap C \neq \phi$
To visualize this concept, it's convenient to toke the following special case,

Example:
Say $|B \cap C|=1$ for every $B \in \pi$, and every $C \in \pi^{\prime}$
Thus, every element of S belongs tr exactly one pair of blocks $B \in \pi$ and $C \in \pi^{\prime}$
Hence, we can code S as $\left\{(B, C): B \in \pi, C \in \pi^{\prime}\right\}$
The set of these pairs is isomorphic to S.
This means that every element of S has 2 coordinates. You have the π casedinate and the π^{\prime} coordinate.
π

Asking a π question and asking a $\pi^{\prime} q$ nestion are independent questions.
The answer to the first question gives you no information what soever as tr what block of the second partition the element chosen by thee devil lies in.

- If R and R^{\prime} are independent, then $R \circ R^{\prime}=U_{s}=R^{\prime} \circ R$

Two independent equivalence relations commute.
Trivial.
We were then embarking on finding a structure theorem for commuting equivalence relations, in general
It is tenting says this is the only example where equivalence relations commute (Le., when the relations are independent), bit its not true.

Let's finish the proposition we started last time $[$ o.11]:

- Proposition:

Two equivalence relations R and R^{\prime} commute iff $R \circ R^{\prime}$ is an equivalence relation, We proved one direction last time.
Now for the second half of the proof,
Proof:
2. If equivalence relations R and R^{\prime} commute:

NS ROR' $=R^{\prime} \circ R$ is symmetric, reflexive, transitive.

Reflexive - trivial
Symmetric

$$
\begin{aligned}
& \left(R \circ R^{\prime}\right)^{-1} \stackrel{?}{=} R \circ R^{\prime} \\
& R^{\prime-1} \circ R^{-1}= \\
& \left\{\begin{array}{l}
\text { and since } R, R^{\prime} \text { are } \\
\text { equivalence relations, } \\
R=R^{-1}, R^{\prime}=R^{\prime-1}
\end{array}\right\} \\
& R^{\prime} \circ R= \\
& \left\{\begin{array}{l}
\text { since ito, given that } \\
R \circ R^{\prime}=R^{\prime} \circ R
\end{array}\right\} \\
& R \circ R^{\prime}=R \circ R^{\prime}
\end{aligned}
$$

Transitive

$$
\begin{aligned}
& \left(R \circ R^{\prime-1}\right) \circ\left(R \circ R^{\prime-1}\right) \stackrel{?}{\subset} R \circ R^{\prime} \\
& \left\{\begin{array}{l}
\text { Composition is an associative } \\
\text { operation - a fat } I \text { should } \\
\text { have observed before. }
\end{array}\right\} \\
& R \circ \underbrace{R^{-1} \circ R} \circ R^{\prime-1} \subseteq
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{R \circ R}_{R} \circ \underbrace{R^{\prime-1} \circ R^{\prime t}}_{0} \subseteq \\
& \text { QED } \\
& R^{-1} \text { should be } R^{\prime} \text { in transitivity proof }
\end{aligned}
$$

Now we are almost ready tr classify a structure the sem for pairs of commuting equivalence
relations. Let's see if you can guess it,
If you have two independent equivalence relations, they commute. Trivial.
Last time we discussed the discant sum of equivalence relations,
Let's review, Lat's review, 1 m going tr say is that the disjoint sum n of independent equivalence relations will also give yon pairs of commuting equivalence relations.

- If R_{B} and ' R_{B}^{\prime} are independent equivalence relations on the set B_{1}, then: © is the disjoint sum

$$
\underset{B \in \pi}{\oplus} R_{B}=R \quad \text { and } \quad \underset{B \in \pi}{\oplus} R_{B}^{\prime}=R^{\prime} \quad \text { commute }
$$

Why?
You have disjoint blocks:
B

Each disjoint block has 2 ind pendent equivalent relations in there. They don't interfer with each" other, They commute, Trivial.

So an easy way of constructing pairs of commuting equivalence relations is to take pairs of disjoint sums. of independent equivalence relations.
That's very easy.
The surprising thing is that the converse of this is true. Which brings us to Mme. Dubreil's Theorem.

Mme. Dubreil's Theorem
Two equivalence relations R and R^{\prime} commute if they are disjoint sums of independent equivalence relations.
This is a very famous result, which unfortunately has not found its way inter very many books.
She tried to developer the foundations of mathematics bused an the theory of relations: Unfortunately it did nt work. Nothing wrong with it. Sorry.
In the meantime, she got this mice theorem.
We have 2 commuting equivalence relations on a sat S.

Then we partition. S in suck a way that we restrict the pair of equivalence relations in each of these blocks. The, such a restriction on each block is a pair if independent equivalence relations on that block.

I know what you're thinking. Yore thinking -"how weird." But, as sion as you see the example, which, as I've said, I am sallistically withholding, you'll see it's not weird or
at all.
To repeat: Any 2 equivalence relations commute of there is a partition of 5 into wits blocks in such a way that if you restrict them to each block, then they become independent.

Proof:
We have just seen, of concise, that one part of the Theorem is immediate.
Now, suppose we have 2 commuting. equiudence relations:

$$
R \circ R^{\prime}=R^{\prime} \circ R
$$

By the preceding Proposition [7.5], we know that $R \circ R^{\prime}$ is an equivalences relation. Observe that:

$$
\left.\begin{array}{rl}
R \circ\left(R \circ R^{\prime}\right) & =(R \circ R) \circ R^{\prime} \\
& =R \circ R^{\prime}
\end{array}\right\} \quad R \circ\left(R \circ R^{\prime}\right)=A \circ\left(R^{\prime} \circ R\right)
$$

Hence, each block of π_{R} is contained in a block of $\pi_{R \circ R}$. By symmetry, each block of $\pi_{R^{\prime}}$ is contained in a block of $\pi_{R \circ R^{\prime}}$.
So we can restate to the blocks of Rok R^{\prime}.
Therefore, we can assume, without loss of generality, that there is only me block.
So. we consider only 1 block at a time.
But, if there is only 1 lick, they are independent.
Say $R \circ R^{\prime}=U_{S}$
$\left.\begin{array}{c}\text { Then } R \text { and } R^{\prime} \text { are commuting equiudence relations, } \\ \text { their composition is } U_{s}\end{array}\right\}$ shows that they are independent.

So, in general, you take the blocks of $R \cdot R^{\prime}$ and restrict parts of R and R^{\prime} to the blocks and apply this observation, tuxtily you get one of them.

Now you say "will you at last give is an example?"
'Glaring Example
$V=$ vector space.
Pick gar fauvrity vector space. In this course, we take only vector spaces of the read numbers. But; if you wish, you can like a vector space over any field,

$$
W=\text { subspace of } V
$$

Given a subspace of a vector space, can define an equivalence relation,
Define an equivalence relation R_{w}, as follows, on the set V.

$$
x, y \in V
$$

Say $x R_{w y} \underset{i f}{\longleftrightarrow} x-y \in W$
What do the equivalence class look like?
Suppose we have a plane. And suppose our subspace is a line,
equivalence classes are
all the parallel lines,

Now; let's suppose we have another subspace W^{\prime}.
If W^{\prime} is also a subspace of V, then the equivalence relations R_{W} and R_{W} commute.
To. bad this staff is nt in any book. Once you know it, you can think differently.
Is nt that nice.
Any vector spare, take the set of all subspeese, any two of them will give you a pair of commuting equivalence relations What more do you want? There you have it. They're all over the place,
Proof:
Let $W^{\prime \prime}=\operatorname{span}\left(W, W^{\prime}\right) \longleftarrow$ subspace spanned by elements of W and elements of W^{\prime}

$$
=\left\{w+w^{\prime}: w \in W, w^{\prime} \in W^{\prime}\right\}
$$

It turns out that:

$$
\underbrace{R_{W} \circ R_{W^{\prime}}}_{\begin{array}{c}
\text { mpesition of equivalences } \\
\text { relations }
\end{array}}=\underbrace{R_{W \prime \prime}}_{\begin{array}{c}
\text { equivalence relation } \\
\text { of span }
\end{array}}
$$

Suppose that;

$$
x R_{w} \circ R_{w^{\prime}} y \text { for } x, y \in V
$$

Wart to show that:

$$
x-y \in \mathcal{W}^{\prime \prime}
$$

So, let's unscramble what $x A_{W} \circ R_{W^{\prime}} y$ is like.
It means, by definition of composition of relations:
There is a $z \in V$ s.t, $x-z \in W$ and $z-y \in W^{\prime}$
This gives:
$\left.\begin{array}{l}x-z=w \in W \\ z-y=w^{\prime} \in W^{\prime}\end{array}\right\} \begin{aligned} & \text { if you add these two you get" } \\ & x-y=w+w^{\prime} \in W^{\prime \prime}\end{aligned}$

| | $98 / 23 / 9$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | process. And therefore, the conclusion holds.

So, it is interesting then the set of all subspaces of a vector space is a fountain in that any. two of them defines commuting equivalence relations, That's very important. It was very late to be recognized.

Conversely suppose $x-y \in W^{\prime \prime}=w+w^{\prime}$ so $x-y=w+w^{\prime}$, then $W \ni x-\left(w^{\prime}+y\right)=w$ and $(x-w)-y=w^{\prime} \in W^{\prime}$ where we may take $z=x-w=y+w^{\prime}$ so $x R_{w} z$ and $z R_{w} \prime y$ and thus $x R_{w}{ }^{\circ} R_{w} y$.

You are not expected t_{6} do any two or three star problems.
But you are expected try do one one star problem and $1 / 3$ of the unstarred problems. If you do a two star or three star problem, you are excused from any more duties in the course. Some two stor problems and three ster problems I will assign are very interesting and challenging
Is hall put my jacket back on. I cant lecture withent my jacket.
For the kind of tuition you pay, it is very professional to wear a jacket, All the time.
Most of the time.
JNG: Content before form.
$G C R$: Form matters tors. Form gives backbone to content
When you have no content, you fall back on form.
I hope we have some content today.

- Commuting equluntence relations (conclusion) $\left\{\begin{array}{l}\text { Then well start on the "pointless" point } \\ \text { Last time we proved Mme, Dubreil's theorem } \\ \text { ot view }\end{array}\right\}$

Last time, we proved Mme. Dubreil's Theorem, which I now summarize by picture.
First of ah we begin to systematically confuse the notions of equivalence relations and partitions. We interchange these, as they are cryptomorptic.

Two partitions are independent if the blocks of one are one way and the blocks of the other are the other way:

π			
	π		

The Hocks of each partition can be used as coordinates tor the intersection, assuming that the intersection has ene block.

Two equivalence relations comminte of the underlying set S can be written as the disport sum of several blocks such that if you restrict the tho relations to any one of these blocks, you get two independent relations.
The only want get two commuting equivalence relations is to take d. disjoint sum of "
independent equivalence relations independent equivalence relations.

- 谷米 Exercise 8.1

Find a search theoretic meaning for two commuting equivalence relations, I would really appreciate it if someone worked this ant. Like all important problems, it is not clearly stated.

The problem is very simple -almost in fontile,
If we have 2 independent equivalence relations, then there is an obvious search Theoretic meaning, which we have discussed [6.8]. You are asking 2 independent questions,
There has ts be a search theoretic meaning to 2 commuting equivalence relations, But peep le in Course 6 don't know about commuting equivalence relations and, therefore, they haven't worried about it.
There has to be meaning to this in terms of information the ry. Once you discover that, poole will prove all sorts of things.

This problem is mode all the more interacting because as we began to see last time, pairs of commuting equivalence relations are a dime a dozen. Last time we saw the classical example $[7,8-109$, which I will remind you of.

- Glaring example of commuting equivalence relatives

$$
\begin{aligned}
& V=\text { vector space } \\
& W, W^{\prime}=\text { subspaces of } V
\end{aligned}
$$

Given vectors $x, y \in V$, can define the relation:

$$
x R_{w y} \Longleftrightarrow x-y \in W
$$

I7 is immediate that this equivalence relation has an abvious geocentric meaning. You take parcel subs spaces and those are the equivalence classes. That's what parallel means, rigorously.
We verified last time:

$$
R_{W} \cdot R_{W^{\prime}}=R_{\operatorname{span}\left(W, W^{\prime}\right)}
$$

But this dose 4 depend on the order of W and W^{\prime}, If you doit see then, I cont exphin it.

$$
=R_{W^{\prime}} \cdot R_{W}
$$

Therefore the equivalence relations commute,
Arg 2 subspaces define 2 commuting equivalence relations.
this

- Another Example:

This time the example is hard.
If you don't know the underlying math, take a nap.
$G=$ group, H and H^{\prime} are normal subgroups
imitating the proceeding example, we are going to de fine 2 equivalence
relations.
For $x, y \in G$ set:

$$
x R_{H y} \Leftrightarrow x y^{-1} \in H
$$

Then

$$
R_{H} \circ R_{H^{\prime}}=R_{H^{\prime}} \circ R_{H}
$$

This is what normed subgroups are all about.
So the family of all normal subgroups of a group are such that any 2 provide commuting equivalence relations.
If you work through t the definitions, you find that you have an equivalence relation because H^{\prime} is a normal subgroup.

- Exercise 8.2

Prove the proceeding.

- Another Example:

Again, if you don't know the math, take a map.
$A=$ ring,I and I 'are ideals.
For $x, y \in A$, set:

$$
x R_{I y} \Leftrightarrow x-y \in I
$$

Then:

$$
R_{I} \circ R_{I!}=R_{I}, \circ R_{I}
$$

The ideals of a ring give you commuting equivalence relations,

- So you begin tr see the commuting mquinghlequive celstions have a deep relation with the coset structure of an algebraic system. This was brought ont by the Russian mathematician Mulsev in a famous discovery of what went on in a ganeread age brie systicm the made this communctaturuty,
work. work.

That's the end of this chapter:
Now we begin the next chapter;

- The "pointless" point of view

Lat me motivate this wa a few words on probability,
If you don't know probability, take another nap.
Say mi s have a function:

$$
f: S \rightarrow T
$$

This function has a kernel:

$$
\pi_{f}=\text { Kernel (This is a partition af } S \text {) }
$$

In probability S becomes a sample space and function f is called a random variable.

In a discrete sample space (a finite sample space, for example), every random variable has a kernel. So you can visualize it and ask information theoretic questions about it,
In the continuous case, for example you have a normally distributed random variable, you don't have an obvious petition for the kernel, Yet, pond like te talk about the Kernel of a random variable, even in this case. There is a partition, but the blocks all have probability 0 .
Therefore, you wart to extend the notion of partition so that every random variable would have a kernel in the extended notion. What strategy should we follow in performing such an extension?
By the wary, this is only of several extensions which are possible -and not only for probability, but topology, algebraic geometry, what not.
In order tr perform such extensions, we have to rephrase them in a way, which is called "pointless."
\uparrow the word "pointless" is from vo Newman
Let's take the casa of a partition,
We saw that there are 3 cryptomopphic concepts gang on here.

You have a set S. You get the cion plate Baden subalgehra by taking the atoms. (the minimal elements) you get a partition. And the the Bodean algebra is stained by taking the unions of these minimal sets,
So every complete Boolean subalgulra determines a partition, and a partition. determines an equivalence relation.

Now, we could have defined the notion of partition by stating with the notion of complete Boolean subalgebra. That would have been the "pointless" definition of a partition. Because the Poi thess definition uses andy the define, tons of the Boolean algebra and nothing about the points.
So the program of the pointless point of view is tr redefine several basic concepts, In coubinatorics, we dent use the underlying points of a finite set, with the idea of eventually' generalizing it one of the various branches of mathematics.
Let's see hoo this idea works in a number of cases,
For example, relations,
Relation - "pointlessly"

$$
R \subseteq S \times T
$$

Can we invention a pointless notion equivalent to this?
Take a subset A of S and define $R(A)$ as:
$A \subseteq S, R(A)=\{b \in T:(a, b) \in R$ for some $a \in A\}$
a well known concept of functions
And we have seen that:

$$
R(A \cup B)=R(A) \cup R(B)
$$

This gives us the lead to the pointless definition, Let's take the Boolean algebra of subsets $P(s)$ and $P(T)$
Now, we take a mapping φ :

$$
\varphi: P(S) \rightarrow P(T)
$$

We say that φ is a hemimorphismin whenever:

$$
\varphi(A \cup B)=\varphi(A) \cup \varphi(B)
$$

Or, more generally, since we are dealing with a complete Boston algebras:

$$
\varphi\left(\bigcup_{i} A_{i}\right)=\bigcup_{i} \varphi\left(A_{i}\right)
$$

Claim: Every hemimorphism defines a relation. It's allot trivia\%.

$$
R \subseteq S \times T
$$

Take any $a \in S, \varphi(a) \subseteq T$.
Then all pals (a, b) for $b \in \varphi(a)$ shall belong to R.

$$
R(A)=\bigcup_{a \in A} R(a)=\bigcup_{a \in A} \varphi(a)=\varphi(A)
$$

This is easy because we can take arbitrary unions + intersections.
Therefore, given a hemimorphism, it trivially defines a relation.
And this relation implements the hemimarphism.
Now we come to the interesting example,
Example
Given the function $f: S \rightarrow T$
of course $f(A \cup B)=f(A) \cup f(B)$
But, in general, $f(A \cap B) \neq f(A) \cap f(B)$
Proof by picture:

However, for the inverse function, we do have:

$$
\begin{aligned}
& f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B) \quad \text { true of all relations } \\
& f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)
\end{aligned}
$$

We also have that:

$$
f^{-1}(\phi)=\phi
$$

$f^{-1}(T)=S$ when the function is every where defied.

- Aud this gives us the lead to defining a function pointlessly.
How do we define it?

Here's how we defoe it:
Suppose $\Psi_{\text {is a homomorphism of }}^{\text {algebra of subsets } P(S) \text { when: }}$. Boolean algebra of subsets $P(T)$ into the Borden algebra of subsets $P(S)$ when:

$$
\begin{aligned}
& \Psi(A \cup B)=\Psi(A) \cup \Psi(B) \\
& \Psi(A \cap B)=\psi(A) \cap \Psi(B) \\
& \Psi\left(A^{C}\right)=\psi(A)^{c} \\
& \Psi(\phi)=\phi
\end{aligned}
$$

Complete means:

$$
\begin{aligned}
& \Psi\left(\bigcup_{i} A_{i}\right)=\bigcup_{i} \Psi\left(A_{i}\right) \\
& \Psi\left(\bigcap_{i} A_{i}\right)=\bigcap_{i} \Psi\left(A_{i}\right)
\end{aligned}
$$

Now we have the following simple, but important theorem,
 there is always, o atantim that implements, the homomorphism in this way.
The equations indicate that the inverse of the function is always a homomorphism on of Boolean algebras. So there is on inverse relation here between homomorphisms and Bot tan a algebra function going the other way.
That's very imp.tat. Lett' write the down as a the rem.
Theorem
ψ is a complete homomorphism of $P(T)$ to $P(S)$
iff $\psi=f^{-1}$ for some function $f: S \rightarrow T$.
That is the pointless version of a function.
We will generalize the notion of function by toking homomorphisms,
what will we do?
Weill drop the word "complete". Will jot take homomorphisms.
And wert get coationuan functions, random variables, atc.
Do you get the idea?

This is the kind of theorem that, once stated, is almost trivial,
I can give you a prof by gestures.
Proof (by gesture)
Ψ is a hemimorphism
Therefore ψ is implemented by a relation from. T to S

But this relation can not have this diagram Because other wise, the intersection can mot work. You cant have 2 e elements in T to the sameelement in S.
otherwise, you get:

$$
\underbrace{\Psi(A \cap B)}_{\phi} \neq \underbrace{\Psi(A) \cap \psi(B)}_{c}
$$

Therefore, you can thane this.
That mums everything in T goes only to one place.
That's called a function in my book.
All you have to $\frac{\text { need is that the function is everywhere defined. }}{\text { che }}$
And that comes from the fact that it preserves complements.

- Exercise 8.3

Write down this poof in all detail.
So, here we have 2 examples of the "pointless" rendering of concepts:
relation corresponds to a hemimaphism
function has an inverse correspondence to a homomorphism of Boolean alga bras,
Nous you say - "Sure, that's easy, what alost something more complicated? For example, 2 independent equivalence relations."

2 independent equivalence relations- "pointlessly"
We have independent partitions π and $\pi^{\prime} \in \Pi[S]$
Then $B_{\pi^{\prime}}$ and $B_{\pi^{\prime}}=$ the corresponding Boolean subalgebras
What properties of the $B_{0 o l e a n}$ subalgebras $B_{\pi^{\prime}}$ and $B_{\pi^{\prime}}$ are equivalent to the partitions being independent?
Easy:
Independence is equivalent to the following "pointless" property of B_{π} and $B_{\pi^{\prime}}$: For every $A \in B_{\pi}, B \in B_{\pi^{\prime}}$ s.t. $A \neq \phi$

$$
B \neq \phi,
$$

we have $A \cap B \neq \phi$
This means that it's not only true for the blocks, but also any union of b lucks, And you can convince yourself of the equivalence.

- Exercise 8.4

Prove the proceeding property.
Now we come to the tang one.
This was an open problem that was solved by Catherine $Y_{a_{n}}$ in 1995 in her PhD Thesis.

- 2 partitions which correspond with commuting equivalence relations - "pointlessly"

Let π and π^{\prime} be commuting partitions,
Again, we have the corresponding Boolean subalgeliras $B_{\pi}, B_{\pi^{\prime}}$.
Theorem $Y_{a_{n}}(1995)$
π and π^{\prime} commute iff B_{π} and $B_{\pi^{\prime}}$ satisfy the following condition: whenever $A \in B_{\pi}, B \in B_{\pi^{i}}$ sit. $A \cap B=\phi$;
there exists $C \in\left(B_{\pi} \cap B_{\pi^{\prime}}\right)$ s.t. $A \leq C$ and $B \leq C^{C}$

- *Exercise 8.5

Prove Yaw's Theorem when the underlying set is finite.
I think this should be out any day. If you crib from the paper, it shard take a couple of weeks, 96.

Now you are thinking- Whin on cath should we worry about giving point less definitions, Why? What is they good for?
Let's see what that's gaol for.
Were going to have an excursion into probability.

There are many l ways of justifitiog it. If you're a topologist, you justify it ave way. If you're an algebraic geometricet, you justify it another way. Well l use probabilist it.
Measure
If sets S, T finite, $|s| \in \mathbb{R} ;|T| \in \mathbb{R}$; one axiomatically characterizes the number of elements as:

$$
|S \cup T|+|S \cap T|=|S|+|T|
$$

If you don't see that, I cant help you, I can, but I wont,
Furthermore:

$$
|\phi|=0
$$

Mathematicans have abstracted the notion of measure from this property of number of elewerats, If you want the continuous analog of the number of elements, you in traduce the concept of a measure.
Let \mathcal{L} be a family of subsets of a set $S^{5 \text { not complete }}$ closed under U, \cap, and. containing ϕ.
Note that complements do nit play are,
This is nat a Booker algelira.
This is also called Distributive lattice of sets
A measure μ on \mathcal{L} is a function from \mathcal{L} to $\mathbb{R}^{\text {positi: }}$ sit. for $A, B \in \mathcal{L}$ we have:

1. $\mu(A \cup B)+\mu(A \cap B)=\mu(A)+\mu(B)$
2.

$$
\mu(\phi)=0
$$

- Exercise 8.6

Show by an example that the $2^{\text {nd d }}$ property doesn't follow from the $1 \frac{15}{}$.

- Exercise 8.7

Show that every measure satisfies the inclusion-exclusion formula, Namely, for $A_{i} \in \mathcal{L}$,

$$
\begin{aligned}
\mu\left(A_{1} \cup \ldots, A_{n}\right) & =\sum_{i=1}^{n} \mu\left(A_{i}\right)-\sum_{i<j} \mu\left(A_{i} \cap A_{j}\right) \\
& +\sum_{i<j<k} \mu\left(A_{i} \cap A_{j} \cap A_{k}\right)-\ldots
\end{aligned}
$$

How do measures connect up w/ the "pointless" point of view?
Time's almost up.
Well continue this next times.

- The point of the "pointless" point of view

This is largely cultural.
well distress how the stuff we've been doing relates to o thar branches of mathematics.
We said, last time, we have:
set S
$\mathcal{L} \leqslant P(s)$
e family of subsets
\mathcal{L} is closed under finite unions and intersections.
Such a family is called a distributive lattice of subsets
The point of distributive lattice of subsets is that they are used to define measures. A measure is, in general, not defined on all the subsets of a set, because if the set is empty, there are too many.
s. you take a suitable family, -a distributive lattice of subsets - and that is what you we to define a measure.

A measure on \mathcal{L} is a function $\mu: \mathcal{L} \rightarrow \mathbb{R}$ satisfying:

1. $\mu(A \cup B)+\mu(A \cap B)=\mu(A)+\mu(B)$
2.

$$
\mu(\phi)=0
$$

Sometiones measure is known as a valuation, especially by Geometers.
If you look a my book on Geometric Probability, meas uses are sometimes called valuations, following enstom from geometry.

We will have occasion to study some remarkable measures that arise in combinatarics. The most famous of all measures is nor the number of - as you think - but the measure which is one of the fundamental concepts of mathematics, which is called the Euler characteristic. w_{a} Il study this in great detail.
I assigned you, last time, as an exercise, the fact that every measure satisfies the inclusion exclusion formula.

- Since we're finishing this get chapter of our course e, why don't you start doing the exercises maybe due next pound ry.
You have to the problems, Otherwise, you don't learn..
$\frac{1}{3}$ of the exercises and 1 stared exercise in the term.
And, of course, I might examine your notes.

If, in addition, $\phi \in \mathcal{L}$ and $\mu(A)$ lies between 0 and 1 , for every $A \in \mathcal{L}$, then μ is called a probability.
And you can extend it to complements:
And one can define, consistently:

$$
\mu\left(A^{c}\right)=1-\mu(A)
$$

- Exercise 9.1

Prove the proceeding.

Therefore, we might as well assume that \mathcal{L} is a Boolean sublalaedra. (not necessarily
complete). closed under finite unions and intersections.
Example - measure

$$
S=\text { any infinite. set }
$$

There's a famous Boolean sutbalgeb bra of any inf finite set. of course, wheres, the Boolean algebra of all subsets.
But, there's another one:
We say that $A \subseteq S$ is cofinite when A^{C} is finite.
The family of all finite and co finite sets of S is a Boolean algebra $\mathcal{L}_{\text {fin }}$
This should be obvious tor you.
The \cap of two co finite sets is cotinite.
The U of a finite and a co finite set is a cotinite set.
The U of two finite sets is finite.
The complement of a finite sot is cofinite.
On $\mathcal{L}_{\text {fin }}$ we define a measure μ as follows:
set $\mu(A)=0$ if A is finite
$\mu(A)=1$ if A is cofinite.

This measure : very impenitent in logic, Logicians. use it all the time. You can see that this measure has some, pathological properties.
Example:

$$
S=\mathbb{N}
$$

$\mu(\mathbb{N})=1$, since \mathbb{N} is cofinite
But:

$$
\mu\left(\bigcup_{i=0}^{\infty} i\right) \neq \sum_{i=0}^{\infty} \mu(i)
$$

Measure of the union is not the sum of the measures, even though the sets are disjoint.
So, it's not countably additive.
This measure won't do for the purposes of probability,
More generally, even though

$$
\mu\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)=\mu\left(A_{1}\right)+\mu\left(A_{2}\right)+\ldots+\mu\left(A_{n}\right)
$$

whenever the A_{i} are disjoint, for any measure
In. the woes, any y measure is "finitely additive," as they say.
In fat, this is not true if you take lufinite sets.
In fact, it is never. true if you allow more than countable sets.
$\left.\begin{array}{l}\text { - it is seldom true that: } \\ \mu\left(\bigcup_{i \in I} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right)\end{array}\right\}$
This does not make any sense. That's why me have the "pron ties"" point of view.
for A_{i} disjoint and I infinite.

- Example

Take the interval $[0,1]$. Define a measure on $[0,1]$ to be the length of the internal:

$$
\mu((a, b])=b-a
$$

There is a theorem of measure theory, which I don't want ter state or prove, which Says. that this measure extends to lots of other sets.
However, note that:

We get the classical contradiction.
Take the whole inter vel and we would get $1=0$. I call that contradiction.

Therefore, the equality above can not be true.
However, its partly true.
The equality is time when we allow only countable unions of the interval. That's where probability generalizes comiminaterics.

We say that \mathcal{L} is a Boolean σ-algebra of sets when \mathcal{L} is a Boolean algabm and:

$$
\left.\begin{array}{c}
\text { whenever } A_{1}, A_{2}, \ldots \in \dot{\mathcal{L}} \text { disjoint, } \\
\text { we have: } \\
A_{1} \cup A_{2} \cup \ldots \in \mathcal{L}
\end{array}\right\} \begin{aligned}
& \text { i.e., the union of a countable number } \\
& \text { of disisiont elemenents of } \mathcal{L} \text { belongs } \\
& t \mathcal{L} .
\end{aligned}
$$

If $s 0$, then a measure μ is countably additive when

$$
\mu\left(A_{1} \cup A_{2} \cup \ldots\right)=\mu\left(A_{1}\right)+\mu\left(A_{2}\right)+\ldots
$$

For example, the measure defining the lengths extends to the Boolean σ-algebra of Subsets generated by internals,
That's a nom-triviod result?
This gives you ordinary probability on the interval $[0,1]$.

In particular, the triple $S, \mathcal{L} ; \mu$ where:

$$
\begin{aligned}
& S=\text { set } \\
& \mathcal{L}=\text { Boolean } \sigma-\text { subalectica of subsets }
\end{aligned}
$$

$\mu=$ probability \longleftarrow (ie. a countably allative measuretataing values $\left.\begin{array}{c}\text { between } 0 \text { and } 1 \text {, including the extremes }\end{array}\right)$
is called a sample space.
For example; the interval $[0,1]$, together with the Boolean' r-algelira generated by all intervals', is a sample space.
The Boolean σ-algebra generated by the interval $[0,1]$ is called, as you know, the Boolean σ-algebra of Bored sets.

- Now the point of the "pointless" point of view is that, in general, in probability, you want to generalize the idea of asking a question and getting an answers. Just life we did for search theory.
But just having a partition of a sample space isn't enough,
Even in the simplest cases, because random variables, as some of you know, can be continuous.
There is a substitute for partition.
And that is sub Boolean σ-subalgatira of the Boolean $\sigma=$ algebra.
The analog of a partition is a sub Boolean σ-algebras.

That's the point!
You don't take an arbitrary complete Boolean algebra. Because a complete Boolean sub a labia would determine a partition, as we've seem in one of the ear tier theorems waive proved here. You take a. Boo lena pasubalgelasa. That will determine a partition - however, because of the "pointless" point of view you think about it as if it determined a partition. If you have any partitions, you rewrite y t pointlessly and generalize it th Bornean σ-algebras. Thereby attaining the probabilistic analog.

In general, if you have a Boolean σ-algebra and a measure on it, it's very hard not to make it countably additive. t you have to go ant of your way

- Now; somethicig marvelous happens for Borlein jomalgebras.

If you take a set. Let's sdi the set is finite.
Then you take partitions. Then the transposition if portions is complicated.
Because we have tr classify partitions according to their types.
Two partitions would be equivalent, in the certain sense we have defined, if they have the same type - same number of ' looks of lilement, 2 element, et t.
For Boolean σ-algebra, a marvellous thing happens, which weill prove later.
They are all isomorphic. So yon don't hare t w worry about type and all that.
This the famous theorem at van Neumanor.
Assuming you don't have any pieces of minimal measure (thejre non-atomic), then they're bel isomorphic.
It's a marvellous theorem for which there is no simple proof.
Any 2 non-atomic Boolean σ-algebras of a Boolean sub algebra are isomorphic.
Intuitively, it should be obvious. You cut into 2, cut into 2, etc.
Them you piece together again.
We 'll talk about it later.

This is one point of the "pointless." point of view.
I wanted to get this far to show you how the "poem lass" point of view gets
to apply. to apply.
$\dot{Y}_{\text {on get a partition }}$ and you rewrite in a Baoderin σ-subalgelira, which has no obvious relation to. a partition, Nonetheless, by transteritg fro u the language, of partitions th the language of Boolean T-algebras, you are cablet go to the probabilistic cases
If you are carcetal, yon can extend the notions of dependent, independent, and commuting partitions To Boolean σ-algebras.

- There is more we could say about the "poimentlass" point of view.

Let me conclude w/ another example of a probabilistic generalization of a notion we have
a trudy studied. This is purely cultural.
We've been stediging relations, which you can visualize as:

The probabilistic analog of a relation, is a Markov chain.
Take points. Take all the edges issuing from it. And to these edges, assign probaulilitie that add up tr e 1.
Intuitively, that means that s goes w/ one point w/ probulility fr, w/ another point w/ probability' p_{2}, etc.

Similarity, with all points.
That gives you a Markov chain wy transition probabilities.
So from relation, you go tr markov chain by putting probabilities on the edges, which add up $t=1$. (You can even put probulilites that don't add upte 1 , be cause you con induce sinks).
This is just an example of how you go from combinatorial to probabilistic,

- The following is culture You dan't have to know. You can take a nap. Historically, how did the notion of relation arise?
This is ai very intercuting lesson in matheuntical history.
It shows something that happens' again and again in mathematics.
The notions of mother metics a arise, first in their mos it complianted form. Then they gradually got refined.
The notion of relation first arose in its most complicated form, which is this (if you don't know this, I wont explain it):
You take 2 algebraic varieties, You take the product of these, in the sense of algebraic geometry. Then you take a sub variety of the product,
That's whet algebraic geometers call a correspondence.
This is a relation. It this this algebraic stmeture.
That's how they arose in the 19 It century.
They curldin 4 think of a relation as purely a subset i. They had to think of them in terms of equations. Things were not defined for them unless you gave them an equation.
There are some very dep theorems, like the Reemann-Brock theorem, which are about correspondences, which are the a algebraic analog of the notion of relation.

I want to fill in a couple of adds + ends an the theory A relations before we leave and start in on the language of order, which is the next in this course.
A couple of things. Ind feel guilty if I didn't tell yon this,
It's a very fundamental fact about a relation.

- Relation on a set to itself

$$
R \subseteq S \times S
$$

To this relation we have seen that we can associate an in cidence matrix, That's a good wo of visualizing a relation. There are other good ways (an oriented graph, for example).

There is something kinky about the incidence matrix.
If you take the composition:

$$
R \circ R
$$

τ that dossn't correspond to the product of the incidence matrices. If you take the product of the incidence matrices, you're likely Fo get a matrix whose entries are n o longer just 0 's or' I's
That's cute. Wed like to do something about this kinkiness,
I'll tell you one now and one later when we do matroids.
One way is to define a new kind of incidence matrix (it's very natural):

- Edge-vertex incidence matrix

For this, we visualize the relation $R \subseteq 5 \times S$ as a graph:

Assume that R has me loops: for all $a \in S,(a, a) \notin R$

Then, with this graph, we associate a matrix, as follows.
It is a matrix of 0,1 , and -1 .

The edge-verter incidence n matrix of R;

- edges
$\operatorname{vertices}\left[\begin{array}{c}a_{i j} \\ \square \\ \uparrow\end{array}\right]=M$
$0=$ vertex doesn't belong to edge
-1 vertex at end of arrow veter edge vertex
$+1=$ vertex at beghniy of arrow. 7 edge.
There is no point in making up this matrix if it didn't have some remarkable property. And it does. It has the extraordinary property that it is totally unimodular.

We say that matrix $M=\left(a_{i j}\right), \quad 1 \leq i \leq k$ rows $1 \leq j \leq n$ columns totally unimodular when every minor $=+1,-1$, , 0 .
Now you say - what a weirdo notion.
These matrices - there ares lots of them.
These matrices - there arent lhey're all over the place. In fact, they are very popular.
They are a great subject of research right now.
Because they just discussed a couple of years age that the theory of the representation of the infinite symmetric group is intimates chelated to the theory of totally unimodular notices. So they are very much in the news.
Now, you say, give me e an example of a totally unimedular matrix.
Theorem (David Gayle at $U C$ Berkeley)
The edge-vertes incidence matrix of a graph (ie., relation wo loops) is totally unimodular.

- Exercise 9.2

Prove the above,
This is a very difficult proof, actually, which is the result of successive simplifications. The original prot was massive.

So here we have an enormous class of totally unimodular matrices.
They are all over the place.

- The question as to when a unimedular matrix is the edge-vertex incidence matrix of a graph has been solved, by one of the most outstanding graph theorists of all times, Tate, in hair raising detail. This condition is very deep. One of the deepest theorems of combinatrics.' Not fully understood to this day. You follow it line by line, lat you really don't see why it should be true.
We have 3 minutes
I'll give you some problems.
- Exercise 9.3 (Mme. Dubreil)
$R, R^{\prime} \subseteq S \times S$ are sesquicommuting when:

$$
R \circ R^{\prime} \circ R=R^{\prime} \circ R \circ R^{\prime}
$$

Find a structure theory for sesquicommuting.
In other words, what do they look like?

Exercise 9.4 (Rignet)
We say that R is a Fever's relation when S is finite and can be ordered so that:

$$
R\left(a_{1}\right) \geq R\left(a_{2}\right) \geq \ldots
$$

The incidence matrix has lots of i's in the first blocks, a subset of those 1's in the second, etc.
It turns out these relations can be characterized algebraically. Combinatorially.
Prove that R is a Ferret's relation iff:

$$
R \circ R^{c-1} \circ R \subseteq R
$$

Very elegant.

Last Wards before Order
From last time, we saw that given a relation $R \subseteq 5 \times 5$ wo loops (i.e., an oriented : graph), we can associate an edge-vertex incidence matrix M_{n}.

$$
M=\left(a_{i j}\right), \quad i \in S
$$

set $a_{i j}=0$ if $i k j$

$$
\begin{aligned}
a_{i j}=1 & \text { if }(i, a)=j \text { for some } a \in S \\
& (i \text { is at beginning of edge } j) \\
a_{i j}=-1 & \text { if }(a, i)=j \text { for some } a \in S \\
& (i \text { is at end of edge } j)
\end{aligned}
$$

In this way, you obtain a matrix:

of course, when writing down the matrix, you can linearly order the vertices and edges.
Theorem
The matrix M is totally unimodular.
That means that every minor of the matrix is equal to $+1,-1$, or 0 .
Then you might ask what are totally muimadalar matrices good for we tacked an this last time. But certainly this is a cumarkeable property.

Proof:

Take a minor
You may, wo loss of generality take the first $k \times k$ submentrix. A minor is always a square sub matrix.
Need to show that the determinant of this sub matrix is $+1,-1$, or 0 .

So there are 3 cases,
Let me tell you a story.
John won Newman - everytime he listened to a lecture and the lectures said "And now there are 3 cases" he got up and left, He couldn't stand it.
Now I tell you "And now there are 3 cases."
Observe that since columns (edges) correspond to elements of R, each column contains all 0 's except exactly one +1 and one -1 .

Every column is an ode and every edge has a beginning and an end.
Remember - no self loops,
So, when we take this minor, there are 3 cases.
Case 1: Every column has exactly two non-zero entries necessarily one +1 , the other -1. And when summed, these cancel.
Hence, the sum of the rows, for each column vector, equals 0 .
Hence $\operatorname{det} C=0$.
Since the sum of the rows is the zero vector, they are linearly dependent and the determinant is 0 .

Case 2: One column has all Oentries.
Trivially, $\operatorname{det} C=0$
Case 3: At least one column has exactly one non-zero entry,

We compute dat C by expanding by the first column.
$\operatorname{det} C=(\pm 1) \cdot \underbrace{\operatorname{det} C^{\prime}}+\underbrace{0}$ all the other coftuctors are 0 .
c^{\prime} is a smaller minor $(k-1 \times k-1)$.
So we compute this by induction, until we get a $|x|$ minor.
Then we back up.
$\operatorname{det} C= \pm 1$
Then we back up.

What are totally unimodular matrices good for?
There are people who make their living on totally unimodular matrices. But that's not a really honest answer.
Example:
M is a totally unimodular matrix
Say It's square and say $\operatorname{det} m \neq 0$
Then, consider the system of linear equations:

$$
m \underline{x}=\frac{b}{1}
$$

- since dat $M \neq 0, b$ has a unique solution.
what happens when M is totally unimodular?
When m is totally unimodular, whenever 1 has integer entries, then the solution x has integer entries,
Why? I'll do this by hand
How di you solve?
By Kramer's Rule.
Cramer's Rule tells you that the solution x is obtained by taking M_{1}, replacing one of the columns lay: b and dividing it by the determinant. When you expand the minors, the minors are all ± 1, so you get linear combinations of the entries of b and the determinants 11 , so you get an integer.
Ultimately; this is the reason peoples study totally unimiduhr matrices.
The field is called integer programming:
- Exercise 10.1

The above example also extends to the case where $\operatorname{det} m=0$, Do this as an exercise.
In that case, you don't have a unique solution.
You can hare a space of solutions.

- Exercise 10.2

Theorem (Refer at Cal Tech)
Given a relation $R \subseteq S \times S \quad|S|<\infty \quad$ (i.e., S is finite)
relation R has some marginals
(sum if the rows and the columns of the)
incidence matrix $[2.7]$
A lot of work has gone into studying the set of all relations wi given marginals. Stunning the structure of the set.
In particular, the question of how many there are is largely open.
But a numbers of results have been obtained.
Here is an elegant and useful result about the set of relations which are marginals.
A switch of R is a relation R^{\prime} obtained from R as follows:
Pick a pair $(a, b) \in R$ where $(a, d) \notin R$

$$
(c, d) \in R \quad(c, b) \in R
$$

then:

$$
R^{\prime}=(R-\underbrace{-(a, b)-(c, d)}_{\text {toke away these edges }}) \underbrace{\cup(a, d) \cup(c, b)}_{\text {add these edges }}\} \text { switch }
$$

Let's visualize:

R

R^{\prime}
switch
everything else (al lather edges) remain the same.
From the point of view of incidence matrices:
$a\left(\begin{array}{c}b \\ \vdots \\ \vdots \\ 1 \\ 0 \\ 0 \\ 0\end{array}, \cdots\right)$
R

R^{\prime}

If R^{\prime} is a switch of R, then R and R^{\prime}. have the same marginals, The sum of the rows and the sum of the colums remain the same. The marginals are unchanged.

The theorem is:
If R and $R^{\prime \prime}$ have the same marginals, then $R^{\prime \prime}$, may be obtained from R by a series of switches.
This result has found lots of applications.
The set of relations w/ given marginals is connected through switches.
There are many proofs of this theorem.
I doit know a snappy prof.
Please find a snapneppyy elegoutit prof? Not just any old proof.
There must be something really central.
This is just one result about marginals.
There are oodles of them.

- The Langange of Order

A partial order on a set P is a relation $R \subseteq P \times P$ with the following properties:

1. $R \supseteq I$ (reflexive) R contains the Identity relation
2. $R \cap R^{-1}=I$ (anti :symmetric)
3. $R \circ R \subseteq R$ (trmsitive)

An ordered relation is usually written w/ a different notation.
Instead of $a R b$, one writes $a \leq b$

In terms of \leq, the 3 properties of a partial order become:

1. $a \leq a \quad$ (reflexive)
2. if $a \leq b$ and $b \leq a$ then $a=b$ (anti-symmeatric)
3. if $a \leq b$ and $b \leq c$ then $a \leq c$. (transitive)

Now we have to go through all the language of partially ordered sets, so we
cain speak. can speak.

For $a, b \in P$
τ henceforth, when we see P, we mean a set endowed with a partial order. Antontically, Strictly, we should write:

$$
(P, \leqslant)
$$

we say $a<b$ (a is covered by b)
when:
$a<b$ (ie., $a \leqslant b$ and $a \neq b$)
and if $a \leq c \leq b$ then either $c=a$ or $c=b$
this is a polite way of saying that there is
not thing between a and b.
We write $a \leqslant b$ to mean $\underbrace{a<b}$ or $a=b$
a is conrad by b

- If p is finite, the graph (necessarily oriented) of the covering relation is the Hanse diagram of P.

This graph is ussually nit written as an oriented graph, but from the top, down.

$$
\cdot\left\{\begin{array}{l}
\text { Partially ordered sets } \\
\text { ordered sets } \\
\text { posers }
\end{array}\right\} \text { synonyms }
$$

- Example - Hasse diagrams

We give an example ot a poset (partially ordered set) in terms of is Hasse diagram: $P(\{a, b, c\}) \leftarrow$ w/ apologies for the contusion, here P is the Boolean algebra of subsets $p_{\text {powers ct of }} \quad$ f $\{a, b, c\} a, b, c$ of the elements $\{a, b, c\}$.

- Posset example - fence Hasse diagram

Another example fence:

Example - Relation
$R \subseteq S \times T$ defines a partial order on $P=S U T$ by setting:
$a \leqslant b$ whenever $a \in S, b \in T$, and $(a, b) \in R$
Thus
Every relation can be viewed as a partially ordered set.

Antichain
Sot with a trivial partial order

$$
a \leq a
$$

a is rated to a only.
If a and b are different they are unrelated.
This satisfies the 3 conditions,
Chain (or linearly ordered set)
A chain is a posen P where:
for all $a, b \in P$, we have $a \leq b$ or $b \leqslant a$
For example, \mathbb{R} is a chain.
The set of real numbers is ordered.

A finite chain has a Hasse diagram:
\square

- If $Q \subseteq(P, S)$ then Q inherits a partial order from P. Subset Q may be viewed as a partially ordered set in its own right. Be cause you can restrict the partial order tr Q, generally, and satisfy
the 3 conditions.
- A maximal element of (P, \leq) is an elerinent $x \in P$ s.t, if $y \geqslant x$ then $y=x$
- A minimal element of (P, S) is an element $x \in P$ sit. if $y \leq x$ then $y=x$
- The dual of (P, \leq) is the set $\left(P^{*}, \leq\right)$ where:

$$
a \leq b \operatorname{in} P^{*} \text { if } b \leqslant a \operatorname{in} P
$$

Informally, you gat p^{*} by turning Pupside down,
If P is finite, you literally turn the Hose diagram upside down to get P^{*}. of coarse, $P^{* *}=P$. That's trivial.

- A maximum element (if any) is the unique maximal element, written as $\hat{1}$. A minimum element (if any) is the unique minimal element, written as $\hat{0}$.
Example! \mathbb{R} has no unique minimelor maximal element. So this pose has no minimum and no maximum.

Example: The Boolean algebra of subsets of 3 dement sets $[10.6]$ has:
the null set ϕ is the minimum element
the set $\{a, b, c\}$ is the maximum element
Example: if This Haste diagram has no maximum e element andno minimum dement, II There is no unique maximal element and no unique minimal element.

John Guide

The Language of Order (Contd)
We saw last time the definition of a partially ordered set.
All of the following are the same action:
$P=$ partially ordered set \Rightarrow poset $=$ ordered set
These all refer to a set P and an ordered relation \leq.
We tend not to explicitly write the ordered relation and assume it, implicitly,

$$
(P, \leq)
$$

We have seen that if P is finite, we can associate w/ P a graph (namely a relation) which visualizes the covering relation in the partial arden.
We have begun to list the various terms that are used in connection with partial orders;

- minimal element
- maximal element
- miminutem element-- Hie unique \hat{o}
- maximum element - the unique $\hat{1}$

For the posset represented by this Hasse diagram, there is no on 1 .

- antichain - trivially order
- chain - linearaorder
a posectinhere any 2 elements are comparable. So you can visualize rt as a linear drain, even though there mag be coutimnous chains.
Even a linear order is extremely complex. For example, you have: transfinite ordering.
- the subset of a partially ordered set inherits the partial order.
$Q \subseteq P$
$Q \underset{\sim}{c} P$ are particularly interested in subsets of puitilly ordered sets that
are chains or anti chains.
Let's: next define"
- maximal chain of $P=$ flag $=$ complete chain $=$ saturated chain

For example, if you take the Bodeani algal ra of subsets of 3 elements, whose tasse diagram. we have seen $[10,6]$, we have:

Atom:
$x \in P$ is an atom when $x \succ \widehat{\delta}$

Atoms have rank 1. Always. x covers the minimum (ie, unique minimal) element

It is easy to see that this partially ordered set is ranked.
$\frac{\text { Example- } N_{5}}{x}$ An example of a partially ordered set that is not ranked.

maximal chains from \hat{o} to x have different lengths.
N_{5} is not ranked.

- Example - ranked poset without $\hat{1}$

Ranked, as for all $x \in P$, all maximal chains from \hat{O} to x have the same length. Note that there is no $\hat{1}$.
\qquad

- Contour
$x \in P$ is a coatom when $\underbrace{x<\hat{1}}_{x \text { is covered }}$

There are two basic operations on partially ordered sets: disjoint sums products

- Disjoint Sum
$P \oplus Q=$ the disjoint sum of the sets P and Q, considered tr be disjoint and the partial order is the original partial order in each set.

Product

$$
\begin{aligned}
f \times Q & =\{(x, y): x \in P, y \in Q\} \\
& \text { and }(x, y) \geqslant\left(x^{\prime}, y^{\prime}\right) \text { ff } x \geqslant x^{\prime} \text { and } y \geqslant y^{\prime}
\end{aligned}
$$

Forexmuple, let's toke the product ot 2 chains:

The product $P \times Q$ is simply the partially ordered sot. represented by the rectangle.

Warning: Disjoint sum and product are not the only two operations on paritilly ordered sets.
There are many, many others.
And they have never been completely classified.
For example, you can take the lexicographic product. You can put one poses on top of the other. You can stitch them together in various ways. There are infinitely many ways of combining partilly ordered sets with one another,

- sup

If $x, y \in P$, we say that $\sup (x, y)$ exists if there is an element $z \in P$ s.t.: $z \geqslant x$ and $z \geqslant y$ and, further mare,
every element u sit. $u \geqslant x$ and $u \geqslant y$ must have $u \geqslant z$
In other words, if there is one element z above both x and y and, furthermore, anything else above both x and y is also above z, then $z=\sup (x, y)$.
mathematicians are so silly.
Whathematicianis are so silty.
When they give a deftimion, very often what they should give is something that does
not satifity the definition.
Many times that is the way to understand the definition.
They should give you something then shows what the definition is meant t guard you against. has learned this lesson.

Examples of partially ordered sets where sup doesn't exist:

b. th candidates.

Therefore, no $\sup (x, y)$

Example of pose where sup exists:
Given our friend the Boolean algeifaa of subsets of 3 elements [10.6], given any 2 subsets, if you take their union, that is their sup.'

- inf (dually, one defines inf, if it exr, ts)

If $x, y \in P$, we say that inf (x, y) exists if there is an element $a \in P$ sit: $a \leq x$ and $a \leq y$ and, furthermore, every element u sat, $u \leq x$ and $u \leq y$ has $u \leq a$

- Lattice

A partially ordered set L where sup (x, y) and inf (x, y) always exist for any 2 elements x and y is called a lattice.
A lattice is a pose w/ sups and ins allover the place. For example, the following poses is NoT a lattice.

There was a greet discovery in the $19^{\text {th }}$ century by the German mathematician Dedekind, that the nut ion of a lattice can be axiomized algebraically.
You can see an equivalent definition of a lattice using an algebratation of the two notions of sup and inf.
This war a tremendous step forward. Not uncontroversial, because Kronecker, who was a friend of Dedekind, until Dedekind published his first paper on lattices, said: "your become so abstract, youve going crazy.".
Dedekind algeiobraization of lattice
Let L be a set endowed with two operations, everywhere defined, $v(=$ join $)$ and 1 (= meet) satisfying:

$$
\left.\left.\begin{array}{c|c}
x \vee x=x & x \vee x \\
x \vee(y \vee y)=y \vee x & x \vee y) \vee z \\
\text { Absorption Lav: } \\
x \vee(y \wedge x)=x
\end{array} \right\rvert\, \begin{array}{c}
x \wedge x=x \\
x \wedge y=y \wedge x \\
x \wedge(y \wedge z)=(x \wedge y) \wedge z \\
\\
x \wedge(y \vee x)=x
\end{array}\right\}
$$

Theorem:
Any set endowed with join and meet satisfying the above 8 properties is al lattice.

- Theorem:

If we set $x \leq y$ to mean $x \wedge y=x$, we obtain a partially ordered set where:

$$
\begin{aligned}
& \sup (x, y)=x \vee y \text { and } \\
& \inf (x, y)=x \wedge y
\end{aligned}
$$

In other words, if you define exactly these operations (A and V), then it turns out that these operations automatically define a partial order.
And this partial order is a lattice, where sup is the operation of join and
That's Dedekind's contribution. inf is the operation of meat.

Proof:

1. First, we need to show that $x \leq y$, when defined as $x \wedge y=x$ is a partial order.
In other words, we need to show that the reflexive, anti-symmetrig and transitive properties hold [10.5].
a) reflexive

$$
x \leqslant x \quad \Leftrightarrow \quad x \wedge x=x
$$

By the definition of \leq and then observing that this is precisely one of the properties of the meet. operation, as defined $[11,5]$.
b) anti-symmetric

$$
\begin{aligned}
& x \leq y \text { and } \\
& y \leq x
\end{aligned} \Rightarrow x=y
$$

$$
\Leftrightarrow \quad x \wedge y=x \text { and } y \wedge x=y
$$

The commutative property for meet states That $x_{\wedge} \wedge y=y^{\wedge} \wedge x$.

$$
x=y r
$$

c) Transitive

$$
x \wedge(y \wedge z)=x
$$

Given that y 1. $z=y$;

$$
x \wedge y=x
$$

And since if is given that $x \wedge y=x$:

$$
x=x
$$

That's the easy part.

$$
\begin{aligned}
& y \leqslant z \Rightarrow x \leqslant z \Rightarrow x \wedge z=x \\
& \text { given } x \ln y=x \longrightarrow \underset{\text { By the associative }}{(x \wedge y) \wedge z=x} \\
& \text { By the associative property of meet: }
\end{aligned}
$$

2. Now we need to show that v and A are sup and inf in this puticlly ordered set. We have a partial ordering, but we don't yet know that v is sup and 1 is int,
Lemma

$$
x \wedge y=x \text { if } x \vee y=y
$$

Proof:

$$
\begin{aligned}
x \vee y= & (x \wedge y) \vee y \\
& \text { Rewrite using command that give law; } x \wedge y=x
\end{aligned}
$$

$$
=y \vee(x, y)
$$

what haven't we used yet?
The absorption (aw [11,5].

$$
\begin{aligned}
& y \vee(x \wedge y)= \\
= & y v
\end{aligned}
$$

Since \checkmark and $\hat{\imath}$ are self dual, this prof gees the other way around, as well. So you have this Lemma.
Now we show that we have, everywhere, sup and inf.
Proof that $x \vee y=\sup (x, y)$;
observe $x \vee y \geqslant x \longleftarrow \begin{aligned} & \text { Why? }\end{aligned}$
Because, from the definition of \leq, we have:

$$
x \leqslant x \vee y \Leftrightarrow x^{\wedge}(x \vee y)=x
$$

Similarly $x \vee y \geqslant y$
And this is exactly the absorption law.
That's not yet enough to show that $x v y=\sup (x, y)$.
You have show that if there is an element that is greater than both x and y, it's also greater than $x \vee y$.
Suppose $z \geqslant x$ and $z \geqslant y$.
From the Lemma, we have:

$$
z v x=z \text { and } z v y=z
$$

But $z \vee(x \vee y)=(z \vee x) \vee y]$ This gives:

$$
\left.\begin{array}{l}
=z \vee y \\
=z
\end{array}\right\} \begin{aligned}
& z \vee(x \vee y)=z \\
& \text { Hence: } \\
& (x \vee y) \leq z
\end{aligned}
$$

Thus $z \geqslant x \vee y$.
For once, I gave a complete proof
This is a famous argument,

This is a famous argument,
This holds dually for A and inf.
At this point, we can make a big list of partially ordered sets that are lattices,

- A lattice L is said to be complete when, for every subset $A \subseteq L$, $\sup (A)$ and inf (A) exist.

This is the aundegue if what we call a Boolean algebra of sets which have arbitrary
unions and intersections,

- A lattice is distributive when it satisfies the identity:

$$
x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)
$$

- Exercise 11.1

Show that the proceeding identity is equivalent to the dual identity:

$$
x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)
$$

τ lie., interchange join and meet.
Not every lattice is distributive.
Now I'll be a good bay and immediately give you an example of a lattice that is

- Example - Lattice M_{3} is non distributive

m_{3}

$$
\begin{array}{cc}
a \wedge(b \vee c) & \hat{\not}(a \wedge b) \vee(a \wedge c) \\
a \wedge \hat{1} & \hat{o} \quad \vee \quad \hat{o} \\
a & \neq
\end{array}
$$

Therefore, this lattice is not distributive

It is very race for a lattice to be distributive.

- If P and Q are posets, $f: P \rightarrow Q$ is order preserving

$$
x \leq y \text { in } P \underset{\text { ing lies. }}{\Rightarrow} f(x) \leq f(y)
$$

In particular,

- f is an isomorphism of P onto Q when:
f is an order preserving monomorphism onto Q and f^{-1} is also order preserving and
$f \circ f^{-1}=I$ and $f^{-1} \circ f=I \quad(I=$ identity $)$
Now we look at some famous examples of poses and lattices:
* $P(S)$, the Bodean algebra of subsets, is a lattice for any set S, where

$$
\begin{aligned}
& v=U \\
& i=\cap
\end{aligned}
$$

In fact, this is a complete lattice.

- $B[S]=$ the family of all Boolean subalgebras of S
setting $B \leq B^{\prime}$ when $B \subseteq B^{\prime}$
This is a porielly ordered set, I haven't verified that this is a lattice yet.
- $\Pi[s]=$ all partitions of S
setting $\pi \leqslant \pi^{\prime}$ when the partition π is a refinement of the partition π^{\prime} (ie., every block $B \in \pi$ is contained in some block (of π^{\prime}).
 The picture is like this. Here's your set S and the partition $\pi^{\prime}=\longrightarrow$ cuts.
To get π. The refinement of π^{\prime}, you cut the blocks. C of π^{\prime} up. Cuts $=\sim m$.
The blocks of π are each contained in a block of π^{\prime}.,
In particular, \hat{o} is the partition where every elemenent is a block tritself.今 is the partition with only one block.
Next time, well l show that $B[s]$ and $\Pi[s]$ are isomorphic.
Some of this material can le found in my book (Gian-Carlo Rota on Combinatorics) pp. $516-560$.

John Guidi

A maximum element $\hat{1}$ of a pose P is the dement $\widehat{1}$ sit.

$$
\hat{I} \geq x \text {, for all } x \in P \text {, }
$$

if any,
We have been discussing thenation of partially ordered sets $(P \leq)$.
Before we go any father, I feel it is my duty tr inform you that there is another notion, which is in a sort of no man's land, which we hate ${ }^{t} 5$ briefly discuss.
The notion of a quasi-ordered set. And it does come up. You have to knows it exists.

- A quasi-ordered or pre-ordered set Q is the set with a relation $R \subseteq Q \times Q$ st.

1. $R \geq I$ raflexive
2. $R \circ R \subseteq R \quad$ transitive

But not anti-symmetric.
What happens it you don't have anti- symmetry?
Fortunately, there's a structure theorem for quasi-- ordered sets.
It allows us to dealuce the study of quasi-ordered sets from the study of partially ordered
sets. self.
Namely:
If Q is a quavi-ordered set, let R^{\prime} be defined as follows:

$$
a, b \in Q
$$

$a R^{\prime} b$ whenever $a R b$ and $b R a$
It follows that the relation R^{\prime} is an equivalence relation on Q. $\tau_{\text {because it's reflexive, symmetric, and }} \begin{gathered}\text { transitive }\end{gathered}$
Let \bar{Q} be the set of equivalence classes. (or blocks of the partition)
For $\left.\alpha, \beta \in \bar{Q}, \begin{array}{l}\text { set } \alpha \leq \beta \text { whenever: } \\ a R b \text { for some } a \in \alpha, b \in \beta\end{array}\right\} \begin{aligned} & \text { This is well defined and } \\ & \text { defines a partial order on } \bar{Q} .\end{aligned}$
Thus, every quasi-order splits into an equivalence relation and a partial order.

- Example

Let $R=$ any relation $R \subseteq S \times S$
The transitive closure of R is the relation:

$$
R_{\text {trans }}=I \cup R \cup R O R \cup R O R O R U
$$

You can verify that $R_{\text {trans }}$ is a quasi-order.
These constructions, quasi-orders, are extremely frequent in mathematics,

- You remember that a lattice is a partially ordered sot with a sup and an inf As we showed last time $[11,5-7]$, if we set $x \leq y$ t mean $x \wedge y=x$, the sup is v (join) and the inf is 1 (meat),
It is a remarkable fact that these joins and meets can be viewed as abstract algebraic operations, completely defined by identities, as we've seen.
operations, completely def tined by identities, as were seen. Any a algebraic, system that can be identified by identities automatically enjoys a number of properties, which mangle well talk about, if time permits.
It is very import tut, whin given an algebraic system, tr see if you can redefine it using only operations and identifies, because that allows you tanh general the rems of universal algebra.

It just so happened that Dedekind discovered that sup and in can be defined with algebprie Identities. As yon recall, the identities are that they are idempotent, commutative, associative, and they satisfy the absorption law.
From this, we can recover the portal order of the set,

- We sen a lattice is distributive Whin:

$$
\begin{aligned}
& a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c) \text { and, dually, } \\
& a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)
\end{aligned}
$$

We saw that not every lattice is distributive, A classical example is M_{3} :

If a lattice turns out to be distributive, we're very lucky.

- There are some really dissimilar latices that turn out to be distributive, as yum will see,
- What are some examples if distributive lattices?

Well, one example we have seen, Namely, the Boolean algebra of subsets of a set, where join is U and meet is M.
What about another example:

- The order ideal of a partially ordered set P is a subset I of P st, if $x \in I$ and $y \leq x$ then $y \in I$ this is also known as a descending set.
- The dual notion of an order ideal is a filter ruthis is also known an an asadiodigset.
- Intuitively, if you visualize the Hasse diagram of P, then the order ideal consists I taking the to tel anti-chain and taking everything underneath.
- If I and I' are order ideals, then so are:
$I \cap I^{\prime}$ and $I \cup I^{\prime}$
Theorem
The family I (P) of all order ideals of a partially ordered set P is a distributive lattice.

This is how you get distributive lattices galore,
You just take a partially ordered set and the set of all its order ideals. You get a distributive lattice.
These are not Borden algebras, because the complement is a filter. So these distributive lattices are not Boolean algebims.
They are not dosed under complement.
If $I=$ order ideal, then it complement I^{c} is a filter.
We will see shortly that if P is a finite partially ordered set then the converse of this theorem is true. That's the famous theorem of Birkhotf.

- Theorem - Birkhoff
- Every finite distributive lattice is isomorphic to the lattice of order ideals of some partially ordered set.
For infinite distributive latices, that's not true. That is part of the chapter of prof fruiter Combinatorics,

So, here we have one prime example of a lattice:
We' take the family of order ideals of a. partially ordered sat.

- Remark

To every partially ordered sect, you can associate a topological space, The order ideals of P define the closed sets of a topology.
In this way, to every posit, you can associate a topological space. All the pathologies if algobraic topligy can al ready be sloven by examples of this kind of top ole any Homatopy theory, etc. You can always got
These top loges inclusive a wide variety of topological spaces.
Partitions and Boolean' Subalgebras
$B[s]$ denotes the family of all Boolean subalgebras of S

$$
B_{1}, B_{2} \in B[s] \text {, set } B_{1} \leq B_{2} \text { when } B_{1} \subseteq B_{2}
$$

$\pi[s]$ denotes the family of all partitions of a set S
$\pi, \pi^{\prime} \in \Pi[s]$, set $\pi \leq \pi^{\prime}$ when every block of π is contained in some block of π^{\prime}

We want to show that $B[s]$ and $\pi[s]$ are lattices.
And we went to got a clear idea what sup and in f look like.
Set $B_{1} \wedge B_{2}=\underbrace{B_{1} \cap B_{2}}$.
the intersection of two Boolean subalgebras is a Boolean subadgetra
Set $\pi \wedge \pi^{\prime}=\left\{B \cap C: B \cap C \neq \varnothing, B \in \pi, C \in \pi^{\prime}\right\}$
T the partition whose blectes are so defined.
Earlier in this course, we showed that to every. Boolean subalgetra, there corresponds a partition. And to every partition, there corresponds a Boolean subalgebra. [2,13] Now, let's exploit this.
$\underset{\substack{\text { Given } \\ \text { partition }}}{ } \rightarrow \operatorname{Bool}(\pi)=$ Boolean subalgebra whose atoms are the blocks of π

$$
B_{1} \rightarrow \operatorname{Part}\left(B_{1}\right)=\text { set of atoms of } B_{1}
$$

We can do this, of course, because we can take arbitrary, unrestricted unions
and intersections.
And we have shown that this correspondence is a bijection.
This bijection is order preserving.
This gives an order preserving bijection of $\Pi[S]$ onto $B[S]^{*} F$
We use the $*$ to indicate the reversal here, $]$
The finer the partition is, the bigger the resulting Boolean subalgebra that is generated.

So we have that the partially ordered set of all partitions is isomorphic to the partially ordered set of all Boolean subabel bras?
Observe that it is easy to define the meet for Boolean subalgebras and partitions, as we have just done,
But, under the order inverting isomorphism, the meet becomes a join.
Therefore, you define the join by exploiting this isomorphism.
Hence, we define:

$$
\begin{aligned}
& \pi \vee \pi^{\prime}=\operatorname{Part}\left(\operatorname{Bool}_{\left.\operatorname{ol}(\pi) \cap \operatorname{Bod}\left(\pi^{\prime}\right)\right)}^{B_{1} \vee B_{2}=\operatorname{Bool}^{\prime}\left(\operatorname{Part}\left(B_{1}\right) \wedge \operatorname{Part}\left(B_{2}\right)\right)}\right.
\end{aligned}
$$

Thus, both $B[s]$ and $T[s]$ are lattices.
of course, they are completer lattices, because you can take arbitrary unions and intersections,
$\pi[s]$ and $B[s]$ are complete lattices
They are not distributive lattices.

The lattice T$T s]$ is, to my mind, the most interesting lattice there is. The lattice of partitions of the 4 element set is, already interesting. Let's get a fool for it.

- Example - the lattice $\Pi[s]$

Let $S=\{a, b, c, a d\}$
You can't write the Hasse diagram. It would take the rest of the period.
But let's see what the Hasse diagram looters like - roughly.

$$
r a_{n} k=3
$$

$$
\text { rank }=2 \longleftarrow \text { has two types of partitions. }
$$

$$
\text { one of the form } 2+2 \text {, the other } 3+1 \text {. }
$$

$$
\text { rank }=1 \text { (atoms) }
$$

$$
\operatorname{rank}=0
$$

rank = \#elements in the set - \#blacks in partition if S finite then

$$
r(\pi)=|S|-|\pi|
$$

- Now you say - that's good. That works for partitions of a set. What about parities of a number?
Let's see what we can do.
Something fumy happens.
There and 2 partial orders on the partition of a number.
A good one and a bod one.
Firs 4, let's talk about the bad one, as that's the first one that will occurtrus.

$$
\begin{aligned}
& \begin{array}{l}
\hat{1}=\{a, b, c, d\} \\
\{a, b\}\{c, d\} \quad\{a, b, c\}\{d\} . \\
\{a, b\}\{c\}\{d\}
\end{array} \\
& \hat{o}=\{n\}\{b\}\{c\}\{d\} \\
& \Pi[\{a, b, c, d\}]
\end{aligned}
$$

Bad - Partitions of a number
Given $n \in \mathbb{N}$
$P(n)=$ partitions of n
In other words, a multi set of integers whose sum is n [4.10]
If $\alpha, \beta \in P(n)$, say $\alpha<\beta$ when β is obtained from α by replacing two "summands" of α by their sum,

$$
\left\{\begin{array}{l}
\beta \text { corers } \alpha \text { if you can take } 2 \text { elements of } \alpha \\
\text { add them, and then git another multiset, } \\
\text { Which is } \beta
\end{array}\right\}
$$

The transitive closure of this covering relation is a partial order \leq on $P(n)$, called refinement.

However, this is NoT a lattice.
This partially ordered set $(P(n), \leq)$ is what people use when they want t find a bad pailich, ordered set.
In other words, if they have a property, and they want to find some partially. ordered set where the property doesn 'told, chances. are that it doesn't hold in $(P(n), \leq)$.
So it is often used for counterexamples.
That's what it is mostly used for.
The simplest questions are net answered by this partially ordered set.
It's weirdo.
Good - Partitions of a number
Another partial order on the set $P(n)$, which is really good is the dominance order, Given $n \in \mathbb{N}$

$$
\begin{aligned}
& P(n)=\text { partitions of } n \\
& \lambda \in P(n)
\end{aligned}
$$

τ arrange the entries of the multiset λ in non-increasing order

$$
\lambda=\left(\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots\right), \lambda_{i} \in \mathbb{N}, \sum_{i} \lambda_{i}=n
$$

We say that $\lambda \geqslant \lambda^{\prime}$ in the dominance order when:

$$
\begin{gathered}
\lambda_{1} \geqslant \lambda_{1}^{\prime} \\
\lambda_{1}+\lambda_{2} \geqslant \lambda_{1}^{\prime}+\lambda_{2}^{\prime} \\
\lambda_{1}+\lambda_{2}+\lambda_{3} \geqslant \lambda_{1}^{\prime}+\lambda_{2}^{\prime}+\lambda_{3}^{\prime} \\
\vdots
\end{gathered}
$$

This de tines a partial order
This partial order arose first in statistics. There are a tremendous number of applications.
And, strangely enough, it was first defined in the continuous case.
If you take a function on $[0,1]$, you. can define a non increasing rearrangement of that function. A function is $\leq t$ another in the partial order if the definite integral of ane from 0 tr x is \leq the definite integral of the other from O To s x, for every. x.

How do we visualize the dominance order?
One way to visualize this partial order is to visualize the covering relation.
To visualize the covering relation, we can associate a Ferrets matrix $[4.11, \sqrt{12}]$ with λ and λ '.

- Ferrers Matrix:

$$
\begin{aligned}
& \lambda=(5,1,1) \\
& \begin{array}{l}
\lambda_{1}\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & & 0 & \\
\lambda_{2} \\
\lambda_{3} & & & \\
1 & & \\
\hline
\end{array}\right]
\end{array} \\
& \begin{array}{l}
\begin{array}{l}
\lambda^{\prime}=(3,2,1) \\
\lambda_{1}^{\prime} \\
\lambda_{2}^{\prime} \\
1
\end{array} \\
\lambda_{3}^{\prime} \\
1
\end{array}
\end{aligned}
$$

The covering relation $\lambda_{i} \Sigma \lambda_{i}^{\prime}$ is equivalent to saying that you can move "I entries down in such a way that:
(1) "I" entries, in the covering Ferress matrix, can be moved down in such a way that the resulting matrix is a Fernersmatrix (maintains the Ferrers de (attonship).
(2) this resulting Firers matrix contains the covered firers matrix.

Example: $\lambda=(5,1,1), \lambda^{\prime}=(3,2,1)$

$$
\lambda=\left[\begin{array}{llll}
1 & 1 & 1 & 10 \\
1 & 4 & 2 \\
1 &
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 1
\end{array}\right]
$$

$$
\lambda \geqslant \lambda^{\prime}
$$

$\tau_{\text {in the dominance order }}$

Let me mention 2 funny facts about the dominance order.

1. The dominance order is a linear order us $T_{0} n=5$, So it was missed earl in the game. People would test things up $t_{n} n=5$ and say, "oh, it's a linear order. Fanny things happen when $n=6$, since the dominance order is no longer a linear order.
2. There is an orth compliment in the dominance order.

- If P is a partially ordered set, an ortho complementation is a map

$$
x \rightarrow x^{\perp}, x \in P
$$

st.

1. if $x \leq y$ then $x^{\perp} \geq y^{\perp}$
2. $x^{\perp 1}=x$

You have that the dominance order is orth complement.
Setting $\lambda^{\perp}=$ the partition whose Ferrers matrix is the transpose of the Farmers matrix of λ, we obtain an or the complement.
It is very rare for a partially ordered set to have a complement, as we will see.

- w* Exercise 12.1
open problem.
Give a structural characterization of the dominance order.
Give an order theoratial characterization of the dominance order in terms of the properties of its orthicomplementation. In other wards, the dominance order is the only order with the following properties. There is every reason to believe there is such a characterization, bt no one's got it yet.
The dominance order is a lattice. Ileave it tho you to prove this.
But it is not a distributive lattice.
- Theorem

The dominance order is a lattice
What's another example of an ortho complemented partially ordered sat?
Boolean algebla.
Given a Boolean algebra, you take the Complement of the sat - That san orth complement, Whereas, with the lattice of prifitions, there is no ortho complement.

John Guide guidiemath, mit, call

The Wonderful World of Order (cout'd)
The last partially ordered set we discussed last time was the dominance order.

- Dominance order
$P(n)=$ family of all partitions of the positive integer n Take $\lambda \in P(n)$ and members of the multiset in non-increasing order

$$
\lambda=\left(\lambda_{1} \geq \lambda_{2} \geqslant \cdots\right), \sum_{i} \lambda_{i}=n, \lambda_{i} \geqslant 0 \text { integers }
$$

The dominance order is defined $\lambda \geqslant \lambda^{\prime}$ whenever:

$$
\lambda_{1}+\lambda_{2}+\ldots+\lambda_{i} \geqslant \lambda_{1}^{\prime}+\lambda_{2}^{\prime}+\ldots+\lambda_{2}^{\prime} \text {, for } 1 \leq i \leq_{n}
$$

This is the rift (i, good) kind of order for partitions of a numbers.
As we say, this partially ordered sot has an orth complement.

- An orth complement in a partially ordered set P is a map

$$
x \rightarrow x^{\perp}
$$

st.

1. $x \leq y \Rightarrow x^{\perp} \geq y^{\perp} \quad$ (orth complement is order inverting)
2. $x^{11}=x$

In the dominance order, λ^{\perp} is the partition whose Ferrers matrix is the transpose of the Fencers matrix of λ.
I stated as a Tue star problem bo give a structural characterization of the dominance order in terms of the orth. complement and some properties that remain to be discovered.
I did not prove that the dominance order is a lattice, but you can verify that $\frac{t}{4}$ your heart's content.

- Another example of orth complement is, of course, $P(5)$ the Borden algebra of all subsets of a set is ortho complemented.
We set $A^{\perp}=A^{c}$ to get the ortho complement,
Or the complemented partiallyerdered sets are quite rare.

- Exercise 13.1

Given $P=$ partially ordered set
$\Psi(P)=$ lattice of order ideals (distributive lattice)
Show that $I(P)$ is orth complemented tiff P is an anti chain.
In which case the lattice of order ideals. $工(P)$ is actually a Boolean algebra.

* Exercise 13.2

Theorem of Gale-Ryger
Suppose we have a relation: $R \subseteq S \times T$, finite, $|S|=n,|T|=k$
And this relation has marginals.
We stated earlier that there are necessary and sufficient teanditians for two given sequences of numbers to be the sequences of marginals of some relation. Now we can answer the question.
Given sequences of positive integers:

$$
r_{1} \geqslant r_{2} \geqslant \ldots \geqslant r_{n} \text { and } s_{1} \geqslant s_{2} \geqslant \ldots \geqslant s_{n}
$$

when does there exist a relation $R \subseteq S \times T$ whose marginals are I and \underline{s} ?
This i, a very important question.
The answer is the Theorem of Gale-Ryser:
The answer is:
iff $s \leq r^{\perp}$ in the dominance order
Very elegant. Observe that this relation is symmetric. If you \perp both sides, you get:

$$
s^{\perp} \geqslant r
$$

Later on weill see that this theorem comes out cheapo as a consequence of matching theory of matroids.
For now, I wat you to do it by rolling up your sleeves.
The idea is this, You pack up, in the Ferrers matrix, all. the I's together, And you star shifting them the right. And you shift them to the right in the correct position to got the right marginals.
This is a very imporitert: theorem.

- Now we cantime with our list of famous partially ordered sets, followed by a list of "red hot" partially ordered sets.
Our next examples have to do wy vector spaces.
Here, we have 2 kinds of examples:

1. convexity
2. projective space

Some of you have not been introduced to these notions, so we have to review.
Convexity in \mathbb{R}^{n} (a seeing digression)
Convexity is a very important chapter in combinatorics.
We could easily spend the rest of the term on convexity alone.
And you will see this limited discussion of convexity. in my book "Introduction to Geometric Probability." Half of this material is in my book.
First, we define a convex linear combination of vectors or prints
Given vectorster points $x_{1}, x_{2}, \ldots, x_{k} \in \mathbb{R}^{n}$, a convex combination is a vector id the form:

$$
\lambda_{1} x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{k} x_{k}, \lambda_{i}>0, \sum_{i} \lambda_{i}=1
$$

Idea

Given the points x_{1} and x_{2}, the set of all convex combinations of x_{1} and x_{2} span the segment joining x_{1} and x_{2}.

The closure of the set of all convex linear combinations of a set $A \subseteq \mathbb{R}^{n}$ is called the convex closure of A.
$\tau_{\text {it }}$ is the smallest convex set containing the set A.
For example, if you have the set A :

the convex closure incluales all this

- A convex polyhedron is the convex closure of a finite set of points.

Example ; $\left(b_{i_{1}}, \delta_{i_{2}}, \ldots, b_{i n}\right)=e_{i} \quad i=1,2, \ldots, n$
Kronecker y
The convex closure gives an $n-1$ simplex
In 2 dimensions, a segment
$3 . . \quad$ triangle

4 ", tetrahedron
etc.
Example: Take all points $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where $a_{i}=$ \{o or 1
Take the convex closure, what do you get?
In \mathbb{R}^{2} :

In \mathbb{R}^{n}, you get the n-cube

- It is a fact, which we may prove later, that in dimensions 5 or greater, there are only. 3 regular poly hedra:

1. n-isimplex
2. n-cube
3. dual of the n-cuibe \longleftarrow the dual of the macule is obtained by placing the points in the middle of each face.

in \mathbb{R}^{2} yon again get an n-cube in \mathbb{R}^{3} the n^{n}-cube dual is an octahedron.

So there are 3 regular solids.
They are the analog of the tetrahedron, the cube, and the actonedron.
These are the only ones thatexist in dimension 5 or greater
It's a very basic fact of life. And there are certain. Consequences.
In each dimension, how many are there?
$2 D-\infty$ many (any regular n-gon)
$3 D-5$ platonic solids (and oulp 5) Cube, tetrahedron, otohodron,
4 D - low and behold, there ace 6

Let's take the n-simplex and look at it and the lattice of its faces.

- Lattice of faces of n-simplex

For the case $n=3$, we have a tetrahedron.
The fares are the vertices, the sides, the 2D faces, and the 3D face.

Any idea what that looks like when you draw the Hasse diagram?
The Boolean algebra of subsets of a 4 element set.
If you take any subset of vertices, that subset spans a face.
The lattice of faces of the n-simplex is isomorphic to the Boolean algebra of subsets of an n-set.

This is a good way of visualizing a Boolean algebra.
You can ulsualize the complement to a set by flipping a face across.

- Lattice of faces of n-cube

Faces are described as follows:
fix certain number of coordinates to be either 0 or 1 . Let all other coardicintes vary entirely, to include both O and 1. Well use x for this f appose.
A face is uniquely determined by a sequence of O 's, I 's, and X 's.
$\Lambda_{\text {assigned all passible combinations }}$
Examples:

$$
\begin{aligned}
& (1,1,1)=\text { vertex } \\
& (x, 1,0)=\text { side } \\
& (x, 0, x)=\text { face } \\
& (x, x, x)=\text { all faces }
\end{aligned}
$$

- Compare this with the simplex, where the faces are sequences of 0 's and is, but ne x 's. This is because the faces cirrspeond t a subset of an n-set.
You put a 1 where each element is in the sot and a O where each element is not in the set,
For example, the tetrahedron face $(0,1,1,0)$.
For the n-simplex, we represent fares with a sequence of 0 's and is. For the m-cube, we represent faces with a sequence of O 's, i 's, and A 's.

Now, having this so defined, I can define an infinite dimensional able..
A cubical lattice is the family of all signed "subsets" of a set S,
tr every element of S,
you assign 0,1, or x.
Now we define the order by secretly using the face numbers of the cube.
If we look at the faces of the cube, the more x's you have, the bigger the face, because ot the greater the number of combinations
$A, B=$ signed subsets of S
We partition $A_{\text {and }} B$ into 3 blocks, which are the set of all elements of A and B signed 0,1 , and x, respectively:

$$
\begin{aligned}
& A=\left(A_{0}, A_{1}, A_{x}\right) \\
& B=\left(B_{0}, B_{1}, B_{x}\right)
\end{aligned}
$$

We say that $A \leq B$ when:

$$
\begin{aligned}
& B_{x} \supseteq A_{x} \\
& B_{0} \subseteq A_{0} \\
& B_{1} \subseteq A_{1}
\end{aligned}
$$

You can verify, from, the proceeding reasoning, that if' S is a finite set, you obtain a lattice, which is a lattice of faces of a cube.
Now we. can define cubical lattices for any n.
You can Ting in my book "Gian - Carlo Rot o on Combinatorics" pp 561-563 a structural characterization of the lattice of faces of the cube.
Besides the join (v) and meet (1), there is also an andogne for complement for the lattice. of faces of the cube. Which means flipping a face, across a face. In this paper, we have characterized all these fliprings - that's called diagonal maps, which are the cubical andy of a combinatorial set.
*Exercise 13.3
Rewrite pages 561-563, with all details.
*** Exercise 13.4
Now, let's think philesphirally,
If you take the dual of the cube, namely, the other regular solids that exist in n dimensions, the lattice of faces will be the dual of the lattice turned upside down. Therefore, from the point of view of lattices in. n dimensions, there are only 2 :

1) lattice of faces of the n-simplex
2) lattice of faces of the n-cube (the lattice of frees of the n-hyperoctothedron is dual t thin lattice of faces of the n-abe)
This leads us: t the following speculation.
Borlem algchora is what you use to do ordinary logic.
There must be another kind of logic that goes with the lattice of faces of the cube. That is sketched towards the end of the paper, but never fully developed.
Developer cubical logic,

$$
\begin{aligned}
\hat{\tau_{\text {intuitively, }} \text {, this is the logic of } \quad \begin{aligned}
& =\text { yes, } \\
0 & =\text { no, } \\
x & =\text { not yet known. }
\end{aligned}} \begin{array}{r}
\text { But this has never been formalized. }
\end{array} \text {. }
\end{aligned}
$$

- Furthermore, in combinatorics, we prove theorems about sets. $\left\{\begin{array}{l}\text { this is a nice, cheapo way at } \\ \text { Writing papers. }\end{array}\right.$ Wo prove the analogises in cubical latices,
If you do is yowl be in the best of families.
$Y_{\text {au }}$ can do it. It's a good exercise.
Anything yon can think of has a cubical lattice enntlogue.
I wort te she tit there are two other lattices associated with a convex set.
- The family of all convex closed sets in \mathbb{R}^{n} is a lattice where:

$$
\begin{aligned}
& A \cap B=A \cap B
\end{aligned}
$$

$$
\begin{aligned}
& \text { sati is not convex. } \\
& \text { You need to take the convex closure. }
\end{aligned}
$$

This is not a very nice lattice,
This has also been cuancacerized structurally. But wee are not vary interested in it.

Lattice of polyconvex sets - a more interesting lattice
A polyconvex set is a finite union of convex closed sets.
A polyhedron is a finite union of convex polyhedral.
$\tau_{\text {also known as a polytope. }}$

Polyconvex sets are a distributive lattice Polyhedral are a distributive lattice $\left(\begin{array}{l}\text { Polyhedra are a sublattice of this distributive) } \\ \text { lattice of poly convex sets. }\end{array}\right.$
These facts will have enormous con sequences, as we will see.
These are the most famous distributive lattices that are not finite.

John Guidi

Order (contd)
Last time we began listing examples of famous partinllyordered sets and lattices that have t do with vector spaces.
Last time we focused on convexity. Today, projective space.

- Projective Space

This is one of the most important examples of a lattice.
This is part of what everybody should know about mathematics.
It is hor bad this does nt even get tangent -except in algebraic geometry courses.
Projective space, in a strictly theoretical sense, is the study of one lattice
$V=$ vector space of dimension $n<\infty$
$L(V)=$ posen of linear subspaces of V
(all the subspaces pass therogh the origin, by definition)
$L(V)$ is a lattice where, for $W, W^{N} \in L(V)$

$$
\begin{aligned}
W & W^{\prime}=\operatorname{span}\left(W, w^{\prime}\right)=
\end{aligned} \begin{aligned}
& \left\{x+y: x \in W, y \in W^{\prime}\right\} \\
& \\
& \text { set of all vectors } x+y
\end{aligned}
$$

After Boolean algebra, this is the most imporitat lattice there is. Let's discuss some of the properties of this cilice.
The study of the lattice is called projective geometry.
Why it's called geometry, weill see in a minute.
First of all:
$L(V)$ is not distributive.
If W is a plane, $l, \ell^{\prime}, l^{\prime \prime}$ are lines in W in general position, meaning ne. 2 lines are then: sally the same.

$$
\begin{array}{lll}
l \vee l^{\prime}=W, & l \vee l^{\prime \prime}=W & , l^{\prime} \vee l^{\prime \prime}=W \\
l \wedge l^{\prime}=0 \text { subspace, } & l \wedge l^{\prime \prime}=0, & l^{\prime} \wedge l^{\prime \prime}=0
\end{array}
$$

Therefore; the configuration gives the following tasse diagram:

This configuration provides any thing from being distributive.
Therefore, $L(V)$ is noT a distributive Pattice.

How close does L(V) come to being a distributive lattice?

- Modular La um

For $x, y, z \in L(V)$, the distributive law holds it 2 of $\{x, y, z\}$ are comparable.

The atoms of $\underbrace{L(V)}$ are the straight lines.
$L(v)$ is a carked poiticlly ordered set
The rank is the same as the dimension:

$$
r(W)=\operatorname{dim}(W) \longleftarrow \text { the rank of a straight line }=1
$$

Here's another property that the lattice of subspaces of a vector space shares with the Bodean algebra. Namely:

$$
\operatorname{dim}\left(W \times W^{\prime}\right)+\operatorname{dim}\left(W \wedge W^{\prime}\right)=\operatorname{dim}(W)+\operatorname{dim}\left(W^{\prime}\right)
$$

How do you prove this?
You take a basis of the intersection. Thisis a partially linearly independent set.
This set can be completed even to a basis of W onto a basis of W '.
You add up and you gat. the sum of two dimensions.
Warning - When wee see the above identity, it is tempting to say:
"Oh - then we can apply inclusion-exclusim.".
But, the answer is: N_{0}, N_{0}, N_{0},
Inclusion-exchusion is not valid here.
I leave it tryout to find a counterexample.
The analog efinclusion-exclesion is a whole theory, which is called the Schubert Calculus.

Let's luck at another property of Boolean algebra and see what the analog is in the lattice of linear subspaces:
Every element of $L(V)$ is the sup of a set of atoms.
That's like saying you take a basis.
W is a subspace. You take a basis of W. Every dement of a basis spans a line.
The sup of this line is in W.
This is kind of like Boolean algebra. But notice, however, that in a Boolean algebra, every element is the sup of a unique sat of at ms,
In $L(V)$ an elem, out can be the sup of atoms in many ways.

Let's talk about complements now.
This is most striking.
Ir i Bodean algebra, every element has a complement.
We defined an orth complement for a lattice.
I should have defined the concept of a complement first.
Let's digress and define the notion of a complement in a general lattice,

- In lattice L with $\hat{\theta}$ and $\hat{1}$, we say that an element y is a complement an element x when:

$$
\begin{aligned}
& x \vee y=\hat{1} \text { and } \\
& x \wedge y=\hat{o}
\end{aligned}
$$

In general, an element of a lattice need not have a complements. For example, take the line. That's a lattice. But it doesn't have a complement. It's a rare event for an element if a lattice to have a complement.
In a Boolean algebra, every set has a complement and a unique one.
What happens in the lattice L(V)?
(this is an extronodinary finding - one of the deepest theorems of combinatorics)

- In $L(V)$, every element has a complement.

Why?
Take a subspace W. Take a basis of W. The basis of W can be completed to a basis of the whole space.
Take the elements of the basis of the whole pace that are not in W.
They span another subspace W^{\prime}.
And together:

$$
W \vee W^{\prime}=\hat{1} \text { and } W \wedge W^{\prime}=\hat{o}
$$

Because they are linearly independent.
So, every element of $L(V)$ has a complement - but NoT a unique one. Here's how I describe this property.

- The set of all complements of an element $W \in L(V)$ is an antichain. why?
Because if W has dim k, then the complement has dim $n-k$. So any two complemorets would have dim nook. Therefore, they can not be comparable.

The nontrivial fact is that the converse is true.
If you have a lattice, which is atomic (in other words, every element is the sup] of atoms) and which has the property that every element has a set of complements which is an antichain,
then it is the lattice of all subspaces of some vector space, over some field, not necessarily a linear subspace.

This is a very deep theorem.
In fact, it has a 150 year history. And, to this day, it takes about 30 pages tr e prove. There is no reach simple prot?
So Ill just state it for you.

* Theorem-von Standt-von Newman (Must be dimension. 3, at least. This does not apply to the place)

Conversely, a lattice with finite chains having a chain of length $\geqslant 4$ which is atomic (ie., every element is a sup of at oms) and with the property that the set of complements of any element $x \in L$ is an antichain is isomorphic to the lattice of all subspaces of a vector space over a field. (You pull out a whale field from this.

It is acton ishing:

Some ancedotal history of the proof of this Theorem. This was first dis cowered an the 19 th century by the famous German geometer van stand in order to constraint the Algebra of Froes. A very complicated algebra. He didn't have the concept of a lattice.

Them it was forgotten. In the 1930's, van Neumanen rediscovered it from scutch, Not knowing of vol stands's work. When someone told him of this, he had a fit e Literally. 3 years for nothing.
Howeace, bon Nenkain went immodinately sue up on vo Stent:
Because he generalized this to infinite dimensional behavior.
And he constructed vector spaces that take continuous values from [0,1].
So he built. up continuous geometry, motivated by quantum mechanics.
Then Emil Actin, the father of Michael Actin here, gave one of the simplest passible proofs. A very elegant, short proof.
Unfortmataly, the proof war just mimeographed and distributed to graduate students at U. aNtre Dame. So it's very hard to get hold of it.
Since thou, people have simplified the proof by all sorts of methods. Mark Hainan, whoa wrote his thesis here in 1984, constructed a very simple prof, assuming that the lattice. L is a lattice of commuting equivalence relations. We will see that this assumption is not outrageous.

Now let's look at some. additional prpartics of lattices.
Why did I bring up lattices of commuting equivmence relations?
The lattice $L(V)$ is isomorphic a sudlatice of the lattice of all partitions of the set .V. And these partitions correspond to commuting equivalence relations.
The most important thing in this statement is the motion of sublattice

- Sublattices

Suppose we take the Boolean algebra of subsets of 3 element sets,

Together, these clements form a partially ordered set, whose Pase diagram is as shown. This posed doesn't know that the other elements existed, Indeed, this poses is a lattice. $\sup (1,1)=\hat{1}, \inf (0, \cdot)=\hat{0}$.

$$
\begin{aligned}
& \sup (a, c)=\hat{1} \\
& \inf (a, c)=\hat{0}
\end{aligned}
$$

L^{\prime} is NoT a sublattice of L, because sup and inf are not the same for all corresponding elements in the two latices,

To say a subset of a partially ordered set is a sublatice is a very strong statement. A sublattice L 'of a lattice L is a subset of L, which is a lattice, sit.

$$
\left.\begin{array}{l}
\sup _{L^{\prime}}(x, y)=x V_{L} y \\
\inf L_{L^{\prime}}(x, y)=x \Lambda_{L} y
\end{array}\right\}
$$

In other words, the supand the int coincide.

It is very easy to embed any partially ordered set in another.
But it's not so easy to embed a lattice in another as a sublattice.
It is, therefore, remarkable that the lattice $L(V)$ is isomorphic $t r$ a sublattice of the lattice all partitions of the set V.

Proof: (much of this we have seen before $[7,8-10]$)
Recall that for $\underbrace{x, y}_{\text {vectors }} \in V, x R_{W} y ;$ if $x-y \in W$
the equivalence relation
defined Lo y the subspace.
The map $W \rightarrow R_{V}$ is an isomorphism of the lattice $L(V)$ into the lattice $\pi[V]$.
© partitions of Y, viewed as a set.

We have shown that:

$$
\begin{aligned}
& R_{W} \circ R_{W^{\prime}}=R_{W} \cup W^{\prime} \longleftarrow \text { we wrote } R_{\text {span }}\left(W, W^{\prime}\right) \text { before } \\
& R_{W} \cap R_{W^{\prime}}=R_{W \wedge W^{\prime}} \longleftarrow \text { this is trivial to show }
\end{aligned}
$$

It remains tole shown that $R_{W} \circ R_{W^{\prime}}$ is the sup.
I haven't shown this y at. I forgot.
A small digression.
What do v (join) and a (meet) in T 5] look like?
How did we define them?
We defined them indirectly by the isomorphism between the lattice of partitions and the dual of the lattice of Boolean subalgebras.
The intersection of two Boolem algebras is a Boolean algebra - Then corresponds tr the jain of two partitions.
And the intersection of the blocks, pairwise, af two partitions will give you the meet. Wo get the join by using Boolean algebin'
we got the eminent directly from pastitims.
Now we want te see how to construct the join in terms of partitions alone.
What is the idea?
You have a set with two partitions:

5
meet - to intersect all the blocks, you take all the blocklets and discard the empty blocks.
join - the roughest partition that contains them beth as refinements.
How do we define that?

$$
\pi, \pi^{\prime} \in \pi[s]
$$

A reminder that:

$$
\pi \wedge \pi^{\prime}=\left\{B \cap C: B \in \pi, C \in \pi^{\prime}, B \cap C \neq \varnothing\right\}
$$

How do we define $\pi \vee \pi^{\prime}$?
ω_{2} take $R_{\pi,}, R_{\pi^{\prime}}$
Then we define an equiudance relation R^{\prime} as follows:
For $x, y \in S$, set $x R_{y}^{\prime}$ whenever $x R^{\prime \prime} y$ for some $R^{\prime \prime}$ of the form:

$$
\begin{aligned}
& R^{\prime \prime}=R_{\pi} \circ R_{\pi^{\prime}} \circ R_{\pi^{\prime}} \circ R_{\pi^{\prime}} \circ \ldots \circ R_{\pi} \\
& R^{\prime \prime}=R_{\pi^{\prime} \circ} \circ R_{\pi} \circ R_{\pi^{\prime}} \circ R_{\pi} \circ \ldots \circ R_{\pi^{\prime}}
\end{aligned}
$$

These equivalence relations dent commute, in general.
However, you compose the relations any mumbecof of times in this manner andy sou say $x R^{\prime} y$.
\uparrow the number of compositions can not be restricted, in geneal.

- Exercise 14.1

It turns out that $R^{\prime}=R_{\pi v \pi^{\prime} \text {. Show this. }}^{0}$
What I've really done is rephrase the stat of Boolean a labia,
The join is stained by iterating the occurrences of R_{π} and $R_{\pi^{\prime}}$.
You caa not have two R_{π} consecutively, for example, because $R_{\pi} \circ R_{\pi}=R_{\pi}$, since this is an equicalence relation

In particular, if $R_{\pi \pi}$ and $R_{\pi^{\prime}}$ commute then $R_{\pi v \pi^{\prime}}=R_{\pi} \circ R_{\pi^{\prime}}$

$$
S_{a y} R^{\prime \prime}=R_{\pi} \circ R_{\pi^{\prime}} \circ R_{\pi} \circ R_{\pi^{\prime}} \circ \ldots \circ R_{\pi}
$$

iteratively commute and reduce $R_{\pi^{\prime}} \circ R_{\pi}=R_{\pi}$ and $R_{\pi^{\prime}} \circ R_{\pi^{\prime}}=R_{\pi^{\prime}}$.
And after you simplify, you have:

$$
R^{\prime \prime}=R_{\pi} \circ R_{\pi^{\prime}}
$$

That's exacth what we are doing in the theorem.
We know that these equivalence relation's commute.
We have verified that in detail before.
Therefore, the composition of the two equivalence relations is the join of the partitions.
That completes the prof of the theorem. That completes the prof of the theorem.

This is an extremely remarkable fact.
You have a sublattice of the lattice of partitions of the set where any two partitions commence. And that's given by a vector spence. Any vector space gives yon a sublattice of partitions where
If this is not extraordinary, I don't know what is.
In fact, we give it a name:
I den' like this ter.
A linear lattice (or type I lattice) is a sublattice of $\pi[s]$, the lattice of partitions of a sot, in which any two partitions commute.
$L(V)$ is a linear lattice,
This i, a fundamental result,
Are there any other linear latices besides $L(V)$?
Yes. They're all over the place.
The lattice of all normal subgroups of a group- That's a linear lattice. Because I told you that every normal subgroup defines an equivalence relation, And any two normal subgroups define commuting equivalence relations.
So the lattice of normal sulgroups of a group is a. Hear lattice,
The lattice of all ideals of a ring - that's a linear lattice,
The lattice of all submedules of a mod me - that's a linear lattice.
Theyre all over the place.
S_{0} they ought o t have interesting properties.
And we will see that they do.
Now you say "that's all fino and darned, We talk about $L(V)$ and call that projective geometry. But, where's the gasmatry?"
It's not easy to visualize $L(V)$. And gen visualize it in terms of V (joins) and a (meets). In fact, ven Neman used t say you couldst do this. The idea mans that you wind visualize v^{v} and A in $L(V)$ just as you would view U and n of sets by V em. diagrams. Bt t that's pretty, tough. And you can't do it by Venn diagrams because the
lattice is not distributive.

So, what are we going to do? We introduce projective space.
Kepler was the first to introduce projective space. (Kepler, the famous astronomer) This was the greatest discovery he e var made.
Let's take the plane, by way of motivation,
I want to take points and lines within the plane and I want the set of all points and Tines to form a lattice:
That is not possible. Because if I take tor parallel lines, the .n their i-tersection is the empty set, not a point.
llllll

So. that's. not right,
But, any two lines which are net parallel intersect at a point.
So Kepler had this great idea, One of the greatest ideas he had.
H_{e} introduced points at infinity.
But, what's a point at infinity?
Appoint at infinity is an equivalence class of parallel lines.
This is the first occurrence of the notion of an equiv valence relation in mathematics. Kepler sale this is an ideal class,
There are equivalence relations among lines. Many
And we say that two lines are equivalent if they are parallel.
So you impede this class of paints at infinity, which are equiublence classes of parallel lines, Lo and behold, this has the same property as a point
Why?
Two points determine a unique line. Fine,
l_{1} defined by 2 points
Now a point and a point at infinity, which is an equivalence class of parallel lines, and this is still a unique line.,
A line with a given parallelism.
Now you have 2 lattice,
This was tremendous.
You can extend this to n dimensions.
You can do it, but you get into a mess defining all the equivalence relations. Instead of prints at infinity, you have lines at infinity, planes at infinity, etc.
What a mes.
This was done by the geometers of the $19^{\text {th }}$ century, with great care. There are seams of papers - a flurry. Until some day someone came along and said- "Look, we can do it very easily. In a completely different way. And' I bill tell you next time.

Projective Space (contd)
This is an idea used in algebraic geometry.
And you also see it in combinoteries. Recall that we are stodytug"
$V=$ finite dimensional vector space
$L(V)=$ lattice of subspaces of V
(linear subspaces through the origin, naturally)
$L(v)$ has the following properties:

1. every $W \in L(V)$ is the join of atoms
\widehat{O} is the O subspace
an atom is a lime
2. $r(W)=\operatorname{dim}(W)$
$\tau_{\text {rank }}$
3. $\operatorname{dim}\left(W \vee W^{\prime}\right)+\operatorname{dim}\left(W \wedge W^{\prime}\right)=\operatorname{dim}(W)+\operatorname{dim}\left(W^{\prime}\right)$

This identity is also satisfied by measures of sets, with unions and intersections. However, measures of sets satisfy higher order identities, which are called inclusion-exclusion identities, whereas this metric only satisfies the second order - NoT the third order.
4. If W^{\prime} is a complement of W (ie., $W \vee W^{\prime}=V, W \wedge W^{\prime}=0$) then:

$$
\operatorname{dim}(w)+\operatorname{dim}\left(w^{\prime}\right)=\operatorname{dim}(V)
$$

Thus, the set of all complements of W is a nonempty anti-chain.
Any two complements have the same dimension, therefore they cant be complements of each other.
Last time I stated the converse of this was true. Let me state it more precisely this time. (I left out an assumption in the van Stand - van Neumanin theorem last time).
$L=$ lattice where all chains have length $\leq n+1<\infty$
So, the maximum. length of a chain is $n+1$
Then it is a fact, which I won't do because it is too dull, that L can be written:

$$
L=L_{1} \times L_{2} \times \ldots \times L_{k}
$$

L is factored into products, in the sense of partially ordered sects, where the L_{i} are $\frac{i r r e d u c i b l e}{\tau}$
$\tau_{L_{i} \text { can not be factored }}$
Any lattice can be factored into irreducible factors,
Theorem of vol Standt-von Newman ([14,4] restated)
Won Newman - was a professor at the Institute for Advanced Studies, Later a member of the first Atomic Energy Commission. He died in 1950.
van stanalt - one of the founders of projective geounctry
Conversely, a lattice L where all chains have length $\leq n+1<\infty$, is irreducible, has chain of length ≥ 4, and has the property that for every $x \in L$, the set of complements is a nonempty anti-cham
then L is isomorphic to the lattice of subspaces of a vector space over a field.
This is an extraordinary result o
Because, all you ere given is the lattice structure and this one little fact,
And you pull int the whole field -addition, multiplication, division, 0,12 erg thing, Evergining gits pulled at of the lattice.
N_{0} wonder it takes 30 pages \hbar_{5} prove it. You have to construct the whole theorem in terms of the latest operations. Later on I'll give you the secret of how this theorem works. In other words, I'll show you haw to construct + and x in terms of V and 1 , There's a secret -discovered by ven Stand and rediscovered by ven Newman.
This is one of the most magnificent results, ever obtained in combinatorics.
You characterize vector spaces of a field in terms of lattices.
In principal , yo e should be able To do everything you do with vector spaces using only
the lattice operations The lattice operations.
Namely all of linear algebra, geometry should be encryted in the lattice.
Doing geometry ust-g ant the lattice operations is whet is Known as Syn thetic geometry.

- So, the lattice of subspaces is a wonderful lattice.

The Theorem of ron Staudt - van Neumann tells us that we should be able $\frac{t}{t}$ do geometry only using \vee (joins) and \wedge (meets).
But we don't hare a good way of visualizing that geometry,
The way of visudizigg tit geometry is projeatlee space.
Last time we saw how to define a projective plane. Let's review.

Projective plane.

You want to mike the points and ines; not necessarily through the origin, in for a lattice.
You wait to do sp thetic geometry. Build triangles, inf like that i
But, the problem is that two parallel lines have meet of the empty set, So the dimension axiom is not valid because perallellines intersect at the empty set, So al hough the set of points and lines is a lattice, if's a badly behaved lattice.

You are obliged, as we started last time, to add points at infinity so that the dimension condition is still true.
That is done by saying:
Equivalence classes of parallel lines are called points $\frac{\tau \text { Because I say so. }}{\text { Bes }}$
These are visualized as point at infinity.
By adding these points at infinity, then the dimension axiom is true.
Two lines always meat at a point.
Then I said this can be debunked.
Sure it an be debunked. Watt this.

Were in 3 dimensional space.
The entice of subspaces of 3 dimensional space consists of all spaces through t the origin, identified to the drawing You can visuritice that the is a subspace by intersecting
it with a sphere. it with a sphere.
In that way, a line becomes a set of 2 apposite points.
You can visualize the lattice of subspaces by identifying the appropriate parts of
the sphere. That's what topoogoits do. the sphere. That's what topologists do.

But therese a better one:
I take a line and I intersect it with a plane, I identify a lime with this intersection. Then we sec that a line that is parallel t the plane will correspond at the point of in fin ty. At the poitififin in it, there will be exactly one line, corresponding to the great circle, parallel to the plane.
In this way, we have an interpretation of the projective plane.
It is simply the lattice of al subspaces of a 3 dintinsional vector space.
Where we say that a line is a point.
And this works for any number of dimensions.
You take ann nil dimensional sphere and project evert thing. And in that way we gat a dimensioned projective space.
We can visualize $L(v)$ as points, lines, and planes.
Points will be assigned rank of O, because you lower the dimension by i.
So that's what a projective space is. It's the central projection of an $n+1$ dimensional sphere onto a hyperplane. The hyperplane is the projective spue.
Ever privet is given by $n+1$ coordinates. - the coordinates of a lines
A point in projective space of dimension n is an equivalence class of $n+1$ tuples of numbers

$$
\left(x_{0}, x_{1}, \ldots, x_{n}\right) R\left(x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

whenever there is a number $\lambda \neq 0$ for which:

$$
x_{i}^{\prime}=\lambda x_{i}, i=0,1, \ldots n
$$

in other wends, the vectors are prepositional.
A single pint in n space is given by in finitely many coordinates.
The points with $x_{0}=0$ are at infinity. There is always hyperplane of one dimension lower, If you wont ordinary cartesian coordinates, you take those with $x_{0}=1 \leftarrow$ ie points not
This is a great advantage - to use an extra condinate which may be 0 , sintminty.

- For example, let's check that 2 lines always meet.
$\left.\begin{array}{l}3 x+2 y=5 \\ 3 x+2 y=4\end{array}\right\} \begin{aligned} & \text { these are, in ordinary coordinates, } \\ & \text { parallel lines. }\end{aligned}$
Now, let's use projective coordinates.
Set $x=\frac{x_{1}}{x_{0}}, y=\frac{x_{2}}{x_{0}}$, where $x_{0}=$ point at infinity
Then the lines become:

$$
\left.\begin{array}{l}
3 x_{1}+2 x_{2}=5 x_{0} \\
3 x_{1}+2 x_{2}=4 x_{0}
\end{array}\right\}
$$

Now you gee that theses 2 equations do have ra common non trivial solution, with $x_{0}=0$, at infinity. Where the lines meet. And that's how it works.
 ir not. It works at the point of infinity like any point.
If you are working w/ lattices, you don't even know which one is the point of infinity.
This point of infinity originated from the idea of perspective, which originated in the
Renaissance.
The first painter ever to use this concept was the Italian painter Paolo Cello Then it was developed by Leonardo da Vinci.
Then Desargues and Kepler, in the foundations of projective geometry.
Let's now state the Findamental Theorem of Projective Geometry:

- Desargues' Theorem

In \mathbb{R}^{3}, we have 3 limes and two triangles.

Analytic Proof of Desarigues' Theoreina
We are in 3 dimensional space, so the point A has 4 coordinates.
These 4 coordinates are determined to be '/near multiplicative compounds. as they say, which is an equivalence class.
The same point is given by an infinity of multiples, which are proportional.
So, the point P is a linear combination of A and A^{\prime}.
But we can work the constant of the linear combination of. A and A^{\prime} intr the coordinates of the rest,
So we can say:

$$
P=A+A^{\prime}=B+B^{\prime} \not C+C^{\prime}
$$

Now wa want to find the coordinates of the intersection $A \vee B$ and $A^{\prime} v B^{\prime \prime}$ ". How are we going $t r$ do that?
Easy:
There is one, and only one, point which is a linear combination of ArB and a linear combination of $A^{\prime} \vee B^{\prime}$. That's the intersection:

$$
A-B=B^{\prime}-A^{\prime}
$$

Similarity

$$
\begin{aligned}
& C-A=A^{\prime}-C^{\prime} \\
& B-C=C^{\prime}-B^{\prime}
\end{aligned}
$$

these are the 3 points of intersection:

We wat t show that these 3 points of intersection lie on one line: That means there is one linear combination of them, which is 0 .
Add the above up. You $g^{c t} 0=0$.
That proves the theorem:

- $* *$ Exercise 15.1

Give similar analytic proofs of Hainan's generalization of Desargues' Theorem. ヘ 1934 Thesis

- Recall, from last time [14.6], wei stated the theorem:

There is an isomorphism of the lattice $L(V)$ into a sublattice of the lattice $\pi[v]$ given by $W \rightarrow R_{w}$
partitions of V_{1}
viewed as a set.
I stressed that joins in the lattice of subspaces correspond to joins in the lattice of partitions.

$$
R_{w} \circ R_{w^{\prime}}=R_{w^{\prime}} \circ R_{w}
$$

The sublattice of the lattice of partitions, which is the image $L(V)$, under this isomorphism, is a linear lattice - a lattice of commuting equivalence relations.
$L(V)$ is a lattice of commuting equivalence relations.
Suppose you have two partitions $\pi, \pi^{\prime} \in \Pi[5]$.
How is $\pi \vee \pi^{\prime}$ defined?

$$
5, t \in S
$$

Say that $s R_{\pi v \pi}$,t whenever there is a sequence S_{1}, \ldots, S_{n} and a sequence t_{1}, \ldots, t_{k} where:

$$
\left.\begin{array}{l}
s R_{\pi} s_{1}, s_{1} R_{\pi^{\prime}} s_{2}, s_{2} R_{\pi} s_{3}, \ldots, s_{n} R_{\pi} t \\
s R_{\pi^{\prime}}, t_{1}, t_{1} R_{\pi} t_{2}, t_{2} R_{\pi^{\prime}} t_{3}, \ldots, t_{k} R_{\pi^{\prime}} t
\end{array}\right\} \begin{gathered}
\text { and }{ }^{\text {and }}, \ldots l_{y}, \text { when all } \\
R_{\pi} \rightarrow R_{\pi^{\prime}} \\
R_{\pi^{\prime}} \rightarrow R_{\pi}
\end{gathered}
$$

Yon're taking the intersection of two Boolean algebras.
You need to take the smallest blocks that contain blocks of π and blocks of π^{\prime}. You have F go a round π and π^{\prime}.
In particular, if π and π^{\prime} commute, then $s R_{\pi v \pi^{\prime} t}$ iff there exists s_{1} and t_{1} s.t.
$\left.\begin{array}{l}s R_{\pi} s_{1}, s, R_{\pi}, t \\ s R_{\pi^{\prime}} t_{1}, t, R_{\pi} t\end{array}\right\}$ in one step Pictorilly:

- ** Exercise 15.2

Help me finish my paper on this.

So, the lattices of subspaces of projective geometry cain be also visualized by the language of commenting equivalence relations.
Theorem of B. Jónsson
We've rein that a lattice of projective geometry is isomorphic to a lattice of commuting equivalence relations.
And it's proved that, for this lattice, Desargues' Theorem holds.
Desargues' Theorem holds in every linear lattice.
So Desargnes' Theorem has not thing to do with geometry.
It's a purely combinatorial fact. It's about equivalence relations.
Remember that linear lattices are a dime a dozen.
This is an extraordinary discovery.
This is the deepest theorem that we will prove, so far.
The prof will take us half an hour. I want to glue you the whole proof.

As a matter of fact it has been discovered very recently that just about every theorem of projective geometry also holds in linear lattices: That puts projective geometry in a very difficult situation. Where's the geometry? It's all purely combinatorial.

John Guidi

Last time, I announced the fact that Desargues' Theorem, which looks so much like a theorem of geometry, has, in reality, nothing to do with geometry.
The analogue of 'Desargues' 'Theorem holds in every lattice of Commuting equivalence relations, also known as linear lattices,
Oar job now is to state this fact correathy and prove it.
And that will be the end of this chapter,
This raises the following question.
What do you want me bo dr next? I've made a list of 10 topics which can come maxi, We can have a show of hands as to which ones are the favorite topics. Again, I've made it an example mot t deal with any topics that. I explain in my book, because if you can read about it in this hook, what's the point of the lecture?
Everybody, votes, as many times as you care to.
(Our goat is to get to 3 topics)

Is More lattice theory.
2. matroid theory and matelhy theory
3. Basic results on convexity (inducing linear and integer pragraminity)
4. Theory of species (a foshisanable contemporary theory)
5. The Umbral Calculus this would be a real challenge for me, as Ind have to
6. Mitis functions (hi do things not in stanley, book?, (onplatily differently.)
7. The profinite point of view
8. Geometric probability
9. Greene's Theorem
10. Homology of poets
the agenda for the cost of the term:

1. Matrid theory and matching theory
2. Geometric probability
3. Möbius functions

Jonsson's generalization of Desargues' Theorem
Let $L=$ linear lattice \ldots that means it's a lattice of commuting equivalence relations. and it's a sublattice of the lattice of partitions. TI [s]. Sublatice means the joins and meets are the same as the joins and meets of partitions.
If partitions $\pi, \sigma \in L$,

$$
R_{\pi} \circ R_{\sigma}=R_{\sigma} \circ R_{\psi}
$$

By definition of a linear lattice.

We proved, a long time ape, that two equivalent relations commute if their composition is an equivalence relation [6. 11$]$.
And we showed that this equivalence relation is the join [14.7]

$$
R_{\pi v \pi}=R_{\pi} \circ R_{\sigma}=R_{\sigma} \circ R_{\pi}
$$

When two equivalence relations commute, their join is simply their composition.
This is what makes linear lattices tick.
I want to write ant exactly what this means, in combinatorial terms.
Let $s, s^{\prime} \in S$.
$s R_{\pi v \sigma} s^{\prime} \Leftrightarrow s R_{\pi} \circ R_{\sigma} s^{\prime}=s R_{\sigma} \circ R_{\pi s^{\prime}}$
The following 2 conditions have to be satisfied:

So $s R_{\pi v \sigma s^{\prime}}$ ff conditions 1 and 2 above hold.
The whole art of working with linear lefties is being able tr exploit this

- Let's warm up. To Jonssonis Theorem by first establishing the modular identity of linear lattices.

The modular identity
If $\alpha \geqslant \gamma$ the $\alpha \wedge(\beta \vee \gamma)=(\alpha, \lambda \beta) \vee \gamma$
A lattice that satisfies this statement (the modular identity) is said to be modular. It just so happens that, in real life, all linear. latices knowinte man are modular, The only modular lattice known to man thea is not linear is the free modular lattice,

	Theorem

The modular identity holds in all linear lattices.
Proof: (every equalityis 2 inequalities, We prove $=$ by first proving \geqslant and then \leqslant)

1. Actually, the inequality:

$$
\alpha \wedge(\beta \vee \gamma) \geqslant(\alpha \wedge \beta) \vee \gamma, \text { for } \alpha \geqslant \gamma
$$

holds for all lattices.
$\left.\begin{array}{c}\text { By definition, we know } \alpha \geq \alpha \wedge \beta \\ \text { we are given } \alpha \geqslant \gamma\end{array}\right\} \alpha \geqslant(\alpha \wedge \beta) \vee \gamma$
By definition of sup (v), α has to be \Rightarrow than the sup (lowest upper bound) of these two.
A moments thought shams that $\left(\beta \vee V_{0}\right) \geqslant\left(\beta \gamma_{1}\right)$ if
Thus we
$\left.\begin{array}{l}\text { Thus, we Now that } \beta \vee \gamma \geqslant \alpha \wedge \beta \\ B y \text { definition, we know } \beta \vee \gamma \geqslant \gamma\end{array}\right\} \beta \vee \gamma \geqslant(\alpha \wedge \beta) \vee \gamma$
For the same reason as above (ie,, definition of sup).

This gives $\alpha \geq(\alpha \wedge \beta) \vee \gamma$

$$
\beta \vee \gamma \geqslant(\alpha \wedge \beta) \vee \gamma
$$

By definition of inf (Λ) :

$$
\alpha \wedge(\beta \vee \gamma) \geqslant(\alpha \wedge \beta) \vee \gamma
$$

waive just shown that this inequality is true for all lattices, using only definitions of sup and inf.
One lecture that I skipped was the general theory of inequality in lattices:
Since you didn't wast yo more lattice theory, then we sk ip it You'll never know.
2. So now we have to prove:

$$
\alpha \wedge(\beta \vee \gamma) \leqslant(\alpha \wedge \beta) \vee \gamma, \text { for } \alpha \geqslant \gamma
$$

Now we have to roll up our sleeves.
Now you see how it works. The real McCoy.
I've built wo the whole term to this point. To get you to understand this part. To get gin through B. Jonson's Theorem, which is a maze of reasoning. $s, s^{\prime} \in$ linear Lattice
 relation,

Since $\alpha \geqslant \gamma($ goon $)$;

$$
\begin{aligned}
& u R_{\gamma} s^{\prime} \leqslant 4 R_{\alpha} s^{\prime} \\
& \leqslant \underbrace{(s R_{\alpha s^{\prime}}, \underbrace{u R_{\alpha} s^{\prime}}, s R_{\beta u},{ }^{4} R_{\gamma} s^{\prime}} \\
& \text { by the transitive law: } \\
& s R_{\alpha} u, s R_{\beta} u, u R_{\gamma s^{\prime}}
\end{aligned}
$$

by definition of meet:

$$
s R_{\alpha \wedge \beta} u \quad, u R_{\gamma} s^{\prime}
$$

by definition of join:

$$
\begin{gathered}
{ }^{s} R_{\alpha \wedge(\beta \vee \gamma)^{s^{\prime}}} \leqslant \quad{ }^{s} R_{(\alpha \wedge \beta) \vee \gamma} \\
\alpha \wedge(\beta \vee \gamma)
\end{gathered}
$$

That gives us two inequalities that, combined, give the equality we sought to prove.
part 1: $\alpha \dot{\wedge}(\beta \vee \gamma) \geqslant(\alpha \wedge \beta) \vee \gamma$
part 2: $\alpha \wedge(\beta \vee \gamma) \leqslant(\alpha \wedge \beta) \vee \gamma$
$\alpha \wedge(\beta \vee \gamma)=(\alpha \wedge \beta) \vee \gamma$ for all linear lattices
$Q_{1} E, D_{1}$
That proves the theorem.
You ain't seen nothing get, Let's prove Desargues' Theorem.
Remind me to discuss the Modular Law philosophically next time. What it's about, where did it come from.

- Desargues' Theorem for linear lattices

We have the assumption that these 3 lines meet at one point. How do we say that lattice theoretically?
Easy.
That means the meet of two lines is contained in the 3 all line.

This is Desargues' Theorem:
Assuming $\left(\pi \vee \pi^{2}\right) \wedge\left(\sigma \vee \sigma^{\prime}\right) \leq\left(\tau \vee \tau^{\prime}\right)$,
we prove:

$$
(\pi \vee \sigma) \wedge\left(\pi^{\prime} \vee^{\prime} \sigma^{\prime}\right) \leqslant\left((\pi \vee \tau) \wedge\left(\pi^{\prime} \vee \tau^{\prime}\right)\right) \vee\left(\left(\sigma^{\prime} \vee \tau\right) \wedge\left(\sigma^{\prime} \vee \tau^{\prime}\right)\right)
$$

Let's start with the LHS of what we ant to prove. Will io this in columnar form. Suppose:

$$
s R_{(\pi v \sigma) \wedge\left(\pi^{\prime} v \sigma^{\prime}\right) s^{\prime}}
$$

$s R_{\text {rV }} s^{\prime}$
(*) (H) unwinding the join:'
${ }_{s} R_{\pi} u^{\prime}{ }^{+1+4} R_{\sigma} s^{\prime}$

\uparrow this is exactly the LHS of the assumptions End of Act 1.

Let's next start with the RHS of the assumptions:

\uparrow this is exactly the RHS if what we needed toporbee.
$Q . E . D$.
So now you see what a non trivial theorem looks like.

- There are two other major theorems that I'll state next time.

Bricard's Theorem, which is a statement about points and lines, like Desurg yes.
And the Theorem of Pappus, which goes back to Greek times.
For a long time, it was felt that Bricords Theoram could not be dealt with: a linear lattice. I just got the paper last week from Catherine Van where she generalizes it to a linear lattice,
On the other hand, Pappus' Theorem can net be generalised to a linear lattice.
That was discovered centuries ago. Ill tell you next time why. It was a great discovery by Hilbert.

- Back to the Modular Law:

$$
\alpha \geqslant \gamma \Rightarrow \alpha \wedge(\beta \vee \gamma)=(\alpha \wedge \beta) \vee \gamma
$$

We proved this in a linear lattice. So, by implication, this is true in $L(V)$. However, $l(V)$ is a lattice of subspaces and these are joins and meets of subspaces. So there should be a simple linear algebra. way of seeing this,
That's what well do next.
Prove this in $L(V)$ using elementary linear algebra n.

- $|$| A digression: Remember the notion of an ortho complement [12.9]. |
| :--- |
| Orth complement in L is the map $x \rightarrow x^{\perp}$ where: |
| $1, x \leq y \Rightarrow x^{\perp} \geqslant y^{\perp}$ |
| $2 . x^{\perp \perp}=x$ |

x^{\perp} is a complement of x

When is there an or tho complement in $L(V)$?
Answer - when you have the notion of perpendicularity.
And when do yon have the notion of perpendicularity in a vector space? When you have a bilinear form that gives you the dot product?
The conditions above hall if you have a dot product

$$
x \cdot y=\underbrace{(x, y)}_{\text {alsomittemas }}=\sum_{i} x_{i} y_{i} \text { is given, }
$$

in which case.

$$
W^{\perp}=\{y: x \cdot y=0 \text { for all } x \in W\}
$$

subspace perpendicular to W
Whenever you have the dot product defined, you have the orth complement.

- Exercise 16.1

The exercise is the converge of this.
Theorem of Kakutani - Mackey
If $W \rightarrow W^{\perp}$ is an orthocomplement in $L(V)$ then there exists an inner product (x, y) in V for which

$$
W^{\perp}=\{y:(x, y)=0 \text { for all } x \in W\}
$$

dot product $x \cdot y$

In other wards, if you have an orth complement, it forces you th find an inner product in the vector spaces
I would appreciate an elementary proof of this fact, The only proof in the literature is a complicated one. It would be interesting to get a self contained proof,

- Again, it turns out that most of the theorems of projective geometry holidinlinear lattices: There's a deep mystery there. Why d. These theorems hold oily for commuting equivalence relations? Very weird.

John Guidi

Kntur
Before we start on matching theory, let's do some cultural topics.
In the German newspapers, you have sections national news, then international news, them spats, and then you have Kultur. Bat there is no equivelentword in English. There's one. in Spanish, French, and Italian. Culture does not mean Kultur,
The origin of the word is Spanish, It was first introduced by Luis Vives,
Last time we saw that Desargues' Theorem is valid in all linear lattices, Today, I want to show you how the Modular Law can be done by elementary linear algebra, as promised.
Modular Law (via linear oulgebra)

$$
a \geqslant c \Rightarrow a \wedge(x \vee c)=(a \wedge x) \vee c \text { for } \Rightarrow x \in L
$$

Let's take $L=L(V) \leftrightarrow z$ lattice of subspaces of a vector space
Let's verify the Modular Law by elementary linear algebra,
There's probably sonic easier way y than what In about to do.
TE there is, raise your hand.
a, x, c are subspaces of a vector space.
So we take busts of a, x, and c and we reason with Lases.
The basic foot is that when you have a subspace and a subsubspoce;
then any basis of a sub sudssace can be completed to the basis of a subspace.
That's all yan've got,
So ant thing you can squeeze out of this is true.
You can squestere anything you can say about 2 subspaces, but nothing alioult 3 subspaces (unless one is contained ias the other) That's your problem.
basis of vectors in V
$x \wedge c \quad\left\{v_{1}, \ldots, v_{2}\right\} \quad$ Let's say this is the basis for $x \wedge c$.
$x \wedge a . \quad\left\{v_{1}, \ldots, v_{i}, w_{1}, \ldots, w_{j}\right\} \quad$ since $a \geqslant c$, a basis of $x \wedge a$ will have

$$
x \wedge a \quad\{v_{1}, \ldots, v_{i}, \underbrace{\left.w_{1}, \ldots, w_{j}\right\}}
$$ this extras staff, compared with that of $x \wedge C$.

6 \{ $\left\{v_{1}, \ldots, v_{i}, c_{1}, \ldots, c_{k}\right\}$ A basis of ac can be completed tr ia basis of C.
$a \quad\left\{v_{1}, \ldots, v_{i} ; w_{1}, \ldots, w_{j}, a_{1}, \ldots, a_{2}, c_{1}, \ldots, c_{k}\right\}$ completing x ya and noting $a \geq c$
$x \quad\left\{v_{i}, \ldots, v_{i}, w_{1}, \ldots, w_{g}, x_{1}, \ldots, x_{m}\right\}$

$$
x \vee c \quad\left\{v_{i}, \ldots, v_{2}, w_{1}, \ldots, w_{j}, x_{1}, \ldots, x_{m}, c_{1}, \ldots, c_{k}\right\}
$$

Then we have:

$$
\left.\begin{array}{ll}
(x \vee c) \wedge a \\
(x \wedge q) \vee c & \left\{v_{i}, \ldots, v_{i}, w_{i}, \ldots, w_{y}, c_{1}, \ldots, c_{k}\right\} \\
\left(x \wedge, \ldots, v_{2}, w_{1}, \ldots, w_{y}, c_{1}, \ldots, c_{k}\right\}
\end{array}\right\} \quad a \wedge\left(x v_{c}\right)=(a 1 x) \vee c
$$

So the Modular Law comes out in linear algebra.

If I have tr reconstruct Pappus' Theorem, what do I do?
I do some secret computations, which I'll then erase, and then tell you the result. Right
I'll tell you a story. There was a time in algebra when every thing had to begone without a baric. Prof. Chevalier was brought up using matrices, Every once in a while, hedgat lost and he'd g_{1} to the comer and do the computation using matrices. "Basis free" algebra.
I tell you the truth. If I forget, hor do I reconstruct it?
The secret reconstruction ir:
Pappus' Theorem is a degenerate form of Pascal's Theorem.
And Pascal's Theorem is easier to remember.

- Pascal's Theorem.

Let mestute this in. Id fashioned language. You take a comic section and you take a hexagon inscribed in the conic section.
 notation: joins are juxtaposition

Pascal's Theorem : the 3 points $\begin{aligned} & A B \wedge D E \\ & B C \wedge E F \\ & C D \wedge F A\end{aligned}$

Now you soy -"Prove it."
I sag y "I don't remember the high school proof." I have t cheat again,
What is a conic section?
A comic section is the set of all points that satisfy a quadratic equation in homogeneous coordinates.
You have a homogeneous point: x determined by 3 homogeneous coordinates:

$$
\begin{gathered}
x=\left(x_{0}, x_{1}, x_{2}\right) \\
q\left(x_{0}, x_{1}, x_{2}\right)=q_{00} x_{0}^{2}+a_{01} x_{0} x_{1}+a_{62} x_{0} x_{2}+\cdots+a_{22} x_{2}^{2}
\end{gathered}
$$

The set of all points that satisfy $g\left(x_{0}, x_{1}, x_{2}\right)=0$ is called a conic section.
So now I have Te prove Pascal's Theorem,
And I say, from the point of view of projective geometry, one conic section is as good ns monothar.
Because, by taking a change of coordinates, I can transform any conic section into any other.
Therefore, the assertion of fiscal's Theorem is invariant under linear changes of variables, since it's ans, assertion of projective geometry.
So you only rimed to prove it in one case,
So I take the cheapest possible case:

I take a circle.
And inscribe a regular hexagon in it.

And then it's obvious. The 3 points $\underset{B C A E F}{A B \wedge D E}$ will meet at infinity, because they are parallel. $C D \wedge F A$
They all lie on the same lime - the line at infinity,
This is true for this so if's true for all of theme.
That's it. End of the prot.
Except for one rose.
Except for degenerate conic sections.
A conic section can be transformed into another conic section by a change of variable, if both conic sections are not degenerate,
$\left\{\begin{array}{l}\quad \mid 10 / 16198 \\ 0=q\left(x_{0}, x_{1}, x_{2}\right)=a_{00} x_{0}^{2}+a_{01} x_{0} x_{1}+a_{02} x_{0} x_{2}+\ldots+a_{22} x_{2}^{2} \\ \text { Degenerate means that the quatric form! } \\ 0,4,4\end{array}\right.$
is the product of 2 linear forms. That means the conic section is 2 lines.
By continuity, pascal's Theorem remains true for degenerate conic sections (close an eye). Pascal's Theorem for degenerate canc sections is Pappus' Theorem.
Now. I remember Pappus Theorem, Bit what I stated is not really true,
This continuity argument is phoney balony.
But at least I remember the statement.
Pappus' Theorem
Yon have 2 straight lines. And you take 6 points

$$
B C \wedge E F
$$

The 3 points $\begin{aligned} A B \wedge D E \\ B C \wedge E F\end{aligned}$ lien on a line.

$$
C D \wedge F A
$$

But the proof we just gave, in spite of my phoney belong, is valid for non degenerat conic sections only.
So we need to prove this.
What do we do? we cheat.
How do I cheat?
Were in projective space. These lines don't know. They can be in any position I wish. I can make changes of variables and place 3 paints anywhere I wish.
So I now take the most favorable position that will give me a proof of Pappus' Theorem.

The points $A B \wedge D E$ mot at infinity, because they are parallel. $B C \wedge E F$

$$
C D \wedge F A
$$

They all lie on the same line - the line at infinity.

This is the theorem I was saying last time, Pangas' Theorem, that can be stated purely in lattice theartic terms, using joins and meets.
You replace the points A, B, C, D, E, F with commuting equivalence relations. But this statement is woT true in every linear lattice
Hilbert discovered:
Pappus: Theorem true in $L(V)$ only if V is a vector space over a commutative field.

He discovered this by analyzing voe Staudt's reasoning very carefully.
So we now want to go through the main idea of the vow Standt-von Nenmamen Theorem [15,2].
van Stand - won Neumann Theorem
Let's state it in this succinct way:
$L=$ linear lattice
If every $x \in L$ is the sup of atoms and, for every $x \in L$, the set of complements is a non empty antichain and L is large enough \leftarrow (so you dontget a plane.
then $L=L(V)$.
then L is isomorphic to the lattice of subspaces of a vector spare.

Key Ideas
Let's see the key ideas of the proof. of Desarquas' Theorem, A proof tour.
There's a whole volume of this - Baker's principles of Geometry.
The Key idea is this - how do you get addition and multiplication in a field, using joins and meets?
This is the basic insight.
Let's sechow tiv define addition.
We define addition on points on a line. Then we show that this addition of points an a line is commutative and associative.
This was the great turning point of geometry really - when they discord you could do addition using joins and meets.
Addition - using joins and meets
(1)

In order t define addition, you have tr define which point is 0,1 , and infinity of your coordinate. system. otherwise addition is not well defined.

(z)

We are given 2 points P_{x} and P_{y}. These are fixed forever.
I want to find P_{x+y}.
(3)

(4)

Take any line through P_{a}.
This line meets l_{∞} at point A, and l_{∞}^{\prime} at pout A^{\prime}

Construct lines $P_{x} \vee A$ and $P_{y} \vee A^{\prime}$.
Set:

$$
\begin{aligned}
& x=\left(P_{x} \vee A\right) \wedge l_{\infty}^{\prime} \\
& y=\left(P_{y} \vee A^{\prime}\right) \wedge l_{\infty}
\end{aligned}
$$

So P_{x+y} is really $x+y$, by construction i,
of corse, you could do this without the point at infinity, but this becomes incomprehensible. That's whit the books do.

Where is the catch in this argunnt?
The catch in this argument is that it depends on the choice of the line through P_{0} and loo aud l_{∞}^{\prime} ' in step 4.
What if I took another line here?
So the theorem is that the paint P_{x+y}, which you get at the end, is the same, no master which line you choose in step 4. Provided it meets $l_{\infty 0}, l_{\infty}^{\prime}$. why?
$\left.\begin{array}{l}\text { By certain applications of Desargues' Theorem. } \\ \text { Why is addition commutative and associative? }\end{array}\right\}$ That's how addition comes out. Why is addition commutative and associative?
There is also a construction for multiplication, but I don't want to b thor with it,
There's a similar construction for multiplication and you prove that multiplication is qefsoclative by 23 applications of Desargues? Theorem,
But, you cant prove multiplication is commentative.
To prove that multiplication is commutative, you need Pappus,
That's the secret \& the van Staudt-von Neumann Theorem,
This is it. Every thing comes ont of Desargues' Theorem.
Notice that we did not use P_{1}.
That's quite justified, as we only defined addition.
And you can not tell' 1 from 0 by just + and -.
You have an Abelian group and it has a O, which is the ideculity if the Abelian group. To tell 1, you need the product. And I didn't do that.

- Exercise $\mid 7,1$

In closing, let me give you another theorem of projective geometry, for which I do not know of an elementary proof: I knows several non elementary proofs, using my tricks.
I would love it if you could get a high school proof of this.
Find a high school proof of Bricard's Theorem,
By the way, Bricard's Theorem, as I told you, has recently been proved by Catherine Yon tr hold in all linear lattices.
It's a theorem abut tetratedra in space.
Bricard's Theorem

\quad Given 2 tetrahedra abed, $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ in 3 dimensional space.
Consider the following intersections:

Briard's Theorem
Given 2 tetrahedra abed, $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ in 3 dimensional space.
Consider the following intersections:

$$
\begin{aligned}
& a a^{\prime} \wedge \text { bcd }=p_{1} \\
& b b^{\prime} \wedge \text { acd }=p_{2} \\
& c c^{\prime} \wedge \text { abd }=p_{3} \\
& d d^{\prime} \wedge a b c=p_{4}
\end{aligned}
$$

The points $p_{1}, p_{2}, p_{3}, p_{4}$ are coplanar iff the following 4 planes meat at 1 point:

$$
\left.\begin{array}{l}
\left(b c d \wedge b^{\prime} c^{\prime} d^{\prime}\right) \vee a^{\prime} \\
\left(a c d \wedge a^{\prime} c^{\prime} d^{\prime}\right) \vee b^{\prime} \\
\left(a b d \wedge a^{\prime} b^{\prime} d^{\prime}\right) \vee c^{\prime} \\
\left(a b c \wedge a^{\prime} b^{\prime} c^{\prime}\right) \vee d^{\prime}
\end{array}\right\} \quad \begin{aligned}
& \text { plane } 1 \text { plane } \Rightarrow \text { line } \\
& \text { line } \vee \text { point } \Rightarrow \text { plane }
\end{aligned}
$$

I'd love to have a high school proof.

John Guidi
guidiemoth.mitiedu

- Lattice theory is a very hard topic to till you about in advance, wo lying, be cause it's a really very broad subject and leads naturally into metric theory.
So I will tell you just same bits in order to start with.
But you will free. that it soon branches off intr completely different and unexpected directions, which are projected by the very problems we saw.
It's a very rich and deep chapter of combinatorics.
We will have to go through a number of very delicate proofs.
Linear lattices lead naturally t normal subgroups, subgroups, ideals of a ring, subspaces of a vector space - all these separate fields.
Some day, people will develop. the theory of linear lattices to the point where you only talk about linear lattices and yon wont tall e about these other things. The level of generality of linear lattices will be the right one.

Matching Theory and Matroids (beg'g)
Ill tell you the dishonest definition of matoking theory, which yon will find in the books.
Given a relation $R \subseteq S X T$ another relation $R^{\prime} \subseteq S X T$ is a partial matching (or partial transversal) when R^{\prime} is a partially defined $1-1$ function (isomorphism),
R^{\prime} looks like :

In it: simplest form, matching theory is abas the following questions:
Q : When does $R \supseteq R^{\prime}$, where R^{\prime} 's a matching? and How big can R^{\prime} be?
The best possible situation would be that R^{\prime} is a matching that is everywhere defined on S. In which case we say that A contains/has a matching.
If it doesn't hare a matching, what's the maximum partial mot ding you can have? And how do you determine this number?
That's the II approximation t matching theory, but I warn you this is just the beginning. The read interesting questions come later.

Let's proceed systematically. I've pieced together the theory from various sources, as general and systematically as possible. This dovetails naturally into matroid theory, without your even knowing it,

S,T finite sets.
We have for $A \subseteq S,|A|$ is a measure, namely:

$$
\begin{aligned}
|A \cup B|+|A \cap B| & =|A|+|B| \\
|\varnothing| & =0
\end{aligned}
$$

Any other function from sets to \mathbb{R}, with these properties, is called a measure, as we've defined it before $[8,10]$.
In general,
Set function $=$ function from sets $T \mathbb{R}$
This is totally deceiving the way it is generally used,
Not a function whose values are sets, as the term might indicate.
But functions from sets to \mathbb{R}.
Very little is known about set functions that are not measures.
That is what we will be up against.
A family of all subsists of S
A set function μ defined on $P(s)$ is submodular when:

$$
\mu(A \cup B)+\mu(A \cap B) \leq \mu(A)+\mu(B), \text { for all } A, B \subseteq S
$$

Now I could redefine matching theory as the study of submodular set functions.
Example:
Recall that [3.2]:

$$
\begin{aligned}
& R(A \cup B)=R(A) \cup R(B) \text { where } R(A)=\{b \in T:(a, b) \in R \text { for some } a \in A\} \\
& R(A \cap B) \subseteq R(A) \cap R(B) \\
& \text { Set } \mu(A)=|R(A)|
\end{aligned}
$$

This is a submodular set function because:

$$
\begin{aligned}
\mu(A \cup B)+\mu(A \cap B) & =|R(A \cup B)|+|R(A \cap B)| \\
& \leq|R(A \cup B)|+|R(A) \cap R(B)| \\
& =|R(A)|+|R(B)| \\
& =\mu(A)+\mu(B) \\
\therefore \mu(A \cup B)+\mu(A \cap B) & \leq \mu(A)+\mu(B)
\end{aligned}
$$

- ** Exercise 18.1

There is an interesting, open question which ought to have been worked out. And that I ought to have worked ant, but I haven't.
Namely:
Characterize those submodular set functions that come from a relation in this wang, I've never really worked this out.
Roughly speaking, yon have t satisfy a series of inclusion- exclusion inequalities.
That's a necessary and sufficient condition.
No one has written this out property,
There are a tremendous number of submedular st functions, as we will see.
An enormous variety $/$.
Now lett's cons der the submodular set function that will concern us in order to study the matchings of a relation;
That's called the deficiency of a relation.

- The deficiency of R, say δ, is the set function:

$$
\delta(A)=|R(A)|-|A|
$$

I is submodular.
Why? Because $|R(A)|=\mu(A)$ is submodular and minus the elements of A is modular. A submodular plus a modular is submodular.

Tight set
A tight set is a sat of minimum deficiency.
A subset $A \subseteq S$ for which $b(A)$ takes it's minimum value, say b_{0}, is a tight set.
Observe that the deficient of the null set is 0 :

$$
J(\phi)=|R(\phi)|-|\phi|=0,
$$

hence $\partial_{0} \leq 0$

Now we have the first of a number of interesting theory
a) $A \cap B$
b) $A \cup B$

Prof:

$$
\frac{\delta(A \cup B)}{}+\frac{\delta(A \cap B)}{2} \leq 2 \delta_{0} \Leftarrow\left\{\begin{array}{l}
\delta(A \cup B) \leq \delta_{0} \\
\delta(A \cap B) \leq \delta_{0}
\end{array}\right.
$$

Neither of these cam be smaller than δ_{0} because δ_{0} is the minimum e deficiency. If one is larger than f_{0}, the other must be smaller than δ_{0}. But that can mat be, Therefore:

$$
\delta(A \cup B)=\delta(A \cap B)=\delta_{0}
$$

Let me tell you an interesting fact, which weill eventually squeeze to death.
Tight sets form a distributive lattices.
So there's a minimum tight set (the intersection of all tight sets) and a maximum tight sat (the union of all tight sets).

Corollary:
There is a minimum tight set N and N could be ϕ, of course a maximum tight set m.
$\uparrow_{\text {I havint found much use for the }}$ maximum tight set Perhaps you can find some.

- Theorem 2, Complenarat of the minimum tight set (A is disjoint from the minimumentight set) If $A \subseteq N^{C}$ then $f(A) \geqslant 0$.

$$
j(A \cup N) \geq \delta_{0}
$$

$$
\therefore \partial(A) \geqslant 0
$$

$$
\begin{aligned}
& \text { Proof: }
\end{aligned}
$$

- Theorem 3

Every element of $R(N)$ has marginals $\geqslant 2$.
 at least Z edges from N going into this element.

Proof:
Assume $b \in T$ has mangind 1 , where $(a, b) \in R, a \in N$

Let's assume it is exactly 1 .
Thus, you have only one edge going to b. The one issuing from a.
Remove a from the minimum tight sot:

$$
|R(N-a)| \leq|R(N)|-1
$$

at a minimum, you lose $b \in R(N)$.
If there are others with maximal $=1$, that are related to a, then you lose these too.

$$
\begin{aligned}
& \text { By definition, the deficiency is: } \\
& \begin{aligned}
\delta(N-a) & =|R(N-a)|-|N-a| \\
& \leqslant|R(N)|-1-|N|-1) \\
& =|R(N)|-|N| \\
& =\delta_{0}
\end{aligned}
\end{aligned}
$$

So we have:

$$
\delta(N-a) \leqslant \delta_{0}
$$

But this contradicts, that N is the minimum tight set, with the minimum deficiency. Thus, our assumption is false. b must haves marginals $\geqslant 2$.

Let $R^{\prime}=R-\{(a, b) \in R ; b \in T\}$ for some $a \in N$
Then the minimum deficiency of R^{\prime} equals $\delta_{0}+1$.

If you remove any point in the minimum tight set and remove all the edges issuing from this point then the minimum deficiency of the remaining relation goes up by exactly l.
Proof: Immediate from the preceding theorem (Theorem 3),
First, note that waive removed an element from the tight set:

$$
|N-a|=|N|-1
$$

From Theorem 2, we note that every element of $R(N)$ has marginals $\geqslant 2$, Thus, even after removing all the edges issuing from a, every element of the remaining relation remains covered.

$$
\begin{aligned}
\left|R^{\prime}(N-a)\right|=|R(N)| & \text { unchanged } \\
\delta_{O_{R^{\prime}}} & =\left|R^{\prime}(N-a)\right|-|N-a| \\
& =\underbrace{|R(N)|-|N|}_{\text {this is the original } \delta_{0}}+1
\end{aligned}
$$

Therefore,

$$
\partial_{O_{R^{\prime}}}=\int_{X_{0}}+1 \leftarrow \text { increases by } 1
$$

- Theorem 5

Therefore, if we remove any $\left|\delta_{0}\right|$ points from N, we are left with a relation whose minimum deficiency :s 0 . It goes up by | each time' we remove a point (Theorem 4) and wranome $\left|\xi_{0}\right|$.
Let $C \subseteq N,|c|=-\xi_{0}$ remember, $\}_{0} \leq 0$.
Let $R^{\prime \prime}=R-\{(a, b):(a, b) \in R, a \in C\} \ldots$ firm R, sememe
Then the minimum deficiency of $R^{\prime \prime}$ equals 0 .
Now, lets study for a white relations whose minimum deficiency is 0 :
Let R be a relation whose minimum deficiency equals 0 .
This means that for every $A \leq S$, we have:

$$
|R(A)| \geqslant|A|
$$

Theorem 6 - The Marriage Therien
A relation R contains an everynumere defined matching R^{\prime} iffit satisfies the Hall condition. $\tau_{\text {everguncre defined } 1-t_{0}-1 \text { function }}$
This is mere of the nat famous theremens of combinaterics. Before I prove it, Let me give you some jazzy interpretations.
There are infurith many applications of this Theorem.
Let's see a tow.

- The (lastital Example (whence the name).
boys

You have boys and girl.
And ever boy knows some number of girl and every girl knows some number of bye.
And there is a dance, Ballroom dancing.
Then you want tee match boys with girls so that every boy dances with a girl that he knows.
When is this possistle?
It's possible if every subset of k boys collectively knows at least K girls, for every k.

The condition of the Hall condition is a great observation，because it＇s much easier to check the Hall condition than it is to find a matching．
－Example：System of Distinct Representatives

Given a big set T and a family of subsets $S=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ You con sides these subsets as groups of people．
When can you find different（distinct）leaders for each group？ Wast to pick，for each group，a leader so that the leaders are distinct， So the leader must he a member of the group，
This is called the system of distinct representatives．
You want 1 point as the representative of each subset．
This can be visualized immediately as a relation：

$$
R \subseteq S \times T
$$

edges represent the membership relations．
Since you have a relation，all you have to do is apply The Marriage Theorem to this relation and you have the necessary and sufficient condition for the existence of a system of distinct representatives．
Namely：
$s . T$ The union of any k sets must contain at least k elements
Since we don＇t have time for a non trivial example，It me give you a lust trivial example and I＇ll give you a nom trivial application next time．
－Covering amputated chess board with dominoes

I have a chessboard．
I remove any number of squares at random（＝国）。
Then I have little domino pieces，each at which can．be placed on the board vertically or horizontally．Each
domino covers 2 squares： domino covers 2 squares：vertically \square horizatally
When is it possible to cover the amputated chess board with domino pieces？

We form a relation, as follows:
[1] $\in S$
[-1] $\in T$
If 2 points are adjacent, then there is an edge. connecting them:

$S T$
Now you see immediately that a covering by dominus is the same as a matching of this relation.
There is a covering by domino iff the Hall condition is satisfied.
You see immediately that if you cut out the two diagonal corners; the Hall condition is not satisfied.

Therefore,
You can not cover this beard with dominus.

There is a famous story,
This was being explained to some big wig in Washington on the applications of mathematics. And that person saying- "Yes, that's fine and dandy if yon lated the squares $+1,-1$. What it you don't label them $+1,-1$? Then what happens?" What do you say to that.
This actually happened, as I know the person to whom it happened.
It was to Professor Golomb of USC, who is the world's expert on covering chess boards.

Let me state a theorem that we will prove next time, as an immediate application of the Marriage Theorem.
And then we'll prove The Marriage Theorem. Then well go back tr matching theory,
Birkhoff - van Neumann Theorem
This is in my book, by the way,
This stiff is done completely differently in my book. You want another approach.
You take all $n \times n$ matrices, as follows:
n

$$
n \underbrace{}_{\Sigma=1} x_{i j}]_{\sum=1}^{\sum=1} \sum_{\sum=1}^{\sum=1} x_{i j} \geqslant 0
$$

with the property that the marginals are all 1.
Namely, the sum of each row is 1 .
And the sum of each column is 1 .
A matrix with this property is called doubly stochastic,
So we consider the set of all doubly stochastic matrices.
Thales the set of points in space of dimension n^{2}.
In fact, it's a convex polyhedron. It's a convex closed set in dimension n^{2}. So the question is :

What are the vertices of this convex polyhedron?
The vertices are the points that are not convex sulvelations of two other pints (weill define convex subrelations next time).

The Bickhoff - vo Reumanin Theorem tells you that the vertices of this polyhedron are exactly the permutation matrices.
\uparrow Namely, the matrices, all of whose entries are Dor 1. which means there is exactly ane entry in each column and exactly one entry in each row.
This is an immediate consequence of The Marriage. Theorem:
So next time, I'/l give you Birkhoff's proof of this - which uses The Marriage Theorem. And then, I cant resist the temptation of giving you van Neumann's never published prot that does NoT use The Marriage Theorem,

John Guidi

Matching Theory (cont'd)
Let's begin by reviening the theory we began lart time, which is the tip of the iceberg on matching theory.
Given $R \subseteq s \times T$ (finite)
$\tau_{\text {generalization of this stuff to infinite sets }}$ is highly non trivial. There have been efforis in difflerent directions- measure thearutic, trans finite, topological, etc,
Then ure detived the deficiency of a relation:

$$
\partial(A)=\partial_{R}(A)=|R(A)|-|A| \quad, A \subseteq S
$$

\uparrow It should raally be written like this,
The R (relation) is understood.
We have verified that the deficiency's a submodular set function. Namely:

$$
j(A \cap B)+j(A \cup B) \leqslant \delta(A)+\delta(B)
$$

This is the only example we've seen so for of a submadular set function I'll tell you now - there are lot's more coming upi. This is surt of a micky Mouse example of a submodular set function.
Then we defined the minimum deficiency of the relation:

$$
\delta_{0}=\min _{A \subseteq S} \delta(A)
$$

Sets B s.t. $\delta(B)=S_{0}$ are sald to be tight.
Then we provied a number of theorems due to the Norwegian \$ystein Ore (there are lots of Norweglans in this field, as you will see).
Theorem 1: If A and B are tight sets then so are $A \cup B$ and $A \cap B$.
The fumily of tight sets of a relation forms a distributive lattice.
There is, then, a minimum tight set (the interaction of all tight sets in the lattice).
Theorem 4: Let N be the minimum tight set of a relation, If you remove any point in N and all the edges issuing from that point, you get a relation whose minimum deticiency íncreases by exnotly 1.

Theorem 5: Removing any -Z points from N, you are left with a relation that has minimum deficiency 0 .
Studying the structure of relations from this point of view, we study relations of minimum deficiency, 0 .

Observe, by the way, that we could hare defined the minimum deficiency of the inverse relation. Sorer or later wee have to compare the minimum deficiency of R with the minimum deficiency of R^{-1}. That come's very easily.
Then we stated a theorem - no proof yet:
Marriage Theorem:
$R \supseteq R^{\prime}$ where R^{\prime} is an everywhere defined monomorphism (ie., a matching of transversal) iff R satisfies the Hall condition.
Yon can match the elements of S to the elements of T in the relation $R \subseteq S \times T$ without any overlap if R satisfies the Hall condition.
Before we prove this, let's look at an application (if you don't see an application, you don't care):
Application - Bickhoff - vow Neumann Theorem
By the way, the most interesting application - which, nu fortunately, in my book is given clumsih - is th prove the existence of Haar measesere of compact groups. Now, if you look at the part of my book that I told you., I prove stupidly something about Haar, Bohr, and all those persidic functions. But the same arguments that are given :n winy book can be used to prove the existence of Haar measure on compact topological groups.
You can look that up, I wont give it here.
In $\mathbb{R}^{n^{2}}$ we consider the set of all doubly stochastic matrices $X=\left(x_{i j}\right)$ Call this set C.

$$
\left(\begin{array}{l}
\hat{i}, e_{0 .} n \times n \text { matrices sit. } x_{i j} \geqslant 0, \\
\sum_{i=1}^{n} x_{i j}=1 . \forall j, \sum_{j=1}^{n} x_{i j}=1 \forall v_{i} \\
\text { Rowand column mangmands equal } 1 .
\end{array}\right)
$$

First, observe that C is a closed convex set $[13.3]$.
A convex combination of z doubly stochastic matrices is a doubly stochastic matrix. In fort, it's actually a convex polyhedron, because it's defined by inequalities and the inequalities are the convex polyhedron,
C is a convex polyhedron.

Therefore, like all convex polyhedron, C has vertices,

- The vertices are the points that are not convex combinations of any finite subset Q: What are the vertices?

The answer is exactly those doubly stochastic matrices whose entries are oorl. This means they are permutation matrices. Namely, you start with the identity. matrix I and permute the rows and the columns.
A: They are the permutation matrices.
That's the Birkhoff-von Neumann Theorem.
There are a number of very interesting applications.
So let's see 2 proofs it this theorem.
Fist Birkhoff's proof, then van Neman's.
Birkhoff's Proof:
In an obscure paper, published in Spanish, in an Argentine journal:
T

$x_{i j} \geqslant 0$

$$
\sum_{L} x_{i j}=1 \forall_{j}, \sum_{j} x_{i j}=1 \forall i
$$

Take a doubt, stochastic matrix X.
Suppose that the rows are S (the beys) and the columns are. T (the giles).
The ron zero entries of this doubly stochastic matrix defines a relation.
Namely, a row i is related to a column j if the corresponding entry is non zero $\left(x_{i j} \neq 0\right)$.

$$
R_{x}^{K} \leq S \times T
$$

We show that:
(*) R_{X}, where X is doubly stochastic, satisfies the Hall condition,
Suppose we prove this assertion,
If we prove this assertion, then we can deduce the conclusion of the Birkhitf-von Neman Theorem at once,
As follows:
Assuming (x), we apply The Marriage Theorem.
That means we have a matching of S to T.
But a matching means a set of entries which correspond to a permutation matrix whose entries are non zero.

By the Hall condition, we com find a subset of X of non zero entries sit. no two of them are on a line (a line is a row or column). Every line contains exactly one non zero entry,
Say the corresponding permutation matrix is P.
$\left(\begin{array}{l}\text { In other words, replace the non zero entries of the subset of } X \text { found above by } 1 .) \\ \text { All other entries in } P \text { are } 0 \text {. }\end{array}\right.$
Let ε be the minimum of non zero entries in the subset of X found above, Since $x_{i j} \geqslant 0$ and we are taking the minimum non zero entry in the subset of X found above, we know that $\varepsilon>0$.

$X-\varepsilon P$ is Not doubly stochastic.
However, the marginals of this matrix are equal.
The marginal of X are 1 and the marginals of εP are ε.
So the marginals of $X-\varepsilon P$ are $1-\varepsilon$.
Therefore:-

I can perform the same trick on Q to obtain a convex combination of Q. that includes a doubly stochastic matrix with at least one additional zero entry than Q.
I can dis this recursively motif all the entries are 0 .
Therefore:
X is the convex combination of permintation matrices.
So we just need to prove assertion (*) [19.3], which we have assumed, and we can claim this result,

- We need to show that R_{x}, where X is doubly stochastic, satisfies the Hall condition,
Suppose that the Hall condition is wot true,
Then we have some subset A of S where:

$$
R_{X}(A)=B \text { and }|B|<|A| \text {, for some } A \subseteq S
$$ $\tau_{\text {strict }}$

Let's see whet this means.
T

S
The entries here add up tr as many as there are of A, namely $|A|$.
$L_{\text {Because }} X$ is doubly stochastic, the sum of all rows of column vectors for B must equal exactly $|B|$.
This gives $|B| \geq|A|$.
But the assumption is that $|B|<|A|$.
So we have a contradiction and the Hall condition is satisfied.
And our proof is complete:
Birkhoft-van Neinaum Theorem
Every doubly stochastic matrix is a convex combination of permutation matrices,

Non Neman's Prof:
I don't know why this paper was never published.
It was transmitted orally -like the Odyssey.
 Let me do this first by gestures.
If X is a permutation matrix, we win, S_{0} we might as well assume that it's not a permutation matrix.
That means there is an entry $0<x_{i j}<1$.
strictly

And you keep going in this fashion until you get a cycle.
You keep going like this nutil you eventually get barter th where yon stated. You have a cycle of entries where each entry is strictly >0 and strictly <1.
Now what do I do?
I take the original entry of the cycle and increase it a little bit (E).
The matrix is no longer doubly stochastic, so I decrease the next entry in the cycle by ε. I continue around the cycle, in this fashion, alternatively increasing, then decreasing each entry in the cycle by ε.
We refer to this doubly stochastic matrix as $X_{+\varepsilon}$.
Now I toke the origins matrix X and the original entry of the cycle. This time I decrease it a little $(-\varepsilon)$. The next entry in the cycle I increase, ever.
We refer to this doubly stochastic matrix as $X-\varepsilon$.
Then we a ate:

$$
X=\underbrace{\frac{1}{2} X_{+\varepsilon}+\frac{1}{2} X_{-\varepsilon}}_{\text {convex combination of doubly stocharicicuatrices }}\}
$$

recursive applications on the subiceryeat $+\varepsilon,-\varepsilon$ doubly.

- Exercise 19.1

Write up van Neumaon's Proof.

- Kultur

Whose taken real variables, functional anally sis, etc.?
There is a continuous analogue of the doubly stochastic matrix, Namely, a doubly stochastic probability measure,
You take the unit square.
Then you have a probability measure on the unit square.

Probability P of the events of the unit square and up to.
How do I make it doubly stochastic?
The probability of any rectangle that is formed is equal to the probability of the side $* 1$.
That's a doubly stochastic measure
Now, again, it i, obvious, that the set of all doubly stochastic measures is convex. Wall', look at the properties that characterize the extremals,
What are the daily. Stochastic measures that are NoT convex combinations?
This is a rally cute invention that these guys did, Professor Douglas, now Provost of Texas ABM, and Professor Lindenstrauss of the Hebrew University in Jerusalem. They found ' way of characterizing extremals.
Extraordinary.
It goes like this:
A doubly stochastic probability is extremal tiff frontions $F(x, y)=f(x)+g(y)$ are dense in $\frac{L_{1}(\rho)}{\ell}$
space of all integrable functions
This is the right way of saying the measure is very thine
Because you can now calculate any function of two variables by summing the function sf one variable relative to their probability.
The proof is given in my book. And it's very similar t van Newman's Proof.

- Muirhead's Inequality

I can't resist giving you an application of the work of van Neumanin.
This is the most beautiful inequality there is,
Suppose we have n real variables:

$$
x_{1}, x_{2}, \ldots, x_{n} \geqslant 0, x_{i} \in \mathbb{R}
$$

It's been known, probably since the Greeks, that for any numbers:

$$
\sqrt[n]{x_{1}+x_{2}+\ldots+x_{n}} \leqslant \frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$

geometric mean arithmetic mean

This is the most famous inequality there is.
We want to generalize this.
This is how we do it.
Take a vector of exponents $\underline{q}=\left(a_{1}, a_{2}, \ldots, a_{n}\right), a_{\ell} \in \mathbb{R}$
Define the q-mean as:

$$
[\underline{a}]=\frac{1}{n!} \sum_{\sigma} x_{\sigma_{1}}^{a_{1}} x_{\sigma_{2}}^{a_{2}} \cdots x_{\sigma_{n}}^{a_{n}}
$$

\uparrow ranges over all permutations of the indices
Examples of a-mean

$$
\begin{aligned}
& \underline{q}=(1,0, \ldots, 0) \Rightarrow[\underline{a}]=\text { arithmetic mean } \\
& \underline{a}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right) .[\underline{q}]=\text { geometric mean } \\
& \underline{\underline{a}}=(1,2,0, \ldots, 0) \quad[\underline{a}]=\frac{1}{n(n-1)} \sum_{i, j} x_{i} x_{j}^{2}
\end{aligned}
$$

The problem is, given 2 a-means, when is one less than the other?

- Theorem. (Muluhead) The most famous inequality that's not trivial.

We have $[a] \leq[\underline{b}]$ for all $x_{i} \geqslant 0$ of there exists a doubly stochastic. matrix X for which $\underline{a}=X \underline{b}$.

For example, for geometric and arithmetic means, inequality is a special case.
If you take $\underline{a}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$ and $\underline{b}=(1,0, \ldots, 0)$, you find that $\underline{a}=X \underline{b}$, where X is a doubly stochastic matrix.
It works.
Muirhead's Theorem gives you the exact criteria to get all passible inequalities; with which you can tease your friends.
Proof:
Well see how to use the Burkhoff - van Neumann Theorem.
The prof consists of selling up your notation right.
Then it's obvious.

$$
[\underline{a}]=\frac{1}{n!} \sum_{\sigma} x_{\sigma_{1}}^{a_{1}} x_{\sigma_{2}}^{a_{2}} \cdots x_{\sigma_{n}}^{a_{n}}
$$

$F_{\text {ranges over all permutations of the indices. }}$
I rewrite this by permuting the exponents, rather then permuting the indices of x :

$$
=\frac{1}{n!} \sum_{\sigma} x_{1}^{a_{\sigma_{1}}} x_{2}^{a_{\sigma_{2}}} \ldots x_{n}^{a_{\sigma_{n}}}
$$

$t_{\text {ranges over all permutations of a (i.er, the exponents) }}$)
This can be rewritten as:

$$
=\frac{1}{n!} \sum_{\sigma} e^{\sum_{i=1}^{n} a_{\sigma_{i}} \log x_{i}}
$$

Let $y_{i}=\log x_{i}$

$$
(\underline{a}, \underline{y})=\frac{1}{n} \sum_{i=1}^{n} a_{i} y_{i} \longleftrightarrow \text { dot product }
$$

Instead to f permuting over σ (the $a_{\sigma i}$), we use permutation matrices.
Let $P=$ permutation matrix

$$
=\frac{1}{n!} \sum_{P} e^{(P \underline{a}, y)}
$$

\uparrow ranges aver all permutation matrices.

$$
\underline{a}=X \underline{b}
$$

$\tau_{\text {where }} X$ is a doubly stochastic matrix.

$$
[\underline{a}]=\frac{1}{n!} \sum_{p} e^{\left(P_{a}, y\right)}=\frac{1}{n!} \sum_{p} e^{(p X \underline{b}, y)}
$$

Noisy, we use the fact that X is doubly stochastic and simplify. That well l do next time,

Matching Theory (contd)
Let's continue with Muirhead's inequality,
Let's review the logical steps that wave been following.
We have stated, but not yet proved, The Marriage Theorem:
The Manage Theorem

$$
R \subseteq S \times T
$$

$R \supseteq R^{\prime}$ where R^{\prime} is a matching iff for every subset $A \subseteq S$,

$$
\begin{array}{ll}
& |R(A)| \geqslant|A| \\
\text { i.e. } \quad & f(A) \geqslant 0
\end{array}
$$

Using The Marriage Theorem, we proved the Birkhoff-von Neumann Theorem. This says if you take the set of all doubly stochastic matrices in n^{2} dimensioned space, this is a polyhedron (or polytope. whatever yoind like. tr call it), whose vertices are exactly the permutation matrices.
We saw that this was an immediate application of The Marriage Theorem,
"Permutation matrices are the only vertices (estremal points) in the convex set of doubly stochastic matrices.

Id like to assign the following $1 \frac{1}{2}$ star problem.
By the way, why don't you do 2 ane stor problems.
I hans you are doing tor little work in this course.
Two one star problems in the whole course, to be turned in. Instead of one one star problems.

- Exercise 20.1

I would work this out if I had the time, but I don't have the time to think about it. I suspect that from the Birkhoff-van Neman Theorem, you can deduce The Marriage Theorem. This is not just an intellectual exercise. I have an ulterior motive for assigning this problem. I always have whterior motives,
That is, we have seen, in one of our Kultur asides, that there is a measure tHeoretic analogue: of the 'Birkhoff - van' Newman Theorem. Naniely,' The Douglas - Linderstrauss: Theorem [19.7].
This states that if you take the set of all doubly stochastic measures on the square, that's a convex set, whore extremes are there measures for which L_{1} of that measure is spanned by functions. of the form $F(x, y)=f(x)+g(y)$.
It's a beautiful theorem.

So if we had a way of deriving The Marriage Theorem from the Birkhoff - van Necumann Theorem, then we would probably have a way of stating, for the first time known To man, a continuous analogue of The Marriage Theorem. That's my ulterior motive.
So please work on it, You have lot's of time. What do you do with your time? I am the one who has no time.

From the Birkhoff-von Newman Theorem, deduce the Marriage Theorem, By The way, there is a generalization of the Marriage Theorem in the transfinite sense, which is due t the greet British combinatorist Nash Williams.
I might do this if you want to. I've never done this in class.
where S and T are well ordered sets, there is a marriage theorem for that case, This is extremely elegant.
Using the Birkhoff - vo Neman Theorem, we are now in the carse of proving one of the most striking inequalities ever stated.
Inequality that encompasses all generalizations of the geometric, arithmetic mean inequality. As you recall:

$$
\begin{aligned}
& x_{1}, x_{2}, \cdots, x_{n} \geqslant 0, x_{i} \in \mathbb{R} \\
& \sqrt[n]{x_{1} x_{2} \cdots x_{n}}
\end{aligned}
$$

geometric mean arithmetic mean

Don't you ever forget that. It's mickey mouse, High seliol. known tor the Greeks,
Muinhead's inequality is the ultimate generalization of the geometric arithmetic mean
inequality. inequality,

Suppose we have $\underline{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
Define the g-mean as:

$$
[\underline{a}]=\frac{1}{n!} \sum_{\sigma} x_{\sigma_{1}}^{a_{1}} x_{\sigma_{2}}^{a_{2}} \ldots x_{\sigma_{n}}^{a_{n}}
$$

 cancellation her, of
multiples of terms of multiples of terms of
the permutations,
For example:

$$
\begin{aligned}
& \underline{q}=(1,0, \ldots, 0) \Rightarrow[\underline{a}]=\text { arithmetic mean } \\
& \underline{q}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right) \Rightarrow[\underline{\underline{~}}]=\text { geometric mean }
\end{aligned}
$$

Q: when is $[a] \leq[\underline{b}]$ for all x_{i} ?
Muirhead's inequality gives you the answer to the question:
4: Iff there exists a doubly stochastic matrix X s.t. $\underline{a}=X \underline{b}$

- For example:
in some sense, this saps a is an average of b. Applying doubly stochastic matrices is a very suble way of averaging the entries.
4: If there
For example:

$$
X=\left[\begin{array}{ccc}
\frac{1}{n} & \cdots & \frac{1}{n} \\
\vdots & \vdots & \vdots \\
\frac{1}{n} & \cdots & \frac{1}{3}
\end{array}\right]
$$

doubly stochastic

$$
\left[\begin{array}{c}
\frac{1}{n} \\
\frac{1}{n} \\
\vdots \\
\frac{1}{n}
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

So, in the special case of Muirhead's Inequality, we get the specie l' case of the geometric mean \leq arithmetic mean inequality.

Before I go further inter the proof, let me mention something that I should have meationcod before. This will be copied out at my book (Gian-Carlo Rota on Combinatoriss) pi. S37-538.

Is there a simple criterion given 2 vectors $a, b \in \mathbb{R}$, to know a prior whether there is a doubly stochastic matrix X where $a=X b ?$
The answer is yes.
Remark
프 $=X \underset{\sim}{b}$ for some doubly stochastic matrix X if $a \leq b$ in the daminamee order.
\uparrow we tacitly assume we have extended the dominance order $[12,8-9]$ to vectors whose entries are real numbers other than integers.

You reorder the components of a and b sot. :

$$
\begin{cases}1 & a_{1} \geqslant a_{2} \geqslant \ldots \geqslant a_{n} \\ 7 & b_{1} \geqslant b_{2} \geqslant \ldots \geqslant b_{n}\end{cases}
$$

as well you may, because the remark above is completely independent of the order of the entries, due to the permutations associated with the dully stochastic matrix.
$a \leq b$ means that:

$$
\left.\begin{array}{rl}
a_{1} & \leq b_{1} \\
a_{1}+a_{2} & \leq b_{1}+b_{2} \\
\vdots
\end{array}\right\}
$$

all these are inequalities
$\tau_{\text {and this last statement is an equality }}$
To discuss the intritiuc meaning of the dominance order [12.8-9], we try to understand the intuitive meaning of the covering relation.
intuitive meaning of co covering relation,
For sake of the argument, let's take the special case where the entries are integers.
You have:...

$$
\begin{aligned}
& \underline{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right), \text { where } a_{1} \geqslant a_{2} \geqslant \ldots \geqslant a_{n} \\
& \underline{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right), \quad b_{1} \geqslant b_{2} \geqslant \ldots \geqslant b_{n}
\end{aligned}
$$

Then you draw the Ferrers matrix.
Example: $\quad \underline{a}=(4,4,2) \quad \underline{b}=(5,4,1)$

How do you get a from b ?
The covering relation is that you move one 1 unit down, who disturbing the fat that you have a Ferrets diagram.
$a \mathcal{Q} \underline{b}$ is the covering relation.

$a<b$
.
\Uparrow

The dominance order relations are the iterations.

So that is what the dominance order is about.
I stated before the unsolved two star problem to give a purely order theoretic characterization
of the dominance order (exercise 12,
[i2.9]).
The dominance order has an involution 1 . It is one of the care partial orders that has an involution. No one has gotten a purely abstract characterization of this partial order as a lattice.

Historically, I think you ought t know that the dominance order arose first in the continuous case. And it was only later that people realized it could be used in the discrete,

It arose for continuous functions on the interval $[0,1]$.
I'll do it by gestures.
If you have a continuous function on the interval $[0,1]$, you can talk about rearranging the function - the continuous analogue of rearranging the entries of a vector.
In e function a the conticular, you can define the notion of a non increasing rearrangment of the same
In paction.
So every function has a non increasing rearrangement,
So you say:
functions $g \leq f$ in the dominance order if $\int_{0}^{x} g(x) d x \leq \int_{0}^{x} f(x) d x$
This has tremendous applications all over the place,
Statistics, for example.
So, it's a fundamental order relation.
Based on this Remark ($a=X \underline{b}$ for some doubly stochastic matrix X of $\underline{a} \leq \underline{b}$ in the dominance order), it is very easy to work with Murirhead's Inequality.
Because all you really need to do is draw the Ferrers' diagrams and see if you can move units down.

Example: $\underline{b}=(3,2,1,0) \quad \underline{q}=(3,1,1,1)$

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 \\
1 & & \\
\hline
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & & \\
1 & & \\
1
\end{array}\right]
$$

$\underline{b}>\underline{a}$ so $\underline{b} \geqslant a$ in the dominance order
Therefore, there exists a doubly stochastic matrix X where $\underline{a}=X \underline{b}$. (from the theorem you copied out of my -book on pp. 537-538)
Then the Mnishead Inequarelity immediately says:

$$
[\underline{a}] \leq[\underline{b}]
$$

The mean you form with $a \leq$ the mean you form with b.

$$
[\underline{a}]=\frac{1}{4!} \sum_{\sigma} x_{\sigma_{1}}^{3} x_{\sigma_{2}} x_{\sigma_{3}} x_{r_{4}} \leq \frac{1}{4!} \sum_{\sigma} x_{\sigma_{i}}^{3} x_{\sigma_{2}}^{2} x_{\sigma_{3}} x_{\sigma_{4}}^{0}=[\underline{6}]
$$

Kultur
$[\underline{a}] \leq[\underline{b}]$ is an equality between 2 symmetric functions of the variables $x_{1}, x_{2}, \ldots, x_{n}, \longleftarrow$ consider $[\underline{b}]-[\underline{a}] \geqslant 0$
Hilbert's.17 Problem
Suppose you have a polynomial $p\left(x_{1}, \ldots, x_{n}\right) \geqslant 0$ for all x_{i}
There is one good reason why a polynomial $\geqslant 0$.
Namely, it's the square of another polynomial.
You can jazz this up.
It is the sum of squares of other polynomials.
So one reason why a polynomial $\geqslant 0$ is because it's the sum of squares.
And it was noted very early in the game, particularly by Hilbert, that this is NoT true that if a polynomial $\geqslant 0$, that it is the sum of squares. The polynomial is not necessarily the sum of squares.
$p\left(x_{1}, \ldots, x_{n}\right)$ is not necessarily the sum of squares.
Hilbert's $17^{\text {ti }}$ Problem is:
when is a positive polynomial $\left(p\left(x_{1}, \ldots, x_{n}\right) \geqslant 0\right.$ for ell $\left.x_{i}\right)$ a sum of squares? What condition has to be satisfied?
Hilbert found 3 cases.
Case 1: When you have a homogeneous polynomial of degree 2
If you have such a polynomial, then it's in quadratic form and the coefficients form a symmetric matrix.
And then the symmetric matrix can be diagonalized.
That means that every polynomial of degree 2 is the sum of squares.
So this case (quadratic polynomials) is true by matrix theory.

Case 2: This case comes from Enl/ Artie, father of Professor Axing; who established the following result:
Artin-Schrier
Given $p\left(x_{1}, \ldots, x_{n}\right) \geqslant 0$ for all x_{i}, then:

$$
p(\underline{x})=\sum_{j=1}^{k} r_{j}(\underline{x})^{2} \text { where } r_{j}(\underline{x})=\frac{p_{j}(\underline{x})}{q_{j}(\underline{x})}
$$

always the sum of squares of rational functions
This was done using strictly first order mathematical logic. This was done in the 1920 's. It's not really what Albert asked for, but it's something.
Case 3: What if the polynomid is symmetric?
Q:. If $p\left(x_{0_{1}}, x_{v_{2}}, \ldots, x_{v_{n}}\right)=p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ then is it true that if $p(\underline{x}) \geqslant 0$ then $p(\underline{x})$ is the sum of squares.
A: No, But there are only a finite number of exceptions.
These were found by the Italian mathematician Process in 1974 (approximately).
There are a finite number of inequalities that are NOI sums of squares. All the other ones are due to sumps of squares.
This is a tremendous achievement.
So you see why I'm so concerned with Muichead's Inequality.
This is what's in the background.
There's always a background yo a have to learn.
Lot's of people have worked on this stuff.
I could go on and on.
But. I will simply stop now. End of Kultur.
At least you learn something about the big wide world and nit just. narrow things,
Yon must be narrow.
You must learn about every thing.
Otherwise you'll end up in the gutter when fashions change.
You have to bepreared for when things shift around. Know what in the world.
You can 4 just know the algorithm from star alpha beta 2, You can't.just make your living on that. You'd end up in a bad way if you do that.

| | $10 / 26 / 98$ |
| :--- | :--- | :--- |
| | |
| Before proving Muir head's Theorbo,
 We 'ven talked about convex sets, | |

We've talked about convex sets,'
Butwhat's a convex function?
convex function
A. function $f(x)$ if $x \in \mathbb{R}$ is said $t \frac{b}{}$ be convex when:

$$
\begin{array}{r}
f\left(\sum_{i} \lambda_{i} x_{i}\right) \leqslant \sum_{i} \lambda_{i} f\left(x_{i}\right) \text { for all } x_{i} \text { and } \\
\qquad \begin{aligned}
\text { all } \lambda_{i} \geqslant 0.5, t, \sum_{i} \lambda_{i}=1
\end{aligned}, \quad \text {, }
\end{array}
$$

This is also known as Jensen's Inequality.
Example: e^{x} is a convex function
why? Draw a picture in \mathbb{R}^{2} treget the idea.

- Prot of Muirhead's Inequality

$$
[\underline{a}]=\frac{1}{n!} \sum_{\sigma} x_{1}^{a_{\sigma_{2}}} x_{2}^{a_{\sqrt{2}}} \ldots x_{n}^{a_{\sqrt{n}}}
$$

$\tau_{\text {ranges overall permutations of } g \text { (ie., the exponents) }) ~}^{\text {a }}$

$$
=\frac{1}{n!} \sum_{\sigma} e^{\sum_{i=1}^{n} a_{\sigma_{i}} \log x_{i}}
$$

Let $y=\left(\log x_{1}, \ldots, \log x_{n}\right)$

$$
(\underline{a}, y)=\sum_{i=1}^{n} a_{i} y_{i} \longleftarrow 2 \text { dot product }
$$

Instead of permuting over σ (ie., the $a_{v_{i}}$), we use permutation matrices.

$$
P=\text { permutation matrix }
$$

Then we can rewrite the above as:

$$
=\frac{1}{n!} \sum_{p} e^{\left(P_{q}, y\right)}
$$

$\tau_{\text {ranges over all permutation matrices }}$
Now we remember that $q=X \underline{b}$.

$$
=\frac{1}{n!} \sum_{P} e^{(p \times \underline{b}, y)}
$$

Now we use the Bickutt - won Neman Theorem.
X is a doubly stochastic matrix.
By. Birch off-von Newman, therefore X is the convex combination of permutation matrices,

$$
X=\sum_{Q} \lambda_{Q} Q \quad \text {, where } \sum_{Q} \lambda_{Q}=1, \quad \lambda_{Q} \geqslant 0
$$

$\tau_{\text {ranges aver all porentation metrics. }}$

$$
\left.=\frac{1}{n!} \sum_{P} e^{\sum_{Q} \lambda_{Q}(P Q \underline{b}}, y\right)
$$

$$
=\frac{1}{n!} \sum_{Q} \lambda_{Q} \sum_{P} e^{(P Q b ; y)}
$$

Prates over all permutation matrices, so this is independent of Q.
$P Q$ is just another permutation, so we can retinite this, as follow, where R Ranges over all permutation matrices,

$$
=\frac{1}{n!} \sum_{Q} \lambda_{Q} \sum_{R} e^{(R b, y)}
$$

Recall that $\sum_{Q} \lambda_{Q}=1$.

$$
=\frac{1}{n!} \sum_{R} e^{(R \underline{b}, y)}
$$

What's this? It's exactly $[\underline{b}]$

$$
=[\underline{b}]
$$

$[\underline{a}] \leq[\underline{b}]$,
Q.E.D.

This is the hard part.
The the haffof this ff proof is trivial.

John Guidi
guide math.mit.edu
18.315

The program for theinext feu days is that well disionss the Marriage Theorem and its variants, Dilworthis Theorem; and a few applications.
Then weill di the Marriage Theorem all over again using, deficiencies. And that will lead us: into matroids - by anodizing the notion of deficiencies of submodular set functions. Will be led to the study of matroids from the notion of sulimodular sot functions.
Well cover a certain amount of basic material on matroids. Enough to get to the main matching Theorems on matrons, which are an enormous strenghtening of the Marriage Theorem., Extremely power strengtitining of the Marriage Theorem! We will carry the theory of matraids the far.
We will nit have time to do the geometric aspects of the theory of matroidg, which are extremely interesting.
After that, I will have t switch over and' start on geometric probability, as par list. Well do geometric probability and then, hopefully, as much Mablius functions as we have time. Geometric probability will serve as an introduction to mabiuss functions,
This is an interesting challenge, by the way, to use geometric probability to introduce Mibius functions,
s_{0} that's the scheme of the content for the rest of the term,

- The Marriage Theorem

You have seen this already stated several times now. It's high time we prove it.
Given a relation $R \subseteq S X T$
if for every $A \leq S$ we have $|R(A)| \geqslant|A|$ (i.e., deficiencies $\geqslant 0$),
(then there exists a matching for R. (ice., a relation $R^{\prime} \subseteq R$ sot. for every $a \in S$ there is exactly one element in R^{\prime} of the form (a, b) and [if $(a, b) \in R^{\prime},(c, d) \in R^{\prime}$, if $c \neq a$ then $\left.b \neq d\right)$.
this is just a fancy way of saying that R^{\prime} is a $1-t-1$ function defied from $S t T$. From each element of \mathbb{S}°, thee is exactly one edge issuing and no two edges go to the same element: T.

A graph of a 1-to-1 fametion everywhere defined on S.

Proof :
Let's consider first a simple and cute proof.
This is the next to simplest proof I know.
The simplest prof there is is the one that uses linataralgeblra. And I won to de it.
You ask Thomas Britz about it. I don't want to digress from here now.
case 1: $|R(A)|>|A|$ for every $A \subset S, A \neq \varnothing$.
You pick an element of S, pick an element related to it, remove them, remove everything related to them, and consider the relation that remains,
When you remove them, the RHS of the above inequality, goes down by at least one for the new relation. The inequity continues the satisfied.
And you can proceed by induction.
Pick any $a \in S, b \in T$ s.t, $(a, b) \in R$
Remove $a+$ alleges issuing from a.
Remove $b+$ all doges issuing from b.
Let $R^{\prime \prime}$ be the restriction of $R T_{0} S-a$ and $T-b$.
For $B \subseteq 5-1$, we have:

$$
\left|R^{\prime \prime}(B)\right| \geq|B|
$$

Since $|R(A)|>|A|$ for every $A C S$, each element of S is related $T O$ Z or more elements of T,
After removal of all edges issuing from b, every element. of S_{-a} is related to at least one element of T.
So equality is now possible in the inequality $\left|R^{\prime \prime}(B)\right| \geqslant|B|$, with the removal of all relationships with b. For example:

$$
\begin{aligned}
& B=\{C\} \\
& \left|R^{\prime \prime}(B)\right|=|B|
\end{aligned}
$$

Continue by induction with the smaller relation $R^{\prime \prime}$.
case 2: There exists a non empty $A \subset S$ sit. $|R(A)|=|A|$
Then we proceed, as follows. A is smaller than S. Take a matching in A. Remove this matching. Then prove in the remaining sets that the $\mathrm{H}_{\mathrm{a}} \mathrm{ll}$ condition is still satisfied.
Consider $R^{\prime \prime \prime}=\left.R\right|_{A} \Longleftarrow R$ restricted to A
\uparrow Then $R^{\prime \prime \prime}$ also satisfies the Hall condition, and it's smaller than λ.
Therefore, by induction, $R^{\prime \prime \prime}$ has a matching, say $R^{\prime \prime \prime \prime}$,
from A,
Now Ill tell you what I do.
I remove every thing in A and every thing in C.
I cant use the elements in Canymore, theyive already been matched,
Let $R^{\prime \prime \prime \prime \prime}$ be the restriction of $R t_{T} S-A$ and $T-C$, where C is the range of $R^{\prime \prime \prime \prime}$,
The picture is like this:
 D to $T-C$.
You want to show that this relation satisfies the condition of Hall. If we do that, we win. Because we can piece together the two and we get a matching of a smaller relation,
Need to show that $R^{\text {IIIII }}$ satisfies the Hall condition:
Take subset $D \subseteq S-A$
Need to show:

$$
\left|R^{\prime \prime \prime \prime \prime \prime}(D)\right| \geqslant|D|
$$

$$
\left|R^{\prime \prime \prime \prime \prime \prime}(D)\right|=\left|R^{\prime \prime \prime \prime \prime}(D)\right|+\underbrace{|R(A)|-|A|}_{\text {we have, for this case, th }}
$$

we have, for this case, that $|R(A)|=|A|$ So we add 0 , by adding and subtracting the same number of elements.

$$
\left\{\begin{array}{l}
\text { This is a measure of sets }[8,10], \text { and we have: } \\
\left|R^{\prime \prime \prime \prime \prime}(D)\right|+|R(A)|=\left|R^{\prime \prime \prime \prime \prime}(D) \cup R(A)\right|+\left|R^{\prime \prime \prime \prime \prime}(D) D R(A)\right|
\end{array}\right\}
$$

This is empty, by the way
we constructed D.

$$
\begin{aligned}
& =|\underbrace{\mid R^{\prime \prime \prime \prime}(D) \cup R(A)}|-|A| \\
& R(D \cup A)=R^{\prime \prime \prime \prime \prime}(D) \cup R(A)
\end{aligned}
$$

disjoint by construction.

$$
=|R(D \cup A)|-|A|
$$

R satisfies the Hall condition.
So we have:

$$
|R(D \cup A)| \geq|D \cup A|
$$

$$
\geqslant|D \cup A|-|A|
$$

D and A are disjout

$$
\begin{aligned}
& =|D|+|A|-|A| \\
& =|D|
\end{aligned}
$$

Which gives:
$\left|R^{\prime \prime \prime \prime \prime}(D)\right| \geqslant|D| \longleftarrow 2$ we. win, Finished That's the end of the proof,

This proof has been arrived at with a. lot of effort,
starting with simplifying the original proof.
Let's consider a variant of the Marriage Theorem.
Let's consider a theorem that is strongly related to the Marriage. Theorem.
In fact, this is a consequence of the marring theorem.
But to get it as a consequence of the Marriage Theorem, I need to do some fudging, which I doit like,
For the moment, you'll sense that the theorems are very closely related. Then weill see that they are variants of the same things.
Dilworth's Theorem
In a sense this is more elegant than the Marriage Theorem. Although it's at the same level of depth.
$P=$ finite partially ordered set
Dilworth's Theorem. has to do with the following problem.
You want to partition the set P intr blocks in such a way that every block is a chain, You want to do this as economically as possible.
So there is a minimuin number of chains.
How many chains can you get away with in such a partition?
Can we get a rough bound?
Sure we can get a rough bound. You take the antichainsof P, where every element of every antichain has to be ina different block.
Therefore, there must bo at least as many blocks as there are maximum antichains. Dilworth sees that that is enough.
Theorem:
The minimum number of blocks in a partition ${ }_{n} P$ into chains equals the maximum size of an antichain.

Proof (Tverberg)
This is even simpler than the proof given in my book.
If P has one element, the statement is trivial.
So we can proceed by induction.
You take P and take a maximal chain of P (i.e., a chain that can not be extended further).

Let $C=$ maximal chain in P
Consider the partially ordered set $P-C$
There are two cases. Either the maximum size of an antichain in P-C is one smaller than the maximum size of an antichain in P - and then we win by induction. Or else the maximum size of an antichain in $P-C$ is the same as the maximum size of an antichain in P - and then we have To argue.
case 1: the maximum size antichain of $P-C$ is one unit less than the maximum size antichain of P,
Proceed by induction.
τ induction on the maximum size antichain
case 2 : the maximum size antichain of $P-C$ is the same as the maximum size antichain of P.

Pick a maximum size antichain of $P-C$:
Let $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a maximum size antichain in $P-C$.
The maximum element of C has to be comparable to all the a_{i}, otherwise ' I would add it $t_{0}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and get a bigger maximum size antichain.
Let $m=$ maximum element of C
So it's either greater than one of the a_{i}, or less than one of the a_{i}. If's not equal to any of the a_{i}, because these are in the antichain
$P-C$.

Suppose it's less than one of these, namely a_{α} :
Say $m<a_{x}$
That's impossible, because C is not maximal.
I would immediately add a_{α} to C to get a larger set,
Hence $m>a_{\alpha}$ strictly greater than
Similarily, one argues that the minimum element (l) of C is strict' less than on s of the a_{b} :

$$
\ell<a_{\beta}
$$

Now I perform the following split:
Let $U^{+}=\left\{x \in P-C: x \geqslant a_{i}\right.$ for some $\left.a_{i}\right\}$

$$
U^{-}=\left\{x \in P-C: x \leqslant a_{i} \text { for some } a_{i}\right\}
$$

Since $m>a_{\alpha}, P$ is strictly greater than U^{+}.
Since $l<a_{B}, p$ is strictly greater than U^{-}.

$$
\left.\begin{array}{l}
\left|U^{+}\right|<|P| \\
\left|U^{-}\right|<|P|
\end{array}\right\} \begin{aligned}
& \text { neither } U^{+} \text {nor } U^{-} \text {is }
\end{aligned}
$$

So U_{1}^{+}and U^{-}are smaller sexts and we can proceed by induction, By induction, the theorem already applies to U^{+}and $U^{\text {}}$.
Q: What y the biggest antichain of U^{+}?
$A:\left\{a_{1}, \ldots, a_{n}\right\}$
Q: Whats the biggest antichain of U^{-}?
$A:\left\{a_{1}, \ldots, a_{n}\right\}$
What do you do?
You split U^{+}and U^{-}each into n chains, And each of these n chains. has to contain one of the a_{i} otherwise you don't have enough chains. Then join the chains in U^{+}and U^{-}.

Split U^{+}and U^{-}into n chains each. and match the chains,

Forget C. C was just a prop to conelnder that u^{+}and U^{-}were strictly. smaller than P. Once we conclude that $U+$ and U - are strictly smaller, we proceed by induction. Split U^{+}and U^{-}and join the chains,

Corollary of Dillwortis
How do we do this?
We are given a relation $R \subseteq S \times T$. You associate, with this relation, a partially
ordered set. Like this. Yon write the elements of S on the top and the elements of Ton the bottom. You say an element of T is greater than an element of S if there is an edge between. Them,

$$
\begin{aligned}
P_{R}= & \text { partially ordered set. } \\
& \text { associated tod } R \\
& \left(T \text { below } S^{\prime \prime}\right)
\end{aligned}
$$

edge \Rightarrow elements < element t
Claim: T is a maximum size antichain of the poset P_{R}.
Assuming this claim, you can apply Di/worth's Theorem to P_{R}.
Then we know, since T is a maximum size antichain, the minimum number of blocks in a portion into chains. And every element of S must be contained in one of those chains of 5 UT. Therefore, there must be as many two element chains as there are elements of S. This gives the matching.
So, assuming the claim, the matching conclusion follows immediately:
Existence of matching (marriage Theorem) follows immediately from chains.
There must be as many two element chains as there are elements of S and that those two dement chains give the desired matching.
Proof of claim [Gian-Carto Rota on Conbinatorics Ip 526-527]
Assume the claim is not true. Then there would be a larger antichain U:

$$
\begin{aligned}
u \subseteq P_{R} \quad \text { s.t. }|u| & >|T| \\
& \tau \text { strictly }
\end{aligned}
$$

So $|T|-|u|<0$

$$
|T-u n T|=|T|-|u n T|
$$

since S and T are disjoint, we have:

$$
\begin{aligned}
& u=(u \cap s) v(u \cap T) \\
& |u \cap T|=|u|-|u \cap s|
\end{aligned}
$$

$$
=\underbrace{|T|-|u|}_{<0}+|u n s|
$$

$$
<|u \cap s|
$$

$$
|T-U \cap T|<|U \cap S|
$$

$$
\dot{B} \text { ut } R(u \cap s) \subseteq T-u \cap T
$$

Why? Because of the following picture:

Since U_{i} is an antichain, no element of USS can be connected with an element of $U \cap T$. otherwise U would not be an antichain.

Therefore, R (Ins) must be contained in the complement of $U \wedge T$. That's what I wrote,
So, we would have:

That the proof of the marriage Theorem from Dilworths Theorem.

- Now, let me tell you how Dilworth should come out of the Marriage Theorem.

Assuming the Marriage Theorem, given partially ordered set P, define relation R_{p} as follows:

$$
(a, b) \in R_{p} \text { if } a<b
$$

strictly
Then by fudging the Marriage Theorem $T_{1} R_{p_{p}}$, out comes Dilworth's Theorem, But the prod IJ have is Kind of inelegant.'
Well do it, in detail, using deficiencies.
If you come up with a proof af your own, Ind appreciate it,
Next time weill do it all over with deficiencies. And well have some applications of Dilworth. There are some remarkable applications of Dilworth,
Then, using the study of deficiencies, weill introduce the concept of matroids, Weill see how the concept famatroid comes out by analyzing the deficiency of a relation.

John Guide

Dilworth's Theorem (conclusion)
$P=$ finite partially soldered set
partition $\pi \in \Pi[P]$ where: every $B \in \pi$ is a chain
$|\pi|$ is minimum

- Such a minimum equals the maximum size of an antichain of P,

The minimum number of blocks in a partition into chains equals the maximum size antichain.
Last time we saw a very strict, short proof of this theorem, I now repeat it, only by gestures,
You take the maximal chain and remove it.
See what's left,
If what's left, has a maximum antichain that is smaller, you can proceed by induction, If what's' left has a maximum antichain of the same size, then we see that the chain that we removed has at least one element above this maximum antichain and at least one element below this maximum antichain. That means you cai split P into P^{+}and $P^{-1} p^{w h i c h}$ are strictly smaller. Therefore you can apply induction on P^{+}and P^{-}obtaining two partitions of chains U^{+}and. U^{-}. U^{+}has minimal elements that are elements of the maximum antichgin. U - has maximal elements that are elements of the maximatum autidiain, So you cam match the chains of U^{+}and U^{-}. And this gives the number of chains.
That's the proof we saw last time.
We will shortly see another proof, based on deficiency concepts,

- Example of Diluorth's Theorem

Hasse diagram of a partially ordered set

A maximal size antichain has 4 elements: So Dilworth tells you there has to be a partition of this partially acclesed set. into 4 chains.

One maximal size antichain indicated with $(O$ elements.
4 chains illustrated with dotted lines.

Now let's take a non trivial example of Dilworth's Theorem, Let's take a Boolean algebra,

- Example of Dilworth's Theorem - Boolean algebra
$\underbrace{P(s)}, s$ finite
The Boolean algebra of all subsets of a set,
We unit to partition the Boolean algebra into a minimum number
How do we do it?
We do it by the Greene-kleitman bracketing algorithm.
In order to use this algorithm, we need to know the maximum size
antichain of $P(S)$.
What is the maximum size antichain?

$$
|s|=n
$$

If you take the Hasse diagram of $P(s)$, it's a ranked, partially ordereal set. And the elements of each rank are the subsets with l element, 2 elements, etc. If you count the elements of each rank, it's equal to the binomial coefficients - the number of subsets of k elements,

It's wall known that the binomial coefficients increase to a maximum and then decrease. And if you normalize, then you got the bell shaped curve, That's called the Central Limit Theorem.

The maximum binomial coefficient is either the middle one, when n is odd. Or the two middle ones, when n is even. This can be chocked by a simple algebra computation,
So, 'f n is odd, you have an antichain with as many elements as the maximum of the binomial coefficients, If n is even, as many as the two
But how do you know that's the maximum sized antichain?

How do you know that you can't combine things together? You have to prove it, Sperner's Theorem (not ti b Confused with Spanner's Lemma). This stuff is now in books, but we have to do it because it's important material.

Sterner's Theorem
The maximum size antichain of $P(s),|s|<\infty,|s|=n$ has $\binom{n}{\left[\begin{array}{l}n \\ 2\end{array}\right]}$ nearest integers.

This is an extremely important result,
Like many resents that we are considering in this chapter on combinaterics, it's important not only because of what it says, but because of all the conjectures it has lad tr. Remind me tell you some,
So, it's a springboard, Once you got there, you ask similar questions about powers of partitly ordered salts,
To prove this, we have to prove the famous LYM inequality - also found in all the books.

Proof,
Follows from LYM inequality (Label, Yamamoto, Meshalkin).
Let U be an antichain of $P(S)$.
Let $U_{k}=U \cap \underbrace{P_{K}(S)}$;
$\binom{$ this is standard notation for a family of }{ subsets of S with k elements, }
so that U_{k} are the non-ernpty blocks of a partition of U.
Then

$$
\sum_{k=0}^{n} \frac{\left|u_{k}\right|}{\binom{n}{k}} \leq 1
$$

Proof of $1 \mathrm{Y} M$ denequelity
How many complete: chains are there in P(s)?
\uparrow
maximum size chain. A chain that you can not increase the size of.
There are n ! complete chains in $P(S)$.
Why?
Because the only way t get a complete chain is to start with the mull set. I add one element, then I add another element, then I add another element, etc. until I have n elements,
How many ways can I do this?
As many ways as I can order the n elements.
So if's $n!$, the number of permutations,
So the number ot chains is $n!$.
Now, I want to refine this,
Suppose you have a subset T;

$$
T \subseteq S, \quad \operatorname{say}|T|=k
$$

Now I ask the following question:
How many complete chains in $P(S)$ pass through T ?

There are $k!(n-k)$! complete chains in $P(S)$ containing the set T. Why? For the following reason.
Q: How many chains are there from the null set tr T?
$A=k!$
Q: How many chains ares there from T tr S ?

- $A:(n-k)!$

Let U be any antichain,
Any complete chain can meet the antichain in at most 1 point, So how many chains mot some element of the antichain? Let's count them.
Again, $U_{k}=$ set of all sets in U with k elements
There are $k!(n-k)$! complete chains that go to ann sets with k elements. m_{u} idly by size of U_{k} and you get the most number that meet this antichain. The sets U_{k} are disjoint, so you add it all up. It's simple addition,
Marble counting.
The number of complete chains meeting the antichain U is at most:

$$
\sum_{k=0}^{n}\left|u_{k}\right| k|(n-k)|
$$

And we just said that the tot al number of complete chains in $P(s)$ is n!. So we have:

$$
\sum_{k=0}^{n}\left|u_{k}\right| k|(n-k)| \leq n!
$$

Divide both sides by n ! and you get the binomial coefficient on the LHS:

$$
\sum_{k=0}^{n} \frac{\left|u_{k}\right|}{\binom{n}{k}} \leq 1
$$

That's the LYM inequality.

Now, using the LYM inequality, let's prove Sperner's Theorem, Well, I just said that the maximum of the binomial coefficient is reached when k is $\left[\frac{n}{2}\right]$. See $[22,2]$.

$$
\sum_{k=0}^{n} \frac{\left|u_{k}\right|}{\binom{n}{\left[\frac{n}{2}\right]}} \leqslant \sum_{k=0}^{n} \frac{\left|u_{k}\right|}{\binom{n}{k}} \leqslant 1
$$

Sperners Theorem

$$
\underbrace{\sum_{k=0}^{n}\left|u_{k}\right|} \leq\binom{ n}{\left[\frac{n}{2}\right]}
$$

this is the size
of U, because U
is the partition into the U_{k},

$$
|u| \leq\binom{ n}{\left[\frac{n}{2}\right]}
$$

Q.E.D.

That's the proof in style,
So, in conclusion, the maximum size antichain in a Boolean algebra is exactly what we think it ought to be.

- Now let me tell you of a conjecture of mine that I made 35 years ago.

Conjecture (Rota)
Now I look at the lattice of partitions.
Take $\Pi[s]$
Partitions are ordered by refinement.
This lattice also splits according to levels.
The top level is the partition with $\frac{1}{\text { b lock. }}$
The next to the top element is the partition with 2 blocks .
The bottom element is the partition with as many blocks as there are elements of S,

The elements at each level are the number of partitions with k blocks, And these are the stiding numbers of the $2 \bmod$ kind.
The number of $\prod_{k \text { with }}|\pi|=k$ equals $S(n, k)=S$ tiring number of $z^{n d}$ Kind.
And then you can take a table st stirling numbers of the $2^{\text {nod }}$ kind. And, sure enough, they behave. like the binomial coefficients.
They increase to a maximum and then they go down.
So it becomes natural to conjecture that the maximum antichain in the lattice of partitions is equal to the maximum of the Stirling numbers of the $2^{\text {nd }}$ kind.
Is the maximum size antichain in $\Pi[s]$ equal $\max _{0 \leq k \leq n} S(n, k)$? Fortunately, I stated this in the form of a question,
The answer was found, 20 years later, to be No.
But the first counter example has 10^{10} elements.
In other wards \rightarrow this conjecture is not true. But the smallest set for which it is not true has at least 10^{10} elements. So I'm kind of excused.
This was done probabilistically by Roger Canfield from University of Georgia. We still don't know the reason why this conjecture is not true, If you look at the tasse diagram, what is it that makes it not right? We still don it know, to this lain, the real reason why this does:. not york.
Something happens when the sat S is very large that can not happen
betores betore.

Exercise 22.1 (required)
Let's take the parti.lly ordered set $\mathbb{N} \times \mathbb{N}$. It's an infinite partially ordered set. It looks like this, with the covering relations.

7 partial ordering goes this way
This is a nice partially ordered set. It's a lattice.

Gordon's Lemme
Every antichain of this $N \times N$ lattice is finite.
Prove this as an exercise.
Kultur remarks.
For those of you who know some commentative algebra, Gordon's Lemma is equivalent the Hilbert Basis Theorem. You can derive it from Gordon's Lemma, Gordon didn't have the concept of a partially ordered set.

The Young Lattice
This is a very nice distributive lattice, How does a distributive lattice arise?
I remind you [12.3] That a good way of gating a distributive lattice is to take all order ideals of a partitly ordered set,
If you have a finite distributive lattice, then it's very easy to prove (you can find this in stan lay's book and my book) that every finite distributive lattice can always be represented as the lattice of order ideals of a pacticlit emederat set So finite distributive lattice is the same ar lattice of order ideals of a partially ordered set, This is due to Birkhotf.
Now we go To infinite case, but nobody wrote about this.
That is, the profinite point of view,
It's far from trivial.
The Young lattice is the latherer ideals of $\mathbb{N} \times \mathbb{N}$ What does it look like?

An order ideal means you take a certain number of elements and everything below them.

Observe that the order ideal is also a partition of the dominance order i, So you can have a bigger order ideal, with the notion of containment. bigger order ideal

Take the elements of the sublatice $\{1,2, \ldots, n\} \dot{x}\{1,2, \ldots, n\}$
Finite - just for the sake of the argument.
So you can easily obtain all order ideals of the Young Lattice.
The open problem is to find the Dilworth decomposition of the distributive lattice, as wall as the Sperner number (the maximum size).
This is extremely difficult
If you want to find examples of Dilworth decompositions, you caus look at my book [GCR on Combinatorics, pp, 563-565]. Where No metropolis and I have found the Dilworth decomposition of the lattice of faces of the n-cube for all n. It took us. the whole summer. That's something I don't like to review, It's a nightmare,
This was immediately generalized, as soon as we published it. And you ll find [ibid pp. $567-570$] the generalization. This generalization is as far as the technique that we developed can be carried. This technique does not work for the Young Lattice.
So, if you want to become Famous, find the Dilworth, decomposition of the Young Lattice.

Now, lets go back to $P(s)$.
Let's find the decomposition into chains of $P(S)$, now that we know what the maximum size antichain is.
That's the Greene-kleitman bracketing algorithm. ($\left.\begin{array}{l}\text { Greene was a postdoc at mIT a loos } \\ \text { time ago. He was my first poostoce }\end{array}\right)$

- Greene-Kleitman Bracketing Algorithm $\left(\begin{array}{l}\text { Greene was. Hes was my first poostoc } \\ \text { time ago. He } \\ \text { in combinateriss. }\end{array}\right)$
$\frac{\text { Partition of } P(s) \text { into }\binom{n}{\left[\frac{n}{2}\right]} \text { chains. } . . . ~ . ~}{d}$
Completely explicit.
It goes like this, Some things in combinatories are best understood by example.
Take $S=\{1,2,3,4,5,6,7,8,9\}$

$$
T=\{1, \quad 3,4, \quad 7,8 \quad\} \quad T \subseteq S
$$

Given this subset T_{1} you want to know to which chain in the Greene-Kleitman partition of $P(s)$ does T^{T} belong.

The Greene-kleitman algorithm gives you the criterion to tell exactly which
chain it belongs to. chain it belongs to, And you see immediately the number of chains is what it needs tor be.
You do it like this.
Write the elements of S, Underneath, write a right parenthen's under every element

$$
1\binom{2}{1}\binom{6}{\hline}
$$

t the subset $T=\{1,3,4,7,8\}$
Then, write a left parenthesis, under every remaining element. Now, you match parent theses.

This is called the bracketing according to the subset T.
Greene and Kleitman tell you that the chain to which T belongs in the Dilworth decomposition is exactly the chain containing all subsets which have the same bracketing structure.
Let's see another subset that has the same bracketing structure:

$$
\begin{aligned}
& T^{\prime}=\{3,7,8\} \\
& 1 \quad 2,3 \\
& \left(\begin{array}{llllll}
& 4 & 5 & 6 & 7 & 8
\end{array}\right.
\end{aligned}
$$

Tand T' have the same bracketing structure,
The following subsets have the same bracketing structure:

$$
\{3,7,8\},\{1,3,7,8\},\{1,3,4,7,8\},\{1,3,4,7,8,9\}
$$

Why? Start with subset $\{3,7,8\}$

All other elements have a left parenthesis.
In order not to change the bracketing structure, we can ring right parentheses, from left to right. This ensures there are no matching brackets.
That's how we got these sets. And these sets with the same bracketing. structure dearly form a chain.
So the subset T is now identified with a chain. You have sets that go from k elements to $n-k \quad(|T|=k,|s|=n)$.

So it's symmetric. Therefore there has to an item in the middle.
It's a complete chain.
That's the end of the proof.
Because any two chains are disjoint because the two chains have- different bracketing structures.
So we have disjoint chains. Any ane of them contains an item in the middle. And they run from T by $n-k$.
Therefore, that's it.
That's the decomposition into chains,
Now read my thing with Metropolis, which is a nightmare, if you want Fo see how to jazz this up.

John Guidi

I was going to do some more matching theory, but it's going take so much time that $I^{\prime} \mathrm{m}$ going to sketch; it and leave the details as required problems.
Let's start with some Kultur,
Last time, we discussed the LYM inequality.
And the Greene - Kleitman Bracketing Algorithm, whereby you partition the Boolean algebra of subsets of a finite set into chainct.
And I mentioned the problem of the Young Lattice - The lattice of order ideals of $\mathbb{N} \times \mathbb{N}$.

the order ideal consists of taking points and taking everything underneath.

I mentioned that a very important open problem is the problem of finding a Dilworth partition of order ideals of the Young Lattice.
partition into blocks of chains
You have to find first the maximum antichain of the Young Lattice,
That's already non-trivial.
Then you have to find the blocks.
But, what is interesting is something else,
What is interesting is to consider a complete chain in the Young lattice and what
it looks like,

- What does a complete chain in the Young Lattice look like?

Let's take a simple case. Well talk about squares as elements, instead of vertices. This is. the order ideal that corresponds to the ferrers matrix $\left(\begin{array}{lll}1 & 1 \\ 1 & 1 & 1\end{array}\right)$:

Now I want to take the complete chain, starting from the empty set, and cunning the this order ideal.
Let's see what this looks like.
If's a very educational experience,
There are many such complete chains
Wa start we this square.

As we add squares, label the squares in the order we add thomas; Examples:

What characterizes these complete chains?
If you look at the topota chain and the way it has been filled by integers, that characterizes the chain completely.
S. "the chain is completely determined by the top element filled with integers. The way the top element is filled is not arbitrary. What's the condition? The condition is that the integers going to the right along any row are in increasing order and the integers going up along any column are in increasing
order:

Conversely, if you take the shape of the top element and fill it, in any way, with the integers 1 t the number of squares in the shape, subject to these two conditions (integers going up a column are in increasing order ans integers going the right dong going up a column are are in increasing order and interesting order , you get a complete
chain in the Young lattice.

The matrix his exactly n non-zero entries and consists of integers from 1 to n, The entries on each row, from left tr right, are in increasing order. And the entries on each column, going bottom up, are in increasing order,
This is a Ferrets matrix, in inverse form, according tr o its shape.
These $\frac{\text { objects }}{\hat{\imath}}$ are called Standard Young Tableaux (or standard Young Diagrams),
$\tau_{\text {these matrices }}$
We just saw the simplest situation where Standard Young Tableaux arise, standard Young Tableaux are endemic in combinatorics. So you want to know what Standard Young Tableaux are.

It is non-trivial to count how many standard Young Tableaux there are of a given shape (i,e., how many chains there are).

- *** Exercise 23.1 (Thesis problem)

Suppose we take a finite set 5 and examine the number of elements in each level of $P(5)$. For example, the n-cube has:
$\frac{\text { level }}{n}$
$\binom{n}{n}$
$\binom{n}{n-1}$
$n-1$
1

If you normalize this properly, with the binomial coefficients, this becomes $\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}$. That's called the Central Limit Theorem of probability.
My problem is to construct a continuous lattice where the levels are exactly equal to this.
To take the limit of Boolean algebra y in such a way as to get a continuous lattice, where the levels are exactly equal to this.
I'm sure that this exists.
That would enable us to work with this continuous lattice as a continuous Boolean algebra n with $e^{-x^{2}}$ as the analogue of a measure of a partition.

Matching Theory (conclusiven)
Suppose P= finite partially ordered set,
Define a relation \hat{A}_{p} as follows:

$$
x R_{p y} \text { if } x>y,
$$

Remember, a partial ordering really a relation.

Now we study the deficiency of this relation, Remember, we started matching theory by proving soma results about deficiency. Let me remind you [18,3-18,7]:
We took a relation and considered the deficiency.
We took the minimum deficiency.
Then we proved that if you take the absolute value of the minimum deficiency, you can remove from the relation the number of elements equal t the absolute value of the minimum deficiency.
You get a relation that has zero deficiency and, therefore, has a matching.
So the matching of a relation is obtained by removing a number of judiciously chosen set of elements equal to the absolute value of the minimum deficiency. That's what we proved before.
Now let's apply this to partially ordered sets.
We want the study the minimum deficiency of this relation $R p$.
.... A very interesting result comes ont,

Theorem
The sets of minimum deficiency of the relation $R p$ are the order ideals of P whose set of maximal elements is a maximum size antichain.

Let's see why this is so:
Let $N=$ set of minimum deficiency
I claim that this has to be an order ideal.
if $x \in N, y<x$ then $x R_{p} y$
...The deficiency of N is:

$$
\delta(N)=\left|R_{p}(N)\right|-|N|
$$

$N\left\{\begin{array}{l}-\cdots-\cdots \\ =\cdots \cdots- \\ \cdots \cdots\end{array}\right\} R_{p}(N)$
Suppose N is an ordoridoal including the top elements.
$R_{p}(N)$ are allelements strictly below the top elements.
The difference in absolute value gives minus the number of elements in the top antichain.
If N is an order ideal then $\left|R_{p}(N)\right|-|N|=$ minus $\begin{gathered}\text { number } \\ \text { maximal } \\ \text { of } N\end{gathered}$ So if you want a minimum deficiency, you want maximum antichain on top
Hence, the conclusion:

$$
\delta_{0}(N)=\min \left(\left|R_{p}(N)\right|-|N|\right)=- \text { max }\left(\begin{array}{r}
\text { number of maximal elements of } N) \\
\tau_{\text {maximum um size antichain }}
\end{array}\right.
$$

So now we have an interesting, conclusion,
We found the relation where the set of minimum deficiency corresponds to
the order ideal that has the maximum size antichain.

Weave shown before that the intersection and union of sets of minimum deficiency are a set of minimum deficiency [18.4].
There is a theorem, due T_{0} Dilworth, that if you take the union and intersection of order ideals with maximum size antichains, you again get order ideals with maximum size antichains. This is a non-trivial fact.

Theorem
If N_{1} and N_{2} are order ideals whose sets of maximal elements are maximum size antichains, so are:

$$
N_{1} \cup N_{2} \text { and } N_{1} \cap N_{2}
$$

Exercise 23.2 (required)
From this fact, applied to the partially ordered set of the Boolean algebra of subsets of a set, y you can gat a new proof of Sperner's Theorem. [22.3-22.6]. Get a new proof of Sperner's Theorem, using this fact,

Exercise 23.3 (required)
From the theorem about minimum deficiency sets $[23,5]$, get a new proof of Dilworth's Theorem [2i.5-21.7], using the main matching theorem we. proved before (i, e. , the Marriage Theremern).

- $R^{*}=$ inverse relation

The notation R^{-1} for the inverse relation is bad.
For once, I want tor change the notation. You should change this in your nates. [2.4] This was a terrible mistake: I don t know why I did that: Why is this notation misleading?
Because $R^{-1} \circ R \neq I$
τ the composition of the inverse relation with the relation is not the identity.
So it's stupid to use R^{-1} as the inverse relation io
It's better to use R^{*} for the inverse relation,

.	Exercise 23.4 (required)

Suppose we have a relation R :
$R \subseteq S \times T$, where $\delta_{R}=\min S(A), A \subseteq S$
We can also define the deficiency of the inverse relation R^{*}. What's the relationship the two minimum deficiencies?
The theorem is that they are equal.
Prove that $J_{R}=J_{R^{*}}$
Not hard.
This is an interesting fact.

- Exercise 23.5

This is a fairly deep matching theorem that gives you the detailed structure of a relation.
$R \subseteq S \times T, \quad|S|=|T|$ for simplicity (not really required)
You've already suspected that a relation is sort of a combinatorial analogue of a matrix.
So now, you want to prove the following matching theorem.
There are partitions of the sets S and T as follows:

$$
\begin{aligned}
& S=N_{S} \cup R^{*}\left(N_{T}\right) \cup S_{1} \quad \leftarrow \text { union of disjoint sets } \\
& T=N_{T} \cup R\left(N_{S}\right) \cup T_{1} \longleftarrow \sim \text { union of disjoint sets }
\end{aligned} \begin{aligned}
& \text { already } \\
& \text { non trivial } \\
& \text { statemenents }
\end{aligned}
$$

where:
$N_{S}=$ minimum set of minimum deficiency of R
$N_{T}=$ minimum set of minimum deficiency of R^{*}.
such that:
(1) $\left.R\right|_{S_{1}, T_{1}}$ has deficiency O.
R restricted $t S_{1}$ and T_{2}.
In "other words, you take only those edges in the relation R that go from S_{1} to T_{1}.
Since deficiency equals 0 , you have a matching.
(2) Every fight set $[18,3]$ of R is of the form:
$N_{S} \cup A$, for $A \leq S$,
(so that $\delta_{R}(A)=0$)
Now let's look at this from the point of view of incidence matrices.
$S_{a y} S_{1}=T_{1}=\varnothing$ for simplicity.
Then, from the preceding statement about partitions, we have:

$$
\left.\begin{array}{c:c}
T \\
N_{T} & R\left(N_{s}\right) \\
R^{*}\left(N_{r}\right)\left[\begin{array}{c:c}
\operatorname{stutt} & 0 \\
\hdashline N_{S} & 0
\end{array}\right]
\end{array}\right]
$$

We can split this further by taking, from N_{s}, ascubset equal to the size of the minimum deficiency of R.
Take a subset D_{S} of N_{S} with $\left|D_{S}\right|=\left|\delta_{R}\right|$.
\hat{T} minimum deficiency of relation R If you remove this from N_{s}, the remaining has a matching, by the main matching theorem proved before.
Similarity, take a subset D_{T} of N_{T} with $\left|D_{T}\right|=\left|\delta_{R^{*}}\right|$.

T

This is the universal decomposition.
Every matrix whatsoever, has non zero entries that must be arranged this way. The most canonical, general form is this matrix.
This is the maximum you cam do onto a matrix without using linear algebra.
That's the end of the problem.
Prove it.
It's not hard. The only hard part is parts (1) and (2). The rest is easy.
This is a very useful decomposition.
Observe that R and R^{*} have the same minimum deficiency. [23.7 exercise 23.4] And these relations always have a matching, as indicated by this matrix. By the way, this decomposition can also be used to prove Dilworth's Theoreme.

Next time, we start on matroids. Were going to do it the following way. I'm going to use ans unusual mathematical device.
I'm going th give a description of the field, without proof. So you see what if is like if you go to the zoo.
Then, once you got a feeling for that zoo, weill fill in some of the proofs,

Matroids
Matroids turn people off, People are scared of them. When I wrote my book sn matroids, I changed the name. I called it "Combinatorial Geometries" - but it didn't take. They said "that's really matroids, isn't it?"
So, what are matroids?
Let me tell you a dirty little secret.
I've worked on mastoids most of my career.
And I don't really know what muttroids really are.
Why? Because of all mathematical structures that I know, matroids are the one structure that has the most different definition's. Completely different definitions that are equivalent.
Because of this variety of definitions, some people think it's this. Some people think it's that.

Different people think it's a generalization of: graphs, projective geometry, 4 color theorem, matching theory, combinatorial topology, invariant theory. Well approach matroids from the point of view of matching theary. And try and gat as quickly a possible, to a very powerful generalization of the Philip Hall matching theorem - the Marriage Theorem,
The Marriage. Theorem has an incredible variety of applications.
For example, this theorem tells you when you can find a matching in a relation e Or a set of distinct representatives vim a family of sets.
suppose you want partial representatives?
Suppose you want to double| your representatives?
Suppose you want your set of represeatiotivas to be repented in ways that you prescribe?
Then, mattoid theory gives you an automatic ny to solve all these problems by getting. generalized Hall conditions for each case.
So, in His sense, it's extremely powerful.
So let me show you a kind of mating theorem that matroid theory might lead to, by way of giving you a bird's eye view,
Then, gradually, weill work up to a definition.

One day, froferser Alfred Horn of UCLA had an idea.
He said there's an analogy between the Boolean algebra and the lattice of subspaces of a vector space.
It's one of the great analogies A mathematics. Half of mathematics is based on
this analogy. this analogy.
I. Boolean Algebra
$P(s)$

$$
r(A)=|A|
$$

in $P(s)$, you have the rank.
function that is the number
of element's of a subset.
II. Lattice of Subspaces

$$
\begin{aligned}
& \text { cooritinates, gronempury } \\
& r(W)=\operatorname{dim}(W) \text { condinates, }
\end{aligned}
$$

Here, the rank function of a subspace W is the dimension of W.
$r(\cdot)=1$ for atoms.
So the atoms of the lattice are lines.
They are points in the representation) as projective space - dimension goes
down by 1 .

Let's go one step further and consider the Triality Principle.
This states that there are 3 lattices in the world and that all other lattices are sort of int of these.
These 3 lattices are I. Boolean Algebra, II. Lattice of Subspaces, and the third is the lattice of partitions:
III. Lattice af partitions

$$
\begin{aligned}
& \pi[s] \\
& r(\pi)=n-|\pi|, n=|s|
\end{aligned}
$$

$\hat{\imath}_{\text {number of blocks in partition } \pi} \pi$
So, if a partition π is an atom, that means that π has one
block with 2 elements and all. thar blocks have one element.

Now, for $P(s)$, we have the Marriage Theorem,
Let 'me state it' in the form of distinct representiotivas.

Distinct representatives
Given a family $A_{1}, A_{2}, . ., A_{k} \subseteq S$
we can find a subset $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ with $x_{i} \in A_{i}$
iff when I say subset, that implies that no two x_{i} are equal, That's not a

$$
\left|A_{i_{1}} \cup A_{i_{2}} \cup \ldots \cup A_{i_{j}}\right| \geqslant \dot{\gamma}
$$ set -that's a multiset, So the x_{i} are automatically distinct

for all subfamilies $A_{i_{1}}, A_{i_{2}},{ }_{11}, A_{i_{j}}$
This is a restatement of what we stated in terms of relations. Because a family of subsets, as I've said many times before, defines a relation,
Most often, the Marriage Theorem is stated in this form,
The Marringe. Theorem in terms of relations is slightly more general, because it allows two identical sets.

Now, Professor Horn said - "Gee, what if we try this?"
Instead of the A_{i} being subsets of S, let's suppose that the A_{i} are subsets of a vector pace.

Say $A_{i} \subseteq V$ erector space
The A_{c} are sets of vectors.
Then, it doesn't just make sense to find a set of distinct representatives.
You may ask for a stronger condition.
You may ask. for $\left\{x_{1}, \ldots, x_{k}\right\}$ to be locally distinct, but linearly independent.
Q: When is there a subset $\left\{x_{1}, \ldots, x_{k}\right\}$ with $x_{i} \in A_{i}$ that is linexty independent?
subset means the X_{i} are distinct.
The answer is striking ty simple:
A: If

$$
\operatorname{dim}\left(\operatorname{span}\left(A_{i_{1}} \cup A_{i_{2}} \cup \ldots \cup A_{i y}\right)\right) \geqslant j
$$

for all subfamilies $A_{i}, A_{i_{2}}, \ldots, A_{i j}$

And this is what Professor Horn proved.
If the A_{i} are sets of vectors, you replace the $\mid \cdot 1$ with $\operatorname{dim}(s p a n(\cdot))$ in the if clause.
Little did he know that there is a more general theorem of this specific case. This is a beautiful result, with extremely interesting applications of independent representatives,
You've got loads of points, lines'; planes -overlapping in funny ways - aver a finite field, say. You car pick independent representatives using the necessary and sufficient
conditions.

- Philosophy

Let's use the Triality Principle,
The study of $P(s) \rightarrow$ set theory
$L(v) \rightarrow$ linear algelera
$\pi[S] \rightarrow$ some sort of generalized linear algebra that I've been insisting about for years, which is only partially developed. If we completely understood this, then we would solve the i problem of coloring of graphs.
The study of this not completely understood generalization of. linear algebra of this lattice is intimately connected to the coloring of graphs, as I promise to show you soon.
So now we observe that we have the following results:
$P(s) \rightarrow$ Marriage Theorem
$L(V) \rightarrow$ Hon's Theorem
$\Pi[s] \rightarrow$?
τ is there a similar result here?
Well -what do we mean by linearly independent?
We have to define a generalization of the notion of linear independence that goes with the lattice of partitions.
Unless we have that, we cont state this.
I could tell you what the answer is, but, at this point, we might as well go one step further and develop the abstract theory of linear independence, which is the theory of metrics.
We will see that $\pi[s], L(V), P(s)$ results are special cases of the abstract theory of linear independence.

- A rank function r is a set function on S, taking $\geqslant 0$ integer values with the following properties:
(i) $r(\theta)=0$
rank of the null set equals 0
(2) it is increasing, Namely:
if $A \subseteq B$ then $r(A) \leq r(B)$
(3) $r(x)=\left\{\begin{array}{l}0 \\ 1, x \in S\end{array}\right.$
x a single point.
I should really write $r(\{x\})= \begin{cases}0 & \text { but } I \text { don't like } \\ 1\end{cases}$ to write braces.
(4) it is a submodular set function

$$
r(A \cup B)+r(A \cap B) \leq r(A)+r(B)
$$

- A matroid is a finite sat S endowed with a rank function.

A mattoid is an assignment of a rank function to a set.
This rank function must be thought of as a generelleation of dimension:
Our objective will be to show that most of the properties of dimension hold true.

Now you say, if it's dimension, how come we have inaquality here? We have some easy consequences.

Proposition 1

$$
r\left(A \cup_{x}\right) \leqslant r(A)+\left\{\begin{array}{l}
0, \\
1,
\end{array}, x A\right.
$$

Proof : In the submodular inequality (property 4 above), set $B=x$.

$$
\begin{aligned}
r\left(A \cup_{x}\right)+\underbrace{r(A+x)}_{r(\theta)=0} & \leq r(A)+\underbrace{r(x)}_{r(x)}\left\{\begin{array}{l}
0 \\
1
\end{array}\right. \\
r(A \cup x) & \leqslant r(A)+\left\{\begin{array}{l}
0 \\
1
\end{array}\right.
\end{aligned}
$$

Master Whitney was one of the greatest mathematicians of this century. He invented lots of things, He invented matroids. Hz invented tensor products, cohomology - you name it. He belonged to the Whitney family. The whitney Museum, $E l$; Whit nay.

If $r(A \cup x)=r(A)$ and $r(A \cup y)=r(A)$
then:

$$
r\left(A \cup_{x} \cup_{y}\right)=r(A)
$$

Proof We assume $x, y \notin A$, otherwise the statement is rather trivial, In the submodular inequality, replace A and B, as follows:

$$
\begin{aligned}
& A \leftarrow A \cup_{x} \\
& B \leftarrow A \cup y \\
& r\left(\left(A \cup_{x}\right) \cup(A \cup y)\right)+r\left(\left(A \cup_{x}\right) \cap(A \cup y)\right) \leqslant r(A \cup x)+r(A \cup y) \\
& r\left(A \cup_{x} \cup_{y}\right)+r(A) \leqslant \underbrace{r\left(A \cup_{x}\right)}_{r(A)}+\underbrace{r\left(A \cup_{y}\right)}_{r(A)} \\
& \underbrace{r\left(A \cup_{x} \cup_{y}\right)}_{\text {by assumption }} \leqslant r(A)
\end{aligned}
$$

From the increasing property (property 2):

$$
A \subseteq A \cup_{x} \cup_{y} \Rightarrow r(A) \leq r\left(A \cup_{x} \cup_{y}\right)
$$

Therefore, we must have equality:

$$
r\left(A \cup_{x} \cup_{y}\right)=r(A)
$$

Theorem 2 (Extended Whitney Property)
If $r\left(A \cup_{x}\right)=r(A)$ for every $x \in B, A \cap B=\varnothing$
then $r(A \cup B)=r(A)$
Proof
If $B=\{x, y\}$, it's the previous theorem (The whitney Property).
Say, $B=\{x, y, z\}$
From the assumptions:

Let $A^{\prime}=A_{1}=\downarrow$

$$
r\left(A^{\prime} \cup y\right)=r\left(A^{\prime}\right) \quad r\left(A^{\prime} \cup z\right)=r\left(A^{\prime}\right)
$$

apps Theorem 1 (the whitney Property)

$$
\begin{aligned}
r\left(A^{\prime} \cup_{y} \cup_{z}\right) & =r\left(A^{\prime}\right) \\
r\left(A \cup_{*} \cup_{y} \cup_{z}\right) & =r\left(A \cup_{x}\right) \\
& =r(A) \quad(\text { given }) \\
r(A \cup B) & =r(A)
\end{aligned}
$$

This proves it for 3 elements.
An inductive argument proves it for arbitrary sized set B,

- Proposition 2

$$
r(A) \leq|A|
$$

Why?
From the definition and proposition 1 , we have:

$$
\begin{aligned}
& r(\theta)=0 \\
& r\left(A U_{x}\right) \leqslant r(A)+\left\{\begin{array}{l}
i, x \in A
\end{array}\right.
\end{aligned}
$$

Starting with the null set, every time you add an element x,
the rank goes up 1 or 0 . the rank goes up 1 or 0
So you cant go up more than the size of the set,

- We say that $I \subseteq S$ is $\frac{\text { independent }}{\tau}|I|=r(I)$. $\tau_{\text {relative to the matroid we have chosen. }}$
Observe that this is what happens in linear independence.
A set of vectors is linearly it independent if the dimension of the subspace they
span is equal to the number of vendors. span is equal to the number of vectors. So the above statement Kind of checks.

Proposition 3
If I is independent and $J \subseteq I$
then J is independent.
Proof

$$
r(I)=r(J \cup(I-J))
$$

Now we apply the subimodular property of a rank,
which gives:

$$
\begin{gathered}
r(J \cup(I-J))+\underbrace{r(I-J))}_{\begin{aligned}
& r(I-J)=0 \\
& r(\theta)=0
\end{aligned}} \leqslant r(J)+r(I-J)
\end{gathered}
$$

$$
r(I) \leq r(J)+r(I-J)
$$

Since I is independent, $r(I)=|I|$:

$$
|I| \leq \underbrace{r(J)}_{r(J) \leq|J|}+\underbrace{r(I-J)}_{r(I-J) \leq|I-J|}
$$

Both, from Proposition 2,
The only way the inequality $|I| \leq r(J)+r(I-J)$ can be satisfied is with the equalities:

$$
r(J)=|J| \text { and } r(I-J)=|I-J|
$$

J is independent
Q.E. ${ }^{\text {. }}$

- Theorem 3. Exchange Property)

First stated by the great German mathematician Steinity, who came up with the theory of transcentatal extensions of fields,
\therefore If I and J are independent sets (relative to a given mattoid) and $|I|<|J|$
then there exists $x \in J, x \& I$ such that
I U_{x} is independent.
Proof
Suppose the conclusion was not true. That I U_{x} is not independent, for all x.
If not true, then

$$
r(I \cup x)=r(I), \text { for all } x \in J
$$

otherwise, if $I U_{x}$ were independent, $r\left(I U_{x}\right)=\left|I U_{x}\right|=|I|+1=r(I)+1$.
In other words, if $I U_{x}$ were independent, the rank would have to go up by 1, for all x.

By the Extended Whitney Property, that means:

$$
r(I \cup J)=r(I)
$$

But, by the increasing property of rank:

$$
J \subseteq I \cup J \Rightarrow r(J) \leq r(I \cup J)
$$

This gives:

$$
r(J) \leq r(I \cup J)=r(I)
$$

And, since it is given that I and J are independent:

$$
|J|=r(J) \leq r(I)=|I|
$$

Which gives us our contradiction, since $|I|<|J|$.

A basis is a maximal independent set.
The set corresponds ti a vector space.
And, in a vector space, a basis is a maximal independent set.
Theorem 4
Any two bases of the same matroid have the same number of elements.
If B_{1} and B_{2} are bases of the same matroid then $\left|B_{1}\right|=\left|B_{2}\right|$.
Proof
I do this by gestures.
If not, one is smaller than the other.
So you have two independent sets, one smaller than the other,
According to the previous theorem, that means you can pick an element from the bigger one and join it to the smaller one.
That means the smaller one is not maximal.
Thus, it's not a basis.

- (A, r) is a matroid called the restriction to A.
restrict. to $_{0} A$

Any two bases have the same number of elements. Namely, the rank of A,
Proof
Let $I=$ a maximal independent set in A_{1}
That means:
For every $x \in A-I$,

$$
r\left(I U_{x}\right)=r(I)
$$

otherwise, you'd have a bigger maximal indef pendent set. If I is a maximal independent set, then no matter what you add, the rank. can not increase.
Therefore, by the Extended Whitney Property (Theorem 2):

$$
\begin{aligned}
r(A)= & r(I) \\
& \text { And, since } I \text { is an independent, set, } r(I)=|I| \\
= & |I|
\end{aligned}
$$

Proposition 5
If r is a rank function and $A \subseteq S$, then r_{A} defined as $r_{A}(B)=r(A \cup B)-r(A)$ where: A is fixed and B variable is also a rank function, called the $\tau_{i . e,}$, any set B. contraction by A.

Prot
(1)

$$
\begin{aligned}
r_{A}(\theta) & =r(A \cup O)-r(A) \\
& =r(A)-r(A) \\
& =0
\end{aligned}
$$

(2) if $B \subseteq C$ then $r_{A}(B) \leqslant r_{A}(C)$

This is trivial to show. \checkmark
(3)

$$
\begin{aligned}
r_{A}(x) & =\underbrace{r\left(A \cup_{x}\right)}_{\text {from Proposition 1 }}-r\left(A \cup_{x}\right) \leq r(A)+\left\{\begin{array}{l}
0 \\
1
\end{array}\right. \\
& \leqslant r(A)+\left\{\begin{array}{l}
0 \\
1
\end{array}-r(A)\right. \\
& =\left\{\begin{array}{l}
0 \\
1
\end{array}\right.
\end{aligned}
$$

(4) $r_{A}(B \cup C)+r_{A}(B \cap C) \underline{?} r_{A}(B)+r_{A}(C)$
$A l l$ we have to do is write this out long hand, using the definition:

$$
\begin{aligned}
& r(\underbrace{(A \cup B \cup C)}_{(A \cup B) \cup(B \cup C)}-r(A)+r(\underbrace{A \cup(B \cap C)})-r(A \cup C) \\
& r((A \cup B) \cup(B \cup C))+r((A \cup B) \cap(B \cup C)) \underline{?} \leq r(A \cup B)+r(A \cup C)
\end{aligned}
$$

This is just a specific ic case of the submodular law.
So we remove the question marks all the way back.
So, given rank function and a set, there are two rank functions yon can derive from it: the restriction a set and the contraction by a set.
These have the following correspondences:
restriction \Rightarrow subspace
contraction \Rightarrow quotient space

John Guidi

Theory of Matroids (cont d)
Let's begin by reviewing the theory of matroids:
A matroid is a pair, consisting of a finite set S and a set function r, called the rank function.
The rank function is a function from the subsets of S to the non-negative integers, with the following properties:
(1) $r(\phi)=0$
(2) if $A \subseteq B$ then $r(A) \leq r(B)$
(3) $r(x)=\left\{\begin{array}{l}0 \\ 1\end{array}\right.$ if $x \in S$
(4) r is submodular

$$
r(A \cup B)+r(A \cap B) \leq r(A)+r(B)
$$

Then we proceeded to develop some elementary properties of matroids. To wit, we showed:

$$
r(A) \leq|A|
$$

We say that:
$I \subseteq S$ is independent when $r(I)=|I|$.
And we showed that the family of independent sets has the following properties:
(a) any subset of an independent set is independent
(b) if I and J are independent and $|I|<|J|$ then there exists $x \in J-I$ such that I U_{x} is independent. (The Exchange Property)

Just like in linear algebra,

Exercise 25.1
$\tilde{I}=$ family of subsets satisfying (a) and (b) above.
Under these conditions, we define a rank function to be the maximum size of an independent subset of A.

Define $r(A)=$ maximum size of an element of τ contained in A.
Prove that r is a rank function.
I satisfying (a) means:
if $I \in I$ and $J \subseteq I$
then $J \in I$

- This is the first of the many possible alternative definitions of matroids.

And you begin to see why matroids are sort of strange.
Because you can take any concept defined and you can use that concept to give a new definition of a matroid.
So there are infinitely many definitions.
People keep discovering new ones.
Some people like one getter than the other.
And they quarrel that one is better than the other.
We also saw that:
A basis is a maximal independent subset
And we showed that a basis has the following properties:
(k) any two bases have the same size
(β) if B_{1} and B_{2} are bases, $x \in B_{1}$, there exists $y \in B_{2}$ such that:
$\left(B_{1}-x\right) \cup_{y}$ is a basis
This is an immeotiate consequence of proposition 3 of independent sots [24.8]

Exercise 25,2
Given a set S and a family B of subsets satisfying (α) and (β) above.
Say I is independent if I can be extended to an element of \mathbb{R}
Then there exists a unique rank function for which the element of B
exists:
Then are all the bases of some mattoid.
In other words, you can axiomitize matroids in terms of bases, Give this proof.

We saw, last time, the Whitney Property about the rank function of a matroid. [24.6]

- The Whitney Property.

If $r\left(A \cup_{x}\right)=r(A)$ and $r\left(A \cup_{y}\right)=r(A)$
then $r(A \cup x \cup y)=r(A)$
We saw that this was an easy consequence of the submodularity and increasing properties.
And we sain that the Whitney Property implies the Extended Whitney Property:

If $r\left(A \cup_{x}\right)=r(A)$, for all $x \in B$,
then $r(A \cup B)=r(A)$

Now let me state the Theorem of Whitney, which in a sense is the converse of this,

Let μ be a set function sot.
(1) $\mu(0)=0$
(2) $\mu\left(A \cup_{x}\right)=\mu(A)+\left\{\begin{array}{l}0 \\ 1,\end{array}\right.$ for $A \subseteq S$ and $x \in S$
(3) if $A \subseteq B$ then $\mu(A) \leq \mu(B)$
(4) μ has the Whitney property

Then μ is a rank function.
$\tau_{\text {so }} \mu$ is sub modular

- Exercise 25,3

Prove Whitney's Theorem,
The proof is deferred, because if's dull.
I tried to get a cute proof last night bat I couldn't get it.
Please try and get a cute proof of this.
There should be a one lime proof, but I don't have it. I have an induction proof.

At any rate, this is one way of checking the structure of a matroid. At this point, let us see examples of matroids.
There are two kinds of examples.
There are the intended examples and the unintended examples.
$\tau_{\text {some }}$ extremely weirdo
structures tum out to be matraids.
It is the unintended examples that make the theory intersecting.
If you just had the intended examples, t would just be linear algebra.

- Let's look at the intended examples first.

There are three:
(1) sets of points in projective space.
(2) arrangement of hyperplanes
(3) graphs

Example 1 - projective space of dimension n
For those of you who know some algebra, this can be projective space over any field.
In particular, the interesting case is the field with two elements.
The parjective space over afield with two elements is a very important example,
Take any finite subset $S \subseteq \mathbb{P}^{n}$;
Then, on that, define a rank function, as follows:

$$
r(A)=\operatorname{dim}(\operatorname{span}(A))+1, A \subseteq S
$$

$$
\left\{\begin{array}{l}
\text { why }+1 \text { ? } \\
\text { Because the rank of a point we want } \\
\text { to be 1. }
\end{array}\right\}
$$

So we go back to the origins of projective space, which is really subspaces of a vector space.
I claim that this is the rank function of a matroid.
And you say what I call dimension has equality.
But, I say when you take a subsets, then the equality fails,
Let me tell you, intuitively, what's going on here.
Suppose you take the rank of $A \cup B$:

$$
\begin{aligned}
r(A \cup B) & =\operatorname{dim}(\operatorname{span}(A \cup B))+1 \\
& =\operatorname{dim}(\operatorname{span}(A))+1 \\
r(A) & =\operatorname{dim}(\operatorname{span}(B))+1
\end{aligned}
$$

You are tempted to write:

$$
\begin{aligned}
& r(A \cup B)+r(A \cap B)=r(A)+r(B) \\
& \tau_{\text {equality }}
\end{aligned}
$$

But that would be wrong!
Whom? $r(A \cup B)$, you get the term (ignore the +1 , which cancels):

$$
\operatorname{dim}(\operatorname{span}(A \cap B))
$$

	Nite that:

$\operatorname{span}(A \cap B) \subseteq \operatorname{span}(A) \cap \operatorname{span}(B)$
In general, this will not be equal.
There may not be enough points to go around.
For example, you may have two points on a line, and another line with Thur points. the matreld is these 4 points. But the intersection of these is the null set:

It tums out that the best you can have is inequality. In other words:

$$
\begin{aligned}
r(A \cup B)+r(A \cap B) & \leq r(A)+r(B) \\
& \tau_{\text {inequality }}
\end{aligned}
$$

That the intuitive argument:
Now, rigorously, let's use Whitney's Theorem teprove that our $r_{\text {, }}$ so defined, is a rank function. That way we don't have to reason about intersections not being big enough, etc,

- By whitney [25.4], you immoditatly, see that the rank I have defined:

$$
r(A)=\operatorname{dim}(\operatorname{span}(A))+1
$$

satisfies conditions $/$ and 3.
For condition 2: if you add a point in the span of A, the dimension does not change. if you add a point not in the span of A, the dimension goes up by 1 . Finally, we check that our function satisfies the Whitney Property:

We are given that:

$$
r\left(A \cup_{X}\right)=r(A)
$$

With our function, this means that:

$$
\operatorname{dim}(\operatorname{span}(A \cup x))=\operatorname{dim}(\operatorname{span}(A))
$$

This means that x is in the span of A, by linear algebra.

$$
x \in \operatorname{span}_{n}(A)
$$

Similarly, we have:

$$
r(A \cup y)=r(A) \Rightarrow y \in \operatorname{span}(A)
$$

So, the Whitney Property is fairly trivial.
$I f x \in \operatorname{span}(A)$ and $y \in \operatorname{span}(A)$
then:

$$
x V_{y} \in \operatorname{span}(A)
$$

and. $r\left(A \cup_{x} \cup_{y}\right)=r(A)$
Therefore, by Whitney's Theorem, all the properties are satisfied and we conclude' that our function is, indeed, a rank function.

Note that you have to distinguish between span in the sense of linear algebra (vector space)
and span in the sense of projective space. and span in the sense of projective space.
This is a classic story. If comes out in my book.
If A is a single point, then the span, in the projective space, will be the point:

$$
\begin{aligned}
A=\text { a point, then } & \operatorname{span}(A)=A \\
& \operatorname{dim}(\operatorname{span}(A))=0
\end{aligned}
$$

I add one to the function because I want the rank to be 1 for a point:

$$
\begin{aligned}
r(A) & =\underbrace{\operatorname{dim}(\operatorname{span}(A))}_{0}+1 \\
& =1
\end{aligned}
$$

If you want span in the linear algebra sense, then the spain of every point is
a line, because you have homogeneous coordinates.
The reason we take projective space is that we like to take the span of
points as points.
This is the classic story when you switch between vector space and projective
space. You get into this crisis where points (in projective space) are really space, You get into this crisis where points (in projective space) are really
lines (in vector space). Remember that points are given by homogeneous coordinates. coordinates.
This is an old story.
Whin interpreting dimension in the projective sense, then the dimension of a set of points is Hat of the span of all the linear combinations of the affine set, For example, if you take two points paid of in projective space:

The span of these two points is the set of all points satisfying:

$$
\lambda p+(1-\lambda) q ; \lambda \in \mathbb{R}
$$

So the span is a line. And the dimension is 1 .
$\left.\begin{array}{l}\text { The dimension of a point is } 0, \\ \text { The dimension of a line is } 1 .\end{array}\right\}$ in projective space

Example 2 -arrangements of hyperplanes
This is mathematically identical to the preceding example, but psychologically quite different,
You all knows that the dual of a vector space is a vector. space.
And an element of the dual of a vector space is a hyperplane:
An arrangement of hyperplanes is a set of hyperplanes; whose elements are dual of the vector space.
And you define the rank, as you did before, in the dual.
Let $H=$ set of finite hyperplanes
A hyperplane has dimension $n-1$ in projective space.
If you use homogeneous coordinates, parallel hyperplanes have different homogeneous coordinates, because the coordinate at infinity, is different, parallel hyperplanes meet at in finity.
(t do linear functions, you have to go back t to the vector space)
So mathematically, you consider the hyperplanes as points in the dual space.
And then you can define a rank function, And then you can define a rank function,...
But, lot's pretend you don't know that.
But, lot's pretend you don know that,
Since the hyperplane has dimension $n-1$, we define the rank of a hyperplane
to be 1:

$$
r(H)=1
$$

Then we consider the rank of a set of hyperplanes $r\left(\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}\right)$.
If this were a set of points, it would be the dimension of the span.
How do you "dualize" that?
You take the intersection of the hyperplanes, them subtract the dimension of the intersection from n :

$$
r\left(\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}\right)=n-\operatorname{dim}\left(H_{1} \cap H_{2} \cap \ldots \cap H_{k}\right)
$$

when you think about it, this is just "upside down" linear algebraic You doit say anything, but people like to think this way, When you think hyperplanes, you think different questions. For example, a good question to ask is:
Q: Given a set of hyperplanes, how many regions of space are determined by these hyperplanes?
$A: T h i s$ is a number that is computed with a matroid. A very reasonable computation, done by a student at MIT.

- Example 3 - graphs

This is the original example of a mattoid.
Let's do some ideal history
This is how Whitney should have thought about this.
Not the way he thought about it, but the way he should have,
I toll you, at the beginning of this chapter on matron theory [24.2], that there are three major lattices:
(1) Lattice of the subsets of a set
(2) lattice of the subsets of a vector space
(3) lattice of partitions

For subsets, of a set, we have trivial matroids.
For subsseatest a vector space, we have these rank functions that are non-trivial. Matroids af partitions are the most in teresting -and the least understood. That's the graph coloring problem, Matrids latch on to graph coloring.
What did we do in the case of a vector space?
We worked in projective space because we like to deal with points. But, they are really lines in vector space.
Here, we do the same thing
We take the set of all atoms in the lattice of partitions.
And we pretend these are points.
And we see there is a matroid structure defined on the set of all atoms.
Let $\pi[T]=$ family of all partitions of the set T
$S=$ set of all atoms of the lattice $\Pi[T]$.
Now, wee define a rank function on this set of a toms.
Ill' tell you what it is and then well check that it is, indeed, a rank function.
Recall that in II [T] that there is a rank - the lattice rank $[11.2] . \&[12.6]$ Namely:

The zero element in the partition with as many blocks as there

$$
r_{l} \text { (atom) }=1
$$ are clements of T. An atom covers the zero element, so atoms are partitions that have one block with z z elements sand. all the other blocks have 1 element.

The rank of any level is:

$$
r_{l}(\text { level })=n-\text { (number of blocks of partitions of the level) }
$$

Let $A \subseteq S$
Set $\mu(A)=r_{l}(V A)$
$\tau_{\text {sup }}$
I claim that this defines a matroid.
Let's show that μ defines a rank function, by using Whitney's Theorem [25.4].
This mattoid involves rank in two senses. One is the rank μ of the matroid.
The other is the lattice rank r_{l}.
\rightarrow defined on set of at ions
Conditions of Whitney's Theorem:
(1)

$$
\begin{aligned}
\mu(\theta) & =r_{l}(V \dot{O}) \\
& =0
\end{aligned}
$$

(2) $\mu\left(A \dot{O}_{x}\right)=\mu(A)+\left\{\begin{array}{l}0 \\ 1\end{array}\right.$
x is an atom in the lattice $\Pi[T]$.
A is a set of atoms.
What happens when you add an extra atom (x) to this sot of atoms (A)?
Either:
a) the number of blocks remains the same:

$$
\mu\left(A \cup_{x}\right)=\mu(A)+0
$$

-or-
b) the new atom x joins two blocks that were not previously joined. In which case the number of blocks goes down by 1 . So the rank, then, goes up by 1 :

$$
\mu(A \cup x)=\mu(A)+1
$$

So this checks.
(3) if $A \subseteq B$ then $\mu(A) \leq \mu(B)$
obvious
(4) The whitney Property.

Suppose that $\mu\left(A \cup_{x}\right)=\mu(A)$

This means that:

$$
r_{l}(v A v x)=r_{l}(v A)
$$

But what does this mean, lattice theoretically?
It means that x is underneath sup of A :

$$
x \leq \vee A
$$

Similarly, $y \leq v A$. And $x \vee y \leq v A$
And, therefore, it follows that:

$$
\begin{aligned}
& r_{l}(\vee A \vee x \vee y)=r_{l}(A) \\
& \mu\left(A \cup x v_{y}\right)=\mu(A)
\end{aligned}
$$

So the Whitney. Theorem conditions are satisfied.
Therefore, we have a matroid.

- Now you say : "whet does this have to do with graphs?". Good question.
You remember we said that given any mattoid and any subset $A \subseteq S$ we restrict the matroid to A and we get a matroid, trivially. [24, 111]
If we do this restriction here, we get a matraid, trivially.
But the interpretation of it is non-trivial.
Take a set of atoms.
A_{n} atom has a 2 element block.
So I represent it by an edge.

T

A set of atoms is a set of edges.
That's called a graph.
So, any set of atoms is a graph.
And we just said that the restriction of every subset of a matroid is a mattoid. Therefore: Every graph defines a matroid.

- Now you say: "This is fine. But how do I visualize it?"

Fine. Lat's see the classical way of visualizing it.
Any graph defines a matroid,
The graph, To repeat, is interpreted as a set of atoms in the lattice of partitions.
How can we visualize this matroid?
To visualize it, we associate to every matroid a lattice, just like the lattice of partitions.
So, you want To associate a lattice to the matroid obtained by taking a subset of T.
This is called the lattice of contractions on a graph.
And wall see this next time.

- Since we have 3 minutes left, lat me mention the original motivation of Whitney, which we will come to.
His thesis advisor, Professor Birkhiff, at Harvard, gave him, as a the is problem, solve the 4 color conjecture.
He was his best student. And he did the best he could.
In fact, his paper, called "The coloring of graphs", is still remarkable today. Because, implicitly, he discovered the concept of the Hop algebra.
Be al
He hitupon a difficulty with the 4 color conjecture that is concerned with 'the planar graph:

That you can always color the vertices with any one of 4 colors, in such a way that 2 adjacent vertices never have the same color.
They say this is proved.
But all the proofs are by computer and they always have anerrer. hater corrected by another proof, which turns out to have an error, That's the way it turns ont, se far.

So whitney said, the big thing about planar graphs is that every planar graph has a dual graph.
Namely, you place a little x in the middle of each region.
And you join two crosses when yon go across the region..

Then he said, that's funny, if thergraph is not planar, then you don't have a dual graph.
So he invented the generalization of a graph, called the mattoid.
And he showed that every graph has a dual matroid, which is a planar graph
That's how he invented matroids.
By associating dual objects with graphs.
For the coloring problem, we need this concept of dual mattoid, which is coming.
Next time, weill discuss dual matroids, with these obvious examples. And well do Radon's Theorem, which is the generalization of Hall's Theorem of the matroid,

- Then weill start kicking in with the non-standard examples of a matroid. Let me give you a hint of what's coming.

Suppose you have a relation:

$$
R \subseteq S \times T
$$

Then, you can define a set function:

$$
\mu(A)=|R(A)|
$$

And we proved that this, was submodular.
However, this is not the rank function at a mattoid.
I'm sorry.
Even if you take the deficiency:

$$
\delta(A)=|R(A)|-|A|
$$

We proved that this was submodular.
This is also submodular:
But this is.not the rain function of a matroid either.
However, there is a nocrelalization theorem where you can touch wp these $(\mu(A)$ and $\xi(A))$ and make them into rank functions, by an extremely clever trick. This was discovered by British mathematician Nash-Williams.
So you get matroids ont of any relation,
what good is that? You can apply Hall's Theorem and gat fantastic generalizations
of Hall's Theorem.

I must say that I will do Möbius functions from a very high level point of vow next term in a course called Multilinear Algebra. Where Möbius functions come ont of antipodes of Hope algelara.
This is the fanciest way I know of studying Möbius functions.

Original example of a matroid.
The original example of a matroid is net one of the examples I mentioned last time. It is the following:
Take a rectangular matrix.
Then the set $S=$ set of columns of this matrix.
Then you define a rank function, where the rank of a subset of columns is the rank of that subset of vectors.
The column set is a set of vectors.
That obviously defines a rank function, because the vectors are points in projective
space. space.
That's why Whitney called it a matroid.
Because it's like a matrix. The columns of the matrix are used to determine the rank function.

This is also a very good wry of visualizing facts about matroids.
Furthermore, this example of whitney's is used to state one of the great working areas in the theory of matroids, which is the following:

- You are given a matroid.
\uparrow namely, a finite set with an abstract rank function, with the properties weive discussed,
Then, there is a problem of representation of the matroid.
The problem of representation of a matroid, given a matroid, is T find a matrix such that the rank of the columns coincides with the abstract rank function of the matroid.

This is the problem on which the deepest work on matroid theory has been done, by one of the greatest combinatorialists of all time, namely W.T. Tutte. WT. Tutte, rat the age of 17 , worked at Bletchley Park, during World War II, in the group that was led by Alan Turing that cracked the German code Enigma.. The credit for cracking the German code is usually attributed to Turing. That is mot true. The credit is Tutti's.
As a mutter of fact, if you read any books on the German code, they say a 17 year ald boy made the cruclal step in cracking the Enigma.
So, at the end of World War II he was going te go home somewhere in England and someone said "Don't go home. You re being awarded a fellowship at Trinity Collage,":

So he went to Trinity College and studied math and wrote his thesis where he reinvented matroids. He didn't know about Whitney.
He solved some very deep problems on the representation of matroids. Namely, given an abstract rank function of amatroid, when can you find
a matrix whose rank of columns coincide. a matrix whose rank of columns coincide.
Representation Theory is something that is beyond this class.
Professor stanley, next yanr, will be teaching 18,315 and he will be developing, the theory of hyperplanes. So, in the process, you will probably do a lot of matroid theory.
But, I will mention to you whet the mast important representation theorems are. Most Important Representation Theorems
(1) When can you represent a matroid as a matrix whose vectors have components. belonging to the field of 2 elements?

This is easy to solve,
(2) When cain a mattoid be represented by vectors over any field, whatsoever?

The answer was given by Jute. I will tell you what the answer is in a little
while.
This turns out to be the, same as the following problem:
When can a matroid be represented by a matrix that is totally unimodular?
Here, again, you have the theory of totally unimodular matrices creeping in. [9.9-10.3] There is something very important about totally unimodular matrices, which we don't fully understand.
I remind you, as a fact, that totally unimodular matrices are matrices, all of whose minors are equal to $+1,-1$, or $0 .[9.9]$
More recently, Professor Seymour of Prinatom has proved a very good theorem that says that practically all totally unimodular matrices can be obtained from matrioss associated with graphs.

The next result that was proved by Tate is :
When can a mattoid be represented as a matroid of a graph? $\left\{\begin{array}{l}\text { In the sense that we established last time, } \\ \text { And I'm going to ge through that, again, today. }\end{array}\right\}$

Lastly, Tutti solved the problem:
when can a matron be represented as a matrix of a planar graph? with this, he rediscovered the Theorem of Kuratowski about when a graph is planar.
These are the famous Tate theorems of matroids.
Now, you may ask where do I come in.

- The erssonin I got interested in matroids is that every matreid gives you a generalization of the problem of coloring a graph,
You cant solve the problem of coloring a girth by taking colored pens and coloring vertices all your life. You have to think through it, in case the problem is a wide enough conjecture or theorem, so that you see what the problem is really That's how mathematical problems get solved.
Remember what the great mathematician George Polys wrote:
"No mathematical problem is ever solved direct."
In other words, you don't solve a problem by starring at it.
you have to look at the sides,
So, that's how I got interested in matrices in the 1960's.
The generalization of the coloring problem to arbitrary matroids is called
The Critical Problem.
We still don thave the answer to this right now,
Whats missing is a super homology theorem.
1 we know, vaguely, what ought to be right. But I'm just too old.
By the wan, an interesting problem for a child coming into coubinatorics is not to solve it, but $t r$ set up the machinery for the critical problem.
I hope, in this course, that we go far enough where I state the Critical Problem, using möbius functions.

Graphic Matroids (cont'd)
Id like to develop a little further our intuitive understanding for graphic matroids, as defined last time: The concept evades you and it takes quite a while to got used tr it. We define a matroid as a set S with a rank function r.
(S, r)
set $\uparrow \mathcal{L r a n k}$ function $[24.5,25.1]$
The rank function has the properties:
(1) $r(0)=0$
(2) incriäsing
if $A \subseteq B$ then $r(A) \leqslant r(B)$.
(3) $r(x)=\left\{\begin{array}{l}0, x \in S \\ 1,\end{array}\right.$
(4) sub modular

$$
r(A \cup B)+r(A \cap B) \leq r(A)+r(B)
$$

Then I stated, without proof, the Theorem of Whitney [25.4]:
Theorem (Whitney)
μ (a sat function) is a rank function
rf:
(1) $\mu(0)=0$
(2) $\mu(A \cup x)=\mu(A)+\left\{\begin{array}{l}0 \\ 1\end{array}\right.$, where x is a one a dement set of S.
(3) μ increasing
if $A \subseteq B$ then $\mu(A) \leq \mu(B)$
(4) μ has the whitney Property

$$
\text { if' }\left(A \cup_{x}\right)=\mu(A \cup y)=\mu(A)
$$

then: $\mu\left(A \cup_{x} U_{y}\right)=\mu(A)$

- These 4 properties imply that the sat function μ is submodular and, therefore, a rank function.
The proof that such a $\dot{\mu}$ is submadular is a dull proof. I haven't been able to simplify it. so I will defer it.

Whitney's Theorem is useful to establish that a structure is a matroid, It's easier, sometimes, to check the conditions of Whitroy's Theorem then it is check that the rank function is submodular. We saw that in the examples last time (eeg., matroids in projective space [25.6-7]).

- Note that an immediate consequence of Whitney's Theorem is that if the conditions are satisfied and μ is a rank function, then we have:
$\mu(A) \leq|A| \quad[24.8$, Proposition 2],
$\mu(I)=|I|$, such sets I are called independent. $[24.8]$
In the case if a matroid being represented by 9 matrix, where the rank of the columns of the matrix coinciole with the rant of the matroid, the set is independent if the columns are actually independent vectors. And you can find ar basis by finding ar maximal independent set. $[24,10]$

We have begun to study graphic matroids [25.10-14]
Using our Tridity Principle [24,2] view, we take the lattice of partitions of T.
Let $\pi[T]=$ family of all partitions of the set T
$S=$ set of all atoms of the lattice $\pi[T]$
What's an atom?
An atom covers the zero element.
What's the zero element?
The zero element is the partition where every element belongs alone to one block. Every block has one element,
So an atom means that you have one block with 2 elements. and all other blocks have 1 element,

It is customary To represent the set S as the sat of all edges on the complete graph $T_{\text {. }}$
An atom is represented by an edge such that the edge is the nontrivial block of the
atom. atom.

T
Elements of S are represented by edges of the complete graph on the vertex set T.

Now let's define the matroid,
And let's interpret all concepts pertaining t the matroid in terms of graphs.
If is important to remember. that our definition of the matroid depends on partitions.
We are talking about partitions and the graphic repecesentation is due to our human weakness. Not that it should be.
It's really partitions we are talking about.
But because we cant v visualize partitions, we like to draw cute graphs instead.
As we saw last time, if we have a subset A, the rank of A is the lattice rank of the sup of A :

$$
\begin{aligned}
& A \subseteq S \\
& r(A)= r_{l}(V A) \\
&\left\{\begin{array}{l}
r_{l}=\text { Lattice rank }=n-\text { number of blocks of partition } \\
\end{array}\right. \\
&\left\{\begin{array}{ll}
r_{l}(\text { top element in lattice) } & =n-1 \\
r_{l} \text { (atom) } \\
r_{l} \text { (zero element in lattice) } & =n-n=0
\end{array}\right\}
\end{aligned}
$$

We verified, last time $[25.11-12]$, that $r(A)$ so defined satisfies the conditions of Whitney's Theorem and, thus, is a rank function. (S, r) defines a mattoid.

In particular, you can take a subset of S and restrict the matroid th the subset of S.
This subset of 5 would toe a set of edges on the complete graph.
that's called a graph - plain and simple.
Therefore every, graph defines a matroid, which is the restriction of this "imperial majesty "t mattoid (S, r) t a subset of S.
Therefore, we only have to study this concept for the lattice of partitions and automatically they're defined for every graph, by restriction.

	$\mid 119 / 98$
What's an independent set of this matroid $(S, r) ?$	
When is $r\left(A \cup_{x}\right)=r(A) ? \quad[24.11$, proposition 4]	

That's the only good question to ask to understand the nature of matroid, because of Whitney's Theorem.
Well -let's think partitions.
$A=a$ set of atoms.
You're joining them and taking the equivalence relation, which is the sup of the underlying equivalence relations.
So, to ask when is $r\left(A \cup_{x}\right)=r(A)$ is the following. Westart with the equivalence relation whose blocks are given by A.

Then, you add x, which is an atom:

$$
x=\vec{a} b
$$

Only 2 things can happen:
Case 1: a and b belong to the same block of A

The rank does not change. $r(A \cup x)=r(A)$

Case 2: a and b belong to different blocks of A

In which case, the blocks are joined, and the number of blocks goes down by 1 . This causes the rank to go up by 1 .

$$
r\left(A \cup_{x}\right)=r(A)+1
$$

So, only with case 1 do we have $r\left(A U_{x}\right)=r(A)$,
$r\left(A \cup_{x}\right)=r(A)$ iff both endpoints of the edge x belong to. the same connected component of the set A of edges,

- So, graph theoretically, the set A is pictured like this:
case 1: $r\left(A \cup_{*}\right)=r(A)$

same connected component. adding x forms a cycle.
$A \cup x$
case 2: $r\left(A U_{*}\right)=r(A)+1$

two different connected components joined into one after adding x.
$A U_{x}$
In this way, we get an intuition of this kind of matroid.
So we can immediately tell now what the independent sets look like,
The independent sets are the trees.
Why? Consider how you "grow" an independent set.
As you add one element after the other, the rank has to keep going up, each time, by 1 . Since $r(I)=|I|$ for an independent set I, you can not afford to lose any rank. You require II/ iterations of case 2 to "grow"' independent set I.
This means that you can never close and form a cycle with an independent set, Any independent set must be in the form of a tree.

T
- Then what's a basis?

A basis is a maximal spanning tree.
τ in classical graph theoretic terminology, a spanning tree is a tree such that when you add any edge, both endpoints belong to the same connected component.
Yon can'tadd any more edges without closing a cycle. That is, once you have the maximal spanning tree, adding any additional edges satisfies case 11, above. Namely:

$$
r(I \cup x)=r(I)
$$

with this, we have two non -rival results in: our hand, immediately.
(i) Any two maximal spanning trees of a graph have the same number of edges. We already proved that any two bases of the same mattoid have the same number a elements [24.10, Theorem 4].
So this result follows immediately.
Bases are maximal spanning trees.
So you get, cheapo, this result,
(2) Exchange Property of Independent Sets.

Suppose I have one spanning tree with j elements and one spanning true with $j+1$ elements.
That means there is one element of the larger spanning tree that can adjoin to the smaller spanning tree and the result is still a spanning trice. That's the Exchange Property of Independent Sets.
That's it. You get this cheapo,
It's hard to prove this geometrically. In don't know how to prove it that way,
So that's the $3^{\text {rd }}$ intended example of matroids - graphic matroids

Radio's Theorem
This is the analogue of the Marriage Theorem for matroids.
I will state it in terms of a system of independent representatives.
Given a matroid (S, r) and a family of subsets $A_{1}, A_{2}, \ldots, A_{k} \subseteq S$, we want:
$x_{i} \in A_{i}$ s.t. $\left\{x_{1}, x_{2}, \ldots ; x_{k}\right\}$ is independent.

When can we do this?
Such a system of independent representatives exists
iff for every subfamily $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i j}$,
we have:

$$
r\left(A_{i_{1}} \cup A_{i_{2}} \cup \ldots \cup A_{i_{j}}\right) \geqslant j
$$

For example, suppose you want t apply this t graphs. what does this tell us?

- Example - graphs
$A_{i}=$ family of edges of a graph
Yon are given a family of edges of a graph A_{i}
Let me repeat, again, that you need not take the complete graph $A, Y_{o u}$ take any subfamily A_{i} of $A_{\text {i }}$
subfamily the restriction of the matroid to form the family of edges.
You take any family of eelges of the graph and you want that, as we've just discussed: $x_{i} \in A_{i}$ sit. $\left\{x_{1}, \ldots, x_{k}\right\}$ form a tree.
$\tau_{\text {independent representatives }}$
Rado's Theorem tells you when you can form this tree.
Namely, when:
for every subfamily $A_{i i}, A_{i_{2}}, \ldots, A_{i j}$ of A_{i}, we have that:

$$
r\left(A_{i}, A_{i_{i}}, \ldots, A_{i j}\right) \geq j
$$

- To prove this (i,e., when a tree can be formed) directly is a mess, It's easier to prove this general theorem, by matroids:

Given a set of points in a vector space, can you find a subset of these that are independent?
Firm Radis Theorem, the answer is iff for every subset of this set, we have:

$$
\underbrace{r\left(A_{i,} \cup A_{i 2} \cup \ldots \cup A_{i j}\right)} \geqslant j
$$

τ recall that the rank function for a vector space involves dimension. See projective space/vector space discussion. [25.5-8].

That is, whenever the dimension \geqslant number of elements in the set,

There are, of course, many other applications of Radio's. Theorem. Before we prove this, I have to remind you of some concepts:

- Restriction

The restriction of a mattoid involves, taking a matroid.
Then taking a subset.
And you just lank at this subset.
You restrict to the subset.
So the restriction of a matreid corresponds to a subset.
Contraction
Contraction is the mattoid analogue of a quotient space.
Given a matroid (S, r) and a subset $A \subseteq S$, the contraction by A is the matroid $\left(S-A, r_{A}\right)$, where:

$$
r_{A}(B)=r(A \cup B)-r(A)
$$

\uparrow we have already verified that r_{A} is a rank function. [24.11-12, Proposition 5] In particular, I can restrict it to $S-A$.

- It may be worth while $\frac{t}{5}$ visualize contractions in the case of the lattice of partitions For example for partitions, what do contractions look like?
This is something I should have told you before.
For $\pi[T]$, what's a contraction?
Let's digress, briefly.
If you are given a partially ordered set, what are the most important data you should know about that partially ordered set, from a combinatorial point of view?
I'll tell you, strictly confidentially, what it is,
Don't tell anyone.
Given a partially ordered set P, an interval (or segment) of P, say $[a, b]=\{y \in P: a \leq y \leq b\}$,
the most important data to know are :
(1) the structure of every interval.
(2) how every interval factors uniquely into a product of partially ordered sets that are irreducible.
These are the data, in a great many situations, you need to deal with partially ordered sots.

Let's see what happens in the case of the lattice of partitions.
(1) What do the intervals look like?
(2) How do they factor?

- Intervals in $\pi[T]$
(1) $[\pi, \hat{1}] \longleftarrow$ all partions above partition π and below $\hat{1}$. Remember $\hat{i}=6106$ I claim that $[\pi ; \hat{1}]$ is isomorphic $t \pi \pi[\pi]$.
π is a partition. If's a set n a set of blocks.
The blokes dan't know where they are.
So, you can take partitions on the set of blocks.
So, I claim that the interval $[\pi, \hat{1}]$ is the same as $\Pi[\pi]$.
That intuitively obvious.
Any partition above π shoves together some blocks of π,
So you might as well view the blocks of π as points. Nothing. more is going to be done to them.
There's no point in giving a formal proof of theses It's so obvious.

| | | $11 / 9 / 98$ | 26.13 |
| :--- | :--- | :--- | :--- | :--- |

(2) $[\hat{0}, \pi] \longleftarrow$ all partitions above \hat{O} and below partition π.

You have partition π cut up the set T,
Every partition is defined in terms of blocks,
Therefore, every other partition below π has to cut up some of the blocks of π.
And this cutting up is done independently of each block,
Therefore, to any partition in this interval,
there corresponds one partition of this flock, one partition of this block,
one partition of this black, independently.
partition π

T
Therefore:
$[\hat{0}, \pi]$ is isomorphic $t_{0} \otimes \underset{B \in \pi}{ } \prod[B]$
\uparrow product, where B ranges over the blocks of π
(3) arbitrary interval

$$
[\pi, \sigma], \pi \leq \sigma
$$

This means that each block of σ is portioned by some block of π, So you have the product of partition lattices. giving you a partition lattice.
$[\pi, \sigma]$ is $\frac{\text { isomorphic }}{}$ to $\otimes T T[\{B: B \subseteq C, B \in \pi\}]$

- We will see next time that to every graph, other than the complete graph, there corresponds a generalization of the lattice of partitions, which is obtained by taking the sup "s of the edges of that graph only.
That's called the Lattice of Contractions of that graph (see also [30.12])
And the collaring problem depends crucially on this lattice of contractions of a graph. That's what it's all about.
Very complicated.
- So, let's go back to lattice of contractions of a: graph.

The lattice of contractions of a graph is this:
Take subset $A \subseteq S$ and the matroid (S, r)
Them, we want the contraction by A, Namely, the mattoid:

$$
\left(S-A, r_{A}\right)
$$

\uparrow what is this?
That's easy, You take the interval from sup of A to $\hat{1}$. You take the atoms of that and that's your contraction. Since $[v A, 1]$ w isomorphic t a lattice of partitions; this will form a matroid.
It's a mental exercise to check that:
$[v A, \hat{1}]$ is isomenphic to the contraction $\left(S-A, r_{A}\right)$

So let's stop here.
I'm sorry we covered so little material today.
If you find a black notebook identical to this, anywhere, call me immediately.
Next time weill prove Radio's Theorem.

John Guidi guidi@math.mit.edu
$18.315 \quad 11 / 13 / 98$

Rads's Theorem is an axtremely power fol theorem.
More precisely, the powerful theorem is a combination of Radio's Theorem and the Normal ration. Theorem, which comes neñ", which I proved in 1966 . Combining the two, you got incredible strengthening of the Hall Marriage Theorem, as you will see.
In fact, any known matching theorem is a combination of these two (Radio's. Theorem and the Normalization Theorem).

- The Theory of Matroids (contd)

We have seen that a matroid is a finite set 5 , together with a set function r, which we call a rank function and whose properties you know by now by heart.'

$$
(S, r)
$$

We also stated, so far with out proof, Whitney's Theorem, which gives an alternative characterization of a rank function,
One of these conditions is the whitney Property:

$$
\text { if } r(A \cup x)=r(A) \text { and } r\left(A \cup_{y}\right)=r(A)
$$

then $r\left(A \cup_{x} U_{y}\right)=r(A)$
It is a technical feat to show that a function satisfying this and the other conditions implies that the function is submodular. Namely:

$$
r(A \cup B)+r(A \cap B) \leq r(A)+r(B)
$$

We've seen, also, some prime examples of matroids.
Matroids, in so far as they apply t subsets of a vector space; where the notions of independent sets and basis correspond exactly to the notions of independent vectors and basis of a subspace.
And matroids as applied to graphs. Graphs used as subsets of the set of atoms in the lattice of partitions. The atoms being viewed as the edges of the graph. When we do this, then the rank function is:

$$
r(x)=n \text { - number of blocks imp partition }
$$

A set of edges, or atoms, if you wish, is independent iff those edges, when drawn as a graph, form a tree.
In particular a basis is a maximal spanning tree on the graph.
Our fundamental Theorems on matroids immediatly imply some properties on trees:
(1) Two maximal spanning trees of a graph have the same number of edges.
(2) Given on spanning tree with j elements and another with $j+1$, there is one element of the larger that can be adjoined to the smaller set, it is still a spanning tree.

Radon's Theorem
Now, lot's see a generalization of matroids to the Marriage Theorem,
Let $A_{1}, A_{2}, \ldots, A_{k}=$ subsets of S, given the mattoid (S, r),
We can find a set of independent representatives (i,e., a set $\} x_{i}$ are distinct $\left\{x_{1}, \ldots, x_{k}\right\}$, which is independent and $x_{i} \in A_{i}$)
iff for every subfamily $A_{i_{i}}, A_{i_{2}}, \ldots, A_{i_{j}}$ we have

$$
r\left(A_{i}, \cup A_{i_{2}} \cup \ldots \cup A_{i f}\right) \geqslant j
$$

$\left\{\begin{array}{l}I_{n} \text {, the case where the crank function is the cardinality, we have the Hall's Marriage. Theorem. } \\ \text { This is a matroid, of course, } \\ \text { Cardinality defines a trivial matroid, where every set is independent, }\end{array}\right\}$

- Proof

We imitate the first proof we gave of Hall's Marriage Theorem, with suitable retonchings. [21,1-5]
Case 1: for every proper subfamily, we have $r\left(A_{i}, \cup A_{i_{2}} \cup \ldots \cup A_{i j}\right)>j$
Pick $x_{1} \in A_{1}$, necessarily independent, such that $r\left(x_{1}\right)=1$
Such an x_{1} exists, trivially, by the induction hypothesis on the properties of a rank function and the fact that $r\left(A_{i} \cup A_{i_{2}} \cup \ldots \cup A_{i j}\right)>j$.
Consider the contraction matroid on $\left(S-x_{1}, r_{x_{1}}\right)$
I claim the Hall condition is still satisfied on this smaller matroid.
Let $B_{i}=A_{i}-x_{1} \longleftarrow$ the i range over $i_{1}, i_{2}, \ldots, i j$
Then, by the definition of the contraction by $\{x\},[26,11]$:

$$
r_{x_{1}}\left(B_{i_{1}} \cup B_{i_{2}} \cup i_{i i} \cup B_{i j}\right)=r(\underbrace{B_{i_{1}} \cup B_{i_{2}} \cup \times B_{i_{j}} \cup x_{1}})-\underbrace{}_{r\left(x_{1}\right)}
$$

when you add x, back, you get the
A_{i} back. You had subruted only x_{1}
in each $-B_{i}=A_{i}-x_{1}$

$$
=\frac{r\left(A_{i_{1}} \cup A_{i_{2}} \cup \ldots \cup A_{j}\right)}{i_{j} b_{1} \text { b assumption above }}-1
$$

Continue; in a similar way, by induction on the smaller mattoid $\left(5-x_{1}, r_{x_{1}}\right)$.
case 2 : There exists a proper subfamily, sang, without loss of generality; $A_{1}, A_{2}, \ldots, A_{j}$ such that $r\left(A_{1} \cup \ldots \cup A_{j}\right)=j$
In this case, we take the restriction T_{5} this.
Say $A_{1} \cup A_{2} \cup \ldots \cup A_{j}=Q$
The matroid (Q, r) satisfies the Hall condition.
If doesn't Know that you're only subsets of Q...
The Hall condition is for all subsets of S.
So, by the Principle of Ignorance, if (S, r) satisfies, the Hall condition, then so does (Q, r).

And S is finite.
Therefore, we can apply the induction hypothesis is to (S, r).
We need to show, by the induction hypothesis, that $\left(S_{r} r\right)$ satisfies the Hall condition and, hence, we can find an independent set of representatives $\left\{x_{1}, \ldots, x_{j}\right\}$ of A_{1}, \ldots, A_{j}.
Consider the contraction $\left(S-Q, r_{Q}\right)$.
Now we have to do two things.
First we have to show that the contraction $\left(S-Q, r_{Q}\right)$ satisfies the Hall condition. S_{0} we get a set of independent representatives for this contraction.
Then we hove to show that this set of independent representatives, Together with the ones we have already found, together jointly gives us a set at independent representatives.
(1) Claim: $\left(S-Q, r_{Q}\right)$ satisfies the Hall condition for the

Let's see how this satisfies the Hall condition: Write out r_{Q} :

$$
\begin{aligned}
& B_{i} \text { become } A_{i} \text {. given assumption. } \\
& =r(\underbrace{A_{i} \cup \ldots \cup A_{i l}}_{l} \cup \underbrace{A_{1} \cup \ldots \cup A_{j}}_{j})-j \\
& \geq \quad l+j-j \\
& =l
\end{aligned}
$$

So we win. This contraction $\left(S-Q, r_{Q}\right)$ satisfies the Hall condition,

Hence, we can $f_{i n d}\left\{x_{j+1}, \ldots, x_{k}\right\}=$ set of independent representatives of B_{j+1}, \ldots, B_{k} in $\left(S-Q, r_{Q}\right)$.
(2) Now we need to show that these, tog thor with the first j we have shown, are independent.
What does it mean for $\left\{x_{j+1}, \ldots, x_{k}\right\}$ the independent?
It means that:

$$
r_{Q}\left(x_{j+1} \cup_{1} \ldots \cup x_{k}\right)=k-j
$$

That's what being independent means:
The rank of the set is equal to the size of the set.
This mems that:

$$
\begin{aligned}
& r\left(x_{j+1} \cup \ldots \cup x_{k} \cup Q\right)-\underbrace{r(Q)}=k-\notin A_{1} \cup \ldots \cup A_{j} \\
& r\left(A_{1} \cup \ldots \cup A_{j}\right)=j, \text { by assumption } \\
& r(Q)=j
\end{aligned} \quad \begin{aligned}
r\left(x_{j+1} \cup \ldots \cup x_{k} \cup Q\right) \quad & =k
\end{aligned}
$$

Note that $\left\{x_{1}, \ldots, x_{j}\right\} \subseteq Q$
It is intuitively obvious that if you have a subset that is independent? then it must have the same rank.
But let's show that:

$$
r\left(x_{1}, \cup, \ldots v_{x_{k}}\right)=k
$$

If I add any element $q \in Q$ 南 $\left\{x_{1} \cup \ldots \cup x_{k}\right\}$, I will show that the rain does not change. Namely"

$$
r\left(x_{1} \cup x_{2} \cup \ldots \cup x_{k} \cup q\right), q \in Q=r\left(x_{1} \cup \ldots \cup x_{k}\right)
$$

Intuitively, that's obvious, as $\left\{x_{1}, \cdots, x_{k}\right\}$ is a basis of $\left(s-Q, r_{Q}\right)$. Formally, we take the submedelerity property of a rank function:

$$
r(A \cup B)+r(A \cap B) \leq r(A)+r(B)
$$

Let $A=\left\{x_{1} \cup \ldots v x_{j} \cup q\right\}$

$$
B=\left\{x_{1} \cup \ldots \cup x_{k}\right\}
$$

Then:

$$
r\left(x_{1} \cup \ldots \cup x_{k} \cup q\right)+r\left(x_{1} \cup \cap B x_{j}\right) \leq \underbrace{r\left(x_{1} \cup,-x_{j} \cup_{q}\right)}+r\left(x_{1} \cup \ldots v_{1}\right)
$$

this rank is the same as $r\left(x_{1}, \ldots \cup x_{j}\right)$, because it is a basis of Q.

$$
r\left(x_{1} \cup \ldots \cup_{x_{k}} \cup_{q}\right) \leqslant r\left(x_{1} \cup_{1} . . v_{x_{k}}\right) \text {, for all } q \in Q
$$

τ from the increasing property of a rank function: $A \leq B \Rightarrow r(A) \leqslant r(B)$ this must be equality.
$r\left(x_{1} \cup \ldots \cup x_{k} \cup q\right)=r\left(x_{1} \cup \ldots \cup x_{k}\right)$, for all $q \in Q$
And, by the Extended Whitney Property:

$$
r\left(x_{1} v_{1} \cdot v_{x_{k}} \cup Q\right)=r\left(x_{1} \cup \ldots v_{x_{k}}\right)
$$

we've shown that this
rank equals k.
Therefore:

$$
r\left(x_{1} \cup \cdots \cup x_{k}\right)=k
$$

There are k elements and the rank is k.
Therefore $\left\{x, \cup \therefore \cup x_{k}\right\}$ is independent
Done,
End of the proof.
I already outlined some of the applications.
Vector spaces - if you have any subset of a vector space, you can pick elements of the subsets ass having independent sets. You can pick it so that the dimension of amy union of j subsets is at least j.
Or you can apply it To frees. Yon have a family of edges of a graph, And you want to pick one edge from each family of edges, so that you get a tree. when can you do that? When the rank of the union ot edge families is at least the number of families.

- There is better to come.

Now we build up a new class of matroids and apply Radio's Theorem and get terrific matching theorems.
Now is the payoff,

- Normalization Theorem

Given a sit function μ on the finite set S, integer valued, with the properties :
(1) increasing

$$
A \subseteq B^{g} \Rightarrow \mu(A) \leq \mu(B)
$$

(2) Submodular

$$
\mu(A \cup B)+\mu(A \cap B) \leq \mu(A)+\mu(B)
$$

(3) $\mu(\theta)=0 \longleftarrow$ (we a ctuclly may not need this explicith;)

Unfortunately, μ so defined does not define amatroid,
Why 3
Because μ of a point is Not our 1.
On the other hand, it's kind of easy to find these functions μ.

- For example, take the relation R and the set function μ :

$$
\begin{aligned}
& R \subseteq S \times T \\
& \mu(A)=|R(A)|
\end{aligned}
$$

We've verified to our hearts content that this is submodular.

- If we now define:

$$
r(A)=\min _{B \subseteq A}(\mu(B)+|A-B|)
$$

then we obtain a rank function. And we obtain a matroid.
I always forget the proof of this theorem, because I was the one who proved it, I blank out the effort,
In 1966, before you were born.

Let's see how you prove it. I forgot.
There are many ways t prove it. Almost every way works,
Weill prove it by showing that this r_{y} so defined, satisfies the conditions of Whitney's Theorem. [25.4]
That seems t be the simplest way.
I know you are wondering : "Where does this come from? Where did you get this?"
I sadistically with hold the answer to that question,
First I make you suffer. Then I tell you what's really going on.
$\frac{\text { Proof }}{12}$
(1) $r(\theta)=\min _{B \leq \Phi}(\mu(B)+|D|-B \mid)=0$
(2.). $r\left(A V_{x}\right) \stackrel{B \leq D}{=} r(A)+\left\{\begin{array}{l}0 \\ r\end{array}\right.$

This is the crucial property; because μ does not satisfy this property.
Let's write ont $r(A U x)$: Let's write ont r $\left(A U_{x}\right)$:?

$$
r\left(A \cup_{x}\right)=\min _{B \subseteq A U_{x}}\left(\mu(B)+\left|A U_{x}-B\right|\right)
$$

Q $\left\{\begin{array}{l}\text { There are two kinds of } B^{\prime} ' s \text { contained in } A U_{x} \\ \text { There are B's contained in } A \text { and } B ' s \text { contained in } A U_{x} .\end{array}\right\}$

$$
=\min _{B \subseteq A}(\mu(B)+\underbrace{\left|A U_{x}-B\right|}_{\text {This is at most } 1}, \mu\left(B U_{x}\right)+\underbrace{\left|A U_{x}-B U_{x}\right|}_{|A-B|})
$$

(1) This is at most 1
grater than the preceding, because.
(2) Recall that: you add "x here.

$$
\min (x, y) \leq \min (x)
$$

$$
\begin{aligned}
& \leqslant \min _{B \leq A}(\mu(B)+|A-B|)+1 \\
& =r(A)+1
\end{aligned}
$$

And since μ is integer valued, we have:

$$
r\left(A U_{x}\right)=r(A)+\left\{\begin{array}{l}
0 \\
1
\end{array}\right.
$$

(3)

$$
r(A)=\min _{B \leq A}(\mu(B)+|A-B|)
$$

This means, that the minimum is attained at some subset $C \subseteq A_{\text {, }}$ because the sets are finite.
Let this minimum be attained for some set C.

$$
=\mu(c)+\mid \underbrace{A-C} \text {, for some } C \subseteq A
$$

$$
A-C=A \cap C^{C}
$$

$$
=\mu(C)+\left|A \cap C^{c}\right|
$$

(1) from the increasing property of set function μ, we have:

$$
\begin{gathered}
C \geq B \cap C \quad \Rightarrow \mu(C) \geqslant \mu(B \cap C) \\
(2) A \geq B \Rightarrow\left|A \cap C^{c}\right| \geqslant\left|B \cap C^{c}\right|
\end{gathered}
$$

Combining these gives the following inequality:

$$
\begin{aligned}
& \begin{aligned}
\mu(B \cap C)+\mid \underbrace{B \cap C^{c} \mid}_{B \cap C^{c}} & =\overbrace{\left(B \cap B^{c}\right)}^{\infty} \cup\left(B \cap C^{c}\right) \\
& =B \cap\left(B^{c} \cup C^{c}\right) \text { by the distributive law } \\
& =B \cap(B \cap C)^{c}
\end{aligned} \\
& =\mu(\underbrace{B \cap C)}+\mid B \cap(\underbrace{B \cap C)^{c} \mid}
\end{aligned}
$$

Then we compare this instance to the minimum:

$$
\begin{aligned}
& \geqslant \min _{D \subseteq B}(\mu(D)+|B-D|) \\
& =r(D)
\end{aligned}
$$

$$
r(A) \geqslant r(D)
$$

Therefore, we have shown that:

$$
\therefore f \text { 录 } \text { then } r(A) \geqslant r(D)
$$

$$
A \geq B \text { and } B \supseteq D \Rightarrow A \supseteq D
$$

(4) the Whitney Property
, as we defined it [27.6], satisfies the Whitney Property.
You may recall that any increasing, submodular set function μ, with the property that $\mu(0)=0$ satisfies the whitney Property. That's the case with our μ ? Recall our proof of the whitnay Property. [24.6, Theorem 1]
Suppose that:

$$
\left.\begin{array}{l}
r\left(A \cup_{x}\right)=r(A) \\
r\left(A \cup_{y}\right)=r(A)
\end{array}\right\}
$$

We want to show that it then follows that:

$$
r\left(A U_{x} U_{y}\right)=r(A)
$$

Write out $r(A)$:
(*)

$$
\begin{aligned}
r(A)= & \min _{B \subseteq A}(\mu(B)+|A-B|) \\
= & r\left(A U_{x}\right) \leftarrow r\left(A U_{x}\right)=r(A) \text { is given assumption, } \\
= & \min _{B \subseteq A U_{x}}\left(\mu(B)+\left|A U_{x}-B\right|\right) . \\
& \underbrace{\min _{B \subseteq A} \underbrace{\mu(B)+\left|A U_{x}-B\right|}_{\substack{\text { if } B \text { contains } x, \\
\text { you get this. }}}, \underbrace{\mu\left(B U_{x}\right)+\mid A U_{x}-B U_{x}=A-B}_{\begin{array}{l}
\text { if } B \text { does not contain } x_{2} \\
\text { you get this. }
\end{array}})}_{\substack{\text { again, these } B_{s} \text { can be of two kind. } \\
=}} .
\end{aligned}
$$

$$
\Uparrow
$$

Note that this first term is exactly 1 greater than. $r(A)$:

$$
\begin{aligned}
\min _{B \subseteq A}\left(\mu(B)+\left|A U_{x}-B\right|\right) & =\min _{B \subseteq A}(\mu(B)+|A-B|)+1 \\
& =r(A)+1 \\
r\left(A U_{x}\right) & =r(A)+1 \\
& \tau
\end{aligned}
$$

This violates the given assumption that $r\left(A \cup_{x}\right)=r(A)$.
So the minimum can not be attained by the first term.

$$
=\min _{B \subseteq A}\left(\mu\left(B U_{x}\right)+|A-B|\right)
$$

Therefore, in conjunction with equation $(*)$, we must have:

$$
\min _{B \subseteq A}(\mu(B)+|A-B|)=\min _{B \subseteq A}\left(\mu\left(B U_{x}\right)+|A-B|\right) .
$$

Let's say the minimum of equation $(*)$ is attained at C :

$$
\begin{aligned}
\mu(C)+|A-C| & =\min _{B \subseteq A}\left(\mu\left(B U_{x}\right)+|A-B|\right) \\
& =\mu\left(C U_{x}\right)+|A-C|
\end{aligned}
$$

This implies that:

$$
\left.\begin{array}{l}
\mu\left(C U_{x}\right)=\mu(C) \\
\mu\left(C U_{y}\right)=\mu(C)
\end{array}\right\}
$$

μ satisfies the Whitney Property, so this implies that:

$$
\mu\left(C U_{x} U_{y}\right)=\mu(C)
$$

$$
\downarrow
$$

which, in turn, translates to:

$$
r\left(A U_{x} U_{y}\right)=r(A)
$$

Therefore, we have:

$$
\left.\begin{array}{l}
r\left(A \cup_{x}\right)=r(A) \\
r\left(A \cup_{y}\right)=r(A)
\end{array}\right\} \Rightarrow r\left(A U_{x} U_{y}\right)=r(A)
$$

So r satisfies the properties of the Whitney. Theorem. It is a rank function.
We have a matroid?

- In this way, we can create matroids out of nothing.
You will see next time.
- When you apply this Normalization Theorem with Radio's Theorem, you get the most marvelous matching theorems - originally proved by crazy methods. These 2 theorems give a total unifying matching theory, from which all known matching theorems come out.

John Guidi guidi@math.mit.edu

The wonderful world of matroids. Thrilling. Full of surprises. Actually, it is,
It's a pity there is no time to tell you about the recent developments of matroids.
People have discovered some marvellous connections among matroids, representation theory, geometric probability - all sorts of things.
If you really want to know the algebra behind matroids, youill have tor take my course next term, on muttilinear algebiva, Then you'll learn matroids.
You'll note that in this course, I stay away from algebraic topics.
This is a pure combinatorics course. On purpose, because the algebra is left for next time.
Sometimes one tends to throw in some algebra, but I resist the temptation, You get just combinatorics - pure and simple.
Matroids and matching
Last time, we saw two important theorems on matroids,
Namely, Radio's Theorem and the Normalization Theorem.

- Radio's Theorem

Let me state this in a succinct way, because I've already stated it 5 times: Given matroid (S, r) and a fami η of subsets $A_{1}, \ldots, A_{k} \subseteq S$ we want to find a system of independent representatives $\left\{x_{1}, \ldots, x_{k}\right\}$ kr set. s.t.

$$
x_{i} \in A_{i} \text { and } \frac{r\left(\left\{x_{1}, \ldots, x_{k}\right\}\right)=k}{\tau_{\text {ire., the set is independent. }}}
$$

Rad tells us this is possible if: rank equals size of set,
for every subfamily $A_{i_{1}}, \ldots, A_{i j}$ we have $r\left(A_{i}, U_{1}, \cup A_{i g}\right) \geqslant j$
We saw that the proof is remarkably similar to the original proof we gave of Philip Hall's Marriage Theorem. If you do restrictions and contractions the rightway, then out comes the proof.
This is, in a sense, the wltinnte matching theorem - as you will see shorty. No one has really gone beyond this,
There is sort of a gut feeling that all the known matching theorems fall out by specializing this theorem,

Normalization Theorem
Given a set function μ on S, integer valued, increasing, subuodular, and $\mu(0)=0$
then
$r(A)=\min _{B \subseteq A}(\mu(B)+|A-B|)$ is a rank function of a mattoid.

We verified this last time.

Now, let's squeeze all the jute from these 2 theorems. Let's start with easy stuff.

Applications
Take $R \subseteq S \times T$
Set $\mu(A)=|R(A)|$ for $A \subseteq S$
We have verified that this is submodular, that it is increasing, and thea $\mu(0)=0$, Therefore, the Normalization Theorem tells us that ti every relation we can associate a matroid.
What does the matroid look like?
Let r be the rank function associated $\frac{1}{6}$ this μ, by the Normalization Theorem.
Every relation defines a matroid.
How do we understand this matroid?
Well-getahold of one of the matricidal concerts and see how it is interpreted.
In this case, let's see what the independent sets look like.
And here we find a pleasant surprise.
What are the independent sets?
By definition:
$I \subseteq S$ is independent if $\min _{B \subseteq I}(\mu(B)+|I-B|)=|I|$

$$
r(I)=|I|
$$

For every $B \subseteq I$,

$$
\mu(B)+|I-B| \geqslant|I|
$$

Remember that $\mu(B)=|R(B)|$, which gives:
$|R(B)| \geqslant|\boldsymbol{B}| \longleftarrow 2$ Mat's the condition of the Marriage Theorem!
Therefore, we have that in the matroid associated with this relation R, a set is independent if it has a matching.
This is very nice.
Thus, I is independent iff there is a partial matching defined on I.
Now you see what it's all about
The independent sets ace those such that if you restrict the relations to those sets, that there is a partial matching.
And that's what relations are about.
Now you can apply the abstract theory of independent sets to matching.
And get all sorts of theorems that I didn't state before, because it would have been superfluous.
For example:
All maximal matching have the same size. (the basis)
People used to elaborately prove this before.

- If you have 2 partial matchings, one bigger thou the other, then you can toke one edge from the larger one and add it to the smaller to get a bigger matching.
And so on and so forth.
That's not the end of the story.
Let's jazz this up.
just set
We could have a mattoid on T already.
A pre-given matrold.
And we go through this process, lit instead of absolute value, we use the rank for μ.
It still works, because sank is increasing, submodubar, etc.
If satisfies the conditions for the Normalization Theorem to produce another rank function.

More generally:
Given a matroid. $\left(T, \breve{r}^{\prime}\right)$, set $\mu(A)=r^{\prime}(R(A))$.
μ is integer valued, increasing, suburodulmer, and $\mu(0)=0$.
So we can apply the Normalization Theorem and we get another matrix,
Apply the Normalization Theorem:

$$
\left.r(A)=\min _{B \subseteq A}(\mu(B)+|A-B|)\right)
$$

We get the induced matroid by the relation R.
And the same computation we have just gone through tells you that independent sets of the induced mattoid are the sets that have partial sets of independent representatives.
That's it -cheapo.
You can got fantastic theorems,
You can take a relation of a relation,
Mix them up. You can d. all sorts of things.
Let's do some more of this.

- After the Marriage Theorem, people started tr prove generalizations.

So let me state a couple of generalizations that people proved,
Then we see that they are nothing, if you look at them from the print of view
of matroids.
Theorem - Partial Matching (excluding k elements)
Given $R \subseteq S \times T$
Philip. Hall tells you when there is a matching.
Now we want to know if there is a partial matching containing all but k elements in the matching.
Is there a necessary and sufficient condition for such a matching?

Given $R \subseteq S \times T$, there is a partied matching of R containing $|S|-K$ elements of
for every $A \subseteq S$, we have $|R(A)| \geqslant|A|-K$
We have 2 choices.
Either we gothrough another elaborate proof, at la thilip Hall.
Or else we get it out of the Normalitation/Rado Theorems, by making up a matroid.
So here's how you do warkit. You must learn the tricks of the trade,
Ism not going tr e prove this,
So we do it this way instead:
Set $\mu(A)=|R(A)|+k$
This is an increasing, submodular set function.
We can apply the Normalization Theorem to it,
Apply the normalization theorem, then check that the independent elements are the partial matching:

$$
\left.r(A)=\min _{B C A}(\mu(B)+|A-B|)\right)
$$

But this still doesn't explain, in full clarity, why this is an independent set or what they are.
Let me toll you yet another trick.
After applying the Normalization Theorem, you get a mattoid. And anyone can see what this matroid looks like.

(1) Take the relation $R \subseteq S \times T$
(3) take disjoint set $D,|D|=K$
disjoint sum
(3) Define a new relation $R^{\prime} \subseteq 5 \times(T \oplus D)$ Every element of S is joined to every element of D.

What does it mean for R^{\prime} tossatisty the conditions of the Marriage Theorem?

$$
\left|R^{\prime}(A)\right| \geqslant|A| \quad \text { iff } \quad|R(A)| \geqslant|A|-k
$$

Because $R^{\prime}(A)$ has k more matchings thar i $R(A)$, for any A,
Therefore $R^{\prime}(A)$ satisfies the Philip Hall condition if $R(A)$ satisfies the condition with k fewer,

So the partial matching theorem is easy To prove.
It's an immediate consequence of philip Hall and this construction. So I did give you a proof, after all.

And this tells you what the matroid defined by this increasing, submodular function $\mu(A)=|R(A)|+k$, after applying the Normalization Theorem, looks like.

- It means you are faking the extra elements.

And there's a whole theory that tells you that every submodular set function corresponds. to some sort of faking of elements.
Finally, let's look at the independent set of this matroid:

$$
r(I)=|I| \Rightarrow \min _{A \in I}(\underbrace{\mu(A)}_{\mu(A)=|R(A)|+k}+|I-A|)=|I|
$$

Therefore: $|R(A)| \geqslant|A|-k \longleftarrow\left\{\begin{array}{l}\text { Se above. } \\ \text { the condition for } \\ \text { a partial matching } \\ \text { (excluding } k \text { elements) }\end{array}\right\}$
So the independent set of this matroid does, in fact, give the partial matching.

Next example,
Here's a theorem that someone, somewhere, proved.
We say - "ok. A relation has a matching, iff it satisfies this Hall condition," What's the next best thing after matching?

- The next best thing is this,

You have a partition of S into 2 blocks, such that each block has its own matching.
or, more generally, the partition of S inti k blocks, such that the restriction to each block is a matching.
Let's see if we can get a necessary and sufficient condition for the case with 2 blocks.

Theorem
A necessary and sufficient condition that given $R \subseteq S \times T$, there exists a partition $\pi=\left(B_{1}, B_{2}\right)$ such that $\left.R\right|_{B_{2}}$ has a matching is that:

$$
2|R(A)| \geqslant|A| \text {, for all } A \subseteq S \quad\left(\left.R\right|_{B_{i}}=R \text { restricted } t B_{i}\right)
$$

Kind of cute. If you have k blocks, then the condition is $k|R(A)| \geqslant|A|$.
First I'll give you the matroid interpretation.
Then Ill give you the visual interpretation.
matroid interpretation
If you have a μ that satisfies the hypothesis of the Normalization Theorem, then 2μ does too.
And, therefore, applying the Normalization Theorem with 2μ gives you another metroid.

Apply the Normalization Theorem to $\mu(A)=2|R(A)|$ and you gat a matroid.
What does this matroid look like? Easy.
visual interpretation

(1) I take $T^{\prime}=$ a copy of set T and same identical relation R is defined an T^{\prime}.
(2) Then create the relation:

$$
R^{\prime} \subseteq S \times\left(T \otimes T^{\prime}\right)
$$

where:

$$
\begin{aligned}
&\left.R^{\prime}\right|_{S X T}=R \\
& R^{\prime} /_{S X T^{\prime}} \simeq R \\
& 292
\end{aligned}
$$

Now apply the Marriage Theorem $t_{0} R^{\prime}$,
You get the matching immediately.
The matching will be partly between S and T, parity between. S and T^{\prime}.
T ' is "virtually" T.
You get the theorrain immediately,
We can jazz up the last 2 theorems.
Instead of taking a relation between 5 and T, we can put a matroid structure on T in both of these last 2 theorems.
And you immediately get a generalization.
In fact, here is the generalization:
Generalization
Suppose you have 2 matroids on the same set.
Given $\left(S_{1} r_{1}\right)$ and $\left(S, r_{2}\right)$.
We mix up these two matroids.
How do we unscramble them? Very easy:
Take $\mu=r_{1}+r_{2}$ and apply the Normalization Theorem. what do they look like?
The independent sets are unions of the r_{1} independent sets and the r_{2} independent sets.
The same reasoning, as in the previous results, applies here.
Given the matroid obtained by normalizing with $\mu=r_{1}+r_{2}$, the
independent sets of this matroid are sets $I=I_{1} \cup I_{2}$, where I_{i} is Γ_{i} independent.
Q: Do we know how many_ different partitions ire of a given block size there are that satisfy, the necessary and sufficient conditions such that each block has a matching?
A: No, How many there are - people have no idea,
That's a dead end.
Counting these matchings is absolutely a dead end.
The theorem [28.7] states only the existence of matchings.

Exercise 28.1
There's anther theorem I want t do, but I'll giveitas an excercise, because I hope you are catching on to this game.
Remember ne talked about the Gale-Ryser Theorem. [13.2, Exercise 13.2] Now I give it to you as an exercise because it's the Marriage Theorem jazzed up. Before, I wanted yours do this 67 sling up your sleeves,
Professor David Gale was Professor of Eunomic at UC Berkeley. Professor Herbert Riser was Professor of Mathematics at Cal Tech.
Gale-Ryser Theorem
You have the incidence matrix of a relation.
So, you have a matrix of 0 's and 1's.

What you are given are the marginals,
Well assume, wog, that:

$$
\begin{aligned}
& \lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n} \\
& \mu_{1} \geqslant \mu_{2} \geqslant \ldots \geqslant \mu_{n}
\end{aligned}
$$

The λ_{i} and μ_{1} are both partitions of the number, because the number of I 's is the same, So, trivially:

$$
\sum \lambda_{i}=\sum \mu_{i}
$$

Q: Given the marginals, when does there exist a matrix of O 's and is with these marginds'?
A: If $\lambda \leqslant \mu^{\perp} \longleftarrow$ dual partition in the dominance order.
This is jut Philip Hall. I'll tell you the trick.
You work it out. I don't want to do it today.
The trick is this:
You take a relation $R \subseteq S \times T$,
And then you sets $D_{1}, D_{2}, \ldots, D_{k}$ (some number of sets) with certain elements that are determined by the μ.
And then you repeat $s^{\text {. }}$. You take $s^{\prime}, s^{\prime \prime}, \cdot ., s^{(k)}$ and define, to each, the same relation as $R \subseteq S \times T$.

You have this, roughly speaking:

S is related to elements of T and every element in, D_{1}.
S^{\prime} is related to elements of T just like in R and every element ion D_{2}.
$S^{\prime \prime}$ is related to elements of T just like in R and every element in D_{3}.
And soon,

You have to set this right, depending on the λ and the μ.
And them apply the Marriage Theorem.
And out comes the Gale-Ryser Theorem.
I don't wart to do the gory details.
I leave this as an exercise?

- ** Exercise 28.2

Nobody has ever looked at what you would get if you have a matroid structure
on T. What kind of generalization of the Gale-Ryser Theorem do you get if T has a matroid structure?

Generalize Gale-Ryser to induced matroids.

- ** Exercise 28.3

You remember that I gave you this problem: [10.4-5, Exercise 10.2]
If you have 2 matrices of O 's and 1's. with the same marginals, then you car get from one to the other by a series of switches,

$$
a\left(\begin{array}{cc}
b & d \\
\vdots & d \\
\cdots & 0 \\
0 & 1 \\
\vdots & 1
\end{array}\right) \longrightarrow a\left(\begin{array}{cc}
b & d \\
\vdots \\
\cdots & 1 \\
1 & 1 \\
\vdots
\end{array}\right)
$$

m
m^{\prime} switch
Get this as a matroid theorem.
Get this as a consequence of the general theorems of matroids.

I think weave done enough matching theory,
You've had your fill.
We still have to d_{0} Whitney's Theorem and prove it.
Then there's rune last topic we have te do before we leave matroids,
Namely the definition of the lattices associated with matroids, which I call geometric lattices.
Next time, we will apply the preceding theory to develop all the main properties of geometric lattices.
I may drag on with matroids. I want to motivate Mobius functions with geometric probability. It's kind of a tour de force.
So I may continue with matroid theory and do a little more with arrangements of hyperplanes and all that stuff?

- Geometric Lattice

What's a geometric lattice?
Ageomtric lattice is probably the most interesting Kind of lattice, after the following. First, there are distributive lattices, which are very well understood.
Then there are linear lattices, lattices of commuting equivalence relations that satisfy the modular law. Namely, they have a rank function and they're finite and they satisfy the modular law.

NOT sub modular, but modular. Equal.
After linear lattices is the next most important class of lattices is the class of geometric lattices.
The gruesome definition is the following: (withou tmotivation. Next time well discuss this.) L = finite lattice,

It has a rank function. Namely, all maximal chains have the same number of elements. So you can count how far away you are from $\hat{0}$.
Note the dual use of the term rank function. This is deliberate.
with a rank function r sit.

$$
\left.\begin{array}{l}
\text { with a rank function } r \text { st. } \\
r(x \vee y)+r(x \wedge y) \leq r(x)+r(y) \text { and }
\end{array} \begin{array}{l}
\text { here, submodular means } \\
\text { something differ et than } \\
\text { what we well }
\end{array}\right)
$$

for every element $x \in L$, there exists a set of atoms A sit. $v A=x$. (ice., every element is the sup of atoms.).

- Such a lattice is called a geometric lattice.

We will see that geometric lattices are the same thing as matroids, in disguise. Yet another disguise af matroids.
Matroids have infinitely many disguises,
No other concept in mather metics I know of has as many cryptomorphic
definitions as the concept of matroids.
People try and invent something new and, lo and behold, they prove it's a It's a very rigid concept, Very hard to get away from. which is a good sign.
So, next time, well connect matroids to geometric lattices.
And it is through this connection to geometric lattices that you got to coloring.

| John Guidi
 guidiemath.mitiedu | 18.315 |
| :--- | :--- | :--- |
| We have to do one more concept on matroids, or thogonality. | |
| The we will d_{0} the concept of closure. | |

We have $t_{0} d_{0}$ one more concept on mattoid
Then we will d. the concept of closure.
And then geometric lattices.
Given a matroid on the set S with rank function r :

$$
(S, r)
$$

$T_{\text {the rank function is sominething very similar to a dimension, as we will see. }}$. we have the motions of independence, basis, we have the exchange property for independent sets.

One might think that matroids are similar, in abstraction, To vector spaces,
There is, however; one concept of matroids that you would never guess by doing linear algebra,
There are, actually, several. But our time is shoot, so there is only one that we will do here,
That's the concept of orthogonality.
Orthogonality
Define a sat function r^{*} as follows:

$$
r^{*}(A)=|A|+r(S-A)-r(S), A \subseteq S
$$

Theorem:
r^{*} is a rank function and $\left(S ; r^{*}\right)$ is called the orthogonal (sometiones dual) matroid to (S, r).
In other words, if you're given a matroid, there is this funny formula that gives another mattoid.
First, let's check that r^{*} is, indeed, a rank function.
Then let's toy To understand what it means,
Proof - proof r^{*} is a rank $f_{\text {function using Whitney's Theorem }}^{\text {[26.4 }}$]:
(1) $r^{*}(\theta)=|0|+r(s-\theta)-r(s)$

$$
=0 \quad \checkmark
$$

(2) $r^{*}\left(A U_{x}\right)=\left|A U_{x}\right|+r(S-A-x)-r(S)$

$$
=r^{*}(A)+\left\{\begin{array}{l}
0 \\
1
\end{array}\right.
$$

(3) This implies, immediately, that:

$$
A \subseteq B \Rightarrow r^{*}(A) \leq r^{*}(B)
$$

Because you start with A and add x 's until you get B.
And each time you add an x, r^{*} either stays the same or goes up by 1 .
(4) Lastly, we want to show that r^{*} is submodular,

Namely, that:

$$
r^{*}(A \cup B)+r^{*}(A \cap B) \leqslant r^{*}(A)+r^{*}(B)
$$

Wive stated many times, so far without prosit, that a set function satisfying the Whitury Property, along with properties 1-3 above, implies submodularity.
Let's prove the whitney Property for r^{*} :
Suppose $r^{*}\left(A \cup_{x}\right)=r^{*}(A)$ and \quad Need to show that this implies:

$$
\left.\begin{array}{l}
r^{*}\left(A \cup_{x}\right)=r^{*}(A) \quad \text { and } \\
r^{*}\left(A \cup_{y}\right)=r^{*}(A)
\end{array}\right\} \quad r^{*}\left(A \cup_{x} \cup_{y}\right)=r^{*}(A)
$$

Thus:

$$
\underbrace{\text { Thus: }}_{\left|A U_{x}\right|=|A|+1} \overbrace{\uparrow}^{r^{*}\left(A U_{x}\right)}+r(S-A-x)-r(S) \quad \overbrace{\mid+r(S-A)-r(S)}^{r^{*}(A)}
$$

This implies that:

$$
r(S-A-x)=r(S-A)-1
$$

Similarly:

$$
r(S-A-y)=r(S-A)-1
$$

$\binom{$ My professor of logic, professor Church, when he said similarly, he would }{ repeat the whole argument with y, Because it was nat logical to say similarly. }

To get the desired conclusion that $r^{*}\left(A U_{x} U_{y}\right)=r^{*}(A)$, we have:

$$
\left|A V_{x} V_{y}\right|+r(S-A-x-y)-r(S)=|A|+r(S-A)-r(S)^{r}
$$

We wont: $r(S-A-x-y)=r(S-A)-2$
τ The only way known to man to gat this equality is to use the submodularity of r.
Let $A^{\prime}=S-A-x$

$$
B^{\prime}=S-A-y
$$

Then $A^{\prime} \cap B^{\prime}=S-A-x-y$

$$
A^{\prime} \cup B^{\prime}=S-A
$$

Now, it's apply the submodular inequality of c, using A^{\prime} and B^{\prime} :

$$
\begin{aligned}
& r\left(A^{\prime} \cup B^{\prime}\right)+r\left(A^{\prime} \cap B^{\prime}\right) \leq r\left(A^{\prime}\right)+r\left(B^{\prime}\right) \\
& r(S-A)+r(S-A-x-y) \leqslant \underbrace{r(S-A-x)}_{A S \text { wive just shown: }}+\underbrace{r(S-A-y)}_{\text {Shinilaty: }} \\
& r(s-A-x)=r(s-A)-1 \quad r(s-A-y)=r(s-A)-1 \\
& =\operatorname{Lr}(S-A)-2 \\
& \underbrace{r(S-A-x-y)} \leqslant r(S-A)-2
\end{aligned}
$$

from the properties of rank function r :

$$
r(S-A-x-y)=r(S-A)-\left\{\begin{array}{l}
0 \\
1 \\
2
\end{array}\right.
$$

Therefore, the only way this in equality can be satisfied is if there is equality:

$$
r(S-A-x-y) \stackrel{\downarrow}{=} r(S-A)-2
$$

Thus, the desired conclusion $r^{*}\left(A \cup_{x} U_{y}\right)=r^{*}(A)$ of the Whitney Property holds.
The proof is complete. r^{*} is a rank function.

So we have this weirdissimo matroid.
Linear algebra would never give you this.
That's not the duad of a vector space.
So it's my duty to tell you where it comes from.
Exercise 29.1
Remember the matroid if a graph,
What's a graph, from the point of view of matroids?
A graph is a set of edges.
A_{n} edge is an atom in the lattice of partitions.
Then you take the restriction of the mutroid defined on the atoms, which we discussed, Let's take the matroid of a planar graph.

This is kultur,
There is a Theorem, know as Fary's Theorem, that states:
If a graph can be drawn in the plane by any curves whatsoever,
then it can also be drawn with straight line segments.
Proof - stretch it. That's the prot, basically.
So a planar graph can always be viewed as consisting of straight line segments,
We said that a set of edges in a mattoid is independent if it's a tree. It's depenalent if there is a circuit.
Remember, we discussed this. [26.7-9]
What's the orthogonal mattoid of a planar graphic mattoid?
Exercise - take the dual graph in the classical sense of graph theory.

Put a point in the center of each region, including the outermost region.
Then join two points if their regions are adjacent.

Theorem - The mattoid of this graph is the orthogonal miatroid. That's an exercise for you to work on.

Theorem
The orthogonal mattoid of a planar graphic matroid is the matroid of the dual graph. $\tau_{\text {isomorphic }} t_{0}$, of course

Prove this.
It doesn't look obvious, but if's kind of easy when you look at it.

- What do independent gats look like in the orthogonal mattoid?

There is the following theorem.
The basis of the orthogonal matroid is the complement of a basis of the given matroide
If you take a graph, what's a basis? A maximal spanning tree.
If you take all the edges not in that spanning tree, that's basis of the orthogonal mattoid. In fact, it's the basis of the dual graph, if you stat looking at it and for l around.

Let's set a date.
I'll take you out for Combinatorial Brunch,
There's only one date - Sunday, December 6 .
We assemble in my apartment at 1105 Massachusetts Avenue, Apartment 8F, at exactly 11:30.
From there, we walk to the Charles Hotel and we have brunch in the Charles Hotel.
Q: In the morning?
A: Morning?
I plan on getting up early.
I used to got up that late, myself, when I was your age.
It's one of those all yon can eat things.
Come hungry.
Come hungry.
After all yonive heard of combimatories, you deserve a brunch.
Theorem
If B is a basis of (S, r) then $B^{C}=S-B$ is a basis of $\left(S, r^{*}\right)$.

Proof
Q: What does it mean to be a basis of (S, r) ?
A : When B is a maximal independent set, with $r(B)=|B| .[24.8,24.10]$
So, let's plod ahead with our definition of r^{*} :

$$
\begin{aligned}
r^{*}\left(B^{c}\right) & =\left|B^{c}\right|+r(\underbrace{S-B^{c}}_{B^{c^{c}=B}})-r(S) \\
& =\left|B^{c}\right|+r(B)-r(S)
\end{aligned}
$$

How do you have B maximal? What makes it a basis? when:

$$
|B|=r(B)=r(S)
$$

The maximal independent set has maximal rank. [24.11]

$$
r^{*}\left(B^{c}\right)=\left|B^{c}\right|
$$

\uparrow equality implies that B^{c} is an independent set of $\left(S, r^{*}\right)$.
One carr argue that this independent sit is maximal. It's not difficult. And we are done,

$$
B^{C} \text { is a basis of }\left(S, r^{*}\right) \text {. }
$$

- Now, dort think this is weird.

Because electrical engineers built all circuit theory from these facts,
Maxwell's equations, Kickhoff's laws are inside this stuff.
I don't have time to go into it, ob viously.
But all a circuit theory comes' out of this. That's what it's all about,

- Lastly, let me mention the original motivation by whitney in inventing matroids, He noticed that if you have a graph that is not planar there is no dual graph. However, every graph defines a matroid. This matroid has an orthogonal matroid.
It's not' a graph, but it's a mattoid.
And it plays the role of the dual graph.
That's how matroids started.
- Needless to say, we have considered just the very beginning of the theory of mantroids, If you want' to learn more, you can read my old booklet with Crapo called "Combinatorial Geometries," which was rewritten in 4 volumes by one ot my former sTudents, Neil White.
Volume 1 - Theory of Matroids,
2-Combinatorial Geometries
3 - Mattoid Applications
4 - Oriented Matroids.
Our original book, by Compo and Rota, was called Preliminary Edition, 1970 .
The real edition never appeared,
So you have t look at these 4 volumes.
It's a very deep theory that is going on.
I will mention, later on, some of deepest theorems that have been proved recent ty in matroid theory.
Some of the deepest theorems in combimataries have to do with matrids,

Now we want to discuss the connection between matroids and lattices.
The lattice theoretic analogue of a matraid is the notion of a geometric lattice.
As a matter of fact, some people like to do the whole theory of matroids just talking about lattices.
As an example:
People who are interested in arrangements of hyperplanes, where instead of points, you take hyperplanes, you find the geometric lattice defined by intersecting these hyperplanes,
So, in order to get from matroids to lattices, we need to discuss one of the most important notions of mathematics and, in particular, combinatorics.
That's the notion of closure.
I should have done this before, but somehow didn't get around to it.
Sometimes I slip and call this a closure relation.
Lot's of people call these closure relations.
They are nat relations, however.
It's a misuse of language.
There are lots of books where you will see closure relations.
They are not relations.

Closure
Closure is a nation invented by the great $A_{\text {merican mathematician E.H. Moore, who }}$ invented many, many thing s.
For example, be invented finite fields.
When he invented finite fields and published the first paper on finite fields in the America Journal of Mathematics a famous European mathematician named? stated: "At last we have a mathematical concept on which we can be sure there will never be any applications, what so ever."
Little did he know that half of Course 6 (Electrical Engineering and Computer Science) is working on finite fields and coding theory.
E. H. Moore invented many other things, but he was cursed with a very bad habit. Namely, he wanted his own notation for everything.
And, as a consequence, nobody read anything,
It would be a very nice project for one f you t pick up these books by E.H. Moore (of which there are 3 or 4), which are called "General Analysis" and rewrite them so that people can read them in the lang mage ot today. It would be a genuine help to know what E. H. Moore really had. Because we are discolored.
He invented the notion of convergence, for example, in topological spaces, which was reinvented by several people. And heaven knows what else.

Anyway, his notion of closure took.
Given a set S, probably infinite, the closure is a function from $P(s)$ to $P(s)$, written:
$\overrightarrow{\text { bar }} \vec{\gamma}: P(s) \rightarrow P(s)$
bar
Let $A \subseteq S$, then $A \rightarrow \bar{A}$ is the closure of A, subject to the following 3 properties:
(1) $A \subseteq \bar{A}$
(2) $\overline{\bar{A}}=\bar{A}$
(3) $A \subseteq B \Rightarrow \bar{A} \subseteq \bar{B}$

Any function from sets to sots with these properties is called a closure.
If $A=\bar{A}$, we say the set A is closed.

| | | $\mid 11 / 18 / 98$ | 29.9 |
| :--- | :--- | :--- | :--- | :--- |

Before I give you examples, let's prove the one and only theorem about closnes:
Theorem 1
The intersection of any number of closed sets is closed.
If A_{i} are closed, then $\cap_{i} A_{i}$ is closed.
Proof
from definition of intersection

$$
\overbrace{i} A_{i} \subseteq A_{i}=\overline{A_{i}}
$$

since the A_{i} are closed, by assumption
Then we take closures of both sides. From property 3, we have:

$$
\overline{n_{i} A_{i}} \leq \overline{A_{i}}=A_{i}=\overline{A_{i}}
$$

$\tau_{\text {from property } 2 ;} \overline{A_{i}}=\overline{\overline{A_{i}}}$
Then one can argue :

$$
\overline{Q_{i}^{A_{i}}} \subseteq \underbrace{\hat{R}_{i}}
$$

and since the A_{i} are closed,

$$
\bigcap_{i} \overline{A_{i}}=\bigcap_{i} A_{i}
$$

$$
\overline{n_{i} A_{i}} \subseteq \bigcap_{i} A_{i}
$$

Now let's do it the other way around.
Let's consider the set $\bigcap_{i} A_{i}$. B_{y} property 1, we have:

$$
\cap A_{i} \subseteq \overline{n_{i} A_{i}}
$$

Combining this with the equation above, we must have the equality:

$$
n A_{i}=\overline{\eta_{i} A_{i}}
$$

Thus $\bigcap_{i} A_{i}$ is closed. As desired.

Now what is interesting are the examples of closures,
Like many mathematical concepts, you don't understanol them until you see the typical examples.
In the case of the closure, you have completely different examples.
Example 1
Suppose you have a closure where the finite union of closed sets is closed.
Assume, in addition to the 3 properties, that:

$$
\overline{\bar{A} \cup \bar{B}}=\bar{A} \cup \bar{B}
$$

this doesn't follow from the 3 properties.
Then it's called a topology:
The study of this closure is called topology.
Most closures don't satisfy this additional property.

Example 2
$V=$ vector space
$A \subseteq V$
Set \bar{A} to be the vector space spanned by A.

$$
\bar{A}=\operatorname{span}_{n}(A)
$$

Obviously $A \rightarrow \bar{A}$ is a closure.
But note that the propority in example 1 is not satisfied:

$$
\overline{\bar{A} \cup \bar{B}} \not \ddagger \bar{A} \cup \bar{B}
$$

span. union of 2 subspaces
This closure has the important property that is called, lo and behold, the exchangepreperty. Not at random,
So let's write the exchange property more properly,

- $\left\lvert\, \begin{aligned} & \\ & \text { - Steinitz: Exchange Property }\end{aligned}\right.$

After steinitz, who was the inventor of fields,
He wrote eng big, huge paper of about 200 pages, where the whole field of fields. was invented. Everything. Incredible.
Take this closure in a vector space.
we have the following property:
Span has the following property:
If $y \in \overline{A U_{x}}$ but $y \in \bar{A}$ then $\left.x \in \overline{A U_{y}}\right\}$
That's the Steinitz Exchange Property,
well connect it with the Exchange Property we've seen previously [24.9 Theorem 3] soon.
Let's prove that this closure satisfies the steinitz Exchange Property. It's very important to verify this in detail.
$y \in \overline{A U_{x}}$ is assumed.
That means that y is in $\operatorname{span}\left(A U_{x}\right)$.
This means that y is a linear combination of x and elements of A,

$$
y=\sum_{i} \lambda_{i} a_{i}+\lambda x, \lambda_{i}, \lambda \in \text { field }
$$

That's just the first assumption,
Now let's use the $2^{\text {nd }}$ assumption.
y is not a linear combination of just elements of A.

$$
y \propto \bar{A} \Rightarrow \lambda \neq 0
$$

Therefore, we can rewrite the above equation as:

$$
x=\lambda^{-1} y-\sum_{i} \lambda^{-1} \lambda_{i} a_{i}
$$

But this is just a way of saying:

$$
x \in \frac{v}{A U_{y}}
$$

And that's the Steinitz Exchange Property.
We will see that every matroid satisfies this.
In every matraid, you can find a closure that satisfies this exchange property.
In that sense, matrids resemble vectors.

Example 3
Convex closures.
In $\mathbb{R}^{n}, \bar{A}=$ smallest convex closed set containing A
How do you know there is such a set?
The intersection of two convex closed sets is convex closed, Take all the convex closed sets containing A and intersect them all, That's a convex closed set containing A.
This is a closure that does not satisfy the Steinite Exchange Property:
It satisfies certain properties, that I don't want to go into, that more or less characterize it, called antiexchange.
Just to give you an example, this closure does not satisfy the property in example 1:

$$
\overline{\bar{A} \cup \bar{B}} \neq \bar{A} \cup \bar{B}
$$

if you take the union of two closed sets $A+B$, the convex closure is usually bigger.
You have tor round it up to get the convex closure.

- Example 4

Let $P=$ any partially ordered set:
Given $A \subseteq P$, set $\bar{A}=$ smallest order ideal containing A,
This defies a closure.
And this closure does satisfy the property:

$$
\overline{\bar{A} \cup \bar{B}}=\bar{A} \cup \bar{B}
$$

$$
\left\{\begin{array}{l}
\text { this is satisfied with lit's to spare. } \\
\text { You can toke an arbitrary union. } \\
\text { The union of the closure of an arbitrary union is a closure. }
\end{array}\right\}
$$

You can say that the order ideals of a partially ordered sot form a topological space, but a very special one.
Because the union of any number of closed sets. is closed.
A lot of work has been done in characterizing these topological spaces.
But we don't have time to discuss this at. length.
It was one of the topics we crossed out. [16.1]

- Example 5-matroids

Given a matroid (S, r), define \bar{A} for $A \subseteq S$ as follows:

$$
\begin{aligned}
\bar{A}=\left\{A U_{x}\right. & \left.: r\left(A U_{x}\right)=r(A)\right\} \\
& \left\{\bar{A}=A \text { plus all } x \text { sit. } r\left(A \cup_{x}\right)=r(A)\right. \\
& \text { Weive seen that: } \left.\begin{array}{r}
r\left(A \cup_{x}\right)=r(A) \\
\\
\text { (The whitney Property) } \\
r\left(A U_{y}\right)=r(A)
\end{array}\right\} \Rightarrow r\left(A U_{x} U_{y}\right)=r(A)
\end{aligned}
$$

You can keep adding and the rank stays the same. So it's consistent.
You keep adding as much as you can.
It's almost obvious that this is a closure.
Well prove this in detail next time,
Then weill prove that this closure satisfies exactly the Steinits Exchange Property. Just in the old days of linear algebra.

Closures and Geometric Lattices
Let me begin by reviewing.
Last time we defined the notion of $\frac{\text { closure, }}{\tau}$

$$
\left\{\begin{array}{l}
\text { improperly called closure relation. } \\
\text { But it's not a relation, Yet people } \\
\text { Aten say closure relation, I dort Know, } \\
\text { why, }
\end{array}\right\}
$$

- A closure is a map from sets to sets.

Namely:
$A \rightarrow \bar{A}=C \mid(A)$, all $A \subseteq S$ (often infinite)
satisfying the properties:
(i) $A \subseteq \bar{A}$
(2) $\overline{\bar{A}}=\bar{A}$
(3) $A \subseteq B \Rightarrow \bar{A} \subseteq \bar{B}$

This is a universal concept of mathematics.
Once you know it, you see it everywhere, like pink elephants.
If you don't know it, you don't see it.
That's why people in biology, for example, don't do mathematics, Because they don't know
If you don't know what to see, you don't see it.
If you know about closures, you see closures every where and you start thinking about And it helps.
And we saw last time that there is essentially only one simple theorem about closures.
There are many complicated theorems, but only one simple theorem,
Namely, that the intersection of closed sets is closed.

- And we saw that you must not be misled to confuse the notion of closure with a topological notion of closure.
The topological nation of closure is a very special case of a closure that, for historical reasons, enjoyed an immense amount of attention this century, under the name- of topology.
$\left.\begin{array}{c}\text { A topological closure also satisfies the property: } \\ \frac{\bar{A} \cup \bar{B}}{}=\bar{A} \cup \bar{B}\end{array}\right\}$
Most closures in this world don't satisfy this.

Because a topological closure defines the closed sects of sets of a topological space, And a topological space is something very similar to a matroid, in the sense that it enjoys several cryptomorphic definitions,

- You can define a topological space using open sets, closed sets, convergence, coverings. Similarly, you can define a matroid in terms of rank, independent sots, basis, and, as we shall shortly see, closures.
Then we began To define the closure associated with every mattoid.
By the way, I decided to teach this course again in the $F_{9} 11,1999$, in order to cover the topics $\frac{I}{}$ couldn't cover here.
You can take the course again. in Fall, 1999.
I guarantee that there will be no overlap with this course. Nat evan the notion of partinlly ordered sets.
It will be totally disjoint from this course.
Weill start with species, them we'll do totally positive matrices, all sorts of other things, Actually, well start with Möbius functions in the Fall, 1999 , because I don't think well get to them in this course.
So, well finish matroids today and then start with geometric probability,
And well cover geometric probability until the end of the term.
Geometric Probability is such a neglected subject.
It's full of research problems,
I will mention some of them.
I want to get to the point where at least you see what the fascinating, open research problems in the theory of matroids are.
Then weill begin with geometric probability.
- Closures associated with matroids

Given a matroid (S, r), we define a closure $A \rightarrow \bar{A}$, for $A \subseteq S$, as follows:

$$
\text { set } \bar{A}=A \cup\left\{x: r\left(A U_{x}\right)=r(A)\right\}
$$

Theorem
$A \rightarrow \bar{A}$ is a closure and it satisfies the Steinitz Exchange Property:
If $y \in \overline{A U_{x}}$ but $y \& \bar{A}$ then $x \in \overline{A U_{y}}$
$\tau_{\text {means the same as "and". }}$

Exercise 30.1
Every finite set endowed with a closure that satisfies the Steinite Exchange Property defines a matroid.
Prov this,
How? Like this,:
You define an independent set.
And we already know how F go from independent sets to ranks,
From independent sets, we want the rank that is the size of the maximal independent set contained in the sot.
So, from this definition, if you"can define the notion of independent sots, then you get
Hint: Let I be "independent" when, for every $x \in I, x x \overline{I-x}$. t in quotes, because you don't really know yet
Think of a tree,
You remove any edge x in the tree not in the closure $\overline{I-x}$.
Once you have the definition and you prove that "independent" sets satisfy the exchange property for independent sots, then you're back in bus sires.
This is the way matroids are developed in my old book that become "Theory of Matroids."

So let's prove the theorem. [30.2]
Like all theorems I proved, I have to look it in, because I've blocked out the proof. First we pave that $A \rightarrow \bar{A}$ is a dosnce, satisfying poperies $1-3$ of a closure $[30,1]$. Then we show that it satisfies the Steinitz Exchange Property.
Proof
(i) $A \subseteq \bar{A}$

Obvious, since $\bar{A}=A \cup\left\{x: r\left(A \cup_{x}\right)=r(A)\right\}$
you are adding stuff to A

$$
A \subseteq \bar{A}
$$

(3) $A \subseteq B \Rightarrow \bar{A} \subseteq \bar{B}$

(3) $A \subseteq B \Rightarrow \bar{A} \subseteq \bar{B}$

Given $A \subseteq B$
Apply the submodular inequality to the mattoid (S, r) rank function:

$$
r\left(A^{\prime} \cup B^{\prime}\right)+r\left(A^{\prime} \cap B^{\prime}\right) \leq r\left(A^{\prime}\right)+r\left(B^{\prime}\right)
$$

Let

$$
\left.\begin{array}{rl}
A^{\prime}=A \cup_{x} \\
B^{\prime}=B
\end{array}\right\} \Rightarrow \begin{aligned}
& A^{\prime} \cup B^{\prime}=A U_{x} \cup B \\
& \quad \text { since } A \subseteq B \\
&=B \cup_{x} \\
& A^{\prime} \cap B^{\prime}=\left(A \cup_{x}\right) \wedge B \\
&=\underbrace{(A \cap B)}_{\text {since } A \subseteq B,} \cup(y \cap B) \\
& A \cap B=A \\
&=A
\end{aligned}
$$

Substituting into the submodulor inequality gives:

$$
r\left(B \cup_{x}\right)+r(A) \leq r\left(A U_{x}\right)+r(B)
$$

Recall that the closure of A is defined here as:

$$
\bar{A}=A \cup \underbrace{\{x: r(A \cup x)=r(A)\}}
$$

if we have x sit. $r\left(A V_{x}\right)=r(A)$, then the submodular inequality above becomes:

$$
r\left(B \cup_{x}\right)+r(A) \leq r\left(A V_{x}\right)+r(B)
$$

\uparrow by the increasing property of a rank function,

$$
r(B) \subseteq r(B \cup x) \Rightarrow r(B) \leq r\left(B \cup_{x}\right)
$$

Therefore, we must have equality, here.

$$
\begin{aligned}
r\left(B U_{x}\right) & =r(B) \\
x: r\left(A U_{x}\right)=r(A) & \Rightarrow x: r\left(B U_{x}\right)=r(B)
\end{aligned}
$$

Finally, since $A \subseteq B$:

$$
\begin{aligned}
A \cup\{x: r(A \cup x)=r(A)\} & \subseteq \frac{B \cup\{x: r(B \cup x)=r(B)\}}{A} \\
& \subseteq \frac{\bar{B}}{314},
\end{aligned}
$$

(2) $\overline{\bar{A}}=\bar{A}$

Suppose $x \in \overrightarrow{\vec{A}}$
τ
recall that:

$$
\begin{aligned}
& \bar{A}=A \cup\{x: r(A \cup x)=r(A)\} \\
& \bar{A}=\bar{A} \cup\{x: r(\bar{A} \cup x)=r(\bar{A})\} \\
& x \in \overline{\bar{A}} \Rightarrow r(\bar{A} \cup x)=r(\bar{A})
\end{aligned}
$$

$r \bar{A})=r(A)$ by the definition of \bar{A}
$\leq r\left(A U_{x}\right)$ by the increasing property of a rank function
$\leq r\left(\bar{A} V_{x}\right)$ again, by the increasing property of a rank function, since:

$$
(A \cup x) \subseteq(\bar{A} \cup x)
$$

$=r(\bar{A})$ from implication a love:

$$
x \in \bar{A} \Rightarrow r(\bar{A} \cup x)=r(\bar{A})
$$

Therefore, every thing gats squeezed and we have the equality:

$$
\begin{array}{r}
r\left(A \cup_{x}\right)=r(A) \\
\hat{Q}_{\text {ie., }} x \in \bar{A}
\end{array}
$$

Therefore:

$$
\overline{\overline{\mathcal{A}}}=\bar{A}
$$

So properties $1-3[30.1]$ are satisfied and \bar{A} so defined is, indeed, a closure.
Finally, we prove that $A \rightarrow A$ satisfies the Stoinitz Exchange Property:
$\frac{\text { (Steinitz Exchange Property) }}{\text { The }}$
This is really trivial. You just write every thing out and stare at it.
$y \in \overline{A U_{x}} \Rightarrow r\left(A U_{x} U_{y}\right)=r\left(A U_{x}\right)_{r}$ from the definition of this closure
$\left.y \in \bar{A} \Rightarrow / r\left(A U_{y}\right)=r(A)+1\right]\left[\begin{array}{l}\text { Since } y \text { is } n+t \text { i- the clowns of } A \\ r\left(A V_{y}\right) \neq r(A) \text {. And from definition }\end{array}\right]$

$$
r\left(A U_{x} U_{y}\right)=r\left(A U_{y}\right)+\left\{\begin{array}{l}
0 \\
1
\end{array}\right.
$$ of rank function, we know that:

$$
=r(A)+1+\{0
$$

$$
r\left(\dot{A U_{y}}\right)=r(A)+\left\{\begin{array}{l}
0 \\
i
\end{array}\right.
$$

$$
\text { Therefore } r(A \cdot . y)=r(A)+1 \text {. }
$$

Thus: $A U_{y} U_{x}$
Butitan not be 2, since $r\left(A U_{x}\right)=r(A)+\{i$
$r\left(A U_{x} U_{y}\right)=r\left(A U_{y}\right) \Leftarrow$ this is the some as saying $x \in \overline{A V_{y}}$.

So the steinitz Exchange Property is just a translation of the definition. GCR: "Who's buried in Grant's tomb?" as Mr. Guidi says.
JNG: No. It's "M re Guide will find out." I don't know,
So we've proved that this is, indeed, a closure and that the Steinitz Exchange Property is satisfied.
the theoram is proved,

Now something I should have told you before,

- Every $\frac{c \text { closure }}{7} A \rightarrow \bar{A}$, for $A \subseteq S$, defines a lattice L, as follows: just properties 1-3 [30.1]
elements of L are ail closed sets.
$\bar{A} \wedge \bar{B}=\bar{A} \cap \bar{B} \quad$ The meet of 2 elements is ordinary intersection.
$\bar{A} \vee \bar{B}=\overline{\bar{A} \cup \bar{B}} \quad$ The join of 2 elements is the closure of their union.

Exercise 30.2
Prove that L, so defined, is a lattice.
Pretty trivial,

- Exercise 30.3

A slightly less trivial exercise.
State precisely and then prove: \longleftrightarrow I like to state exercises this way.
Most lattices arise from this construction,
There is a natural condition on lattices.
If I tell you it, it becomes trivial immediately.

- In particular, every closure defined by a mattoid defines a lattice.

The closed sets of a matroid are called flats.
The flat of rank $1=$ point

$$
\begin{aligned}
2 & =\text { line } \\
3 & =\text { plane } \\
n-2 & =\text { coline }
\end{aligned}
$$

$$
\begin{aligned}
& n-2=\text { coline } \\
& n-1=\text { coatom (or copaint) } \leftarrow \quad \text { sometimes flats of ran } \\
& \text { hyperplanes }
\end{aligned}
$$

The lattice of flats of a matroid is called a geometric lattice:

- A geometric lattice is the lattice of flats of a mattoid.

Is there a specific characterization of geometric lattices?
Let's see.
Let $L=$ geometric lattice
τ lat's look at the atoms.
It's tempting To say that the atoms give you the set 5 you started with.
That's not true. Almost true.
It ought to be true, as they say in philos op by.
Why is it almost true?
Because in a matroid yo can have a closure of the empty set that is not the empty set.
Don't be fooled.
We have the rank of the empty set is zero ir $(D)=0$
But there may be points of zero rank. That's not excluded,
So there may be points of zero rank,
There may be two points which are dependent on each other. That's nit excluded either.

I never told you before and I'm sorry to inform you, at this point, of this unpleasant fact,
But that's the way if is,
In fact, it's good. Well give an example where this really happens.
Atoms of geometric lattice $L=$ closed set of rank 1
In many matroids, it's true that the closet sets of rank 1 are exactly the points. In all the examples' we have sean, that was the case. So this often happens.
And it often happens that the closure of the empty set is the empty set: $\bar{\varnothing}=0$

Well consider, later, examples where the above cases do not happen.

	Suppose we are given:
$x \in L \lessdot a_{\text {abuse of notation }}$ xis an atom of L.	
$A=\bar{A} \in L$	

Suppose we are given:
$x \in L \longleftarrow$ abuse of notation

$$
A=\widetilde{A} \in L
$$

Then we have:

$$
\begin{aligned}
& r(A \cup x)=\left\{\begin{array}{ll}
r(A) & \text { if } x \leqslant A \Leftarrow\left[\begin{array}{l}
\text { if } x \text { is an atom, which is the } \\
\text { closure of any element which I } \\
\text { obtained in } A, \text {, adding } x \text { docent } \\
\text { increase the rank. }
\end{array}\right.
\end{array}\right] \\
& r(A)+1
\end{aligned} \text { otherwise } \quad \text { have: }
$$

Furthermore:
Every $\underbrace{A=\bar{A}}$ is the sup of a set of atoms, every closed set

- This is enough to characterize geometric lattices.

Namely:
Every element is the sup of atoms:
If you take an element of the lattice and add an atom (i.e., take the sup of the element and the atom) either the rank stays the same or it goes up by exactly 1.

What about the Steinite Exchange Property?
How does it translate in terms of lattices?
Very elegant thy.
This is the:

- Birkhoff Covering Problem of a Geometric Lattice
L is a geometric lattice.
I denote elements of L by Greek letters $(\alpha, \beta$, etc.).
$\alpha, \beta \in L \quad$ They are closed sets of some sets, but I imagine these closed sets as elements of the Hasse diagram.
Pretend I don't know where they come from.
If both α and $\beta \frac{\text { cover }}{\tau} \alpha \lambda \beta$ then $\alpha \vee \beta$ covers both α and β. cover means immediately above

Every geometric lattice satisfies this covering property.
Let's see what this means.

Whenever you have 2 elements immediantoly above ane, than. their sup is immediately above these 2 elements.

This is just the Steinitz Exchange Property restated.
It's "who's buried in Grant's tomb?" at it's worst.
Exercise 30,4
I'll prove the Steinitz Exchange Property by gestures.
You write it down as an exercise.
It's just too simple.
What does it mean for α to cover $\alpha \wedge \beta$?
It means you get α by taking $\alpha \wedge \beta$ and suping it with some atom, Similarly, you get β by taking $\alpha \wedge \beta$ and supling it with another atom, since β covers $\alpha \wedge \beta$,
Under these circumstances, the sup of $\alpha \not \beta, \beta$ is the sup of $\alpha \wedge \beta$ and two atoms.
Is that hand?
If's obvious.

Conversely, if you have the Birkhoff Covering Property and the sup of atoms, then you
have a matroid.
Conversely, every lattice satisfies the Birkhoff Covering Property, where every element in the sup of atoms defines a matroid on the set of atoms.

Conversely, if L is a finite lattice where every element is the sup of a set of atoms and that satisfies the Birkhoff Covering Property, then L is a geometric lattice,
More precisely:
Let $S=$ set of atoms of L
Define $\bar{A}=$ the set of atoms $x \in S$ st. $x \leq \sup A$
Then we obtain a matroid. We gat a closure with the Steinitz Exchange Property.

.	
In particular, given any matroid (S, r), let:	

$$
S_{1}=\{\bar{x}-\overline{\mathscr{D}}, x \in S\}
$$

The matroid (S, r) defines naturally a matroid on. S_{1}.
We got rid of the crud.
Make every point closed and take away the closure of the empty set.
A matraid is naturally defined on S_{1}.

- If you wart a more elegant construction, given any mattoid (S, r), take its geometric. lattice and let:

$$
S^{\prime}=\text { set of atoms of this geometric lattice. }
$$

Then use the construction above. Namely, define:

$$
\bar{A}=\text { the set of atoms } x \in S^{\prime} \text { s.t. } x \leq \sup . A
$$

This construction defines another matroid that, lo and behold, is isomorphic (i.e., has the same geometric lattice).
See, what matters is the geometric lattice of a matroid.

Exercise 30.5
By the way, I haven't proved Whitney's Theorem. $[25.4,26.4]$ I leave if to you as an exercise.
Prove Whitney's Theorem.
It's purely technical. Just do it by induction. (see also [31.4])

I'm glad I'm teaching this course again next year, because we've covered so little material.
I apologize for going so slow,
On the other hand, there are many undergraduates in the course and people with different backgrounds,
So it's better to go slowly.
So this fundamental stuff - it's better to hammer it in..
Mr. Guid; is over there rubbing it in.

Now you ask, what's an example of a matroid that has all these funny things we discussed earlier?, [30,7]
Points dependent on each other, etc.
Let's look at some examples now.
Example 1-Multigraph
A graph is a set of pairs over the set S, because they are atoms in the lattice of partitions, But we can imagine two points being connected by different edges - multi, le edges. And, you can imagine an edge having only one edge point. This is called a loop.

multigraph
How do we define a mattoid in a multigraph?
Well, you look at the various definitions of matron and pick the one that is most
convenient.
In this case, we proceed as follows.
We say a set of edges is independent if its a tree.
Note, tor example, that a loop is not independent.
So we define a matroid using independent sets, which are represented as trees.
We define a matroid that way because these are equivalent definitions.
Independent sets $=$ Trees

multiple edges

Now yousee that multiple edges connecting the same two endpoints are dequadent on each th er.

The closure of edge x is the set of 3 edges, because the additional edges do not increase the rank.

$$
\begin{aligned}
& \square<2 \text { The closure of the empty set contains every loop. } \\
& \text { A loop has rank equal zero. }
\end{aligned}
$$

So what you do is make all the multiple edges intr single edges and discard all the loops - And you get another matroid, whose geometric lattice is isomorphic t the geometric lattice

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | |
| | This is sometimes called a combinatorial geometry, when every point is closed. | |
| A matroid, where every point is closed and the closure of the empty set is the empty | | | set is called a combinatorial geometry.

- Example 2 -Linear Algebra

Instead of taking projective space, let's take a vector spaces,
The closure of a set of points is the smallest subspace through the origin containing that set of points.
Then 2 points on the same line are dependent on each other.
The closure of a point is the line (through the origin) spanned by that point. And two pints on the same line are dependent.

Remember, we have two operations on matroids - restriction and contraction Let's see what these mean with geometric lattices.
Restriction
Restriction means you have a matrix and you restrict it to a subs set A. It's still a mattoid. It doesn't "know,"

In terms of geometric lattices, it's this:
Given $S=$ set of atoms of a geometric lattice L
S defines a matroid, which is defined on the set of atoms,
Take a subset of atoms, $A \subseteq S$.
What will be the geometric lattice corresponding to this set A ?
Easy.
You take all the sups of these elements. That's a geometric lattice.
the infs will be different. But sups will be the same.
So here we have a prime example of a situation where sups coincide where inf are completely different, depending on what you take a subset of.

Take all sups of subsets of A and you got another geometric lattice, which is called a restriction.
We did this for graphs, $[26.13-14]$
We took subsets of the set of atoms of partitions, that's a set of edges, then we took their sups. That's a geometric lattice,
For a graph, you get what is called the lattice of contractions of a graph.

Contraction
(not to be confused with what I just said, ie. the lattice of contractions of a graph).
For a mattoid, contraction is the following:
$\operatorname{matraid}\left(S-A, r_{A}\right)$ where $r_{A}(B)=r(A \cup B)-r(A)$
So, what will be the geometric lattice analogue of contraction?
Yon take sup of A. That gives yon a lattice L.
Then you take the interval of items between A and $\hat{1}$.
And this is a geometric lattice that is isomorphic to the contraction matroid above.

Exercise 30.6
The above is an almost trivial exercise.
state this and prove it.
Upper segments of a geometric lattice correspond to contractions.

Exercise 30.7
Every element of a geometric lattice L is the meet of a set of hyperplanes.
You can look at geometric lattices upside down and define a closure on hyperplanes. But that closure does not satisfy the Steinitz Exchange Property, It can be characterized, but it's artificial, because it's upside down. By the general theorem of closure, we get another closure of hyperplanes, You take a meet and get the hyperplane above.
ane. N^{3}

John Guidi

As I mentimed last time, this concise will continue next fall with the subjects that we left out from our list. [16, 1]
Next fall the course will start with Mobiles functions.
You must not think that the theory of matroids is just what we dealt with in this course. We have barely touched the surface of the theory of matroids, The theory of matroids is a very deep and extensive. theory. And we've covered just the bare essentials.
So today I'd like to show you, descriptively, some of the really deep problems in the theory and how they are stated, of course, I can't give you proofs.

- The concept of a matroid is a very stable concept, as I mentioned before. Historically, it arose in the most unlikely of places.
It arose in the theory of fields, in the theory of transcendental extensions of fields. That's when steinitz noted that if you took the lattice of transcendental extensions of a field, this lattice was not modular, but satisfied the Birkhof Covering Property, which is equivalent to the exchange property, which is now called the Sterile Exchange Property.
That's the first example, historically, where matroids arise. Transcendental extensions of fields.
It's also the least studied example, strangely enough.
In recent years, there has been only 1 paper studying transcendental extensions of fields, from the point of view of matroids.
This paper is by Björner and Lovász, two outstanding combinaterialists.
It would be nice to go back to transcendental extensions of fields and see what one can say from the point of view of matroids.

There will be a Combinatorial Brunch, where we are supposed to disenss only combinatorics. It will count like a class.

Combinatorial Brunch, Sunday December 6 .
I think it's better if we meet at the Charles Hotel rather than my apartments. Because, otherwise, we have to first assemble and then march over.
We 'll meet at the entrance of the dining Hall, inside the hotel.
Everybody who sits in this course is invited.
$11: 57 \mathrm{Am}$, because I made a reservation for everybody for noon. I made a reservation for 26 people.
The Charles Hoplil is at Harvard Square, near Harvard.
You got Harvard Square and ask where the hotel is,
Q: How shall wa dress for brunch?
A: There is no dress required. Don't be Too disheveled.
It's all you can eat. So be hungry.
The discussion will be exclusively on combinatorial topics.

So let's finish up on matroids and geometric lattices.
And I would like To state what the fundamental results and problems in the theory of matroids are.
It will be slightly handwaving, because we haven't developed all the techniques. But I think youll get an idea' of what's going on.
Geometric Latices
Given a matroid (S, r), one can obtain from this matroid another mattoid, where every point is closed and the closure of the empty set is empty, by simply trimming
Given mattoid (S, r)
Say :
(1) $\bar{x}=x$, for all $x \in S$
(2) $\bar{\theta}=\varnothing$

Sometimes there matroids are called combinatorial geometries.
\uparrow I tried to give this name, long ago, but it didn't take.
\Uparrow
you might assume that every matroid satisfies this. But that's not sos
For example, remember that the orthog sone madrid depends very much on whether points are closed.
If you do not assume this, then you can have several matroids, that have the same combinatorial geometry associated with them, but have different orthogonal matroids, Because a basis of the orthogonal matron is the combinatorial basis.
So if you have points of rank O, they count in the orthogonal geometry, because the
orthogonal geometry has changed. orthogonal geometry has changed.

- However, from the point of view of lattices, a combinatorial geometry is the set of atoms of the geometric lattice of flats: (closed sets) of the matroid.
Let $L=$ geometric /attica
$S=$ its atoms
We can characterize intrinsically the geometric lattice by saying every element is the sup of atoms.
$\left.\begin{array}{l}\text { Every } \alpha \in L \text { is } \alpha=\vee A, A \subseteq S \\ \text { and it has the Birkhoff Covering Property. }\end{array}\right\} \begin{aligned} & \text { equivalent tr properties required } \\ & \text { for a geometric lattice }[30.7-8]\end{aligned}$

	Birkhiff Covering Propaty

If α and β cover $\alpha \wedge \beta$, then $\alpha \vee \beta$ covers both α and β.

Observe that from the Birkhoff Covering Property, you can immediately infer that all maximal chains between \hat{O} and some arbitrary α have the same lang th.

Birkhiff Covering Property implies that all maximal chains have the same length,

$$
\left\{\begin{array}{l}
\text { Wive proved this 2 or } 3 \text { times already, from different } \\
\text { points of view, lt's pretend we dost know it and } \\
\text { see how it comes out of the Birkhof Covering , } \\
\text { Property, alone. }
\end{array}\right\}
$$

Letter show this,
First, let me observe the following.
If you define a geometric lattice with these properties, then it follows immediately that:

Every interval of a geometric lattice is a geometric lattice.
Hence, if L is a geometric lattice and $\alpha, \beta \in L, \alpha \leq \beta$, then $[\alpha, \beta]$ is a geometric lattice:
$\left\{\begin{array}{r}\text { Proof: The sup of atoms property follows from the argument wive seen already. } \\ \text { And the Birkhoft Covering Property is independent as to where you are, }\end{array}\right\}$
To prove the implication, we can proceed by induction.
W_{e} draw an example:
$\underset{\alpha}{ }$

There are 2 maximal chains between \hat{O} and $\hat{1}$.
You need to show they have the same length,
Both of them have to pass through an atom, because they are. maximal.
Take atoms $\alpha+\beta$, take their sup $\alpha v \beta$. Since $\alpha+\beta$ cover \hat{o}, by the Birkhoff Covering Property, $\alpha \pi \beta$ covers both α and β.

Now you apply the induction hypothesis to the interval $[\alpha \vee \beta, \widehat{1}]$; which is a geometric lattice,
And to the intervals $[\alpha, \widehat{1}]$ and $[\beta, \widehat{1}]$, by induction.
You have segments of the chains that overlap.
So the implication that all maximal chains have the same length, given the Birkhoff Covering Property, comes ont immediately.
This is the dassic argument.
Hence, a rank $r(\alpha)$ exists.
\uparrow which is really the rank of the flat of the matroid
Now, let's pretend we don't know the submodular laws.
Let's pretend we don't know about mat raids.
$\left(\begin{array}{l}\text { This is actually the idea of the proof, which I left you as an exercise, of whitney's') } \\ \text { Theorem }[30.10 \text { Exercise } 30.5] \text {. Now }\end{array}\right.$
Consider the inequality:

$$
r(\alpha \vee \beta)+r(\alpha \wedge \beta) \leq r(\alpha)+r(\beta)
$$

We rearrange terms and rewrite it this way:
(*) $r(\alpha \vee \beta)$

$$
\leq r(\alpha)+r(\beta)-r(\alpha \wedge \beta)
$$

Observe that the restriction:
$r_{\alpha \wedge \beta}(\gamma)=r(\gamma \vee(\alpha \wedge \beta))-r(\alpha \wedge \beta)$ is the rank of $[\alpha \wedge \beta, \widehat{\imath}]$ Therefore, inequality $(*)$ can be written as:

$$
r_{\alpha \wedge \beta}(\alpha \vee \beta) \quad \leqslant r_{\alpha \wedge \beta}(\alpha)+r_{\alpha \wedge \beta}(\beta)
$$

All we have to prove is that in an arbitrary geometric lattice, $f(\alpha \vee \beta) \leqslant r(\alpha)+r(\beta)$.
But this is obvious from the Birkhoff Covering Property, which sens; in essence, every time you add an element, you get one buck.

$$
\left[\begin{array}{lll}
\text { if } \alpha \text { and } \beta \text { cover } \alpha \wedge \beta, \\
\text { then } \alpha \vee \beta \text { covers } b \text { th } \alpha+\beta .
\end{array}\right]
$$

We also observe that:
Tony subset of atoms
a If $T \subseteq \subseteq$, then the set if all α 's sit. $\alpha=v U$, for some $U \leq T$, is a geometric lattice, called the restriction.

A contraction is a geometric lattice in the interval $[\alpha, \hat{1}]$.
A restriction is taking a subset of atoms and taking all the suplots, where the sups correspond with the sups in the big lattice, but the inf's do not.

A minor is the restriction of a contraction.

Let's see what happens for graphs.
A graph is a restriction of the letice of partitions.
We take the lattice of partitions, take a subset, we call them edges.
Then we take their sups.
We forget they are partitions, we look at the edges.
If we look at the edge's and don't want to talk about partitions, what does the lattice look like?
whet we gat a geometric way of visualizing the lattice of contractions of a graph,

$$
\left\{\begin{array}{l}
\text { the geometric latice of a graph } \\
\text { is called the lattice of } \\
\text { contractions of a graph. }
\end{array}\right\}
$$

We have an underlying set T. $S=$ subset of the set of atoms of $T[T]$

We visualize this as a graph, where T are the vertices,

What does it mean to take the geometric lattice generated by this set, where the sups are the same as the sups in the lattice of partitions?' we make elements of T equivalent, according to the edges. Successively.

You keep track, by drawing the loops (which are really unnecessary), of what has been contracted.

until y you getan atom
This is the classic way of visualizing the lattice of contractions at a graph. mathematically, it's just taking joins of partitions.
So what's a minor of the lattice of contractions of a graph?
You take a subset of the edges and you contract only those edges.
That's it,

Big Theorems of Mattoid Theory
"A matron is good iff its geometric lattice does not contain any minor isomorphic to one of the following finite list:
τ These are the hard theorems. Some of them proved. Some of them conjectures:
Thu problem is we don't understand the mechanism for proving these. theorems. We don't have a general $\frac{\text { machinery for proving these theorems. }}{\text { They re all }}$. They're all proven by ad-hac methods, But there ought be a general machinery for establishing
these, these,
I've worked most of my life trying to establish some madninory (some super homological machinery), but th this day we don't know how.
So lot me tell you what some of these theorems are.

- Example

A graph is 4 colorable af it does not contain a minor isomorphic to the complete 5 -graph. That's equivalent ti the 4 color conjecture.
This was proved by Dirac, the son of the physicist Dirac.
And it doesn't involve planarity.
Dirac proved that this is equivalent to the famous 4 Color conjecture about planar graphs.
A graph is 4 colorable eff its geometric lattice of contractions has no minos isomorphic to the lattice of contractions of the complete 5 -graph.
Conjecture

A graph is n-colorable iffits lattice of contractions does not contain a minor isomorphic to the lattice of contractions of the complete $(n+1)$-graph.
A couple of years ago, an extraordinary result was obtained by Professor Seymour of Princeton and Professor Robertson of ohio State,
They proved that Hadwiger's Conjecture is true, provided that the 4 Color. Conjecture is true.
Assuming the 4 Color Theorem is true, then Hadwiger's Conjecture is true.
This was a tremendous tour de force.
strangely enough, their proof uses the theory of well ordered sets.

So, these are some of the big conjectures:
Now let's see some of the things that are easier to prove.

- Dirac's Conjecture excludes minors of the complete 5-graph.

What if, instead, we exclude minors of the complete 4 -graph?
How good is a graph if its lattice of contractions does not contain a minor isomorphic to the lattice of contractions of the complete 4-graph?
We get something very nice.
Duffing's Theorem. This was proved a long time ago.
τ Duffin was the tender of John Nash and Raoul Bott.
He was Professor at Carnegie Mellon.
He was probably the greatest circuit theorist of his time,
It's too bad that we couldn't cover any circuit theory in this course. No time.

- It's a beautiful subject that should be covered in a math course.

To explain Puffin's. Theorem, we need a new concept.
The concept of a series-parallel network.
What's a series-parallel network?
It's a multigraph, a graph with loops and multiple edges, which is obtained as follows:

You have an infinite supply of edges.
You can "combine" edges by two operations - a series connection or a parallel connection. Lot G_{1} and G_{2} be two graphs.
$\xrightarrow[\text { Series connection source }]{s} G_{1}, G_{2}, \sin ^{\sigma}$
parallel connection source. $\underbrace{G_{1}}_{G_{2}}{ }^{\text {sink }}$

A series-parallel network is a multigraph obtained by iterating these two operations. For example:

A series-parallel network
Since a series-pacallel network defines a multigraph, it defines a matraid.
(We've seen that matroids can be deflued for multigraphs, as wall as for graphs.)
And what do these matroids look like?
Guess what?
Duffin's Theorem
A lattice of contractions of a graph is series-paralld tiff the complete 4-graph is an excluded minor.

This is not hard to prove, but it's not trivia d either.
This is one of the "easy" theorems of matroids.
Notice that this theorem has an extraordinary consequence,
In this theorem, there is no mention of the source and sink.
So how can the lattice know where the source and sink are.
The answer is - you can take any two vertices and make them source and sink.
So if a graph is series-parallel for one source and one sink, then pick any two vertices, it will be series-parallel for this new source and new sink,
This is a consequence of Duffin's Theorem,
This is something, philosophically, I have never understood.
Because series and parallel ore two operations.
Now we discover that the operations don't matter. Yon can take any two completely different operations.
You have two arbitrary operations, each of which is commutative and associative, and you combine them in arbitrary ways'.
That's a series-paallal graph.
Now Duffin's Theorem. tells you that you can get this in a completely different way,

Let's see another "easy" matroid theorem,	
Recall that:	

Let's see another "easy" matroid theorem,
Recall that:

- A matroid (S, r) is representable over a field F eff
there is a matrix whose entries are $\in F$ sit.
if you take $S=$ set of columns and
consider the rank, of any subset of columns S, in the linear algelira sense then the rank of S^{\prime}, in the linear algelera sense, is isomorphic to the matroid $\left(S_{i} r\right)$.

This gives you a representation of a matroid over a field.
So the question is: When can a matroid be represented over a given field?
Is there a finite number of excluded minors that guarantees reprentability over a given field?
[That's an unsolved question.
This is solved for a field of 2 elements.
It's kind of easy.
When can a matroid be representable with a matrix whose entries are Oar 1 ?

$$
\begin{aligned}
& 1+1=0 \\
& 1 * 1=1
\end{aligned}
$$

The answer is the following :

* Exercise n 31.1

Galois Field with 2 elements
A matroid is representable over $\overbrace{G(Z)}$ iff its lattice of contractions does not have the minor:
$\left\{\begin{array}{l}\text { Matroids representable over GF(z) are } \\ \text { said to be binary matroids. }\end{array}\right\}$

This is a necessary and sufficient condition.
If's very elegant. Prove this.

- The deepest representation theorems are due to Tate.

They are all concerned with when is a matroid representable over any field whatsoever,
This is equivalent to asking when can a mattoid be represented by a matrix that is totally unimodular.
This can be proved.
Tate found that there are 3 excluded minors, which I don't have time to describe.
One of them is the minor above in Exercise 31.1 and there are 2 more,
If the mattoid does not have any 3 of these minors in its lattice of contractions Then the matrix is totally unimodular.
Then, the question is:
When can a matriod be represented as a lattice of contractions of a graph?
The answer is that there are 5 excluded minors. The 3 from the totally unimodular case, plus 2 more.

- Then, the question:

When can a mattoid be represented as a lattice of contractions of a planar graph?
The answer is 7 excluded minors. The 5, from above, plus 2 more.
These are the big Tate theorems.
The deepest theorems to date on matroids,
Let me conclude by giving you a very elegant characterization of the lattice of partitions of a set, on the basis of this result.
To do 'that, we need the notion of a modular element in a geometric lattice,

- If L is a geometric lattice, $\alpha \in L$ is modular when, for all $\beta \in L$,

$$
r(\alpha \times \beta)+r(\alpha \wedge \beta)=r(\alpha)+r(\beta)
$$

Exercise 31.2
Sol let's look at the lattice of partitions. And let's get a feel for modular element, by looking at the lattice of partitions.?
What's a modular partition? I'll toll you and you check it as an exercise.
In $\Pi[[T]$, an element α is modular af it is a partition with only 1 black of size >1 :

You have t - check, as an exercise, that these are the only modular elements of the lattice of partitions.

Then we have the following theorem:
Kung's. Theorem
We can characterize the lattice of partitions, as follows.
The lattice of partitions is the only binary mattoid, where every element has a modular complement.

If L is a binary geometric lattice, where every element has a modular complement, then:

$$
L=\pi[T]
$$

modular complement $=$ the join is $\widehat{1}$,
the meet is \widehat{O},
and which happens, also, to be a modular element,
Now you say - why?
In the lattice of partitions, you can only find partitions that are modular where the sup is $\hat{1}$ and the inf is \hat{O}.
You join things judiciously,

Compleat

this gives you a modular partition.
The join of this partition with this partition is $\widehat{\mathcal{I}}$.
The meet is \hat{O}, because they are split.
It would be interesting to extend this to infinite sets.
To characterize the lattice of partitions of an arbitrary set.
There is, currently, no nice characterization.
You see from this that this is just the tip of the iceberg.
There's a lat more.
We didn't talk about the Critical Problem, which is the generalization of the coloring problem on a graph to arbitrary geometric lattices.
What coloring is to the lattice of contractions of the graph, you can apply these the rem, to arbitrary geometric lattices. You can ask similar questions. That's a full course.
Well stop hare. Wednesday after Thanksgiving, yon'll t_{334} worn y un problemins. And we Start on geometric probability.

John Guidi

Reminder: We meet on Sunday (December 6) at 11:57 Am, in the dining room of the Charles Hotel, which is located in the neighborhood of Harvard Square. Walking distance from the MBTA station in Harvard Square.
Also; you have a problem set due on Weducsday, where you do $1 / 3$ of the problems that are assigned. And, if possible, one or two starred problems. I will give you some problems today to choose from.

- Geometric Prubabilify

You are wondering what geometric, probability is about.
Let me tell you orally; while I' m erasing the blackboard.
The original problem of geometric probability is the following:
You have, in ordinary n-dimensional space, a certain object. For example, a convex closed set.
Then you have, in your hand, a rigid object, of a very bad shape - all twisted up, but rigid.
Then you drop the rigid bad object, at random, on n-space. For example, on the plane. Then you ask for the probability that the rigid bad object will meet the good, round object that you have drawn.
In this form, the problem doesn't make sense, because the probability is not defined, since you have a density in space,
So you have ti embed the round object into a big cube and compute the conditional probability that the bad object will meet the good, round object, given that it falls within the big cube.,
And that makes sense.
And that's the basic problem of geometric probability.
Solve this for any round object and any bad object what soever.
The amazing thing is that this problem is not a hard as it sounds. And the solution depends very little on the shape of the objects.
That's the amazing thing. This is our first motivation.
Our objective is t understand how this problem is solved.
In order to do that, we start on ane entirely different tad.
As a matter of fact, well look at two completely different motivations. that seem totally unrelated.
Than we will see that they are very closely related.

- Our second motivation is this.

You take a family of subsets in n-dimensional Euclidean space, which are sufficient thy. nice so that we are not immeshed in measure theoretic questions.
We want combinatarics, not measure theory.
What is a sufficiently good family of seats?" It's what we call a polyconvex set.
poly convex sets are finite unions of compact convex sets.

$\mathcal{L}=$ lattice of all polyconvex sets in \mathbb{R}^{n}
$\tau_{\text {finite unions of compact, convex sets. }}$

The union of two polyconvex sets is a polyconvex set,
That's obvious.
The interececion of two compact, convex sets is a compact, convex sat,
Therefore, by the distributive law, the intersection of two pelyconvex sets is a polyconvex set. Therefore, polyconvex sets form a distributive lattice, containing the empty set θ, and nit containing a $\hat{1}$.
\mathcal{L} is a distributive lattice.

$$
\left\{\begin{array}{l}
\text { what are dis tributive lattices for? } \\
\text { They are made to order to defer measures. } \\
\text { That's what distributive latices are for. }
\end{array}\right\}
$$

Our objective (seemingly different from the objective I stated 5 minutes ago in our first motivation) is to study measures on this distributive lattice.

Measure
A measure on \mathcal{L} is a function μ from \mathcal{L} to the red numbers, not necessarily positive, with the properties:
$\mu: \mathcal{L} \rightarrow \mathbb{R}$ st.
(1) $\mu(0)=0$
(2) $\mu(A \cup B)=\mu(A)+\mu(B)-\mu(A \cap B), A, B \in \mathcal{L}\} \begin{aligned} & \mu \text { is } \\ & \text { dive }\end{aligned}$

I gave you as an exercise early in the term the fat that every measure satisfies the indusion-exclusion formula. [8.11 Exercise 8.7]
I hope yourve done it, Weill need to use it.

We want to stay measures on the lattice of polyconvex sets,
But there are too many of them.
So, we have $t \begin{gathered}t \\ \text { impose } \\ \text { non -degeneracy assumptions on these measures. }\end{gathered}$
The non-degenersay assumption that is imposed by analysts is that it should be countably additive.
$\{$ That's seed in probability. $\}$
We make the following assumptions:
(1) μ is invariant under the group of rigid motions.

$$
\left\{\begin{array}{l}
\text { for those of you who know group theory, the group of rigid motions } \\
\text { is the semidinet product of the orthogonal group to the group of } \\
\text { translations. }
\end{array}\right\}
$$

If μ were contatlly additive and invariant under the group a frigid motions, we would immediately know what μ is. A volume.
But if μ is not countably additive, a funny fact is that there arelits of these μ. And the study of these measures is the object of geometric probability,
Now you have to assume the non-degeneracy assumption.
Since we are not assuming count able additivity, we have ta assume something else that prevents. the measures from having funny behavior.
(2) μ is continuous, in the following sense:
$C_{n}=$ sequence of compact, convex sets
Suppose C_{n} converges t compact, convex set C :

$$
C_{n} \rightarrow C
$$

\uparrow The standard notion of convergence of sets, t meaning the maximum e distance between points in C_{n} and C tends t zero. We say that μ 's continuous when:

$$
\lim _{n \rightarrow \infty}\left(\mu\left(C_{n}\right)\right)=\mu(C)
$$

A perfectly reasonable assumption.

Mr. Guide is here in person. (\because

- On r objective will be to study measures on \mathbb{R}^{n} which are (1) invariant under rigid motions and (2) continuous, in this sense.
And we classify them all,
And we will see that the classification of these measures entails the solution of the geometric probability problem I stated at first.
- Observe that lattice \mathcal{L} has an important sublattice.

$$
\mathcal{L}_{\text {pol }}=\text { lattice of all } \frac{\text { polyhedra }}{\uparrow}
$$

Q: What's a polyhedron?
A : A polyhedron is the finite union of compact, convex polyhadra.
Q: What's a compact, convex polyhedron?
A : It's the convex analogue of a finite number of points. Or, the intersection of a finite number of closed hyperplanes, which is convex. By the Hahn -Banach Theorem, these two definitions are equivalent.
$\mathcal{L}_{\text {pol }}$ is also a lattice
The union of a polyhedron with a polyhedron is a polyhedron.
The intersection of a polyhedron with a polyhedron is a polyhedron.
And it's a sublatice of \mathcal{L}.
$\mathcal{L}_{\text {pal }}$ is a sublattice of \mathcal{L}.

$$
\begin{aligned}
& \tau \text { this means that union and intersection in } \mathscr{L} \text { pol is the same } \\
& \text { as union and intersection in } \mathcal{L} .
\end{aligned}
$$

Since this theory is ripe with unsolved problems, let me state right away that, whereas all the continuous invariant measures on \mathcal{X} have been classified, this is not the case for $\frac{\text { continuous invariant mearures on }}{\mathcal{L} \text { pol. }}$
no one has classified these.
You wont an immediate Ph.D., solve this problem.
Instant Ph, D.
It's probably not hard. You just have to get the right idea.
There seem to be more continuous invariant measures on $\mathscr{L}_{\text {pol }}$ than on \mathscr{L}.

Instead of giving you yet a third motivation, which turns ont t be closely related to the two we have discussed, let's have a humble beginning.
A Humble Beginning: \mathbb{R}^{\prime}
Let's see what happens on the ordinary real line,
Let's get a feeling,
What's a polyconvex set in \mathbb{R}^{\prime} ?
$\left\{\begin{array}{l}\text { what's a compact, convex set in } \mathbb{R}^{\prime ?} \text { ? } \\ \text { It's a closed interval. } \\ \text { So a polyconvex set is a finite union of closed intervals. }\end{array}\right\}$
So now the problem is To classify all measures defined on finite unions of closed intervals, which are invariant under translation.
And you say: "Ha, Ha, Ha. I know the answer,"
And I say: "No .No. You don't."
$\mathcal{L}=$ all finite unions of closed intervals.
And now I give you two examples of invariant measures,
This is slightly upsetting, because you are expecting justone. Right?

- $\mu_{1}(A)=$ length of A

That's obviously an invariant measure.
If you don't see it, I can't help you.

- $\mu_{0}(A)=$ number of connected components of A

This is a measure.
Let's see. It's best shown by picture.
AB if disjoin, then μ_{0} is clearly additive

if the intervals overlap, $1-1+1=1$, so it checks.
μ_{0} is an invariant measure.

Now we prove the following theorem：
9 Theorem
Every continuous invariant measure on \mathscr{L} in \mathbb{R}^{\prime} is a linear combination of μ_{0} and μ_{1} ．
This is kind of nice．
Proof（remember that we are dealing with compact，convex sets，ie．，our sen ce of continuous）
Case 1：$\mu(p)=0, p=a$ point
This means that μ of every point is zero，because it＇s invariant．
That means if I take an interval A and I double it with the interval A^{\prime} ， there is only ane point of intersection：

And from the additive property of a measure：

$$
\mu\left(A \cup A^{\prime}\right)=\underbrace{\mu(A)+\mu\left(A^{\prime}\right)}-\mu(\underbrace{\left(A \cap A^{\prime}\right. \text { is a point. }}_{\left.A \cap A^{\prime}\right)}
$$

if A^{\prime} has the same organiza⿺⿻一⿰丨丨⿱一一⿻上丨又保 as A ，that means that doubting the length doubles the measure． Therefore，μ is the length， by a well known argument， which I will not insult you by repeating．

$$
=2 \mu(A)
$$

And，from the assumption，

$$
\mu(p o \ln t)=0
$$

Cauchy＇s functional equation and all that nonsense：

Therefore：

$$
\begin{aligned}
& \mu(A)=\text { constant } * \text { length of } A \\
& \mu(A)=c \mu_{1}(A)
\end{aligned}
$$

Case 2: $\mu(p) \neq 0$
μ of a point is Nor zero.
$\left.\begin{array}{l}\text { Without loss of generality, assume: } \\ \mu(p)=1\end{array}\right\}$ so every point has measure 1.
Consider $\mu^{\prime}=\mu-\mu_{0}$
that's an invariant measure
Then $\mu^{\prime}(\rho)=0$

$$
\tau_{p}=p \cdot \cdot i n t^{t}
$$

And μ^{\prime} reduces to case 1:

$$
\mu^{\prime}(A)=c \mu_{1}(A)
$$

Hence:

$$
\begin{aligned}
\mu^{\prime}(A) & =\mu(A)-\mu_{0}(A) \\
c \mu_{1}(A) & =\mu(A)-\mu_{0}(A)
\end{aligned}
$$

This gives μ as a linear combination of μ_{0} and μ_{i} :

$$
\mu(A)=\mu_{0}(A)+c \mu_{1}(A)
$$

Now we have to do this in n-dimensions.
That's extremely tough,
In fact, the first elementary proof was obtained 2 years ago by Dan k lain at Georgia Tech. Before that, the only proof known was 122 pages.
So now you see that in 1 dimension, there are two invariant measures - μ_{0} and μ_{1}. What is μ_{0} really?
The Euler characteristic, as we shall see.

By the way, all this material is in my book "Introduction to Geometric Probability" with
Klain.
Except I am presenting it differently so as to not cheat you,
A different point of view.
But it is there. The facts are there.

Let's generalize μ_{0} and μ_{1} to \mathbb{R}^{n}.	

Then you will realize that there are more invariant measures in \mathbb{R}^{n},
In \mathbb{R}^{n}, we take a polyconvex set,
One invariant measure is the volume.
Let me remind you what the volume is, may I?
From course 18.02 (Calculus).
we define:

$$
\mu_{n}(A)=\text { volume of } A
$$

$\longleftarrow\left\{\begin{array}{l}\text { every compact, convex set has a volume. } \\ \text { A poly convex sat is a finite union of compact, convex } \\ \text { sets. } \\ \text { So the volume is well defined. }\end{array}\right\}$

How is the volume computed?
How is the volume computed an orthogonal coordinate system and you do it by integration with multiple integrals. Let's do that.
$x_{1}, \ldots, x_{n}=$ orthogonal coordinates

$$
\mu_{n}(A)=\int \mu_{n-1}\left(A \cap H_{x}\right) d x \longleftarrow\left\{\begin{array}{l}
\text { imagine - an integral in a combinatorics } \\
\text { class) } \\
N_{0}+f_{\text {or }} \text { long: }
\end{array}\right\}
$$

That's the way you compete volumes in course 18.02 .
Now you say "so what?".
Now we are going To generalize this $\frac{t}{6}$. define the analog of μ_{0} in $n-$ dimensions.
Defining a measure is the same as defining a linear functional on simple functions. They teach this in course 18.100 (Andyyss).

$$
\begin{aligned}
& A \subseteq \mathbb{R}^{n}, \\
& I_{A}(\omega)=\left\{\begin{array}{ll}
1 & \text { if } \omega \in A \\
0 & \text { otherwise }
\end{array}, \omega \in \mathbb{R}^{n}\right.
\end{aligned}
$$

A simple function is a finite linear combination of functions I_{A} (called indicator functions).

- Finite linear combinations of indicator functions give you a simple function.

Indicator functions are a vector space, automatically.
So, we have the following theorem,
Back from my functional analysis days, when I was your age,
$\left[\begin{array}{l}\text { A linear functional on the vector space of indicator functions is always integration } \\ \text { relative to a measure on polyconvex sets. } \\ \text { Conversely, every measure on poly convex sets defines a linear functional. }\end{array}\right]$
$\left(\begin{array}{l}\text { Conversely, every measure on } \\ \text { This is a fundamental fact. }\end{array}\right.$
This is the fundawented fact of the theory of integration, stripped ot all the convergence crud.
Let's write this down, You seem to be more interested in this than I expected.
Theorem
Let L be a linear functional on the vector space of all simple functions on \mathcal{L}, Then there exists a measure on \mathcal{L} sot,
if f is a simple function
then $L(f)=\int f d \mu$.
f is a simple function means that f is a finite linear combination of indicator variables:

$$
\left\{\begin{array}{l}
\text { we start withe a polyconvex set. } \\
\text { But we might as will start with } \\
\text { convex sets, because of the } \\
\text { inclusion-exclusion formula. }
\end{array}\right\}
$$

$$
f=\sum_{i} \alpha_{i} I_{A_{i}}
$$

By definition:

$$
\int f d \mu=\sum_{i} \alpha_{i \mu}\left(A_{i}\right)
$$

This is a nontrivial fact.
Because the same simple function can be written as a linear combination
of indicator functions in infinitely many ways.
You have to prove that this equality holds; regardless of how you write f.
i.e.,

$$
f=\sum_{i} \alpha_{i} I_{A_{i}}
$$

can be written in infinitely many ways.

This is non-trivial.
And that's the fundamental non-trivial fact of integration theory.
Don't you ever forget that.
They didn't fell you that in course 18.100. I hope they did, but probably they didn't.
The theorem is that this definition of the integral makes sense,

- Exercise 32.1

Prove this theorem as an exercise.
It's not entirely trivial.
To repent, you have to prove that irrespective of how yon express the simple function as a linear combination of indicator functions, you always get the same integral.
No one says the A_{i} are disjoint,
They may overlap.

- Conversely,
if μ is a measure on \mathcal{X} then:

$$
L(f)=\sum_{i} \alpha_{i} \mu\left(A_{i}\right) \quad, A_{i} \in \mathcal{L}
$$

is a well-defined linear functional on the vector space of simple functions
This also apples when the A_{i} are compact, convex.

Exercise 32,2
Prove the converse above.

Now you know measure and integration.
This is the gist of the theory of measure and integration.
The rest is just limits.
So, this is fundamental fact theory that is bypassed in analysis courses.
It's something extremely fund damental.
I wish I could tell you how fundamental this is,

- Now we go back to our problem of defining μ_{0} in n-dimensions. Recall we computed volume as: $:[32.8]$

$$
\mu_{n}(A)=\underbrace{\int \mu_{n-1}\left(A \cap H_{x}\right) d x}_{\text {multiple integrals }}
$$

- And guess what?

Were going to imitate this definition of volume in our definition of μ_{0} in n-dimensions, Instead of integrals, we use sums. watch:

$$
\begin{aligned}
& \text { Set } \mu_{0}(A)=\sum_{x}\left(\mu_{0}\left(A \cap H_{x}\right)-\mu_{0}\left(A \cap H_{x+}\right)\right) \\
& \text { Now you say "Hey, isn't that an infinite sum?" } \\
& \text { And I say "No. No." }
\end{aligned}
$$ And I say "No. No."

Suppose A is a compact, convex set.
For how many x 's will the term inside the sum be non-zero?
Let's look at this in 2 dimensions:

$$
\underbrace{\mu_{0}(A)}_{\mathbb{R}^{2}}=\sum_{x} \underbrace{\mu_{0}\left(A \cap H_{x}\right)}_{\text {Tho }}-\underbrace{\mu_{0}\left(A \cap H_{x^{+}}\right)})
$$

The intersections with the hyperplanes are in \mathbb{R}^{\prime}.
We 've already defined $\mu_{0} i_{n} \mathbb{R}^{\prime}$ as the number of connected components. of the poly convex set. $[32.5]$.
The hyperplanes are convex and A is polyconvex, thus the intersections are poly convex.
The intersections are either an interval, a point, or null.
 if H_{x} is inside, both $\mu_{0}\left(A \cap H_{x}\right)$ and $\mu_{0}\left(A \cap H_{x^{+}}\right)$ will give 1 as the number of connected components. So the term is 0 .

$$
\mu_{0}\left(A A H_{x}\right)^{1}-\mu_{0}\left(A A H_{x^{+}}\right)^{1}=0
$$

Also, if the intersections with the hyperlanes are empty, the term is 0 , So it's only the right tangent point of a compact, convex set that rimatters. That's the only non-zero contribution,

Then, by induction:
If A is compact, convex; then $\mu_{0}(A)=1$.
But it's obvious that this is a measure.
And if you have a prifconvex set, you have a finite number of unions of compact, convex sets.

- Theorem

Hence μ_{0} exists in \mathcal{L} on \mathbb{R}^{n}.
μ_{0} is a measure on all polyconvex sets, with the property that:

$$
\mu_{0}(A)=1
$$

if A is a non-empty, compact, convex set.
We have just proved one of the fundamental facts of mathematics.
There exists a measure on poly convex sets that takes the value 1 on compact, convex sets.
If that's obvious, I quit. $($ (incite unions of compact, convex sets (thenesslues unions) That's not obvious, at all. Because you can take unions in weirdo ways, and you can have wholes all over the place.
But this theorem says no. The measure is well-defined.
This measure μ_{0} is called the Euler characteristic.
Forget about topology.
Top.logists go about this for half aterm. We did it in half an hour.

- Notice the strange parallelism between the sum defining the Euler characteristic μ_{0} and the integral defining the volume μ_{n} :

$$
\mu_{0}(A)=\sum_{i}\left(\mu_{0}\left(A \cap H_{x}\right)-\mu_{0}\left(A \cap H_{x^{+}}\right)\right)
$$

Enter characteristic ${ }^{i}$
multiple sums

$$
\underset{\text { volume }}{\mu_{n}(A)}=\underbrace{\int \mu_{n-1}\left(A \cap H_{x}\right) d x}_{\text {multiple integrals }}
$$

This parallelism is tantalizing.
we id like to understand it better.

Next time, well see some applications, when we establish what the other measures are.

John Guidi

Geometric Probability (Cont'd)
Last time we gave the natural construction of the Euler characteristic. Let's go over it briefly again, because it's an extremely important concept. If's one of the fundamental concepts of mathematics.
You remember we imitated the definition of volume.
We are in \mathbb{R}^{n}.
We take:
$\alpha=$ lattice of all polyconvex sets
τ finite unions of compact, convex sets
We studied measures on this lattice.
Any reasonable set is a polyconvex set.
In particular, any polyhedron is a convex set.
Once you have polyhedra, you can approximate every thing by polyhedra, so this is a general concept.
And:

$$
\mu_{n}(A)=\text { volume of } A \in \mathcal{L}
$$

And we have the formula, from alementory Calculus, that:

$$
\mu_{n}(A)=\int \mu_{n-1}\left(A \cap H_{x}\right) d x
$$

You can inductively expand the integral for the volume until you get down to one dimension, where you have the length. And that's multiple integration.

Now the remarkable fact is that the Euler characteristic is a tantalizingly similar formula.
I have thought, for many years, about how to bring these two definitions under the same root, by one conceptual scheme.
Maybe if you pay me $\$ 10,000$ I will do it.
I haven't done it,
$\mu_{0}(A)=$ Euler characteristic of A
We follow a similar process To computing the volume, but
instead of multiple integration, we have multiple summation,
\uparrow
Notice that $\mu_{0}(A)$ is valid also for lower dimensions.
The Euler characteristic is defined in. \mathbb{R}^{n}.
But in \mathbb{R}^{n}, you may have a lower dimensional convex set containing A.
The Euler characteristic will still be fine.
So, we could, define:
$\left.\begin{array}{l}\mu_{0}, n \\ \mu_{0}, n-1\end{array}\right\}$ they are the same
The Euler characteristic does not depend on the dimension of the space in which the compact, convex set is immersed.
Strictly speaking, even μ_{n} should be independent of the dimension.

$$
\begin{aligned}
& \text { So, we defined: } \\
& \mu_{0}(A)=\sum_{x}\left(\mu_{0}\left(A \cap H_{x}\right)-\mu_{0}\left(A \cap H_{x^{+}}\right)\right) \quad x^{+}=\lim _{\substack{\varepsilon \rightarrow 0 \\
\varepsilon>0}} x+\varepsilon
\end{aligned}
$$

The interesting fact is that this sum is well-defined.
Because there are only a finite number of x 's for which the two terms are not equal, if A is a poly convex set.
To prove this, you only have to verify this when A is convex. Because, them by inclusion -exclusion, every polyconvex set can be written in terms of convex sets, by the inclusion-exclusion formula.

If A is compact, convex, we verified last time in 2 dimensions that there is only one case where:

$$
\mu_{0}\left(A \cap H_{x}\right) \neq \mu_{0}\left(A \cap H_{x^{+}}\right)
$$

where A torches H_{x} as it's tangent:

$$
\mu_{0}\left(A \cap H_{x}\right)-\mu_{0}\left(A \cap H_{x^{+}}\right)=1
$$

if you move H_{x} just a little to the left or the right:

$$
\mu_{0}\left(A \cap H_{x}\right)=\mu_{0}\left(A \cap H_{x+}\right)
$$

Furthermore, it is clear than $\mu_{0}(A)$ is a measure:

$$
\underbrace{\mu_{0}(A)}_{\mu_{0} \text { for } \mathbb{R}^{2}}=\sum_{\text {this is a measure, }}(\underbrace{\mu_{0}\left(A \cap H_{x}\right)}_{\text {and this is a meas }}-\underbrace{\mu_{0}\left(A \cap H_{x^{+}}\right)})
$$

this is a measure, and this is a measure, I dimension lower $\left(\mathbb{R}^{\prime}\right)$. I dimension lower $\left(\mathbb{R}^{\prime}\right)$.
And we already have defined μ_{0} for \mathbb{R}^{\prime}. [32.5]
That the number of connected components.
So it checks.
And you can write:

$$
\mu_{0}(A)=\sum_{i}\left(\mu_{0}\left(A \cap H_{x}\right)-\mu_{0}\left(A \cap H_{x^{+}}\right)\right)
$$

You could write this as multiple sums over orthogonal coordinates.

- So you see this strange parallelism between this sum and this integral.

$$
\mu_{0}(A)=\underbrace{\sum_{i}\left(\mu_{0}\left(A \cap H_{x}\right)-\mu_{0}\left(A \cap H_{x^{+}}\right)\right)}_{\text {multiple sums }} \quad \mu_{n}(A)=\underbrace{\int \mu_{n-1}\left(A \cap H_{x}\right) d x}_{\text {multiple integrals }}
$$

This parallelism is extremely tantalizing and we would like to understand it better.
This has to do with commutativity and non-commentativity of variables, in a very deep sense.

In this way, we have defined a new measure.
Why is this measure invariant?
THe defined the measure in a particular coordinate system.
We defined the measure in a particular coordinate system.
Invariant means the measure is independent of the position of
the polyconvex set.
Namely, invariant under the group of rigid motions (ie.,
rotations and translations).
We just proved that:
$\mu_{0}(A)=1$ if A is a non-ampty compact, convex set,
And this proves that it's invariant, because it's equal to 1 no matter where you place the compact, convex set.
This immedidely proves the measure is invariant.

- Let B be a polyconvex set (i.e., a finite union of compact, convex sets)

$$
B=A_{1} \cup A_{2} \cup \ldots \cup A_{k}, A_{i}=\text { compact, convex set }
$$

w_{e} take $\mu_{0}(B)$, using the classic inclusion-exchession formula:

$$
\mu_{i}(B)=\sum_{i} \mu_{0}\left(A_{i}\right)-\sum_{i<j} \mu_{0}\left(A_{i} \cap A_{j}\right)+\sum_{i<j<r} \mu_{0}\left(A_{i} \cap A_{j} \cap A_{r}\right)-\ldots+\ldots
$$

$\mu_{0}(B)$ is always computable and is always an integer.
Here wa have another number that you can associate with any body in space. And it's independent of the position of that body.
If we know all the numbers that we can associate with bodies, which are independent of position, then we would know that any physical properties of these bodies should be expressible in these numbers.
So, it's very important to know what they are.
[And we will see the main theorem of geometric probability is that the dimension of the $]$ Space of these invariant measures, which are continuous in the sense defined last time, is $1 n+1$.
7 [So there are $n+1$ basic measures.
this is an extraordinary result, of fundamental importance and not widely known.
It tells you there are $n+1$ numbers that you associate with any body in space. And that's all.
And any physical characteristic has be expressable in terms of these $n+1$ numbers. This is very important, if you ask me.

- Let's foll around now with the Euler characteristic.

And let's connect it with the Euler characteristic, as per topology\%
So far I've said that this is the Euler charrateristic and you can rightfully ask "why is this the same as the view in topology?". So we have to conned these.
How do you compute the Euler characteristic of something? like this,

Let's take this funny shape. It's a polyhedron. What's it's Euler charectensitic? It's easy.

Then I use inclusion-exclusion: $[33,4]$

$$
\begin{array}{rlrl}
\mu_{0}(B) & =\sum_{i} \mu_{0}\left(A_{i}\right) & & \mu_{0}\left(A_{1}\right)+\mu_{0}\left(A_{z}\right)+\mu_{0}\left(A_{3}\right)+\mu_{0}\left(A_{4}\right)+\mu_{0}\left(A_{5}\right) \\
& -\sum_{i<j} \mu_{0}\left(A_{i} \cap A_{j}\right) & & -\mu_{0}\left(A_{1} \cap A_{2}\right)-\mu_{0}\left(A_{1} \cap A_{3}\right)-\mu_{0}\left(A_{1} \cap A_{5}\right) \\
& +\sum_{i<j<r} \mu_{0}\left(A_{i} \cap A_{j} \cap A_{r}\right) & & -\mu_{0}\left(A_{0}\left(A_{3} A_{3}\right)-\mu_{0}\left(A_{2} \cap A_{4}\right)-\mu_{0}\left(A_{2} \cap A_{5}\right)\right. \\
& -\sum_{i<j \lll s} \mu_{0}\left(A_{i} \cap A_{j} \cap A_{r} \cap A_{s}\right) & & +\mu_{0}\left(A_{1} \cap A_{2} \cap A_{3}\right)+\mu_{0}\left(A_{2} \cap A_{3} \cap A_{4}\right) \\
& +\sum_{i<j<r \lll t} \mu_{0}\left(A_{4} \cap A_{5}\right) \\
\mu_{0}(B)= & & & =0
\end{array}
$$

So, if I have any polyhedron whatsoever, then you cut it up into compact, con vex polyhedra, and then applying the inclusion- exclusion formula, you get the Enter characteristic. And the nemitrizial fact is that no matter how you cut it up, you got the same number. τ that's the theorem

| | | $12 / 4 / 98$ |
| :--- | :--- | :--- | :--- |
| From this fact that no matter how you cut a polyhedron up, you get the same number | | |
| for the | | | for the Euler characteristic, you can derive all sots of theoreons of geometry.

- Now you say - why is this the Euler Characteristic, as per topology?

How do we conned this to topology?
The best way is by the Euler I Schläfli-Poincare formula that you learned while studying the would of mathematics in high school:

$$
\text { Vertices - Edges }+ \text { Faces - Holes in faces }=2(\text { Components }- \text { Genus })
$$

That: the formula were going to make precise and derive now.
In the simplest possible way.
In order t do that, we have to do little grammar.
I don't like to talk about this, but I have to.
It's really dull stuff.
Given set S,
$\mathcal{L}=$ distributed lattice of subsets
And suppose μ is a finite measure:

$$
\mu: \mathcal{L} \rightarrow \mathbb{R}
$$

case 1: $S \in \mathcal{L}$
That means that $\mu(s)$ is finite:

$$
\text { Take the Boolean algebra generated by } \mathcal{L}, \quad\left\{\begin{array}{l}
\text { take the smallest Boolean algebra } \\
\text { containing } \mathcal{L} \text { and the complement } \\
\text { of any set in } \mathcal{L} \text {, Take finite unions } \\
\text { and intersections. }
\end{array}\right\}
$$

Then μ extends uniquely to the Boolean algebra generated by \mathcal{Z}.
This is called Pettis's Theorem.

- Exercise 33.1

Prove Petites's Theorem.

Unfortunately, in our case, Pettis's Theorem doesn't apply,
Because the sot S is \mathbb{R}^{n}. It's infinite.
And we define polyconvex sets on finite unions of compact, convex sets.
So we have to doctor up Metis's Theorem, so we can have our cake and eat it tor, We have complements in it, but we cant have big complements.
So we do something rather unpleasant, we take relative complements.
case z: $\int \nless \mathscr{L}$
Then μ can be extended uniquely to the distributive lattice generated by all sets of the form:
$A \cap \underbrace{B^{C}}_{\uparrow}$, for $A, B \in \mathcal{L}$
you count have all the complements of a compact, convex sot, as that's infinite.
But you can intersect it. And that's okay.
Exercise 33.2
Prove case 2 above.
It's an extremely technical result that is intuitively obvious.

This is called combinatorial measure theory.
I should have given you a couple of lectures on combinatorial measure theory, But it's too much of a sleeper.
So let's assume these 2 cases.

- Then, by case 2, the Euler characteristic can be extended to all sets of the form:

$$
A \cap B^{C}
$$

Apply case 2 to the Euler characteristic,
In particular, you have the following
If you have a compact, convex polyhedron, then the interior of the compact, convex polyhedron is a union of sets of the form $A \cap B^{C}$.

$$
\left.\begin{array}{l}
\text { interior }=\text { union of sets of form } \frac{A \cap B^{c}}{} \begin{array}{l}
\text { this means the Euler characteristic } \\
\text { can be extended the interior } \\
\text { of a compact, convex polyhedron. }
\end{array}
\end{array}\right\}
$$

You should remember that the word interior is ambiguous for a compact, convex polyhedron. A compact, convex polyhedron has a definite dimension.
Namely, the dimension af the smallest hyperplane that contains it in the whole space.
By iaterise, I mean interior within the relative interior of the smallest hyperplane that contains it.
For example, if the above is a planar compact, convex polyhedron in 3 dimensional space, its interior is still the set, as indicated.

The Euler characteristic can be extended to the interior of compact, convex polyhedra. $\tau_{\text {mechanically, because it's all inclusion-exclusion }}$

All this is grammar and now we have the fundamental theorem about the Euler characteristic.
By the way, this was the way I was going T do Nablus functions.
This is the preliminary to Möbius functions.

- Fundamental Theorem - Euler Characteristic

If A is a compact, convex polyhedron of dimension n,
then:

$$
\underbrace{\mu_{0}\left(y_{n} t(A)\right)}=(-1)^{n}
$$

$\left\{\begin{array}{l}\text { this means that the smallest hyperplane that. } \\ \text { contains } A \text { is a hyperplane of dimension } n .\end{array}\right\}$
Euler characteristic of the interior of A.

Proof
By the way, when A is a compact, convex set and x is not a coordinate of the border of A :

$$
y_{n} t(A) \cap H_{x}=y_{n}+\left(A \cap H_{x}\right)
$$

Also, the interior of a point is a point.
There's something kinky there, but you can't avoid it.

$$
y_{n} t(p)=p, p \text { a point }
$$

Lets write out the definition of $\mu_{0}\left(y_{n} t(A)\right):[33.2]$

$$
\mu_{0}\left(y_{n}+(A)\right)=\sum_{x}\left(\mu_{0}\left(y_{n}+(A) \cap H_{x}\right)-\mu_{0}\left(y_{n}+(A) \cap H_{x^{+}}\right)\right)
$$

Remember that these intersections are one dimension lower, Therefore, we can proceed by induction.
We stablish the base case where the intersections have dimension 1.
Let's see for which x's the term in the sum is nom-zero.
As before, let's draw a picture.
Things are a bit different than before., [32.11]

With the base case in hand, consider only those x's that make a non-zere contribution t. the measure.

Namely, these x 's that are the coordinates of the hyperplanes in various dimensions that are left tangents to the interior of A.

$$
\mu_{0}\left(y_{n}+(A)\right)=\sum_{x}(\mu_{0}\left(y_{n}+(A) \cap H_{x}\right)-\underbrace{\mu_{0}\left(y_{n}+(A) \cap H_{x}+\right)})
$$

by the induction hypothesis, this is:

$$
(-1)^{n-1}
$$

$$
\begin{aligned}
& =-(-1)^{n-1} \\
& =(-1)^{n}
\end{aligned}
$$

$$
\mu_{0}(\operatorname{Int}(A))=(-1)^{n}, \quad \text { Q.E. } D .
$$

So what?

- Well, there's a collorary that gives the Euler-Schläfi-Poincaré formula.

Not just for compact, convex polyhedra.
For any polyhedra, whatsoever. Compact, convex or not,
What's a polyhedron?
A polyhedron is a finite union of compact, convex polyhedra.
By definition. Piece it together. It's not very hard.
But, if yon take a finite union of compact, convex polyhedra, it's not clear what a face is. It you take something like the following:

What are the faces?
We need faces tr get the formula, Therefore I need to define the notion of face.
Let's define a system of faces of a polyhedron,
τ system is just a set

If P is a polyhedron, a system of faces of P is a set of compact, convex polyhedra set.
(i) $A \in \mathbb{F} \Rightarrow A \subseteq P, A \neq D$
(2) $\cup \beth_{n} t(A)=P$
$A \in \mathbb{F}$
(3) $A, B \in \mathbb{F} \Rightarrow Y_{n}+(A) \cap Y_{n} t(B)=\varnothing \leftrightarrow$ interiors are disjoint

Int means relative interior.
That's a face.
You have to accept it. Because I'm the teacher.
Before we see examples, let's prove the theorem.

- Theorem (Euler-Schláfli-Poincaré)

The Euler-Schlafli-Poincaré formula is sometimes called Euler's formula. The French call it Poincare's formula,

Schliafli was a Swiss mathematician for whom I have a great admiration, for the following reason, I bought a collection of papers and I started reading through them. I saw 3 of my papers that he had done already. in 1857.

Let P be a polyhedron in \mathbb{R}^{n} and let \mathbb{F} be a system of faces of P.
Let $f_{i}=$ number of elements of \mathbb{F} of dimension i,

Euler characteristic

$$
\left\{\begin{array}{l}
\text { the system of fores is a compost, convex set, so } \\
\text { : it has a dimension. Namely, the smallest } \\
\text { hyperplane that contains it. } \\
\text { Non-convex sets dent, because the are } \\
\text { twisted. }
\end{array}\right\}
$$

Then $\mu_{0}(p)=f_{0}-f_{1}+f_{2}-f_{3}+\ldots-\ldots$
\uparrow That's the famous formula, made precise

Proof

$$
\mu_{v}(P)=\mu_{v}\left(\bigcup_{A \in \mathbb{F}} y_{n}+(A)\right) \longleftarrow \text { from property } \text { z of definition of a }
$$

From prosperity 3 of the definition of a system of faces, any tho interiors are disjoint.
Therefore, the inclusion-exclusion formula in this case is just the first sum. The remaining sums involve intersections; but these are disjoint and $\mu_{0}(\theta)=0$.

$$
\begin{aligned}
& \mu_{0}\left(\bigcup_{A \in \mathbb{F}} y_{n}+(A)\right)=\sum_{A \in \mathbb{F}} \mu_{0}\left(y_{n}+(A)\right)-0+0 \ldots-0 \ldots+0 \ldots \\
= & \sum \mu_{0}\left(y_{n}+(A)\right)
\end{aligned}
$$

$A \in \mathbb{F}$
Collect terms of equal dimension.
By the Fundamental Theorem [33.8], if $I_{n} t(A)$ has dimension i, then:

$$
\mu_{0}\left(I_{n}+(A)\right)=(-1)^{i}
$$

And there are f_{i} elements of dimension i.

$$
=f_{0}-f_{1}+f_{2}-f_{3}+\ldots-\ldots \quad\left\{\begin{array}{l}
f_{0} \text { o vertices. } \\
\text { inters of a point is a point. }
\end{array}\right\}
$$

That's it.
That's the formula, as desired,
So let's see how this works.
Enough with all this topology stuff.
You do this with main combinaterics staff.
You can teach theists high school students,
Example
The Euler characteristic of a square $=1$, because a square is a convex set.

Let's find the system of faces.

$$
\begin{aligned}
f_{0} & =4 \text { verities } \\
f_{1} & =4 \text { sides } \\
f_{2} & =1 \text { plane } \\
\mu_{0}(P) & =f_{0}-f_{1}+f_{2}=4-4+1=1
\end{aligned}
$$

Example

$$
\begin{aligned}
\mu_{0}(P) & =f_{0}-f_{1}+f_{2} \\
& =6-7+2 \\
& =1 \cdot r
\end{aligned}
$$

To compute the Euler characteristic of a complex shape in a dimensions, cut it up into compact, convex porlyhedra and then take the system of faces.

$$
\mathbb{A}_{\mathbb{A}} \mu_{0}(P)=f_{0}-f_{1}+f_{2}-f_{3}+\ldots-\ldots
$$

p

The is almost up,
Let me do a little theorem.

- Klee's Theorem
$A_{i}=$ compact, convex set
Then $B=\bigcup_{i} A_{i}$ is also a compact, convex set
If $A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i k} \neq \varnothing$ for all $i_{1}<i_{2}<\ldots<i_{k}$ then $A_{j} \cap A_{j_{2}} \cap \ldots \quad \cap A_{j+1} \neq \cap$ for some $j<j_{2}<\cdots<j_{k+1}$.

The theorem says if any k of these A_{i} have non-empty intersections, then some $k+1$ of these A_{i}, have non-empty intersections:
This sounds highfalutin, but it's trivial.

			$12 / 4 / 98$	33.14	

Proof (this is in my book "Introduction to Geometric Probability", by the way)

$$
\begin{aligned}
1-1 & =0 \\
(1-1)^{n} & =0 \\
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} & =0
\end{aligned}
$$

the point being that any partial sum of these is non-zero:

$$
\left.\begin{array}{l}
\sum_{i=0}^{k}(-1)^{i}\binom{n}{i} \neq 0, k<n
\end{array}\right\}
$$

Handwawing, but you get the idea.
Take $k \leq \frac{n}{2}$.
Then the binomial coefficients are strictly increasing Thus the alternating sum can net be zero, The argument for $k>\frac{n}{2}$ is equally, straightforward.

Therefore, we have that:
(*) $\binom{n}{1}-\binom{n}{2}+\binom{n}{3}-\ldots+\ldots \pm\binom{ n}{k} \neq 1, k<n$
Since B is a compact, convex set, the Euler characteristic of B is:

$$
\begin{aligned}
\mu_{0}(B) & =\underbrace{\mu_{0}\left(\bigcup_{i} A_{i}\right)}_{\text {expand by inclusion - exclusion }} \\
& =\sum_{i} \mu_{0}\left(A_{i}\right)-\sum_{i<j} \mu_{0}\left(A_{i} \cap A_{j}\right)+\sum_{i<j<r} \mu_{0}\left(A_{i} \cap A_{j} \cap A_{r}\right)-\cdots+\ldots .
\end{aligned}
$$

If any k of the A_{i} have nonempty intersections, then all intersections of fewer than k of any A_{i} have non-empty intersections.
 compact, convex sot.
And, as we have shown [32.12], the Euler characteristic μ_{0} of a compact, convex set is 1 .

Thus each summation above in which all intersections of A_{i} 's are non-empty simply involves counting the number of intersections.
Each such summation equals the corresponding binomial coefficient. For example:

$$
\left.\begin{array}{c}
\sum_{i} \mu_{0}\left(A_{i}\right)=\binom{n}{1} \\
\sum_{i<j} \mu_{0}\left(A_{i} \cap A_{j}\right)=\binom{n}{2} \\
\vdots \\
\sum_{i<j<\cdots<k} \mu_{0}(\underbrace{\left.A_{i} \cap A_{j} \cap \cdots \cap A_{k}\right)}_{k}=\binom{n}{k}
\end{array}\right\}
$$

Given our assumption that all intersections of any $^{k} A_{i}^{\prime}$'s are non - empty.

We are given that all intersections of ariz, $k A_{i}$'s are nonempty.
Let's assume that the conclusion does not hold.
Namely, that all intersections of any $K+1 A_{i}$'s are empty.
This, of course, immediately implies that all intersections of any $k+1$ or more A_{i} 's are empty. n terms

$$
=\binom{n}{1}-\binom{n}{2}+\binom{n}{3} \cdots+\ldots \pm\binom{ n}{k} \mp 0 \pm 0 \mp \ldots \pm 0
$$

$\therefore \quad$ first k summations of the inclusion-exclusion expansion.

All intersections of any $k+1$ or more $A_{i}^{\prime} s$ are empty: And, $\mu_{0}(\theta)=0$.

$$
=\binom{n}{1}-\binom{n}{2}+\binom{n}{3}-\ldots+\ldots \pm\binom{ n}{k}
$$

And we just showed, equation (k), that:

$$
\left.\begin{array}{l}
\binom{n}{1}-\binom{n}{z}+\binom{n}{3}-\ldots+\ldots \pm\binom{ n}{k} \neq 1, \quad k<n \\
-\mu_{0}(B)=1, \text { so we have our contradiction. } \\
\text { re has to be at least an extra torn that is non-zorn. }
\end{array}\right\}
$$

So there must be at least ane intersection of some $k+1 A_{i}^{\prime}$'s that is non-empty,
So the proof is completely trivial.
The original proof was a big mess.

Next time, we will see what the other invariant measures are,

John Quid:

We continue today on geometric probability.
You are wondering what this has to do with probability. we've seen that it has To do with measures, which is often a way to do probability.

We have seen that in the ordinary Euclidean space of n dimensions, that there are invariant measures, which are equally remarkable.
Namely, the volume and the Euler characteristic.
These can be considered as physical properties of Euclidean objects, if you wish, became they are invariant under rigid motions.
So if we can determine all of these invariant measures, we can rightly have said that we know how to express any physical property of these objects.
Any physical property should be expressable in terms of the object's invariant measures,
We will state, today, the main theorem of geometric probability to be the fact that the space of all invariant measures has dimension $n+1$, for an object in n dimensions.
We have seen in 1 dimension that the space of invariant measures has dimension 2. [32,5-7] Because this space is spanned by the Euler Characteristic μ_{0}, which in \mathbb{R}^{\prime} is the number of connected components of a closed set, and the length μ_{1}.
Recall that in $\mid \mathbb{R}^{\prime}$, we showed that:

$$
\mu(A)=\mu_{0}(A)+c \mu_{1}(A)
$$

A fundamental result will be that in n dimensions, the space of all invariant measures
$\frac{\text { dimension } n+1}{}$
$\left.\begin{array}{l}\text { Secondly , that there is a distinguished basis of these invariant measures that is physically } \\ \text { meaning full. }\end{array}\right]$
So, how are we going to do this?
We need a little more grammar,
We need some more combinatorial measure theory.

- Combinatorial Measure Theory (Cont dd)

From a strictly combinatorial viewpoint, we have:
Given set 5 ,
$\mathscr{L}=$ distributive lattice of subsets
We have a measure μ a function from \mathcal{L} to the real numbers, not necessarily positive, satistying the following properties:

$$
\begin{aligned}
& \mu: \mathcal{L} \rightarrow \mathbb{R} \text { sit. (1) } \mu(0)=0 \\
& \text { (2) } \mu(A \cup B)=\mu(A)+\mu(B)-\mu(A \cap B)
\end{aligned}
$$

- Why do we take a distributive lattice of subsets andinota Boolean algebra, such as they to in course 18.100 (Analysis)?
Because, in general, the measure μ might be infinite on the complement of the set. For example, if you take the volume, the volume of a compact, convex set is finite, But the volume of the complement is infinite.
We want our measures to be finite.
That's why, in general, complements are not included.
I explained last time, but did not prove, that such a measure can be extended to the $\frac{\text { relative Boolean ale bran }}{\hat{c}}$

Whore you take relative complements, in the sense we discussed last time [33.7]
So, at least partly, complement can be included.
Provided you take the complement within a set in the distributive lattice.

- Philosophically, measures are the set theory analogue of linear functionals.

And there is a complete crytomorehisory between between the language of in near functional on the vector space of functions from the set S to the reals and the language of measures. That's an important lesson to learn, which. I've already outlined before,
Combinatorially, of course, the only functions we allow, if you don't allow limits, are simple functions.
Namely:

$$
f=\underbrace{\sum_{i} \alpha_{i} I_{A_{i}}}, A_{i} \in \mathscr{Z}
$$

all the linear combinations, with scalar coefficients, of indicator functions.
The important fact about the simple functions to remember is that a simple function can be written as a linear combination of indicator functions in infinitely many ways, in genera. There is no unique way of writing a simple function.
And that's what makes the fundamental fact about integration theory remarkable. And that's why we do it again.
That even though the simple functions can be written infinitely many ways, none the less, there is an invariant called the integral (for the last 300 years), which means we define the integral:

$$
\int f d_{\mu}=\sum_{i} \alpha_{i} \mu\left(A_{i}\right)
$$

this expression is well-defined. Watch, because I'm going to pull a fast one in yous
Namely, it's the same irrespective of how you express the linear functional.
This is the fundamental fact about integration my friends.
The rest is limits.

- Conversely,

Given a linear functional L on the space of simple functions,
Set: $\mu(A)=L\left(I_{A}\right)$
And you get a measure on \mathcal{Z}.
And, lo and behold, the integral, relative to this measure, is the function that you started with:

$$
L(f)=\int f d \mu
$$

This is the whole story of measure integration.
Dom't you ever forget it.
This is very fundamental.
Unfortunately, not taught this way in course 18.100 (Analysis).

Now, you want to take the next step in combinatorializing measure theory. Namely, product measwes.
Because we need that,
$\left\{\begin{array}{l}\text { You'd never think that in a course on condinatorics that you'd learn about measure integration. } \\ \text { But this stuff is very fundamental. }\end{array}\right.$

- Product Measures

We have 2 measures:
Given μ, \mathcal{L}, S and $\mu^{\prime}, \mathcal{L}^{\prime}, S^{\prime}$
Then we take $S \times S^{\prime}$ and you want ti $\frac{\text { define a measures on } S \times S^{\prime} \text {. }}{\uparrow}$
this is more delicate than it seems, at first.
You all know it, but I want to summarize a combinatorial crisis.
You have to define a distributive lattice of subsets of 5×5.
But you can not take a product of an element of \mathcal{L} and an element of \mathcal{L},
because they donot form a lattice - you have to have unions and intersections of those.
If $A \in \mathcal{L}, A^{\prime} \in \mathcal{L}^{\prime}$, then $A \times A^{\prime}=$ a rectangle.
But, the lattice you need is the lattice of all unions and intersections of rectangles,
This doesn't come out by just taking products.
what we take is the tensor product of the two lattices,

Tensor Product
$\mathscr{L} \otimes \mathcal{L}^{\prime}$ is the lattice generated by finite unions and intersections of rectangles. $\tau_{\text {tenser product }}$

- Then, on this lattice $\mathcal{L} \otimes \mathcal{L}^{\prime}$, you define a measure:

Product measure $\mu^{\prime \prime}$ is defined on $S \times S^{\prime}$ and $\mathcal{L} \otimes \mathcal{L}^{\prime}$ by setting:

$$
\mu^{\prime \prime}\left(A \times A^{\prime}\right)=\mu(A) \mu\left(A^{\prime}\right)
$$

for a rectangle.
Exercise 34.1
Prove that product measure $\mu^{\prime \prime}$ has a unique extension to $\mathcal{L} \otimes \mathcal{L}^{\prime}$.
This is what product measures are about.
This is all very nice, but well be seeing in a minute that this is insufficient. We can not escape limits.
Let's see what happens.
By the way, why don't you use $\mu^{\prime \prime}=\mu \times \mu^{\prime}$ in defining the Euler characteristic?
$\mu_{0}=$ Enter characteristic on \mathbb{R}^{n}
Why don't we take:

$$
\mu_{0} \times \mu_{0} \times \ldots \times \mu_{0} \text { on } \mathbb{R}^{n} ?
$$

τ that gives us a measisure on \mathbb{R}^{n}.
If's 1 on compact rectangles. That's very nice.
Except it's only defined on sets that are finite unions of rectangles (paralledotopes).
So it's only defined on sets that look likes

Not on all poryconvex sets.
So, if you define the Euler characteristic as the product $\mu_{0} \times \mu_{0} \times \cdots \times \mu_{0}$, then. you are confronted with the problem of extending it.
This is not nice,
whereas, we define it in another way, bypassing this crisis.

Similarly, the volume could have been defined as:

$$
\mu_{1} \times \mu_{1} \times \ldots \times \mu_{1}
$$

Then you get the volume of all parallelotopes.
And then we have to extend, via a limiting process, to all poly convex sets,
Nonetheless, this idea of taking product measures will guide us to discover what the other measures are, We showed that all the invariant measures on \mathbb{R}^{\prime} are linear combinations of μ_{0} and $\mu_{1}:[32,5-7]$

$$
\begin{aligned}
& \mu(A)=\mu_{0}(A)+c \mu_{1}(A) \\
& \mu_{0}=\text { Euler charatioritic } \hat{\mu}_{1}=\text { length }
\end{aligned}
$$

Let's take:

$$
\begin{aligned}
& \left.\left(\mu_{0}+t \mu_{1}\right) *\left(\mu_{0}+t \mu_{1}\right) * \ldots *\left(\mu_{0}+t \mu_{1}\right)=\mu_{t} \text { on } \mathbb{R}^{n}\right\} \\
& \left\{\begin{array}{l}
t \text { is a parameter. } \\
\text { what's a parameter? } \\
\text { A parameter is a variable constant. }
\end{array}\right\} \quad\left\{\begin{array}{l}
\text { That's a measure. } \\
\text { It's a measure of parallebtotpess and all their. } \\
\text { unions and intersections. }
\end{array}\right\}
\end{aligned}
$$

μ_{t} is defined only on the lattice generated by all parallelotypes (unions, intersections). All the sets have sides square, but they can have holes, And they need not be convex.
What does $\mu_{t}\left(A_{1} \times A_{2} \times \ldots \times A_{n}\right)$ look like, where $A_{i}=$ closed internal in \mathbb{R}^{n} ? By definition, it's the product:

$$
\begin{aligned}
\mu_{t}\left(A_{1} \times A_{2} \times \ldots \times A_{n}\right)= & \left(\mu_{0}+t \mu_{1}\right)\left(A_{1}\right) *\left(\mu_{0}+t_{\mu_{1}}\right)\left(A_{2}\right) * \ldots *\left(\mu_{0}+t \mu_{1}\right)\left(A_{n}\right) \\
& \text { one can work this out and obtain: } \\
= & \mu_{0}\left(A_{1} \times A_{2} \times \ldots \times A_{n}\right) \\
+ & t \sum_{i} \mu_{1}\left(A_{i}\right) \\
& +t^{2} \sum_{i<j} \mu_{1}^{2}\left(A_{i} \times A_{j}\right) \\
& +\ldots \\
& +t^{n} \mu_{1}^{n}\left(A_{1} \times A_{2} \times \ldots \times A_{n}\right)
\end{aligned}
$$

How do we interpret this result?
We have a polynomial in t for the measure $\mu_{t}\left(A_{1} \times A_{2} \times \ldots \times A_{n}\right)$.
And each coefficient will be a measure in it'sown right.
So, we rewrite $\mu_{t}\left(A_{1} \times A_{2} \times \ldots \times A_{n}\right)$ as:

$$
\left.\begin{array}{rl}
\mu_{t}\left(A_{1} \times A_{2} \times \ldots \times A_{n}\right) & =\mu_{0}\left(A_{1} \times A_{2} \times \ldots \times A_{n}\right) \\
& +t \mu_{1}\left(A_{1} \times A_{2} \times \ldots \times A_{n}\right) \\
& +t^{2} \mu_{2}\left(A_{1} \times A_{2} \times \ldots \times A_{n}\right) \\
& +\ldots \\
& +t^{n} \mu_{n}\left(A_{1} \times A_{2} \times \ldots \times A_{n}\right)
\end{array}\right\}
$$

We see that μ_{0} is indeed the Euler characteristic.
And we see that μ_{n} is indeed the volume.
And, in between, we get these funny measures. What are they?
Suppose that the sides of $A_{1} \times A_{2} \times \ldots \times A_{n}$ equal $x_{1}, x_{2}, \ldots, x_{n}$.
(ie., $\mu\left(A_{i}\right)=x_{i}$, for psychological reasons)
Then:

$$
\begin{aligned}
& \mu_{1}\left(A_{1} \times A_{2} \times \ldots \times A_{n}\right)=\sum_{i} x_{i} \\
& \mu_{2}\left(A_{1} \times A_{2} \times \ldots \times A_{n}\right)=\sum_{i<j} x_{i} x_{j}
\end{aligned}
$$

Is n't this something familiar?
You get the elementary symmetric functions:

$$
\mu_{i}\left(A_{1} \times A_{2} \times \ldots \times A_{n}\right)=\underbrace{\sum_{j<j 2<\ldots<j r} x_{j,} x_{j 2} \cdots x_{j r}}
$$

this is called:

$$
e_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

So we see that the intermediate measures $\left(\dot{\mu}_{1}, \mu_{2}, \cdots, \mu_{n-1}\right)$ evaluate on parallelograms from rectangles as the elementary symmetric functions.
 on the lattice generated by all "rectangles."
We obtain a well-defined measure on all of the lattice generated by all the rectangles,
Notice that the distance depends on the choice of particular coordinates of an orthogonal coordinate system.
In this way, we obtain $n+1$ measures:

$$
\ldots \mu_{0}, \mu_{1}, \ldots, \mu_{n}
$$

The main theorem of geometric probability is that these measures can be uniquely extended to all polyconvex sets and they are the bases for all invariant measures.

- Main. Theorem of Geometric Probability

These measures have a unique extension to the lattice \mathcal{L} of all polyconvex sets an \mathbb{R}^{n}, and every continuous invariant measure is a linear combination of them,

$$
\uparrow\left(\begin{array}{l}
\text { remember how we defined continuous as } \\
\text { limits on convex sets. }
\end{array}\right.
$$

The measures $\mu_{0}, \mu_{1}, \ldots, \mu_{n}$ are called the intrinsic volumes.
This is one major result of mathematics.
There are exactly $n+1$ intrinsic volumes.
There are exactly ${ }^{n+1}$ numbers that yon can associate to any body in space.
That's the only thing you can dor.
Any other number (ice., measure) that you associate to a body in space is a linear combination of the $n+1$ intrinsic volumes.

Ill tell you in a minute about the extension,
The main point is that the extension can not be carried out by limiting procedures. You can't use calculus, take limits. No. No. It doesn't work,
You need a diabolical trick to carry out the extension.
The limiting procedure works only for the volume,
That's course 18.02 (Calculus).
For these other intrinsic volumes, to go from these parallelograms and their unions to poly convex sets - ah, you can't do it by limits.
Nobody has been able to do it, even for the Enter characteristic μ_{0}.
So, another trick was inverted, of a completely different nature.

- Example \mathbb{R}^{3}

Let's see what happens in 3 dimensions. Lee's take parallelogram P :

P
Euler characteristic: $\mu_{0}(P)=1$, if P nonempty $\left[\begin{array}{l}\text { except for a normalization } \\ \text { factor, it's the perimeter. }\end{array}\right]$

$$
\begin{aligned}
& \mu_{1}(P)=x_{1}+x_{2}+x_{3}<2 \\
& \mu_{2}(P)=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}<2
\end{aligned}
$$

Volurne : $\mu_{3}(P)=x_{1} x_{2} x_{3}$ except for a constant number, it's the area, If you multiply this by 2 , it's the area. Except for a normalization factor, it's the area.

- The main theorem tells you that yon can extend these intrinsic volumes uniquely to very folyconvex set.

For example, take a convex set. Take a potato.

A potato has a volume.
It has an Enter characteristic, which is 1.
It has an area,
And it has a length (no one wand ever know that every potato has a length).
This is an important fact, my friends.
Potatoes have a length.
And as soon as physicists discovered this, they would not fail to have attached laws of physics to them. Except they don't know this measure exirts, because we didn't tell them.
Whin didn't we tell them?
Because we are stupid.
Mathematicians are stupid.

The measure μ_{1}; when extended, is called the mean width.

$$
\begin{aligned}
& \tau \text { a completely new thing we have no } \\
& \text { feeling for, since we've never seen } \\
& \text { it before. }
\end{aligned}
$$

For objects in. 3 dimensions, there are 4 basic invariant numbers that you can associate.
The Euler characteristic, the volume, the area, and the mean width.
This is a basic fact of life.

Now, roll up your sleeves my friends.
Because now we have to prove the extension.

- How do we extend these measures to all polyconvex sets?

Forget about limits.
We have to approach this from a completely disparate point of view.
Now I say "I like lattices."
And wave talked a lat about the latices of subsets of a finite set, the Boolean algebra.
What's the next best lattice?
Let's take the lattice of all subspaces (through the origin) of a vector space over the real numbers.

Let $L(V)=$ lattice of all subspaces (through the origin) of a vector space V. over \mathbb{R},

This is not a distributive lattice, as we've seen many times,
However, if you take an orthonormal basis, it has a certain orthonormal property.
Namely, if you take a subspace W:

$$
w \in L(v)
$$

You can associate the orthogonal complement: $W^{\perp} \quad[16,7]$
Then you have:

$$
\text { if } w^{\prime} \subseteq w \text { then } w=w^{\prime} v\left(W \wedge W^{\prime \perp}\right)
$$

This is the closest you come to the distributive law.

Exercise 34.2
Prove that the above implication is true.

The point being that we would like to do complications on $L(V)$ like we do with subsets. Permutations, chains, Dilworth's Theorem - stuff like that.
Except that $L(V)$ is continuous.
So we have to use measures.
No problem.
Let's use measures.
Remember the computation we did with $P(S)$; the lattice of subsets of a finite set, Boolean algebra?
We counted the complete chains. $[22.4]$.
How do you count the complete chains.
You take a point in S, which, if S has n elements, you take n ways.
Then you are one step up. You're in a Boolean algebra of subsets of $n-1$; so you can pick any one of $n-1$.
Then you go another step us.
Etc,
This gives you the number of complete chains:

$$
n(n-1)(n-2) \cdots 1=n!
$$

number of complete chains
Now we can do the same for $L(V)$.
\because Start with 0 ,
Pick a line. How many ways can you pick a line?
You take the measure on the surface of the $n-l$ spheres and that gives you the number of lines.
Then you are in a subspace of $n-1$ dimensions.
pick a line in $n-2$ spheres. Take the measure on the surface of the $n-2$ spheres and that gives you the number af limes.
So you have all these measures on the surfaces of all these spheres.
And you multiply these measures and that gives you a measure of the set of all chains in $L(V)$.

That's the continuous analogue of n !.
That well leave for next time.
In this way, we get a measure an the set of all chains that is invariant on the orthogonal graces, of comose.
And having obtained the measure on the set of all chains, we take the set of all subspaces of dimension. K (that's called a Grassmannian) and the measure on the set of all chains we immediately view as an invariant measure on the Grassmannian.

Geometric Probability: the Kinematic Formula
We saw last time that:
In \mathbb{R}^{n}, wa have $\mathcal{L}=$ lattice of polyconvex sets.

$$
\left.\begin{array}{rl}
\text { Lattice of polyhedral } & \mathcal{L}_{p} \subseteq \mathcal{L} \\
\mathcal{L}_{0} \subseteq \mathcal{L}_{p}
\end{array}\right\} \mathcal{L}_{0} \subseteq \mathcal{L}_{p} \subseteq \mathcal{L} \text {, }
$$

$\mathcal{L}_{0}=$ lattice generated by boxes relative to an orthogonal coordinate system $x_{1}, x_{2}, \ldots, x_{n}$.

On \mathcal{L}_{0}, one can define $n+1$ measures, called the intrinsic volumes, by setting:

$$
\mu_{k}(P)=e_{k}\left(x_{1}, x_{2}, \cdots, x_{n}\right), \quad 0 \leq k \leq n
$$

$P=$ box with sides equal
$t_{0} x_{1}, x_{2}, \ldots, x_{n}$.
$e_{k}=$ elementary symmetric function
Remember that the elementary symmetric function of order $k=0$ is 1 , i.e., $e_{0}=1$.

$$
e_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1}<i_{2}<\ldots \leq n}^{n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} \quad, 1 \leq k \leq n
$$

So, in n dimensions, you have $n+1$ measures, in this way.

- And then the main theorem has two major observations:
(1) these measures can be extended, notonly to the lattice of polyhedral \mathcal{L}_{p}, but $t o$ the lattice of polyconvex sets \mathcal{L}.
(2) these are invariant measures on the lattice of polyconvex sets, continuous in the sense previously determined. And, furthermore, every continuous invariant measure is a linear combination of these measures.

Since I have only 1 hour left, I have t do this slightly by handwaving. This is all in books.
I have to give you the ideas.
For details, you have tread the books,

- Let's talk about the extension.

I told you last time that the extension can not be carried out by ordinary limiting processes.
A limiting process is something like this,
You have a body and you inscribe in it a rectangle.
Then you add smaller rectangles, as you take the limit.

And you get all these angles, which are kinky.
It doesn't work.
Even for the Euler characteristic if deesn't work.
So, for limiting processes of the ordinary course 18.02 (Calculus) kind - forget it. The limiting process that works is much fancier.
Here, I have to start handwaving.
Let's take 3 dimensions. I'll tell you what the limiting properties will be,

- Example - \mathbb{R}^{3}

First, we extend the measures (intrinsic volumes) to convex bodies.
Then, by a technical trick, we extend to polyconvex sets.

After you have defined a convex body, by use of
t finite unions of compact, convex sets.
inchusion-exclusion, you can define a polyconvax set.
So a big part of this extension is the convex body.

In \mathbb{R}^{3}, it is possible t choose a point at random.
strictly speaking, this does not make sense.
Because probability is not defined in \mathbb{R}^{3}.
So, by an abuse of speech, I will talk about probability while I mean conditional probability.
You must condition over a big containing ball.
But, by abuse of speech, well talk about probability.
So; the probability that I pick a point belonging to a convex body is obviously equal to the volume of the convex body

'Pick a straight line in convex body C at ran dom.
It isn't very clear that it is possible to pick a straight line at random.
If you want to make this precise, it's very deep..
Because it means there is an invariant measure on the set of straight lines in space.
It's the same thing.
Being able to pick a straight line at random in space means that there is an invariant measure of the set of straight lines. - when you write this in correct, grammatical terms.

So, let's assume we can pick a straight line at random.
Them compute the probability that the line meets C.
I say that that probability is the area of C :

$$
2 \mu_{2}(c)
$$

Why?
Let's take C like this:

The probability that you pick a straight line at random that meets C, when C is this, is proportional to. This area whenever C is flat.
Why?
By Cauchy, because a line meets a flat rectangle ar even a flat set in the rectangle either in one point; or not at all.
And therefore, by Cauchy's functional equation, you get this probability proportional to. the area.
Therefore, the measure of the set of all lines meeting a given. 2 dimensional surface is proportional to the area of the 2 dimensional surface.
But for a convex polyhedron in 3 dimensions, a line meets it twice.

So, mirror to a limiting process y when you make C round, you get twice the meetings. So the probability is:

I have To cut corners to cover the material today, All this, written down, is called the integral of invariant measures.

Now, pick a plane at random,
The probability is:
$\mu_{1}(c) \longleftarrow$ mean width
You assume you can't pick planes at random in this space
This is intuitively clear, but you have to compute the invariant measure of the set of all planes (on the Grassmannian of planes').

- In this way, you prove that if you have a box C :
the measure of the set of all points into the box $=\mu_{3}(c)$

Therefore, since it agrees with all boxes, then automatically this construction extends it to all convex sets.

Therefore, you redefine the intrinsic volumes as the measures of sets, of all points, lines, planes into convex sets.

- So, in this way we have a precise, intuitive interpretation of the mean width. Take two compact, convex sets - one inside the other:
$C \subseteq D, C$ and D beth compact, convex

The probability that a random plane meets C, given that it meets D, is the ratio:
you can find this number, experimentally.

This is an extra ordinary result.
Where did this come from?
It's the Buffon Needle Problem.
This result is equivalent to the Buffon Needle Problem.
What's the Button Needle Problem?
You drop a needle on a plane with parallel straight lines.
You generalize this and these sets arise.

So, in this way, you extend the intrinsic volumes to all convex sets.
Then, for polyconvex sets, you use inclusion-exclusion To extend from convex sets to polyconvex sets...

$$
\left\{\left\{\begin{array}{l}
\text { you really have to prov this. } \\
I^{\prime} \mid l \text { show you how to do it later: }
\end{array}\right\}\right.
$$

In this way, you get $n+1$ invariant measures on \mathcal{L}.
Then, the main theorem is that there are no others. \Leftarrow This is a very deep result.

Let me tell you what the crucial lemma is:
Remember what it means for a measure on polyconvex sets to be continuous. [32.3]
Lot's write this down, be cause if t's very important To have the right definition.

$$
\begin{aligned}
& \text { A measure } \mu \text { on } \mathcal{L} \text { is continuous when } \mu\left(C_{n}\right) \longrightarrow \mu(C) \text { whenever } \\
& C_{n} \text { is a sequence of compact, convex sets converging to } C \text {. }
\end{aligned}
$$

Crucial Lemma
Let μ be a continuous, in variant measure on polyconvex sets.
This is not a countably additive measure. It's a finitely additive measure.
Our measures are not countably additive; otherwise wed have the volume.
Assume that this measure vanishes on lower dimensional polyconvex sets.
In other words, if you have a poly convex set that is contained in a lower dimensional hyperplane, the μ of that sot is 0 . If the sot is "thin" then " $\mu=0$.

Lemma
Assume $\mu(C)=0$ if C is contained in a proper hyperplane.
Then $\mu=c \cdot \mu_{n}$.
$\tau_{\text {which means it's a lower dimension }}$
μ is a constant times the volume μ_{n}
This is what people have not been able to prove easily.
If you prove it, I will send your paper to the Proceedings of the National Academy of Science and it will be published.
I am sure there is a simple proof.
The first proof has 137 pages.
The second proof has 32 pagages. It's an improvement of the first proof by Dan K lain.
Some day, someone will get a Z page proof,
It is written.
I don't see how to do it,
Please. What are you doing now?
Come on. Help me out. Help me cut out 30 pages out of my book.

- $*$ Exercise 35.1

Find a simple proof of the Crucial Lemma,
This is a geod research problem. for the vacation.:
When you come back, you say how you spent your vacation.
Prove this.
It's a nice puzzle,
Remember, this is not countably additive, so you cant cut it into infinitely many pieces.

This Crucial Lemma is the one that gives uniqueness of the intrinsic volumes.

- \#\# Exercise 35,2

So now, you have the intrinsic volumes defined for all polyconvex sots.
In particular, you can take the analogue of the tetrahedron in n dimensions - the n-simplex.
Take ${ }_{n+1}$ points and take the convex hull.
Then you can ask: What are the intrinsic volumes of an n-simplex?
The answer is not known.
This is an open problems
Compute the intrinsic volumes of the n-simplex.
There must be formulas for area, perimeter, etc.
But they aren't known.
This is a backward field. An undeveloped subject.
I don't think this is particularly hard. It's just that nobody has done it.

We know very little about angles in n-dimensions.
It's an undeveloped field.
These formulas for the intrinsic volumes depend on our understanding of angles in n dimensions, We don't know,

The analogue of trigonometry in n dimensions - nobody has worked it ont.

- $* *$ Exercise 35.3

Here's another open problem.
We have that the lattice of polyhedra \mathcal{L}_{p} is a subset of the lattice of poly convex sets \mathcal{L}.

$$
\mathscr{L}_{p} \subseteq \mathscr{L}
$$

$n+1$ invariant measures ?

Ton \mathcal{L}, the uniqueness theorem tells us there are exactly $n+1$ invariant measures. The space of invariant measures is $n+1$,

In particular, the intrinsic volumes are defined on \mathcal{L}_{P},
We extended measures to the lattice af polyhedra \mathcal{L} pond then to the lattice of prlyconvex sets \mathcal{L}.
But no one has proved that the $n+1$ intrinsic volumes are unique on the lattice of polyhedra \mathcal{L} - . There may be more on \mathcal{L}_{p}.

Uniqueness? Prove whether these $n+1$ intrinsic volumes are unique on \mathcal{L}_{p}.
It is possible that there may be some extra invariant measures on polyhedra that are not extendable to polyconvex sets,

Perhaps there are weird points, like Steiner points, for which this is the cone,

- *** Exercise 35,4

Instead of taking \mathbb{R}^{n}, we take the surface of a sphere,
You cam define compact, convex sets on a sphere.
So you can define poly convex sets on spheres.
And you can define measures, invariant under rotations of the spheres.
And you can ask how many there are., \leftarrow No body knows,
Open problem. This is a Ph.D. thesis.
Work out the intrinsic volumes on spheres.
This is solved only for the 2 dimensional sphere.
It's also been solved for the 3 dimensional sphere.
For the 3 dimensioned sphere, you can take the boundary of a 4 dimensional ball.
This is a backward field.
Sorry.

Kinematic Formula
Again, I have to do some handwaving, because I den't have time,
I take a compact, convex set C.
Then I take a "bad" object B, which is rigid, of dimension $n-k$:

I drop B on C at random.
What's the probability that B meets C?
\uparrow it looks hard, but it isn't.
Why?
Because the probability that B meets C is an invariant measure, It's an invariant measure that depends only on B and C.

T- Therefore, it's a linear combination of intrinsic volumes. Ha . Ha.
And, therefore, what you need are the coefficients of this' linear combination. Which you get by varying C while keeping B fixed.
That's how you solve this.
That's the kinematic formula.

So, the uniqueness of the intrinsic volumes allows you to immediately infer that if you drop any $B_{\text {, A }}$ any shape whatsoever, on a compact, compact set C, the probability is a linear combination of intrinsic volumes.

That's how all these geometric probability problems are solved.

Assume $C \subseteq D$.

$\frac{\mu_{k}(C)}{\mu_{k}(D)}=\underset{\text { probiben titty that an }}{ }(n-k)$ dimensional flat meets C; given that it meets D.
$\{$ that's a genuine probability.
Again, generalizing the Buffon Needle Problem,
It involves linear combinations of intrinsic volumes and all that stuff.

And that's all:
That's all we know about geometric probability.
That's it.
It would take 3-4 lectures to write down all the details. You can read it in my book.

Who is taking 18.315?
Roll call. 22 people.
I'm really sorry I covered so little material this term.
I really apologize.
I. hope you're nat disappointed.

I hope next year to cover a little more material.
I promise next year will be completely disjoint from this year.
Nothing will be common.
It will look like another world.
The only common thing is that it will be given by the same person.
So the style is the same.
The same wish washy style.
So, I hope you solve some of the problems I stated this forme.
It would please me a lot if some of you solved any two star or three star problems.
None of them are hard,
If I were given one million dollars, I would solve all of them.

	We still have time.

tet's do a little more.
Why is it that we can pick a line at random?
There 3 ways of doing this:
(1) One of them is the way differential geometers look at this.

The space of lines is a homogeneous basis of a Lie group. Geometers condition, A, B, and C as a unique invariant measure. That's it.
That's approach number 1.
(2) Approach number 2 is the most naive, which leads to yet another unsolved problems. You consider the space of lines as a big space, where a point is a line.
That's called a Grassmannian and you have these algebraic varieties that satisfy certain
algebraic equations, which we have seen.
We are talking about lines in 3 space \hbar fix our ideals,
So that works for k dimensional subspaces in n dimensional space.
Let's talk about any lines, not necessarily through the origin.
we want limes in space.
How do we define a measure?
First you define a measure on easy sets.
Then you take the unions and intersections of easy sets to be the hard sets.
Then you extend the measure to the hard sets.
That's the way all measures are defined.
Since you always define a measure on. the space of lines in 3 dimensional space, you cleverly choose the easy sets. How do you choose the easy rets.
Like this:
In \mathbb{R}^{3}, consider the Grassmannian $G_{1}^{3} \longleftarrow$ the set of fall lines in 3 space,
The easy sets are the set of all lines that meet a given 2 dimensional surface.

Because, by the argument I have already outlined,
the set of all lines that meets a given 2. dimensional surface is proportional to the area of that surface.
And the line meets the surface at one point, or not tall.

Therefore, you can immediately tell the measures of certain sets of lines, Namely, the set of all lines that meet a given surface.
Those are the easy sets.
Then you have to extend.

But, here the extension is not so easy, because if you have two of these surfaces:

the set of all lines that meets both these surfaces is not obtained by inclusion-exclusion.
For example, in the plane, if you have 2 lines as below, a third line l_{3} can meet both lines in a number of ways:

It's not clear how to get the inclusion -exclusion working, because we have the geometric condition working.
: So, the extension can be carried out.
But what we do not know, ie., the open problem, is the analogue of inclusion -exclusion of these easy sets.
we do not know.
What are the algebraic relations holding with all the indicator functions of these sets of lines,
"What you do is that you do the integral instead, when the integral can be written, And then, of course, you specialize.
(3)) The third approach is the one I out tined last time. [34, 10-11]

You split the problem into two.
Yon want to give a measure to a set of 3 dimensional subspaces of that space - the set of lines in 3 dimensional space.

there is a unique distareset the line from the origin.
So you can translate along this distance back to the origin.

So you can get any line ℓ by taking any line through the origin, and then moving it. That means the product of invariant measure is:
distance x invariant measure of the line through the origin

T So the problem reduces $\frac{T}{}$ computing the invariant measures of the set of lines through the origin.
This is semidirect products.
Because the Euclidean group is the semidirect product of the orthogonal group and the translation group.

So now, how do we find the invariant measures of the set of lines through the origin? For this, we use the method we used last time.

Take $L(V)=$ lattice of all subspaces (through the origin) of a vector space V over \mathbb{R}, You visualize this lattice.
It's a set of lines of dimension $\frac{1}{1}$ if you have a plane.
It's a measure of all elements at level 1.

So what you do is take the measure of the set of all complete chains
And you gat the measure on the set of lines (through the origin) by taking the measure of all complete chains passing through this set, divide by the number of all complete chains going up and divide by the number of all complete chains going down:

$$
\left.\frac{n!}{k!(n-k)!}\right\}
$$

In the non continuous case, that's called the binomial coefficient. [22.4]

Now we do the same for the continuous case.
The measure on the Grassmannian is like the binomial coefficient.
All you need is a measure on the set of complete chains.
And this measure on the set of complete chains delivers thee desired measure on the set of - lines through the origin,

How do you get the measure of the set of complete chains?
You pick a direction on the sphere S^{n-1}.
And divide by 2 because the same line has two directions.

This leaves the lattice of subspaces of the vectorspace V.f dimension n-1, Pick a line on the sphere S^{n-2}.

And the measure of the set of complete chains is the product of all the dimensions. It's all really trivial.
It's in my book.
The key thing is to reduce the problem of invariant measures on Grassmanians to invariant measures on sets of lines. through the origin.
And then, $T_{\text {I }}$ imitate the combinatorial way of defining binomial coefficients.
As you see in my book, we try to get continuous analogues of the facts about binomial coefficients, using these continuous binomial coefficients.
One thing we couldn't.get. I won't let you down, but it's an open problem. Namely:

- ** Exercise 35.5

What's the continuous analogue, using continuous binomial coefficients, of the binomial theorem?

You have To read about the flag coefficients and so on.
In this way, we get continuous analogues of continuous binomial coefficients.
But these are products of volumes of spheres of various dimensions.
And you these volumes are defined in terms of the: Euler gamma function.
$* * * *$ Exercise 35.6
A really hard problem is this:
Given 2 polyhedra in n dimensions.
Example:

P_{1}

P_{2}

$$
\left\{\begin{array}{l}
\text { The countably case was } \\
\text { solved by Tarski. }
\end{array}\right\}
$$

When can you cut up the first polyhedron P_{1} into a finite number of polyhedra, which can then be used to construct the second polyhedron P_{2} ?

In 2 dimensions, this was solved by Hilbert.
He proved that when you have 2 polygons with the same area, then you can cut up the first polygon into a finite number of triangles and recompose the second polygon.
This is the famous theorem. of Hilbert. This is Hilbert's Third problem, which was then proved 2 years later.
But in more than 2 dimensions, nobody knows the necessary and sufficient conditions. The conjecture is that it should be related to certain things about intrinsic volumes. It's $\frac{\text { not enough for the intrinsic volumes ty be the same. }}{\hat{t}}$.
$\tau / I^{\prime} m$ sorry to say.
Two bodies may have exactly the same intrinsic volumics,
but you may nit be able to cut up one and construct the other.)
This problem was solved about 15 years ago by Sah, if you allow only translations.
In : the words, if you cut up pieces and you cam not rotate them, but you can trans sate them, when you recompose them,
If you allow only translations, then this was solved after tremendous effort.
And there are generalizations with intrinsic volumes.
This is what makes you suspect that there are other invariant measures involved under the group. This is a Field's Medal problem.
This is a field that is very rich.

What happened is that classical geometry had been neglected in this century,
Now we go back to classical geometry because of the needs of computer graphics
Because of computer graphics, we are asking all these problems.
And we discover that we don't Know anything.
We know every thing about abstract algebraic structures and varieties, but we don't know any combinatorial geometry.
So I hope you work on this stuff.
Now,

That's the End

Note: within the body of the text, pagination is of the form [lecture.page]. For example, page [3.5] refers to the fifth page of the third lecture, which was given on September 14, 1998.

Index

a-mean, 192, 196
Addition, 173
Antichain, 115, 145, 209, 221
Aristotle, 13
Artin, 146
Artin - Schrier, 201
Atom, 118, 266
Basis, 30, 167, 244, 248, 270, 368
Bell numbers, 38, 39, 55
Binomial coefficient, 385
Bipartite graph, 10
Birkhoff, 128
covering property, 318,326
Birkhoff - von Neumann theorem, 184, 186, 190, 195
Björner, 324
Blocks, 23, 292
Boolean
algebra, 21, 216, 236
homomorphism of, 94
function, 6
operations, 1
σ-algebra, 102
subalgebra, 21, 129
complete, 21,27
Borel sets, 103
Bracketing algorithm, 223
Bricard's theorem, 165, 174
Buffon needle problem, 377, 381
Canfield, 221
Central
limit theorem, 216, 229
problem of enumeration, 70
Chain, 115
complete, 218, 226, 371, 385
maximal, 117, 210, 326
Chess board, amputated, covering, 182
Circuit theory, 303
Closure, 305, 311
and lattice, 316
convex, 137, 309
of matroid, 312
topological, 311
transitive, 127
Coatom, 119
Cofinite, 100
Coloring, 264, 297
Commuting equivalence relations, $77,80,89$
Compact convex
polyhedron, 338
set, 335
Complement, 145
ortho, 134
relative, 353, 363
Complete
Boolean subalgebra, 21, 27
chain, 218, 226, 371, 385
lattice, 124, 130
Composition
of an integer, 51
of relations, 72
Conditional disjunction, 3, 79
Conic section, 169

Connected components, 339
Continuous
lattice, 229
measure, 337
Contraction, 245, 272, 323, 328
Convex
closure, 309
function, 202
Convexity, 137
Cover, 318
Covered relation, 114, 198
Crapo, 304
Critical problem, 264, 334
Crucial Lemma, 377
Cubical logic, 141
Dedekind algebraic axiomization of lattice, 121
Deficiency, 177
minimum, $180,181,185,230$
Derivative, 320
Desargues' theorem, 156, 160, 164
Diagonal maps, 140
Difference operator, 32
Dilworth
decomposition, 223
theorem of, 209, 215, 231
Dimension, 144, 354
Dirac, 329
Disjoint sum, 76, 119
Disjunctive normal form, 6
Disposition, 59
Distinct representatives, 182, 237
Distribution interpretation
of function, 56
Distributive
lattice, 124, 127, 142, 222, 336 of sets, 97
laws, infinite, 8
Dobinski's formula, 40, 43

Dominance order, 133, 135, 197
Doubly stochastic matrix, 184, 186, 197
Dual
graph, 302
matroid, 260, 298
partially ordered set, 116
partition, 50
Dubreil, 108
theorem of, 84
Duffin's theorem, 330
Equivalence
class, 20, 27, 62, 64, 73, 151, 154
relation, $20,27,73,88$
and vector space, 85 commuting, 77, 80, 89
Euler - Schläfli - Poincaré formula, 352, 356
Euler characteristic, 341, 346, 348, 351
Exchange property, 243, 270
Steinitz, 308, 312, 319
Face, 140, 357
Factorial, continuous analog, 371
Fary's theorem, 301
Fermi-Dirac statistics, 68
Ferrers
matrix, 133, 198
relation, 49
Field
and matroid, 332
transcendental extension, 324
Flag, 117
Flat, 316, 381
lattice of, 317
Four color conjecture, 259, 329
Frege, 13

Function, 13
arbitrary, 67
convex, 202
elementary symmetric, 367
epi, 69
image, 30
indicator, 342
interpretation
distribution, 56
occupancy, 57
search, 58
inverse, 14,93
kernel, 30, 73
Möbius, 261, 354
mono, 68
rank, 239
set, 176
submodular, 176
simple, 342, 363
symmetric, 200, 367
Gale-Ryser theorem, 72, 112, 136, 294
Gale's theorem, 107
Geometric
lattice, 296, 317, 325
and flats, 317
Birkhoff covering property, 318
probability, 335, 347, 368
Gordon's lemma, 222
Graph, 14, 256, 264, 271, 328
planar, 260, 301
Graphic matroids, 256, 265
Grassmanman, 371, 382
Greene - Kleitman bracketing algorithm, 216, 223

Hadwiger's conjecture, 330
Hahn - Banach theorem, 338

Haiman, 146
Hall condition, 181, 186
Hasse diagram, 114
Hemimorphism, 92
Hilbert, 165, 173, 200, 386
Hopf algebra, 259
Horn, 236
Hyperplanes, 316, 323
arrangements of, 255
Ideal of ring, 90
Image of function, 30
Incidence matrix, 15, 106, 233
Inclusion-exclusion formula, 97, 350
Independent
partitions, 74
relations, 75
representatives, 271, 277
set, 242, 247, 268, 302
Indicator function, 342
Indistinguishable balls or boxes, 65, 67
Inf, 120
Information theory, 74
Integer programming, 111
Integration, 343, 363
Interior, 353
Interval, 101, 273
Intrinsic volumes, 368, 373, 376
Invariant measures, 337, 350, 362
Inverse relation, 13, 231
Irreducible, 153
Isomorphism, 125
Jensen's inequality, 202
Join, 121, 148, 158, 171
Jónsson's theorem, 159, 160
Kakutani - Mackey theorem, 166
Kepler, 151
Kernel, 91
of function, 30,73
Kinematic formula, 380
Klee's theorem, 359
Kronecker delta, 138
Kung's theorem, 334
Lattice, 121
and closure, 316
and modular identity, 161
complete, 124,130
continuous, 229
cubical, 140
distributive, $124,127,142,222$, 336
faces of n-cube, 139
faces of n-simplex, 139
geometric, 296, 317, 325
linear, 150, 159, 160
of contractions, $259,274,322$, 328
of flats, 317
of partitions, $148,158,220,236$, $273,328,333$
of a set, 131
of an integer, 132
of polyconvex sets, 142, 347, 368
of polyhedra, 338, 379
of subspaces, $143,148,158,167$, 236, 370
rank $_{\text {r }} 118,256,267$
Young, 222, 226
Length, 339
Line at random, 382
Linear
algebra, 322
functional, $37,39,342,364$
independence, 238
Lovász, 324
Lubell, 217

LYM inequality, 217
Marginals, 16, 71, 112, 179, 294
Markov chain, 105
Marriage theorem, 181, 186, 195, 205
Matching, 175, 185, 229, 276, 286
and relation, 287
partial, 289
within blocks of a partition, 292
Matrix
doubly stochastic, $184,186,197$
incidence, 15, 106, 233
permutation, 184, 187
totally unimodular, 107, 109
Matroid, 239, 262, 276, 310
and field, 332
and relation, 287
binary, 332
closure of, 312
dual, 260, 298
graphic, 256,265
independent sets, 268
orthogonal, 298
representation theorems, 263
Maximal
chain, $117,210,326$
element, 116
spanning tree, 270
Maximum element, 126
Mean, 192, 196
width, 370,376
Measure, 97, 99, 336
continuous, 337
doubly stochastic probability, 191
extension, 374
invariant, $337,350,362$
product, 364

Measure theory
combinatorial, 352, 362
Median, 79
Meet, 121, 148, 171
Meshalkin, 217
Metropolis, 223
Minimal element, 116
Minor, 109, 328, 333
Möbius functions, 261, 354
Modular
complement, 334
element, 333
identity, 161
law, 144, 167
Moore, 305
Muirhead's inequality, 192, 196, 203
Multigraph, 321, 330
Multiplication, 173
Multisets, 46
Muslev, 90
n-cube, 139
n-simplex, 139, 378
Nash-Williams, 196, 260
Normal subgroups, 90
Normalization theorem, 281, 287
Occupancy interpretation of function, 57
Order
dominance, 133, 135, 197
ideal, 128, 222, 230, 309
preserving, 125
quasi, 126
Ore's theorems, 178
Ortho complement, 134, 135, 166
Orthogonal matroid, 298
Pappus' theorem, 165, 168
Parallelotope, 365
Partially ordered set, 114, 273
rank, 118
Partition, 27, 88, 103, 129, 223
and information theory, 74
of a set, $20,26,29$
of an integer, 48
type, 48, 53
Pascal's theorem, 168
Permutation, 64
cycles of, 64
matrix, 184, 187
Perpendicularity, 166
Pettis' theorem, 352
Point at infinity, 151
Pointless view
and functions, 94
and relations, 92
equivalence, 96
Polyconvex sets, 142, 336
real line, 339
Polyhedron, 138, 142, 356
convex, 184, 186
regular, 138
Polynomials, 33
Poset, 114
Post, 7, 78
Pre-ordered, 126
Probability, 91, 100
Procesi, 201
Product, 119
measures, 364
Projective space, 143, 151, 152, 251
Quasi-order, 126
Quotient space, 246, 272
Rado's theorem, 271, 277, 286
Ramanujan, 48
Rank
function, 239
lattice, 267
partially ordered set, 118
Relation, 10, 72
algebra of, 18
and matching, 287
and matroid, 287
as partially ordered set, 115
composition, 14, 72
covered, 114,198
equivalence, $20,26,73$
Ferrers, 49
identity, 26
independent, 75
inverse, 13, 24, 231
mimimum deficiency, 185
probabilistic analog of, 105
structure, 232
symmetric, 15
ternary, 17
transitive closure of, 127
universal, 26
Relative complements, 353,363
Representable, 332
Restriction, 245, 272, 322, 328
Rigid motions, 337
Rignet, 108
Sah, 386
Sample space, 103
Schubert calculus, 144
Search interpretation of function, 58
Series-parallel network, 330
Sesquicommuting, 108
Set, 1
compact convex, 335
function, 176
independent, 242
polyconvex, 336
tight, 177, 178
Seymour, 263

Sheffer stroke, 1
Shift operator, 36
Signed subsets, 140
Spencer, 55
Sperner's theorem, 217, 231
Spheres, 379
Standard Young tableaux, 228
Stanley, 55, 67
Steinitz, 308
exchange property, 312,319
Stirling numbers
second kind, $29,34,36,37,55$, 221
Sublattice, 147
Submodular
inequality, 239
set function, 176
Subspace, 246
Sum of squares, 200
Sup, 120
Switch, 112, 295
Symmetric
difference, 4
function, 200, 367
Tensor product, 365
Tight set, 177, 178
Topology, 307, 351
Totally unimodular matrix, 107, 109
Transitive closure of relation, 127
Tree, 269, 321
maximal spanning, 270
Triality principle, 236, 266
Tutte, 108
theorems of, 262,333
Tverberg, 209
Twelvefold way, 55, 65, 67
Type of partition, 52, 53
Vector space, 272, 307
and equivalence relation, 85 and lattices, 143, 152
Volume, 342, 346, 347
von Staudt - von Neumann theo-
rem, 146, 153, 171
White, 304
Whitney, 259
property, 240, 249
extended, 241, 249
theorem of, 250, 265, 320, 327
Yamamoto, 217
Yan, 165, 173
theorem of, 96
Young lattice, 222, 226

