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Abstract

Optimal Reconstruction of Cosmological Density Fields

by

Benjamin A. Horowitz

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Uros Seljak, Chair

A key objective of modern cosmology is to determine the composition and distribution of
matter in the universe. While current observations seem to match the standard cosmological
model with remarkable precision, there remains tensions between observations as well as
mysteries relating to the true nature of dark matter and dark energy. Despite the recent in-
creased availability of cosmological data across a wide redshift, these tensions have remained
or been further worsened. With the explosion of astronomical data in the coming decade,
it has become increasingly critical to extract the maximum possible amount of information
available across all available scales. As the available volume for analysis increases, we are no
longer sample variance limited and existing summary statistics (as well as related estima-
tors) need to be re-examined. Fortunately, parallel with the construction of these surveys
there is significant development in the computational techniques used to analyze that data.
Algorithmic developments over the past decade and expansion of computational resources
allow large cosmological simulations to be run with relative simplicity and parallel theoretical
developments motivate increased interest in recovering the underlying large scale structure
of the universe beyond the power spectra.

The detailed study of this large scale structure has the potential to shed light on various
unanswered questions and under-constrained physical models for the dark sector and the
nature of gravity. As we reach higher redshifts with statistically significant samples, the
large scale structure can serve as a link between local observations and the cosmic microwave
background. These surveys rely on a variety of biased probes, including the lensing and
distribution of galaxies, imprints of large scale structure in secondary anisotropies of the
CMB, and absorption lines in the spectra of high redshift quasars. These observations
are complementary; they probe di↵erent scales, have di↵erent sources of astrophysical and
observational uncertainties, have unique degenercies in parameter space, and require their
own methods to extract cosmological parameters from.

In this thesis, I discuss a number of new developments in the analysis of these diverse
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cosmological datasets. After introductory material, I discuss work re-examining the lensing
of the Cosmic Microwave Background by cluster-sized objects and implement techniques
for accurate mass estimation. I demonstrate that this analysis is optimal in the low noise,
small scale limit. In the second part, I develop a maximum likelihood formalism for linear
density fields, applicable for reconstructing underlying signal from a variety of cosmological
probes including projected galaxy fields and cosmic shear, showing that e↵ects of anisotropic
noise and masking can be mitigated. Finally, I extend this work to nonlinear observables
by using a forward modeling approach for Lyman Alpha forest tomography, finding more
accurate cosmic web reconstruction verses existing techniques. The unifying theme of all
these works is revisiting existing matter density reconstruction techniques with a critical eye
and using new statistical and computational techniques to e�ciently perform an unbiased,
lower variance, estimate. Included is discussion of the possible impacts of these methods to
improve constraints of cosmological parameters and/or astrophysical processes.
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Chapter 1

Introduction

Many scientists confuse “di�cult” with “interesting.”

Bohdan Paczyski

A common distinction is drawn between cosmology and cosmography, where cosmology
assumes the Einstien Field Equations (or a parametrized variation) hold and focuses on
using data from observations to constrain the underlying physical parameters of the universe
(via the Friedmann-Robertson-Walker metric solution) while cosmography is a descriptive
approach of mapping the universe where positions of the large scale structure are plotted,
like an medieval cartographer’s map. These “maps” of the underlying matter density can
then be matched with models through various analysis to standard/extended cosmological
model or, alternatively, used with more pure astrophysical observations to constrain galactic
and/or stellar processes. The recent seminal works of cosmology, such as results from the
Planck Satellite [3] or the Baryon Oscillation Spectroscopic Survey [9], have focused entirely
on the ubiquitous triangle plots showing how various cross-correlations and power spectra
analysis result in additional constraints to parameters like ⌦m and �8. From this standpoint,
this thesis is focused on the latter cosmography task; there is little emphasis (past the
introduction) of constraining cosmological parameters, while the techniques could certainly
be extended for that task. Instead the focus is on reconstructing the density fields we
indirectly observe. Of course to some extent this does require some a-priori assumption of
general relatively (for example, to perform gravitational lensing) but it is not the goal.

In this work I will highlight three projects which have tried to map the matter distribution
from a di↵erent observables. The writing in each is primarily my own, and all figures in the
main text were made by me. In addition to these “cosmographical” works there were two
papers from my time as a graduate student, ([82] and [81]) which are more “standard”
cosmology papers where physical parameters are constrained; these are not included in this
thesis but the curious reader is encouraged to look at those as well.
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Figure 1.1: A ubiquitous parameter constraint plot from [3], highlighting the power of cosmo-
logical to constrain fundamental physics. Dependency of the neutrino mass,

P
N⌫ , and num-

ber, Neff , on value of the H0 and �8 based on analysis from various cosmological datasets.
Grey bands indicates the constraints on H0 from local observations. Better constraining
these parameters is a major focus of modern cosmology, and tensions between CMB and
local observations has motivated an increased interest in the field.

1.1 Cosmology Today

Over the past three decades, there has been an explosion in the availability of astronomical
data-sets that have changed how we have viewed our place in the universe. What was once
an imprecise, rough order of magnitude, field (as described in more detail in Chpt 2.1) has
transformed into a “precision” science where parameters are constrained through advanced
statistical analysis. In analogy to the particle collider physics of the Large Hadron Collider,
surveys are designed in cosmology to optimize the science return. Instead of fine tuning
strength of magnetic fields to accelerate particles to probe new energy scales, in cosmology
survey strategy/parameters (exposure time, telescope aperture, etc.) are varied to find
predicted e↵ects and new physics.

Starting with the discovery of the accelerated expansion of the universe [162, 150] and its
potential relationship to quantum fluctuations, there has been an increased interest in using
precise cosmology as a constraint in fundamental physics. While certain standard cosmo-
logical parameters, like H0 and �8, don’t have an immediate connection with the quantum
world, others, like the equation of state of dark energy and the properties of neutrinos, do
and give insights that aren’t possible from lab-based experiments. One particularly notable
example of this is from the results of the Planck mission [3] which has provided constraints
on the sum of the neutrino masses, ⌃m⌫ , and the number of “e↵ective”1 neutrinos, Ne↵,

1The Standard Model predicts Ne↵ = 3.046, where the fractional neutrino is related to the decoupling
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which is highlighted in Figure 1.1. This connection between the microscopic and macro-
scopic is highlighted in the degeneracy present in these relations; better constraining the
“pure cosmological” parameters results immediately in better constraints in the Beyond the
Standard Model physics.

The other side of this problem of constraining parameters is that within cosmological
observations there is tension. Local observations of nearby supernova have found di↵er-
ent values of parameters than those inferred from distant observation; this is at odds with
a governing idea behind modern cosmology; aptly named the Cosmological Principle. This
principle is often summarized as ”viewed on a su�ciently large scale, the properties of the uni-
verse are the same for all observers.”[103] More specifically the principle states the universe
on large scales is homogeneous, all local patches should have the same underlying physics
and statistical properties within sampling error, and isotropic, the universe has the same
physical properties in all directions. Or, perhaps more aptly summarized by Astronomer
William Keel as “the universe is knowable and is playing fair with scientists.”

This premise can and has been tested by many through examining time and spatial varia-
tions of physical “constants”, (e.g., [139, 100, 69]) occasionally finding tantalizing clues (e.g.,
[208]) but none that seem to have survived additional rigor or exceeded random statistical
fluctuations. This type of analysis is complementary to a phenomenological form of analysis
where exotic physics models, motivated often by some underlying Grand Unified Theory, are
implemented into likelihood codes and their parameters constrained. The underlying theory
of these analysis is that the laws of physics are still constant throughout the universe, just
there is an emergent phenomena from some underlying process we have so far only indirectly
observed. Perhaps through implementation of the correct coupling term for dark matter
or the correct evolutionary term for dark energy, not only will we discover the true nature
of dark matter and dark energy but also explain away apparent tensions in observations.
While for some of these there might be an indication of new physics, none have come close
commonly accepted definitions of a “detection.”2

These types of studies are formulaic in that they use well studied cosmological data-sets
in similar ways. A model is implemented in a Boltzmann equation solver, meant to model the
interactions between particles through specified dynamical couplings and gravity, or other
(semi)-analytical model to predict summary statistics such as the power spectra of the CMB
or the galaxy correlation function today. This is then compared via a likelihood code to
data-sets and parameters estimated.

Of course, summary statistics are limited in two significant ways. First, summary statis-

temperature. Various exotic physics models, such as coupled neutrino or dark radiation theories, predict
variations of this value.

2The exact threshold for this is fairly subjective and could be defined by di↵erent statistical methods.
The much hailed, and since retracted, ported discovery of inflationary B-modes in the CMB polarization
indicated a 7� discovery of the scalar to tensor ratio, r, not equaling zero. The detection of the Higgs Boson
at the Large Hadron Collider at ⇠125 GeV was a 6� detection. The discovery in 2016 of gravitational waves
from a binary black hole merger was described as “signal-to-noise ratio of 24 and a false alarm rate estimated
to be less than 1 event per 203,000 years.”
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tics are usually computationally involved to calculate and require careful calculations of
associated errors. In the case the large quantities of data found in modern large scale struc-
ture surveys it becomes very di�cult to scale existing techniques to accurately estimate
these quantities. Secondly, since the underlying field has very complex statistical properties
it is di�cult to create a lossless summary statistic without strong additional assumptions
which likely don’t hold. For example, the power-spectra is lossless only if the field is purely
Gaussian which isn’t even the case for the (famously very linear) CMB due to secondary
anisotropies from lensing, scattering, and gravitational red-shifting. This motivates a sepa-
rate component of cosmological analysis; to develop new, more accurate but computationally
feasible ways to estimate summary statistics, and to develop new summary statistics which
contain additional cosmological information.
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Chapter 2

Large Scale Structure

In this chapter we review the key theoretical and observational results from large scale
structure, with a particular focus on the cosmological implications of those structures. The
goal is to demonstrate the role large scale structure has in connecting the early universe and
the current day, which is the motivation for much interest in the field, as well as summarize
some of the key statistical tools used in its analysis. By understanding how early fluctuations
give rise to the current cosmic web we can take use data from the current day to understand
those primordial conditions.

2.1 Observational History

The large scale structure of the universe was first examined by Edwin Hubble shortly after
his seminal discovery that many observed “nebula” were extra-galactic [88]. In his work [87]
he took a cataloged and classified 400 “extra-galactic nebula” and found they comprised a
mostly uniform distribution on the sky. In the following years, a more systematic study
of the sky was conducted, expanding the sample to 44,000 “nebula” finding again that the
distribution was fairly uniform and conformed to a Gaussian distribution on large scales,
with a significant under-density in the “zone of avoidance” along the galactic plane, show
in Fig 2.1. However, he noted that on small angular scales, < 10 deg, there is an excess in
galactic number counts above what would be expected from a random Poisson distribution;
i.e. galaxies are clumped in certain places.

In the following decades this work was further enhanced by deeper observations over
more sky, such as the detection of over a million galaxies using the 0.5m refractor at Lick
Observatory in 1967 [176]. A re-reduced version this same data at higher resolution was
used to create a vivid map of cosmic structures projected on the sky [169], showing the first
view of cosmic web with the now familiar network of filaments and clusters.1 This data was
later used by James Peebles in his seminal work first estimating the two point and three

1The authors note that “interested investigators” can get a “copy of the catalog, the raw counts and our
corrected counts, on receipt at Princeton of an IBM compatible 2400-ft magnetic tape.” [169]



CHAPTER 2. LARGE SCALE STRUCTURE 6

Figure 2.1: An early map (1932) of the extragalactic sky, each mark indicates a point-
ing/photographic plate from the 6o-inch reflector at Mount Wilson. Larger solid black
dots indicated a relative overabundance, and larger empty circles indicate relative under-
abundance. From [86].

point function of astronomical data [147, 146], which was part of his major contributions
leading to his Nobel Prize for Physics in 2019 (coincidentally the target year of this thesis
publication). Not only was this work significant as the first use of the power spectrum for
cosmological analysis, but it is one of the first uses of “fast digital computers” for calculation
of relevant statistics, as opposed to the slower human computers used before this point.
From this standpoint these works are arguably the first modern cosmological papers; other
than the typesetting/notation, it wouldn’t look out of place on arXiv today.

Peebles determination of the power spectra (see Section 2.2.1), finding a power-law struc-
ture over O(1 deg) angular separation in the sky, spurred considerable interest in the field.
One question of interest was the redshift distribution and correlations present; studies up
this point used only the projected fields from photometric surveys which had significant in-
terdependence cosmic structure, magnitude-dependence drop-o↵, red-shifting out of the filter
ranges, etc. The first work to identify cosmic structures in three dimensions and attempt to
make full three dimensional maps was in [67], where they took spectroscopic observations of
238 galaxies in the Coma/A1367 Supercluster and immediate environment, shown in Fig 2.3.
This was an early example of a complete magnitude-limited spectroscopic survey designed
to study cosmic structures, where all objects with a magnitude mp < 15 in the target region
were spectroscopically observed and should provide a representative, if biased, sample of
the actual matter density. Not only did this data provide a vivid picture of Coma Cluster,
A1367, and the inter-cluster structure connecting them, but also the presence of significantly
under-dense regions around these structures. An analysis in the Southern Hemisphere [97]
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Figure 2.2: A wedge diagram showing the position of galaxies, with redshifts converted to
distances assuming H0 = 75 km s�1 Mpc�1, projected over 15 deg of declination. The
elongation along the line of sight of the cosmic structures was recognized at the time as
coming from velocity dispersion within the cluster; now known as “finger of god” e↵ects (see
also [90]). From [67].

found similar “holes” where galaxy densities were at least 10 times lower than cluster regions
(now known as “voids”) as well as “chains of galaxy clusters” (now known as “filaments.”)

It is interesting to note that throughout this time, the idea of large scale structure was
not commonly accepted. Despite himself making notable catalogues of clusters [218], Fritz
Zwicky strongly argued that, while galaxies themselves cluster, the distribution of galaxy
clusters was inherently random and uniform with the apparent structure caused by extinction
due to intergalactic dust or due to misidentifying of a single cluster as multiple clustered
galaxy clusters[217]. Fritz Zwicky’s confidence that there are no clusters of galaxy clusters
inspired him to explore various possible explanations including massive gravity models. Even
into the late 1970’s this view was still held by many [11, 59] who attempted to explain away
apparent clustering by projection e↵ects and/or extinction from the galactic plane causing
di↵erential selection.

A new generation of surveys in the 1980s [105, 42] seemed to have quiet these critics
due to the larger data-sets going deeper into the sky. The Harvard Center for Astronomy
(CfA) survey [42] spectroscopically observed 2,400 galaxies across both the northern and
southern hemispheres, noting that both the “frothy” distribution of galaxies due to the
many filamentary structures connecting clusters, as well as the statistical similarity between
the northern and southern hemispheres. This paper is notable as one of the early examples
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of comparing observations to n-body simulations, in this case a ⌦m = 1 simulation [52],
where the connectivity of the cosmic web was compared. Over the next decade, a second
CfA survey greatly expanded the footprint of the survey to contain a total of 4391 galaxies,
revealing large voids around the Perseus-Pisces Supercluster, as well as a“coherent dense
wall” extending at least 170 h�1 Mpc [160, 89].

In the new millennium, a new class of multiplexed spectrographs on larger telescopes
allowed an explosion of galaxy redshift surveys. The Two Degree Field Galaxy Redshift
Survey (2dFGRS, [37]) and Sloan Digital Sky Survey (SDSS, [214]) provided redshifts of
over a million galaxies over a large cosmic volume. While other galaxy surveys constrained
some cosmological models through qualitative arguments (for example, [51, 50]) it was only
with 2dFGRS and SDSS that there was su�cient statistical power (in terms of sky fraction
and number density) to make a full statistical analysis worthwhile.[149, 35, 196] The Sloan
Survey continues operation in upgraded as of the time of this writing (2019) with currently
planned operation into 2020, with power spectrum measurements still informing cosmological
constraints [153].

Outside of galaxy surveys, one can also get a unique view of the large scale structure
from other probes. In 1971, the UHURU satellite2 detected x-ray emission not associated
directly with any individual galaxy but instead from between galaxies known to be in a
cluster [30], resulting eventually in a catalog of such sources. [63, 64] These observations
determined that clusters of galaxies are the brightest extra-galactic x-ray sources and can
be quite extended, with sources ranging from 200 kpc to 3000 kpc. This was arguably the
first direct detection of the intergalactic medium (IGM), which was inferred based on early
x-ray observations of the global background [66] as well as by absorption features [68] in the
spectra of a high redshift quasar [167] (further discussed in Section 2.3.3). Around this same
time, observations of radio sources showed a significant dependence on cluster environment
on the observed radio signal which was attributed to a gaseous medium 15 times denser
inside clusters compared to the universe’s average [44].

While x-ray and radio observation continued to be key in understanding the hydrody-
namical properties within clusters throughout the 80s and early 90s, detection of emission
from filamentary structures between clusters proved di�cult [20]. It was not until the turn of
the millennia that filaments were detected across a number of wavelengths, including radio
[197], x-ray [166], and microwave [24]. The last of which was inferred based on the apparent
inverse Compton Scattering of cosmic microwave background photons o↵ the intergalactic
medium, known as the Sunyaev Zeldovich e↵ect [191]. This particular e↵ect has been used
as a very powerful probe of large scale structure, both through its power spectra [110] and
through well resolved sources [43] (see Sec 2.3.1 for more discussion of cluster cosmology).
More recently, the gravitational lensing of the CMB has opened up a new way to study the
matter distribution with less dependency on the large scale structure, including via cluster
lensing [128, 15] and filament lensing detected in cross correlations [73].

2The UHURU mission was one of the earliest space telescopes, launched only three years after the
Orbiting Astronomical Observatory, the first such telescope.
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Figure 2.3: The famous pie slices from the Sloan Digital Sky Survey.
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2.2 Initial Conditions and Evolution of Large Scale
Structure

The origin of large scale structure of the universe across a variety of scales is generally at-
tributed to the gravitational evolution of early primordial fluctuations sourced by an inflaton
field. In this section we will briefly summarize the formalism behind the generation of these
fluctuations through inflation and evolution of these fluctuations to first order, the Zeldovich
approximation [216], leaving higher order perturbation solutions to others (see [16] for a
standard reference). Since it is highly doubtful the uninitiated would ever look at this the-
sis, I will assume a passing familiarity with cosmology and general relativity at the level of
a standard undergraduate course.

2.2.1 Matter power spectra

As alluded to in the preceding section, a key focus of large scale structure surveys has been
determination of the matter power spectra. The power spectra has become a go to summary
statistic to quantify the statistical properties of a density field since, in the Gaussian limit, it
should contain all the information about the field relevant for cosmological analysis. While
we expect the early universe to be approximately Gaussian, this assumption is known to
break down at late time due to the gravitational evolution of the universe. The matter power
spectra from various cosmological probes is shown in Figure 5.3. We define the matter power
spectra as the two-point function of the matter over-density, �(x) = ⇢(x)/⇢̄, i.e.

h�M(x, t)�M(y, t)i = 1

V

Z

V

d3z�M(x+ z, t)�M(y + z, t). (2.1)

We can transform the matter fluctuations into Fourier space as

�M(x, t) =

Z
d3q↵(q)�Mq(t)e

iq·x = F (t)

Z
d3q↵(q)�(q)eiq·x (2.2)

where in the last equality we factored out the time dependence from the expression,
leaving a term depending on the spectral density per mode.

This assumes we are observing the real space positions of the objects though, which is
never the case on cosmological distances.

h�M(r(z)n̂, t(z))�M(r(z0)n̂0, t(z0))i
=
R
d3q�Mq(t(z))�⇤Mq

(t(z0)) exp iq · (r(z)n̂� r(z0)n̂0

= F (t(z))F (t(z0))
R
d3q|�(q)|2 exp iq · (r(z)n̂� r(z0)n̂0 (2.3)

We can re-express this in terms of the power spectra, P (k), and express the low-redshift
simplification as

h�M(r(z)n̂, t(z))�M(r(z0)n̂0, t(z0))i = H0

2⇡2

Z 1

0

kP (k)

"
sin ((k/H0)|zn̂� z0n̂0|

|zn̂� z0n̂0|

#
(2.4)
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A related quantity is the variance of the matter fluctuations in a spherical region of radius
R,

�2
R
(z) = h

✓
3

43

Z

|x|<R

d3x�M(x, t(z))

◆2

i, (2.5)

or

�2
R
(z) /

Z 1

0

P (k)|f(kR)|2k2dk (2.6)

where f is a spherical top-hat function defined by

f(kR) =
3

(kR)2
(sin kR� kR cos kR) . (2.7)

The value of this expression for z = 0 and R = 8h�1 Mpc is known as �8 and can be
viewed as the overall normalization of this variance, and therefor related to the amplitude of
the matter power spectra. The particular value of R was chosen to make this value of roughly
order unity (⇠ 0.8 in the Planck analysis) as well as roughly the cluster scale. Tension in
the exact value of this normalization between low redshift observations (such as xray cluster
surveys) and that inferred from high redshift CMB observations has driven some interest in
beyond the standard model physics between these epochs.

2.2.2 Inflation

Inflation is currently the dominate theory of early universe dynamics which is able to not
only source small fluctuations at early times, but also solve a number of significant apparent
problems in the standard cosmological model. Perhaps the most perplexing of these is the
apparent uniformity of the temperature of the cosmic microwave background. This is di�cult
to explain if all cosmic expansion is caused by normal matter/radiation as only very small
portions of the sky (roughly 2o) would’ve been in causal contact at z ⇠ 1100. In addition
to this “horizon problem” there is the “monopole problem,” where there is an absence of
theoretically well motivated magnetic monopoles, and the “flatness problem,” where the
universe’s curvature appears very close to flat. All three apparent problems could be solved
if the universe early on undergoes a rapid expansionary phase which would work to dilute
any monopoles, flatten any initial curvature, and allow the whole observed universe to be in
causal contact at early times before inflation.

Our goal in this section is twofold; (1) we want to study the primary time-vary e↵ect
of inflation, the rapid cosmic expansion at early times which “solves” the aforementioned
problems, and (2) we want to understand how the presence of this field would give rise to
spatial fluctuations. For the former task, our goal will be to relate the presence of a scalar
field to the quantities necessary to use the standard Friedmann Equations namely the energy
density, ⇢ and pressure, p, associated with this field. For the latter, we will study how a
perturbation to this scalar field will propagate gravitationally.
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Figure 2.4: Measurements of the matter power spectra at z = 0 at a variety of scales and
observations. Planck 2018 TT and EE, from [4], relate to the matter power spectra inferred
from CMB observations by the Planck Satellite. Planck 2018 �� is the constraint from the
lensing of the CMB by large scale structure discussed in greater detail in Sec 2.3.2.2. DES
Y1 cosmic shear, from [201], is a constraint from the distortion of apparent shapes of galaxies
caused by lensing from large scale structure, discussed in greater detail in Sec 2.3.2.1. SDSS
DR7 LRGs, from [130], are inferred from the distribution of galaxies. eBOSS DR14 Forest,
from [32], is a constraint from absorption lines in high redshift quasars and discussed in more
detail in Sec. 2.3.3. Figure from [31].
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Again assuming the cosmological principle, we theorize a scalar field, the “inflaton” which
is primarily only time varying,

�(x, t) = �̄µ⌫(t) + ��(x, t), (2.8)

where �� is a small, spatially-dependent, perturbation. The dynamics of a generic scalar
field with minimal coupling are governed by the standard action in a curved metric as

I� =

Z
d4x

p
�g


�1

2
gµ⌫

@�

@x⌫

@�

@xµ
� V (�)

�
. (2.9)

This can be seen as the sum of a kinetic term and a inflaton potential term, V (�). Using
the Euler Lagrange equations, i.e. enforcing that the action is stationary, we can find the
associated field equations by

@V (�)

@�
=

1p
�g

@

@xµ

p
�ggµ⌫

@�

@x⌫

�
, (2.10)

and associated energy-momentum tensor

T µ⌫

�
= gµ⇢g⌫�

@�

@x⇢

@�

@x�
� gµ⌫


1

2
g⇢�

@�

@x⇢

@�

@x�
+ V (�)

�
. (2.11)

We can now extract the pressure and density by noting that

⇢ = T 00
�

= �1
2g

µ⌫ @�

@xµ
@�

@x⌫ + V (�), (2.12)

�ijp = T ij

�
= �1

2g
µ⌫ @�

@xµ
@�

@x⌫ � V (�). (2.13)

We can then use the Friedmann equations to show that the first order contribution is

H = ȧ

a
=
q

8⇡G⇢

3 , (2.14)

Ḣ = �4⇡G ˙̄�2, (2.15)

since we want this field to be rapidly expanding (preferably exponential) at early times for
at least 1/H we require �����

Ḣ

H

�����
1

H
<< 1 (2.16)

which is equivalent based on Eq. 2.15 to having ˙̄�2 << |V (�)|, i.e. we demand that
kinetic term is far less than the potential associated with the field, known as the “slow-
roll” condition. To quantify this condition we introduce two variables known as the slowroll
parameters,

✏ =
d(H�1)

dt
=

�Ḣ

aH2
, (2.17)
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⌘ =
1

H

d2�̄/d2t

d�̄/dt
. (2.18)

We now turn our attention to the e↵ect of the perturbations of the inflaton field on
the matter distribution. During inflation the overall energy content of the universe was
dominated by this field and so underlying metric perturbations will propagate to the matter
field.

To find the metric perturbations induced by the scalar field perturbations (Eq. ) we can
use how they would propagate to the energy momentum tensor. The conservation equation
for the energy-momentum tensor can be written as

T µ

⌫;µ =
@T µ

⌫

@xµ
+ �µ

↵µ
T ↵

⌫
� �↵

⌫µ
T µ

↵
= 0. (2.19)

To find the equation for how �� behaves we expand the ⌫ = 0 component to first order and
assume a smooth metric. Under these limits the equation simplifies dramatically as

@�T 0
0

@t
+ iki�T

i

0 + 3H�T 0
0 �H�T i

i
= 0. (2.20)

Note that here we ignored metric perturbations which will act as a sourcing term on the
right side of the equation. This approximation should be valid for all sub-horizon modes
but will break down for large enough scales; a more detailed analysis is presented in [47].
Rewriting this in terms of �� in Fourier space we have

�̈�+ 2aH ˙��+ k2�� = 0. (2.21)

We can work this into a form of a harmonic oscillator by first defining a rescaled field
�̃ = a�� which allows the expression to be rewritten as

1

a


¨̃�+ (k2 � ä

a
)�̃

�
= 0 (2.22)

which has a familiar form to a quantum harmonic oscillator.3 This allows solution of the
form

�̃(k, t) = v(k, t)âk + v⇤(k, t)â†
k

(2.23)

the variance of these perturbations can be calculated as

�̃†(k, t)�̃(k, t)i = (2⇡)3|v(k, t)|2�3(k � k0) (2.24)

where �3 is the Dirac delta, expressing that the modes are uncorrelated to first order in
the perturbations. Transforming back to �� we have

3The reader here is forgiven for not remembering their introductory quantum mechanics, as I hope I too
am forgiven.
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�†(k, t)�(k, t)i = 1

a2
(2⇡)3|v(k, t)|2�3(k � k0) = P��(k)(2⇡)

3�3(k � k0) (2.25)

where P��(k) is the power spectrum of the primordial fluctuations. We can solve for
v(k, t) using Equation 2.23 and 2.23 to find that

v =
e�ikt

p
2k


1� i

kt

�
(2.26)

where we used the fact that ä ⇡ 2a/t2. During the rapid expansion of inflation, kt will
become very small so we this expression will simplify to

v ⇡ e�ikt

p
2k


� i

kt

�
. (2.27)

Combining this with the relationship in Equation 2.25, we can write the power spectra,
P��, as

P��(k) =
1

a2
1

k3t2
⇡ H2

k3
(2.28)

where we used the approximate relationship t ⇡ 1/aH. This means we expect to have
to have a (nearly) “scale invariant” spectra from primordial fluctuations since k3P (k) is a
constant. Since it is deviations from scale invariance we look for in cosmology we can re-write
the power spectra as

P�� / kns�1

k3
�2
H

✓
⌦m

D(a = 1)

◆
(2.29)

where we have separated out the scale dependence ofH into one determined by the growth
factor (D(a = 1)) and an additional scale dependent piece determined by ns, known as the
scalar spectral index. This can be related back to the slow roll parameters as ns = 1�4✏�2⌘.

2.2.3 Evolution of Fluctuations

Some subtlety is needed for understanding the evolution of baryon fluctuations vs. dark
matter fluctuations as dark matter decouples from the dominant radiation bath at far earlier
time than the baryon distribution. This leads to a significant di↵erential velocity between
the baryon and dark matter field at high redshifts which has cosmological implications.[202]
In addition, at late times, baryon pressure from collapse and feedback processes will become
significant. We will first focus only on the evolution of the dark matter component and
assume no back-reaction from the baryons. Studying only dark matter in this approximation
is valid enough to derive many cosmological observable to high accuracy.

The evolution of a linear density fluctuation, � = ⇢m/⇢̄m � 1, in Eulerian coordinates
is determined by the global expansion rate, H, and the (local) force of gravity (via the
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continuity and Euler equations) as

d2�

dt2
+ 2H

d�

dt
� 4⇡G⇢̄m� = 0. (2.30)

This mean density however depends on the the expansion rate as well as 4⇡G⇢̄m = 3⌦m(t)H2/2.
It is convenient to work in units of the scale factor, a, since it can be easily converted to a
redshift, so we can re-write this expression as

d2�

da2
+ a�1

✓
d lnH

d ln a

◆
d�

da
� 3⌦m(a)

2a2
⇢̄m� = 0. (2.31)

This expression can be interpreted as a damped harmonic oscillator, with the first order
term acting like a drag coe�cient and the zeroth order term is the instability term. In
the linear regime, where |�| << 1, the evolution of the perturbation is determined by the
global expansion history. In particular, for the early universe where dark energy is not yet
dominant, the density contrast �(a) / a3w+1 where w = 1/3 for the radiation dominated era
(z3500)[4] and w = 0 for the matter dominated era (z3500). In general we have a growth
rate defined as

D+(a) =
�(x, a)

�(x, 0)
=

5

2
⌦M

Z
a

0

✓
da0

d⌧

◆�3

da0 (2.32)

which, for a ⇤CDM universe evolved to present day (a = 1) is approximately

D+(1) ⇡
5

2
⌦M


⌦4/7

M
� ⌦� + (1 +

1

2
⌦M)(1 +

1

70
⌦⇤)

��1

. (2.33)

We performed this linear evolution calculation in “Eulerian” coordinates, which are in-
tuitive since they describe the real space distribution of matter. However they are not
necessarily optimal when going to higher orders in perturbation theory since correlations
between modes due to evolution and due to the initial conditions become inseparable. A
popular method is to express things in “Lagrangian” coordinates where position of a particle
is described by its initial comoving position, q, and a displacement vector,  (q, t), i.e.

x(q, t) = q + (q, t). (2.34)

The displacement operator could be expressed exactly in terms of the gradient of the evolving
gravitational potential, however this would be numerically di�cult to do exactly and instead
we will try to recast this into a perturbation problem. We can map between the Eulerian
and Lagrangian picture by enforcing mass conservation, i.e. ⇢(x, t)d3x = ⇢(q)d3q, so the
Jacobean is

J(q, t) =

����
@x

@q

���� =
1

1 + �(x, t)
. (2.35)
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(a) Initial Conditions (z = 1) (b) FastPM (z = 0)

(c) 1-LPT (z = 0) (d) 2-LPT (z = 0)

Figure 2.5: Plots showing projected density fields of the (a) Gaussian initial conditions,
and (b) the fully evolved field using a 20 step FastPM. Cosmic structures including voids,
filaments, and clusters are clearly visible. Also shown in the figure are the approximate
solutions from (c) first order LPT, and (d) second order LPT, both implemented via a one-
step FastPM. Notice the changes between first order and second order LPT are qualitatively
small.
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We can re-write the equation of motion (Eq. 2.30) in Lagrangian coordinates as

J(q, t)rx ·
✓
@2 

@t2
+H

@ 

@t

◆
=

3

2
⌦m(t)H

2(J(q, t)� 1), (2.36)

where x denotes the gradient operator with respect to the Eulerian coordinates. Since this a
nonlinear equation in  , we use perturbation theory, i.e. Lagrangian Perturbation Theory
(LPT), to expand it in first order. It is interesting to note that first order LPT (the Zeldovich
Approximation) is generally more accurate than second order Eulerian Perturbation theory
in terms of statistical properties of late-time collapsed objects (see, for example, [19]). To
linear order we have J(q, t)rx ⇡ rq so we can rewrite Eq. 2.36, defining  = rq , as

 ̈ +H ̇ =
3

2
⌦m(t)H

2 , (2.37)

which has a similar growth rate solution as the Eulerian linear case (Eq. 2.32). We can go
further to second order, writing our solution of the form x(q, t) = q+ (1)(q, t)+ (2)(q, t),
where  (1) is the solution to Eq. 2.37 and  (2) described via the shear terms of the first
order expression as;

rq · (2)(q, t) =
1

2

✓
D2

D+

◆2X

i 6=j

h
 (1)

i,j
 (1)

j,j
� (1)

i,j
 (1)

j,i

i
(2.38)

where D2 is the second order growth factor which for a ⇤CDM universe is approximately

D2(a) ⇡ �3

7
(D+(a))

2⌦�1/143
M

. (2.39)

Lagrangian Perturbation Theory is often the backbone of both analytical calculations
and numerical simulations in cosmology. The FastPM framework [58], for example, utilizes
LPT to initially evolve the particles till nonlinear e↵ects require a more complete simula-
tion. In Figure 2.5, we show the initial density field and the evolved field with a variety of
possible schemes. Through all approximation schemes the cosmic web is clearly visible. The
classification of cosmic structure within this Zeldovich approximation is discussed and used
in Chapter 5.

2.2.4 Halo Model

In order to map the theoretical understanding of the matter power-spectrum to actual ob-
servations we need to account for the bias in the tracer field. For a galaxy survey, linear
bias (i.e. Pgg(k) = b1Pmm(k)) will work for large scales but at smaller scales galaxies cluster
preferentially in halo environments. These halos form through spherical collapse of dark
matter perturbations, where dark matter particles will separate from the global expansion
(the Hubble flow) to form a “separate universe.” The dynamics of the initial collapse can
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be understood by modeling the region as an isotropic/homogeneous universe with a higher
value of ⌦M , up until the halo reaches an equilibrium due to the viral theorem.

The actual ensemble statistics of these collapsed structures depend on nonlinear gravi-
tational interactions and requires numerical simulations to calculate in detail. However, a
fairly accurate analytical simplification, the Press-Schechter formalism, has become a stan-
dard tool in understanding these statistics analytically and works surprising well over a range
of masses. In this formalism we model the overdensity as a closed universe with matter den-
sity ⌦m, with associated Friedmann equation

1

a

da

dt
= H0

�
⌦ma

�3 + (1� ⌦m)a
�2
�1/2

. (2.40)

Solving the collapse equation to second order one can find that the scale factor evolves
as

a =

✓
3

4

◆2/3✓3ai
5⇢i

◆
(✓ � sin ✓)2/3, (2.41)

where ✓ is a rescaled time parameter set such that ✓ = 2⇡ corresponds to the the structure
fully collapsed. So we have the scale of collapse as

acol =

✓
3

4

◆2/3✓3ai
5⇢i

◆
(2⇡)2/3 ⇡ 1.686

ai
�i
, (2.42)

so any region with initial density fluctuation greater than or equal to �c = 1.686 will collapse.
With this threshold we can calculate the statistics of collapsed objected given �(R) (or
equivalently P (k), see Eq. 2.5). Since observed properties depend primarily on the mass of
the halo, we want to determine number of fluctuations of scale M = 4⇡R3/3 and express the
fluctuations on this mass scale, i.e. �M = �4⇡R3/3. We can calculate the fraction of mass in
halos of size > M as

N(M) =
1p

2⇡�(M)

Z 1

�c

d� exp

✓
� �

2�2(M)

◆
=

1

2


1� erf

✓
⌫p
2

◆�
, (2.43)

where erf is the errror function and ⌫ = �c/�(M). Notice though as we take M ! 0
the fraction of matter in collapsed structures goes to 1

2 , which is nonphysical as by late time
all matter should be in collapsed structures. To avoid this problem we ad hoc multiply this
expression by 2.

We can now use this expression to relate to observations of clusters to constrain the
cosmological model. The target quantity we want is the number of halos per mass bin dM ,
so we calculate the di↵erential number density of halos as

dn

d lnM
= ⇢m

M

d

d lnM

h
1� erf

⇣
⌫p
2

⌘i
=
q

2
⇡

⇢m

M

d ln�
�1

d lnM
⌫ exp(�⌫2/2). (2.44)
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This formalism is imprecise since a region that is underdense on a given scale may be
overdensed when smoothed on a larger scale. While there are some analytical approaches
to this problem, most notably excursion set theory where the halo mass function is viewed
as a Markov random walk in smoothing length, the most common approach to analyze
observations is to use the Press-Schetcher model to motivate fitting functional forms to
calibrate observed halos to simulations.

In addition to clustering of galaxies into halos, there is also observed clustering of halos
(the “2-halo” term). This e↵ect can be understood through the peak-background split for-
malism where the large scale density field acts as a “background” fluctuation which enhances
the likelihood of a given fluctuation reaching the critical density to form a “peak”. This split
can be seen as essentially lowering the threshold for collapse where there is a local maxima
of the background fluctuation and raising it when there is a local minima. In the case of
the Press-Schechter formalism this bias can be found analytically as a function of mass as
b(M) = 1 + ⌫

2�1
�c

.

2.3 Tracers of Large Scale Structure

As discussed in Section 2.1, there are numerous tracers of large scale structure including
galaxy fields, x-ray emission, radio emission, tSZ, gravitational lensing, flux, etc. In this
section we focus on the tracers discussed later in the main body of the thesis; clusters,
gravitational lensing signal, and Lyman Alpha flux.

2.3.1 Clusters

In Sec 2.2.4, we discussed the Press-Schetcher halo mass function and showed its sensitivity to
cosmology via its dependence on the matter power spectra. In general the halo mass function
is a very powerful prediction of the ⇤-CDM model and is sensitive to the overall matter
density, ⌦m, sum of neutrino masses, ⌃M⌫ , and the amplitude of density fluctuations, �8.[163]
However, in order to calculate this distribution from observations we need to ascertain their
mass which is di�cult to estimate. While in certain cases the geometry lines up well for
strong lensing signatures to be used to infer their mass, we are usually left to study di↵erent
proxies of mass, such as X-ray luminosity or Sunyaev-Zeldovich signal, and correlate them
with gravitational e↵ects of the cluster, such as galaxy-cluster lensing. The uncertainty in
the calibration of these relations now limits the constraining power of cluster counts as a
cosmological probe [131].

Information from clusters have been shown to be a key element in breaking degenerecies
present in Cosmic Microwave Background power spectra data alone by providing an inde-
pendent probe of the structure of formation. One of the notable examples is the degeneracy
between the amplitude of the primordial matter power spectra, As, the optical depth to the
surface of last scattering, ⌧ , and the mass of neutrino species. While measurement of the low-



CHAPTER 2. LARGE SCALE STRUCTURE 21

Figure 2.6: Calibration of hydrostatic bias using various techniques and datasets. The wide
spread in values corresponds to similarly varying constraints on �8 and ⌦m. From [148] .

l polarization power spectra helps to reduce some of these degenerecies, these observations
will eventually be fundamentally limited by cosmic variance. [3]

One of the key assumptions in the study of clusters via their tSZ or xray signal is that the
cluster halo is spherically symmetric and in hydrostatic equilibrium [165]. This assumption
can be understood via the Euler equation

dv

dt
= �r�� 1

⇢
rP, (2.45)

where � is the cluster gravitational potential, P is the (gas) pressure, and ⇢ is the density.
Hydrostatic equilibrium occurs when dv

dt
= 0; i.e. the three dimensional acceleration of the

gas, resulting from the sum of hydrodynamical and gravitational forces, is zero. If one further
assumes that the cluster is radially symmetric, with temperature profile T (r) and gas density
profile ⇢(r), the mass inside a given radius can be calculated as

MHSE(r) = �kBT (r)r

µGmp


d log ⇢(r)

d log r
� d log T (r)

d log r

�
, (2.46)

where µ is the mean molecular weight. In observations of clusters via xray, the xray lumi-
nosity is a direct tracer of the temperature of the gas, while in tSZ measurements one is
probing the pressure profile (which can be related back to the temperature profile). How-
ever, recent observations [161] and simulations [113] have shown that most halos are not in
HSE and that bulk motion of gas contribute up to 20% of the pressure within clusters. Such
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gas motions are thought to be driven by a combination of continuing accretion of gas onto
clusters along filaments as well as mergers and supersonic motions of galaxies through the
ICM [113]. Shocks caused by this motion can leave behind large wakes that are comparable
in size to the length of the cluster [104].

All these e↵ects can contribute to hydrostatic bias within clusters which can be measured
by comparing x-ray/tSZ luminosity with lensing signal. A common approach to mitigate this
e↵ect is to calibrate out this o↵set via introduction of a new parameter bSZ (or bxray) where
MSZ = (1� bSZ)Mtrue. This o↵set can be calibrated through using a select group of clusters
with accurate lensing signal in which to infer the true mass (such as in [123]). However,
depending on the methods used to extract this mass and the subset of cluster lenses selected,
this calibration can vary significantly. Current cosmological constraints using clusters have
been dominated by error on the calibration [148], as shown in Figure 2.6.

2.3.2 Gravitational Lensing

Gravitational lensing, the distortion of the apparent images of distant sources due to inter-
vening matter, has become in recent years a key component of cosmological analysis. It is
often grouped into two “types”; strong lensing, qualitatively defined as when the distortion
is visible to the eye (either due to extreme arc-like geometry and/or multiple images), and
weak lensing which is subtle and usually only identifiable from a statistical ensemble of many
sources. In this work we focus on the weak form as it is the type often studied in large vol-
ume surveys, both galaxy imaging and cosmic microwave background. Weak gravitational
lensing has the advantage of directly probing the underlying gravitational field over large
volumes, as opposed to galaxy surveys, cluster counts, and Lyman alpha forest, where the
cosmological constraints have high degeneracy with bias models. Weak gravitational lensing
is not without its own biases and other systematics (shear bias, magnification bias, intrinsic
alignments) which depend on baryon physics but these generally enter beyond leading order
in terms of the cosmology constraints.

2.3.2.1 Galaxy Shear

The first order e↵ects of weak lensing are convergence (magnification) and shearing (change
of ellipticity) of images.4 We can describe both e↵ects as a shear matrix

M =

✓
+ �1 �2
�2 � �1

◆
, (2.47)

where  is the convergence and �i are the shear fields (one for each direction on the
sky). This matrix has a direct relation to the e↵ect of lensing on the quadruple moment of

4The next order e↵ects are known as “flexion” and involve the change in the octopole moment within
the observed image.
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Figure 2.7: Convergence map from the Dark Energy Survey, a cosmic shear survey. The
map covers roughly 1/30th of the entire sky and is proportional to the nearby projected
mass distribution.

a galaxy’s luminosity, Q, with the apparent (lensed) quadrople moment, Q̃, given as

Q̃ab = Qab +MacQcb +MdbQad. (2.48)

In the case of a source at distance rS in direction n̂, with L intervening point sources located
at xL at distance rL with mass ML, we can write the shear matrix Mab(rS, n̂) as a sum,

Mab(rS, n̂) =
X

L

4MLGrL(rL � rS)

rSaL


�ab
|y

L
|2 � 2yLayLb

|y
L
|4

�
, (2.49)

where y
L
= xL � n̂(n̂ · xL) and aL is the scale factor at the time the light from the source

passes the lens. Direct application of this formula is of little use for cosmological analysis as
structure is di↵use and extended; rewriting as an integral over the line of sight in terms of a
lensing potential,  , we have

Mab(rS, n̂) = 2

Z
rS

0

r(r � rS)

rS


@2

@ya@yb
 (rn̂+ y, t)

�

y=0,t=tr

dr. (2.50)

Note though for a photometric shear surveys we will not have a well defined position rS in
which to perform this integration, and will instead have some possible probability function
N (rS) for these galaxies, where the nature of N will be determined by a combination of
selection function and/or photometric redshift. We can now integrate over this function to
determine the shear,
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Mab(rS, n̂) = 2
R1
0

h
@
2

@ya@yb
 (rn̂+ y, t)

i

y=0,t=tr

R1
r

r(r�rS)
rS

N (rS)drSdr (2.51)

= 2
R1
0

h
@
2

@ya@yb
 (rn̂+ y, t)

i

y=0,t=tr

g(r)dr. (2.52)

We now want to relate this formula to summary statistics on the sky, in particular the
angular auto-power spectra of the shear, C��, and convergence, C, and thereby have a
probe of the lensing potential  . We first decompose this potential into plane waves as

 (x, t) =

Z
d3q↵(q) q(t)e

iq·x, (2.53)

where ↵(q) gives the phase information of the density fluctuation. We can now decom-
pose the shear matrix into a shear and convergence component in terms of the plane waves
decomposed on the sphere5,

(n̂) =
P

`m
a,`mY M

`
(n̂), (2.54)

�1(n̂) + i�2(n̂) =
P

`m
a�,`mY M

`
(n̂), (2.55)

with associated coe�cients

a,`m = 4⇡i`
q

(`+2)!
(`�2)!

R
d3qq2↵(q)Y m⇤

`
(q̂)
R1
0 g(r)��q(tr) (j`(qr) + j00

`
(qr)) dr, (2.56)

a�,`m = �4⇡i`
R
d3qq2↵(q)Y m⇤

`
(q̂)
R1
0 g(r)��q(tr)j`(qr)r�2dr.

We want to get create a summary statistic that does not depend on the matter phase
information encoded in ↵, so we can use the orthogonality relationship between components
and take the average as

haX,`ma
⇤
X,`0m0i = �``0�mm0CXX,` (2.57)

for X 2 (, �), where CXX,` is the angular power spectra, which is the main observable
of these surveys and expressed as

C,` = 4⇡2
R1
0 q6dq

⇥R1
0 ��q(tr)j`(qr)(j`(qr) + j00

`
(qr)g(r)2dr

⇤
, (2.58)

C��,` =
4⇡2(`+2)!

`�2

R1
0 q2dq

hR1
0

��q(tr)j`(qr)
r2

g(r)
i2

. (2.59)

In the ` >> 1 limit, we can further simplify this integral by using the properties of the
spherical Bessel functions and approximating the integral over r as that over `/q, we get

5We make liberal use of the formula eirq·n̂ =
P

`m i`j`(qr)Y m
` (n̂)Y m⇤

` (q̂), where j` are spherical bessel
functions and Y m

` are spherical harmonics.
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Figure 2.8: Measurements of the CMB lensing potential power spectrum from a number of
recent surveys, including Planck 2018 [4], ACTpol [177], SPTpol [187], and SPT-SZ [178].
From [4].

C��,` ⇠ C,` = 2⇡3`4
Z 1

0

dqq4|��q(tq)|2g2(`/q). (2.60)

The perturbations ��q can be re-expressed in terms of the matter power spectra, see Sec.
2.2.1, to get a more compact formula of the form

C��,` ⇠ C,` =
9⌦2

M
H2

0

16

Z 1

0

dr
g2(r)

r2
P (`/r). (2.61)

2.3.2.2 Lensing of the Cosmic Microwave Background

Observations of the primary CMB have proven to be one of the most powerful cosmological
probes due to the predicted linear evolution of fluctuations from early times till the surface of
last scattering. The basic theory of the statistical properties of the CMB at time of emission
are fairly well understood and give rise to a characteristic pattern of peaks in the anisotropy
power spectra. However, as experiments reach increasing sensitivity nonlinear e↵ects have
become increasingly evident. One of the most import of these e↵ects is the gravitational
lensing of the cosmic microwave background by structure along the line of sight. This e↵ect
is significant both in terms of the cosmological information contains as well as its ability to



CHAPTER 2. LARGE SCALE STRUCTURE 26

a↵ect constraints on fundamental physics (most famously identification of primordial tensor
modes). Unlike many other secondary anisotropies, gravitational lensing doesn’t have a
frequency dependence so it cannot be separated out through multi-frequency observations
like the thermal Sunyaev Zeldovich e↵ect or the cosmic infared background.

The unlensed CMB’s statistical properties arise from acoustic oscillations in the primor-
dial photon-baryon fluid, where the initial perturbations had a Gaussian and nearly scale
invariant spectrum. At z ⇠ 103, the universe underwent a phase transition from a ionized
plasma to a neutral gas, and the photons are able to free-stream to us. As this combination
process is not instantaneous, a photon quadraple moment develops resulting an observed
polarization anistropy signal in addition to a temperature anisotropy. As structure forms
along the line of sight, this primordial signal gets altered due to gravitational lensing, the
integrated Sachs-Wolfe e↵ect, and due to scattering processes.

The magnitude of the lensing e↵ect can be estimated assuming pure Newtonian gravity.
Treating the photon like a point mass, one can find the deflection angle as � = 2�(R)/c2

where �(r) is the gravitational potential (relativistic corrections only result in multiplying
this by a factor of 2). The depths of these potentials are roughly 105 in natural units,
resulting in an average deflection of 2 ⇥ 10�5 radians. A given photon will likely pass
through a number of such potentials between last scattering surface (⇠ 14000 Mpc away)
and observation. To estimate this number we can look at the peak of matter power spectra,
finding that overdensities should be on about ⇠ 300 Mpc scales. This means the average
photon will undergo significant deflections roughly 50 times, resulting in a total angular
change of 50 ⇥ 2 ⇥ 105 = 10�3 radians, or ⇠ 3 arminutes. This scale corresponds to an
` ⇠ 3000 in terms of CMB multipoles. At these high multipoles Silk damping results in an
exponential suppression of the primary CMB, meaning that the resulting structure seen at
this high ` comes primarily from lensing and other secondary anisotropies.

A more rigorous analysis can be done following the derivation of the expression in Sec.
2.3.2.1 in order to calculate the lensing power spectra caused by the intervening matter. We
can use this result to define the expected anistropy in the observed CMB by defining the
observed (lensed) power spectra in terms of the primary power spectra as

C̃T

`
⇡ (1� `2R�)CT

`
+

Z
d2`0

(2⇡)2
[`0 · (`� `0)]2C��

|`�`0
|
CT

`

0 (2.62)

where the deflection angle power is defined as

R� =
1

4

Z
d`

`
`4C��

`
. (2.63)

The convolutional term in Eq 2.62 has the e↵ect of smoothing the acoustic peaks; e↵ec-
tively CMB power is both smoothed and moved from large scales to smaller scales.

While here we summarized the e↵ect for temperature anisotropies, a similar argument
holds for polarization anisotropies. In that case, one should be careful to do the calculation
for both Q and U Stokes parameters (rather than the E field) as the net e↵ect of the lensing
will be to move power from E modes to B modes (and also from possible primordial B
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Figure 2.9: Top: Rest frame, low redshift quasar spectra without Lyman Alpha Forest.
Bottom: Rest frame, high redshift quasar spectra with Lyman Alpha Forest present. From
https://pages.astronomy.ua.edu/keel/agn/forest.html.

modes to E modes). This “leakage” creates a significant systematic for next generation
CMB observations trying to detect signatures of inflationary physics. Techniques used to
correct this leakage are explored in Chapter 4.

The small scale limit of CMB lensing is particularly interesting as it provides an oppor-
tunity to measure the gravitational lensing potential of any astronomical object due to the
ubiquity of the CMB on the sky. The physics and detection methods for CMB lensing in
this limit are explored in Chapter 3.

2.3.3 Lyman Alpha Forest

The Lyman Alpha forest is a series of absorption features seen in the spectra high redshift
quasars and galaxies caused by the presence of neutral hydrogen along the line of sight. As
the light travels through a cloud of neutral hydrogen, it rest-frame Lyman alpha frequency
(1215.67 Å) gets (partially) absorbed. As there are a number of such features along the
line of sight, the result is a series of absorption lines present between the Lyman Alpha and
Lyman break feature reminiscent of a forest. This e↵ect was first theorized and observed
in 1965 [68], in the spectra of a redshift z = 2.01 quasar. This was the first evidence of
the presence of a di↵use baryon component to the universe found between galaxies, now
commonly known as the Intergalactic Medium (IGM).

The determining quantity in the hydrogen column density NHI . Clouds with extremely
high densities (NHI > 1019 cm�2) are known as Damped Lyman Alpha Systems (DLAs)
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and are characterized by their damping wings on either side of the absorption line. DLAs
are usually assumed to be dense, neutral, star forming regions. At lower column densities
(1017 < NHI < 1019) are known as Lyman Limit Systems and exhibit self-shielding; they
are optically thick enough that radiation from the surrounding UV background doesn’t
permeated into their interior. The presence of such systems becomes evident in the far
UV (rest frame 987 Å) where they cause a “Lyman break” feature, a discontinuity in the
observed spectra. At lower densities (1014 < NHI < 1017) are the standard di↵use Lyman
forest systems who dominate the observed absorption features.

Ignoring presence of metals which could contribute their own signatures, Lyman alpha
systems are determined by three parameters; its position in redshift space, its column density,
and line width determined by gas temperature and turbulent pressure (b =

p
2kT/m+ b2

turb
).

These parameters determine the entire absorption profile, consisting of a convolution of a
Lorentzian resonance curve and a Maxwell-Boltzmann velocity distribution, known jointly
as the Voigt profile.

The Lyman Alpha forest is a powerful cosmological probe as, on spatial scales 1 Mpc
where the thermal pressure of the gas is not important, the intergalactic medium traces
the underlying dark matter mass distribution much more closely than the stellar light of
galaxies. This is particularly true at high redshift where observed galaxies would likely be
highly biased since only the brightest galaxies can be observed. As long as the gas in the
IGM is mostly ionized and in photoionization equilibrium, the optical depth at redshift z
can be expressed as;

⌧(z) / (⌦bh2)2

�

H(0)

hH(Z)
T�0.7

✓
⇢

⇢̄

◆↵ (1 + z)6

1 + dvpec

H(z)dr

, (2.64)

where � is the photoionization rate, dvpec

dr
is the gradient of the peculiar velocity along

the line of sight, and ⇢ (⇢̄) is the baryon (average) density. This quantity is then further
convolved with the Voigt profile and exponentiated (F = exp(�⌧)) to get the observed
flux. The value of ↵ depends on the specific gas physics modelled to take into account that
denser regions of the universe are typically warmer because it is more e↵ectively heated by
photoionization, but will also depend on the reionization history of that particular volume.
In the case of an isothermal gas cloud ↵ = 2, while for more realistic gas clouds including
these complications simulations have found ↵ ⇠ 1.5.

The primary summary statistic used to constrain cosmology using the Lyman Alpha forest
is the one dimensional flux power spectra as a function of reshift, PF (k, z).[39] This statistic
is derived from taking the power spectra of each line of sight independently and stacking the
derived statistic proportional to the noise properties of each spectra. In order to use this as a
cosmological probe there are a number of systematics that need to be corrected for mapping
the power spectra to parameter estimates, including hydrodynamical uncertainty in the flux
model, redshift space distortions, metal line removal and DLA contamination. While there
are some analytical formalism to model some of these e↵ects (for example, [170]), it usually
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falls to hydrodynamical simulations to model these e↵ects and compare the estimated power
spectrum of those simulations to data.

Another way to make use of Lyman Alpha power spectra is to take advantage of the
3d information; i.e. the spatial correlations between nearby sight-lines. This can be done
by computing a three dimension power spectra [61], which should contain strictly more
information than its one dimensional counterpart. As the density of lines of sight increases
in future Lyman Alpha forest surveys (such as DESI), it becomes more important to measure
this statistic due to huge amount of modes available. In practice, however, this statistic is
di�cult to compute due to explosion of possible pixel pairs in large data-sets. A di↵erent
way to use this three dimensional structure is to tomographically reconstruct the underlying
flux density field, which is discussed in more detail in Chapter 5.
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Chapter 3

Reconstructing Small Scale Lenses in
the Cosmic Microwave Background

3.1 Introduction

Weak gravitational lensing of the Cosmic Microwave Background (CMB) by the large-scale
structure of the Universe produces a signature in the CMB anisotropies in both temperature
and polarization and provides a unique probe of the matter distribution out to high redshift
([173]). Lensing induces statistical anisotropies in the observed CMB, through which the
mass distribution can be probed. The most common method of lensing reconstruction relies
on the quadratic estimator (QE) of Hu and Okamoto ([85]). Previous work ([76, 26]) has
shown that, since the QE is only an approximation to the maximum likelihood solution,
significant improvements are possible in polarization at low noise levels, usually at the cost
of a much greater computational complexity.

In this paper, we revisit lensing reconstruction on very small scales, in a regime where the
primary CMB fluctuations have been Silk damped and are negligible (i.e. `4000). We will
first show that the quadratic estimator can be very suboptimal in this regime as well, since it
is limited by the cosmic variance of the long-wavelength background gradient mode, while a
true maximum likelihood solution should be able to reconstruct small lenses arbitrarily well,
given small enough instrumental noise and residual foreground levels. We then show that
the statistical power of the QE is further reduced by the fact that the errors become highly
correlated, so that the utility of measuring more modes is reduced when the proper covariance
between them is taken into account. Finally, we show that a simple gradient inversion
matched filtering approach, as proposed by [172], is close to optimal for reconstruction of
very small scale lenses, and that it is not limited by cosmic variance, thus in principle allowing
arbitrarily large improvements over the QE (for small enough noise).

One application of this formalism with cosmological significance is cluster mass determi-
nation though CMB lensing, or “cluster lensing”. The number counts of galaxy clusters are
a key prediction of the ⇤-CDM model which is sensitive to the overall matter density, ⌦m,
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as well as the amplitude of density fluctuations, �8, and hence the neutrino mass ⌃M⌫ . A
key limiting factor of using galaxy clusters for cosmological studies is their mass calibration,
which is di�cult to obtain ([163]). Since it isn’t directly observable, cosmologists are left to
study di↵erent proxies of mass, such as X-ray luminosity or Sunyaev-Zel’dovich signal, and
correlate them with gravitational e↵ects of the cluster, such as galaxy-cluster lensing. The
uncertainty in the calibration of these relations now limits the constraining power of cluster
counts as a cosmological probe ([131]).

While low-redshift massive clusters can be accurately weighed by using lensing of back-
ground galaxies along the line of sight ([123, 127]), this approach fails for more distant clus-
ters (at z1) because of the lack of enough resolved galaxies on the background. In addition,
uncertainties in the photometric redshift distribution of source galaxies, which is challenging
to determine precisely at high redshift, can lead to errors in the mass determination.

Meanwhile, the CMB provides a source at known redshift (z ⇡ 1100) and with well
studied statistical properties. By looking at the lensing of the CMB by these galaxy clusters,
we can avoid some of the shortcomings of galaxy lensing surveys and probe more distant
clusters ([78, 212, 213, 136]). While development of the theory behind these measurements
dates back almost two decades ([215, 172, 121]), it is only fairly recently that this lensing
has been detected at high statistical significance ([136, 128, 15])

These detections have used a modified version of the QE ([84]) which relies on reconstruct-
ing the lensing convergence , and then applying a matched filter ([136]) on the resulting
convergence map. However, as discussed in ([212]), QE obtains unbiased and optimal re-
sults only in the limit of no gravitational lensing and becomes progressively more biased
and sub-optimal as the gradient in lensing potential increases. Clusters found in SZ samples
have particularly strong potential gradients due to their large mass and pose a particu-
larly serious problem for quadratic estimator techniques. The work by ([15]) employs a
maximum-likelihood approach and should be immune to the discussion above, but is more
computationally expensive.

Revisiting the work of [172] in the context of upcoming CMB experiments such as CMB S4
([1]), we discuss how an unbiased estimate for the mass of a small spherically symmetric lens
(such as an idealized cluster) can be obtained with a simple matched filter of the temperature
and polarization maps. In the low-noise regime, we show that these estimates are close to
the maximum likelihood solution, and considerably better than the QE. Reconstructing the
lensing potential on small scales is particularly important as upcoming CMB experiments
can potentially reach sensitivities of ⇠ 1 µK-arcmin and 1 arcmin beams size. With this
increase in instrumental sensitivity, there should be corresponding increases in cluster mass
calibration and cosmological constraints ([124, 127]).

In Section 3.2, we briefly review weak lensing of the CMB, explore the small-scale limit of
the quadratic estimator and explain the matched filter approach, as well as our assumptions
about the cluster mass profile. In Section 3.3, we introduce a matched filter technique
we use directly on the temperature map. In Section 3.4, we implement our technique on
realistic lensed CMB maps and compare against the quadratic estimator, finding improved
performance at low noise levels and high redshifts. In Section 3.5, we compare the results of
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Figure 3.1: Top: Simulated images of CMB lensing caused by a 2 ⇥ 1014 M� NFW cluster
at z = 0.7. Bottom: Unlensed image subtracted out. Left: Beam alone, Right: Beam and 1
µK-arcmin noise.

the matched filter estimate to other lensing reconstruction techniques. Finally, in Section 3.6,
we will summarize our results and look at prospects for applying it to future experiments.

For our analysis we will assume the flat ⇤CDM Planck 2013 cosmology ([36]), with
H0 = 67.8 km (Mpc s)�1, and ⌦m = 0.307. We will assume the Born approximation, and
ignore field rotation/multiple-lens e↵ects throughout this work.

3.2 Formalism

3.2.1 E↵ect of Cluster Lensing on the CMB

Here we briefly review the e↵ects of gravitational lensing on the CMB; for a more complete
review see ([120]). The observed CMB anisotropies can be described by their temperature
fluctuations as a function of direction n̂, ⇥(n̂), as well as two Stokes parameters describ-
ing their polarization Q(n̂) and U(n̂). Since the e↵ect of lensing is a simple coordinate
remapping, the observed (i.e. lensed) field, (⇥̃, Q̃, Ũ), can be related to the primary fields,
(⇥, Q, U), through a deflection angle field d(n̂) = r�, where � is the lensing potential, by

⇥̃(n̂) = ⇥(n̂+r�)) ⇡ ⇥(n̂) +r� ·r⇥(n̂) + . . . (3.1a)

Q̃(n̂) = Q(n̂+r�)) ⇡ Q(n̂) +r� ·rQ(n̂) + . . . (3.1b)

Ũ(n̂) = U(n̂+r�)) ⇡ U(n̂) +r� ·rU(n̂) + . . . (3.1c)
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Here we have truncated the expansion to first order in r�, and which is referred to as
the “gradient approximation.”

Note that while the gradient approximation can be a poor approximation on large scales,
it is very good on small enough scales, for the following reason: CMB fluctuations have most
of the power on large scales, small scales being suppressed by Silk damping. To quantify
which scales contribute to the gradient, we can calculate the variance of the gradient when
including multipoles ` only up to `max. For temperature, this is

G2
rms

(< `max) =

Z
`max

0

d2`

(2⇡)2
`2CTT

`
. (3.2)

and a similar definition holds for polarization. Figure 3.2 shows Grms as a function of `max,
and we can see that the gradient variance entirely originates at `2000, as pointed out in [84].
If we consider small lenses such that r� receives most of its contribution from ` > 2000,
the gradient approximation should be excellent, and in this paper we will study this regime,
which is where analytic progress can be made. For larger lenses, where this assumption
fails, more expensive numerical maximum-likelihood methods should be employed to ensure
optimality ([76, 26, 137]).

As we have discussed in the introduction, the advantages of CMB lensing over galaxy
lensing for measuring cluster masses become large at z1, and we will show that most of those
clusters are small enough in the sky for the gradient approximation to hold. This makes
cluster lensing an ideal application of our formalism.

For concreteness, in the rest of the paper we will work in terms of the temperature
fluctuations ⇥, but the same formalism also applies to Q and U , since they are deflected by
the same vector. Sometimes it will also be useful to work in terms of the lensing convergence,
, defined as (n̂) = �1

2r · d(n̂) = �1
2r

2�(n̂). We also note, that since the rms gradient of
temperature fluctuations is almost an order of magnitude larger than that for polarization,
temperature reconstruction is expected to be the dominant source of information on about
small scales. Polarization, while statistically less powerful, is less a↵ected by some of the
foreground contamination and can provide useful consistency checks.

3.2.2 Quadratic Estimator in the small-scale limit and Optimal
Estimators

CMB lensing introduces coupling between long and short wavelength modes and it is possible
to construct a minimum-variance quadratic estimator for the lensing potential �. Note that
the “minimum-variance” qualification here only applies to the class of estimators that are
quadratic in the observed fluctuations, and is not a general statement of optimality. It has
been previously shown that maximum likelihood or iterative methods can outperform the
QE. In this section we show that the QE is very suboptimal in the small-scale and low noise
regime since it is subject to the cosmic variance on the gradient mode, while (in this regime)
the particular realization of the gradient on the background of the lens can be measured
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Figure 3.2: Gradient of the lensed temperature T and polarization E fields as a function
of the filtering scale, `max, as defined in Eq 3.2. We note that the RMS gradient is almost
a factor of 10 larger in temperature than in polarization, and this will make temperature
lensing more sensitive to a fixed-mass lens than polarization on small scales (in absence of
foregrounds).

without cosmic variance. In this section we will take the limit in which the reconstructed
mode L � `Silk (in practice L4000), low noise and no-foreground limit.

The standard QE of Hu and Okamoto ([85]) for temperature can be written as1:

�̂QE(L) = N(L)

Z

`

⇥̃(`)⇥̃(L� `)f(`,L) (3.3)

where the mode-coupling kernel is

f(`,L) =
(L� `) ·LCTT

|L�`|
+ ` ·LCTT

`

2Ctot
`
Ctot

|L�`|

. (3.4)

Here, Ctot
`

includes contributions from instrumental noise, foregrounds, and the (lensed)
primary CMB. The reconstruction noise serves as the normalization in the estimator and
represents the uncertainty in the reconstruction of �(L) due to chance correlations between

1For compactness, we use the notation
R
` ⌘

R
d2`

(2⇡)2 . Upper-case L denotes lensing multipole, while
lower-case ` denotes temperature map multipole.
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di↵erent modes in an unlensed, Gaussian realization,

N(L)�1 =

Z

`

h
(L� `) ·LCTT

|L�`|
+ ` ·LCTT

`

i2

2Ctot
`
Ctot

|L�`|

. (3.5)

Taking the expectation value of this estimator over many CMB realizations for fixed
�, this estimator recovers an unbiased mean deflection field (at first order in the lensing
expansion). However, this reconstruction has significant noise for any given CMB realization.
This can be seen by taking the limit of reconstruction of small scale modes, with L higher
than where the primary CMB CTT

`
has support, i.e. on scales much smaller than the Silk

damping scale, L � `Silk. Since we will use L for the reconstructed multipole and ` for the
multipoles used in the reconstruction, we’ll denote this limit by L � `. We then have:

f(`,L)
L�`��! 2

` ·LCTT

`

2Ctot
`
Ctot

L

, (3.6)

and

N(L)�1 L�`��! 2

Z

`

⇥
` ·LCTT
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2Ctot
`
Ctot

L

. (3.7)

Therefore the quadratic estimator simplifies to2

�̂QE(L) �!

Z

`

` ·L WF (`)⇥̃(`)⇥̃(L)
Z

`

(` ·L)2 WF (`)C
TT

`

, with WF (`) =
CTT

`

Ctot
`

. (3.8)

In the low-noise, no foregrounds limit, we can take the Wiener filter WF (`) ! 1 and note
that Z

`

(` ·L)2 WF (`)C
TT

`
⇡
Z

`

(` ·L)2 CTT

`
= L2 1

2
(r⇥)2rms

. (3.9)

The quadratic estimator takes a simpler form of

�̂QE(L) �! ⇥̃(L)

L

Z

`

` · n̂L ⇥̃(`)

1
2(r⇥)2rms

, (3.10)

2Technically, the convergence in the following equation would only be “in probability” and not at the
field level, if ⇥(`) and �(`) were random variables with values that are uncorrelated for di↵erent `. In
practice, the finite (and small) window function used to define the local gradient and nonlinear evolution of
the potential make both continuous functions and the limit well defined. This subtlety doesn’t a↵ect any of
our results.
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where we have written L = L n̂L. Here
R
` ` · n̂L ⇥̃(`) ⇡ (r⇥)true,n̂L is the (realization

dependent) measured background gradient projected in the direction parallel to L. We can
then rewrite

�̂QE(L) �! ⇥̃(L)

L

(r⇥)true,n̂L
1
2(r⇥)2rms

. (3.11)

This is the small-scale limit of the QE, which we will interpret soon.
On the other hand, at L > 4000, the primary CMB is highly suppressed by di↵usion

damping and in our limit, all small scale fluctuation are created by lensing. In this regime,
we can write the small-scale fluctuations as

⇥̃(n̂) ⇡ r� ·r⇥(n̂) . (3.12)

Note that we can treat the locally measured gradient as constant on scales smaller than
1/`G, where `G ⇡ 2000 is the multipole where the gradient becomes saturated as shown in
figure 3.2. Then, there is a one-to-one correspondence between small scale lenses r� and
measured fluctuations ⇥̃. In Fourier space,

⇥̃(L) =

Z

`

` · (L� `)⇥(`)�(L� `)

L�`��! L�(L)

Z

`

` · n̂L ⇥̃(`) = L�(L) (r⇥)true,n̂L .
(3.13)

We can call the solution of the previous equation for �(L) the “Gradient Inversion” (GI)
solution:3

�̂GI(L) �! ⇥̃(L)

L

1

(r⇥)true,n̂L
. (3.14)

Note that modes with L perpendicular to the gradient direction have (r⇥)true,n̂L = 0 and

cannot be reconstructed. This is because in this limit, lensing doesn’t produce any e↵ect
perpendicular to the gradient direction and therefore no estimator can reconstruct such
modes.

We can now compare the two estimators:

L �̂QE(L) �! ⇥̃(L)
(r⇥)true,n̂L
1
2(r⇥)2rms

,

L �̂GI(L) �! ⇥̃(L)
1

(r⇥)true,n̂L
.

(3.15)

Given a good enough experiment, ⇥̃(L) and (r⇥)true,n̂L can be made measured to arbitrary

accuracy, and therefore the error on �̂GI(L) can be made arbitrarily small. Note that in
3The GI solution corresponds to the maximum likelihood solution in the limit considered here, where

both the gradient and the short scale modes can be measured on this particular realization with S/N � 1.
This can be seen by writing a likelihood based on Equation 3.12 and taking the noise to zero.
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this limit neither ⇥̃(L) nor (r⇥)true,n̂L are random variables, and should therefore not be

marginalized over.
This is not the case for the quadratic estimator, which can be rewritten as (in the limit

of small noise), and identifying �̂GI with the “true” lensing potential �true,

�̂QE(L) = �̂GI(L)
(r⇥)2true,n̂L
1
2(r⇥)2rms

�! �true(L)
(r⇥)2true,n̂L
1
2(r⇥)2rms

(3.16)

Firstly, we notice that h(r⇥)2true,n̂L
i = 1

2(r⇥)
2
rms

, so that h�̂QEi = �true, where the expec-

tation value is taken over realizations of the background gradient, for a fixed �. We see that
while unbiased, the “error” that the QE makes is proportional to the di↵erence between the
(square) true gradient and the rms gradient. Since this quantity is on average of order the
rms gradient itself, the fractional error of the QE is always of order unity per mode.

We can formalize the above intuition, showing that even with arbitrarily small experi-
mental noise, there is a lower limit to the statistical error on the quadratic estimator �(�̂QE).
Defining

R2
r(n̂L) =

(r⇥)2true,n̂L
1
2(r⇥)2rms

, (3.17)

we find that  
�2(�̂QE)

�2
true

!

min

(L) =
⌦
(R2

r)
2
↵
�
⌦
R2

r
↵2

= 3� 1 = 2 (3.18)

In summary, the GI estimator can have arbitrarily low noise per mode for a good enough
experiment, while the QE is limited to S/N = 1/

p
2 per mode (which is the same has having

cosmic variance on the gradient mode).

3.2.3 One gradient, many independent modes?

In this section we explore the covariance of the small scale lensing modes estimated using
the quadratic estimator, in the very high-L, very low noise limit. In this regime, we have
shown that

�̂QE(L) �! �true(L)
(r⇥)2true,n̂L
1
2(r⇥)2rms

= �true(L) R2
r(n̂L) (3.19)

Then the noise covariance between di↵erent small scale modes sharing the same background
gradient becomes:

N��

QE
(L,L0) ⌘ h(�̂QE(L)� �true(L)) (�̂QE(L

0)� �true(L
0))i⇥ (3.20)

where crucially the average is taken over realization of the long-wavelength CMB fluctuations,
for a fixed large scale structure �true. we have

N��

QE
(L,L0) �! �true(L)�true(L

0)h(R2
r(n̂L)� 1)(R2

r(n̂L0)� 1)i
= 2 cos2(⇣) �true(L)�true(L

0)
(3.21)
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Figure 3.3: Top: Simulated lensed CMB Map of a constant gradient in the ŷ direction,
assuming 1 arcmin beam and noise level of 1 µK-arcmin. A cluster mass of 2 ⇥ 1014M�
at z = 2.0 with an NFW profile (see Section 3.3.1) is present at the center. Middle Left:
Reconstruction of the convergence map given the observed CMB map using the GI method.
Note that pure vertical modes (i.e. mass density with only ŷ component) have been explicitly
set to zero, while modes close to pure ŷ are poorly reconstructed resulting in a residual vertical
band. Middle Right: True convergence of cluster. Bottom: Quadratic estimator convergence
of cluster at same color-scale.
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where ⇣ is the angle between L and L0 and we have used
⌦
R2

r(n̂L)R2
r(n̂L0)

↵
= 1+2 cos2(⇣)

and hR2
ri = 1.

We conclude that for small scale modes not only the noise covariance matrix N��

QE
(L,L0)

is not diagonal, but the o↵-diagonal terms become as large as the on-diagonal ones. This
means that when detector noise is negligible, modes sharing the same gradient become highly
correlated, and treating them as independent (for example when forecasting cluster lensing
constraints for future surveys), may lead to underestimation of the overall statistical noise.

We also note that this is a feature of the quadratic estimator, and won’t be a limiting
factor in a maximum-likelihood approach that includes information about the large-scale
gradient. In principle, a maximum likelihood approach has no limit on the statistical signif-
icance that it can achieve4.

3.2.4 Example: Lensing Map Reconstruction

In the previous section, we have derived a � estimator for the pure gradient, low noise
limit, which is found in Eq 3.14. Equivalently, we can rephrase that in terms of the lensing
convergence (L) = �L

2

2 �(L),

̂GI(L) �! �L⇥̃(L)

2

1

(r⇥)true,n̂L
. (3.22)

In Figure 3.3, we show a comparison between the true and reconstructed convergence field,
in the case of a massive lens with mass 2⇥1014M� and following an NFW profile, as described
in the next section. We note that as expected, the modes with variation perpendicular to
the gradient direction are not correctly reconstructed, explaining the vertical band in the
reconstructed map. Those modes can be filtered out or downweighted in a real analysis since
they have infinite variance.

In presence of finite noise, the error on the estimate of a given (L) noise, depends on
the errors on both the large-scale gradient (r⇥)true,n̂L and the small scale temperature

fluctuation ⇥̃(L).
We expect the error on the gradient to be almost negligible in most cases, unless the

gradient on the patch of interest happens to be much smaller than the rms, since most
current or future CMB experiments should be close to cosmic variance limited at `2000,

✓
�(̂GI)



◆2

=

 
�(⇥̃)

⇥̃

!2

+

 
�((r⇥)true,n̂L)

(r⇥)true,n̂L

!2

. (3.23)

Assuming that the errors are on the gradient and the small scales are independent. Note that
the noise properties of ̂GI are in general not trivial, since the noise is anisotropic (it depends

4Further neglecting post-Born corrections and field rotation, as well as foregrounds and residual primary
CMB.
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on the angle between the gradient and L), and the direction of the anisotropy depends on
position on the sky. We defer a full treatment to future work, but we will discuss noise
estimates in the specific case of cluster lensing in what follows.

3.3 Measuring Cluster Masses with matched filtering

A straightforward application of the formalism outlined above arises when the lens profile
is known up to a normalization factor, such as when determining the mass M of a cluster,
lying on a constant gradient G = (r⇥)true. We have previously shown that the on small
scales, the GI solution is linear in the measured temperature fluctuations, and therefore the
minimum variance estimator for the overall amplitude of the lensing A = M |G|, can be
obtained by a matched filter of the CMB map ([71]). Once both the amplitude A and the
background gradient G have been measured, the mass can be obtained by direct inversion
M ⇡ A/|G|. In the context of cluster lensing, this was first investigated by ([172]), and here
we revisit this point.

A mass of a given profile on a pure gradient background CMB will create a dipole-like
structure g(✓), aligned with the gradient direction, and with a free amplitude A that we
wish to measure. We then model the total small-scale CMB anisotropy as

⇥̃(✓) = Ag(✓) + n(✓) (3.24)

where g(✓) is the angular profile of the deflection angle of a known profile (i.e. NFW, Sersic,
etc.) caused by the cluster, A is an amplitude depending on the mass of the cluster and
the CMB gradient, and n(✓) is noise, either from the instrument, foregrounds, or residual
primary CMB. It is useful to work with the noise in Fourier space and its power spectrum,

hn(`) n(`0)i = (2⇡)2Ctot
`
�(`+ `0). (3.25)

The value of A can be found by applying a linear filter  on the temperature map at the
cluster position

Â =

Z
d2✓  (✓)⇥̃(✓), (3.26)

where the optimal filtering function is given by ([71]),

 (`) =

"Z
d2`

(2⇡)2
|g(`)|2

Ctot
`

#�1
g(`)

Ctot
`

, (3.27)

can be found by minimizing the error on Â. We show components of our matched filter for
a NFW profile in Figure 3.4.

The variance on A is given by

�2
A
=

"Z
d2`

(2⇡)2
|g(`)|2

Ctot
`

#�1

(3.28)
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Figure 3.4: Components of matched filter in `-space. At low ` the cluster power will be
suppressed by the primary CMB fluctuations and at high ` it will be suppressed by the
instrumental beam. Instrumental noise is for a 6 µK-arcmin experiment with a 1 arcmin
beam.

Assuming an axi-symmetric cluster profile we can write

g(`) = g(`) cos�` (3.29)

where �` is the angle between the vector ` and the gradient direction.
Note that �A ! 0 as the noise power spectrum tends to zero, which is what we expect.

3.3.1 NFW Profile

For our work, we will assume that halos follow a NFW profile [141], with density given by

⇢(r) / 1

r/rs(1 + r/rs)2
, (3.30)

with scale radius rs and normalization constant dependent on halo mass. The halo mass
is related to the scale radius via the concentration parameter, c, which we will fix to 3.2 to
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allow direct comparison against [84]. In practice, variation of the concentration and scale
radius can be corrected for by combining CMB lensing information with other proxies for
density, such as tSZ and X-ray observations. The lensing deflection profile (with the speed
of light equal to one) for an NFW halo is

|r�(✓)| / g(✓) = 16⇡GM
DLSDL

DS

⇢srs✓s
✓

h

✓
✓

✓s

◆
(3.31)

where,

⇢s =
200

3
⇢crit

c3

ln c(1 + c)� c/(1 + c)
(3.32)

and DL is the comoving distance to the lensing, DS is the comoving distance to the source
(i.e. the CMB), DLS is the comoving distance between the lens and the source, ✓s is the
angle subtended by the scale radius and M is the cluster mass. The functional dependence
of the profile is

h(x) =

8
>><

>>:

ln(x/2) + 2p
x2�1

arctan
q

x�1
x+1 , (x > 1)

ln(x/2) + 2p
1�x2arctan

q
1�x

1+x
, (x < 1)

ln(x/2) + 1 , (x = 1) .

(3.33)

3.4 Idealized Example on CMB Map

To demonstrate this technique, we generated CMB realizations using HEALPix ([65]5), with
Nside = 2048, from which we extracted 200 square cutouts. For these images we use the
lensed CMB power spectra to include the e↵ects of lensing by large scale structure. The
e↵ect of lensing from an NFW profile with a given concentration and mass is then added,
together with detector noise, as shown in Figure 3.1. We then reconstruct the mass using the
matched filter technique described above, the first step being a measurement of the average
the background gradient, as discussed below.

3.4.1 Reconstruction of the background gradient

Correct determination of the cluster mass depends on being able to accurately extract the
mean background gradient [78], without bias from the cluster lensing signal or deviation from
the pure gradient approximation. Fortunately, as discussed in section 3.2.1, this gradient
has little variation on cluster scales. We can define the average gradient on a small patch
centered on the cluster i as Gi = [(r⇥)true]patch i, so that

Gi =
1

C

Z

`<2000

d2`

(2⇡)2
[` ⇥̃(`)]patch i (3.34)

5http://healpix.sourceforge.net
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where C is proportional to the area being integrated over. One should be careful to not
average over too large of a patch such that variations in the primary CMB would become
a concern. For our analysis we find that a 80 box around the center of the cluster works
adequately.

This measure is robust even in the presence of noise, resulting in less than a 0.1% error
in gradient extraction for an experiment with a 1 arcmin beam and 1 µK-arcmin sensitivity,
compared to the ideal case. The error scales roughly linearly with instrumental sensitivity
and has very small dependence on lensing halo mass and redshift.

In addition, the presence of clusters does not strongly bias the measurement of the gradi-
ent itself. This shown explicitly in Figure 3.5, where we simulated the lensing of the CMB by
massive clusters, extracted the gradient from those lensed images, and applied the matched
filter prescription to measure the mass. As shown, there is no significant bias in the measured
mass as it relates to the real mass.

3.4.2 Measuring the lens mass

Here we briefly summarize the procedure used for estimating the mass of simulated clusters.
For a given simulated lensed image, we perform the following procedure:

1. Find the direction and magnitude of the gradient Gi at the center of the cluster, as in
Equation 3.34.

2. Choose the axis of the matched filter (i.e. the �` = 0 direction), aligned with the
direction of the gradient. This is important due to the cos�` term in Equation 3.29
establishing the antisymmetry of the filter in real space.

3. Apply the matched filter defined in Equation 3.27 and perform the integral in Equation
3.26 to obtain an amplitude Âi.

4. Since Ai = |Gi|Mi when correctly normalized, the mass Mi can be estimated as M̂i =
Âi/|Gi|, with error dependent on the local size of the gradient as expected: �(Mi) =
�A/|Gi|. For a sample of many di↵erent clusters, the mean mass can be obtained by
inverse noise weighting each measurement as explained in the next section.

3.4.3 Gradient-based weighting of samples

Assume that we have a collection of N clusters all of the same mass, M , but each in their
own background gradient, Gi, which we assume is extracted with no noise from observations.
Then the matched filter output for each cluster i, Âi (from Equation 3.26), and it’s uncer-
tainty, �A (which is approximately independent of the cluster mass in a uniform sample, and
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Figure 3.5: Cluster mass reconstruction as a function of mass for our 1000 realistic lensed
CMB realizations. We have fixed z = 0.7, c = 3.2, �T = 6µK-arcmin, and beam FWHM =
1 arcmin. Our reconstructed mass has no measurable bias.

only determined by detector noise and foregrounds), are given by

Âi = |Gi|Mi, (3.35)

�A = |Gi|�(Mi). (3.36)

The minimum variance estimate of the mean mass is obtained by inverse noise weighing
individual measurements. Noting that from Equation 3.36, �(Mi) is inversely proportional
to |Gi|, we have

M̂ =

P
i

|Gi|Âi

�
2
AP

i

|Gi|2
�
2
A

. (3.37)

Where the uncertainty on the mean mass is

�2(M̂) =

"
X

i

|Gi|2

�2
A

#�1

=
1

N

�2
A

G2
rms

, (3.38)

The latter equality being true in the limit of a large sample size. Equation 3.38, together
with the matched filter error �A given by Equation 3.28, provides the basis for our results in
Figure 3.6. Note that uniform weighting would lead to an increase of the mass uncertainty.

3.4.4 Results

In Figure 3.6 we show the analytical calculation of the mass uncertainty using the formalism
of Equation 3.28, allowing the integral to be cut o↵ by the beam (see Figure 3.4). Our
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Figure 3.6: Mass sensitivity assuming 1 arcmin beam and no foregrounds using di↵erent
techniques for redshifts z = 0.3, 0.7, and 1.2, as well as for two di↵erent masses, 2⇥ 1014M�
(left) and 2⇥ 1013M� (right). In addition to the matched filter result from this work (MF)
we show the quadratic estimator (QE) from [84], which has an essentially flat redshift de-
pendence at z > 0.5 for a 1 arcmin beam (see also Figure 3 in [136]). We have also shown
the maximum likelihood (ML) TT result from [158] (see Figure 2). In the middle panel, we
show the e↵ect of using the lensed vs unlensed CMB as a source of noise. For all ` integrals
we use an `min = 10 and `max = 40, 000 (beyond the beam cuto↵ scale).
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fiducial case include the residual lensed CMB as a source of noise in Ctot
`
, while we also

show the case in which the unlensed CMB is used instead. In practice, the fiducial case is
conservative in the sense that no delensing is assumed, while any amount of delensing (either
internal ([27]) or with the use of other tracers ([184])) will place the noise between our two
extreme cases.

For comparison, we show the performance of the quadratic estimator (QE) of [84], as well
as the maximum likelihood (ML) result of [158]. For the QE, we use the formalism of [84]
(see Equation 30 there) and we integrate over ` well past the beam cuto↵ scale (` ⇡ 10, 000)
for a fair comparison between the methods. The matched filter outperforms the quadratic
estimator in the low noise limit as well as the high redshift limit. For a cluster of a constant
mass, its apparent size decreases with increasing redshift and the background gradient is
closer to a pure gradient where the match filter technique is optimal.

As expected by the analytical calculations in Section 3.2.2, the quadratic estimator per-
formance saturates at signal to noise ratio S/N ⇠ 1 per cluster. Meanwhile, the matched
filter keeps improving for small values of �T .

As a check, we validate our error estimate on simulations. To do this, we have taken
1,000 cutouts from full-sky realizations of the lensed primary CMB, as described in Section
3.4 and placed an NFW cluster with constant mass and c = 3.2 at the center of the image
and lensed the background primary CMB. We then measured the gradient as described in
Section 3.4.1, and found their mass using the procedure outlined in Section 3.4.2. We then
weight the clusters according to their background gradient, as described in 3.4.3, to find the
average measured mass; the results of which are shown in Figure 3.6.

3.4.5 E↵ect of Beam Size

We show the e↵ect of beam size in Figure 3.7. As beam size decreases, less of the power from
the deflection angle is cut o↵ (see Figure 3.4), and there is a significant improvement when
going to higher resolution, up to about 1 arcmin beam (FWHM) for a 2 ⇥ 1014M� cluster
at z = 0.7. However, when the cluster is well resolved, the improvements become marginal.
Smaller beam size may be useful in extracting other information from the cluster, such as
concentration or other details about the profile.

3.4.6 E↵ect of Foreground Emission and other Secondary
Anisotropies

Here we briefly comment on the impact of foregrounds on the matched filter estimator and
we leave a full exploration with simulation and correlated emission to future work. We note
that we expect many of the issues outlined in the detailed study of [158] in the context of
a maximum likelihood approach to be relevant here as well, with some caveats that we now
explain.

Firstly, the e↵ects of residual foreground emissions uncorrelated with the cluster in ques-
tion and with known power spectra can be incorporated in this formalism as an additional
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Figure 3.7: E↵ect of beam size on ability to extract mass, assuming 1 µK-arcmin instrumental
noise, a 2⇥ 1014M� cluster at z = 0.7, and a N = 1000 sample. At 0.3 arcmin e↵ectively all
the power of an NFW cluster is captured in the matched filter and no more improvements
are possible by decreasing beam size.

source of noise contribution in Equation 3.25. In this case, the noise appearing in the plots
would refer to “e↵ective noise” after component separation, and we note that most of fore-
grounds can be in part mitigated by a multi-frequency analysis.

An exception is the kinematic Sunyaev-Zel’dovich (kSZ) e↵ect caused by the bulk motion
of free electrons ([190]). Unlike other foregrounds, the kSZ e↵ect cannot be subtracted out
by using multifrequency observations as it preserves the black body spectrum of the CMB,
and therefore it represents an additional source of noise that is hard to overcome. As the
measurements of the kSZ e↵ect improve, it may be possible to construct a template of the
emission and reduce the residual kSZ noise by a factor of order unity.

Any emission from the cluster itself, or from matter correlated with it should also only
amount to extra noise, and not a bias, unless this emission is correlated with our estimate
of the background gradient of the unlensed CMB. This is because the matched filter only
detects dipole contributions aligned with the background gradient, due to the cos�` term in
Equation 3.29.

While not technically a foreground, gravitational lensing from uncorrelated structures
in the universe produce extra small-scale anisotropy which again acts as a source of noise,
which is included in the fiducial analysis throughout the paper. In Figure 3.6, we show that
the di↵erence in error caused by using the lensed vs unlensed CMB power spectra is only
relevant at small noise levels. The e↵ect of matter correlated with the halo is to enhance
the lensing signal by what is usually known as the “two halo term”. In a real analysis, the
whole matter profile would be obtained and the one and two halo contributions would be fit
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simultaneously, just as performed in most galaxy-galaxy lensing analyses.

3.5 Relation to previous work

Here we briefly compare the match filtered technique with other work in literature. Direct
matched filtering techniques were first discussed as applicable to CMB cluster lensing in
([172]), and extensions in ([78, 203, 46]). Most of the subsequent work has focused on the
use of quadratic estimators, as modified by ([84]) to ensure unbiased results ([136, 134])
This and other works based on the QE su↵er from the statistical limitations discussed in our
paper.=

Iterative techniques based on the quadratic estimator have been introduced in ([212,
213]). In the limit of large number of iterations the result should converge to the maximum
likelihood solution in a unbiased way.

A maximum likelihood framework for cluster masses was developed in ([121, 15]) and
further studied and extended to polarization in ([158]), which also provides extensive discus-
sion of possible contamination from foregrounds. While it is not possible to outperform a
full maximum likelihood approach, Figure 3.6, shows that for high redshift clusters or small
noise limit, the matched filter presented in this paper approaches the maximum likelihood
performance, but with only a small fraction of the computational cost.

On the experimental front, cluster lensing has first been detected using the quadratic
estimator by ([128]) using data from the ACTPol experiment and CMASS galaxies from the
BOSS survey. Subsequently, it has also been detected by the SPT collaboration using a
Maximum-Likelihood technique ([15, 14]), as well as by the Planck collaboration ([2]).

Recently there has been work towards implementing a full maximum likelihood lensing
map reconstruction without any assumptions about the shape of the lensing potential ([26]),
based on previous work ([77]). Going forward, further developing these numerical techniques
and applying them to small scale lenses would be very useful, but it currently appears
challenging to obtain rapid convergence on small scales.

3.6 Summary

In this work we have explored the limitations of quadratic estimator reconstruction of
CMB lensing from Temperature, in the small scale, low noise limit. We have shown that
the quadratic estimator is fundamentally limited by suboptimal weighting, while in no-
foregrounds, small noise limit, small lenses should be measurable arbitrarily well. This prob-
lem can be overcome by using di↵erent techniques, such as direct gradient inversion presented
in this paper, or using more computationally expensive maximum likelihood methods.

An obvious application of the direct gradient inversion is reconstruction of cluster masses
from CMB lensing. Once a profile for the potential is assumed, optimal weighting of the
reconstructed modes is equivalent to a matched filter that we have explored in this work and
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which out-performs the quadratic estimator over a wide range of instrumental sensitivities
and redshifts; focused primarily on the low noise and small angular scale limit. The matched
filtered approach relies on the antisymmetric nature of lensing as well as the separation of
scales between cluster-lensing and the variation in the primary CMB. The antisymmetric
nature of the matched filter is a useful feature which allows it to be less sensitive to kSZ and
other foregrounds coming from the cluster.

The matched filter studied here can be extended to fit additional parameters such as
the cluster concentration (see for example ([46])) or the amplitude of the two-halo term.
Alternatively, tight priors can be put on them by studying the halo clustering, or detailed
tSZ/X-ray observations. The e↵ect of miscentering between the observed and true halo
center needs to be quantified since it will lead to a bias if not properly accounted for, as
pointed out by ([158]). At the same time, correlation between the selection function and
other observables can produce biases in the inferred mean mass for the sample. For example,
if halos elongated along the line of sight are preferentially selected, the inferred mass is likely
to be overestimated due to the alignment of the halo with the surrounding cosmic structure.
Detailed simulations and modeling are required to estimate the size of these e↵ects for the
particular sample being analyzed.

The technique discussed in this paper outperforms the QE for the noise level expected of
future CMB experiments, and is computationally very e�cient. Moreover, the noise calcu-
lation is analytically tractable, allowing direct forecasting and Fisher-type analysis without
having to simulate a large number of clusters.

Acknowledgments

We appreciate helpful discussions with Eric Baxter, Anthony Challinor, Shirley Ho, Wayne
Hu, Mathew Madhavacheril, Srinivasan Raghunathan, Emmanuel Schaan, Neelima Sehgal,
Uros Seljak, Kendrick Smith, and David Spergel. BH is supported by the NSF Graduate
Research Fellowship, award number DGE 1106400. SF thanks the Miller Institute for Basic
Research in Science at the University of California, Berkeley for support. BDS acknowledges
support from an STFC Ernest Rutherford Fellowship.

This research used resources of the National Energy Research Scientific Computing Cen-
ter, a DOE O�ce of Science User Facility supported by the O�ce of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.



50

Chapter 4

E�cient Optimal Linear
Reconstruction of Cosmological
Density Field and Associated
Bandpowers

4.1 Introduction

A ubiquitous problem of modern astrophysics is the reconstruction of the underlying signal
from observed, noisy, and incomplete data. For linear fields the Wiener filter [211, 164] is
the gold standard for reconstructing the underlying signal, as it is “optimal” in the sense
that it minimizes the variance. It has been used as the basis of cosmological analysis for
both large scale structure [60, 106] and CMB [21, 195].

However, the Wiener filter requires one to take the inverse of the overall covariance matrix,
which has a noise and a signal based components. Noise is typically diagonal in observed
space, while signal is diagonal in harmonic (or Fourier) space. In general, the covariance
matrix will not be diagonalizable in either basis and it will be computationally di�cult to
invert the matrix numerically for a realistic sized survey map. While it is possible to make
simplifying assumptions, like homogeneous and isotropic noise (as in, for example [109]), it
is possible to e�ciently implement Wiener filter by using the well studied property that the
Wiener filter is mathematically equivalent to maximum a posteriori (MAP), which in turn
can be solved with fast linear algebra methods or optimization [171].

This optimization can be performed using a variety of numerical techniques. Recent work
used a messenger [53, 8] (or dual messenger [108]) field which can be diagonalized in either
basis in which to run an approximation scheme. These methods have been argued to perform
well versus other approximation schemes, but there are situations where the messenger field
is zero (such as zero noise field with mask) and the method fails. In addition, it has been
argued that a suitably chosen preconditioned conjugate gradient technique might be faster in
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some instances [145]. Preconditioned conjugate gradient techniques have performed well in
the context of CMB map reconstruction [96, 175], but require careful selection of the precon-
ditioning scheme to achieve fast convergence. We therefore want to explore implementations
that are both general and computationally e�cient.

For cosmological analysis, it is not only the field that is of interest but also the band-
powers (such as power spectrum amplitudes) and their covariance matrix. Work towards
estimating these quantities jointly with the underlying field has been done in the cosmic
shear context [8, 7], but it required sampling from the joint probability distribution which
is computationally involved. In this work we assume flat prior on band-powers and hence
examine maximum likelihood estimation (MLE) method, after marginalization over the field,
to quickly compute these quantities for observations with complex noise and mask properties
as well.

In particular, we examine three cases of cosmological interest: linear density reconstruc-
tion, cosmic shear (E mode estimation alone as well as joint E/B), and primary CMB tem-
perature anisotropy reconstruction. The outline of the paper is as follows: we discuss our
MAP/MLE for field and power spectrum estimation in §4.2. In §4.3, we use these tools in a
number of contexts, and compare the optimization approach with a numerically exact case
in Subsection 4.3.2. In §4.4 we discuss our results and possible extensions of the work to
analyze real data.

In Appendix A.1 we review the exact Weiner Filter approach with relies on inversion of
the full covariance matrix. In Appendix 4.5 we discuss the convergence criteria in the case
of primary CMB reconstruction. In Appendix 4.6 we discuss the joint estimation of E and
B fields in the context of cosmic shear (although the technique transfers directly to CMB E
and B polarization reconstruction as well).

4.2 Background

Here we summarize the optimization technique and standardize the notation. For a more
through description, see [171, 180, 54, 174]. We measure quantities d(ri) at select positions,
such as a reconstructed projected density, forming a full data vector, d. In general, this
data vector will depend on a combination of underlying information about the field ( “field
coe�cients”) we wish to estimate, s, and that which is pure noise, n, i.e.

d = Rs+ n, (4.1)

where the R is the response matrix expressing how our measurement changes with the un-
derlying information. We express the underlying two point function information in terms of
covariance matrices, S = hss†i, and N = hnn†i, for the estimated signal and noise compo-
nents, respectively. We assume that these are uncorrelated with each other, i.e. hns†i = 0;
changes to this assumption are tractable but would require a redefinition of our underlying
likelihood function and complicate the analysis since the noise would carry signal informa-
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tion. The correlation matrix of the data is therefore,

hdd†i ⌘ C = h(Rs+ n)(Rs+ n)†i
= h(Rs(Rs)† + nn† + Cross Termsi
= RSR† +N . (4.2)

Our signal covariance, S, takes a diagonal form in Fourier space. The noise covariance, N , is
often approximately diagonal in data space, as there usually are no noise correlations between
data. We can convert the covariance matrix into Fourier basis where signal covariance is
diagonal, but this will lead to very strong o↵-diagonal terms of the noise matrix, in the
presence of masked sky regions and/or variable noise properties. Therefore, our overall data
correlation matrix cannot be diagonalized easily in either basis.

We can re-express our covariance in terms of underlying band-powers, ⇥, labeling each
modes of interest to estimate as {1, · · · , l, · · · , lmax}, and the rest as {lmax+1, · · · ,1}, and
then expressing our correlation matrix as

C =
X

l

⇥lQl
+N . (4.3)

This new Q
l
= ⇥l⇧lRR†⇧l basis is the projection (with projection operators ⇧l) of

the response matrix R for each mode. The band-power can correspond to averaging over
spherical harmonic basis coe�cients at a constant l, adding up 2l + 1 m modes, but we can
also average over more than one l.

4.2.1 Bandpowers posterior

We now want to find the most probable set of bandpowers for a given set of measurements d,
assuming flat prior on band-powers. We thus parametrize the power spectrum as a function of
these bandpowers S(⇥). If we assume our modes are Gaussian we can express the likelihood
function in the familiar form, i.e.

L(d|⇥) = (2⇡)�N/2 det(C)�1/2 exp

✓
�1

2
d†C�1d

◆
. (4.4)

Associated with the likelihood function and a parameter set ⇥̂ which maximizes it, is the
Hessian matrix [BondJa↵eEtAl98],

Fll0 = � @2lnL

@⇥l@⇥l0
. (4.5)

The inverse of the Hessian matrix can be interpreted as an estimate of the covariance matrix
of the parameters, i.e.

F�1 = h⇥⇥†i � h⇥ih⇥i†. (4.6)
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We now have the bandpower posterior in the gaussian form, given by the mean ⇥̂ and the
covariance matrix F�1. To obtain the solution for the mean it is easiest to use Newton’s
second order method, which gives a quadratic estimator of the form [194]

⇥l =
1

2

X

l0

F�1
ll0 (d

†C�1Q
l0C

�1d� bl0), (4.7)

where bl is a noise bias term that can be found by computing the ensemble average of the
first term assuming ✓l = 0 for all modes probed (i.e. l < lmax),

bl = tr

"
N +

1X

lmax+1

(⇥lQl
)C�1Q

l
C�1

#
. (4.8)

4.2.2 MAP Field Reconstruction

In practice this analytical calculation requires the inversion of a large matrix, C, which does
not necessarily have properties that make inversion e�cient (i.e. block diagonal or sparse)
and will in general require O(n3) time for an n ⇥ n matrix. In the case of reconstructing
the underlying density field for astronomical large surveys with n pixels, this would be
prohibitively computationally expensive for the foreseeable future. Instead, we will approach
this as an optimization problem [174]. We will not use 4.4, and instead of expressing the
likelihood of data given bandpowers we will work in terms of latent variables, writing the
joint distribution of s and d,

p(s,d|S) = (2⇡)�(N+M)/2det(SN )�1/2 exp

✓
�1

2
s†S�1s+ (d�Rs)†N�1(d�Rs)

◆
, (4.9)

and note that the minimum variance solution for the modes can be found by minimizing the
loss function �2,

�2 = �2 ln p(s,d|S) + c = s†S�1s+ (d�Rs)†N�1(d�Rs), (4.10)

with respect to s. At m-th iteration we are at sm, where we have

�2 = �2
0 + 2g(s� sm) + (s� sm)†D(s� sm), (4.11)

with gradient function in terms of the derivative of the response function, R, given as

g =
1

2

@�2

@s
= S�1sm �R†N�1(d�Rsm). (4.12)

For the linear problems studied in this work, this derivative can be calculated analytically,
but in other more involved cases (such as nonlinear structure formation) might be com-
putationally involved as it would require intensive back-propagation. The solution where
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g = 0, and therefore a local extremum is found, will be denoted ŝ, and is the maximum a
posteriori solution (MAP). For linear problems it is the best possible solution in the sense
to minimizing the variance.

The curvature matrix D has the form

D =
1

2

@2�2

@s@s
= S�1 +R†N�1R. (4.13)

However, in this work we will not explicitly evaluate it, as it is too large. Instead, we will
use low rank approximation as performed by L-BFGS quasi-Newton optimization method.
We will use L-BFGS as the optimization method in this paper.

The starting point for the optimization algorithm does not play a significant role for
linear problems as the posterior surface is convex and the true global minimum can always
be found. In practice, for the examples in this work, we found no noticeable e↵ects of the
starting point in terms of convergence properties, i.e. required number of iterations.

4.2.3 Minimum Variance Estimation of the Power Spectrum

The result of the above optimization procedure is ŝ, and is useful for creating maps, but has
more information than needed for cosmological analysis. If our goal is to determine a set
of summary statistics/band-power measurement, ⇥, such as a power spectrum bandpowers,
we need to marginalize over the latent variables, the modes s. To do so we need to define
a projection matrix ⇧l around a fiducial power-spectrum Sfid with associated band-powers
⇥fid, defined as 

@S

@⇥l

�

Sfid

= ⇧l. (4.14)

This fiducial power spectrum is a regularized version of the measured power spectrum, and
is thus iterated upon: we start with some fiducial prior, which we then update if the data
require us to do so. This process is regularized, i.e. we use a smooth version of the measured
power spectrum, for example a power spectrum predicted by the cosmological parameters
we are determining from these data.

The true covariance can be written in terms of this fiducial power-spectrum plus a term
linear in the projection operators:

S = Sfid +
X

l

�⇥l⇧l, (4.15)

where �⇥l is the di↵erence of the band-powers to those of the fiducial model. For the cases
studied in this work, the dependence of S on ⇥ is linear so we can take

⇧l =
Sfid

⇥l

, (4.16)

i.e. the projection matrix takes the power spectrum per bin, ⇥l, to the full power spectrum,
S. Note that the choice of the fiducial model is important in that if it is su�ciently far
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away from the true model the result could be biased, but iteratively recalculating Sfid with
the solved new band-powers adjusted by �⇥ will provide an asymptotically more accurate
reconstruction. In the cases of interest in this work, no iterative process was necessary to
provide an accurate reconstruction. In practice for examples in this work, we used the true
power-spectrum with each power re-scaled by a random O(0.1) value.

We are assuming flat prior for the bandpowers, so to compute the posterior distribution
of band-powers we can write their (marginalized over s) likelihood function to maximize as
a second order expansion around the fiducial model

lnL(⇥fid+�⇥) = lnL(⇥fid)+
X

l


@ lnL(⇥)

@⇥l

�

⇥fid

�⇥l+
1

2

X

ll0


@2 lnL(⇥)

@⇥l@⇥l0

�

⇥fid

�⇥l�⇥l0 ;

(4.17)
where we assume a flat prior on the band-powers.

We define

El(Sfid, ŝ) =
1

2
ŝ†S�1

fid⇧lS
�1
fid ŝ =

1

2

X

kl

ŝ2
kl

⇥fid,l
Sfid,kl

, (4.18)

where in the last expression we define the sum over kl as the sum over all modes which
contribute to band-power, ⇥l, and in the last equality we made use of the diagonal property
of the projection operators and fiducial power spectrum. Putting this together we find that
the derivative of the likelihood can be expressed as [174]

@ lnL(⇥)

@⇥l

= El � bl, (4.19)

where we defined

bl =
1

2
tr


@ ln(SN )

@⇥l

�

Sfid

. (4.20)

For the linear cases studied in this work, this term is often called the noise bias term. How-
ever, it is worth remembering that this term’s origin is the derivative of the log determinant
of the product of the Hessian and the signal covariance matrices in equation 4.20 (since noise
covariance derivative is zero). To find MLE we need to find the zero of Eq. 4.19, which we
solve using Newton’s method. To do this we define the Hessian matrix,

Fll0 = �@
2 lnL(⇥)

@⇥l@⇥l0
, (4.21)

which for linear models defines the Gaussian posterior assuming su�cient modes have been
averaged over so that by central limit theorem we can describe the posterior as a multi-
variate gaussian. The peak of the likelihood function can be found by setting the derivative
of equation 4.17 with respect to �⇥ to zero, which upon inserting equation 4.19 yields

(F�⇥̂)l = El � bl. (4.22)
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4.2.3.1 Estimation of the Noise Bias and the Hessian

While the noise bias, bl, and the Hessian matrix, F , from Equation 4.22 could be calculated
exactly, this will involve inversion of large matrices, which is what we are trying to avoid by
deriving the MAP via optimization techniques. Instead, we will perform a simulation based
analysis motivated by the underlying definition of each of these terms.

In general, the maximum likelihood field, ŝ, attained with the procedure described in
Sec 4.2.2, will have bias due to the presence of noise: when the noise is high the minimum
variance estimator drives s to zero. In the case of cosmological density fields which have
red power spectra (less power on small scales compared to white noise), this will result in
washing out the small scale power. See the figures in Sec 4.3 for explicit examples.

To correct for this bias we need to understand how our reconstruction responds to the
presence of noise. For this we perform a simulation analysis wherein we generate a data
realization generated from a fiducial power spectrum, inject the noise and mask, perform the
optimization and see how the presence of noise a↵ects the reconstruction. Let us call the
new data and noise realization data ds+n, with associated maximum likelihood reconstruction
ŝs+n. The gradient of equation 4.19 has to vanish if evaluated at the fiducial model. The
noise bias in this case can be found directly as

bl = El(⇥fid, ŝs+n). (4.23)

This quantity should be averaged over many realizations, but for the linear signal-dominated
cases studied in this work we found even one realization was su�cient for an accurate recon-
struction.

To calculate the Hessian matrix, we evaluate the gradient of equation 4.19 at two di↵erent
fiducial model values, and use finite di↵erentiation [174],

Fll0�⇥l0 = El(⇥fid +�⇥l0)� El(⇥fid). (4.24)

Its inverse is the covariance matrix for the band-powers. This is in contrast to directly using
linear algebra techniques to calculate the Hessian matrix (see Equation A.6) which would
be numerically intractable for a realistic survey size. Using Equation 4.24 in the linear case,
one can calculate it at the cost of additional optimization step. Since this is a linear problem
Hessian matrix equals Fisher information matrix and thus gives the smallest attainable errors
on the parameters (Cramér-Rao theorem).

4.2.4 Procedure Summary

1. Initialize a Gaussian random field (the true signal field) with some underlying power-
spectrum.

2. Apply the response operator to this field, and additional noise and masking terms. The
output of this is the input data vector, d.
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3. An estimate of the underlying signal field is created through optimization as described
in Subsection 4.2.2 to yield ŝ.

4. An initial estimate of the band-powers is generated by taking the power spectra of the
reconstructed map and binning.

5. To this band-power estimate, we apply the noise bias correction (estimated using Eq
4.23) and Hessian matrix (estimated using Eq 4.24) to provide an optimal reconstructed
value of the band-powers given in Eq 4.22.

4.3 Example Cases

Here we implement the above scheme in a number of simulated cosmological contexts to
demonstrate its versatility and e�ciency. For these cases, we set our convergence criteria to
be ✏ ⌘ ��2 = 10�1; i.e. the optimization ends when the di↵erence of the absolute chi-square
values between iterations is 10�1 (typical value of �2 is of order 2⇥105 for the dimensionality
used here). In Appendix 4.5 we discuss the choice of this criteria in the context of CMB
reconstruction, but we have found it to be su�cient for all the example cases.

4.3.1 Projected Density Field

As our first case, we will look at reconstructing the density field from a noisy measurement
of the density field. The starting measurement could come from a variety of observations
such as galaxy clustering or Lyman alpha forest tomography. For a complete analysis one
would specify the response matrix R to go from the density to the observables which would
include a model for the various biases present in the observations. In this case we assume
the bias model is known and deal directly with the matter density field.

We generate a Gaussian random field with a power-spectrum given by

P (k) / k

1 + k3
(4.25)

over a 2D, L = 1380 Mpc/h side-length box. We introduce an anisotropic white noise over
the field to simulate either irregularities in depth of a given survey or theoretical uncertainties
in the underlying bias model. In Appendix A.1 we demonstrate the validity of the L-BFGS
optimization method in a small test case (64⇥ 64 pixel) where it is also tractable to exactly
invert the full covariance matrix numerically thereby providing validation of our maximum
likelihood technique, while here we examine a more realistic 512 ⇥ 512 pixel map. We also
use a realistic mask which includes foreground stars and other potential image defects.

Using the input power spectrum of Eq. 4.25, we generate a density field shown in Fig
4.1(a), apply a mask and anisotropic noise shown in Fig 4.1(b), which results in a mock
observation in Fig 4.1(c). We perform the minimization routine outlined in Sec. 4.2.2, with
the optimized map shown in Fig. 4.1(d) with residuals shown in Fig 4.1(e). Qualitatively the
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(a) Original Density Field (b) Mask and Anisotropic Noise (c) Observed Density Field

(d) Reconstructed Field (e) True Field - Reconstructed

Figure 4.1: MAP density reconstruction for the 512x512 pixel case. Note that images (a),
(c), (d),and (e) have same absolute color scale, while (b) shows the spatial variance of the
noise properties. Color scale is normalized to show standard deviations away from mean.

field is accurately reconstructed within the mask in the low-noise regions and is even able to
reconstruct the larger scale modes right on the border within the masked region. However,
as expected, the small scale modes within the high noise regions within the mask are poorly
reconstructed since it is impossible to di↵erentiate those modes in real space with the noise.
In addition, small masked regions have very low residual error as there are su�cient, well
sampled, nearby large scale modes to infer the regions value.

In Fig 4.2 we show the comparison of the optimized result with the true power-spectra
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Figure 4.2: Comparison of the maximum likelihood power spectrum attained from opti-
mization versus the true power-spectrum of the region for the density field. Also shown is
the importance of the noise bias correction (or, equivalently, the importance of the Hessian
determinant).

of the entire field. We also show the e↵ect of the noise bias correction, which in this case is
substantial as small scale power is washed out in the high noise regions as well as due to the
masked regions. However, this power is recoverable using the analysis described in Section
4.2.

In Fig 4.3 we show how the number of iterations of the reconstruction algorithm scales
with the box size. Each iteration requires a calculation of the loss function and the derivatives
of the field which can be found analytically. Notice that the iteration number increases with
the box size, but only a factor of a few when going from 642 to 10242. This does not include
estimation of the noise bias and the Hessian matrix, which will depend on the number of
bandpowers. As each row of the Hessian matrix requires an additional optimization, the true
number of iteration will scale linearly with the number of bandpowers. In practice, since the
Hessian matrix is very smooth and nearly translationally invariant (in this case, it is peaked
on the diagonal and monotonically decreasing away from the diagonal), one simply needs to
sample the matrix along a small number of rows and interpolate between them.
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Figure 4.3: Convergence properties of the L-BFGS estimator as a function of the box-side
dimension n.

4.3.2 Wiener Filtering vs. MAP Projected Density Example

Direct numerical evaluation of Wiener filtering is computationally expensive as it requires
the direct inversion of a matrix with the square of the number of pixels in the survey (see
App A.1), so we specialize our direct comparison to a small 64⇥ 64 pixel image.

Using the input power spectrum of Eq. 4.25 we generate a density field shown in Fig
4.4(a), apply a mask and anisotropic noise shown in Fig 4.4(b), which results in a mock
observation in Fig 4.4(c). We perform the minimization routine outlined in Sec. 4.2.2,
with the optimized map shown in Fig. 4.4(d) with residuals shown in Fig 4.4(e). There is
qualitative agreement between the truth and the reconstructed field within the mask in the
low-noise regions and is even able to reconstruct the larger scale modes right on the border
within the masked region. However, as expected, the small scale modes within the high noise
regions within the mask are poorly reconstructed since it is impossible to di↵erentiate those
modes in real space with the noise.

For this small test case we can compare the optimization result directly against a numer-
ical inversion Wiener filter solution, which we show on the map level in Fig 4.5. The results
match outside the masked region within 10�4, while in the masked region there is a slightly
large di↵erence due to the imposition of a convergence criteria in our L-BFGS scheme. As
we increase the required precision of the L-BFGS in terms of ✏ ⌘ ��2, we asymptotically
approach the Wiener filter solution.

Using the formulation in Sec 4.2.3, we can look at the performance of the technique as
a function of scale. In Fourier space we can account for the reduction of small scale power
caused by noise and also estimate the Hessian matrix (thereby giving error estimates). We
show the power spectrum and error estimates from the optimization technique versus the
direct Wiener filtering in Fig 4.6. Note that the full reconstruction relies on both calculation
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(a) Original Density Field (b) Mask and Anisotropic Noise (c) Observed Density Field

(d) Reconstructed Field (e) True Field - Reconstructed

Figure 4.4: MAP density reconstruction for the 64x64 case.

of noise bias and Hessian matrix. We have compared each of these terms from the opti-
mization method to those calculated via direct matrix inversion to confirm they are equal
within the error of the required optimization precision. Also note that we only used one noise
realization to estimate the noise bias. In general, the number of noise realizations necessary
to appropriately estimate the number of underlying band-powers will depend on both the
underlying noise model and the band-powers of interest. In this particular case we found the
improvements from including multiple noise realizations minimal as the e↵ect on the overall
power-spectrum were sub 1%.

We also explored the noise dominated regime more explicitly in Figure 4.7, where we
apply a uniform high noise level over the entire field with variance 1.5 times the average
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Figure 4.5: The log absolute magnitude di↵erence of the direct matrix inversion Wiener
filter solution and that attained via a MAP method. Note that di↵erences are extremely
small throughout the map and are particularly small in the unmasked region.

Figure 4.6: Comparison of the maximum likelihood power spectrum attained from optimiza-
tion versus that for brute force matrix inversion Wiener filter. Errors are visually identical,
and all points k bins are within one standard deviation of each other.
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(a) High Noise Density Field (b) Reconstructed Bandpowers

Figure 4.7: Observed field and associated reconstructed bandpowers for the noise dominated
regime. Mask and color scale are the same as in Fig 4.5, and noise is uniform over the field.

variance in density. In this regime the optimized power is significantly suppressed across all
scales, but the modes are still recoverable.

4.3.3 Cosmic Microwave Background Temperature

The question of optimal reconstruction of CMB maps given irregular sky coverage and vari-
able noise and foreground subtraction is a common issue for existing CMB surveys. So
far, true maximum likelihood power spectra estimators have only been applied to data from
WMAP [195] and for the largest angular scales in Planck data [152], but these techniques are
di�cult to scale to the entire Planck dataset due to the significant increase in computational
cost.

While Planck’s power spectrum measurements, and therefore cosmological parameter
constraints [153], do not rely on construction of the actual full map, other spatially de-
pendent signals do. Cross-correlations between the primary CMB and other cosmological
probes, such as x-ray signal or galaxy positions, require an accurate spatial reconstruction
of the CMB map. In addition, full sky CMB lensing maps are constructed by applying the
quadratic estimators to the CMBmap (in either temperature, polarization, or some minimum
variance combination of the two) and will similarly su↵er if the reconstructed temperature
and/or polarization maps are suboptimal. In terms of map reconstruction, there are highly
e�cient Wiener filter programs available [175] which perform a multi-scale analysis with pre-
conditioned optimization routines, which could replace our L-BFGS, but since the number
of iterations needed is already low we did not explore this further.

In Figure 4.8 we show results for temperature, without polarization. We mention that
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(a) Original Density Field (b) Mask and Noise (c) Observed CMB Field

(d) Reconstructed Field (e) True Field - Reconstructed

Figure 4.8: MAP CMB reconstruction for 512x512 pixel map. Note that images (a), (c),
(d),and (e) have same absolute color scale, while (b) shows the spatial variance of the noise
properties. Color scale is normalized to show standard deviations away from mean.

polarization would be analogous to the example of joint optimization of E and B fields, which
we do in the case of cosmic shear in Appendix 4.6.

The case of CMB reconstruction is analogous to that of the density field, but with a
significantly redder spectrum. The condition number of the covariance matrix is thus sig-
nificantly larger, and BFGS needs more iterations to converge. While we could have used
conjugate gradient with a preconditioner (as in [175]) to improve the convergence of the op-
timization step, we chose not to do so here since the computational cost was not significantly
higher than that for the simple density case even for this case (see Figure 4.11). For the
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implementation of our algorithm it is important to recognize that the increase in power on
larger scales in the CMB case makes the masked region the most computationally expensive
region to reconstruct, and a redder spectrum will allow more mode reconstruction within
this region. For more discussion, see Appendix 4.5.

We generate a mock primary CMB full-sky field using HEALPIX [65] based on power
spectrum generated from CLASS using the Planck 2015 cosmological parameters [153]. We
then extract a 10 ⇥ 10 degree patch which we then mask a central region and introduce a
white noise of 6 µK-arcmin.

The reconstruction is quite good in the observed region as the presence of noise mostly
a↵ects small scales where there is very little power. In the masked region the optimization is
able to reproduce some clear long-scale modes. In Appendix 4.5 we show that with a more
accurate convergence criteria we reproduce more of these large scale modes in the masked
region but in terms of power spectrum estimation this is unnecessary, as we are already
cosmic variance limited even with ✏ = 0.1.

4.3.4 Cosmic Shear

In this section we specialize to only fitting a curl-free E component; we discuss the more
general case including a curl component in Appendix 4.6. For a details on the cosmic shear
formalism, see [204, 13, 91].

To apply our method, we perform optimization over the underlying density field and at
each step of the optimization compute the corresponding shear maps, �1 and �2, to compare
with the mock observed shear maps. In principle, instead of working with the shear maps
which require binning and/or interpolation between galaxies, one could work directly with
the catalog of galaxy shapes and compute the likelihood of the observed ellipticity instead
of the given averaged shear maps (as in [143, 17]).

This method is in contrast to the standard Kaiser-Squires (KS) [99] technique which has
proven quite successful so far in cosmic shear analysis and cluster mass estimation. However,
KS has some notable downsides in the presence of anisotropic noise or a mask as it is not
able to self consistently down-weight the high noise areas and masked regions, resulting in
defects on boundaries. In addition, the noise inherent in these measurements propagates
onto the final mass-maps, resulting in an inaccurate small scale power measurement. This
has been shown to be particularly detrimental to peak statistics measurements [95].

The results in position space are shown in Figure 4.9. In Figure 4.9(a) we show the initial
density field and in Figure 4.9(b,c) we show the observed shear fields including mask and
noise properties. Our reconstructed maximum likelihood map is shown in Figure 4.9(d) and
the di↵erence between the original field and reconstructed in Figure 4.9(e). As in the case of
the density field, the optimization technique is able to exactly reconstruct the density in the
low noise, unmasked regions, but only recovers large scale scale power in the higher noise
unmasked regions.
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(a) Original Density Field (b) Observed Shear Field, �1 (c) Observed Shear Field, �2

(d) Reconstructed Field (e) True Field - Reconstructed

Figure 4.9: Maximum likelihood shear reconstruction for a 512x512 pixel map. Here we use
the same mask and noise properties, as well as color scaling, as shown in Figure 4.1.

4.4 Discussion and Conclusion

In this work we have demonstrated that is is possible to e�ciently reconstruct the MAP
signal field and the maximum likelihood power spectrum for linear fields for realistic survey
sizes. This technique is equivalent to the Wiener filter solution for small enough convergence
criteria and has been applied to a number of cosmological fields (density, CMB, and cosmic
shear maps). We are able to reconstruct the initial density field and the overall power spec-
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Figure 4.10: Comparison of the maximum likelihood power spectrum attained from opti-
mization versus the true power-spectrum of the region for the shear-only reconstruction.
Also shown is the importance of the noise bias correction (or, equivalently, the importance
of the Hessian determinant).

trum, accounting for noise bias and window-function e↵ects due to masking. We first recast
the field reconstruction into an optimization problem, which we solve using quasi-Newton
optimization. We then recast the power spectrum estimation into the field marginalization
problem, from which we obtain an expression that depends on the field reconstruction solu-
tion and a determinant term. We develop a novel simulation based method for the latter. We
extend the simulations formalism to provide the covariance matrix for the power spectrum.

This technique outperforms the brute force Wiener filter technique in terms of compu-
tational time and memory requirements. True Wiener filter requires an inversion of the full
pixel covariance matrix, C, which for realistic surveys would be highly non trivial. Nu-
merical methods approximate C�1d, which allows for map-level reconstruction but by itself
doesn’t allow calculate of the Hessian matrix for band power reconstruction. This recon-
struction also requires evaluation of the determinant of the Hessian, or its derivative, trace,
and where the techniques provided in this work allows orders of magnitude improvement
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Figure 4.11: Comparison of the convergence properties of the various cosmological density
fields studied in this work. All cases have 5122 pixels, and comparable e↵ective volume.

in realistic cases. We evaluate this determinant derivative using forward model realizations
and additional optimization. This allows us to use o↵ the shelf optimization codes such as
L-BFGS, as well as convergence criteria to find the proper trade-o↵ point between accuracy
and computation time. We compare the two in Appendix 4.3.2, finding good agreement for
low dimensionality problems where brute force approach is feasible.

In Figure 4.11 we show the convergence properties for the 3 cases studied in Section
4.3, as well as the joint E/B cosmic shear case presented in Appendix 4.6. While all the
cases have a comparable number of unmasked pixels, convergence properties di↵er due to
the di↵erence of the underlying fields power-spectrum. More power at larger scales (i.e. a
redder spectra) requires additional iterations to reconstruct the power within the masked
regions.

While we used L-BFGS due to its well established optimization properties in very high
dimensional convex optimization problems, we do not make a claim of optimality in terms
of the particular technique for performing the optimization. L-BFGS constructs low rank
Hessian approximation to the Hessian, which makes it a quasi-Newton method: the closer this
Hessian is to the true Hessian the closer we are to true second order optimization. In this limit
this method will outperform any other method, including preconditioned conjugate gradient,
which is only e↵ective if preconditioning reduces the condition number of the problem. On
the other hand, true second order Newton works for any condition number. We also note
that since linear problems are convex, an optimizer is always guaranteed to find the global
minimum. In general, we did not find particularly large performance changes when using
other optimization techniques, such as conjugate gradient. Sampling based methods, like
Hamiltonian Monte Carlo, are unnecessary for these linear cases, as there is no need to
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sample the distribution which is well approximated as a multivariate Gaussian, except for
modes on order the size of the survey volume which are poorly sampled (and therefore do
not follow the central limit theorem), in which case one can use approximations of inverse
Wishart distribution developed in appendix A of [174].

A comparison can be made in our primary CMB example in Section 4.3.3 to the results of
the messenger and dual messenger field found in [108] (see Figure 6 in [108]). The L-BFGS
approach requires significantly fewer iterations than the messenger field (⇠ 5x) and dual
messenger field (⇠ 2x) for a comparable convergence criteria. It is possible that an opti-
mized cooling scheme for the messenger/dual messenger field would yield similar convergence
properties, but this choice would likely be problem-specific and introduce an additional pa-
rameter to tune in the optimization. In general we see little benefit in using these specialized
methods over the o↵ the shelf standard optimization methods.

Going forward, it will be useful to extend this technique to other cosmological observables
such as cosmic shear tomography (such as in [180]), Lyman - ↵ tomography, and CMB
lensing. Already work has been done applying this maximum likelihood approach to CMB
lensing [75, 25], and further extending this work with these methods to small scales where
standard quadratic estimators [83] are known to be suboptimal [79] would be promising
future approach. Another avenue of particular interest is the ability for this technique to be
useful for combining multiple (biased) tracers of some underlying field to create a maximum
likelihood estimate of the field. One particularly promising example is jointly maximizing
the underlying density likelihood function with respect to both the shear map as well as the
projected galaxy density map [192, 179].

These linear methods have a limitation when applied to nonlinear fields. Recent work
[95] has demonstrated that Wiener Filtering is not optimal in terms of detecting peaks in the
density field and that sparsity-based reconstruction methods can yield higher signal to noise.
More general reconstruction of density fields was explored in [157], where they created MAP
estimates of physical clusters with associated error estimates without making assumptions
about the Gaussian of the likelihood surface. However, these approaches are ad-hoc, as the
loss function they minimize cannot be theoretically justified. For the case of nonlinear large
scale structure, best analog of WF reconstructions in terms of minimizing the error are the
nonlinear density reconstruction techniques developed e.g. in [174, 206, 93], which first give
a minimal variance reconstruction of initial gaussian density fluctuations, and then project
these into the nonlinear structures using an N-body simulation.
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(a) i = 1 (b) i = 1000 (c) i = 5000

Figure 4.12: Top: Reconstructed density field at given iteration. Bottom: Di↵erence of
true density field with reconstruction at each iteration. Note that we have used the same
mask/noise properties, as well as color scale, as in Sec 4.3.3.

This research has made use of NASA’s Astrophysics Data System. This research used
resources of the National Energy Research Scientific Computing Center, a DOE O�ce of
Science User Facility supported by the O�ce of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

4.5 Convergence Criteria of CMB Reconstruction

An important question to answer is to what the required convergence criteria are for a given
algorithm/observable. In general, this will depend on what sort of scales are being probed
and what other sources of error exist in the problem. In this section we will consider how
changing the convergence criteria, ✏ ⌘ ��2, a↵ects the net reconstructed map. We will
specialize our analysis to that of the CMB case since it has the largest condition number,
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Figure 4.13: Change in convergence properties as a function of scale. We compare against
the high convergence solution (✏ = 10�4) rather than the true solution as the presence of noise
will bias the end power spectra and calculating the noise bias and the Fisher information
matrix (Hessian) for each step of the iteration would be computationally expensive.

and most power on large scales, which will be particularly sensitive to reconstruction within
the masked region. A similar analysis with our cosmic shear example will lead to smaller
e↵ects.

To demonstrate the convergence properties of our technique we performed a high-accuracy
run demanding ✏ < 10�4 as our convergence criteria, as opposed to ✏ < 10�1 for the runs in
the main body of the paper. We show these results, as well as the di↵erence with the true
field, in Figure 4.12. Note that very quickly we find the true solution in the unmasked region,
but continue to reconstruct the large scale modes in the masked region as the optimization
rerouting continues.

We compare our convergence accuracy as a function of scale to the cosmic variance limit
in Figure 4.13. While in practice one wants the error on the reconstruction to be well below
this limit, it provides a useful guideline for the necessary accuracy for reconstruction. Note
that the properties of this reconstruction are a function primarily of the survey geometry;
a hypothetical full sky survey with no masked region and similar noise properties would
converge much quicker to the optimal solution. Similarly, a case with smaller masked regions
(for example only stellar masking) would find much faster convergence of the large scale
modes.
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(a) Reconstructed E Field (b) Reconstructed B Field

Figure 4.14: Maximum likelihood E and B potential fields for cosmic shear case. Noise
properties, mask, and color scale are the same as in Section 4.3.4.

4.6 Joint E & B Cosmic Shear Reconstruction

In the main text we only explored reconstructing the primary (i.e. curl-free) E-mode lensing
potential of cosmic shear. However, there are various potential sources of B-mode e↵ects
within realistic observed lensing maps, such as instrumental e↵ects, clustering of source
galaxies [168], and intrinsic alignments of galaxy shapes [74, 200]. To control for these
e↵ects it is useful to perform a joint optimization of both E and B modes from the shear
maps. The same tools could also be applied directly to the CMB polarization field from the
Q and U maps [75].

The observed shear fields �1 and �2 can be expressed in terms of the E and B potentials
as
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=
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where we assume flat sky. Our response matrix now takes two signal fields (�E and �B) to
two data fields (�1 and �2) and we perform the optimization over the signal fields.

To study the joint reconstruction, we use the same starting E field as in Subsection 4.3.4,
but also induce a B field which has a power spectrum with the same shape as the E field but
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Figure 4.15: Top: Full two dimensional Fisher matrix for the cosmic shear E/B joint
reconstruction case. The matrix can be viewed as 4 blocks, with EE and BB the response
of each type of mode to itself and the BE and EB reflecting the leakage between the modes
induced by the survey geometry. Bottom: Vertical cuts of the Fisher matrix. Note that to
reduce numerical noise in the final reconstruction we have zeroed out terms in the EE/BB
blocks far from the diagonal.
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Figure 4.16: Reconstruction of the E and B power spectrum from mock observations using
the maximum likelihood technique described in this work. Green lines indicate the original
E/B power of the signal maps. The dashed red and blue lines indicate the power from the
LBFGS optimized maps of E and B power respectively, while the solid lines indicate their
MAP power spectra.

an amplitude 10�5 times smaller. We then do a joint reconstruction of both fields, yielding
results shown in Fig 4.14.

The power spectrum estimation is now slightly more complicated as the Hessian matrix
now has EE, BB, as well as EB, BE components to sum over, as shown in Fig 4.15. The
EB/BE components represent leakage between the channels, which in this case is dominated
by E power leaking into B. We show this power spectrum reconstruction in Figure 4.16. This
is visually apparent in the reconstruction as we find an over-abundance of B power in the
reconstructed map, which then gets down-weighted when this leakage is accounted for. In
addition, as the B mode power is dominated by noise, it is di�cult to accurately reconstruct
its power from this one mock observation.

Alternatively, rather than perform a full Fisher-like analysis for the B-mode power one
could instead perform multiple realizations of the B-mode leakage and average them together
to form a “leakage bias” in analogous way as for the noise terms. This would have the possible
advantage of requiring an additional optimization for each realization of the B-mode power,
rather than an optimization for each mode of injected power as for the full Fisher analysis.
If one is interested in studying many modes at once, treating the B-modes like noise bias
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would be computationally expedient.
To this end, we add additional signal power to the fiducial realization, ss, as

sl0,s = ss +�sl0 ., (4.27)

and create a noisy realization of this data using the same noise model as the observations. We
choose a �sl0 to be su�ciently small that the curvature approximation of the Fisher matrix
is valid but large enough to not be susceptible to numerical artifacts. We then perform
the same optimization routine to find an estimated signal vector, ŝl0,s+n, and calculate the
di↵erent between this reconstructed vector and the reconstructed vector of the original field,

�ŝl0,s+n = ŝl0,s+n � ŝs+n. (4.28)
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Chapter 5

Nonlinear Reconstruction: An
Approach to Modeling the z ⇠ 2.5
Cosmic Web Probed by Lyman-↵
Forest Tomography

A designer knows he has achieved perfection not when there is nothing left
to add, but when there is nothing left to take away.

Antoine de Saint-Exupry

5.1 Introduction

A major goal of modern astrophysics is to understand how galaxies form and evolve from
initial density fluctuations to the current day. Over the past few decades it has become
increasingly clear that the surrounding large scale structures around galaxies play a critical
role in their formation, morphology, and evolution [48, 102]. There has also been new
theoretical understanding on how these large scale dark matter structures evolve, from both
an analytical approach and from numerical simulations [](),a; [see 38, for an overview].
[; ](),a, However, our understanding of the small scale processes driving galaxy evolution
remains poor, with many competing models [38, 140]. Part of the challenge lies in the
fact that most observations linking galaxy evolution and large-scale structure are at low
redshifts, whereas most of the galaxy- and star-formation in the Universe peaked at the so-
called ‘Cosmic Noon’ epoch at z ⇠ 1.5�3 [126] which remain out of reach of most large-scale
structure surveys.

There are many indications of the interconnected nature of cosmic structure and galactic
evolution at high redshift. Numerous studies have found that low-redshift galaxies living
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in cluster environments have lower star formation rates and significantly older stellar ages
than those in the field [205, 181]. This indicates that these regions underwent significant
star formation and quenching at high redshift (z > 1.5) [199]. This is further supported by
simulation work showing that protoclusters produce roughly half of their stellar content at
2 < z < 4 and are therefore an important contribution to the overall cosmic star formation
rate [33]. Beyond protoclusters, there is evidence to suggest that star formation proprieties
may further depend on where the galaxy is first formed in the cluster or falls in along
filamentary structure [155]. Similarly, hydrodynamical simulations [49] have suggested that
the spin of galaxies may depend on the filament orientation, with simulated red and blue
galaxies aligning perpendicular and parallel to the filament, respectively. Very little data
is available tracing these cosmic structures at high redshift, but next generation surveys
will provide the depth over su�cient sky coverage to better constrain these astrophysical
processes [101, 142].

Understanding these complex relationships between baryonic properties and dark matter
in the context of the overall large-scale structure environment is not only useful in modeling
galaxy formation, but is also crucial in exploiting galaxies as biased tracers of large scale
structure for cosmological constraints [45]. The relationships between cosmic web structures
and bias has been explored in the case of tidal shear bias [12] and more recently in the
case of assembly bias [159]. Quantifying the sources of bias will be needed when extending
galaxy clustering surveys into the nonlinear regime where the particulars of the cosmic web
may play a role [5], or in cosmic shear surveys where intrinsic alignments of galaxies will
contribute substantial systematic uncertainty to precision cosmological measurements [200].

So far most studies of the cosmic web have used optically selected galaxies from spec-
trosopic redshift surveys as a tracer of the cosmic web. As a high number density (and
threfore high spectroscopic sampling rate) is necessary for this sort of survey, this technique
becomes increasingly expensive at higher redshift. The current state-of-the-art galaxy survey
probing the high-redshift cosmic web is the VIPERS survey [70] on the Very Large Telescope
(VLT), which has obtained redshifts for 100,000 galaxies over 24 deg2 as the largest-ever
spectroscopic campaign on that facility. This enabled a cosmic web analysis in the redshift
range 0.4 < z < 1.0 [129], which suggested segregation of massive galaxies towards filaments
already at this redshift. Over the next few years, new massively-multiplexed fiber spectro-
graphs on 8m-class telescopes, such as VLT-MOONS [34] and Subaru-PFS [PFS; 193], will
allow such high-sampling rate galaxy surveys to push to z ⇠ 1.5, but would be prohibitively
expensive at the “Cosmic Noon” epoch of z ⇠ 2� 3.

In recent years, however, “intergalactic medium (IGM) tomography” [Stark2015, 151,
28, 117] of the hydrogen Ly↵ forest provides a complementary approach to mapping high-
redshift large-scale structure. This technique uses dense configurations of closely-spaced
star-forming galaxies, in addition to quasars, as background sources to probe the three-
dimensional (3D) structure of the optically thin IGM gas at z > 2 on scales of several
comoving Mpc. The ongoing COSMOS Lyman Alpha Mapping And Tomographic Observa-
tions (CLAMATO) survey is the first observational program to implement IGM tomography,
and now has 240 sightlines covering a ⇠ 600 square arcmin footprint within the COSMOS
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field, yielding a 3D tomographic map of the 2.05 < z < 2.55 Ly↵ forest [115]. A number
of z ⇠ 2.3 cosmic structures already have been detected in the CLAMATO data, including
protoclusters [118] and cosmic voids [111].

In the coming years, a number of next generation spectroscopic surveys will radically in-
crease the observational resources available for IGM tomgraphy, including the Subaru Prime
Focus Spectrograph and Maunakea Spectroscopic Explorer [MSE; 135]. These telescopes
will o↵er multiplex factors of several thousand over ⇠ 1 deg2 fields of view, allowing sev-
eral times the volume of the current CLAMATO data to be observed within a single night.
Meanwhile, with far sparser sightline number density but significantly larger sky coverage,
the Dark Energy Spectroscopic Instrument [DESI; 119] could be another interesting platform
for Lyman-↵ forest tomography to probe large-scale over-densities. Farther into the future,
the thirty-meter class facilities such as Thirty Meter Telescope [TMT; 182], Giant Magel-
lan Telescope [GMT; 98], and European Extremely Large Telescope [EELT; 55], will have
smaller fields-of-view but dramatically improved sensitivity for faint background sources at
much greater sightline densities that can probe spatial scales of ⇠ 1 cMpc and below. The
need for accurate modeling of the formation and evolution of galaxies and galaxy clusters
increases in order to maximize the science return of these facilities.

The current standard procedure for IGM tomography analysis is to create a Wiener-
filtered absorption map from the observed Ly↵ absorption features [151, 28, 117]. This ab-
sorption field can then be related to the underlying matter density through the fluctuating
Gunn-Peterson approximation. This Wiener filtering does not explicitly include information
about the physical processes of the system and could, in an extreme case, lead to inferred
matter distributions which cannot arise from gravitational evolution. In this work, we im-
plement a di↵erent approach, finding the maximum a posteriori initial density field which
gives rise to the observed density field, often known as a “constrained realization.” This
will constrain the transmitted flux1 field to those which are likely to arise from gravitational
evolution, providing a more accurate reconstruction at z = 2.5. This epoch is particularly
amenable to this technique since the observed structures are only mildly non-linear and have
not yet undergone shell crossing. Not only will this yield information on the underlying
dark matter density field, but also velocity information allowing us to deconvolve redshift
space and real space quantities (see nusser:1999 for a reconstruction method applied to 1-
dimensional quasar Ly↵ forest sightlines, and 2001Pichon for full 3D convolution). This
velocity information can also help inform the astrophysical processes occurring in the region;
for example combining the flux information, matter velocity information, and a galaxy cata-
log will provide insights into galaxy formation environmental dependence. In addition, since
we have the z = 2.5 matter density and velocities, we are able to further evolve our field to
z = 0 to infer the late time fate of the observed structures.

Reconstructing the initial density field has additional advantages beyond possible im-
provements in late time reconstruction. As there is currently no evidence for primordial

1It is a mild misnomer to refer to the Ly↵ transmission as a ‘flux’, but in this paper we use both terms
interchangeably.
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non-gaussianity [154], the power-spectrum of the initial density modes should provide a loss-
less statistic. The entire family of higher order correlations (such as three-point functions,
density peak counts, voids, topological measures, etc.) arise due to gravitational evolution of
a density field described by a single power spectra. In the case of galaxy large scale structure
surveys, there has already been work towards performing this optimal reconstruction [174].
As Ly↵ tomography builds up toward cosmological volumes, it would be worth exploring the
application of the aforementioned techniques.

In this paper we apply initial density reconstruction to mock observations of IGM To-
mography using the Tomographic Absorption Reconstruction and Density inference Scheme
(TARDIS). We overview the formalism in Section 5.2, describing the optimization scheme,
forward model used, and measures of the cosmic web. In Section 5.3, we describe our mock
data-sets which simulate Ly↵ tomography observations. In Section 5.4 we describe our
results, and finally discuss next steps in Section 5.5.

5.2 Methodology

In order to implement our scheme to go fom observed data to the systems initial conditions we
need (a) a dynamic forward model (FastPM), (b) an absorption model (FGPA), (c) mapping
from field to data-space (flux skewers), (d) a noise model. In this section we describe each
component of our model.

5.2.1 Modeling

Here we summarize the optimization technique and standardize notation. For a more com-
plete description, see [171, 180, 174, 80].

We measure N skewers of flux assuming perfect identification of the continuum spectra
each of length L, and stack those into a full data vector, d, of total dimension N ⇥ L. This
data vector will depend on the initial conditions we wish to estimate at a certain resolution
M , s, the Lyman-↵ absorption model, and a noise term, n, which we choose to have the
same dimension as the data i.e.

d = R(s) + n, (5.1)

where the R : M3 ! N ⇥ L is the (nonlinear) response operator composed of a forward op-
erator and a skewer-selector function. The Gaussian information is contained in co-variance
matrices, S = hss†i, and N = hnn†i, for the estimated signal and noise components, which
are assumed to be uncorrelated with each other, i.e. hn(R(s))†i = 0. In this work we
are interested in maximizing the likelihood of some underlying signal given the data. The
generic likelihood function can be written as

L(s|d) = (2⇡)�(N+M)/2det(SN )�1/2 ⇥
exp

⇥
�1

2s
†S�1s+ (d�R(s))†N�1(d�R(s))

⇤
, (5.2)
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where we assume calculate the signal covariance S around some fiducial powerspectra. Note
that the minimum variance solution for the signal field can be found by minimizing,

�2 = s†S�1s+ (d�R(s))†N�1(d�R(s)), (5.3)

with respect to s. Working in quadratic order around some fixed sm we have

�2 = �2
0 + 2g(s� sm) + (s� sm)D(s� sm), (5.4)

with gradient function

g =
1

2

@�2

@s
= S�1sm �R0†(sm)N�1(d�R(sm)), (5.5)

and curvature term2

D =
1

2

@2�2

@s@s
= S�1 +R0†N�1R0. (5.6)

Calculation of the derivative term R0 requires calculation with respect to every initial mode.
We use an automated di↵erentiation framework in Appendix B of [57] o calculate Jaco-
bian products of our evolution operator without running additional simulations. This avoids
running additional involved simulations with respect to every mode, which would be pro-
hibitively costly.

5.2.2 Optimization

As each iteration of the chain requires running a PM simulation, it is important to minimize
computational time. While others have used Hamiltonian Markov Chain Monte Carlo (HMC)
algorithms to find fast reconstructions for galaxy surveys [see 94, 206], in this work we are
instead finding the most likely map reconstruction. We therefore use a Limited-memory
Broyden Fletcher Goldfarb Shanno (LBFGS) algorithm [156], a general technique for
solving nonlinear optimization problems. Rather than sampling over the entire parameter
space, LBFGS takes a quasi-Newtonian approach, i.e. it is similar to the standard Newton-
Ralphson method but rather than calculating the inverse of the entire Hessian (a very large
matrix for a density field on the scales of interest) it iteratively updates a pseudo-Hessian as
the function is being optimized.

Quasi-Newtonian methods, like L-BFGS, are only guaranteed to find extrema for convex
optimization problems. For the case of large scale structure, it was demonstrated that
the posterior surface is multimodal at the smallest scales but not modes probed by next
generation large scale structure surveys [57]. This optimization technique was previously
implemented for the case of cosmological shear measurements and CMB reconstruction,
finding fast numerical conversion even in very high dimensional parameter space [80], as well
as in dark-matter-only models [174, 57].

2Note we drop the R00 term as it fluctuates with mean zero and doesn’t appreciably a↵ect the optimiza-
tion.
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Our implementation is based on the vmad framework,3 an extension of the abopt frame-
work used to perform similar reconstructions from late time galaxy fields [138]. This frame-
work allows very fast reconstruction convergence; for cases studied in this work each recon-
struction took approximately 5 CPU-hours.

5.2.3 Response Function and Forward Model

Optimization over the initial density skewers requires defining a di↵erential forward model
which will allow us to define a �2 problem as in Eq. 5.3 and gradient function as in Eq. 5.5.

5.2.3.1 Forward Evolution

Following the work of [57] we first use Lagrangian Perturbation Theory (LPT) to evolve the
initial conditions while the field is still almost entirely linear. We do this until z = 100.0, at
which point we then use 5 steps of FastPM [58]4 to evolve until redshift z = 2.5.

There are fundamental limitations due to using a particle mesh framework with limited
time steps, constraints imposed by the speed requirements for optimization. As discussed in
[58] and [41], halos are not fully virialized when using these methods. This will not a↵ect
our ability to reconstruct structure on > 1 h�1 Mpc scales relevant for current and upcoming
surveys.

We use the z = 2.5 particle positions to generate a density field and infer the hydrogen
Ly↵ optical depth using the Fluctuating Gunn Peterson Approximation (FGPA), with T =
T0(⇢/⇢̄)(��1) with slope � = 1.6 [116]. Note that we calculate the optical depth first, which
is then redshift-space distorted using the inferred velocity field. Then we compute the flux
F = exp (�⌧) and select lines of sight matching the positions of the mock observations. The
skewers are then smoothed with a � = 1.0 Mpc/h Gaussian filter to imitate spectrographic
smoothing; this is a conservative estimate for upcoming surveys.

5.2.3.2 Overview of Forward Model

1. Initialize a Gaussian random field (the signal field).

2. Evolve field forward to z = 2.5 with FastPM.

3. Use FGPA to calculate a real space Ly↵ optical depth.

4. Use the line of sight velocity field to shift the Ly↵ optical depth to redshift space.

5. Exponentiate the redshift space optical depth field to get the transmitted flux field.

6. Select skewer sightlines from redshift space flux field.

7. Convolve skewers with Gaussian spectrograph smoothing.
3https://github.com/rainwoodman/vmad
4https://github.com/rainwoodman/fastpm
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Observed Skewers

Figure 5.1: Schematic illustration of our forward model (see Sec 5.2.3.2). The underlying
field we are optimizing for is the initial matter density field (left). The output of our forward
model are the Ly↵ flux skewers probing the observational volume at the same positions as
the data.

Table 5.1: Mock Data Sets for Reconstructions

5.3 Mock Datasets

While the FastPM code provides a rapid convergence towards the underlying density field
within the TARDIS framework, to rigorously test our reconstruction we apply the formalism
to mock data generated from well-characterized large-volume, high-resolution N-body simu-
lations. We therefore use a simulation volume run with TreePM [209, 210], which has been
used for other work on Lyman-↵ forest tomography [Stark2015, 111] This simulation uses
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25603 particles in a box with 256 h�1 Mpc along each dimension, with cosmological parame-
ters ⌦m = 0.31, ⌦bh2 = 0.022, h = 0.677, ns = 0.9611, and �8 = 0.83. The initial conditions
are generated using second order Lagrangian Perturbation Theory to zic = 150 and then
further evolved using the TreePM code. The output was taken at z = 2.5 and z = 0 for
comparison, and a z = 2.5 Lyman-↵ absorption field was generated using the FGPA with
T0 = 2.0⇥ 104 and � = 1.6.

We generated mock skewers from (64 h�1 Mpc )3 subvolumes of the TreePM simulation
with di↵erent survey parameters to mimic various ongoing and upcoming IGM tomography
surveys — these are summarized in Table 5.1. The most important survey parameter is
the mean sightline separation, or equivalently areal density of background sources on the
sky. This is typically set by the overall sensitivity of the telescope/instrument combination
and desired integration time, but in this work we simply quote the sightline separation and
minimal S/N for each survey; we refer the reader to [117] for a more detailed discussion with
respect to observational strategy. The CLAMATO survey [115], which is currently ongoing
with the Keck-I telescope, achieves a mean separation of 2.4 h�1 Mpc between sightlines
(albeit over a small footprint of 0.16 deg2 at present). An IGM tomography program is
currently being planned for the upcoming Prime Focus Spectrograph [188], which should
achieve comparable spatial sampling as CLAMATO but over a much larger area (⇠ 15 deg2).
Further into the 2020s, thirty-meter class telescopes such as TMT, ELT, and GMT will allow
much greater sightline densities by observing fainter background sources. While the exact
parameters of future IGM tomography surveys on thirty-meter telescopes will depend on
instruments that are largely still under early development, for now we assume a 1 h�1 Mpc
sightline separation. We also study a hypothetical dedicated5 IGM tomography program
carried out with the DESI spectrograph, which is currently being installed on the 4m Mayall
telescope [119]. While the DESI instrument o↵ers 5000 fibers over a 7.5 deg2 field-of-view,
we assume that 10% of the fibers will be dedicated to sky subtraction and a 1.7⇥ overhead
factor in background sources targeted to maintain the specified sightline density over a finite
redshift range of �z = 0.3 [117]. This implies a mean sightline separation of 3.7 h�1 Mpc for
a dedicated DESI tomography program.

For pixel noise, we assume Gaussian random noise which varies among di↵erent skewers
but is constant along each skewer. To simulate a realistic distribution of skewer S/N, we
follow the prescriptions in [Stark2015] and [111] and draw the individual skewers’ S/N
from a power-law distribution with minimum value S/Nmin (i.e. dn los/dS/N / S/N↵) and
spectral amplitude ↵ = 2.7. The S/Nmin is the same for both the DESI and CLAMATO/PFS
mocks since it reflects the actual minimal S/N in the real CLAMATO data, but for 30m-class
telescopes [117] found that the S/N needs to be increased as the tomographic reconstruction
is no longer limited by the shot-noise from finite skewer sampling. To be conservative, we
also impose a maximal S/N for all mock datasets [115], as specified in Table 5.1.

In addition to the random pixel noise, we add continuum error to account for the di�-

5There is a quasar Ly↵ forest component within the DESI cosmology survey, but at only ⇠ 50�60 deg�2

it is far too sparse for cosmic web analysis.
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Figure 5.2: Reconstruction of various recovered quantities for the F-CLA/PFS mock dataset,
smoothed at 2 h�1 Mpc , are shown on the bottom row. The true corresponding fields from
the FastPM simulation are shown on the top. In all panels we project along a 5 h�1 Mpc slice.
The region outside the solid blue box is masked in our analysis, while the dotted lines are
merely to guide the eye. We find that the large scale features are qualitatively captured well
in the reconstructions.

culty in identifying the intrinsic quasar or galaxy continuum. The ability to estimate the
continuum is dependent on the S/N of the skewers, and we apply the fitted continuum error
distribution of [111] to our mock skewers. In particular, we take our observed flux to be

Fobs =
Fsim

1 + �c
, (5.7)

where �c is taken from an underlying Gaussian distribution with width �c depending on S/N
along each skewer as

�c =
0.205

S/N
+ 0.015 (5.8)

where the constants are fitted from data from the CLAMATO field. While we add continuum
errors to our mock spectra, we do not directly model continuum error in TARDIS. This could
be included as an o↵-diagonal term in the covariance matrix in future work.

In addition to the TreePM run, we have also generated mock skewers from FastPM using
the exact same technique and parameters as in our forward model. This serves to isolate
e↵ects caused by known limitations of FastPM to resolve small scale halo properties, as well
as provide a tool for rapid consistency checks. These are applied towards the discussions
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Figure 5.3: Power spectra of the reconstructed initial conditions for various experimental
configurations, with the true initial conditions shown for comparison. As the number of
sight-lines and spectral noise improve, power spectra reconstruction improves; however there
remains a residual noise bias for realistic experiments.

regarding the code convergence in Appendix .1, and the method’s sensitivity to astrophysical
assumptions (Appendix .2).

5.4 Results

We apply the TARDIS method, described in §5.2, to the mock data set generated as described
in §5.3. Broadly, we are interested in how well we reconstruct cosmic structures both at the
observed redshift (z = 2.5) and the late time (z = 0) fate of those structures. TARDIS solves
for the initial density fluctuations within the volume, which one can then use to initialize
a simulation using any cosmological N-body or hydrodynamical code to study the cosmic
evolution of the large-scale structure realization. For convenience, however, in this paper we
continue to use FastPM to study the gravitational evolution of the TARDIS realizations at
both z = 2.5 and z = 0. The z = 2.5 field simply the best-fit TARDIS solution, whereas to
get to z = 0 we evolve FastPM by another five steps. We then compare the resulting fields
with the ‘truth’ from the fiducial TreePM simulation volume.

Examples of reconstructed fields for initial density, z = 2.5 matter density and Ly↵
flux, line of sight velocity and z = 0 matter density for T-CLA/PFS are shown in Fig 5.2. In
comparison with the ‘true’ fields, there is a strikingly good recovery of the overall filamentary
backbone of the z = 2.5 matter density field as well as the overall distribution of the velocity
field. However, the TARDIS reconstruction appears to underestimate the overall amplitude
of the density field, with less prominent density peaks in both the initial conditions and
z = 2.5 matter density. As expected, the underestimated matter power propagates through
to the evolved density field at z = 0, where the density peaks in the reconstruction are much
less prominent than the true underlying density.
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The underestimated matter amplitude appears to be an artifact of the reconstruction
method, and can be seen when we compare the reconstructed initial fluctuation power spec-
trum with that used to generate the ‘true’ TreePM simulation volume (Figure 5.3). There is
a shortfall in the recovered power in all the mock reconstructions, especially on scales below
the mean sightline density of the mock data, but also on larger scales. This gets worse with
reduced sightline density of the T-DESI reconstruction, while conversely the improved sight-
line sampling of the T-30+T mock allows a better job of recovering the true power spectrum,
although there is still a shortfall at all scales. This is possibly due to the fact that the Ly↵
forest absorption blends and saturates in matter overdensities. While it might be possible to
correct for this reduced power in the initial density fluctuations, this is a non-trivial process
which we defer to an upcoming paper that will focus on modeling galaxy protoclusters within
the TARDIS framework.

Nevertheless, TARDIS appears to do a reasonable job in recovering the moderate-density
cosmic web as seen in Figure 5.2. We thus focus on the large-scale cosmic web, and compare
the performance of the TARDIS across cosmic time.

5.4.1 Classification of the Cosmic Web

For quantitative comparison of the large-scale structure recovery in TARDIS, we use the de-
formation tensor cosmic web classification of [112] and described in [114], which was inspired
by [18, 72, 62]. While there exist other cosmic web classification algorithms [see summary
in 29], the deformation tensor approach has a strong physical interpretation within the
Zel’dovich approximation [216] and allows easy comparison to previous work in the context
of Lyman-↵ forest tomography. However, in contrast to [114] and [112], who measured the
eigenvalues and eigenvectors of Wiener-filtered maps of the Ly↵ transmitted flux, in this
work we directly measure the eigenvalues and eigenvectors of the dark matter fields recon-
structed with TARDIS, which have been first smoothed with a R = 2 h�1 Mpc Gaussian
kernel.

The eigenvectors and eigenvalues of the deformation tensor relate directly to the flow
of matter around that point in space; matter collapses along the axis of the eigenvector
when the associated eigenvalue is positive, and expands when it is negative. Points with
three eigenvalues above some nonzero threshold value �th [as in 62] are nodes (roughly
corresponding to (proto)clusters), two values above �th are filaments, one value above �th
are sheets, and zero values above �th are voids. The deformation tensor, Dij, is defined as
the Hessian of the gravitational potential, �, i.e.

Dij =
@2�

@xi@xj

, (5.9)

or equivalently in Fourier space in terms of the density field, �k, as

D̃ij =
kikj
k2

�k. (5.10)
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Table 5.2: Cosmic Web Recovery at z ⇠ 2.5 (Eulerian Comparison)

This tensor is then diagonalized to obtain the eigenvalues ê1, ê2, and ê3 at each point on
our spatial grid, ordered such that their corresponding eigenvalues are �1 > �2 > �3 (i.e. to
demand that collapse first occurs along ê1). Note that one could use the velocity field from
the reconstruction itself to determine the flow at each point [e.g. 122, 144] instead of relying
on the Zel’dovich approximation used in the classification here. We use the deformation
tensor in order to stay consistent with past IGM tomography work [114, 112]. Cosmic web
directions for our reconstructed field are thus defined by the eigenvectors with associated
eigenvalues used to classify the cosmic web.

We follow [112] and [114] and define our threshhold value �th for each simulated field
such that the voids occupy 21% of the total volume at z = 2.5 and 27% at z = 0 [inspired
by the redshift evolution in 29]. The void fraction is somewhat arbitrary in the analysis,
as long as it is consistent between the mock reconstructions and true density field used for
comparison.

5.4.2 Matter/Flux Density at z ⇠ 2.5

We compare the recovery of z = 2.5 Ly↵ flux to previously-standard Wiener filtering tech-
niques. As we are assuming the Fluctuating Gunn Peterson approximation, this recon-
structed flux can be mapped directly to the density field. While past work on Wiener-filtered
IGM tomographic maps [115, 28] have smoothed the field on 1.4⇥ the mean sightline spacing,
for these comparisons we smooth the respectively matter fields with a � = 2 h�1 Mpc Gaus-
sian kernel. The smaller smoothing scale is appropriate for our work because our method
should be better able to infer nonlinear and semi-linear structure between sight-lines. For
all plots we treat the field in real space (without redshift space distortions) since our opti-
mization is over the initial real space density field.

The reconstructed matter density fields from the various mock IGM tomography surveys
(summarized in Table 5.2) are shown in the first row of Figure 5.5 in comparison with
the true density field from the TreePM simulation. In all cases, they are smoothed with
a R = 2 h�1 Mpc Gaussian kernel. On large scales, the reconstructed density fields are
well matched in terms of voids and sheets, but CLAMATO/PFS data misses out on some
prominent filamentary structures and nodes as a consequence of the underestimated matter
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amplitude. The 30+m telescopes, on the other hand, yield an matter density reconstruction
with excellent fidelity over the entire volume.

We next calculate the characteristic eigenvalues of the deformation tensor, as described
in § 5.4.1, on the smoothed matter density fields. The scatter of the eigenvalues, relative
to the true underlying eigenvalues, is plotted in Figure 5.6. This reflects how well recover
the amplitude of curvature of the matter density field along each cosmic web direction. The
distribution of all three eigenvalues is unbiased relatively to the truth, albeit with more
scatter in the case of the sparser CLAMATO/PFS reconstruction. We quantify the agree-
ment in terms of Pearson correlation coe�cients, showing the scatter from a linear trend
in Table 5.1. These show a strong correlation between the reconstructed and true eigen-
values, ranging from r = [0.78, 0.75, 0.77] in recovering the three eigenvalues [�1,�2,�3] for
CLAMATO/PFS, to the excellent reconstruction of the 30m-class telescopes with correlation
coe�cients of r = [0.94, 0.94, 0.95].

Next, we classify the each point within the density field as void, sheet, filament, or node
depending on how many of the eigenvalues are greater than the threshold value, �i > �th.
In the true matter density field, we find that [22, 50, 25, 3]% of the volume is occupied by
voids, sheets, filaments, and nodes, respectively — by construction the reconstructed matter
fields show similar volume occupation fractions to within ±2%. The volume overlap fraction
between cosmic web classifications in the mock data reconstructions compared to the true
matter field are listed in Table 5.1 — these do not include a bu↵er region of 5 h�1 Mpcnear
the edge of the volume where we expect to be contaminated by boundary e↵ects. For the
CLAMATO/PFS mock reconstructions, the volume overlap fractions are ⇠ 60 � 62% for
the sheets and voids, declining to 32% for the nodes. It is unsurprising that the nodes are
more challenging to recover, since they occupy such a small fraction (3%) of the overall
density field. These numbers are, on the surface, comparable to those found by [112] (their
Table 1) for a similar CLAMATO-like mock data set, but in fact somewhat better since we are
probing the matter field directly on 2 h�1 Mpc scales, whereas [112] were evaluating the Ly↵
transmission field over coarser (4 h�1 Mpc ) scales in the equivalent case. This improvement
is due to the fact that the TARDIS incorporates the physics of gravitational evolution into its
reconstructions, in contrast with Wiener-filtering, which only assumes a correlation function.
The 30m-class reconstruction, as expected, fares even better thanks to its finer sightline
sampling, with the voids, sheets, filaments, and nodes overlapping [81%, 82%, 80%, 74%]
with the true matter density cosmic web.

To further illustrate the fidelity of the recovery, Figure 5.7 shows the confusion matrix,
evaluated at all the grid points in our volume, between the true cosmic web from the sim-
ulation and our reconstructions, finding good agreement. Overall, we find 80%, 60%, and
53% of the total observed volume is properly classified for T-30+T, T-CLA/PFS, and T-DESI,
respectively. Allowing mis-classification by a structurally adjacent type (i.e. void to sheet,
sheet to void/filament, filament to sheet/node, and node to filament) the agreement goes up
to 98%, 96%, and 95% respectively. We also examine the eigenvector recovery by computing
the dot product between the eigenvectors recovered from the reconstructions with those at
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the same Cartesian point in the true matter density field6 — with a good recovery, the recov-
ered eigenvectors would be well aligned with the true eigenvectors and lead to dot products
of order unity. These are shown in Figure 5.5. We find for [ê1, ê2, ê3] average alignment cosine
angles of [0.80, 0.70, 0.80] for T-DESI, [0.87, 0.79, 0.80] for T-CLA/PFS, and [0.96, 0.92, 0.96]
for T-30+T. This is again comparable to the results derived from Wiener-filtered flux maps
in [112] for the CLAMATO/PFS case, but probing smaller scales.

5.4.3 Matter Density at z = 0

A main motivation for the TARDIS framework is inferring the late time fate of structures and
constituent galaxies found in regions observed by Lyman-↵ forest tomography. As output of
our model, we further evolve the particle field to z = 0 in order to study the reconstruction.
We compare this evolved field with the TreePM ‘truth’ at z = 0. The true underlying
field contains cosmic structures with mass fraction [0.15, 0.49, 0.31, 0.05] and volume fraction
[0.02, 0.28, 0.48, 0.22] for [nodes, filaments, sheets, voids], respectively.

Eulerian (real) space provides a qualitative picture of the the structures reconstructed in
this limit. In Figure 5.9 (top) we show the matter field and cosmic web reconstructed for
di↵erent survey mock data. While they are qualitatively similar, as described in Subsection
5.4.2, the peaks of the z = 2.5 density field are poorly reconstructed for realistic survey
parameters. This results in significant drift of the Eulerian space structures and makes point
by point comparisons di�cult. This can be seen in Figure 5.9 (bottom) where the qualitative
structure is quite similar, especially for 30+T, but the exact positions of nodes and filaments
are in slightly di↵erent positions relative to the true matter field. This leads to unsatisfactory
cosmic web recovery when evaluated in the same way as z = 2.5.

However, the reconstructions’ cosmic web fidelity at z = 0 is a somewhat abstract concept
since the Eulerian matter density field is not accessible via any observations. Instead, we
can evaluate the reconstructed field in Lagrange space, i.e., tracking the z = 0 environments
sampled by test particles observed at z = 2.5. Since we expect galaxies to act roughly
like test particles in the large-scale gravitational potential, this provides a direct connection
to understanding the late time fate of z ⇡ 2.5 galaxies observed in the same volume as
the Lyman-↵ tomography data. We test this by the following: from the z = 2.5 density
field reconstructed from the mock data reconstructions with TARDIS/FastPM, we select
a set of test particles at Eulerian real-space positions [xz25,i, yz25,i, zz25,i] and track them to
their z = 0 Eulerian positions [xz0,i, yz0,i, zz0,i] then evaluate their cosmic web eigenvalues and
classifications (on the Eulerian real-space grid). From the TreePM ‘true’ matter density field
at z = 2.5, we find matching test particles at the same Eulerian positions [xz25,i, yz25,i, zz25,i]
and again track them to their z = 0 positions and environments. This process is visualized
in Fig 5.8 where we show the displacement vectors for particles from the reconstructions vs.
matched particles from the TreePM simulation evolved to z=0.

6These values only include structure in the observed region, excising an additional bu↵er of 2
h�1 Mpcnear the survey boundary.
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Table 5.3: Cosmic Web Recovery at z = 0 (Lagrangian Comparison)

The results from this exercise are shown in the z = 0 Lagrangian confusion matrix in
Figure 5.10. For CLAMATO/PFS, we are able to successfully predict the z = 0 environment
sampled by the test particles with ⇠ 40 � 50% fidelity, while this increases slightly to ⇠
50 � 60% in the case of T-30+T. In both cases, > 90% of the particles are predicted to lie
within ±1 of the correct cosmic web classification, with the exception of CLAMATO/PFS
node particles that are misidentified as sheet particles in 15% of cases. Nonetheless, this
demonstrates the remarkable ability of TARDIS to infer the z = 0 environment of galaxies
observed at z = 2.5, across over 10 Gyrs of cosmic time.

5.5 Conclusion

We present the first use of initial density reconstruction on densely-sampled Ly↵ forest data
sets (often called “IGM tomography”), and have showed that using this technique we are
able to accurately reconstruct large scale properties within the survey volume over a range of
scales. In particular, we are able to recover the characterization and orientation of the cosmic
web at z = 2.5 in terms of the deformation eigenvalues and eigenvectors assuming mock data
that reflect upcoming and future multiplexed spectroscopic instrumentation. In addition, we
are able to recover the qualitative structure of the observed structures at late time, z = 0.
We have also shown that the inferred flux maps from TARDIS are more accurate and have
less variance than those from Wiener filtering. Excitingly, we argue that we would be able to
predict the late-time environments of z ⇡ 2.5 galaxies that are coeval with our reconstructed
IGM tomography volume. This provides a promising and direct route to studying galaxies
and AGN in the context of their surrounding cosmic web. For example, we would be able
to identify the direct progenitors of z = 0 filament galaxies, and study their z = 2.5 galaxy
properties. While we are currently limited by noise levels and sight-line spacing, in future
papers we will explore ways to correct for underestimated fluctuation amplitude as a function
of survey parameters.

While only explored indirectly (through z = 0 density reconstruction) a direct product
of this technique is the particle velocity field at z = 2.5 which could have significant uses
in informing astrophysical processes as well as cosmological constraints. For example, it
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could allow accurate estimation of velocity dispersions in high-redshift protoclusters, which
is currently uncertain due to challenges in disentangling galaxy peculiar motions from the
large-scale Hubble expansion [207, 198, 40]. More generally, the velocity field reconstruction
extends over the entire field and could be a useful addition beyond velocity fields from
galaxy redshift space distortions and kinetic Sunyaev Zeldovich e↵ects [189]. In addition, this
technique would allow reconstruction of void velocity profiles which could provide constraints
on modified gravity [56] and neutrino mass [133].

In this work we have held the astrophysical and cosmological parameters constant. A
more complete treatment would require varying these jointly with the underlying field; how-
ever, we view this as unnecessary at this point since existing data covers a very limited
volume with minimal cosmological constraining power. For next generation surveys, which
will greatly expand the footprint covered, it will be required to jointly vary these parameters
as well. Within the FGPA approximation the astrophysical parameters aren’t a significant
limitation since there are only a two global parameters of interest (A0,�) and our optimiza-
tion scheme is fast enough that a naive Markov Chain Monte Carlo sampling would be
su�cient to explore this parameter space. We explored the sensitivity of the reconstruction
with respect to the absorption model in Appendix .2.

Our focus in this work is on reconstructing the moderate-density large scale structure
within the survey volume, and we demonstrated that we were able to recover qualitative
structure over a range of scales. Going forward, it would be useful to study how well sim-
ilar techniques would be on reconstructing halo-scale (i.e.  1 h�1 Mpc ) structure, such
as stacked halo and void profiles. However, going to this small scale regime reconstruction
will be limited by the the specific astrophysical processes within the high-density regions
where the Fluctuating Gunn Peterson Approximation will no longer hold. In particular,
numerical hydrodynamic simulations have shown that there are significant deviations away
from a simple temperature-density scaling relationship close to halos, in some cases even
showing a turnover of the relationship [185]. It should be possible to extend the formalism
proposed in this work and treating the variations from FGPA with some additional param-
eters to be fit for (or marginalized) in this limit, such as was done for galaxy surveys via
a bias expansion [10, 107, 92]. One could also use grid-based approximation methods for
baryonic e↵ects [such as 41] to provide a more precise formation formalism for halo substruc-
ture, or use a more accurate N-body-based approximation than FGPA [186]. It would be a
natural extension to test this method on mock data generated from the NyX hydrodynamic
simulations designed to accurately reproduce Lyman-↵ absorption physics [6, 125]. Other
non-Tomographic techniques have shown great promise in detecting high redshift clusters
from Lyman-↵ observations [23], including a detection of a cluster at 2 = 2.32 [22], but these
techniques probe scales of ⇡ 10 h�1 Mpc

On the other side, additional work is needed to make this reconstruction technique useful
for full scale cosmological analysis. Directly extracting power power-spectra estimates from
our reconstructed maps su↵ers from significant noise bias e↵ects which would make them
di�cult to apply directly to constrain cosmological parameters, as well as mode coupling
e↵ects due to the complexity of our forward model. Using a response formalism [as in 174,
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80, 57] to estimate band-powers would be straightforward and would require O(N) additional
optimization runs to estimate N band-powers. However, before using these reconstructions
for cosmological analysis, additional considerations are necessary, such as incorporating light-
cone e↵ects (i.e. evolution) within the survey volume and including correlated error within
our model. Work in this direction is ongoing.

For future reconstruction e↵orts, the combination of galaxy surveys and Ly↵ tomographic
mapping will be necessary in order to probe di↵erent redshift ranges with maximum e�ciency.
By including the galaxy density field in the reconstruction, we will be able to measure over-
densities with higher precision than from IGM tomography alone. Furthermore, incorporat-
ing baryonic e↵ects from hydrodynamical simulations can show how di↵erent components
of the IGM trace the cosmic web at di↵erent redshifts [132]. This will allow a joint under-
standing of the galaxy and IGM large-scale structure distribution and how they influence
each other.
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.1 Convergence

An important question with any optimization scheme is the convergence properties of the
procedure. This is particularly important for nonlinear processes like structure evolution
where the likelihood surface is non-Gaussian and conceivably non-convex. We divide the
issue into two questions to explore in this appendix; how many iterations are necessary for
to be confident in our reconstruction technique and how sensitive is the found solution to
the initial optimization starting point? For both questions we explore as a function of scale
by looking at the reconstructed transfer function.

It has been shown that in the very low noise limit the likelihood surface of possible initial
conditions in multi-modial; i.e. gravitational evolution is a non-injective map from initial
conditions to late time structure [57]. However, this uncertainty is due to the shell-crossing
degeneracy, which is only relevant for small scale non-linear structure not observed by even
the optimistic configurations considered in this work. To study whether or not there is
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one ”true” solution or if there exist su�ciently di↵erent converged solutions, we perform
the optimization analysis for the same mock catalog with di↵erent optimization starting
points. In particular, we randomly choose a wide range of initial white noise fields with
variance spanning three orders of magnitude. We calculated their transfer functions after
100 iterations versus a fiducial “well-converged” solution which underwent 500 iteration steps.
Up to the scales of interest for the structures studied in this work, ⇡ 1 h�1 Mpc we find very
good agreement between all di↵erent starting points. There are some di↵erences of power on
very large scales, reflective of the poor constraining power of modes of order the box-size. The
number density of modes per uniform bin scales as k2, resulting in significantly more weight
placed on smaller modes, until the window function (depending on the smoothing scale and
sight-line density) creates a sharp cuto↵. If these larger modes are of significant interest,
an adiabatic optimization scheme could be used where-in the optimization begins first on
a smoothed version of the observed field and then slowly small scale power is introduced
back in by varying the smoothing scale as the optimization progresses [as done in 57]), or
potentially directly using a multi-grid preconditioner technique [183]. Utilization of these
techniques will likely be useful when extending this work for cosmological analysis.

The next important consideration is how long our scheme takes to be fully converged.
We plot the transfer function as a function of convergence step in Fig .11. The exact
choice of cuto↵ depends on the scales of interest, but since we are fundamentally limited
in the transverse direction by the line of sight density and in the longitudinal direction by
the spectrograph resolution, power above k = 1.0 h/Mpc is mostly lost to the smoothing
operations on our field. By n = 100 we find good agreement up to k = 1.0 (h/Mpc) and we
use this criteria as an iteration limit in the main work.

.2 Sensitivity to Cosmology and Absorption Model

In the main body of this work we have held cosmological and astrophysical parameters
constant for the reconstructions. Here we briefly explore how wrong assumptions about the
astrophysics or cosmology would bias our late time density field.

We use a di↵erent mock catalog, T-IDEAL, in order to examine the e↵ects of varying the
astrophysical parameters. This catalog has a constant signal to noise of 50 along each skewer,
no continuum error, and a sightline density twice that of T-30+T. The idea of this super-
experiment is to isolate the e↵ects of the astrophysics from other potential sources of noise in
the reconstruction. We perform our reconstructions assuming the “truth” astrophysics from
our mock catalog, as well as assuming the wrong the overall flux amplitude, A0 = exp (�T0),
and the density scaling exponent, �.

We see the e↵ects of wrong astrophysical assumptions in Fig .12. Even with rather
radically di↵erent astrophysical assumptions we find similar qualitative features in the late
time structure. On the power-spectra level, we find these wrong assumptions result primarily
in a bias o↵set from the true power-spectra. In practice, for surveys of the size studied in this
work, it would be easily numerically tractable to sample over these parameters to perform the
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late time reconstruction or, alternatively, to use Lyman Alpha Tomography as a constraint
on these parameters.

.3 Comparison to Wiener Filtering

A promising aspect of this initial density reconstruction technique is that the reconstructed
z ⇠ 2 flux field should be strictly more accurate than that from direct Wiener filtering (WF)
of the skewers. This is because direct WF is a purely statistical process which does not take
into account the physical evolution of the system under gravity, which further constrains
the observed flux field. In this section we review the WF technique which we compare
our method against. For a more general discussion of e�cient WF and associated optimal
bandpower construction, see [171] and [80]. For a more through description in the context
of Lyman alpha forest, see [Stark2015].

As we are trying to reconstruct the optimal map given the data, we have to take into
account both the data-data covariance, CDD, the map-data covariance, CMD, and the overall
map noise covarance, Nij. The reconstructed map can then be expressed in terms of the
observed flux, �F as a standard Wiener filter by ;

�rec
F

= CMD · (CDD +N)�1 · �F . (11)

We approximate the covariance by assuming that Nij = n2
i
�ij where ni is the pixel noise.

This neglects the correlated error component of continuum errors, but this is sub-dominant
to the spectrograph noise and shouldn’t appreciably a↵ect our reconstructed maps. The
map-data and data-data covariances are therefore approximated as

C = �2
F
exp
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#
. (12)

In order to compare directly to the Wiener filter map we use the inferred reconstructed
flux map from TARDIS.

We apply the Wiener filtering algorithm to the T-CLA/PFS mock catalog and compare
along a number of slices to the TARDIS reconstruction. The results are shown in Fig .13.
Overall there is good agreement between all maps, with certain smaller-scale features better
reconstructed in the TARDIS maps than the Wiener filtered maps.

A well-known feature of reconstructed maps are the presence of a bias caused by the
presence of noise. We correct for this bias by a linear transformation calibrated from a
separate simulated volume. The e↵ect of this transformation is shown in Fig .14 (b). We
show the reconstructed flux error in .14 (a), showing that the TARDIS maps have smaller
flux error variance than the Wiener filtered maps.
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Figure 5.4: Comparison of the z = 2.5 reconstructed cosmic structures as classified by their
eigenvalues, from T-DESI, T-CLA/PFS, and T-30+T, vs. the true z = 2.5 density field for an
xy-slice. Fields have been smoothed by a R = 2h�1 Mpc Gaussian kernel. Top: matter
density. Bottom: classification of cosmic structure. Dark blue indicates node, light blue
indicates filament, green indicates sheet, and yellow indicates void. The region outside the
solid blue box is masked in our analysis, while the dotted lines are to guide the eye.

Figure 5.5: PDF showing the dot product of the eigenvectors from cosmic web reconstruction
vs. the true cosmic web for various experimental configurations. cos ✓ = 1.0 indicates the
cosmic web structures are oriented the same way, while cos ✓ = 0.0 indicates perpendicular
alignment. Horizontal dashed line indicates the expected distribution for randomly aligned
structure. In T-30+T the recovery of the cosmic web structure is near perfect, with only very
slight misalignments on average.
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Figure 5.6: The point by point distribution of the eigenvalues inferred from the deformation
tensor, smoothed by 2 h�1 Mpc . The magnitude of each eigenvalue indicates the magnitude
of compression along the associated eigenvector. As sight-lines increase and noise decreases
not only is there less scatter in the eigenvalues, but also less overall bias.

Figure 5.7: Confusion matrix for cosmic structures at z = 2.5 in real space showing with the
reconstructed fraction printed over each cell. For T-30+T, we correctly identify approximately
80% of the volume.
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Figure 5.8: Displacement fields from z = 2.5 to z = 0 for random matched particles between
the TreePM truth and the reconstructed in the mock observed volume. The underlying z = 0
density field is also shown. TARDIS is able to well reconstruct the movement and z = 0
environment of test particles identified at z = 2.5.

Figure 5.9: Comparison of the z = 0 inferred cosmic structure in Eulerian space, from
T-DESI, T-CLA/PFS, and T-30+T, vs. the true z=0 density field. Fields have been smoothed
at 2 h�1 Mpc . Top: matter density, Bottom: classification of cosmic structure. Dark blue
indicated node, light blue indicates filament, green indicated sheet, and yellow indicates
void. While the exact location of structures is poorly constrained in real space, the overall
structure is quite similar especially with tight sightline spacing.
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Figure 5.10: Confusion matrix for cosmic web structures at z = 0 in Lagrange space (i.e.
comparing particles with matched in z = 2.5 positions) shown with the reconstructed frac-
tion printed over each cell. While structure is not as well classified as at z = 2.5, classi-
fications are approximately correct and tend toward morphologically similar environments.
For comparison, the mass fraction residing in z = 0 nodes, filaments, sheets, and voids are
[0.15, 0.49, 0.31, 0.05], respectively.

Figure .11: Transfer function with respect to a well converged solution as a function of
iteration number. As the iteration number progresses, smaller and smaller scales converge.
In addition, there are larger modes on order the box size that are similarly slow to converge.
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Figure .12: E↵ect of assuming the wrong astrophysical parameters on the z = 0 structure,
both for a slice in real space (top) and the power spectra (bottom). Even under wrong
astrophysical assumptions, we recover similar cosmic structures.
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Figure .13: Comparison of the true field, TARDIS reconstructed field, and the Wiener filtered
field for the T-CLA/PFS mock. In the far left panels we show the unsmoothed true flux field,
with sightlines indicated as blue dots. The blue box indicates boundaries of the survey,
with the blue cross to help aid the eye in matching structures. We smooth the 3 rightmost
column maps on 2 h�1 Mpc and project over a 5 h�1 Mpc slice. The recovered flux field is
fairly similar between TARDIS and the Wiener filter.
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(a) Pixel flux error (b) Flux reconstruction

Figure .14: Comparing the flux reconstruction for the T-CLA/PFS mock catalog. For these
comparisons we have taken a central box which is 35 h�1 Mpc side-length in order to mitigate
potential boundary e↵ects and smoothed the region with a 1.5 h�1 MpcGaussian. In this
plot we work in redshift space, unlike the other plots in the paper. (a) Comparison of the
corrected fluxes for the Wiener filter map and TARDIS reconstruction vs. the true flux. (b)
Scatterplot of the TARDIS reconstructed corrected flux vs the true flux. Also shown is the
linear fit of the uncorrected flux (dashed grey line) which was linearly transformed to the
x = y dotted line. If interpreted as a flux PDF, each level surface indicates 0.5� density.
After this linear correction, the resulting TARDIS flux has no significant bias and mildly
outperforms a linearly-corrected Wiener filtered map.
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Appendix A

Statistical Methods

A.1 Wiener Filter Review

Wiener filtering (WF) [211, 164] is a popular way to non-parametrically reconstruct cosmo-
logical data as, in the linear case, it should minimize variance. In the absence of non-Gaussian
sources of signal or noise, WF is optimal in the sense that it is equal to the maximum pos-
terior probability estimator [174]. Here we want to reconstruct the field itself, s, given the
noisy and/or poorly sampled data, d. We define our estimated field ŝ = �d, where � is a
linear operator, i.e. a N x M dimensional matrix transforming from “image space” to “field
space”. This can be found by attempting to minimize the variance of the residual

h(s� ŝ)(s� ŝ)†i (A.1)

with respect to �. The Wiener filtered estimator is

ŝ = �d = hsd†ihdd†i�1d = SR†C�1d, (A.2)

which will result in a variance of residuals of the form

h(s� ŝ)(s� ŝ)†i = S � SR†C�1RS. (A.3)

Wiener filter only uses the mean and variance of the statistical distribution. If our
underlying field is strongly non-Gaussian the WF may no longer be optimal. However, it
will still minimize the variance, as defined in equation 4.6, just that this minimization of
variance may not correspond to the notion of the best reconstruction as it only captures the
two point statistics of the underlying field. It may be di�cult to even define a measure to
use for optimally of reconstruction in these cases, although nonlinear reconstruction methods
certainly exist [174].

We now want to connect the Wiener Filter solution to the optimal power spectrum
estimator. We multiply equation 4.7 by the Hessian matrix,

(F⇥)l =
F
2

P
l0 F

�1
ll0 (d

†C�1Q
l0C

�1d� bl0),

= �ll0
2 (d†C�1⇧l0RR†⇧l0C

�1d� bl0). (A.4)
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The noise b can be similarly transformed as

bl = tr(⇧lR
†C�1(N )C�1R⇧l), (A.5)

and the Hessian matrix itself as

Fll0 = tr(C�1Q
l
C�1Q

l0) =
1

2
|⇧lR

†C�1R⇧l|2. (A.6)

Both the Wiener Filter and the optimal power spectrum estimator first weigh the data
by the inverse covariance matrix, essentially down weighting modes that either have high
measurement error or strong correlation with other measurements.


