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ABSTRACT  Unlike superficial fungal infections of the skin and nails, 
which are the most common fungal diseases in humans, invasive fungal 
infections carry high morbidity and mortality, particularly those associ-
ated with biofilm formation on indwelling medical devices. Therapeutic 
management of these complex diseases is often complicated by the rise 
in resistance to the commonly used antifungal agents. Therefore, the 
availability of accurate susceptibility testing methods for determining 
antifungal resistance, as well as discovery of novel antifungal and anti-
biofilm agents, are key priorities in medical mycology research. To di-
rect advancements in this field, here we present an overview of the 
methods currently available for determining (i) the susceptibility or re-
sistance of fungal isolates or biofilms to antifungal or antibiofilm com-
pounds and compound combinations; (ii) the in vivo efficacy of antifun-
gal and antibiofilm compounds and compound combinations; and (iii) 
the in vitro and in vivo performance of anti-infective coatings and mate-
rials to prevent fungal biofilm-based infections. 
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INTRODUCTION 
Superficial fungal infections of the skin and nails are the 
most common fungal infections in humans and, although 
rarely invasive, they can be debilitating, persistent and 
impose substantial treatment costs [1]. In contrast, inva-
sive fungal infections are life threatening, with a higher 
mortality rate per year than that by malaria, breast or 
prostate cancer [2]. More than 90% of all reported fungal-
related deaths (about one million people every year) result 
from species that belong to one of four genera: Cryptococ-
cus, Candida, Aspergillus and Pneumocystis [2, 3]. 

The most important antifungal agents (antimycotics) 
clinically used for systemic infections can be subdivided 
into four main classes: azoles, polyenes, echinocandins and 
pyrimidine analogues (5-fluorocytosine). In addition, al-
lylamines (terbinafine) are frequently used against superfi-

cial fungal infections [4]. The rise in azole resistance, echi-
nocandin resistance and cross-resistance to at least 2 anti-
fungal classes (multi-drug resistance: MDR) has been a 
worrisome trend, mainly in large tertiary and oncology 
centers. Overall, rates of antifungal resistance and MDR in 
Candida species and particularly in the emerging human 
pathogen C. glabrata are increasing [5]. More concerning, 
the newly identified Candida species C. auris has drawn 
considerable attention as this uncommon species is the 
first globally emerging fungal pathogen exhibiting MDR to 
the three major classes of antifungals (azoles, echi-
nocandins and amphotericin B and its lipid formulations) 
and is characterized by a strong potential for nosocomial 
transmission [6]. In addition to Candida, azole resistance in 
Aspergillus fumigatus has been reported worldwide, and 
such resistant isolates can cause invasive infections with 
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high mortality rates [7]. Alongside the serious issues pre-
sented by classical MDR, there is another important, but 
less appreciated problem with our current approach to 
antimicrobial therapy in general. Existing antimicrobial 
treatments are frequently associated with therapeutic fail-
ure even against infections caused by susceptible strains 
due to intrinsic mechanisms that protect the micro-
organisms from the antimicrobial agents, such as the for-
mation of drug-tolerant biofilms. Microbial biofilms consist 
of dense layers of microorganisms surrounded by an extra-
cellular polymer matrix, which provides biofilm-embedded 
microorganisms with protection against antimicrobial 
agents. Most bacteria and fungi exist predominantly in 
such organized communities in nature and, according to a 
recent public announcement from the US NIH, biofilms are 
responsible for more than 80% of human soft- and hard-
tissue infections [8]. Of more significance, microbial bio-
films are thought to result in therapeutic failure and occur-
rence of resistance [9–12].  

Therefore, the development of accurate susceptibility 
testing methods for detecting or excluding antifungal re-
sistance, as well as discovery of novel antifungal and anti-

biofilm agents, are key priorities in medical mycology re-
search. The term ‘antibiofilm agents’ relates to compounds 
that can inhibit biofilm formation and/or eradicate fungal 
cells in the biofilm.  

To direct advancements in this field, we present in this 
review an overview of methods for use by investigators 
who aim to examine:  

(i) susceptibility (and resistance) of fungal cultures or 
biofilms against antifungal or antibiofilm compounds and 
compound combinations;  

(ii) in vivo efficacy of antifungal and antibiofilm com-
pounds and compound combinations; and  

(iii) in vitro and in vivo performance of anti-infective 
coatings and materials to prevent fungal biofilm-related 
infections.  

Several of these topics are already covered in recent 
guideline-style based reviews [13–16]. We refer to these 
reviews in the relevant sections and summarize their most 
important recommendations and guidelines. 
 
 
 

BOX 1: ABBREVIATIONS AND TERMINOLOGY  

 
MIC The Minimum Inhibitory Concetration (MIC) is defined as the lowest concentration of an antimicrobial agent 

that inhibits microbial growth, as established by a standardized endpoint. Standardized MIC endpoints include 
partial inhibition relative to the growth control (50% inhibition of yeast growth as determined visually [CLSI] or 
spectrophotometrically [EUCAST] for azoles and echinocandins), complete inhibition (100%) of visual growth 
(CLSI) or >90% by spectrophotometer (EUCAST) as applied to amphotericin B. NOTE that MIC50, MIC90 and 
MIC100 should not be used in this context. 

MIC50 and MIC90 The MIC50 is the concentration of an antimicrobial agent at which 50 percent of the organisms tested are 
inhibited. The MIC90 is the concentration of an antimicrobial agent at which 90 percent of the organisms test-
ed are inhibited. 

MEC The minimum effective concentration (MEC) is defined as the lowest concentration of an echinocandin that 
results in growth of filamentous fungi producing conspicuously aberrant growth. Aberrant growth of hyphae is 
defined as small, round, compact microcolonies compared with the matt of hyphal growth in the control well 
that does not contain an antifungal agent.  

IC50/IC90 The minimum inhibitory concentration of a (novel) antimicrobial agent that inhibits the growth of fungi by 
50% or 90%, respectively. 

MFC/MLC The minimum fungicidal/lethal concentration, defined as the minimum concentration of the antifungal drug 
resulting in a 99.9% reduction of fungal cell counts of the starting inoculum after a fixed time of incubation. 

EC50, EC90, and Emax 50% and 90% effective concentrations and maximum effect, the minimum concentrations of the antifungal 
drug resulting in a net reduction in the number of CFU per milliliter from the starting inoculum by 50%, 90%, 
and 99.9% respectively. 

SMIC (e.g. SMIC80) The minimum concentration of an antifungal drug against sessile cultures (biofilm), in most cases based on a 
viability readout (e.g. an 80% reduction in the metabolic activity of the biofilm treated with the antifungal 
compared with the control well). 

BIC-2 (or BIC50) The minimum antibiofilm drug concentration resulting in a 2-fold inhibition of biofilm formation (based on 
readout relying on viability dyes or CFU counts). 

BEC-2 (BEC50) The minimum antibiofilm drug concentration resulting in eradication of mature biofilms by 50% (based on 
readout relying on viability dyes or CFU counts). 

FICI The fractional inhibitory concentration index, determined as d1/(D1)p + d2/(D2)p, where d1 and d2 are the 
doses of compounds 1 and 2 in combination to result in a particular readout and (D1)p and (D2)p are the dos-
es required for the two respective compounds alone to produce the same effect. An interaction is scored as 
indifferent/additive if 0.5<FICI<4; as antagonistic if FICI >4 or synergistic if FICI <0.5. 
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METHODS FOR ANTIFUNGAL SUSCEPTIBILITY TESTING 
OF PLANKTONIC CULTURES 
Microdilution-broth based antifungal susceptibility test-
ing (AFST) 
Predicting therapeutic outcomes as well as guiding the 
antifungal drug discovery process based on AFST of patho-
genic fungi remains challenging. In a recent review, San-
guinetti and Posteraro presented an overview of standard 
AFST methods, focusing on their advantages and disad-
vantages, as well as of new promising technologies and 
newer-generation methods (e.g. whole genome sequenc-
ing) that can predict resistance [13].  

The Clinical and Laboratory Standards Institute (CLSI; 
formerly the National Committee for Clinical Laboratory 
Standards [NCCLS]) and The European Committee on An-
timicrobial Susceptibility Testing (EUCAST) have developed 
reproducible methods for testing the activity of antifungal 
agents against yeasts (the CLSI M27, M44, M60 and the 
EUCAST E.Def 7.3 documents) and filamentous fungi 
(molds; the CLSI M38, M44, M51, M61 and EUCAST E.Def 
9.3 documents) [17–23]. These reference AFST methods, or 
their commercial counterparts such as Sensititre YeastOne 
(SYO, Thermo Fisher Scientific, MA, USA) rely on measuring 
growth of a defined fungal inoculum in a specific growth 
broth in the presence of different concentrations of the 
antifungal drug and allow the determination of the MIC 
(the minimum inhibitory concentration) of the drug result-
ing in complete or prominent growth inhibition. Clinical 
breakpoints have been determined by CLSI for anidulafun-
gin, caspofungin, micafungin, fluconazole, and voriconazole 
against the prevalent Candida spp. whereas the EUCAST 
has set breakpoints for amphotericin B, anidulafungin, mi-
cafungin, fluconazole, itraconazole and voriconazole 
against the common Candida spp. and for amphotericin B, 
itraconazole, isavuconazole, posaconazole and voricona-
zole against the most common Aspergillus species [23, 24]. 
These AFST methods deliberately minimize measurement 
of tolerance or trailing growth (see further) because it is 
highly variable under different culture conditions. For drug-
organism combinations for which clinical breakpoints are 
not available, epidemiological cutoff values are suggested 
based on normal ranges of susceptibility of wild-type popu-
lations [16]. These should encompass the range of normal 
strain to strain variation within a species but exclude those 
organisms with known resistance mechanisms. Note that in 
some cases, published proposed epidemiologic cut-off val-
ues (see below) do not seem realistic. For example, for C. 
auris and fluconazole, they are so high that they fail their 
assignment as resistant. This has been recently addressed 
by the suggestion of more realistic, lower fluconazole 
breakpoints [25]. The occurrence of resistance is often 
associated with a genetic difference between a susceptible 
and resistant isolate. Resistance may be also the result of 
transient and reversible adaptation [26, 27]. 

Commonly used MIC end-point terminologies are: The 
minimum inhibitory concentration (MIC) is the lowest con-
centration of an antimicrobial agent that prevents or inhib-
its the visible growth of fungal cells, as established by a 

standardized endpoint. Standardized MIC endpoints in-
clude partial inhibition of growth relative to the growth 
observed in the control (>50% inhibition of growth as de-
termined visually [CLSI] or spectrophotometrically [EU-
CAST] for azoles and echinocandins), complete inhibition 
(100%) of visual growth (CLSI) or >90% by spectrophotom-
eter (EUCAST) as applied to amphotericin B [28]. NOTE that 
MIC50, MIC90 and MIC100 are NOT appropriate in this con-
text. The MIC50 is the concentration of an antimicrobial 
agent at which 50 percent of the strains of an organism 
tested are inhibited. The MIC90 is the concentration of an 
antimicrobial agent at which 90 percent of the strains of an 
organism tested are inhibited. The term minimum effective 
concentration (MEC) is used to describe the effect of echi-
nocandin agents on filamentous fungi and is defined as the 
lowest concentration that results in conspicuously aberrant 
growth as assessed microscopically. Aberrant growth of 
hyphae is defined as small, round, compact microcolonies, 
often with swollen ends to the hyphae, compared with the 
matt of hyphal growth in the control well that does not 
contain an antifungal agent. 

Interpretation of the efficacy of a given antifungal drug, 
is determined by the use of clinical breakpoints (CBPs). 
The CLSI uses the term ‘breakpoint’ as ‘clinical breakpoint’ 
is redundant in light of the fact that breakpoints are only 
applicable under clinical conditions. Thus the CBPs for in 
vitro susceptibility testing are used to indicate those iso-
lates that are likely to respond to treatment with a given 
antimicrobial agent administered using the approved dos-
ing regimen for that agent [28]. CLSI and EUCAST have es-
tablished species-specific CBPs for some of the systemically 
active antifungal agents [CLSI [18], M60 Ed1; EUCAST E.Def 
7.3 and E.Def 9.3]. The CBPs also provide information on 
the sensitivity of the CLSI/EUCAST methods to detect 
emerging resistance associated with acquired or mutation-
al resistance mechanisms. The CBPs sort isolates into in-
terpretive categories of susceptible (S), susceptible dose 
dependent (SDD; i.e. susceptibility is dose-dependent), 
intermediate (I), and resistant (R). The SDD category en-
compasses those organisms with MICs in a range that may 
respond to systemic therapy providing the drug levels in 
the blood are sufficiently high, especially relevant for flu-
conazole and voriconazole. For fluconazole and Candida 
glabrata, SDD is representing MICs < 32 µg/ml.. CBPs are 
established by taking into account microbiological (MICs 
and ECVs), clinical, molecular mechanisms of resistance, 
biochemical, pharmacokinetic and pharmacodynamic 
(PK/PD) data and provide the best cutoff value to predict 
clinical outcome for the treatment of a specific organism 
and antifungal agent [28]. 

Epidemiologic cutoff values (ECV/ECOFF) have been 
established to aid in the interpretation of MIC results when 
the lack of clinical data precludes the establishment of 
CBPs (CLSI, M57 and M59 [29, 30]; EUCAST). As mentioned 
above, they are also the first for proposing BPs. It has been 
suggested that some CBPs may not detect known muta-
tional resistance in different species. Because of that, an 
extensive effort has been undertaken to establish ECVs or 
the MICs/MECs that separate wild-type (WT) from non-WT 
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strains; the latter are more likely to harbor acquired and 
mutational resistance mechanisms. ECVs as BP are species-
and-method-specific [30] and are also useful for tracking 
the emergence of strains with decreased susceptibility to a 
given agent and therefore less likely to respond to therapy 
[30]; ECVs can be used for the same purpose in surveillance 
studies [16]. Epidemiologic cutoff values can also be used 
to identify isolates that are less likely to respond to therapy 
when clinical CBPs cannot be established because of the 
rarity of infection with unusual species of fungi. However, 
some PK/PD must be known about the bug/drug combina-
tion in order to determine the efficacy of a given 
ECV/ECOFF and account for intrinsic resistance. 

When testing the antifungal activity of a novel anti-
fungal agent, relative to standard antimycotics, we pro-
pose to use the abbreviation ‘IC50 or IC90’, defined as the 
minimum inhibitory concentration of the agent or stand-
ard antimycotic that inhibits growth of the fungus (or 
similar readout like metabolic activity, see further) by 
50% or 90%, respectively. In this way, there will not be a 
mix up with MIC abbreviations, which can only be used in 
the context of standardized AFST assays and endpoints. 

One of the major drawbacks with AFST methodologies 
described above is that they are time-consuming and/or 
have long turn-around-times. Another concern is the gen-
eral subjectivity involved in reading MIC end-points and 
the inter-laboratory variability of MIC values, especially for 
methods involving visual endpoint reading and for specific 
antifungal drugs such as caspofungin. EUCAST testing is 
advantageous for yeast as an objective spectrophotometric 
endpoint reading is performed [23] and image analysis of 
disk diffusion assays [31] or measurement of optical densi-
ty (OD) in broth microdilution assays can provide a normal-
ized quantitative measure of the degree of growth inhibi-
tion in the presence of a drug relative to growth in the 
absence of drug. EUCAST recommends reading the MICs 
based on OD measurements using a wavelength of 530 nm, 
although other wavelengths can be used e.g. 405 nm or 
450 nm.  

Promising alternatives to the classical phenotypic AFST 
are phenotype-centered (or semi-molecular) approaches 
that combine a culture step with molecular analysis (i.e. by 
real-time PCR or matrix-assisted laser desorption ionization 
time-of-flight mass spectrometry (MALDI-TOF MS)) [13]. 
However, in contrast to phenotypic methods, an important 
caveat of using PCR/sequencing is that it is suitable to de-
tect resistance but not susceptibility as it can only detect 
resistance mechanisms that are already recognized. While 
the MALDI-TOF MS step of the analysis provides rapid 
analysis, the requirement for pre-assay cultured growth of 
the pathogen limits the ability to improve turn-around-
times for more rapid diagnoses.  

 
Fungicidal activity testing 
Fungistatic drugs are defined most stringently as those that 
inhibit growth, whereas fungicidal drugs essentially kill all 
(>99.9%) cells in a fungal population. Typically, fungal 
pathogens are efficiently eliminated by the immune system 
in an immunocompetent host whereas immunosuppressed 

individuals are highly predisposed to fungal infections. 
Therefore, fungicidal drugs are invaluable for this vulnera-
ble patient population for eliminating fungal pathogens [32, 
33]. Fungicidal drugs have an advantage over fungistatic 
drugs in that drug resistance is not common; however, the 
distinction between fungicidal and fungistatic activities 
could be problematic [34–36]. For example, although cas-
pofungin is fungicidal for most yeast species, in molds it 
disrupts the hyphal tips but the surviving mycelium can 
continue to grow in the presence of the drug [37].  

The minimum fungicidal/lethal concentration 
(MFC/MLC) has been defined as the minimum concentra-
tion resulting in a 99.9% reduction of fungal cell counts 
after a fixed time of incubation. Although arbitrary, the use 
of 99.9% (or 3-log-unit decrease) killing of the initial inocu-
lum is the most stringent in vitro criterion for determining 
fungicidal activity [33]. In 2003, Canton and colleagues 
proposed a minor modification of the M27-A2 MIC proce-
dure to allow MFC determinations based on the MIC test 
setup [38]. A smaller inoculum of 104 CFU/ml was used and 
the entire contents of each clear well in the MIC test were 
spotted onto two 90 by 15 mm Sabouraud dextrose agar 
plates (100 µl/plate), thereby allowing the fluid to soak 
into the agar. After the plate was dry, it was streaked uni-
formly to separate cells and remove them from the drug 
source. This method has been used in various studies for 
determination of MFC [39]. 

Similarly, time-kill assays can also be informative [39–
42]. For Candida spp., these are typically carried out in 10 
mL RPMI 1640 inoculated with 1-5 x 103 CFU/mL and con-
centrations of 32-, 16-, 8-, 4-, 2-, 1- and 0.5x the MICs. At 
predetermined time points (0-, 6-, 12-, 24-, 36- and 48 h), 
aliquots of 100 µl are removed from each control (drug-
free) and test solution tube and then serially diluted in 
sterile water. A volume of 100 µL from serially diluted ali-
quots is placed on SDA plates to determine the number of 
CFU/mL after incubation at 35°C for 24 h. Using this meth-
od, Scorneaux and colleagues determined the time to 
reach 50%, 90%, and 99.9% reduction in the number of 
CFUs from the starting inoculum [42]. Net change in the 
number of CFU per milliliter was used to determine 50% 
and 90% effective concentrations and maximum effect 
(EC50, EC90, and Emax, respectively). Caspofungin was used as 
a fungicidal reference. Final DMSO concentrations were 
typically ≤1% (vol/vol) of the solution composition. Slight 
variations on this method use a more concentrated inocu-
lum (105 CFU/mL) and/or smaller volume (5 mL) [43]. 

An alternative approach to perform time-kill studies us-
ing a BioScreen C MBR setup was implemented by Gil-
Alonso and colleagues [44] where a final volume of 200 µL 
and an inoculum of 1x105-5x105 CFU/mL were used. At 0, 2, 
4, 6, 8, 24, and 48 h, aliquots of 6 or 10 µL were removed 
from both the control and each test solution well, and 
were serially diluted in phosphate-buffered saline (PBS), 
and plated onto Sabouraud agar to determine the number 
of CFU per mL. For evaluating natural salt-sensitive anti-
fungal peptides such as salivary histatins, defensins and 
lactoferrin, it is less clear what method is most suitable for 
assessing their activity, which is typically quenched in high 
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salt media such as RPMI. In this case, kill studies are per-
formed using yeast cells diluted in 10 mM pH 7.4 sodium 
phosphate buffer (NaPB) to 1 X 106 CFU/mL; then mixed 
with different concentrations of biological peptides at 30°C 
for 30 and 60 min with gentle shaking. Following incuba-
tion, samples are diluted in 10 mM NaPB, then aliquots of 
500 cells are spread onto YPD agar plates and incubated 
for 36-48 h, until colonies can be visualized [45, 46].  

For filamentous fungi, Espinel-Ingroff and colleagues 
[47] tested several conditions for optimum determination 
of MFC, which were subsequently adopted by other re-
search groups [48]. In these studies, the CLSI M38-A broth 
microdilution methods were used for MIC determination; 
following a 48-h incubation, 20 µL from each well without 
visual growth were plated on agar (Sabouraud dextrose 
agar) plates and MFCs were defined as the lowest drug 
concentration that yielded fewer than three colonies (ap-
proximately 99 to 99.5% killing).  

Thus far, all the methods described for determination 
of fungicidal activity are dependent on the enumeration of 
replication-competent (i.e. culturable) cells following expo-
sure to an antifungal agent. The inclusion of dyes validated 
for specific detection of either vitality or mortality in the 
conventional AFST MIC setups can be highly relevant for 
assessing the fungicidal nature of an antifungal in a direct 
way [33, 49, 50]. For example, propidium iodide (PI) is a 
fluorescent dye that can cross only permeable membranes 
and fluoresces upon interaction with DNA in dead, perme-
able cells. Hence, PI-positivity is generally regarded as a 
measure of cell death. However, it is noteworthy that cells 
in which apoptosis is induced by antifungal compounds, 
although dead, are typically PI-negative [51]. Of further 
note here is the fact that PI-positivity is not always indicat-
ing cell death as this can sometimes be restored to PI-
negativity under certain conditions. In addition to fluores-
cent staining, tetrazolium compounds MTT (2H-
Tetrazolium, 2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-, 
bromide) or XTT (2H-Tetrazolium, 2,3-bis(2-methoxy-4-
nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-hydroxide) 
are also commonly used to assess cell viability (with these 
dyes redox potential is measured as a proxy of viability) 
[52]. Similarly, actively respiring cells convert the water-
soluble XTT to a water-soluble, orange colored formazan 
product. However, unlike MTT, XTT does not require solu-
bilization prior to quantitation, thereby reducing the assay 
time in many viability assay protocols. Similarly to the MTT-
to-formazan reduction, the addition of an oxidation-
reduction colorimetric indicator like Alamar blue (contain-
ing resazurin) can be used. This indicator changes from 
blue to the pink fluorescent resorufin in the presence of 
metabolically active growing cells [53]. A disadvantage of 
resazurin can be its low level of stability when incubated 
for 7 days or longer (required for certain dermatophytes). 
As discussed further below, these dyes are most often used 
to assess the effect of antifungal agents against biofilms. 
 
 
 

Additional comments and notes with respect to MIC/MFC 
determinations 
For studies assessing efficacy of antifungal therapy, re-
sistance development during therapy and fungal epidemi-
ology, it is necessary to determine clear and uniform 
MIC/MEC/MFC end-points according to the reference AFST 
methods indicated above. However, this is not necessarily 
the case for the identification of novel antifungal com-
pounds during early preclinical drug discovery phases. For 
the latter, compliance and feasibility for high-throughput 
testing (either compound libraries or deletion mutant col-
lections for investigating mode of action) are generally 
more important than exact end-point MIC/MEC/MFC, as 
long as the MIC/MFC end-points of relevant standard an-
timycotics are included and used for interpretation of rela-
tive activities. Deviations from reference AFST methods 
generally relate to different media/buffers; inclusion of 
serum might be most relevant when screening for fungi-
cidal compounds that retain activity in the presence of 
serum; and inoculum size. The latter might need to be ad-
justed when using higher throughput setups based on for 
instance a Bioscreen apparatus. 

One of the most puzzling effects that can confound 
MFC/MEC/MIC determination is the paradoxical effect or 
Eagle effect which has also been described with antibacte-
rial agents. This effect is defined as the ability of the fungus 
to grow at high antifungal concentrations (above the MIC), 
but not at intermediate concentrations [43, 54–56]. For 
example, a paradoxical effect for echinocandins against 
various C. albicans isolates and against A. fumigatus has 
been demonstrated. Paradoxical growth varies in terms of 
media, species, strain and type of echinocandin and is also 
of specific concern in the biofilm field (see further). Rueda 
and coworkers demonstrated that paradoxical growth of C. 
albicans is associated with multiple cell wall rearrange-
ments and reduced virulence [57]. It is important to note 
however, that observed in vitro paradoxical growth does 
not necessarily indicate lack of response to the antifungal 
drug in vivo [58]. Therefore, the clinical implications of 
fungal adaptation against antifungal drugs, which might be 
linked to reduced virulence, still remain to be elucidated. In 
addition, MIC/MEC deviations can be induced by the pres-
ence of active volatile compounds in neighboring wells of a 
microtiter plate. By screening a large collection of essential 
oils it was shown that ‘paradoxical like phenotypes’ were 
caused by small volatile molecules released from adjacent 
wells. This observation led to the development of a quanti-
tative method to evaluate the activity of volatile molecules 
in the vicinity [59]. 

Another unclear issue has been the description of drug 
responses as tolerance or trailing growth, which has often 
been measured using modifications of MIC assays and is 
particularly relevant for azole and echinocandin (both Can-
dida spp. and filamentous fungi) activity against Candida 
spp [60–63]. Tolerance may be perceived as a subpopula-
tion effect that is due to slow growth of a subpopulation of 
cells in a manner that is generally drug-concentration in-
dependent within the range of concentrations studied [64]. 
Of note, standard MIC values are determined following at 
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24h growth period; however, tolerance may become evi-
dent after 48h of growth in the presence of the drug. Tol-
erance can also be detected by agar disk diffusion assays 
[31, 64]. Recently, additional definitions have been pro-
posed in this context, namely fraction of growth (FoG) in-
side the zone of inhibition and the Supra-MIC growth 
(SMG) in drug concentrations above the MIC. The FoG and 
SMG measurements correlate with one another and are 
clearly distinct from measurements of the MIC or the radi-
us of the zone of inhibition [31, 64].  

 
METHODS FOR ANTIFUNGAL SUSCEPTIBILITY TESTING 
OF BIOFILMS 
Microbial biofilms consist of dense layers of microorgan-
isms surrounded by an extracellular polymer matrix, there-
by protecting the microbes from the action of antimicrobial 
agents. In addition, dormant persister cells have been pro-
posed to make up a small proportion of some microbial 
cultures (either a biofilm or free-living culture) that can 
withstand the action of high doses of most antimicrobial 
agents and may facilitate the recurrence of microbial infec-
tions after treatment ceases [65, 66]. In medical mycology, 
the appearance of persister cells is often referred to as 
‘heteroresistance’, as the cells are not resistant in the clas-
sical sense. Rather, they transiently acquire the ability to 
survive and grow at normal growth rate under conditions 
that inhibit growth of the majority of the isogenic suscepti-
ble population [67–70]. Heteroresistance is defined as a 
small proportion of the population (usually <1%) that is 
able to grow in the presence of the drug. This is different 
from tolerance or trailing growth, where many cells in the 
population (>1%) are able to grow, albeit slowly, in the 
presence of the drug.  

The majority of C. albicans infections are associated 
with biofilm formation [71–75]. A. fumigatus is the most 
important airborne human fungal pathogenic mold and the 
number of chronic A. fumigatus infections is constantly 
increasing in patients suffering from respiratory tract dis-
eases. Until recently, most studies undertaken to under-
stand Aspergillus physiology and virulence were performed 
under free-living conditions. However, in all Aspergillus 
infections, A. fumigatus grows as a colony characterized by 
multicellular and multilayered hyphae that are in some 
cases embedded in an extracellular matrix (ECM). This type 
of growth is generally consistent with the definition of a 
biofilm [76]. Therefore, it is becoming increasingly im-
portant to also assess the activity of current antimycotics 
and novel antifungal compounds against biofilms.  

Several methods for fungal susceptibility testing under 
biofilm conditions for determination of sessile MICs 
(SMICs) have been developed which in principle are based 
on methods for planktonic culture testing [13, 71, 76, 77]. 
The most commonly used method is based on a static 
model using 96-well microtiter plates [78, 79], thereby 
quantifying microbial biomass or metabolic activity, using 
compounds such as crystal violet (CV), 2,3-bis (2-methoxy-
4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetra- 
zolium hydroxide reduction (XTT), the more reliable fluo-

rescein diacetate (DFA), or resazurin [80]. Though, caution 
should be exercised in the particular assay employed, as 
each assay has its pros and cons depending on the ques-
tion being addressed, e.g. XTT should only be used to com-
pare the effect of an active within a specific strain and not 
to compare different strains [81]. Propidium iodide (PI), 
described above, is also used to assess the degree of killing 
of biofilm cells. Recently, a biofilm model for A. fumigatus 
was reported, in which conidia and hyphae are trapped in 
an agar layer with measurement of metabolic activity by 
the XTT assay [82]. A newer high-throughput approach 
grows biofilms with shaking in 96-well and 384-well plates 
in the presence of the compound of interest, and uses op-
tical density at 600nm (although other wavelengths can be 
used) as a readout of the biofilm remaining during or after 
exposure to the compound [83]. As indicated by the au-
thors, the optical density of the biofilm correlates with the 
number of viable cells in the biofilm, and thus is an accu-
rate read-out of biofilm formation in the presence of the 
compound of interest. This method returns consistent re-
sults with less labor and can be performed in high-
throughput. A more labor-intensive approach for analysis 
of C. albicans biofilms involves determining the number of 
CFUs recovered from treated biofilms, which involves har-
vesting the biofilm by scraping, homogenizing and plating 
homogentaes on agar media for colony enumeration. Ho-
mogenization can be done by vortexing (potentially in the 
presence of 1% Triton) or sonication. However, these pro-
cedures must ensure that all biofilm cells are harvested 
and individually separated without affecting the viability of 
the biofilm cells, three conditions that can be difficult to 
achieve. Another limitation of cultivation-based assays lies 
in the fact that biofilms contain hyphae which might bias 
CFU counts. Ideally, measurements should rely on nucleus 
counting which can be performed using qPCR. In theory, it 
is recommended to use at least two assays that rely on 
different methods or dyes as a readout.  

While static biofilm models in 96-well plates are used 
most frequently, continuous flow models that better mimic 
in vivo situations can be used to assess C. albicans biofilm 
formation and inhibition [84, 85]. Unlike static biofilms, C. 
albicans cells under constant laminar flow undergo contin-
uous detachment and seeding that may be more repre-
sentative of the development of in vivo biofilms [86]. A 
particularly relevant example is the study of oral biofilms, 
which form in the presence of salivary flow. Most notably, 
it was shown that biofilm cell detachment rates are an 
important predictor of ultimate biofilm mass under flow 
[86]. However, whether these flow models are indeed bet-
ter will depend on the pathogenesis of the infection under 
study. 

Microscale technologies, such as microfluidics provide 
a more revolutionary approach to study biofilm formation 
in dynamic environments. By enabling control and manipu-
lation of physical and chemical conditions, these technolo-
gies can better mimic microbial habitats in terms of fluid 
flow and nutrient sources [87]. Gulati and coworkers re-
cently described a protocol to study biofilm formation in 
real-time using an automated microfluidic device under 
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laminar flow conditions [88]. This protocol enabled the 
observation of biofilms in real-time, using customizable 
conditions that mimic those of the host, e.g., conditions 
encountered in vascular catheters. This protocol can be 
used to assess the biofilm defects of genetic mutants as 
well as the inhibitory effects of antimicrobial agents on 
biofilm development in real-time. Most recently a novel 
technique consisting of nano-scale culture of microbial 
biofilms on a microarray platform was developed whereby 
thousands of microbial biofilms, each with a volume of 
approximately 30-50 nanolitres are simultaneously formed 
on a standard microscope slide. Despite a 2000-fold minia-
turization compared to microtiter plates, the resulting 
nanobiofilms display similar structural and phenotypic 
properties. This technique platform can significantly speed 
up biofilm susceptibility testing and allows for true high-
throughput screening in search for new anti-biofilm drugs 
[89–91]. 

In addition to the SMIC, the BIC-2 (BIC50), is the mini-
mum compound concentration resulting in a 2-fold inhibi-
tion of biofilm formation. Similarly, the BEC-2 (BEC50) is the 
minimum compound concentration resulting in a 2-fold 
eradication of mature biofilms [92, 93]. In practice, to as-
sess biofilm inhibition, compounds are included during the 
biofilm growth phase. To assess biofilm eradication how-
ever, biofilms are grown for 24h after which the com-
pounds are added and biofilms are additionally incubated 
for another 24h in the presence of the compounds. In that 
respect, BEC determination is most relevant for com-
pounds that can kill biofilm cells, whereas BIC determina-
tion is relevant for compounds that might only inhibit ad-
hesion without impacting viability of biofilm cells. Hence, 
biofilm inhibiting compounds can be very relevant for the 
design of antibiofilm material coatings (see further), 
whereas biofilm eradicating compounds can be used to 
design curative antibiofilm therapy. With regard to termi-
nology, SMIC20/50/80 can also be used (see before): SMIC80 
has been defined previously as an 80% reduction in the 
metabolic activity of the biofilm treated with the antifungal 
compared to that of untreated biofilms [60]. In general, 
SMICs can be up to 1000-fold higher than the correspond-
ing MICs for a particular antifungal agent [94]. Among the 
different mechanisms that may be responsible for this in-
trinsic tolerance of Candida species biofilms are: the high 
density of cells within the biofilm; nutrient limitation with-
in the biofilm; effects of the biofilm matrix; antifungal re-
sistance gene expression; and the increase of sterols in 
biofilm cell membranes [95, 96].  

Although it is clear that a wide range of (standardized) 
techniques is available to determine the activity of com-
pounds against biofilms, there is currently little evidence 
that implementing these biofilm-based assays in the clini-
cal microbiology laboratory lead to better treatment out-
comes [97]. 
 
Synergistic antifungal/antibiofilm drug combination test-
ing 
In addition to screening for novel antifungal compounds, 
combination therapy is considered a potential alternative 

strategy for treating invasive fungal infections [98, 99]. In 
general, the main objective of combination therapy is to 
achieve a synergistic interaction between two compounds, 
thereby increasing their activity and reducing potential 
toxic effects of each compound. Apart from combining two 
antifungal (or antibiofilm) agents that are characterized by 
different mode of actions that can synergize each other, 
another option is to combine an antimycotic with a non-
antifungal potentiator. An increasing number of studies 
document the synergistic action of such antifungal-
potentiator combinations, with the potentiators being (las-
so)peptides like antifungal tyrocidines, humidimycin, or 
plant defensins, or repurposed compounds like toremi-
phene or artesunate [92, 100–106]. Repurposing of known 
drugs, i.e. finding novel therapeutic indications for existing 
drugs, is favorable from an economic perspective, as these 
molecules are often FDA-approved and have a known (and 
often safe) toxicity profile and dosing regimens are known. 
Furthermore, the cost of performing new clinical trials with 
existing drugs with possibly reformulating the drug are 
likely to be far lower than the costs of developing a new 
drug.  

An interaction between two compounds is defined as 
synergistic when the combined effect of the two com-
pounds is greater than the sum of their separate effects at 
the same doses. Synergistic efficacy can be quantified in 
vitro using checkerboard assays, where two-fold dilution 
series of one compound are combined with two-fold dilu-
tion series of the other compound and scored for the read-
out of interest (e.g. growth inhibition, killing, biofilm inhibi-
tion, biofilm eradication). The fractional inhibitory concen-
tration index (FICI) is determined as d1/(D1)p + d2/(D2)p, 
where d1 and d2 are the doses of compounds 1 and 2 in 
combination to result in, for example, 50% inhibition of 
biofilm formation and (D1)p and (D2)p are the doses re-
quired for the two respective compounds alone to produce 
the same effect. An interaction is scored as indiffer-
ent/additive if 0.5<FICI<4; as antagonistic if FICI >4 or syn-
ergistic if FICI <0.5 [107]. 

Although the FICI is most frequently used to define or 
describe drug interactions, it has some important disad-
vantages when used for drugs against filamentous fungi. 
This includes observer bias in the determination of the MIC 
and lack of agreement on the endpoints (MIC-0, MIC-1, or 
MIC-2 [≥95, ≥75, and ≥50% growth inhibition, respectively]) 
when studying drug combinations [108]. Moreover, when 
one compound strongly potentiates the other but the re-
verse is not the case, the FICI value will not reach values 
below 0.5. Synergy then is not concluded, whereas there 
certainly can be a very relevant reduction in concentration 
of major antifungal agents, with concomitant reduction of 
toxic effects in (prolonged) treatment.  
 

METHODS FOR TESTING OF MATERIALS AND 
COATINGS THAT RESIST FUNGAL BIOFILM FORMATION 
Fungal adhesion and subsequent biofilm formation on bi-
omedical implants and devices are a major cause of bio-
film-associated infections. Because treatment of such in-
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fections is very difficult (see previous section), emphasis 
has shifted to the prevention of these infections by the 
design of antimicrobial coatings for biomedical devices. In 
general, to prevent microbial biofilm formation, coatings 
rely on either of three principles: they can act via release of 
antimicrobial agents, via coating of antimicrobial agents 
(resulting in contact-cidal activity) or via coating of anti-
adhesive agents that are not antimicrobial. In a recent re-
view by Sjollema and colleagues [14], 15 methods or 
groups of methods to assess in vitro performance of these 
three types of antimicrobial coatings were discussed. To 
evaluate the efficacy of one of the three antimicrobial de-
signs independently, no single method could be deter-
mined to be “one for all” with all having different merits 
for different antimicrobial designs.  

Many antimicrobial designs in clinical practice and de-
scribed in literature are based on the slow or fast release 
of antimicrobials [109]. By far the most applied methods to 
evaluate the effect of antimicrobial release on microbial 
growth inhibition are “agar zone of inhibition“ methods 
[110, 111], very similar to disk diffusion susceptibility tests 
as described by the CLSI standard for yeasts (CLSI M44-A). 
In these methods, a plate with nutrient agar media is inoc-
ulated with microorganisms and a test sample is subse-
quently placed with the antimicrobial side on the agar. 
Following an incubation period during which released an-
timicrobials from the test sample diffuse into the agar, a 
zone of growth inhibition is formed the diameter of which 
is indicative of the level of susceptibility of the microorgan-
isms to the antimicrobials and the amount released. 

Although this method is effective, simple to execute 
and available in most microbiology labs, it does not quanti-
fy the antimicrobial efficacy [112]. For quantification of 
efficacy of surface designs based on release of antimicrobi-
als, various assays are described which are mainly catego-
rized as “suspension methods”. In these assays, a known 
inoculum of microorganisms, suspended in a nutrient me-
dium, is exposed to a test sample and incubated for a set 
period of time (usually 1 to 2 days, but for moulds a longer 
period) [113]. Following incubation a sample of the sus-
pension is taken and the number of surviving microorgan-
isms is enumerated (for bacteria and yeasts often by CFU, 
for fungi quantitative colorimetric XTT assays are more 
appropriate [114]).  

A variation of this suspension method is recommended 
in situations where a clinical scenario is characterized by a 
very small volume/area ratio, such as in the narrow ex-
traluminal space between a urinary catheter and the ure-
thral epithelium, where released antimicrobials accumu-
late rapidly. Typically, in “high area to volume tests” a 
small volume of a microbial suspension is incubated, sand-
wiched between a thin cover sheet and the test sample, 
therewith stimulating intimate contact between the mi-
croorganisms and the sample [115]. Typical examples are 
the JIS-Z 2801 [116] and “all in one” plating systems (e.g. 
for yeasts and fungi Petrifilm® Yeast and Mold all-in-one-
plating systems, 3M, St. Paul, MN, USA) [117, 118]. Be-
cause the intimate contact between microorganisms and 
sample is established in these type of “high area to volume 

tests” they are often applied in evaluating contact killing 
designs [119].  

Intimate contact is also established in “adhesion based 
assays” where microbial cells suspended in a low nutrient 
suspension are allowed to settle. Non-adhering organisms 
are subsequently removed by washing and adhering cells 
are counted microscopically or cultured following soni-
cation [120]. Flow systems, a special adhesion-based assay 
in which microorganisms are exposed to a sample surface 
from a flowing suspension, mimic flow in clinical environ-
ments such as in the intraluminal area of a urinary catheter 
or the extraluminal area in intravenous catheters [121]. 
Another advantage of flow systems is that passage of sam-
ples by liquid-air interfaces and sonication applied as criti-
cal steps before assessment, can be circumvented in case 
of the application of real time microscopy since non-
adhering microorganisms are continuously flushed away 
[118, 122]. Adhesion-based methods are preferred in the 
evaluation of non-adhesive surface designs.  

In order to study the efficacy of antimicrobial designs in 
preventing biofilm formation, biofilm methods are applied 
[123, 124]. These methods resemble the “adhesion based” 
methods in that the process begins with an adhesion step 
in a low nutrient environment and over an extended incu-
bation period, adhering microorganisms form a biofilm. In 
order to prevent microbial growth in the suspension, prior 
to the incubation step, non-adherent cells are removed by 
washing. The biofilm methods can be adapted to evaluate 
all types of antimicrobial designs. 

Although several methods have been applied in re-
search laboratories and industry, minimal guidance is pro-
vided on how to discriminate release, contact killing and 
non-adhesive systems. For instance, in the development of 
novel surface microbicidal coatings, it is important to accu-
rately assess whether antimicrobial activity arises from 
direct contact or from inadvertently released compounds 
or components. Such differentiation may be key for suc-
cessful translation to a product, as medical devices with 
non-releasing surface coatings are considered “pure” med-
ical devices while release-systems are considered to be so-
called combination products. Combination products entail 
a different regulatory pathway, i.e. the whole entire phar-
maceutical activity of the released therapeutic product has 
to be considered requiring a battery of in vitro testing and 
extensive toxicology and safety assessment [125]. There-
fore, there is a need for simple industry standards that 
allow discrimination between the various antimicrobial 
designs and in particular incorporate a presently lacking 
standard test for adhesion under flow conditions that re-
semble the flow occurring in various clinical applications. 

 

METHODS FOR MONITORING IN VIVO PERFORMANCE 
OF ANTIFUNGAL AND ANTIBIOFILM DRUGS 
Compounds that perform well under in vitro testing condi-
tions and show no or low toxicity should be validated un-
der more physiologically relevant conditions. To this end, 
different animal model systems have been developed (see 
table 1) to evaluate efficacy of antimicrobial agents in vivo. 
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However, in an effort to minimize the use of animals, 
three-dimensional organoid (ex vivo) tissue systems have 
been developed to screen for new drug candidates. This in 
vivo or ex vivo evaluation of candidate molecules is essen-
tial as many compounds that are very potent in vitro, fail 
the in vivo test [126]. Moreover, such testing is required in 
view of toxicity assessment and progression to clinical ap-
plication. 

Human three-dimensional organoid tissue culture ap-
proaches or ex vivo human tissue, that both can be com-
bined with specific immune cells have been developed, 
mainly in the cancer field [232]. Recently a method was 
developed to mimic the large intestine where colonic or-
ganoids are generated from differentiated human embry-
onic stem cells or induced pluripotent stem cells [233, 234]. 
This and similar approaches will likely be used in the future 
for disease modeling and drug discovery [234]. To study C. 
albicans infections, a human skin model was developed 
which can be used to test the effect of novel antibiofilm 
compounds, mainly for their effect on inhibition of C. albi-
cans adhesion [235]. Similarly, an organotypic model of the 
human bronchiole was developed for testing host patho-

gen and three-way host, fungal and bacterial pathogen 
communication and immune response [236]. This model 
can also be used to test the effect of antimicrobial com-
pounds during host-pathogen interaction.  

The most relevant models however, remain animal 
model systems as these allow for the study of pharmaco-
dynamics and pharmacokinetics of novel compounds (see 
table 1). In general vertebrate model systems are prefera-
ble as they are phylogenetically closer to humans; however, 
several lower, non-vertebrate, models have been opti-
mized for virulence evaluation as well as for drug screening 
[15, 237]. Among these model systems, the most used are 
Caenorhabditis elegans [161, 238], Drosophilla melano-
gaster [177, 179, 239], zebrafish larvae (Danio rerio) [140, 
141], the silk worm Bombyx mori [145, 240], the heat tol-
erant two-spotted cricket [241] and the larvae of the 
greater wax moth Galleria mellonella [140, 242, 243]. The 
main advantage of the latter two is that these organisms 
can be maintained and grown at 35 °C to 37 °C, approxi-
mately the same as the human body temperature. 

Developing a relevant model system requires considera-
ble effort and time, and some examples of how to set up 

TABLE 1. Overview of in vivo models for assessing efficacy of antifungal drugs or treatments [references]. 

 

Animal species Type of infection Candida sp. Aspergillus 
sp. 

Cryptococcus 
sp. 

Other fungi 

Galleria melonella 
(greater wax 
moth) 

 [127–139] [133, 140-144] [145-149] [150-155] 

Bombyx mori 
(silkworm) 

 [156] [157] [158-160]  

Caenorhabditis 
elegans 

 [100, 136, 161-
173] 

 [166, 174, 175] [176] 

Drosophila 
melanogaster 

 [177, 178] [179]  [180] 

Danio rerio 
Zebrafish larvae 

 [165]  [145] [181, 182] 

Mice  systemic [183-188] [189] [190] [191, 192] 

Mice oropharyngeal [184, 193-197]    

Mice vaginal [198-202]    

Mice Biofilm, including 
dentures/keratitis 

[203-208]    

Mice intratracheal/lung/ 
central nervous system 

 [209-213] [147, 214-217] [218] 

Mice Cutaneous [219] [220]  [180] 

Rats Biofilm [93, 101, 221-
226] 

   

Guinea pigs  [227] [228, 229] [230] [231] 
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Aspergillosis model systems for drug discovery are de-
scribed by Paulussen et al. [244] and Lewis and Verweij 
[245]. When performing animal experiments to test the 
efficacy of drugs it is important to clearly define the end-
point in terms of organs or tissues positive for fungal pres-
ence at a particular time point during / after initiation of 
treatment, since the niche in the host might influence the 
outcome. A typical example is the pH dependent virulence 
of C. albicans, where a strain may not be virulent systemi-
cally but is virulent vaginally or vice versa [246–248]. Re-
cently, it was shown that fitness cost, often associated with 
drug resistance, is also niche-dependent as fluconazole-
resistant isolates were outcompeted in a gastrointestinal 
colonization model and not in a systemic infection model 
system [249]. 

Vertebrate model systems in use for testing novel anti-
fungal drugs, are primarily based on those developed to 
investigate virulence mechanisms by fungal pathogens 
[250]. These model systems can be classified as methods to 
test therapeutic efficacy against superficial (skin, nails), 
mucosal (oral, vaginal), gastrointestinal, lung or systemic 
infections. In order to mimic the population at risk for cer-
tain types of fungal infections, in many cases animals are 
rendered immunosuppressed, which may influence the 
efficacy of a specific antifungal or compound used. Sex of 
the animals and route of administration of the pathogens 
will also determine the type and outcome of the infection. 
For opportunistic pathogens, such as Candida spp., various 
infection sites can be used that may either result in a sys-
temic infection (intravenous, intraperitoneal, infections) or 
in local infections (oral cavity, gut, vagina or skin infections) 
[reviewed in [250]]. In addition to testing the effect of anti-
fungal drugs, animal model systems are also used to inves-
tigate the pharmacokinetic, tissue distribution and stability 
of antimicrobial drugs [251, 252]. 
 
Superficial infection models 
Different animal model systems have also been developed 
to test the efficacy of antifungals against dermatophytes 
and other fungi, such as C. albicans that can cause skin 
infections [253–255]. The guinea pig is the standard model 
system for these type of skin, hair and nail infections but 
mouse model systems have also developed such as for C. 
albicans [219, 256] and A. fumigatus [220, 257].  

Experimental induction of dermatophytosis in laborato-
ry animals has been performed for decades and early pub-
lications date from the 1960s [258]. Guinea pigs have al-
ways been one of the target animals as they tend to be 
predisposed for dermal fungal infections and consequently, 
artificial infection is easy and does not require any kind of 
preconditioning or immunosuppressant treatment [259]. 
To establish a dermatophyte infection in guinea pigs, dif-
ferent methods can be employed. When the model was 
first being used and described, it was believed that occlu-
sion of the inoculated area was essential to induce an ex-
perimental infection [260]. In the more recent publications, 
however, occlusion is only rarely applied and was even 
demonstrated not to offer any advantages on the estab-
lishment of a skin infection [253]. General agreement exists 

on the necessity of prior trauma of the skin, before apply-
ing the inoculum. Skin damage can be achieved by using a 
manual razor or tape stripping, or scarification with a pum-
ice stone, sandpaper or other methods. The most frequent-
ly used fungal species to induce experimental dermatophy-
tosis are Microsporum canis and Trichophyton men-
tagrophytes, both zoophilic species but also common caus-
ative agents of human infections [259]. The inoculum size 
usually varies between 1x105 to 1x107 CFU/ml [253, 259]. 
In contrast with dermatophyte infections in humans, ani-
mals show spontaneous clearance of this disease with for-
mation of a partial immunity against reinfection [261]. 
Methods to evaluate antifungal efficacy involve microscop-
ic or culture examination of skin scrapings, skin biopsies, 
scales and/or hair samples, and histopathology of skin bi-
opsies, while other groups use a scoring system [262, 263]. 

Onychomycoses are fungal nail infections responsible 
for 50% of all nail dystrophies and mostly caused by der-
matophytes, of which Trichophyton rubrum and T. men-
tagrophytes are the most important ones. Most of the 
studies on the biological activity of topical antifungals are 
based on in vitro models, since the existing rabbit [264] 
and guinea-pig [265] models are extremely time-
consuming, labour-intensive and expensive.  
 
Mucosal infection models 
Vulvovaginal candidiasis (VVC) is one of the models used 
to study mucosal infection with Candida spp., especially C. 
albicans. Vaginal candidiasis has been studied in mice, rats, 
guinea pigs and rabbits with mice and rats appearing the 
more sensitive species and therefore most commonly used 
for this type of infection. More so, the rat model offers 
more accurate data compared to the mouse model and is 
therefore the better model to study antifungal efficacy. 
However, like most mucosal models of candidiasis, the 
establishment of VVC requires predisposition of the animal, 
which is usually obtained by ovariectomy and hormone 
injections to maintain permanent oestrus, although immu-
nosuppression or antibiotic treatment have also been em-
ployed [266]. For infection, a cell suspension is directly 
introduced into the vagina, and disease development is 
assessed based on microbial recovery (CFUs) from vaginal 
swabs. However, histopathology and immunological analy-
sis can also be performed with this model [231, 267, 268].  

For studying oral candidiasis, infections are induced by 
placing a swab impregnated with fungal cells for a specific 
period of time under the tongue or rodents, and antimi-
crobial efficacy is assessed based on the level of microbial 
recovery and histopathology of infected tissue [269]. Re-
cently a model was described to induce concurrent oral 
and vaginal mucosal Candida infections [270]. 
 
Lung infection models 
For airborne infections (Cryptococcus spp., Aspergillus spp., 
dimorphic fungi) the model of choice is the mouse lung 
infection model where on average 104 fungal cells are ad-
ministered through inhalation, intranasal or intratracheal 
administration [271]. Antifungal treatment is generally 
initiated 24-48 hours post-infection, although starting at 
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earlier time points (after several hours or 1 day) is also 
reported. The current standard to treat such infections is 
amphotericin B (AmB) and this can be used as a control 
(0.5mg/kg/day) [272]. This resembles the current treat-
ment of such infections in humans where a combination 
therapy consisting of AmB and 5-fluoro cytosine is used to 
treat Cryptococcus central nervous system infection [273] 
and voriconazole is used to treat aspergillosis [274]. Apart 
from pulmonary infections, Aspergillus sp. can cause a 
wide variety of infections and for several of them, relevant 
animal model systems have been developed. Some exam-
ples include the development of a sinusitis infection model 
[209], a rat model to study asthma [275] and a guinea pig 
endophthalmitis model [228]. In addition to Cryptococcus 
and Aspergillus, model systems for other environmental 
fungi have also been developed such as a fusariosis model 
system [276], a sporotrichosis model system [277], a mu-
corales model system [278, 279] and a model system for 
Scedosporium [280] (see Table 1). Efficacy of treatment of 
these fungal infections is often performed by non-culture 
based methods, such as qPCR to determine organ fungal 
burden [281]. 
 
Gastrointestinal infection models 
Gastrointestinal infections are induced by oral gavage of 
fungal cells. To establish a colonization, first the endoge-
nous microbiota is partially cleared by administration of 
antibiotics, followed by a single oral gavage with C. albi-
cans and stool samples are analyzed to determine coloni-
zation. Following euthanization segments of the gastroin-
testinal tract can be harvested and analyzed for CFUs (or 
BLI, see further) [282]. 

Gastrointestinal colonization model systems can also be 
used to induce a systemic infection which is reflective of 
one of the natural routes of a systemic infection in humans 
[283]. Recently a model was described where an oral infec-
tion was initially established in mice administered tetracy-
cline and prednisolone, which was followed by an infection 
of the small intestine and subsequent systemic infection 
[284]. Specific diet-based mouse models for systemic infec-
tion via the gastrointestinal tract have been developed 
[285]. Treatment of the animals with either fluconazole or 
echinocandins resulted in a significantly reduced organ 
microbial burden, and therefore this model would be suit-
able to study the efficacy of drugs in inhibiting of dissemi-
nation from the gastrointestinal tract. Interestingly, gastro-
intestinal tract infections have also been shown to lead to 
echinocandin resistance in C. glabrata when used in a 
mouse model of colonization and systemic dissemination 
[286]. Therefore, these models are also ideal to test novel 
antifungal compounds or combinations of compounds. C. 
albicans is normally not part of the microbiota of the gas-
trointestinal tract in mice and therefore, it is not an animal 
model that can be colonized by C. albicans under natural 
conditions. However, the group of Lois Hoyer showed that 
piglets are naturally colonized by C. albicans and success-
fully used this model for gastrointestinal infections, alt-
hough therapeutic studies have not yet been performed in 
this model [287]. 

Systemic infections 
Systemic infections with C. albicans are mostly induced 
using the mouse tail vein infection model system, where 
between 104 and 106 Candida cells are injected in the lat-
eral tail vein [288, 289]. Whereas for normal virulence as-
says the inbred lines BALB/c or C57bl/6 are mainly used, 
for antifungal drug screening, outbred lines such as ICR or 
CD-1 should be used [183, 290]. 

Antifungal therapy can be administered prior to infec-
tion, on day of infection, or at later time points post-
infection and depending on the compound, administration 
could be via the oral, intraperitoneal or intravenous route. 
It is important here to iterate that the inoculum dose is 
critical; for example, the difference between the most viru-
lent and the least virulent strain of C. albicans can be com-
pensated for by adding a 10 fold excess of the latter as the 
inoculum, in a systemic mouse model of infection [291]. 
Survival curves, animal weight and/or tissue burdens are 
determined as a measure for the efficacy of the drugs [289]. 
The tail vein model system has been used to test the effi-
cacy of different antifungal drugs using different Candida 
ssp. as well as other fungal pathogens [292-294].  
 
Pharmacokinetics 
When discussing dosing in animal models, it is important to 
consider that elimination of fungal pathogens in animals 
and humans may vary greatly. Hence, comparing activities 
of two agents in an animal model using doses extrapolated 
from those used in humans based on weight may be mis-
leading, as the antifungal exposure may not correspond to 
the one achieved in humans. This is an important caveat 
when comparing drugs to each other unless it is docu-
mented that the bioavailability is comparable. A case in 
point, comparing the activity of echinocandins in rodent 
model systems will not fully represent the activity in hu-
mans because the clearance and the volume of distribution 
is different between e.g. rats versus primates/humans. In 
fact, the clearance of all three echinocandins is approxi-
mately 6-fold higher in rats than in humans [295–298]; 
specifically, caspofungin and anidulafungin have a volume 
of distribution that is 2- to 3-fold higher, compared to that 
in humans, and in micafungin this is only slightly higher in 
rats compared to humans [297]. This difference is probably 
the reason why in rats higher concentrations of micafungin 
were required compared to caspofungin and anidulafungin 
to clear C. albicans biofilms in a subcutaneous biofilm 
model system [223]. Also, voriconazole is rapidly metabo-
lized in mice and rats due to autoinduction of cytochrome 
P450 [299]. Thus, rodents require much higher doses of 
voriconazole than human to achieve similar drug exposure. 

Kinetic experiments to monitor the efficacy of drug 
treatment over time require large numbers of animals 
when CFU counting is used to analyze the effect of the 
drugs or survival. To overcome this issue, various imaging 
approaches including fluorescence and bioluminescence 
have been developed as they allow longitudinal experi-
ments in single animals. For this purpose, C. albicans and C. 
glabrata strains have been engineered to express lucifer-
ases in order to perform bioluminescence imaging [300]. 
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Gaussia princeps and firefly luciferases have been codon-
optimized for use in C. albicans and were used to monitor 
superficial infections such as vaginal and oropharyngeal 
infections [198, 301, 302], subcutaneous infections [303] 
and systemic infections [304]. Recently, a red-shifted firefly 
luciferase was optimized for bioluminescence imaging 
[184]. However, a limitation of the bioluminescence ap-
proach is that the presence of oxygen is required for the 
generation of light by luciferase. Thus, this approach will 
underestimate the fungal burden in established fungal 
lesions in which there is hypoxia. In addition to the biolu-
minescence approaches, fluorescence-based approaches 
were also developed such as the bronchoscopic fibered 
confocal fluorescence microscopy, which was used to as-
sess pulmonary Aspergillus and Cryptococcus infections in 
live animals. This approach also allows longitudinal imaging 
of the same animal [305]. Computed tomography and 
magnetic resonance imaging was also used to assess inva-
sive pulmonary aspergillosis over time in a single animal 
[306]. Correct diagnosis of fungal infections can be prob-
lematic, however recently imaging-based tools were de-
veloped to accurately diagnose infections such as fungal 
keratitis. Based on the structure of caspofungin a chemical 
probe exhibiting high affinity to Aspergillus and possibly 
also other fungal pathogens was developed which could 
serve as a basis for development of an imaging system 
[307]. 
 
Biofilm models 
Biofilms are notoriously difficult to treat and eradicate and 
therefore, several biofilm model systems have been devel-
oped and used to test the efficacy of antibiofilm molecules 
[308, 309]. The first model was a rabbit model of C. albi-
cans biofilm-associated catheter infection using a catheter-
lock system to determine the efficacy of antifungal treat-
ment [310, 311]. In the same year, Andes et al. developed 
a rat central venous catheter (CVC) model which was also 
used to test the efficacy of antifungals [72, 193 203, 312, 
313]. Although the CVC model has the advantage of closely 
mimicking the clinical situation in a patient, the disad-
vantage is that it is technically demanding and that only 
one catheter can be placed in an animal. To overcome this 
limitation a subcutaneous catheter rat model system was 
developed where in a single animal up to nine catheter 
fragments can be implanted. To develop a biofilm infection, 
catheter fragments are inoculated with C. albicans in vitro 
prior to implantation in the animals and biofilm is allowed 
to develop [314]. This model system was used to test the 
efficacy of mono or combination treatment with antibio-
film molecules [221-223] and was also adapted for use 
with C. glabrata [224]. Another rat model was developed 
to study Candida-associated denture stomatitis, a preva-
lent oral condition stemming from the ability of Candida to 
adhere to denture material and form biofilms with com-
mensal oral bacteria [204, 315, 316]. 

Apart from traditional antifungal compounds, there is 
also a growing interest in the use of probiotic bacteria as 
agents against C. albicans. In a recent study, the antifungal 
activity of clinical isolates of Lactobacillus strains were 

tested against C. albicans biofilms in vitro and it was shown 
that certain species of lactobacilli had an effect on C. albi-
cans morphogenesis and biofilm formation [317, 318]. Us-
ing the G. mellonella model system the same group 
showed that these probiotic bacteria reduce filamentation 
by C. albicans and also stimulate the host innate immune 
system, thereby protecting the host against C. albicans 
infections [319]. 

In any of the above models, it is important to consider 
that fungal organisms often have metabolic and phenotyp-
ic distinctions in the context of biofilms as compared to 
non-biofilm settings. Parameters that may affect antifungal 
susceptibility in experimental biofilm models in vitro or in 
vivo include the effects of quorum sensing [320], impact of 
pH signaling in abscess biofilms [321], metallic stress as 
may be amplified in context of devices [322], influences of 
host factors including immune effectors [323, 324] and 
other micro-environmental factors. Thus, a key goal of 
antifungal susceptibility modeling may be evolving to spe-
cialized assay conditions that most accurately correlate 
with or predict outcomes in specific clinical conditions, 
rather than universal testing systems. 
 

METHODS FOR MONITORING IN VIVO PERFORMANCE 
OF ANTI-INFECTIVE MATERIALS 
In vivo model systems have also been developed to test 
the efficacy of coated implant material against fungal and 
bacterial pathogens. A modification of the subcutaneous 
catheter biofilm model described above was used to test 
the efficacy of titanium discs coated with caspofungin, 
vancomycin or other small antimicrobial compounds. In 
this model, small (0.5 cm diameter) titanium discs that 
were coated with the antimicrobial compound through 
covalent attachment using a linker or only the linker as the 
negative control, were implanted subcutaneously in the 
back of immunosuppressed Wistar rats. The following day, 
animals were infected with either C. albicans or S. aureus 
cells in the area of the implanted discs and microbial adhe-
sion on the discs were determined after 2 days (bacterial 
cells) or 4 days (fungal cells). Using this in vivo model, cas-
pofungin- or vancomycin-coated discs harbored significant-
ly lower numbers of adherent fungal and bacterial cells, 
respectively [325]. 
 

CONCLUSIONS AND FUTURE PERSPECITVES 
The increasing impact of fungal infections on society is 
mainly due to the increasing population of patients at risk, 
as well as the rather limited armory of antifungal agents 
and resistance development. Therefore, there is a critical 
need for the identification and development of new anti-
fungal agents, or antifungal combination therapies, par-
ticularly those that are also active against fungal biofilms 
and do not suffer from resistance development. To accom-
plish this, a set of standardized, simple guidelines describ-
ing the appropriate methods to assess the performance of 
novel antifungal and/or antibiofilm agents is warranted. 
Consistent with the recent emphasis on preventing infec-
tions, many efforts are focused on developing antibiofilm 
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coatings for medical devices such as catheters and im-
plants. Thus, standardized testing of such materials is of 
considerable importance. 

To that end, in this review we aimed to provide a com-
pilation of general methodologies and definitions for as-
sessment of susceptibility of fungal species to antifungal 
agents, when grown as planktonic cultures or as biofilms 
focusing on the standardized AFST guidelines. However, 
more recent developments and technologies in susceptibil-
ity testing designed to better mimic in vivo conditions with 
respect to flow and nutrient conditions are also discussed. 
These methods are still in their infancy and new guidelines 
for their use will need to be established in the future. 

There is a plethora of abbreviations to quantify an anti-
fungal or antibiofilm effect (see box 1), and various abbre-
viations have been used in different contexts. However, we 
want to emphasize that the MIC can only be used in the 
context of standardized AFST assays and endpoints, mostly 
reference or methods comparable to those methods. 
When testing the antifungal activity of a novel antifungal 
agent, relative to standard antimycotics, we propose to 
use the abbreviation ‘IC50 or IC90’, defined as the minimum 
inhibitory concentration of the agent or standard antimy-
cotic that inhibits growth of the fungus (or similar readout 
like metabolic activity) by 50% or 90%, respectively. 
MIC50 or MIC90 should only be used in an epidemiology 
context. For clarity, we recommend to always indicate the 
complete definition of an abbreviation in any report or 
article. 
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