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Abstract. Apparent temperatures (AP) and ground level aerosol pollution (PM2.5) are 11 

important factors in human health, particularly in rapidly growing urban centres in the 12 

developing world. We quantify how changes in apparent temperature – that is a 13 

combination of 2 m air temperature, relative humidity and surface wind speed, and 14 

PM2.5 concentrations – that depend on the same meteorological factors along with 15 

future industrial emission policy, may impact people in the greater Beijing region. Four 16 

Earth System Models (ESM) simulations of the modest greenhouse emissions RCP4.5, 17 

the “business-as-usual" RCP8.5 and the stratospheric aerosol intervention G4 18 

geoengineering scenarios are downscaled using both a 10 km resolution dynamic model 19 

(WRF), and a statistically approach (ISIMIP). We use multiple linear regression models 20 

to simulate changes in PM2.5 and the contributions meteorological factors make in 21 

controlling seasonal AP and PM2.5. WRF produces warmer winters and cooler summers 22 

than does ISIMIP both now and in the future. These differences mean that estimates of 23 

numbers of days with extreme apparent temperatures vary systematically with 24 

downscaling method, as well as between climate models and scenarios. Air temperature 25 

changes dominate differences in apparent temperatures between future scenarios even 26 

more than they do at present because the reductions in humidity expected under solar 27 

geoengineering are overwhelmed by rising vapor pressure due to rising temperatures 28 

and the lower windspeeds expected in the region in all future scenarios. Compared with 29 

the 2010s, PM2.5 concentration is projected to decrease 5.4 μg/m3 in the Beijing-Tianjin 30 

province under the G4 scenario during the 2060s from the WRF downscaling, but 31 

decrease by 7.6 μg/m3 using ISIMIP. The relative risk of 5 diseases decreases by 1.1%-32 

6.7% in G4/RCP4.5/RCP8.5 using ISIMIP, but have smaller decrease (0.7%-5.2%) 33 

using WRF. Temperature and humidity differences between scenarios change the 34 

relative risk of disease from PM2.5 such that G4 results in 1-3% higher health risks than 35 

RCP4.5. Urban centres see larger rises in extreme apparent temperatures than rural 36 

surroundings due to differences in land surface type, and since these are also the most 37 

densely populated, health impacts will be dominated by the larger rises in apparent 38 

temperatures in these urban areas. 39 

 40 
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500 character non-technical text 41 

Apparent temperatures and PM2.5 pollution depends on humidity and wind speed in 42 

addition to surface temperature and impacts human health and comfort. Apparent 43 

temperatures will reach dangerous levels more commonly in future because of water 44 

vapor pressure rises and lower expected wind speeds, but these will also drive change 45 

in PM2.5. Solar geoengineering can reduce the frequency of extreme events significantly 46 

relative to modest, and especially “business as usual” greenhouse scenarios. 47 

 48 

 49 

1. Introduction 50 

Global mean surface temperature has increased by 0.92℃ (0.68-1.17℃) during 1880-51 

2012 (IPCC, 2021), which naturally also impacts the human living environment 52 

(Kraaijenbrink et al., 2017; Garcia et al., 2018). However, neither land surface 53 

temperature nor near-surface air temperature can adequately represent the temperature 54 

we experience. Apparent temperature (AP), that is how the temperature feels, is 55 

formulated to reflect human thermal comfort and is probably a more important 56 

indication of health than daily maximum or minimum temperatures (Fischer et al., 2013; 57 

Matthews et al., 2017; Wang et al., 2021). There are various approaches to estimating 58 

how the weather conditions affect comfort, but apparent temperature is governed by air 59 

temperature, humidity and wind speed (Steadman 1984; Steadman 1994). These are 60 

known empirically to affect human thermal comfort (Jacobs et al., 2013), and thresholds 61 

have been designed to indicate danger and health risks under extreme heat events (Ho 62 

et al., 2016). Analysis of historical apparent temperatures in China (Wu et al., 2017; Chi 63 

et al., 2018; Wang et al., 2019), Australia (Jacobs et al., 2013), and the USA (Grundstein 64 

et al., 2011) all find that apparent temperature is increasing faster than air temperature. 65 

This is due to both decreasing wind speeds and, especially to increasing vapor pressure 66 

(Song et al., 2022).  67 

 68 

As the world warms, apparent temperature is expected to rise faster than air 69 

temperatures in the future (Li et al., 2018; Song et al., 2022). Hence, humans, and other 70 

species, will face more heat-related stress but less cold-related environmental stress in 71 

the warmer future (Wang et al., 2018; Zhu et al., 2019). Since most of the population is 72 

now urban, the conditions in cities will determine how tolerable are future climates for 73 

much of humanity, while the differences in thermal comfort between urbanized and 74 

rural regions will be a factor in driving urbanization. Reliable estimates of future urban 75 

temperatures and their rural surroundings require methods to improve on standard 76 

climate model resolution to adequately represent the different land surface types; 77 

especially the rapid and accelerating changes in land cover in the huge urban areas 78 

characteristic of sprawling developments in the developing world. This is usually done 79 

with either statistical or dynamic downscaling approaches, and in this article we 80 

examine both methods. 81 
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In early 2013, Beijing encountered a serious pollution incident. The concentration of 83 

PM2.5 (particles with diameters less than or equal to 2.5 μm in the atmosphere) exceeded 84 

500 μg/m3 (Wang et al., 2014). Following this event and its expected impacts on human 85 

health (Guan et al., 2016; Fan et al., 2021) and the economy (Maji et al., 2018; Wang 86 

et al., 2020), the Beijing municipal government launched the Clean Air Action Plan in 87 

2013. The annual mean concentration of PM2.5 in Beijing-Tianjin-Hebei region 88 

decreased from 90.6 μg/m3 in 2013 to 56.3 μg/m3 in 2017, a decrease of about 38% 89 

(Zhang et al., 2019), although this is still more than double the EU air quality standard 90 

(25 μg/m3) and above the Chinese FGNS (First Grand National Standard) of 35 μg/m3. 91 

The concentration of PM2.5 is related to anthropogenic emissions, but also dependent 92 

on meteorological conditions (Chen et al., 2020). Simulations suggested that 80% of 93 

the 2013-2017 lowering of PM2.5 concentration came from emission reductions in 94 

Beijing (Chen et al. 2019). Humidity and temperature are the main meteorological 95 

factors affecting PM2.5 concentration in Beijing in summer, while humidity and wind 96 

speed are the main factors in winter (Chen et al., 2018). Simulations driven by different 97 

RCP emission scenarios with fixed meteorology for the year 2010 suggest that PM2.5 98 

concentration will meet FGNS under RCP2.6, RCP4.5 and RCP8.5 in Beijing-Tianjin-99 

Hebei after 2040 (Li et al., 2016).  100 

 101 

The focus here is in the differences in apparent temperature and PM2.5 that may arise 102 

from solar geoengineering (that is reduction in incoming short-wave radiation to offset 103 

longwave absorption by greenhouse gases) via stratospheric aerosol inervention (SAI), 104 

and pure greenhouse gas climates. We use all four climate models that have provided 105 

sufficient data from the G4 scenario described by the Geoengineering Model 106 

Intercomparison Project (GeoMIP). G4 specifies sulfates as the aerosol, and greenhouse 107 

gas emissions from the RCP4.5 scenario (Kravitz et al., 2011). The impacts of G4 on 108 

surface temperature and precipitation have been discussed at regional scales (Yu et al., 109 

2015) and both are lowered relative to RCP4.5. Some studies have focused on regional 110 

impact of SAI on apparent or wet bulb temperatures: in Europe, (Jones et al., 2018); 111 

East Asia (Kim et al., 2020); and the Maritime Continent (Kuswanto et al., 2021). But 112 

none of these studies have considered apparent temperature at scales appropriate for 113 

rapidly urbanizing regions such as on the North China Plain. The only study to date on 114 

SAI impacts on PM2.5 pollution was a coarse resolution (4°×5°) global scale model with 115 

sophisticated chemistry (Eastham et al., 2018). They simulated aerosol rainout from the 116 

stratosphere to ground level, leading to an eventual increase in ground level PM2.5. 117 

Eastham et al. (2018) concluded that SAI changes in tropospheric and stratospheric 118 

ozone dominated PM2.5 impacts on global mortality. However, this study included only 119 

a first-order estimate of temperature and precipitation change on PM2.5 concentration 120 

under geoengineering, and also did not consider the situation in a highly polluted urban 121 

environment such as included in our domain, and which is typical of much of the 122 

developing world. 123 

 124 

The greater Beijing megalopolis lies in complex terrain, surrounded by hills and 125 
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mountains on three sides, and a flat plain to the southeast coast (Fig. 1). Over the period 126 

1971-2014, apparent temperature rose at a rate of 0.42℃/10 years over Beijing-Tianjin-127 

Hebei region, with urbanization having an effect of 0.12℃/10 years (Luo and Lau, 128 

2021). By the end of 2019, the permanent resident population in Beijing exceeded 21 129 

million. Tianjin, 100 km from Beijing, is the fourth largest city in China with a 130 

population of about 15 million, and Langfang (population 4 million) is about 50 km 131 

from Beijing. Thus, the region contains a comparable urbanized population as the 132 

northeast US megalopolis. Since its climate is characterized by hot and moist summer 133 

monsoon conditions, the population is at an enhanced risk as urban heat island effects 134 

lead to city temperatures warming faster than their rural counterparts.  135 

 136 

There are large uncertainties in projecting PM2.5 concentration in the future due to both 137 

climate and industrial policies. Statistical methods are much faster than atmospheric 138 

chemistry models (Mishra et al., 2015), and different scenarios are easy to implement. 139 

We use a Multiple Linear Regression (MLR) model to establish the links between PM2.5 140 

concentration, meteorology and emissions (Upadhyay et al., 2018; Tong et al., 2018). 141 

We project and compare the differences of PM2.5 concentration under G4 and RCP4.5 142 

scenarios, and between different PM2.5 emission scenarios. Accurate meteorological 143 

data are crucial in simulating future apparent temperatures and PM2.5 because all ESM 144 

suffer from bias, and this problem is especially egregious at small scales. A companion 145 

paper (Wang et al., 2022) looked at differences between downscaling methods with the 146 

same 4 Earth System Models (ESM), domain and scenarios as we use here.  147 

 148 

In this paper, we use the downscaled data to explore the effect of SAI on apparent 149 

temperature and PM2.5 over the greater Beijing megalopolis. The paper is organized as 150 

follows. The data and methods of calculating AP, AP thresholds, the PM2.5 MLR model 151 

and its validation are briefly described in Section 2. The results from present day 152 

simulation and future projections on apparent temperature and PM2.5 are given in 153 

Section 3, along with their associated impact analyses. In Section 4 we discuss and 154 

interpret the findings, and finally we conclude with a summary of the main implications 155 

of the geoengineering impacts on these two important human health indices in Section 156 

5.  157 
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Figure 1. a, The 10 km WRF domain (red box) nested inside a 30 km resolution WRF domain (large 159 

black sector). b, The inner domain topography and major conurbations (red dots), with the urban areas 160 

of Beijing and Tianjin enclosed in red curves. Panels c and d show the population density (persons per 161 

km2) of Beijing and Tianjin provinces (defined by black borders) in 2010 and the grid cells within the 162 

Beijing-Tianjin province (blue boxes) when downscaled by ISIMIP (c) and WRF (d). 163 

2. Data and Methods 164 

2.1 Scenarios, ESM, downscaling methods and bias correction  165 

The scenarios, ESM, downscaling methods and bias correction methods we use here 166 

are as described in detail by Wang et al., (2022), and we just summarize the method 167 

briefly here. We use three different scenarios: RCP4.5 and RCP8.5 (Riahi et al., 2011) 168 

and the GeoMIP G4 scenario which span a useful range of climate scenarios: RCP4.5 169 

is similar (Vandyck et al., 2016) to the expected trajectory of emissions under the 2015 170 

Paris Climate Accord agreed Nationally Determined Contributions (NDCs); RCP8.5 171 

represents a formerly business-as-usual, no climate mitigation policies, large signal to 172 

noise ratio scenario; G4 represents a similar radiative forcing as produced by the 1991 173 

Mount Pinatubo volcanic eruption repeating every 4 years.  174 

  175 

Climate simulations are performed by 4 ESM: BNU-ESM (Ji et al., 2014), HadGEM2-176 

ES (Collins et al., 2011), MIROC-ESM (Watanabe et al., 2011) and MIROC-ESM-177 

CHEM (Watanabe et al., 2011). We compare dynamical and statistical downscaling 178 

methods to convert the ESM data to scales more suited to capturing differences between 179 

contrasting rural and urban environments. To validate the downscaled AP from model 180 

results, we use the daily temperature, humidity and wind speed during 2008-2017 from 181 

the gridded observational dataset CN05.1 with the resolution of 0.25°× 0.25° based on 182 
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the observational data from more than 2400 surface meteorological stations in China, 183 

which are interpolated using the “anomaly approach” (Wu and Gao, 2013). This dataset 184 

is widely used, and has good performance relative to other reanalysis datasets over 185 

China (Zhou et al., 2016; Yang et al., 2019; Yang et al., 2023; Yang and Tang, 2023). 186 

Dynamical downscaling for the 4 ESM datasets was done with WRFv.3.9.1 with a 187 

parameter set used for urban China studies (Wang et al., 2012) in two nested domains 188 

at 30 and 10 km resolution over 2 time slices (2008-2017 and 2060-2069). We corrected 189 

the biases in WRF output using the quantile delta mapping method (QDM; Wilcke et 190 

al., 2013) with ERA5 (Hersbach et al., 2018) to preserve the mean probability density 191 

function of the output over the domain without degrading the WRF spatial pattern. All 192 

WRF results presented are after QDM bias correction. Statistical downscaling was done 193 

with the trend-preserving statistical bias-correction Inter-Sectoral Impact Model 194 

Intercomparison Project (ISIMIP) method (Hempel et al., 2013) for the raw ESM output, 195 

producing output matching the mean ERA5 observational data in the reference 196 

historical period with the same spatial resolution, while allowing the individual ESM 197 

trends in each variable to be preserved.  198 

 199 

2.2 PM2.5 concentration and emission data 200 

In China there were few PM2.5 monitoring stations before 2013 (Xue et al., 2021). 201 

However, aerosol optical depths produced by the Moderate Resolution Imaging 202 

Spectroradiometer (MODIS) have been used to build a daily PM2.5 concentration 203 

dataset (ChinaHighPM2.5) at 1 km resolution from 2000 to 2018 (Wei et al., 2020). We 204 

use monthly PM2.5 concentration data during 2008-2015 from ChinaHighPM2.5 to train 205 

the MLR model, and the data during 2016-2017 to validate it. Figure S1 shows annual 206 

PM2.5 concentration over Beijing areas during 2008 (a) and 2017 (b). 207 

 208 

Recent gridded monthly PM2.5 emission data were derived from the Hemispheric 209 

Transport of Air Pollution (HTAP_V3) with a resolution of 0.1°×0.1° during 2008-2017, 210 

which is a widely used anthropogenic emission dataset (Janssens-Maenhout et al., 211 

2015). PM2.5 emissions over Beijing areas during 2008 (c) and 2017 (d) are shown in 212 

Fig. S1.  213 

 214 

Future gridded monthly PM2.5 emissions to 2050 are available in the ECLIPSE V6b 215 

database (Stohl et al., 2015), generated by the GAINS (Greenhouse gas Air pollution 216 

Interactions and Synergies) model (Klimont et al., 2017). The ECLIPSE V6b baseline 217 

emission scenario assumes that future anthropogenic emissions are consistent with 218 

those under current environmental policies, hence it is the “worst” scenario without 219 

considering any mitigation measures (Li et al., 2018; Nguyen et al., 2020). Projected 220 

emissions are shown in Fig S2, with emissions plateauing at ~40 kt/year after 2030, so 221 

we assume 2060s levels are similar. These ECLIPSE projections are significantly larger 222 

than present day estimates from HTAP_V3. We therefore estimate 2060s emissions as 223 

the recent gridded monthly PM2.5 emissions from HTAP_V3 scaled by the ratios of 224 

2050 ECLIPSE emission to average annual emissions between 2010 and 2015. Before 225 
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processing data, PM2.5 concentration is bilinearly interpolated to the WRF and ISIMIP 226 

grids, while PM2.5 emissions are conservatively interpolated to the target grids. 227 

 228 

2.3 Apparent temperature 229 

We used a widely used empirical formula to calculate the apparent temperature under 230 

shade (Steadman 1984), that combines various meteorological fields, which also has 231 

been widely used to study heat waves, heat stress and temperature-related mortality 232 

(Perkins and Alexander, 2013; Lyon and Barnston, 2017; Lee and Sheridan, 2018; Zhu 233 

et al., 2021): 234 

              𝐴𝑃 = −2.7 + 1.04 × 𝑇 + 2 × 𝑃 − 0.65 × 𝑊                              (1) 235 

where AP is the apparent temperature (°C) under shade meaning that radiation is not 236 

considered; T is the 2 m temperature (°C), W is the wind speed at 10 m above the ground 237 

(m/s), and P is the vapor pressure (kPa) calculated by  238 

                             𝑃 = 𝑃𝑠 × 𝑅𝐻                                                       (2)                          239 

where 𝑃𝑠 is the saturation vapor pressure (kPa), and RH is the relative humidity (%). 240 

𝑃𝑠 is calculated using the Tetens empirical formula (Murray, 1966): 241 

                  𝑃𝑠 = {0.61078 × 𝑒
(

17.2693882×𝑇

𝑇+237.3
),                 𝑇≥0

0.61078 × 𝑒
(

21.8745584×(𝑇−3)

𝑇+265.5
),       𝑇<0

                                (3)               242 

To assess the potential risks of heat-related exposure from apparent temperature, we 243 

also count the number of days with AP > 32℃ (NdAP_32) in the Beijing-Tianjin 244 

province (Table S1). This threshold does not lead to extreme risk and death, instead it 245 

is classified as requiring “extreme caution” by the US National Weather Service 246 

(National Weather Service Weather Forecast Office, 247 

https://www.weather.gov/ama/heatindex), but carries risks of heatstroke, cramps and 248 

exhaustion. A threshold of 39°C is classed as “dangerous” and risks heatstroke. While 249 

hotter AP thresholds would give a more direct estimate of health risks, the statistics of 250 

these presently rare events mean that detecting differences between scenarios is less 251 

reliable than using the cooler NdAP_32 threshold simply because the likelihood of rare 252 

events are more difficult to accurately quantify than more common events that are 253 

sampled more frequently. There is evidence that in some distributions, the likelihood 254 

of extremes will increase more rapidly than central parts of a probability distribution, 255 

for example large Atlantic hurricanes increasing faster than smaller ones (Grinsted et 256 

al., 2013). But the conservative assumption is that similar differences between scenarios 257 

would apply for higher thresholds as lower ones. 258 

2.4 Population Data Set 259 

Since health impacts scale with the number of people affected, we calculate the 260 

NdAP_32 weighted by population (Fig. 1c and 1d). We employ gridded population data 261 

(Fu et al., 2014; https://doi.org/10.3974/geodb.2014.01.06.V1) with a spatial resolution 262 

of 1×1 km collected in 2010. The population density distribution in Beijing and Tianjin 263 

provinces with the ISIMIP and WRF grid cells contained are shown in the Fig. 1c and 264 

1d. 265 

https://www.weather.gov/ama/heatindex
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 266 

2.5 MLR model calibration 267 

Many meteorological factors, such as temperature (You et al., 2017), precipitation (Guo 268 

et al., 2016), wind speed (Yin et al., 2017), radiation (Chen et al., 2017), planetary 269 

boundary layer height (Zheng et al., 2017) etc., can affect the PM2.5 concentration. Their 270 

relative importance differs regionally. But here we consider only differences that are 271 

produced by the three scenarios, so for example we do not include precipitation in our 272 

analysis because none of the ESM simulate significant changes in our domain (Table 273 

S2). Previous studies have shown that wind and humidity are the dominant 274 

meteorological variables for PM2.5 concentration in region we study (Chen et al., 2020), 275 

while changes in temperature and winds obviously impact local concentrations. Hence, 276 

we generate an MLR model between PM2.5 and temperature (T), relative humidity (H), 277 

zonal wind (U), meridional wind (V) and PM2.5 emissions (E) at every grid cell as 278 

follows: 279 

 280 

PM2.5= ∑ ai Xi+b                            (4) 281 

Where 𝑋𝑖(𝑖=1,2,3,4,5)  are the five factors, ai  are the regression coefficients of the Xi 282 

with PM2.5, and b  is the intercept, which is a constant. We assume that all factors 283 

should be included in the regression. All the meteorological variables are from the 284 

statistical and dynamical downscaling and bias corrected results during 2008-2017, 285 

with the first 8 years used for training model and the second 2 years used for validating 286 

model. We train the MLR for the 4 ESMs under statistical and dynamical downscaling 287 

in each grid cell separately, thus accounting spatial differences in the weighting of the 288 

Xi across the domain. Meteorological variables under G4, RCP4.5 and RCP8.5 during 289 

2060-2069 are used for projection.  290 

 291 

Here, we use PM2.5 concentration including both primary and secondary PM2.5 as the 292 

dependent variable and primary PM2.5 emission and meteorological factors as 293 

independent variables in the MLR. Future PM2.5 emissions will change in ways that are 294 

rather speculative as they depend on technological innovation and policies that are 295 

inherently unpredictable. The MLR assumes that the past emissions mix and secondary 296 

aerosols remain unchanged in the future, but meteorological factors will also indirectly 297 

impact secondary PM2.5 to some extent. 298 

 299 

The contributions of meteorology and PM2.5 emissions on future concentrations are 300 

examined by using recent PM2.5 emissions (baseline) and future PM2.5 emissions 301 

(mitigation), and the downscaled climate scenarios. Modeled PM2.5 concentration using 302 

recent meteorology and PM2.5 emissions during 2008-2017 (2010s) is considered as our 303 

reference.  304 

 305 

Collinearity of variables is inevitable in our domain. The domination of the seasonal 306 

winter and summer monsoonal weather patterns mean that temperatures, precipitation 307 
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and wind direction are all highly seasonal and correlated. In winter, precipitation is 308 

minimal and northerly winds predominate, in summer the opposite is true. These three 309 

meteorological fields are important and also important for emissions, since sources are 310 

essentially absent from the north, while temperature and humidity dominate aerosol 311 

microphysics. 312 

 313 

We use the variance inflation factor (VIF) to test if there is excessive collinearity in our 314 

MLR models. Generally, if VIF value is greater than 10, there is collinearity problem 315 

between variables. Figure S3 shows that there are indeed collinearity problems in some 316 

areas, but not in Beijing-Tianjin province, so there is no impact on the results for the 317 

urban areas. We explored the impact of collinearity on the results in high VIF grid cells 318 

by removing factors with VIF greater than 10 and the full variables model (Fig. S4 and 319 

Fig. S5). Using ISIMIP downscaling, we only removed the temperature, while we 320 

removed the temperature and U-wind in the WRF method. PM2.5 concentrations 321 

increased by ~1 μg/m2 in all ESMs under G4 with the “baseline” scenario (Fig. S4), in 322 

contrast, PM2.5 concentrations decreased by 5-15 μg/m2 with the “mitigation” scenario 323 

(Fig. S5) after dealing the collinearity problem. This means that PM2.5 concentration 324 

has more sensitivity to the PM2.5 emission after accounting for collinearity. Although 325 

the absolute PM2.5 concentrations are different accounting for collinearity, there are no 326 

significant differences in the changes of PM2.5 concentration between G4 and the 327 

2010s/RCP4.5/RCP8.5 in Beijing-Tianjin province. 328 

2.6 MLR model validation 329 

 330 

Figure 2. Scattergrams of PM2.5 concentration derived by MODIS and estimated by MLR during 331 

validation period (2016-2017). Top figures (a-d) are the ISIMIP statistical downscaling results, and 332 

bottom figures (e-h) are the WRF dynamical downscaling results. R2 means the variance explained 333 
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by the MLR, and color bar denotes the density of datapoints at integer intervals.  334 

 335 

Figure 2 shows the scattergram of PM2.5 concentration between ChinaHighPM2.5 336 

dataset and MLR model during validation period based on ISIMIP and WRF results. 337 

Observations and MLR models have Pearson’s correlations coefficients around 0.86 for 338 

ISIMIP results during the validation period, and the coefficient of determination of 339 

MLRs are 0.74-0.75 (Fig. 2a-d). WRF Pearson’s correlations are slightly lower, 0.82-340 

0.85, and explained variance ranges from 0.68-0.72 (Fig. 2e-h). These results are 341 

similar as found by Jin et al. (2022). We also compare the spatial patterns of observed 342 

and modeled PM2.5 in Fig. S6. Both ISIMIP and WRF results can simulate the 343 

distribution characteristics of high concentration of PM2.5 in the southeast and low 344 

concentration in the northwest.  345 

 346 

We also tested the accuracy of our MLR model projection against simulations (Li et al., 347 

2023) with the Community Multiscale Air Quality (CMAQ) model developed by the 348 

United States Environmental Protection Agency and which can simulate particulate 349 

matter on local scales (Foley et al., 2010; Yang et al., 2019) when coupled to WRF. We 350 

used the same meteorological forcing as Li with the “EIT1” PM2.5 emissions scenario 351 

in 2050 under RCP4.5 (Fig.S7). The spatial patterns are well correlated in all seasons 352 

(0.68-0.73), but PM2.5 concentrations are about twice as high in our MLR model as 353 

from Li et al., (2023). PM2.5 concentrations from our regression model are also higher 354 

than the referenced data during 2008-2017. While the difference in absolute PM2.5 355 

concentrations are significant, we mainly consider differences of PM2.5 concentration 356 

between G4 and RCP4.5/RCP8.5 in our study which we cannot compare these 357 

anomalies with the single RCP4.5 scenario simulated by Li et al. (2023). We do 358 

compare the spatial pattern of differences in PM2.5 concentration between “base” and 359 

“EIT1” under RCP4.5. Because of the small slope coefficient of PM2.5 emission in our 360 

MLR, we do not capture the large reduction of PM2.5 concentration in the Beijing city 361 

center seen by Li et al. (2023), (Fig. S8). 362 

 363 

2.7 Relative risks of mortality related to PM2.5 364 

We estimate the effects of PM2.5 on mortality by considering changes in the relative risk 365 

(RR) of mortality related to PM2.5. We lack data on mortality rates in the study domain 366 

without which we cannot estimate numbers of fatalities, just the average population-367 

weighted RR. Burnett et al. (2014) established the integrated exposure-response 368 

functions we use. The RR is non-linear in concentration, that is an initially low PM2.5 369 

region will suffer higher mortality and RR than an initially high PM2.5 region if PM2.5 370 

is increased by the same amount. Ran et al. (2023) provide RR values for PM2.5 371 

concentrations up to 200 μg/m3 that includes the 5 main major disease endpoints 372 

(Global Burden of Disease Collaborative Network, 2013) of PM2.5 related mortality: 373 

chronic obstructive pulmonary disease, ischemic heart disease, lung cancer, lung 374 

respiratory infection and stroke. We calculate the average population-weighted relative 375 

risks based on the gridded population dataset (Section 2.4) and PM2.5 concentration in 376 
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the Beijing-Tianjin province defined in the Fig. 1c-1d, following Ran et al. (2023): 377 

RRpop,k=
∑ POPg×RRk(Cg)G

g=1

∑ POPg
G
g=1

  (5) 378 

RRpop,k is the average population-weighted relative risk of disease k (k=1-5), POPg is 379 

the population of gird g, and RRk(Cg)  is the relative risk of disease k when PM2.5 380 

concentration is Cg in the grid of g. 381 

 382 

2.8 Determination of contributions to change in AP and PM2.5 383 

Equation (1) describes how AP is calculated, and this can be broken down into how 384 

much equivalent temperature is produced by each term (Fig. 3), with 2008-2017 as the 385 

baseline interval for season-by-season contributors to AP. Across scenario seasonal 386 

differences in contributors are then calculated as follows. We use an MLR approach, 387 

since this minimizes the square differences from the mean across the dataset, with the 388 

attendant assumption of independence between the data. Alternatives may also be 389 

considered that e.g. minimize the impact of outliers by considering the magnitude of 390 

the differences, but we prefer to keep the attractive properties of a least squares 391 

approach. The dependent variable in the MLR is the change in AP (∆AP) and the 392 

independent variables are changes in each factor for each future scenario,  393 

∆AP= ∑ αi Xi+β                            (6) 394 

where 𝑋𝑖(𝑖=1,2,3) are the daily changes of the three meteorological factors between two 395 

scenarios: 2 m temperature (∆T), 2 m relative humidity (∆RH) and 10 m wind speed 396 

(∆W), αi are the regression coefficients of the Xi with ∆AP, and 𝛽 is the intercept, 397 

which is a constant. We assume that all three meteorological factors should be included 398 

in the regression and we estimate the contributions of each factor to changes of AP as: 399 

Ki=
αiXi̅

∑ αi Xi̅

                     (7) 400 

where Ki(i=1,2,3) is the contributions (in units of temperature) from each factor to the 401 

changes of the AP, and Xi̅ are the mean differences in temperature equivalent due to 402 

each factor between two scenarios.  403 

 404 

The contribution of changes in each factor in changes of PM2.5 is simpler since we 405 

assume that the relationship between each factor and PM2.5 is linear, and so its 406 

contribution is the ratio of product of the regression coefficient and the change of each 407 

factor to the change of PM2.5. 408 

 409 

3. Results 410 

3.1 Recent apparent temperatures 411 
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 412 

Figure 3. Seasonal averaged AP and equivalent temperature of each term in equation 1 for Beijing-413 

Tianjin province (a-c) and Beijing-Tianjin urban areas (d-f) during 2008-2017 from CN05.1 (a, d), 4-414 

model ensemble mean after ISIMIP (b, e) and ensemble mean after WRF (c, f). Term 1 is 1.04T, term 2 415 

is 2P and term 3 is -0.65W. 416 

 417 

Figure 3 shows the seasonal averaged AP and equivalent temperatures caused by 418 

temperature, relative humidity and wind speed in Beijing-Tianjin province and Beijing-419 

Tianjin urban areas during 2008-2017. According to the CN05.1 results (Fig. 3a, 3d), 420 

AP and the separate 3 terms show similar seasonal patterns over the whole province 421 

and just the urban areas. Vapor pressure is higher in summer and wind speed is higher 422 

in spring. AP is lower than 2 m temperature in all seasons except summer, and especially 423 

lower in winter. AP, temperature, vapor pressure and wind speed are all higher in urban 424 

areas than in the surrounding rural region in any season. The ISIMIP results (Fig. 3b, 425 

3e), by design, perfectly reproduce the CN05.1 seasonal characteristics of AP, 426 

temperature, vapor pressure and wind speed. WRF shows a similar pattern with that 427 

from CN05.1, but for the Beijing-Tianjin province, WRF overestimates both 2 m 428 

temperature and AP in winter by 2.1°C and by 1.7°C respectively relative to CN05.1 429 

(Fig. 3c). In the Beijing-Tianjin urban areas, WRF overestimates the temperature and 430 

AP relative to CN05.1 in all seasons, especially in winter (Fig. 3f).  431 

 432 
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 433 

Figure 4. Top row: the spatial distribution of mean apparent temperature from CN05.1 (a), raw ESMs 434 

ensemble mean after bilinear interpolation (b), 4-model ensemble mean after ISIMIP (c) and ensemble 435 

mean after WRF (d) during 2008-2017. Bottom row: the spatial distribution of annual mean number of 436 

days with AP > 32℃ from CN05.1 (e), ESMs (f), ISIMIP (e) and WRF (f) during 2008-2017. Fig. S9 437 

and Fig. S10 show the pattern of AP and NdAP_32 for the individual ESM. 438 

We compare the simulations of mean apparent temperature and NdAP_32 from both 439 

WRF dynamical downscaling with QDM and from ISIMIP statistical downscaling 440 

during 2008-2017 in Fig. 4. Both WRF with QDM and ISIMIP methods produce a 441 

pattern of apparent temperature which is close to that from CN05.1. While the raw AP 442 

from ESMs is overestimated in Zhangjiakou high mountains and underestimated in the 443 

southern plain, and shares a similar pattern with temperature from ESMs (Wang et al., 444 

2022). The raw ESM outputs were improved after dynamical and statistical 445 

downscaling. The average annual AP from ISIMIP (9.6-9.7°C) is 0.5°C higher than that 446 

from CN05.1 (9.1°C) over the Beijing-Tianjin province for all ESMs (Table 1). While 447 

WRF produces warmer apparent temperatures in the city centers of Beijing and Tianjin 448 

and lower ones in the high Zhangjiakou mountains than recorded in the lower resolution 449 

CN05.1 observations. There are also differences between different models after WRF 450 

downscaling. For example, apparent temperatures from the two MIROC models 451 

downscaled by WRF are the warmest. In contrast AP from all 4 ESMs after ISIMIP 452 

shows very similar patterns (Fig. S9).  453 

 454 

ESMs tend to overestimate the number of days with AP>32℃ in southeastern Beijing 455 

and the whole Tianjin province. Both ISIMIP and WRF appear to overestimate the 456 

NdAP_32 in Beijing urban areas and the southerly lowland areas although NdAP_32 is 457 

close to zero in the colder rural areas at relatively high altitude for both downscaling 458 

methods. Some of these differences may be due to the WRF simulations being at finer 459 

resolution than the 0.25°× 0.25° CN05.1, leading to higher probabilities of high AP in 460 

urban areas (Fig. 5d). ISIMIP results also show slight overestimations, especially in the 461 
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tails of the distribution (AP>30℃) for urban areas (Fig. 5c). CN05.1 gives about 5 462 

NdAP_32 per year in southern Beijing and Tianjin, but there are nearly 15 NdAP_32 463 

from ISIMIP, and over 20 NdAP_32 per year from WRF downscaling in the Beijing-464 

Tianjin urban areas during 2008-2017. NdAP_32 from WRF and ISIMIP downscaling 465 

of all ESM is overestimated relative to CN05.1. But there are differences in ESM under 466 

the two downscalings: with ISIMIP, HadGEM2-ES and BNU-ESM have more 467 

NdAP_32 than the two MIROC models, while the reverse occurs with WRF (Fig. S10).   468 

 469 

Table 1. The annual mean apparent temperature and population weighted NdAP_32 in Beijing-Tianjin 470 

province and Beijing-Tianjin urban areas (Fig. 1b) from CN05.1, ISIMIP and WRF during 2008-2017.  471 

Data Sources AP (℃) NdAP_32 (day yr-1) 

Provinces Urban Population weighted for province (Fig. 1c, 1d) 

WRF ISIMIP WRF ISIMIP WRF ISIMIP 

MIROC-ESM 10.5 9.6 13.6 11.4 22.2 10.1 

MIROC-ESM-CHEM 10.5 9.6 13.6 11.4 21.9 11.0 

HadGEM2-ES 9.5 9.6 12.0 11.4 12.3 11.1 

BNU-ESM 9.4 9.7 11.8 11.5 10.2 12.7 

CN05.1 9.1 11.1 2.4 

The Taylor diagram of the daily mean apparent temperature in Beijing-Tianjin province 472 

and Beijing-Tianjin urban areas from 2008-2017 for the 4 ESMs shows that correlation 473 

coefficients between ESMs and CN05.1 are greater than 0.85 under both downscaling 474 

methods. Although there are differences between ESMs, the performance of WRF, with 475 

higher correlation coefficient and smaller SD (standard deviation) and RMSD (root 476 

mean standard deviation), is usually superior to ISIMIP (Fig. S11). Taking the Beijing-477 

Tianjin urban areas as an example (Fig. S11b), under the ISIMIP method, MIROC-478 

ESM, MIROC-ESM-CHEM and HadGEM2-ES have the same correlation coefficient 479 

(0.92) and RMSD (5.4℃) with the CN05.1, while BNU-ESM has lower correlation 480 

coefficient (0.88) and higher RMSD (7.0℃). Under WRF simulations, MIROC-ESM 481 

and MIROC-ESM-CHEM have larger correlation coefficients and smaller RMSD with 482 

CN05.1 than HadGEM2-ES and BNU-ESM.  483 

Figure 5 shows the probability density functions (pdf) of daily AP from the four ESMs 484 

under ISIMIP and WRF in Beijing-Tianjin province and Beijing-Tianjin urban areas 485 

during 2008-2017. ISIMIP overestimates the probability of extreme cold AP relative to 486 

CN05.1 (especially BNU-ESM), although all ESM reproduce the CN05.1 pdf well at 487 

high AP. WRF can reproduce the CN05.1 distribution of AP better than ISIMIP, but 488 

high AP is overestimated relative to CN05.1 and the urban areas perform less well than 489 

the whole Beijing-Tianjin province. In urban areas all ESMs driving WRF tend to 490 

underestimate the probability of lower AP and to overestimate the probability of higher 491 

AP, especially the two MIROC models (Fig. 5d). Fig. S12 displays the annual cycle of 492 

monthly AP, with ISIMIP proving excellent by design, at reproducing the monthly AP. 493 

While under WRF downscaling AP shows more across model differences, especially 494 

during summer and with greater spread for the urban areas. 495 
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 496 

Figure 5. The probability density function (pdf) for daily apparent temperature under ISIMIP (a, c) and 497 

WRF (b, d) results in Beijing-Tianjin province (a, b) and Beijing-Tianjin urban areas (c, d) during 2008-498 

2017. 499 

3.2 2060s apparent temperatures 500 

3.2.1 Changes of apparent temperature 501 

 502 
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Figure 6. Spatial pattern of ensemble mean apparent temperature difference (℃ ) under different 503 

scenarios over 2060-2069: G4-2010s (left column), G4-RCP4.5 (middle column) and G4-RCP8.5 (right 504 

column) based on ISIMIP and WRF methods. 2010s refers to the 2008-2017 period. Stippling indicates 505 

grid points where differences or changes are not significant at the 5% level according to the Wilcoxon 506 

signed rank test. 507 

 508 

Figure 6 shows the ISIMIP and WRF ensemble mean changes in the annual mean AP 509 

under G4 during 2060-2069 relative to the past and the two future RCP scenarios. 510 

ISIMIP-downscaled AP (Fig. 6a-6c) shows significant anomalies (p<0.05), with whole 511 

domain rises of 2.0 ℃ in G4-2010s, and falls of 1.0 ℃ and 2.8 ℃ in G4-RCP4.5 and 512 

G4-RCP8.5 respectively. In WRF results, AP under G4 is about 1-2 ℃ warmer than 513 

that under 2010s, 0.8 ℃ and 2.5 ℃ colder than that under RCP4.5 and RCP8.5 over 514 

the whole domain. Individual ESM results downscaled by ISIMIP and WRF are in Fig. 515 

S14 and Fig. S15. For both ISIMIP and WRF downscaling results, the two MIROC 516 

models show stronger warming than the other two models between G4 and the 2010s. 517 

WRF-downscaled AP driven by HadGEM2-ES exhibits the strongest cooling, with 518 

decreases of 1.7 ℃ between G4 and RCP4.5 and falls of 3.0 ℃ between G4 and RCP8.5. 519 

Although different ESMs show different changes in AP between G4 and other scenarios, 520 

changes in AP are almost the same everywhere for a given ESM in the ISIMIP results 521 

(Fig. S14). WRF-downscaled AP anomalies driven by two MIROC models are larger 522 

in the Zhangjiakou mountains and smaller in the Beijing urban areas and Tianjin city 523 

between G4 and 2010s (Fig. S15). Changes in AP from ISIMIP results, whether across 524 

whole province or just the urban areas, are statistically identical given scenarios (Table 525 

2), which is consistent with patterns in figure 6. AP under G4 is 0.8 ℃ (1.0 ℃) and 526 

2.6 ℃ (2.8 ℃) colder than that under RCP4.5 and RCP8.5 in Beijing-Tianjin urban 527 

areas from ISIMIP (WRF) results. The warming between G4 and 2010s in urban areas 528 

is 1.0 ℃ in WRF results, while that is 2.0 ℃ in ISIMIP results (Table 2).  529 

 530 

Table 2. Difference of apparent temperature between the G4 and other scenarios for the Beijing-Tianjin 531 

province and Beijing-Tianjin urban areas as defined in Fig. 1b during 2060-2069. Bold indicates the 532 

differences or changes are significant at the 5% level according to the Wilcoxon signed rank test. 533 

(Units: ℃) 534 

Model G4-2010s G4-RCP4.5 G4-RCP8.5 

WRF ISIMIP WRF ISIMIP WRF ISIMIP 

Urban Province Urban Province Urban Province Urban Province Urban Province Urban Province 

MIROC-ESM 0.9 1.5 2.2 2.2 -0.5 -0.4 -0.9 -0.9 -2.3 -2.1 -2.8 -2.7 

MIROC-ESM-CHEM 0.9 1.5 2.9 2.8 -0.4 -0.4 -0.1 -0.1 -2.0 -2.0 -2.1 -2.1 

HadGEM2-ES 1.1 1.0 1.8 1.7 -1.6 -1.6 -1.6 -1.6 -3.1 -3.1 -3.3 -3.3 

BNU-ESM 1.2 1.1 1.2 1.3 -0.8 -0.8 -1.3 -1.3 -2.8 -2.7 -2.9 -2.9 

Ensemble 1.0 1.3 2.0 2.0 -0.8 -0.8 -1.0 -1.0 -2.6 -2.5 -2.8 -2.8 

 535 

3.2.2 Contributing factors to changes in AP 536 
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 537 

Figure 7. The seasonal changes of AP (∆AP) and the seasonal contribution of climatic factors to ∆AP 538 

for Beijing and Tianjin urban areas under ISIMIP and WRF between G4 and 2010s (a), G4 and 2010s 539 

(b), G4 and RCP4.5 (c) and G4 and RCP8.5 (d) in the 2060s based on ensemble mean results. Colors 540 

and numbers in each cell correspond to color bar, and “*” above the columns and in the cells indicate 541 

differences are significant at the 5% significant level under the Wilcoxon test.  542 

 543 

Figure 7 shows the ISIMIP and WRF ensemble mean changes in the annual mean AP 544 

anomalies G4 during 2060-2069 relative to the past and the two future RCP scenarios. 545 

ISIMIP-downscaled AP (Fig. 7a-7c) shows significant anomalies (p<0.05) across the 546 

whole domain, even for the relatively small differences in G4-RCP4.5. ∆AP by WRF 547 

is lower than that by ISIMIP. Between G4 and 2010s, AP are projected to have increases 548 

of 1.8 (1.6), 2.1 (1.8), 2.4 (-0.2), 1.8 (0.8) ℃ from winter to autumn in ISIMIP (WRF) 549 

results. In ISIMIP results, the contribution of temperature ranges from 91%-104%, and 550 

the contribution of wind speed ranges from 3%-10% in all seasons, while the 551 

contribution of humidity is negative or insignificant (Fig. 7a). However, the 552 

contribution of humidity is positive in WRF results (Fig. 7a). Between RCP4.5 and 553 

2010s, annual mean AP is projected to increase by 3.0 ℃ and 1.8 ℃ in ISIMIP and 554 

WRF results respectively, which is higher than that between G4 and 2010s. The increase 555 

of temperature and decrease of wind speed have a significant impact on the annual 556 

average ∆AP contributed 97% (94%) and 4% (3%) in ISIMIP (WRF) results. The 557 

contributions of changes in humidity are significantly positive under G4 and RCP4.5 in 558 

WRF results, while it is the opposite in the ISIMIP results (Fig. 7a-7b). 559 

 560 

Relative to RCP4.5 in the 2060s, AP is projected to decrease by 1.0 (0.4), 0.7 (0.8), 0.8 561 

(0.7), and 1.3 (1.4) ℃ from winter to autumn under G4 in ISIMIP (WRF) results (Fig. 562 

7c). In summer, the contribution from changes in temperature and humidity are 94% 563 
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(105%) and 8% (-9%) in ISIMIP (WRF) results, respectively. There are insignificant 564 

contributions from wind speed under ISIMIP results, but a significant slight positive 565 

contribution (0.7%-4%) under WRF results (Fig. 7c). The annual mean AP under G4 is 566 

2.8 (2.6) ℃ lower than that under RCP8.5 in ISIMIP (WRF) result. In this case, the 567 

contribution of changes in wind on ∆AP ranges from 3%-5% by ISIMIP, while it is 568 

close to 0 by WRF. As expected, ∆AP is mainly determined by the changes in 569 

temperature, with contributions usually above 90% between different scenarios. 570 

 571 
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Figure 8. The change of apparent temperature based on air temperature under three scenarios (G4, 572 

RCP4.5 and RCP8.5) in four ESMs under ISIMIP (left column) and WRF (right column) for urban areas 573 

relative to the 2010s. 574 

 575 

A useful measure of heat impacts that may be missed if considering only at air 576 

temperatures is the seasonality of the differences between AP and air temperature 577 

(∆(AP-T); Fig. 8). The four model ensemble annual mean ∆(AP-T) under ISIMIP is 578 

projected to rise by 0.4℃, 0.5℃ and 0.9℃ under G4, RCP4.5 and RCP8.5, relative to 579 

the 2010s. Under WRF, ∆(AP-T) is much smaller than under ISIMIP but still rising 580 

faster than air temperatures: by 0.2℃, 0.3℃ and 0.5℃ under G4, RCP4.5 and RCP8.5 581 

relative to the 2010s, respectively. In general, the largest anomalies in ∆(AP-T) are in 582 

summer under both WRF and ISMIP downscaling, but the two MIROC models under 583 

WRF have small or even negative ∆(AP-T) in summer with WRF. 584 

3.2.3 Changes of the number of days with AP>32℃ 585 

 586 

Figure 9. Ensemble mean differences in annual number of days with AP > 32℃ (NdAP_32) between 587 

scenarios for 2060-2069: G4-2010s (left column), G4-RCP4.5 (second column) and G4-RCP8.5 (right 588 

column) based on ISIMIP method and WRF. 2010s means the results simulated during 2008-2017. 589 

Stippling indicates grid points where differences or changes are not significant at the 5% level according 590 

to the Wilcoxon signed rank test. Corresponding ISIMIP results for each ESM are in Fig. S16, and WRF 591 

results in Fig. S17. 592 

 593 

The NdAP_32 anomalies in Figure 9 show that ISIMIP projects an increase of about 20 594 

days per year with AP>32 ℃ for the southeast of Beijing province and 10 days in the 595 

western areas of Beijing under G4 relative to the 2010s. NdAP_32 is about 10 days 596 

fewer under G4 than RCP4.5 with no clear spatial differences. G4 has about 35 fewer 597 

NdAP_32 days in the southern part of the domain and 20 fewer days in the western 598 

domain than the RCP8.5 scenario. In contrast WRF suggests that most areas do not 599 

show any significant difference between G4 and the 2010s, while the anomalies relative 600 

to RCP4.5 are similar as ISIMIP, the differences are insignificant over more area than 601 
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ISIMIP. G4-RCP8.5 anomalies with WRF are smaller than with ISIMIP, and differences 602 

are not significant in the Zhangjiakou high mountains. The urban areas show larger 603 

decreases in NdAP_32 than the more rural areas, even in the low altitude plain. 604 

Individual ESM show almost no statistically significant differences between G4 and 605 

RCP4.5 (Fig. S16 and S17), but the differences seen in Fig. 9 are significant because of 606 

the larger sample size in the significance test. All ESMs with ISIMIP show more 607 

NdAP_32 in the urban areas under G4 than the 2010s, while two MIROC models 608 

driving WRF show fewer NdAP_32 in Beijing-Tianjin urban areas (Fig. S16, S17).  609 

 610 

 611 

Figure 10. Probability density distributions of daily apparent temperature (AP) in summer (JJA) over 612 

Beijing-Tianjin urban areas under recent period (2008-2017), and the 2060s under G4, RCP4.5 and 613 

RCP8.5 scenarios from ISIMIP and WRF results. The purple dotted lines are at AP of 32℃ and 39℃. 614 

 615 

The pdf of daily apparent temperature in summer over Beijing-Tianjin urban areas (Fig. 616 

10) shifts rightwards for G4, RCP4.5 and RCP8.5 during the 2060s relative to the 2010s. 617 
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Figure 10 shows that by the 2060s, the dangerous threshold of AP>39 is crossed 618 

frequently under RCP8.5 with both WRF and ISIMIP downscaling, but for the RCP4.5 619 

and G4 scenarios these events are much rarer. ISIMIP results tend to show higher 620 

probability tails (extreme events) than under WRF simulations. 621 

 622 

Population weighted NdAP_32 in the 2060s for Beijing-Tianjin province is shown in 623 

Table 3. ISIMIP downscaling suggests ensemble mean rises in NdAP_32 of 22.4 days 624 

per year under G4 relative to the 2010s, but that G4 has 8.6 and 33.5 days per year 625 

fewer than RCP4.5 and RCP8.5, respectively. NdAP_32 from WRF under G4 is 626 

reduced by 19.6 days per year relative to RCP8.5, and by 6.3 days relative to RCP4.5 627 

(Table 3). 628 

 629 

Table 3. Difference of population weighted NdAP_32 between the G4 and other scenarios for Beijing-630 

Tianjin province (Fig. 1c, 1d) during 2060-2069. Bold indicates the changes are significant at the 5% 631 

level according to the Wilcoxon signed rank test. (Units: day y-1). 632 

 633 

Beijing-Tianjin province G4-2010s G4-RCP4.5 G4-RCP8.5 

 ISIMIP WRF ISIMIP WRF ISIMIP WRF 

MIROC-ESM 18.6 -8.1 -17.0 0.8 -35.4 -13.1 

MIROC-ESM-CHEM 28.7 -10.2 3.9 -2.2 -33.7 -15.5 

HadGEM2-ES 25.7 9.4 -12.5 -13.5 -24.3 -25.3 

BNU-ESM 16.4 13.6 -8.6 -10.4 -40.5 -24.4 

Ensemble 22.4±2.9 1.2±6.0 -8.6±4.5 -6.3±3.4 -33.5±3.4 -19.6±3.1 

 634 

3.3 PM2.5 in the 2060s 635 

3.3.1 PM2.5 scenarios in the 2060s 636 

 637 

Figure 11. Spatial patterns of ensemble mean PM2.5 concentration difference (μg/m3) between 638 

“mitigation” under G4 in the 2060s and reference (a, e), between “mitigation” and “baseline” under 639 

G4 in the 2060s (b, f), between G4 and RCP4.5 under “mitigation” scenario in the 2060s (c, g), and 640 
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between G4 and RCP8.5 under “mitigation” scenario in the 2060s (d, h) based on ISIMIP (a-d) and 641 

WRF (e-h) results. Excessive collinearity variables have been removed (Fig. S18 shows the results 642 

without this procedure). Stippling indicates grid points where differences or changes are not 643 

significant at the 5% significant level according to the Wilcoxon signed rank test. 644 

 645 

We firstly project the change of PM2.5 under G4 and the aerosol mitigation scenario in 646 

2060s relative to 2010s (Fig. 11a, e). Both ISIMIP and WRF project PM2.5 decreases in 647 

most areas, especially in Tianjin and Langfang, but PM2.5 decreases more under ISIMIP 648 

than WRF. PM2.5 concentration decreases by 7.6 μg/m3 over Beijing-Tianjin province 649 

in ISIMIP, and decrease by 5.4 μg/m3 in WRF (Table S3). PM2.5 concentration is 0.5-8 650 

μg/m3 higher in northern Beijing under G4 (“mitigation”) than that during the 2010s in 651 

WRF. To show the impact of emission reductions, we compare the PM2.5 concentration 652 

between aerosol “baseline” and “mitigation” scenarios under G4 in the 2060s (Fig. 11b, 653 

11f), and compare the “mitigation” PM2.5 concentration under G4 and the RCP 654 

scenarios in the 2060s to clarify the effect of geoengineering compared with climate 655 

warming. Compared with “baseline” scenario, PM2.5 concentration is less under 656 

“mitigation” scenario as expected in both ISIMIP and WRF under G4 (Fig. 11b, 11f), 657 

and has a similar spatial pattern with that in Fig. 11a and 11e. Compared with RCP4.5 658 

and RCP8.5, PM2.5 concentration under G4 are higher over the Beijing-Tianjin province 659 

in ISIMIP results (Fig. 11c-11d), but with large differences between the 4 ESMs. G4 660 

PM2.5 is simulated greater than in RCP scenarios under HadGEM2-ES and BNU-ESM 661 

(Fig. S19k, l, o, p), but there are insignificant differences in most areas under the two 662 

MIROC models (Fig. S19c, d, g, h). PM2.5 concentrations are larger between G4 and 663 

RCP8.5. WRF simulations shows similar changes in PM2.5 between G4 and RCPs as 664 

ISIMIP over Beijing-Tianjin province (Fig. 11g-h). 665 

 666 

3.3.2 PM2.5 meteorological and emissions controls in the 2060s 667 

 668 

Figure 12. Contribution of climate factors (temperature/T, humidity/H, zonal wind/U, meridional 669 

wind/V) and emission (E) to changes in monthly PM2.5 concentration (ΔPM2.5) in 2060s under G4 670 

(“mitigation”) relative to 2010s. Top figures (a-e) are ISIMIP results, and bottom figures (f-j) are 671 

WRF results. Stippling indicates the changes are insignificant at the 5% significant level in the 672 

Wilcoxon test. The grey areas represent the collinearity in the MLR, and they exist in the panel a, f 673 
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and h. 674 

 675 

Next, we quantify the contribution of different meteorological factors and PM2.5 676 

emissions to ΔPM2.5
 between G4 (“mitigation”) in the 2060s and the 2010s (Fig. 12). 677 

Both ISIMIP and WRF results show that the increase of temperature and decrease of 678 

PM2.5 emission play positive roles in reducing PM2.5 concentration. ISIMIP results (Fig. 679 

12a-e), suggest that the projected increase of temperature could explain 0-20% of the 680 

decrease of PM2.5 concentration, and decrease of PM2.5 emission could explain more 681 

than 90% of changes in PM2.5 concentration differences in most of areas. Changes in 682 

humidity and westerly winds (positive U-wind) do not cause significant changes in 683 

ΔPM2.5, but projected increases southerly wind (positive V-wind) is detrimental to the 684 

decrease in PM2.5 concentration, and has a 0-10% negative effect on ΔPM2.5 in 685 

Zhangjiakou. WRF results show similar spatial pattern in effect of temperature and 686 

emission on ΔPM2.5 with ISIMIP results. Although temperature is projected to increase 687 

over the whole domain (Fig. S22), there are negative contributions on ΔPM2.5 to the 688 

north of Beijing due to increase of PM2.5 caused by the negative correlation between 689 

PM2.5 and its emissions (Fig. S26). The ~1-2% increase of humidity leads to ~10% 690 

increase of PM2.5 concentration in the south of Beijing (Fig. 12g), and 0.2-0.3 m/s 691 

deceases of U-wind leads to 0-10% increase of PM2.5 concentration in Zhangjiakou (Fig. 692 

12h). The changes in each factor in ISIMIP and WRF results are shown in Fig. S21 and 693 

Fig. S22, respectively. 694 

 695 

Figure 13. Contribution of climate factors (as in Fig. 12) to changes in monthly PM2.5 concentration 696 

in 2060s under G4 with aerosol “mitigation” relative to 2060s under RCP4.5 with aerosol 697 

“mitigation”. Top figures (a-e) are ISIMIP results, and bottom figures (f-j) are WRF results. 698 

Stippling indicates the changes are insignificant at the 5% significant level in the Wilcoxon test. The 699 

grey areas represent the collinearity in the MLR, and they exist in the panel a, f and h. 700 

 701 

Now we explore the contribution of each meteorological factor to ΔPM2.5 between G4 702 

(“mitigation”) and RCP4.5 (“mitigation”) in the 2060s (Fig. 13). The higher PM2.5 703 

under G4 is mainly caused by the lower temperature. In ISIMIP, lower temperature 704 

explains more than 90% (100% in some places) of the raised PM2.5 relative to RCP4.5, 705 
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although the increase of humidity is also helpful to lower PM2.5 in the western domain 706 

(Fig. 13a-b). Humidity can increase suspended particle mass and coagulation, 707 

promoting deposition (Li et al., 2015). The contribution of differences in U-wind and 708 

V-wind on ΔPM2.5 is insignificant (Fig. 13c-d). In WRF, the projected lower 709 

temperatures explain more than 70% of the higher PM2.5 under G4 relative to RCP4.5 710 

(Fig. 13e). Although the increase of southerly (V) wind contributes 10-20% to the 711 

higher PM2.5 in the northern domain under HadGEM2-ES and BNU-ESM (Fig. S24), 712 

it is insignificant in the ensemble (Fig. 13h). Decreased westerlies (U wind) explains 713 

about between +100% and -100% of PM2.5 differences (Fig. 13g), since U-wind impacts 714 

vary spatially (Fig. S26).  715 

 716 

3.3.3 PM2.5 impact on health risks now and in the 2060s 717 

Changes in RR of PM2.5 for the 5 diseases under the geoengineering and global 718 

warming climate scenarios and different emission scenarios during 2060s relative to 719 

2010s for the Beijing-Tianjin province are shown in Fig. 14. Present-day PM2.5 related 720 

RRs are 1.32 (1.30), 1.37 (1.35), 1.46 (1.43), 1.83 (1.80) and 2.03 (1.99) for chronic 721 

obstructive pulmonary disease (COPD), ischemic heart disease (IHD), lung cancer (LC), 722 

lung respiratory infection (LRI) and stroke according to the ISIMIP (WRF) simulations 723 

(Fig. 14a). RR of LRI is the highest and COPD is the lowest in the five diseases, and 724 

WRF estimates of RR are 0.02-0.03 lower than those of ISIMIP. In both the “baseline” 725 

and “mitigation” emission scenarios, RRs will be lower under G4, RCP4.5 and RCP8.5 726 

compared with the 2010s. Smaller RR reductions occur under G4 than under RCP4.5 727 

and RCP8.5, and ISIMIP simulates larger reductions than WRF. This is because the 728 

PM2.5 concentrations from ISIMIP are reduced more than with WRF (Table S3). Under 729 

the “baseline” emission scenario (Fig. 14b-d), the biggest reduction of RR for LRI is 730 

0.047 under RCP8.5 in ISIMIP, and RRs for other diseases are projected to reduce by 731 

no more than 0.02. Under the “mitigation” emission scenario (Fig. 14e-g), reductions 732 

in RRs are 3-6 times greater. 733 
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 734 

Figure 14. Average population-weighted relative risks of PM2.5 related 5 diseases in 2010s (a) and 735 

its changes between G4 and 2010s (b, e), between RCP4.5 and 2010s (c, f) and between RCP8.5 736 

and 2010s (d, g) in Beijing-Tianjin province based on the ISIMIP and WRF results, respectively. 737 

PM2.5 concentration is based on the “baseline” emissions under G4, RCP4,5 and RCP8.5 in the 738 

middle 3 figures (b-d), and it is based on the “mitigation” emissions under G4, RCP4,5 and RCP8.5 739 

in the bottom 3 figures (e-g).   740 

 741 

4. Discussion 742 

4.1 Apparent temperature 743 

 744 

Both ISIMIP and WRF can reproduce the observed (CN05.1) spatial patterns and 745 

seasonal variabilities of apparent temperature in the region around Beijing. WRF shows 746 

warm biases in AP during all months relative to CN05.1 due to warmer temperatures in 747 

urban areas, with the exception of BNU-ESM and HadGEM2-ES driven summers (Fig. 748 

S13). Both ISIMIP and WRF tend to overestimate population weighted NdAP_32 by 749 
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370% and 590%, respectively. These large discrepancies are due to relatively small 750 

overestimates of the likelihood of the tails of the probability distributions which leads 751 

to a dramatic increase in the frequency of extreme climate events (Dimri et al., 2018; 752 

Huang et al., 2021). AP is about 1.5℃ warmer than 2 m temperature over the Beijing 753 

and Tianjin urban areas in summer due to higher vapor pressures amplifying warmer 754 

urban temperatures, and this is despite humidity being lower over the cities. Under high 755 

humidity conditions, a slight increase in temperature will cause a large increase in heat 756 

stress (Li et al., 2018; Luo and Lau, 2019). AP is nearly 4℃ colder than 2 m temperature 757 

in winter due to wind speed (Fig. 2d). Differences between AP and 2 m temperature 758 

(AP-T) during summer are greater in urban areas than neighboring rural areas.  759 

 760 

The apparent temperatures in Beijing Tianjin urban areas under G4 in the 2060s are 761 

simulated to be 1℃ and 2.5℃ lower than RCP4.5 and RCP8.5, although AP would be 762 

higher than in the recent past. The cooling effect of G4 relative to RCP4.5 and RCP8.5 763 

is greatest under HadGEM2-ES (Fig. S14, S15), due to the ESM having largest 764 

temperature differences between scenarios (Wang et al., 2022). WRF downscaling 765 

produces reduced seasonality in AP compared with ISIMIP, and WRF produces 766 

relatively cooler summers and warmer winters than ISIMIP, and so much less 767 

differences in apparent temperature ranges (Fig. 15). Differences in AP between G4 and 768 

the RCP scenarios are mainly driven by temperature. In all scenarios and downscalings 769 

AP rises faster than the temperature due to decreased wind speeds in the future (Li et 770 

al., 2018; Zhu et al., 2021) but mainly because of rises in vapor pressure driven by 771 

rising temperatures. This effect occurs despite the general drying expected under solar 772 

geoengineering (Bala et al., 2008; Yu et al., 2015). 773 

 774 

The NdAP_32 under G4 is projected to decrease by 8.6 days per year by ISIMIP and 775 

6.3 days per year by WRF relative to RCP4.5 for Beijing-Tianjin Province. Much larger 776 

reductions in NdAP_32 of 33.5 days per year (ISIMIP) and 19.6 days per year (WRF) 777 

are projected relative to RCP8.5. Differences between scenarios in frequency of 778 

dangerously hot days are far larger using ISIMIP statistical downscaling than using 779 

WRF. This is another impact of the reduced seasonality of WRF compared with ISIMIP 780 

(Fig. 15). 781 

 782 

The higher resolution WRF simulation produces a much larger range of apparent 783 

temperatures across the domain than CN05.1 and ISIMIP downscaling. This increased 784 

variability makes reaching a statistical significance threshold more challenging for 785 

WRF than ISIMIP results. Despite this, the ESM-driven differences in WRF output are 786 

less than from ISIMIP, reflecting the physically based processes in the dynamic WRF 787 

simulation. This reduces the impact of differences in ESM forcing at the domain 788 

boundaries with WRF compared with the statistical bias correction and downscaling 789 

methods. Although there are some uncertainties between models and downscaling 790 

methods, G4 SAI can not only reduce the mean apparent temperature but also decrease 791 

the probability of PDF tails (extreme events) in summer.  792 

 793 
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 794 

Figure 15. Seasonal cycles of apparent temperature from MIROC-ESM, MIROC-ESM-CHEM, 795 

HadGEM2-ES and BNU-ESM under G4, RCP4.5 and RCP8.5 in Beijing-Tianjin urban areas during 796 

2060s based on ISIMIP (red) and WRF (black) methods.  797 

 798 

4.2 PM2.5 799 

We established a set spatially gridded MLR models based on the 4 ESMs downscaled 800 

variables under ISIMIP and WRF. The meteorological factors impact PM2.5 in complex 801 

ways, but the simple spatially gridded MLR models display enough skill to make some 802 

illustrative projections of future PM2.5 explaining about 70% of the variance during the 803 

historical period. PM2.5 concentration is correlated with emissions and anti-correlated 804 
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with temperature in most parts of the domain (Fig, S25-S26). Increased turbulence 805 

increases diffusion of PM2.5 (Yang et al., 2016), and higher temperatures increase 806 

evaporation losses (Liu et al., 2015) of ammonium nitrate (Chuang et al., 2017), and 807 

other components (Wang et al., 2006). Humidity may have both positive and negative 808 

effects on PM2.5 (Chen et al., 2020). It causes more water vapor to adhere to the surface 809 

of PM2.5, thereby increasing its mass concentration and facilitating aerosol growth 810 

(Cheng et al., 2017; Liao et al., 2017). However, when the humidity exceeds a certain 811 

threshold, coagulation and particle mass increases rapidly, promoting deposition (Li et 812 

al., 2015). So, the slope coefficients between PM2.5 and humidity are positive in low 813 

humidity areas, including southern plain and the Beijing-Tianjin province, but negative 814 

in some northern mountain areas (Fig. S25, S26). 815 

 816 

There are large spatial differences in wind speed and direction impacts on PM2.5. Yang 817 

et al. (2016) found that weaker northerly and westerly winds tend to increase the PM2.5 818 

concentration in northern and eastern China, respectively. The effects of wind direction 819 

depend on the distribution of emitted PM2.5 and the condition of the underlying surface 820 

(Chen et al., 2020). Most sources of PM2.5 lie to the south of our domain, relatively 821 

clean conditions prevail to the north, so northly winds tend to advect clean air, while 822 

southerlies bring high concentrations of aerosols. Weak winds tend to increase PM2.5 823 

and smog formation due to sinking air and weak diffusion (Su et al., 2017; Yang et al., 824 

2017).   825 

 826 

Xu et al. (2021) projected 2030 PM2.5 concentrations will decrease by 8.8% and 5.5% 827 

under RCP4.5 and RCP8.5 respectively relative to 2015. Wang et al. (2021) also 828 

projected decreasing trends in China under RCP4.5 and RCP8.5 during 2030-2050. 829 

There were seasonal changes in PM2.5 concentration differences between RCP4.5/8.5 830 

scenarios and the historical scenario near the Bohai Sea (Dou et al., 2021). However, 831 

there are also some simulations where PM2.5 concentrations increase in warmer climates. 832 

Hong et al. (2019) suggest that annual mean PM2.5 concentrations will increase 1-8 833 

μg/m3 in an area including Beijing and Tianjin under RCP4.5 during 2046-2050, 834 

compared with 2006-2010. These inconsistent responses are mainly caused by the 835 

differences in the selection of ESMs, chemical transport models and climate/emission 836 

scenarios. Different RCP scenarios not only correspond to different future climate states, 837 

but also have different anthropogenic emissions of air pollutants. In our study, we do 838 

not consider the PM2.5 emission differences between RCP4.5 and RCP8.5, and instead 839 

applied the ECLIPSE PM2.5 emission scenarios in our MLR projection. 840 

 841 

Emissions reductions are expected to play the dominant role in the decrease of PM2.5 842 

concentrations under G4 aerosol “mitigation” in 2060s (Fig. 12). Meteorological 843 

changes under the different future scenarios make much smaller changes as evidenced 844 

by the scenarios using “baseline” – that is present day PM2.5 emissions, with decreases 845 

in mean annual concentration of 1.0 (1.3), 1.8 (2.0), 3.3 (3.2) μg/m3 over Beijing-846 
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Tianjin province under G4, RCP4.5 and RCP8.5 with WRF (ISIMIP), (Table S3), which 847 

are mainly caused by the temperature increases (Fig. 13). The negative relationships 848 

between emission and PM2.5 concentration result in the increase of PM2.5 under G4 849 

(“mitigation”) relative to 2010s in the north of Beijing with WRF. This may be due to 850 

changes in PM2.5 out of the domain being opposite to those in domain during the MLR 851 

fitting period, since relocation of polluting sources from the urban areas mainly to the 852 

west, was occurring over the calibration period. The accuracy of PM2.5 emission data is 853 

also crucial for training MLR models, and PM2.5 data was sparse before 2013, relying 854 

on reconstructions based on satellite optical depth estimates. Although both increase of 855 

temperature and decrease of emission explain more than 90% of the decrease in PM2.5 856 

in most areas, there are large spatial differences due to wind and humidity. On the one 857 

hand, there is uncertainty in the differences in changes of wind speed and humidity 858 

between different ESMs and downscaling methods; on the other hand, the complex 859 

physical relationship between them and PM2.5 also increases uncertainties. Reductions 860 

in PM2.5 in the future are projected to decrease PM2.5 related health issues, although its 861 

effect on different diseases are different. Changes in PM2.5 related risk between G4 and 862 

RCPs are from 1-3%, with PM2.5 emissions policy dominating differences over climate 863 

scenario. 864 

 865 

There are some differences in projecting PM2.5 concentration between WRF and ISIMIP 866 

methods. Compared to the 2010s reference, PM2.5 concentration in ISIMIP are 867 

projected to decrease more than using WRF in G4 under the “mitigation” scenario 868 

during the 2060s over the Tianjin province (Fig. 11a, e). However, the spatial patterns 869 

of changes in PM2.5 concentration between G4 and RCP4.5/8.5 under the “mitigation” 870 

scenario during 2060s are similar (Fig. 11c-d, g-h). This means that the effects of 871 

different downscaled methods on projecting PM2.5 are small if we only consider the 872 

climate change alone without considering emissions changes. Due to the larger 873 

regression coefficient of emissions in the MLR under the ISIMIP method (Fig. S25, 874 

S26), the negative changes in PM2.5 concentration are larger between “mitigation” and 875 

baseline under G4 during 2060s than that under the WRF method. Correspondingly, the 876 

ISIMIP method has a greater reduction in PM2.5 related RR than WRF under three future 877 

climate scenarios during the 2060s. 878 

 879 

Eastham et al. (2018) deduced from experiments using 1 Tg/yr SAI in a coupled 880 

chemistry-transport model directly simulating atmospheric chemistry, transport, 881 

radiative transfer of UV, emissions, and loss processes, that per unit mass emitted, 882 

surface-level emissions of sulfate result in 25 times greater population exposure to 883 

PM2.5 than emitting the same aerosol into the stratosphere. The G4 experiment specifies 884 

5 Tg/yr injection rate, which over our domain would equate to 1450 t/yr if it was 885 

deposited uniformly globally (which it certainly would not be). Reducing this by the 886 

1/25 factor amounts to 58 t/yr which can be compared with present PM2.5 emissions of 887 

around 3.3×105 t/year in our domain. If we consider the aerosol deposition under G4 888 

scenarios, PM2.5 concentration will be 0-1 μg/m3 higher than that without due to 889 
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deposition of the SAI aerosols (Fig. S27), and RR is projected to increase by 0.01% for 890 

Beijing-Tianjin province (Table S4). This comparison suggests that tropospheric 891 

emissions will be much more important for human health in our domain than from the 892 

SAI specified by G4. 893 

 894 

The most important change in PM2.5 will come from emissions reductions, with the 895 

different weather conditions under both G4 and RCP scenarios making relatively little 896 

practical differences in concentrations. PM2.5 concentration is expected to decrease 897 

significantly (ISIMIP: -7.6μg/m3, WRF: -5.4 μg/m3) in the Beijing-Tianjin province, 898 

but they will still not meet either Chinese or international standards. The temperature 899 

under G4 is lower than that under RCP4.5 and RCP8.5 scenarios, which makes the 900 

PM2.5 concentration under G4 higher. But the difference in PM2.5 between the two is 901 

small and even within uncertainty due to projected differences in humidity and wind. 902 

Potentially improved estimates from more complex models such as WRF-Chem, 903 

CMAQ and GEOS-Chem over the simple MLR methods used here will be of limited 904 

value unless the differences between the ESM driving these models is reduced. It can 905 

be confirmed that emission policies based on the 13th Five Year Plan are not enough, 906 

and higher emission standards need to be developed for a healthy living environment. 907 

 908 

Our study did not consider the impacts of socio-economic pathways on PM2.5 future 909 

emissions, instead we explore the meteorological differences between the SAI G4 910 

scenario and the greenhouse gas RCP4.5/RCP8.5 on PM2.5 concentrations. PM2.5 911 

emissions were defined by the uncontrolled (“baseline”) and a scenario where 912 

technological intervention (“mitigation”) reduces emissions. There are some limitations 913 

in our study. Firstly, the HTAP_V3 dataset only includes anthropogenic PM2.5 emission, 914 

not natural PM2.5 emission. Natural PM2.5 will also change in the future under changing 915 

climate. The sources of natural PM2.5 include the sandstorms that sometimes occur in 916 

spring as extreme winds mobilize dry unvegetated soils. These relatively extreme 917 

conditions are difficult to simulate in ESM and subject to land use policy e.g., the 918 

numerous ecosystem service measures undertaken by China over the last five decades 919 

(Miao et al.,2015). Secondly, although PM2.5 concentration includes both primary and 920 

secondary PM2.5 during model training, we do not consider the precursor gases for 921 

secondary PM2.5 directly. The sensitivity of MLR may diminish at the high PM2.5 values 922 

when secondary PM2.5 dominates the variability of total PM2.5 (Upadhyay et al., 2018). 923 

Thirdly, we only consider the effect of dominant near-surface meteorological variables 924 

on the PM2.5. However, the vertical transport of pollutants related to vertical 925 

atmospheric stability should not be ignored (Lo et al., 2006; Wu et al., 2005), and this 926 

may contribute to the differences in RCP4.5 scenario from our MLR model and more 927 

sophisticated simulations (Fig. S7). Finally, although it is insignificant for the Beijing 928 

and Tianjin provinces, the MLR model suffers collinearity problems in some areas. 929 

These factors play smaller roles as we are mainly considering changes in PM2.5 930 

concentration between different climate scenarios. Nevertheless, projection for changes 931 



31 

 

in PM2.5 between SAI scenarios and per greenhouse gas scenarios would be valuable 932 

for global air quality impacts from geoengineering. 933 

 934 

5. Conclusion 935 

Our study on thermal comfort and aerosol pollution under geoengineering scenarios for 936 

the Beijing megalopolis may be useful across the developing world, which is expected 937 

to suffer disproportionate climate impact damages relative the global mean, while also 938 

undergoing rapid urbanization. Assessing health impacts and mortality due to heat 939 

stress and PM2.5 under greenhouse gas scenarios should consider urbanization and the 940 

change to concrete surfaces from vegetation that leads to differences in heat capacities, 941 

rates of evapotranspiration, and hence humidity and apparent temperature. These 942 

require downscaled analyses, accurate meteorological and high-resolution land surface 943 

datasets, and industrial development scenarios. 944 

 945 

In our analysis we assumed the urban area did not change over time, and also that 946 

population remains distributed as in the recent past. This may be reasonable in the 947 

highly developed and relatively mature greater Beijing-Tianjin region but should be 948 

considered in rapidly urbanizing regions elsewhere. There certainly will be changes 949 

over time in the radiative cooling from surface pollution sources. PM2.5 is a health issue 950 

in many developing regions (Ran et al., 2023), but as wealth increases efforts to curb 951 

air pollution generally clean the air. This has clear health benefits, but also removes 952 

aerosols from the troposphere that cool the surface. The urban areas that have higher 953 

apparent temperatures at present are also the areas with greatest aerosol load and hence 954 

greatest cooling. Once that is removed direct radiation, air temperatures and apparent 955 

temperatures will all rise – by several degrees (Wang et al., 2016). So, a future more 956 

comprehensive health impact study would include both the negative health impacts of 957 

aerosol pollution and the potential cooling effects those aerosols produce. Additionally, 958 

the formulation of apparent temperature used does not consider the effect of radiation 959 

on human comfort (Kong and Huber, 2022). When PM2.5 levels are high there is no 960 

shade because the sky is milky-white, similarly SAI will brighten the sky (Kravitz et 961 

al., 2012). Comfort is increased in clear sky conditions when shade is readily found. 962 

 963 

The changes simulated to relative risk from increased PM2.5 under the G4 SAI scenario 964 

are about 1-3% worse than under RCP4.5, mainly because of lower temperatures under 965 

G4. The difference this would make to the overall health burden under SAI depends on 966 

the range of other impacts that include changes in apparent temperature we discuss. G4 967 

reduces the number of days with AP>32 (when extreme caution is advised) by 6-8 per 968 

year relative to RCP4.5 and by 20-34 relative to RCP8.5. But G4 itself will still increase 969 

these extreme caution days by 1-20 relative to conditions in the 2010s. Lowering PM2.5 970 

emissions will increase ground temperatures and the associated risk of dangerous 971 

apparent temperatures will also increase rapidly as the distribution of temperatures is 972 

shifted making presently rare hot events into much more frequent heat waves. 973 
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