Archivo de la etiqueta: Cuaternario

GEOLODÍA 24. Los 10 factores que condicionan la formación de un glaciar

Por Gabriel Castilla Cañamero, Javier Pérez Tarruella y Javier Élez

De innumerables artimañas se sirve la naturaleza para convencer al hombre de su finitud: el fluir incesante de la marea, la furia de la tormenta, la sacudida del terremoto […]. Pero entre todas ellas la más temible, la más estremecedora, es la pasividad del silencio blanco.

El silencio blanco. Jack London, 1899.

Una definición y algunas preguntas

Los glaciares se forman en aquellos lugares fríos donde la nieve se acumula hasta transformarse en hielo. Conforme crece la capa de nieve, la presión de las capas profundas aumenta, haciendo que disminuya el volumen por compactación y, en consecuencia, que aumente la densidad hasta que se forma hielo glaciar (Figura 1).

Figura 1. Formación del hielo glaciar por enterramiento y compactación (izquierda). El movimiento de un glaciar es consecuencia del comportamiento del hielo compacto y denso bajo la acción de la fuerza de la gravedad (derecha). A partir de una situación de equilibrio entre la zona de acumulación y la zona de ablación los glaciares pueden retroceder, reduciéndose su zona de acumulación; o en caso contrario, avanzar. Figura: Gabriel Castilla, adaptado de Rubial (2005) y Anguita y Moreno (1993).
Figura 1. Formación del hielo glaciar por enterramiento y compactación (izquierda). El movimiento de un glaciar es consecuencia del comportamiento del hielo compacto y denso bajo la acción de la fuerza de la gravedad (derecha). A partir de una situación de equilibrio entre la zona de acumulación y la zona de ablación los glaciares pueden retroceder, reduciéndose su zona de acumulación; o en caso contrario, avanzar. Figura: Gabriel Castilla, adaptado de Rubial (2005) y Anguita y Moreno (1993).

La diferencia entre un glaciar vivo y una masa de hielo muerto es el movimiento, y el motor que lo impulsa es el gradiente de presión que se forma entre la zona de acumulación donde se forma hielo glaciar y la zona de ablación, que es donde el hielo se pierde tanto por fusión como por la erosión que ejerce el viento (Figura 2).

Figura 2. El glaciar Río Túnel Superior (en la difusa frontera entre la Patagonia de Argentina y Chile). Al fondo se aprecia la zona de acumulación en forma de circo (depresión semicircular rodeada de montañas), y en primer plano el frente de la lengua glaciar. La laguna se ha formado por la fusión del hielo en la zona de ablación. Fotografía de Iván Pérez López.
Figura 2. El glaciar Río Túnel Superior (en la difusa frontera entre la Patagonia de Argentina y Chile). Al fondo se aprecia la zona de acumulación en forma de circo (depresión semicircular rodeada de montañas), y en primer plano el frente de la lengua glaciar. La laguna se ha formado por la fusión del hielo en la zona de ablación. Fotografía de Iván Pérez López.

Pero, ¿cómo llega a formarse un glaciar en un lugar concreto? ¿Qué variables lo condicionan?

Puesto que cada caso de estudio es único, no es posible ofrecer una respuesta general a estas preguntas; sin embargo, existen al menos diez variables que nos permiten aproximarnos a los entresijos de un proceso geológico de singular complejidad y belleza.

  1. Latitud
  2. Altitud
  3. Insolación
  4. Albedo
  5. Orientación
  6. Continentalidad
  7. Efecto abrigo
  8. Morfología previa
  9. Redes de fractura y escarpes tectónicos
  10. Polvo atmosférico

Entremos en detalles.

Las diez variables

La latitud determina el ángulo con el que la radiación solar alcanza la superficie terrestre. Como podemos ver en la Figura 3, esta incide perpendicularmente en la región ecuatorial mientras que en los polos llega con mucha inclinación, lo que implica que se pierda una parte de la energía al atravesar la atmósfera.

Figura 3. La cantidad de radiación solar que incide sobre la superficie terrestre depende de la inclinación con la que atraviesa la atmósfera, es decir, varía con la latitud. La temperatura media anual en la zona ecuatorial es de 25 ºC, mientras que en los polos es de -40 ºC. Figura: Gabriel Castilla.

Es por ello que la cantidad de radiación que reciben las regiones polares es mucho menor que en el ecuador, y este es el principal motivo por el que existen glaciares al nivel del mar en la Antártida, Islandia y Groenlandia (Figura 4).

Las regiones ecuatoriales solo han albergado glaciares al nivel del mar durante los llamados episodios Snowball Earth (literalmente Tierra bola de nieve), intensas glaciaciones del período Criogénico, hace entre 720 y 635 millones de años.

¿Significa esto que no puede haber glaciares en el ecuador? Sí los hay, pero situados a gran altitud.

Dado que la atmósfera se calienta desde la superficie terrestre, la temperatura desciende con la altura, y en las zonas templadas del planeta esta diferencia térmica es de aproximadamente un grado centígrado por cada 152 metros de ascenso vertical.

Esto quiere decir que en una región donde la temperatura al nivel del mar sea de 25 ºC, a los 4.500 m de altitud podrá alcanzar los -5 ºC (o sea, 30 grados menos), y  explica por qué podemos encontrar glaciares a 4.500 m de altitud en la zona ecuatorial de la cordillera de los Andes y en las montañas Rwenzori, en el corazón de África Oriental (Figura 4).

En el caso de la Península Ibérica, situada a una latitud media de 40º norte, el momento álgido del Último Periodo Glaciar tuvo lugar hace entre 24.000 y 21.000 años, y los glaciares se formaron en el Sistema Central a una altitud comprendida entre los 1.500 m y los 2.500 m sobre el nivel del mar actual.

Figura 4. A la izquierda, laguna glaciar Breiðárlón en el extremo sur del glaciar Vatnajökull (Islandia), a unos 64º de latitud norte y prácticamente al nivel del mar. Y a la derecha, glaciar en la cumbres de las Montañas Rwenzori (Uganda), a unos 5.000 m de altitud y prácticamente en la línea del ecuador (0º 23´ latitud norte). Fotografías de Gabriel Castilla y WWF respectivamente.
Figura 4. A la izquierda, laguna glaciar Breiðárlón en el extremo sur del glaciar Vatnajökull (Islandia), a unos 64º de latitud norte y prácticamente al nivel del mar. Y a la derecha, glaciar en la cumbres de las Montañas Rwenzori (Uganda), a unos 5.000 m de altitud y prácticamente en la línea del ecuador (0º 23´ latitud norte). Fotografías de Gabriel Castilla y © WWFUganda respectivamente.

La cantidad de radiación solar que alcanza un punto de la superficie terrestre en un año depende de variables como la nubosidad y el relieve (en el hemisferio norte es la cara sur de las montañas la que recibe más radiación y por tanto es la más cálida).

En las zonas ecuatoriales, el Sol alcanza su altura máxima sobre el horizonte durante 30 días; sin embargo, en las zonas tropicales alcanza esta misma posición en el cielo durante 86 días (¡casi el triple de tiempo!) y es por ello que los trópicos son más cálidos y albergan grandes desiertos. La cantidad de radiación que recibe el área mediterránea es mucho mayor que la que alcanza Escandinavia, donde los inviernos son más rigurosos.

Durante el momento álgido del Último Periodo Glaciar, las zonas de menor insolación alojaron masas de hielo que alcanzaron los 3.000 m de espesor. Sin embargo, en la Península Ibérica el espesor máximo del hielo fue de unos 200 m en la Sierra de Béjar (Sistema Central).

Figura 5. Mapa de insolación de Europa (izquierda) comparado con la distribución de precipitaciones y masas de hielo durante el Último Máximo Glaciar (derecha). Se aprecia una relación entre baja insolación y mayor acumulación de hielo en la zona de Escandinavia. Estas masas de hielo, de hasta 3000 m de espesor, condicionaron el régimen de vientos y la humedad en Centroeuropa (vientos intensos, fríos y secos que depositaron un manto de loess –limo arcilloso- en el continente). Fuente de la imagen: Comisión Europea/Joint Reseach Center y Rea et al. (2020).
Figura 5. Mapa de insolación de Europa (izquierda) comparado con la distribución de precipitaciones y masas de hielo durante el Último Máximo Glaciar (derecha). Se aprecia una relación entre baja insolación y mayor acumulación de hielo en la zona de Escandinavia. Estas masas de hielo, de hasta 3000 m de espesor, condicionaron el régimen de vientos y la humedad en Centroeuropa (vientos intensos, fríos y secos que depositaron un manto de loess –limo arcilloso- en el continente). Fuente de la imagen: Comisión Europea/Joint Reseach Center y Rea et al. (2020).

Este término hace referencia a la cantidad de radiación solar que puede reflejar una superficie. El hielo y la nieve fresca son como un espejo y pueden reflejar hasta el 90% de la radiación que reciben, es decir, apenas se calientan por el Sol. Sin embargo, esta situación cambia cuando se deposita sobre ellos ceniza volcánica o sedimento, partículas oscuras de menor reflectividad que sí absorben la radiación solar.

De este hecho se desprende una idea importante: los glaciares se derriten desde dentro, bien por aumento de la temperatura ambiental, o bien porque absorben calor por cambios en el albedo (Figura 6).

Esta es la razón por la que países como Italia, Francia y China intentan conservar algunos glaciares emblemáticos cubriéndolos con material geotextil blanco de alta reflectividad que actúa como aislante térmico.

Figura 6. Vista panorámica del glaciar Svínafellsjökull (Islandia). Se aprecia una notable diferencia de albedo entre el hielo joven (al fondo) y el que contiene ceniza volcánica (primer plano). El hielo sucio de menor albedo se funde antes, creando una laguna de aspecto turbio debido a las finas partículas de ceniza que quedan en suspensión. Fotografía de Gabriel Castilla.
Figura 6. Vista panorámica del glaciar Svínafellsjökull (Islandia). Se aprecia una notable diferencia de albedo entre el hielo joven (al fondo) y el que contiene ceniza volcánica (primer plano). El hielo sucio de menor albedo se funde antes, creando una laguna de aspecto turbio debido a las finas partículas de ceniza que quedan en suspensión. Fotografía de Gabriel Castilla.

Diversos estudios señalan que en el hemisferio norte los glaciares tienden a situarse en lugares de sombra (cara norte de los macizos montañosos), protegidos del viento dominante (a sotavento) y con mucha frecuencia orientados hacia el este (Figura 7).

En el hemisferio sur la orientación predominante es sureste, coincidiendo con la cara del relieve que recibe una menor insolación.

Figura 7. Durante el Último Máximo Glaciar, el glaciarismo de La Serrota (Ávila) se desarrolló en torno a los 2.200 m de altitud. La fotografía corresponde al llamado glaciar de la Serradilla, muy cerca de la localidad de Cepeda la Mora. En las imágenes de satélite captadas en marzo de 2024 se aprecia cómo las primeras nevadas dejadas por la borrasca Nelson (con vientos procedentes del oeste-suroeste) depositaron una mayor cantidad de nieve en los valles orientados hacia el noreste y el sureste, es decir, a sotavento. Fotografía de Javier Pérez Tarruella y Copernicus/Sentinel/UE, respectivamente.
Figura 7. Durante el Último Máximo Glaciar, el glaciarismo de La Serrota (Ávila) se desarrolló en torno a los 2.200 m de altitud. La fotografía corresponde al llamado glaciar de la Serradilla, muy cerca de la localidad de Cepeda la Mora. En las imágenes de satélite captadas en marzo de 2024 se aprecia cómo las primeras nevadas dejadas por la borrasca Nelson (con vientos procedentes del oeste-suroeste) depositaron una mayor cantidad de nieve en los valles orientados hacia el noreste y el sureste, es decir, a sotavento. Fotografía de Javier Pérez Tarruella y Copernicus/Sentinel/UE, respectivamente.

Es la lejanía de un territorio respecto de una masa de agua (mar un océano) que aporte humedad (recordemos que sin humedad no hay nieve) y suavice las temperaturas extremas. En el contexto de la Península Ibérica hace referencia a la influencia de frentes fríos y secos procedentes de Centro Europa y Siberia, en relación a los frentes cálidos y húmedos procedentes del Océano Atlántico.

El estudio de los campos de dunas fósiles que se formaron en Tierra de Pinares (comarca que abarca parte de las provincias de Ávila, Valladolid y Segovia), nos permiten conocer la dirección y sentido de los vientos dominantes durante los momentos de extrema aridez del Último Máximo Glaciar.

Diversos modelos señalan que vientos procedentes del suroeste y el oeste azotaron la meseta castellana, favoreciendo tanto el transporte de sedimento que formó las dunas como la erosión eólica (deflación) responsable de la ablación de los glaciares.

Figura 8. Modelo atmosférico para el último máximo glaciar. Las flechas señalan la dirección y el sentido del viento; el código de colores marca la velocidad. El modelo es compatible con los datos de la orientación de los campos de dunas en la península para esa época. Adaptado de Dietrich, 2011.
Figura 8. Modelo atmosférico para el último máximo glaciar. Las flechas señalan la dirección y el sentido del viento; el código de colores marca la velocidad. El modelo es compatible con los datos de la orientación de los campos de dunas en la península para esa época. Adaptado de Dietrich, 2011.

Puesto que durante la última glaciación los vientos dominantes que barrían la península provenían principalmente del oeste y suroeste, es muy probable que los ventisqueros (trampas –abrigos- donde el viento forma torbellinos que atraen la nieve) estuvieran orientados en sentido opuesto, es decir, hacia el este y el noreste.

Como su propio nombre indica, durante las ventiscas la nieve se arremolina y acumula en estos puntos formando neveros (pequeñas masas de hielo que perduran todo el año), que en períodos fríos pueden actuar como áreas de acumulación de nieve.

Figura 9. Nevero en la cara sureste de un relieve montañoso en los Pirineos Orientales (Francia). La imagen fue tomada en agosto de 2017. Si un nevero persiste durante varios años reciben el nombre de nicho de nivación. Fotografía de Gabriel Castilla.
Figura 9. Nevero en la cara sureste de un relieve montañoso en los Pirineos Orientales (Francia). La imagen fue tomada en agosto de 2017. Si un nevero persiste durante varios años reciben el nombre de nicho de nivación. Fotografía de Gabriel Castilla.

Es importante reconstruir cómo era el relieve montañoso antes de la glaciación y, por tanto, antes de que los glaciares dejaran su huella en el paisaje.

Las cimas de las cordilleras que tienen poca pendiente son más propensas a acumular nieve (y por tanto a la formación hielo glaciar) que las cimas con mucha pendiente o que cuentan con un relieve muy acusado.

En estos casos la nieve tiende a caer en forma de aludes y por tanto no se acumula en las cimas, sino en la profundidad de los valles. Un buen ejemplo lo encontramos en la Sierra de Gredos, que por ser un sistema montañoso antiguo ha sido fuertemente erosionado y su línea de cumbres tiende a la horizontalidad, lo que favorecer la acumulación de nieve en la cuerda de cumbres.

Figura 10. Vista parcial de la cara norte de la Sierra de Gredos (sector oriental), formada durante la Orogenia Alpina, hace unos 40 millones de años. El paisaje que observamos en la actualidad (una línea de cumbres que tiende a la horizontalidad), es el resultado de la acción erosiva del Cuaternario (últimos 2,5 millones de años), periodo en el que se han sucedido hasta 51 episodios climáticos de frío-calor, aunque no todos ellos han dejado evidencias glaciares. Fotografía de Gabriel Castilla.
Figura 10. Vista parcial de la cara norte de la Sierra de Gredos (sector oriental), formada durante la Orogenia Alpina, hace unos 40 millones de años. El paisaje que observamos en la actualidad (una línea de cumbres que tiende a la horizontalidad), es el resultado de la acción erosiva del Cuaternario (últimos 2,5 millones de años), periodo en el que se han sucedido hasta 51 episodios climáticos de frío-calor, aunque no todos ellos han dejado evidencias glaciares. Fotografía de Gabriel Castilla.

Las rocas se pueden romper por diferentes causas. Las fracturas de pequeña entidad se pueden disponerse al azar o seguir patrones de distribución en función de su origen: desde la existencia de heterogeneidades en la roca (por diferencias de composición, por ejemplo), pasando por desgaste debido a ciclos de calor-frío extremo, la descompresión o tensiones propias de la tectónica de placas. Las diaclasas (fracturas sin desplazamiento) favorecen la infiltración del agua en la roca y con ello la aceleración de los procesos de meteorización química (por alteración y disolución de minerales) y la erosión (Figura 11).

Figura 11. Red de fracturas de una de las cumbres de la Sierra de Gredos. La nieve se acumula principalmente en las zonas más erosionadas, siguiendo una red de fracturas que estás dispuestas verticalmente (líneas azules) y en diagonal (líneas rojas). Conforme la erosión vaya haciendo su trabajo, estas zonas de acumulación irán creciendo. Fotografía de Gabriel Castilla.
Figura 11. Red de fracturas de una de las cumbres de la Sierra de Gredos. La nieve se acumula principalmente en las zonas más erosionadas, siguiendo una red de fracturas que estás dispuestas verticalmente (líneas azules) y en diagonal (líneas rojas). Conforme la erosión vaya haciendo su trabajo, estas zonas de acumulación irán creciendo. Fotografía de Gabriel Castilla.

Los escarpes tectónicos son fracturas de mayor tamaño que implican un desplazamiento, normalmente formando un relieve con forma de escalón. Estas fallas también favorecen la meteorización, pero sobre todo los movimientos en masa (deslizamientos, vejigas, torrentes, etc.), formando cabeceras de vaciado donde pueden instalarse cuencas glaciares (Figura 12).

Figura 12. Cabecera de vaciado en uno de los picos de la Sierra de Gredos (detalle ampliado de la Figura 10). La montaña ha sido fuertemente erosionada y vaciada por una red de valles torrenciales rectos y paralelos entre sí, posiblemente escarpes de falla. Es en estos valles alargados, situados a gran altura, con pendiente moderada y a resguardo del viento, donde tienden a instalarse las cuencas glaciares durante los episodios de glaciación. Fotografía de Gabriel Castilla.
Figura 12. Cabecera de vaciado en uno de los picos de la Sierra de Gredos (detalle ampliado de la Figura 10). La montaña ha sido fuertemente erosionada y vaciada por una red de valles torrenciales rectos y paralelos entre sí, posiblemente escarpes de falla. Es en estos valles alargados, situados a gran altura, con pendiente moderada y a resguardo del viento, donde tienden a instalarse las cuencas glaciares durante los episodios de glaciación. Fotografía de Gabriel Castilla.

Durante las glaciaciones una gran cantidad del agua dulce de los continentes queda atrapada en forma de hielo. El resultado es un aumento generalizado de la aridez (falta de humedad ambiental) con una consecuente pérdida de masa vegetal que conlleva la degradación del suelo. Desprovisto de raíces, el suelo es erosionado por el viento con más intensidad, movilizando una gran cantidad de sedimento en forma de arena y grava (que puede formar dunas) y de polvo, que el viento arrastra hasta las capas altas de la atmósfera. Este polvo modificará el albedo de la superficie en la que se deposite, calentándola.

Un análogo podría ser la irrupción en Europa de nubes de polvo sahariano que aceleran el deshielo de las cumbres de Sierra Nevada (Figura 13). ¿Hasta qué punto el polvo puede condicionar la formación y el desarrollo de un glaciar? Algunos estudios señalan que el polvo del desierto del Gobi (entre el norte de China y el sur de Mongolia) podría ser la causa por la que no se formaron grandes masas de hielo en el norte de Asia durante la última glaciación.

Figura 13. En marzo de 2022 la borrasca Celia provocó un episodio de polvo sahariano que afectó a gran parte de la Península Ibérica. En la imagen podemos ver los efectos que posteriormente tuvo en el deshielo de Sierra Nevada. Además de cambios en el albedo de la nieve, el oscurecimiento del cielo provocó una disminución de la insolación, con una pérdida del 80% de la capacidad de producción fotovoltaica de España. ¿Cómo pudo afectar el polvo del Sáhara al desarrollo de los glaciares en la Península Ibérica? Publicación de Amig@s Sierra Nevada.

Recapitulación

Los 10 factores que acabamos de ver nos hablan fundamentalmente de cómo nos alcanza la radiación solar, de cómo la atmósfera y el relieve redistribuyen esa radiación en forma de calor mediante el viento y otros fenómenos meteorológicos, y de cómo la geología condiciona la existencia de lugares favorables para la acumulación del hielo glaciar.

En este contexto podemos afirmar que el glaciarismo es un proceso geológico complejo y para entender el origen, la dinámica y la evolución temporal de los glaciares necesitamos manejar conceptos relacionados con muchas disciplinas, desde la física de la atmósfera y la Geografía, pasando por la Astronomía y la Geología.

El estudio de los glaciares es, sin duda, un estimulante reto multidisciplinar para cualquier espíritu curioso y amante de la Naturaleza.

Este contenido forma parte del Geolodía 2024 de Ávila en Cepeda la Mora, Ávila (España).

Referencias

  • Anguita, F. y Moreno, F. (1993). Procesos Geológicos Externos y Geología Ambiental. Editorial Rueda. Madrid, 311 pp.
  • Bernat Rebollal, M. (2012). Geomorfología de los depósitos eólicos cuaternarios del centro de la Península Ibérica. Una caracterización de la actividad eólica en tierras depinares y la llanura manchega. Tesis Doctoral. Universidad Complutense de Madrid. Facultad de Ciencias Geológicas. Departamento  de Geodinámica.
  • Carrasco, R.M. et al. (2023). The Prados del Cervunal morainic complex: Evidence of a MIS 2 glaciation in the Iberian Central System synchronous to the global LGM. Quaternary Science Reviews, 312.
  • Carrasco, R.M. et al. (2011). Reconstrucción y cronología del glaciar de meseta de la Sierra de Béjar (Sistema Central Español) durante el máximo glaciar. Boletín de la Real Sociedad Española de Historia Natural. Sección Geología. Nº 105 (1-4). Pp. 125-135.
  • Carrasco, R.M. et al. (2020). Glacial geomorphology of the High Gredos Massif: Gredos and Pinar valleys (Iberian Central System, Spain). Journal of Maps, 16:2. Pp. 790-804.
  • Dietrich, S. (2011). Palaeo wind system reconstruction of the last glacial period over Europe, using high resolution proxy data and model-data-comparison. Johannes Gutenberg-Universität Mainz.
  • Elis, R. y Palmer, M. (2016). Modulation of ice ages via precession and dust-albedo feedbacks. Geoscience Frontiers Vol. 7, nº 6, pp. 891-909.
  • Evans, I.S. (1977). World-wide variations in the direction and concentration of cirque and glacier aspects. Geografiska Annaler, 59A (3-4), 151-175.
  • Krinner, G.; Boucher, O. y Balkanski, Y. (2006). Ice-free glacial northern Asia due to dust deposition on Snow. Climate Dynamics Vol. 27, pp. 613-625.
  • Oerlemans, J.; Griesen, R.H. y Van Den Broeke, M.R. (2009). Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morterasch, Switzerland). Journal of Glaciology, Vol. 55, nº 192, pp. 729-736.
  • Oliva, M. et al. (2019). Late Quaternary glacial phases in the Iberian Peninsula. Earth-Science Reviews 192. Pp. 564-600.
  • Oliva. M.; Andrés, N.; Fernández-Fernández. J.M. y Palacios, D. (2023). The evolution of glacial landforms in the Iberian Mountains during the deglaciation. En Palacios, D.; Hughes, P.D.; García-Ruiz; J.M. y Andrés, N. European Glacial Landscapes. The Last Deglaciation. Cap. 22. Pp. 201-208. Elsevier, 2023.
  • Página Web de Meteosierra (Naturaleza): https://meteosierra.com/naturaleza/medio-natural/
  • Pedraza, J. y Carrasco, R.M. (2006). El glaciarismo Pleistoceno del Sistema Central. Enseñanza de las Ciencias de la Tierra, Vol. 13, 3. Pp. 278-288.
  • Rea, B.R. et al. (2020). Atmospheric circulation over Europe during the Younger Dryas. Science Advances, 6. 11 December 2020.
  • Rubial, M. J. (2005). Los glaciares: dinámica y relieve. Enseñanza de las Ciencias de la Tierra, Vol. 13, 3. Pp. 230-234.

GEOLODÍA 24. Qué es una Glaciación

Llamamos glaciaciones a los momentos de la historia de la Tierra en los que ha habido hielo permanente en forma de glaciares. O al menos a aquellos en los que tengamos evidencias de ello. Es decir: ¡Estamos en una glaciación! De hecho, a nuestra especie le ha tocado vivir en el periodo más frío y con más hielo de los últimos 300 millones de años.

Desde hace al menos 33 millones de años tenemos hielo permanente en la Antártida (Stickley et al., 2004), mientras que desde los últimos 3,3 millones de años tenemos hielo permanente en Groenlandia (Westerhold et al., 2020). Por tanto, estamos en una glaciación que afecta a ambos hemisferios (Figura 1).

En esta escala de millones de años, el principal condicionante de los casquetes glaciares es la distribución de los continentes y océanos. La apertura del Paso de Drake aislando la Antártida o el cierre del istmo de Panamá parecen momentos clave para la actual glaciación.

Las curvas del clima global de la Figura 1 representan isótopos de oxígeno en foraminíferos bentónicos, cuyos valores dependen de la cantidad de hielo en planeta y de la temperatura de los océanos. Si quieres saber cómo se obtienen estos registros del clima a lo largo de la historia de la Tierra te recomendamos la entrada «Así conocemos el clima del pasado«.

El hielo glaciar, así como el hielo marino son muy sensibles a pequeñas variaciones del clima, ya que tan sólo 1 ºC puede suponer la diferencia entre el estado sólido y el líquido. Esta sensibilidad del hielo hace que sutiles alteraciones como las asociadas a pequeños cambios en la órbita de la Tierra, deriven en cambios climático extremos. Es por esto que en los últimos millones de años, en el período Cuaternario, con glaciación en ambos hemisferios, tenemos cambios constantes y muchas veces abruptos en las cantidades de hielo en el planeta (Figura 1).

Esas grandes variaciones, que se dan cada decenas o centenas de miles de años, las dividimos en periodos glaciares e interglaciares. Las «glaciaciones» que esculpieron los valles glaciares de Gredos o la Serrota en Ávila son en realidad esos últimos periodos glaciares del Cuaternario (Figura 1). En esta escala de decenas-cientos de miles de años, los principales desencadenantes de los cambios climáticos son los ciclos de Milankovitch.

Además de las curvas de isótopos de oxígeno, que nos ayudan a conocer las variaciones de temperatura y hielo en el planeta, tenemos otras pistas para deducir la presencia de grandes glaciares en épocas muy remotas de la historia de la Tierra. Una de ellas son los «dropstones«: Rocas enormes incluidas en depósitos sedimentarios del fondo del océano. ¿Cómo pudieron llegar hasta allí, tan lejos de los continentes? Te dejamos un vídeo con el ejemplo de la localidad de Checa, en Teruel.

Este contenido forma parte del Geolodía 2024 de Ávila en Cepeda la Mora, Ávila (España).

Referencias

  • Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography20(1).
  • Stickley, C. E., Brinkhuis, H., Schellenberg, S. A., Sluijs, A., Röhl, U., Fuller, M., … & Williams, G. L. (2004). Timing and nature of the deepening of the Tasmanian Gateway. Paleoceanography19(4).
  • Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., … & Zachos, J. C. (2020). An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science369(6509), 1383-1387.
  • Imagen de portada: Cabra montesa frente a un circo glaciar de la sierra de Gredos. Javier P. Tarruella.

El paisaje de La Moraña. La geología invisible

Autor – Javier Elez

El paisaje de gran parte de la comarca de La Moraña se caracteriza por un relieve bastante plano del que sobresalen de tanto en tanto algunos cerros de dimensiones muy modestas, con pendientes suaves y un conjunto atravesado por los valles de los ríos Zapardiel, Arevalillo y Adaja. Domina en toda la comarca el cultivo del cereal y destacan en el horizonte los pinares autóctonos.

A pesar de la monotonía aparente de la llanura, desde el punto de vista geológico se sobreimponen en esta comarca una serie de procesos geológicos relevantes que le confieren su forma y características actuales. Estos procesos, la geología de los últimos millones de años, son identificables para el ojo experto. Pero si no lo eres, quizá necesites una pequeña guía para empezar a leer la geología aparentemente invisible de La Moraña. ¡Aquí va!

La formación del paisaje

La forma plana general de toda la comarca responde a un fenómeno de gran alcance geográfico relacionado con lo que los geólogos denominamos cuenca sedimentaria neógena del Duero.

¿SABÍAS QUE…? El período Neógeno comprende desde hace unos 23 millones de años hasta el comienzo del período Cuaternario hace 2,6 millones de años. Si quieres saber más sobre el tiempo geológico, consulta la tabla cronoestratigráfica internacional..

Pulsa sobre la imagen para ver la tabla cronoestratigráfica completa.

Una cuenca geológica o sedimentaria es una depresión en la corteza terrestre que tiene un origen tectónico y en la que se acumulan sedimentos. No confundir con cuenca hidrográfica. La cuenca sedimentaria del Duero tiene unos límites diferentes a la cuenca hidrográfica actual del río y un significado geológico distinto.

Para saber más, consulta: Qué es una cuenca hidrográfica

El desarrollo general y las causas de la formación de la cuenca sedimentaria del Duero son muy similares a las que explicamos en otro artículo sobre la cuenca sedimentaria de Amblés, pero en este caso los límites de la del Duero son: al sur, el Sistema Central; al este, la Cordillera Ibérica; al norte, la Cordillera Cantábrica. Mira este mapa para verlo más claro:

Figura 1. En naranja se marca el área ocupada por la cuenca geológica o sedimentaria neógena del Duero. Esta es una depresión de origen tectónico que está rellena por sedimentos del periodo Neógeno.
En rojo aparecen marcados los límites de la cuenca hidrográfica actual del río Duero.

Para saber más sobre la formación y características de la cuenca sedimentaria de Amblés, mira el artículo: Geomorfología del Valle de Amblés.

Al igual que la cuenca sedimentaria de Amblés, la del Duero se rellenó hasta arriba de sedimentos con capas prácticamente horizontales y paralelas que van marcando el paso del tiempo, con las más recientes arriba.

  1. Los sistemas montañosos circundantes aportaron sedimentos hasta que ya no cabían más. La cuenca se colmató (rellenó), dejando arriba una superficie horizontal muy extensa.
  2. Sobre esa superficie de colmatación se fue desarrollando después el resto de procesos geológicos que la modifican ligeramente, pero que han sido incapaces de borrar completamente su impronta.

A este proceso de colmatación de la cuenca sedimentaria del Duero debemos fundamentalmente el aspecto llano de la meseta castellano-leonesa.

¿SABÍAS QUE…? Los datos de subsuelo indican que amplios sectores del centro y norte de la cuenca sedimentaria del Duero tienen espesores de entre 1,5 y 2 km de sedimentos neógenos.

Sedimentación, erosión y cerros testigos

La cuenca sedimentaria del Duero era de tipo endorreico: no drenaba hacia el Atlántico y el agua y los sedimentos que entraban en la cuenca se quedaban allí. El relleno de la cuenca sedimentaria del Duero es un proceso muy largo que ocupa una parte importante del período Neógeno.

Sin embargo, desde hace unos 2,5 millones de años se rompe esta dinámica y se empiezan a desarrollar los ríos que conocemos en la actualidad. Es en este momento, a lo largo del período Cuaternario, cuando finalmente el río Duero termina conectando las cabeceras de montaña con el océano Atlántico, haciendo de cinta transportadora de agua y sedimentos y erosionando la antigua cuenca sedimentaria del Duero.

El desarrollo inicial de esta red de drenaje fluvial, precursora de la actual del río Duero, excava ligeramente la superficie de colmatación, erosiona las capas más fáciles y deja las más difíciles de erosionar prácticamente intactas, elaborando un paisaje dominantemente plano.

Esta erosión incipiente deja esparcidos pequeños cerros de suaves laderas y cimas planas que son los únicos testigos que quedan de unos sedimentos que han sido erosionados. A estas formas se las denomina cerros testigos en geología. La parte más alta de estos cerros está ocupada por capas sedimentarias más resistentes a la erosión y los protegen de ser completamente desmantelados.

Figura 2.
Formación de cerros testigos.
1) Esquema general de la disposición del relieve montañoso del Sistema Central y la cuenca geológica del Duero.
2) Modelo de desarrollo de un cerro testigo.
Figura 3. Dos imágenes en las que se pueden observar en distintos planos el relieve dominantemente llano, la superficie de colmatación, los cerros testigos y al fondo el Sistema Central. Imágenes tomadas en las cercanías de El Oso y Hernansancho, en la provincia de Ávila (España). Fotos de Gabriel Castilla.

La Geología como ciencia histórica

Sobre este relieve antiguo (paleo-relieve) de La Moraña, los cambios en el clima relacionados con el episodio climático conocido como Younger Dryas, hace unos 12.800 años, proporcionan las condiciones adecuadas para que se instalen espectaculares cinturones de dunas eólicas . Al final de este período frío, hace unos 11.700 años, el ascenso de las temperaturas deja las circunstancias ideales para que comience la «revolución neolítica» y el tránsito hacia sociedades sedentarias agrícolas. Pero esa es otra historia.

Los procesos descritos en este artículo hablan de la historia geológica de esta parte del mundo que es la comarca de La Moraña. Por esto decimos que la Geología es una ciencia histórica, porque nos cuenta cómo ha evolucionado el planeta y los procesos que le dan forma a lo largo de su propia historia, que es muy larga: unos 4.550 millones de años.

Para saber más sobre el período climático Younger Dryas: Younger Dryas: cambios climáticos que condicionaron el paisaje abulense y la vida humana.

Conoce más sobre las dunas de La Moraña y cómo y cuándo se formaron en: Un mar de dunas en La Moraña.

Fuentes de consulta

Younger Dryas: cambios climáticos que condicionaron el paisaje abulense y la vida humana

Autor (texto y gráficos) – Javier Pérez Tarruella

Hace 18.000 años nuestro planeta se encontraba inmerso en el último máximo glacial. La nieve caída sobre los continentes no llegaba a fundirse en verano, formándose grandes acumulaciones de hielo. Y como el agua de precipitación no retornaba al océano el nivel del mar descendió hasta 125 metros por debajo del actual.

18.000 años es un parpadeo en términos geológicos. Y es que el periodo en el que le ha tocado vivir a nuestra especie (el Cuaternario) se caracteriza por un clima que cambia rápidamente (fig. 1).

Figura 1. Variación climática en los últimos 500.000 años. A grandes rasgos se diferencian 5 glaciaciones y 5 periodos interglaciales, en el último de los cuales nos encontramos ahora. En este artículo nos centraremos en la transición de la última glaciación al presente Interglacial (la ¨Última Terminación»). Datos de Lisiecki & Raymo (2005).

Estos cambios climáticos, que a grandes rasgos dan lugar a una glaciación y un periodo interglacial cada 100.000 años aproximadamente, son debidos a:

Estos factores astronómicos siempre han existido, pero el hecho de que hayamos llegado a tener casquetes de hielo en ambos polos (algo rarísimo en la Historia de la Tierra) ha hecho mucho más vulnerable y cambiante al sistema climático.

El enfriamiento súbito del Younger Dryas

Estos cambios no siempre son graduales. Si estudiamos en detalle la última glaciación vemos que hay decenas de cambios bruscos en las temperaturas. Cuando parecía que la glaciación se retiraba definitivamente en el hemisferio Norte, dio un último coletazo hace unos 12.800 años con el llamado Younger Dryas (también conocido como Dryas Reciente o Joven Dryas).

Este enfriamiento súbito fue el responsable del último periodo de actividad del mar de dunas de La Moraña, y es que la precipitación en Ávila disminuyó. Al reducirse la evaporación del Atlántico Norte por las bajas temperaturas, la disponibilidad de humedad hacia la penísula Ibérica también se redujo. Seguramente este sistema dunar estuvo también activo en varios momentos de la última glaciación, coincidiendo con los eventos Heinrich (hace 16.000, 24.000, 30.000, 39.000, 48.000 y 62.000 años aproximadamente).

Para saber más sobre el mar de dunas de La Moraña.

La hipótesis más aceptada durante mucho tiempo sobre el origen de este cambio climático fue la del vaciado del Lago Agassiz. Este lago se formó por el deshielo del casquete glaciar de Norteamérica, en la región de los Grandes Lagos, alcanzando un tamaño similar al de la Península Ibérica (figura 2). En determinado momento este lago habría vertido sus aguas al Atlántico, deteniendo las corrientes oceánicas y enfriando especialmente el Atlántico Norte. Aunque ya no se asocie el Younger Dryas al lago Agassiz, sí se ha confirmado la relación del conocido como evento 8.2 ka (hace 8200 años) con el último vaciado de este lago (You et al., 2023).

Figura 2. El Lago Agassiz y las posibles vías de vertido de sus aguas al océano.

¿Sabías que…? La película Ice Age 2 está basada en la hipótesis del Lago Agassiz. Los protagonistas viven junto a una presa de hielo que retiene el agua del deshielo acumulada en el Lago Agassiz y deben escapar antes de que se rompa y el lago se vacíe de golpe, es decir: ¡antes de que comience el Younger Dryas!

El final del Younger Dryas y el inicio de la agricultura

Como se observa en la figura 3, a pesar de que los factores astronómicos aumentaban la insolación de verano sobre el hemisferio norte, la temperatura disminuyó, y con ella la precipitación.

Sin embargo, más destacable que el enfriamiento del Younger Dyas fue su final. Y es que ese calentamiento y deshielo que se habían visto frustrados remontaron rápidamente, con una subida del nivel del mar de más de 40 mm/año durante unos siglos y un calentamiento de más de 7ºC en Groenlandia para ese periodo.

Figura 3. Gráfica que muestra 5.000 años de evolución climática, incluyendo el Younger Dryas. La temperatura y la precipitación en el Atlántico Norte disminuyeron en este periodo, a pesar del aumento de la insolación de verano en el hemisferio Norte. El enfriamiento finalizó de golpe, provocando la fusión masiva de glaciares y un aumento brusco del nivel del mar.

Los registros arqueológicos muestran que el inicio de la agricultura y las civilizaciones complejas (el Neolítico) coincide con el final del Younger Dryas, el calentamiento que dio paso al presente Interglacial. Ahora, gracias a unos sondeos en el Mar Muerto, en el entorno de Mesopotamia o “Cuna de la Civilización” sabemos que esta coincidencia es exacta. La incipiente actividad agrícola y el pastoreo habrían provocado un aumento de la erosión y por tanto el incremento de la sedimentación observado en la zona.

Por una parte, parece que un cambio ambiental tan brusco obligó a modificar el modo en que obteníamos el alimento; y por otra parte, la relativa estabilidad climática del presente periodo Interglacial (Holoceno) nos permitió perfeccionar la técnica hasta llegar a los tractores que hoy aran La Moraña.

Quizá sin el Younger Dryas no habría surgido este nuevo paradigma de vida de nuestra especie, o quizá hubiese aparecido 2.000 años antes. En cualquier caso, fue un evento que nos invita a preguntarnos cuánto han condicionado los cambios climáticos la historia de la Humanidad.

¿Sabías que…? Otra de las hipótesis utilizadas para explicar el cambio climático del Younger Dryas es el impacto de un meteorito en Groenlandia. Esta hipótesis se lanzó en 2007 y en 2018 se descubrió bajo el casquete glaciar de Groenlandia un enorme cráter de impacto de 30 km de diámetro. Los cálculos sugieren que un meteorito de 1 km impactó contra la Tierra hace entre 10.000 y 2 millones de años, de momento es el único sospechoso que tenemos como culpable cósmico del Younger Dryas. Además, se han encontrado evidencias de impacto en más de 60 yacimientos de todo el planeta. Sin embargo, estos cambios tan abruptos son habituales en el transcurso de los periodos glaciales, y en su mayoría son explicados por la propia dinámica del sistema climático sometido a la vulnerabilidad de los glaciares y del hielo de la banquisa.

Referencias

Organismos que colonizan los granitos: la liquenometría

Autor – Javier Elez

¿Te has fijado alguna vez en la gran cantidad de seres vivos que colonizan las rocas que ves en tus paseos por el campo? Es habitual encontrar, por ejemplo, una gran variedad de musgos y líquenes tapizando los granitos.

Los musgos son plantas no vasculares, mientras que los líquenes son organismos simbiontes complejos en los que colaboran hongos, algas y levaduras, según publicó la revista Science hace un par de años.

img-20171228-wa0001460469250.jpg

Estos últimos, los líquenes, se estudian en varios campos e incluso existe una rama de la Botánica denominada Liquenología. Pero, ¿para qué se utilizan los líquenes en Geología?

Los líquenes y la geología

En geología se emplea una técnica de datación denominada liquenometría.

Algunas especies de líquenes nos permiten estimar con bastante precisión el tiempo que ha pasado desde que una superficie queda expuesta y los líquenes comienzan a colonizarla hasta la fecha en la que se realiza la datación. Según pasa el tiempo, la colonia va creciendo en diámetro y este crecimiento se puede medir.

Esta técnica se puede utilizar con éxito para datar superficies de hasta 5.000 años. Evidentemente, cuanto más atrás en el tiempo, mayor puede ser el margen de error.

¿En qué situaciones pueden quedar expuestas nuevas superficies para ser colonizadas por líquenes? En riadas, en caídas de bloques y de construcciones por terremotos, en movimiento de masas rocosas por glaciares, deslizamientos de ladera, etc.

cantera
En esta cantera de granito abandonada los líquenes comenzaron a proliferar sobre las superficies expuestas con el cese de la actividad de extracción.

Esta técnica de datación se emplea en el estudio de los procesos geológicos activos en campos como la geología del Cuaternario, estudios relativos a la variación del clima a lo largo de los últimos miles de años y los riesgos geológicos.

Algunas de las aplicaciones prácticas de la liquenometría son:

  • El estudio de la evolución temporal del retroceso de un glaciar. Y por tanto, las variaciones climáticas que se dieron en el pasado.
  • La datación y estudio de los efectos de grandes terremotos del pasado, de los que en muchas ocasiones no queda un registro documental.
  • Evolución de grandes deslizamientos o de zonas con importantes desprendimientos de roca por inestabilidad gravitacional.
  • Estudio de grandes riadas y sus periodos de retorno.
  • Como te puedes imaginar, también se utiliza con éxito en otras ramas del conocimiento como la Arqueología.

Cómo se realiza la datación liquenométrica

Simplificando mucho, la obtención de una edad se realiza estimando una curva de crecimiento climático en función de la localización geográfica en la que se encuentran y relacionando esta curva con el diámetro de la colonia.

Estos cálculos son relativamente complejos y se tienen en cuenta parámetros tales como la especie en concreto de liquen, la cantidad de insolación que le llega a la colonia en función de su localización (solana-umbría), la elevación a la que se encuentra, si se halla en una superficie plana o inclinada, etc.

¿SABÍAS QUE…?

Para calibrar la curva de crecimiento de las colonias de líquenes también se miden de forma sistemática en los cementerios cercanos a la localidad de estudio.

Las lápidas son superficies de piedra expuestas en las que está marcada la fecha de primera exposición y por tanto se sabe cuándo comienza la colonización por líquenes.

© Textos de Javier Elez.

© Fotografías de Gabriel Castilla y Javier Elez.

¿Quieres saber más sobre métodos de datación?