
4
II

Tiled Forward Shading
Markus Billeter, Ola Olsson, and Ulf Assarsson

4.1 Introduction
We will explore the tiled forward shading algorithm in this chapter. Tiled forward
shading is an extension or modification of tiled deferred shading [Balestra and
Engstad 08, Swoboda 09, Andersson 09, Lauritzen 10, Olsson and Assarsson 11],
which itself improves upon traditional deferred shading methods [Hargreaves and
Harris 04,Engel 09].

Deferred shading has two main features: decoupling of lighting and shading
from geometry management and minimization of the number of lighting computa-
tions performed [Hargreaves and Harris 04]. The former allows for more efficient
geometry submission and management [Shishkovtsov 05] and simplifies shaders
and management of shader resources. However the latter is becoming less of an
issue on modern GPUs, which allow complex flow control in shaders, and support
uniform buffers and more complex data structures in GPU memory.

Traditional forward pipelines typically render objects one by one and consider
each light for each rasterized fragment. In deferred shading, one would instead
render a representation of the geometry into a screen-sized G-buffer [Saito and
Takahashi 90], which contains shading data for each pixel, such as normal and
depth/position. Then, in a separate pass, the lighting and shading is computed
by, for example, rendering light sources one by one (where each light source is
represented by a bounding volume enclosing the light’s influence region). For
each generated fragment during this pass, data for the corresponding pixel is
fetched from the G-buffer, shading is computed, and the results are blended into
an output buffer. The number of lighting computations performed comes very
close to the optimum of one per light per visible sample (somewhat depending
on the bounding volumes used to represent light sources).

Deferred shading thereby succeeds in reducing the amount of computations
needed for lighting, but at the cost of increased memory requirements (the G-
buffer is much larger than a color buffer) and much higher memory bandwidth
usage. Tiled deferred shading fixes the latter (Section 4.2), but still requires large
G-buffers.

99

100 II Rendering

(a) Plain (b) With transparency

(c) MSAA (d) Custom shaders

Figure 4.1. We explore tiled forward shading in this article. (a) While tiled deferred
shading outperforms tiled forward shading in the plain (no transparency, no multisample
antialiasing (MSAA)) case by approximately 25%, (b) tiled forward shading enables use
of transparency. Additionally, (c) we can use hardware supported MSAA, which, when
emulated in deferred shading requires large amounts of memory. Furthermore, at 4×
MSAA, tiled forward shading outperforms deferred with equal quality by 1.5 to 2 times.
The image shows 8× MSAA, which we were unable to emulate for deferred rendering
due to memory constraints. (d) Finally, we discuss custom shaders. As with standard
forward rendering, shaders can be attached to geometry chunks. The scene contains
1,024 randomly placed lights, and the demo is run on an NVIDIA GTX480 GPU.

4. Tiled Forward Shading 101

Tiled forward shading attempts to combine one of the main advantages of
(tiled) deferred rendering, i.e., the reduced amount of lighting computations done,
with the advantages of forward rendering. Besides reduced memory requirements
(forward rendering does not need a large G-buffer), it also enables transparency
[Kircher and Lawrance 09,Enderton et al. 10] (Section 4.5), enables multisampling
schemes [Swoboda 09, Lauritzen 10] (Section 4.6), and does not force the use of
übershaders if different shading models must be supported (Section 4.7). See the
images in Figure 4.1 for a demonstration of these different aspects.

4.2 Recap: Forward, Deferred, and Tiled Shading
The terms forward, deferred, and tiled shading will be appearing quite frequently
in this chapter. Therefore, let us define what we mean, since usage of these terms
sometimes varies slightly in the community. The definitions we show here are
identical to the ones used by [Olsson and Assarsson 11].

With forward shading, we refer to the process of rendering where lighting
and shading computations are performed in the same pass as the geometry is
rasterized. This corresponds to the standard setup consisting of a vertex shader
that transforms geometry and a fragment shader that computes a resulting color
for each rasterized fragment.

Deferred shading splits this process into two passes. First, geometry is ras-
terized, but, in contrast to forward shading, geometry attributes are output into
a set of geometry buffers (G-buffers). After all geometry has been processed this
way, an additional pass that computes the lighting or full shading is performed
using the data stored in the G-buffers.

In its very simplest form, the second pass (the lighting pass) may look some-
thing like following:

for each G-buffer sample {
sample_attr = load attributes from G-buffer

for each light {
color += shade (sample_attr , light)

}

output pixel color;
}

Sometimes, the order of the loops is reversed. The deferred algorithm described
in Section 4.1 is an example of this.

The light pass shown above requires O (Nlights · Nsamples) lighting computa-
tions. If we somehow know which lights were affecting what samples, we could
reduce this number significantly [Trebilco 09].

102 II Rendering

Tiled deferred shading does this by dividing samples into tiles of N × N sam-
ples. (We have had particularly good successes with N = 32, but this should
be somewhat hardware and application dependent.) Lights are then assigned to
these tiles. We may optionally compute the minimum and maximum Z-bounds
of each tile, which allows us to further reduce the number of lights affecting each
tile (more discussion on this in Section 4.4).

Benefits of tiled deferred shading [Olsson and Assarsson 11] are the following:

• The G-buffers are read only once for each lit sample.

• The framebuffer is written to once.

• Common terms of the rendering equation can be factored out and computed
once instead of recomputing them for each light.

• The work becomes coherent within each tile; i.e., each sample in a tile
requires the same amount of work (iterates over the same lights), which
allows for efficient implementation on SIMD-like architectures (unless, of
course, the shader code contains many branches).

For tiled deferred shading (and most deferred techniques) to be worthwhile, most
lights must have a limited range. If all lights potentially affect all of the scene,
there is obviously no benefit to the tiling (Figure 4.2(a)).

Tiled deferred shading can be generalized into Tiled Shading, which includes
both the deferred and forward variants. The basic tiled shading algorithm looks
like the following:

1. Subdivide screen into tiles.

2. Optional: find minimum and maximum Z-bounds for each tile.

3. Assign lights to each tile.

4. For each sample: process all lights affecting the current sample’s tile.

Step 1 is basically free; if we use regular N × N tiles, the subdivision is implicit.
Finding minimum and maximum Z-bounds for each tile is optional (Step 2).
For instance, a top-down view on a scene with low depth complexity may not
allow for additional culling of lights in the Z-direction. Other cases, however, can
benefit from tighter tile Z-bounds, since fewer lights are found to influence that
tile (Figure 4.2(b)).

In tiled deferred shading, the samples in Step 4 are fetched from the G-buffers.
In tiled forward shading, the samples are generated during rasterization. We will
explore the latter in the rest of the article.

We recently presented an extension to tiled shading, called clustered shad-
ing [Olsson et al. 12b]. Clustered shading is an extension of tiled shading that

4. Tiled Forward Shading 103

Z

Near Far

Solid

So
lid

Light

Light
So

lid
S

Light

Solid
Solid

Light

Z

Near Far

Solid

So
lid

Far

Z

Solid

So
lid

(a) Small and large lights

Z

Near

FarSolid
Solid

Solid
Light

Light

Lightidid
tt

g

hhthht

gggLight
Light

Light
Light

Light

Z

Near Far

Solid

So
lid

Light

So
lid

Light

Light

Light

Light

Light

(b) Top-down and first person views

Figure 4.2. (a) The effect of having lights that are too large (bottom image): there is
no gain from the tiling, as all light sources affect all tiles (drawn in yellow), compared
to the top image, where there is one light per tile on average. (b) Comparison of a
top-down view and a first-person view. In the top-down view (top), all lights are close
to the ground, which has only small variations in the Z-direction. In this case, not much
is gained from computing minimum and maximum Z-bounds. In the first-person view
(bottom), the bounds help (three lights in the image affect no tiles at all).

handles complex light and geometry configurations more robustly with respect
to performance. However, tiled forward shading is significantly simpler to im-
plement, and works on a much broader range of hardware. We will discuss the
clustered shading extension and how it interacts with the tiled forward shading
presented here in Section 4.8.

104 II Rendering

4.3 Tiled Forward Shading: Why?
The main strength of deferred techniques, including tiled deferred shading, is that
over-shading due to over-draw is eliminated. However, most deferred techniques
suffer from the following weaknesses when compared to forward rendering:

• Transparency/blending is tricky, since traditional G-buffers only allow stor-
age of a single sample at each position in the buffer.

• The memory storage and bandwidth requirements are higher and become
even worse with MSAA and related techniques (Section 4.6).

Forward rendering, on the other hand, has good support for

• transparency via alpha blending,

• MSAA and related techniques through hardware features (much less mem-
ory storage is required).

In addition, forward rendering trivially supports different shaders and materials
for different geometries. Deferred techniques would generally need to fall back to
übershaders (or perform multiple shading passes).

A special advantage for tiled forward shading is its low requirements on GPU
hardware. It is possible to implement a tiled forward renderer without compute
shaders and other (relatively) recent hardware features. In fact, it is possible
to implement a tiled forward renderer on any hardware that supports depen-
dent texture lookups in the fragment shader. On the other hand, if compute
shaders are available, we can take advantage of this during, say, light assignment
(Section 4.4).

In the following sections, we first present a tiled forward shading renderer
to which we add support for transparency, MSAA and finally experiment with
having a few different shaders for different objects. We compare performance
and resource consumption to a reference tiled deferred shading renderer and show
where the tiled forward renderer wins.

4.4 Basic Tiled Forward Shading
We listed the basic algorithm for all tiled shading variants in Section 4.2. For
clarity, it is repeated here including any specifics for the forward variant.

1. Subdivide screen into tiles

2. Optional: pre-Z pass—render geometry and store depth values for each
sample in the standard Z-buffer.

3. Optional: find minimum and/or maximum Z-bounds for each tile.

4. Tiled Forward Shading 105

4. Assign lights to each tile.

5. Render geometry and compute shading for each generated fragment.

Subdivision of screen. We use regular N × N pixel tiles (e.g., N = 32). Having
very large tiles creates a worse light assignment; each tile will be affected by
more light sources that affect a smaller subset of samples in the tile. Creating
very small tiles makes the light assignment more expensive and increases the
required memory storage—especially when the tiles are small enough that many
adjacent tiles are found to be affected by the same light sources.

Optional pre-Z pass. An optional pre-Z pass can help in two ways. First, it is
required if we wish to find the Z-bounds for each tile in the next step. Secondly,
in the final rendering pass it can reduce the number of samples that need to be
shaded through early-Z tests and similar hardware features.

The pre-Z pass should, of course, only include opaque geometry. Transparent
geometry is discussed in Section 4.5.

Though a pre-Z pass is scene and view dependent, in our tests we have found
that adding it improves performance significantly. For instance, for the images in
Figure 4.1(a), rendering time is reduced from 22.4 ms (upper view) and 37.9 ms
(lower view) to 15.6 ms and 18.7 ms, respectively.

Optional minimum or maximum Z-bounds. If a depth buffer exists, e.g., from the
pre-Z pass described above, we can use this information to find (reduce) the ex-
tents of each tile in the Z-direction (depth). This yields smaller per-tile bounding
volumes, reducing the number of lights that affect a tile during light assignment.

Depending on the application, finding only either the minimum or the max-
imum bounds can be sufficient (if bounds are required at all). Again, trans-
parency (Section 4.5) interacts with this, as do various multisampling schemes
(Section 4.6).

In conjunction with the pre-Z test above, the minimum or maximum reduction
yields a further significant improvement for the views in Figure 4.1(a). Rendering
time with both pre-Z and minimum or maximum reduction is 10.9 ms (upper) and
13.8 ms (lower), respectively—which is quite comparable to the performance of
tiled deferred shading (8.5 ms and 10.9 ms). The reduction itself is implemented
using a loop in a fragment shader (for simplicity) and currently takes about
0.75 ms (for 1,920 × 1,080 resolution).

Light assignment. Next, we must assign lights to tiles. Basically, we want to
efficiently find which lights affect samples in which tiles. This requires a few
choices and considerations.

In tiled shading, where the number of tiles is relatively small (for instance,
a resolution of 1,920 × 1,080 with 32 × 32 tiles yields just about 2,040 tiles), it
can be feasible to do the assignment on the CPU. This is especially true if the

106 II Rendering

number of lights is relatively small (e.g., a few thousand). On the CPU, a simple
implementation is to find the screen-space axis-aligned bounding boxes (AABBs)
for each light source and loop over all the tiles that are contained in the 2D region
of the AABB. If we have computed the minimum and maximum depths for each
tile, we need to perform an additional test to discard lights that are outside of
the tile in the Z-direction.

On the GPU, a simple brute-force variant works for moderate amounts of
lights (up to around 10,000 lights). In the brute-force variant, each tile is checked
against all light sources. If each tile gets its own thread group, the implementa-
tion is fairly simple and performs relatively well. Obviously, the brute-force algo-
rithm does not scale very well. In our clustered shading implementation [Olsson
et al. 12b], we build a simple light hierarchy (a BVH) each frame and test the
tiles (clusters) against this hierarchy. We show that this approach can scale up
to at least one million lights in real time. The same approach is applicable for
tiled shading as well.

Rendering and shading. The final step is to render all geometry. The pipeline for
this looks almost like a standard forward rendering pipeline; different shaders and
related resources may be attached to different chunks of geometry. There are no
changes to the stages other than the fragment shader.

The fragment shader will, for each generated sample, look up which lights
affect that sample by checking what lights are assigned to the sample’s tile (List-
ing 4.1).

4.5 Supporting Transparency
As mentioned in the beginning of this article, deferred techniques have some
difficulty dealing with transparency since traditional G-buffers only can store
attributes from a single sample at each buffer location [Thibieroz and Grün 10].
However, with forward rendering, we never need to store attributes for samples.
Instead we can simply blend the resulting colors using standard alpha-blending.

Note that we are not solving the order-dependent transparency problem.
Rather, we support, unlike many deferred techniques, standard alpha-blending
where each layer is lit correctly. The application must, however, ensure that
transparent objects are drawn in the correct back-to-front order.

We need to make the following changes, compared to the basic tiled forward
shading algorithm (Section 4.4).

Optional minimum or maximum Z-bounds. We need to consider transparent geom-
etry here, as nonoccluded transparent objects will affect a tile’s bounds inasmuch
that it moves a tile’s minimum Z-bound (“near plane”) closer to the camera.

We ended up using two different sets of tiles for opaque and transparent
geometries, rather than extending a single set of tiles to include both opaque and

4. Tiled Forward Shading 107

// 1D texture holding per -tile light lists
uniform isampleBuffer tex_tileLightLists;

// uniform buffer holding each tile’s light count and
// start offset of the tile’s light list (in
// tex_tileLightIndices)
uniform TileLightListRanges
{

ivec2 u_lightListRange[MAX_NUM_TILES];
}

void shading_function(inout FragmentData aFragData)
{

// ...

// find fragment ’s tile using gl_FragCoord
ivec2 tileCoord = ivec2(gl_FragCoord.xy)

/ ivec2(TILE_SIZE_X , TILE_SIZE_Y);
int tileIdx = tileCoord.x

+ tileCoord.y * LIGHT_GRID_SIZE_X;

// fetch tile’s light data start offset (.y) and
// number of lights (.x)
ivec2 lightListRange = u_lightListRange[tileIdx].xy;

// iterate over lights affecting this tile
for(int i = 0; i < lightListRange.x; ++i)
{

int lightIndex = lightListRange.y + i;

// fetch global light ID
int globalLightId = texelFetch(

tex_tileLightLists, lightIndex).x;

// get the light ’s data (position , colors , ...)
LightData lightData;
light_get_data(lightData , globalLightId);

// compute shading from the light
shade(aFragData , lightData);

}

// ...
}

Listing 4.1. GLSL pseudocode that demonstrates how lights affecting a given sample are
fetched. First, we find the fragment’s associated tile (tileIdx) based on its position in the
framebuffer. For each tile we store two integers (u_lightListRange array), one indicating
the number of lights affecting the tile, and the other describes the offset into the global
per-tile light list buffer (tex_tileLightLists). The light list buffer stores a number of
integers per tile, each integer identifying a globally unique light that is affecting the
tile.

transparent geometries. The Z-bounds for tiles used with opaque geometry are
computed as described in Section 4.4, which gives a good light assignment for the
opaque geometry (Figure 4.3(a)).

108 II Rendering

Z

Near Far

Solid

So
lid

Trans-
parent

Trans-
parent

Solid
Solid

(a)

Z

Near Far

Solid

So
lid

-
par en t

-

Solid

Trans-
parent

Trans-
parent

(b)

Figure 4.3. Z-bounds used for (a) opaque and (b) transparent geometries.

For transparent geometry, we would like to find the transparent objects’ min-
imum Z-value and the minimum of the transparent objects’ and opaque objects’
respective maximum Z-values. However, this is somewhat cumbersome, requir-
ing several passes over the transparent geometry; therefore, we simply use the
maximum Z-value from the opaque geometry to cap the tiles in the far direction.
This discards lights that are hidden by opaque geometry. In the near direction,
we extend the tiles to the camera’s near plane, as shown in Figure 4.3(b).

Using separate bounds turned out to be slightly faster than using the same tile
bounds for both opaque and transparent geometry; in Figure 4.1(b), when using
separate bounds, rendering takes 15.1 ms (upper) and 21.9 ms (lower), compared
to 16.1 ms and 23.5 ms when using the extended bounds for both opaque and
transparent geometries.

We would like to note that this is, again, scene dependent. Regardless of
whether we use the approximate variant or the exact one, we can still use the
depth buffer from the opaque geometry during the final render in order to enable
early-Z and similar optimizations. If we do not use the minimum or maximum
reduction to learn a tile’s actual bounds, no modifications are required to support
transparency.

Light assignment. If separate sets of tiles are used, light assignment must be done
twice. In our case, a special optimization is possible: we can first assign lights in
two dimensions and then discard lights that lie behind opaque geometry (use the
maximum Z-bound from the tiles only). This yields the light lists for transparent
geometry. For opaque geometry, we additionally discard lights based on the
minimum Z-bound information (Listing 4.2).

4. Tiled Forward Shading 109

// assign lights to 2D tiles
tiles2D = build_2d_tiles();
lightLists2D = assign_lights_to_2d_tiles(tiles2D);

// draw opaque geometry in pre -Z pass and find tiles ’
// extents in the Z- direction
depthBuffer = render_preZ_pass();
tileZBounds = reduce_z_bounds(tiles2D , depthBuffer);

// for transparent geometry , prune lights against maximum Z- direction
lightListsTrans

= prune_lights_max(lightLists2D , tileZBounds);

// for opaque geometry additionally prune lights against
// minimum Z- direction
lightListsOpaque

= prune_lights_min(lightListsTrans , tileZBounds);

// ...

// later: rendering
draw(opaque geometry , lightListsOpaque);
draw(trasparent geometry , lightListsTrans);

Listing 4.2. Pseudocode describing the rendering algorithm used to support trans-
parency, as shown in Figure 4.1(b). We perform the additional optimization where we
first prune lights based on the maximum Z-direction, which gives the light assignment
for transparent geometry. Then, we prune lights in the minimum Z-direction, which
gives us light lists for opaque geometry.

Rendering and shading. No special modifications are required here, other than
using the appropriate set of light lists for opaque and transparent geometries, re-
spectively. First, all opaque geometry should be rendered. Then the transparent
geometry is rendered back to front.1

4.6 Support for MSAA
Supporting MSAA and similar schemes is very simple with tiled forward shading.
We mainly need to ensure that all render targets are created with MSAA enabled.
Additionally, we need to consider all (multi)samples during the optional minimum
or maximum Z-reduction step.

We show the effect of MSAA on render time in Figure 4.4. As we compare to
tiled deferred shading, which does not support transparency, Figure 4.4 includes
timings for tiled forward both with (Figure 4.1(b)) and without (Figure 4.1(a))
transparency. Additionally, we compare memory usage between our forward and
deferred implementations.

1In our demo, we sort on a per-object basis, which obviously causes some artifacts when
transparent objects overlap. This is not a limitation in the technique but rather one in our
implementation.

110 II Rendering

30

25

20

Forward (with transparency)
Forward (no transparency)
Deferred (no transparency)

15

Re
nd

er
 T

im
e (

m
s)

10

5

0
None 2x 4x

MSAA
8x

(a) Render time

600

500

400

Forward
Deferred

300

M
em

or
y U

sa
ge

 (M
B)

200

100

0
None 2x 4x

MSAA
8x

(b) Memory usage

Figure 4.4. (a) Render time and (b) memory usage for tiled forward and tiled deferred
shading with varying MSAA settings. We were unable to allocate the 8× MSAA frame-
buffer for deferred, which is why no timing results are available for that configuration.
Memory usage estimates are based on a G-buffer with 32-bit depth, 32-bit ambient, and
64-bit normal, diffuse, and specular components (using the RGBA16F format).

One interesting note is that our unoptimized Z-reduction scales almost linearly
with the number of samples: from 0.75 ms when using one sample to 5.1 ms with
8× MSAA. At that point, the contribution of the Z-reduction is quite significant
with respect to the total frame time. However, it still provides a speedup in
our tests. It is also likely possible to optimize the Z-reduction step further, for
instance, by using compute shaders instead of a fragment shader.

4. Tiled Forward Shading 111

4.7 Supporting Different Shaders
Like all forward rendering, we can attach different shaders and resources (tex-
tures, uniforms, etc.) to different chunks of geometry. Of course, if desired, we
can still use the übershader approach in the forward rendering.

We have implemented three different shader types to test this, as seen in
Figure 4.1(d): a default diffuse-specular shader, a shader emulating two-color car
paint (see transparent bubbles and lion), and a rim-light shader (see large fabric
in the middle of the scene).

The forward renderer uses the different shaders, compiled as different shader
programs, with different chunks of geometry. For comparison, we implemented
this as an übershader for deferred rendering. An integer identifying which shader
should be used is stored in the G-buffer for each sample. (There were some
unused bits available in the G-buffer, so we did not have to allocate additional
storage.) The deferred shading code selects the appropriate shader at runtime
using runtime branches in GLSL.

Performance degradation for using different shaders seems to be slightly smaller
for the forward renderer; switching from diffuse-specular shading only to using
the different shaders described above caused performance to drop by 1.4 ms on
average. For the deferred shader, the drop was around 2.2 ms. However, the vari-
ations in rendering time for different views are in the same order of magnitude.

4.8 Conclusion and Further Improvements
We have explored tiled forward shading in this chapter. Tiled forward shading
combines advantages from both tiled deferred shading and standard forward ren-
dering. It is quite adaptable to different conditions, by, for instance, omitting
steps in the algorithm made unnecessary by application-specific knowledge. An
example is the optional computation of minimum and/or maximum Z-bounds for
top-down views.

An extension that we have been exploring recently is clustered shading. Tiled
shading (both forward and deferred) mainly considers 2D groupings of samples,
which, while simple, cause performance and robustness issues in some scene and
view configurations. One example of this is in scenes with first-person-like cam-
eras where many discontinuities occur in the Z-direction (Figure 4.5). In clus-
tered shading, we instead consider 3D groupings of samples, which handle this
case much more gracefully.

Clustered shading’s main advantage is a much lower view dependency, deliver-
ing more predictable performance in scenes with high or unpredictable complexity
in the Z-direction. The disadvantages are increased complexity, requirements on
hardware (we rely heavily on compute shaders/CUDA), and several new constant
costs. For instance, with tiled shading, the subdivision of the screen into tiles is
basically free. In clustered shading, this step becomes much more expensive—in

112 II Rendering

Z

Near Far

Solid

So
lid

par en t

Solid

Trans-
parent

Trans-
parent

(a) Tiled shading

Near Far

Z

Trans-
parent

Trans-
parent

Solid

So
lid

(b) Clustered shading

Figure 4.5. Comparison between volumes created by (a) the tiling explored in this
article and (b) clustering, as described in [Olsson et al. 12b]. Finding the tiled vol-
umes is relatively simple and can be done in standard fragment shaders. Clustering is
implemented with compute shaders, as is the light assignment to clusters.

fact, in some cases it offsets time won in the shading from the better light-to-
sample mapping offered by clustering (Figure 4.6). We are also further exploring
clustered forward shading [Olsson et al. 12a], which shows good promise on mod-
ern high-end GPUs with compute shader capabilities. Tiled forward shading, on
the other hand, is implementable on a much wider range of hardware.

(a) (b)

Figure 4.6. Comparison between tiled forward shading and clustered forward shad-
ing. (a) In the top-down view, tiled forward outperforms our current clustered forward
implementation (6.6 ms versus 9.3 ms). (b) In the first-person-like view, tiled forward
becomes slightly slower (9.4 ms versus 9.1 ms). While somewhat slower in the first view,
one of the main features of clustered shading is its robust performance. There are 1,024
randomly placed light sources.

4. Tiled Forward Shading 113

Bibliography
[Andersson 09] Johan Andersson. “Parallel Graphics in Frostbite - Current &

Future.” SIGGRAPH Course: Beyond Programmable Shading, New Or-
leans, LA, August 6, 2009. (Available at http://s09.idav.ucdavis.edu/talks/
04-JAndersson-ParallelFrostbite-Siggraph09.pdf.)

[Balestra and Engstad 08] Christophe Balestra and P̊al-Kristian Engstad. “The
Technology of Uncharted: Drake’s Fortune.” Presentation, Game Developer
Conference, San Francisco, CA, 2008. (Available at http://www.naughtydog.
com/docs/Naughty-Dog-GDC08-UNCHARTED-Tech.pdf.)

[Enderton et al. 10] Eric Enderton, Erik Sintorn, Peter Shirley, and David Lue-
bke. “Stochastic Transparency.” In I3D ’10: Proceedings of the 2010 ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 157–
164. New York: ACM, 2010.

[Engel 09] Wolfgang Engel. “The Light Pre-Pass Renderer: Renderer Design
for Efficient Support of Multiple Lights.” SIGGRAPH Course: Advances
in Real-Time Rendering in 3D Graphics and Games, New Orleans, LA,
August 3, 2009. (Available at http://www.bungie.net/News/content.aspx?
type=topnews&link=Siggraph 09.)

[Hargreaves and Harris 04] Shawn Hargreaves and Mark Harris. “De-
ferred Shading.” Presentation, NVIDIA Developer Conference: 6800
Leagues Under the Sea, London, UK, June 29, 2004. (Available
at http://http.download.nvidia.com/developer/presentations/2004/
6800 Leagues/6800 Leagues Deferred Shading.pdf.)

[Kircher and Lawrance 09] Scott Kircher and Alan Lawrance. “Inferred Lighting:
Fast Dynamic Lighting and Shadows for Opaque and Translucent Objects.”
In Sandbox ’09: Proceedings of the 2009 ACM SIGGRAPH Symposium on
Video Games, pp. 39–45. New York: ACM, 2009.

[Lauritzen 10] Andrew Lauritzen. “Deferred Rendering for Current and Future
Rendering Pipelines.” SIGGRAPH Course: Beyond Programmable Shading,
Los Angeles, CA, July 29, 2010. (Available at http://bps10.idav.ucdavis.edu/
talks/12-lauritzen DeferredShading BPS SIGGRAPH2010.pdf.)

[Olsson and Assarsson 11] Ola Olsson and Ulf Assarsson. “Tiled Shading.” Jour-
nal of Graphics, GPU, and Game Tools 15:4 (2011), 235–251. (Available at
http://www.tandfonline.com/doi/abs/10.1080/2151237X.2011.621761.)

[Olsson et al. 12a] Ola Olsson, Markus Billeter, and Ulf Assarsson. “Clustered
and Tiled Forward Shading: Supporting Transparency and MSAA.” In SIG-
GRAPH ’12: ACM SIGGRAPH 2012 Talks, article no. 37. New York: ACM,
2012.

http://www.naughtydog.com/docs/Naughty-Dog-GDC08-UNCHARTED-Tech.pdf
http://www.bungie.net/News/content.aspx?type=topnews&link=Siggraph_09
http://s09.idav.ucdavis.edu/talks/04-JAndersson-ParallelFrostbite-Siggraph09.pdf
http://http.download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_Deferred_Shading.pdf
http://bps10.idav.ucdavis.edu/talks/12-lauritzen_DeferredShading_BPS_SIGGRAPH2010.pdf

114 II Rendering

[Olsson et al. 12b] Ola Olsson, Markus Billeter, and Ulf Assarsson. “Clustered
Deferred and Forward Shading.” In HPG ’12: Proceedings of the Fourth
ACD SIGGRPAH/Eurographics Conference on High Performance Graphics,
pp. 87–96. Aire-la-Ville, Switzerland: Eurogaphics, 2012.

[Saito and Takahashi 90] Takafumi Saito and Tokiichiro Takahashi. “Compre-
hensible Rendering of 3D Shapes.” SIGGRAPH Comput. Graph. 24:4 (1990),
197–206.

[Shishkovtsov 05] Oles Shishkovtsov. “Deferred Shading in S.T.A.L.K.E.R.” In
GPU Gems 2, edited by Matt Pharr and Randima Fernando, pp. 143–166.
Reading, MA: Addison-Wesley, 2005.

[Swoboda 09] Matt Swoboda. “Deferred Lighting and Post Processing
on PLAYSTATION 3.” Presentation, Game Developer Conference,
San Francisco, 2009. (Available at http://www.technology.scee.net/files/
presentations/gdc2009/DeferredLightingandPostProcessingonPS3.ppt.)

[Thibieroz and Grün 10] Nick Thibieroz and Holger Grün. “OIT and GI Using
DX11 Linked Lists.” Presentation, Game Developer Conference, San
Francisco, CA, 2010. (Available at http://developer.amd.com/gpu assets/
OIT%20and%20Indirect%20Illumination%20using%20DX11%20Linked%
20Lists forweb.ppsx.)

[Trebilco 09] Damian Trebilco. “Light Indexed Deferred Rendering.” In
ShaderX7: Advanced Rendering Techniques, edited by Wolfgang Engel,
pp. 243–256. Hingham, MA: Charles River Media, 2009.

http://www.technology.scee.net/files/presentations/gdc2009/DeferredLightingandPostProcessingonPS3.ppt
http://developer.amd.com/gpu_assets/OIT%20and%20Indirect%20Illumination%20using%20DX11%20Linked%20Lists_forweb.ppsx

