Status Report

Work Package 1

Submitted By :

S. Auerbach (EP-AGS-SI), D. Barney (EP-CMX), J. Cachet (EP-AGS-SE) E. Dho (EP-DI-SO), N. Dixon (EP-DT-CO), F. Merlet (EP-DT-FS), K. Pommès (EP-AGS-SI), Carlos Solans Sanchez (EP-ADE)

Foreword

This report was prepared by the EP Building 140 Working Group Members along with EP/DT facilities managers and engineers.

The information contained within are correct as of December 2020. The overall conditions of the facilities are ever-changing due to the evolution of the activities, mainly for the phase II upgrade of the LHC Experiments.

Due to the timing the assessment of EP/DT activities, the WP1 completion time-line was considerably short, less than 3 weeks.

The following data are for assisting the Working Group, the EP/DT responsibles and EP Management in making further decisions needed to achieve short and long-term facility goals.

Introduction

Within the investment secured for the period of 2021-2025 for the rehabilitation of the site buildings identified in the Masterplan, a new large complex called building 140 will be constructed to replace all the former constructions constituted of buildings 25 / 70 / 155 / 166 / 187 and 102.

However, the presence of critical EP/DT activities induces strong technical constraints in their resettlement before any demolition of the buildings.

In order to realise the construction project of this building, a working group has been created (see mandate) and organised in several work packages (WP).

WP1: Provide general report, impact & constraints assessment on EP/DT activities based on demolition of the buildings 25 / 70 / 155 / 166 / 187.

WP2: Inspect and assess sites that can be considered as part of the reshuffle process and estimate financial costs.

WP3: Propose the purpose and objectives of the new building by: creating a statement of needs; preparing a first strategic project brief.

WP4: Propose different reorganization scenarios of EP/DT activities, highlight potential (space) savings and synergies and set them up as potential relocation options. Estimate the needed support and financial costs to manage the re-installation of the activities and persons.

Starting from consultations with SMB, additional work packages will be defined at a later stage for the design and construction phase of Building 140.

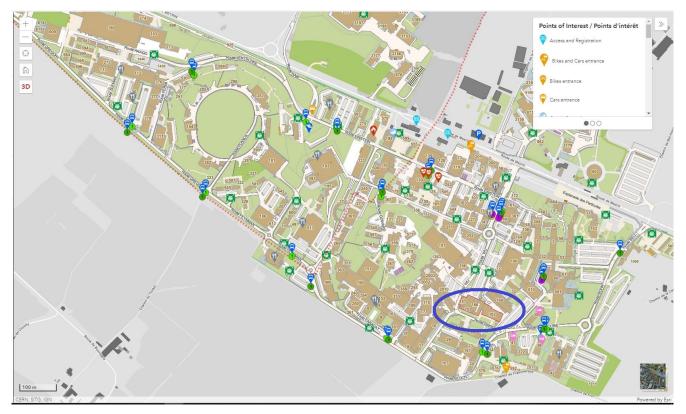
The purpose of this report is to conclude the WP1 by providing a general report impact & constraints assessment on EP/DT activities based on demolition of the buildings 25 / 70 / 155 / 166 / 187.

Methodology

To perform the assessment of the activities located in these buildings, the EP Building 140 Working Group Members completed the following tasks : Prepare a detailed list of Labs / Workshops / Clean Room / storage to be assessed ; Prepare a template to assess the facilities; Assess a building for template validation; Start building assessment; Prepare a detailed list of offices / open space occupants; Provide final status report.

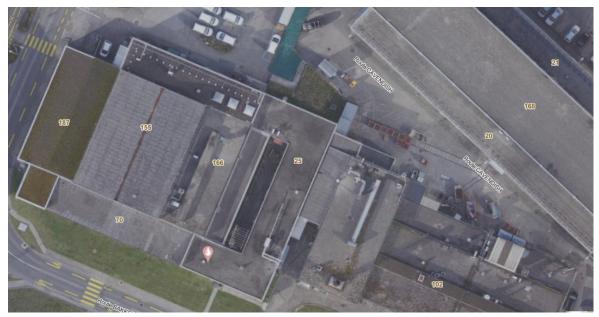
Table of contents

General overview
Occupants
Fine Mechanics Workshop/Laboratory B.1666
Small Assembly area & Clean Room B.2510
Construction, Upgrade and Prototypes Workshop for Fluidic Systems B.15512
Scintillator Workshop B.155 15
Modular Assembly area : CMS Tracker TBPS B.18717
Summary of findings
Annex I : Matrix of activities and buildings23
Annex II : List of machines - Fine Mechanics Workshop/Laboratory B.16625
Annex III : List of machines - Workshop for Fluidic Systems B.15527
Annex IV : List of machines - Scintillators Workshop B.155
Annex V : list of toolings etc. to produce for CMS Tracker TBPS29
Annex V : List of offices / open space occupants

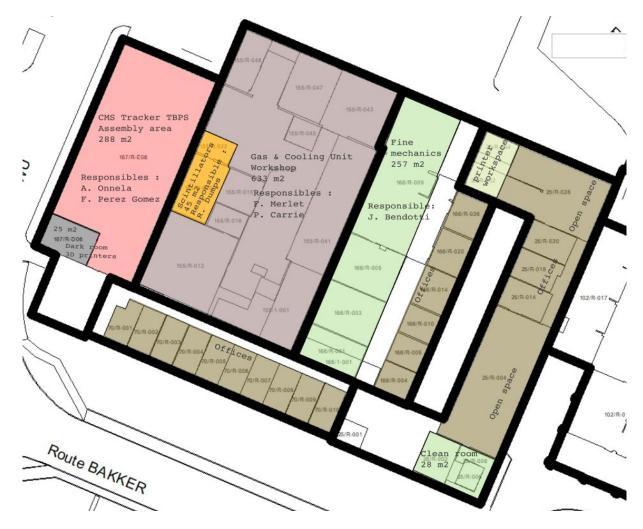

General overview

The EP-DT group is involved in several detector projects for LHC and non-LHC Experiments, and Research & Development for future projects. It offers a wide range of expertise and facilities in many different domains, spread over several buildings across the Meyrin site.

(see Annex I: Matrix of activities and buildings)


This assessment will only cover the former constructions constituted of buildings 25 / 70 / 155 / 166 / 187 : however other buildings may be affected by any relocation.

Location of buildings



The average age of the concerned buildings is 60 years old with the first building constructed in 1955.

Aerial view of the site

<u>Facilities of the site</u> : footprint 2'165 m^2

Building	Facilities / Area (m2)	Total (m2)
25	Open space - offices / 276 m2 Small Assembly - Clean room / 44.5 m2 Workspace - Printer / 25 m2	345,5
166	Offices / 97 m2 Workshop - Lab / 279 m2 Storage cabinets in corridors / 50 m2	426
70	offices / 154 m2	154
155	offices / 22 m2 Meeting room / 38 m2 Workshops / 610 m2	670
187	Assembly area / 288 m2 Dark room / 25 m2	313

Occupants

There are currently 55 full time members occupying these buildings. The workforce is made up of different categories (management, engineers, physicists, technicians, FSU, students and users) dedicated to various projects and activities. (see Annex VI). The organization is built around projects rather than on organisational functions. Most of staff contribute to several Experiments and/or services activities in parallel.

		Names
Management (Group Leader, Section leaders) B.166/70	5	B. Schmidt, P. Riedler, A. Catinaccio, A. Onnela,H. Danielsson
Secretary - B.166	1	V. Wedlake
Project Responsible - B.25/70/155	4	C. Gargiulo, L. Ropelewski, F. Perez, P.Carrie
Open space for the engineering office - B.25 Open space - B.25	8	D. Alvarez, J. Batista, D. Bault, J. Degrange, J. Esala, P.Lenoir, P. Perez, R. Tavares
General (COAS, TECH) CMS (User,Tech,Doct, Fell) ATLAS (User, PJAS) ALICE (Staff) Engineering office (Staff)	5 3 4	M. Barinoff, M. Dudek, A.Filenius, G.Reales, P. Rose P. Favre, S. Kompogiannis, K.Sliwa A. Lafuente, G. Ledey, J.Secouet, E. Laudi
Offices - B.70		
Technology & Physics Detector Constructions	2 6	P.Wertelaers, N.Pacifico L. Kottelat, J. Bendotti, V. Akhnazarov, N. Dixon, I. Krasin, G. Lahu, O. Piazza
Detector Development Fluidic systems R&D (Alice, RD51)	1 1 5	M. Jaekel L. Robin M. Angeletti, L.Teofili, M. Hracek, D. Pfeiffer, J. Samarati
FSU - B.155	7	J. Dumollard, C. Cot, C. Landraud, F. Morgadinho, H. Martinati, E. Thabuis, A. Laassiri

<u>Building 25</u> is divided into two (2) Open spaces that are linked by the project or section leaders offices.

The first open space houses CERN staff, whereas the second space is dedicated to fellows, users, students and additional CERN staff due to a lack of space in the engineering office. Changing room/Kitchenette in B.25.

<u>Building 166</u> is centrally located in the complex and houses 6 offices. It allows a very tight link between the Fine Mechanics Workshop/Laboratory and the Engineering office, as well as the project leaders that are geographically close by.

<u>Building 70</u> is composed of ten (10) separate offices located in a wooden building. The location provides direct access to the mechanical laboratory, Engineering Office and supervisors.

<u>Building 155</u> is occupied by the FSU and the supervisors of the control workshop. Changing room and kitchenette are also provided for the FSU.

Fine Mechanics Workshop/Laboratory B.166

Name	Location	Туре	Status
Valery Akhnazarov	70/R-004	office	User
Jérôme Bendotti	166/R-026	office/lab	Staff
Neil Dixon	70/R-005	office	Staff
Luc Kottelat	166/R-020	office	Staff
Amandine Millet	20/1-014	office	Staff
Jan Mladek	70/R-004	office	User
Francisco Perez	70/R-001	office	Staff
Quentin Piazza	70/R-007	office	Staff

Description of the facility :

<u>Pole of expertise</u> : Detector Prototyping Construction / Training of operators for detector building / Transfer of technology to institutes

The Fine Mechanics Workshop/Laboratory 166 is a full service providing machining, development of prototypes and their components and performing the manufacture of complex one-off parts.

Centrally located, the machine operators of laboratory 166 work closely with the engineering office to support upgrade of LHC Experiments and commitments with non-LHC experiments.

In addition, with an extensive experience in the machining of simple to complex parts, they assist and support researchers (Staff, Users, Fellow and students ..) to develop their ideas into complete systems.

The laboratory is divided into 5 areas :

- 166/R-009 & 166/R-005 ($190m^2$): The main part which operates the computer-numerical control (CNC) machines and conventional machines; both types of machines are complementary, and are matched for research and development needs.

- 166/R-003 ($39m^2$): Dedicated for small assembly, Metrology (3D and laser scan) and 3D print room. R-003 currently stores machines that could not be re-installed due to a lack of space.

- 166/R-001 (50 $\rm m^2)$: wet room for abrasive water jet cutting machine, saw and storage of raw materials. Additional overhead platform of 14m2 for storage.

– 25/R-002 & 25/R-006 (28m²), 187/R-D06 (25m²): clean room and 3D printers(see assessment).

- Between B.25 & B.102 (15m²): external storage area for raw materials.

Main involvements in Projects:

ATLAS ITk: Pixel Outer Barrel (A. Catinaccio, D.Alvarez Feito)

The engineering office plays an important role in the ATLAS Phase II Pixel Upgrade on the design prototyping and coordination aspects of the Outer Barrel (OB). The revised mechanical concept of the local supports, the global structures and the overall integration scheme rely heavily on the Fine Mechanics Workshop/Laboratory (B.166), the large mechanics Workshop (B.108) and the orbital welding facility (B.155).

The Fine Mechanics Workshop/Laboratory is involved in the manufacture of precision moulds for the composite lab, gluing tools, machining of carbon composite parts, forming tools.

CMS 'Tilted' Tracker Barrel with PS modules (A. Onnela, F. Perez Gomez)

DT plays a central role in the design, development, manufacture of assembly tooling along with the manufacture/cooling of the 90 ring carrier frames of the 'tilted' section of the CMS TBPS (Tracker Barrel with PS modules). This is a contribution fully on CERN for the CMS Phase II upgrade Tracker. (more detailed in assessment B.187).

	*##		2021				Т	2022								2023									Т	20	2024										
	12	1	2	3	4	5	6	7	8	9	10	11	12 :	1	2 3	3	4	56	6 7	7 8	9	10	11	12	1	2	3 4	1 5	6	7	8	9	10	11	12	1 7	2
CMS TBPS & 166 WS/Lab																																					
Assembly prototype L1					L1 pr	roto																															Т
Assembly prototype L3							L3	pro	to																												
Assembly prototype L2										L2	prot	0																									
L1 Stacking tool assembly and QC											L1	L																									Т
L2 Stacking tool assembly and QC															L2																						
L3 Stacking tool assembly and QC																			L3																		
IR assembly tool design and manufacturing																																					
Interconnection Rings assembly and QC								Ľ	1	Ľ	2	L3																									Т
TBPS integration tool assembly and QC																						Inte	egrat	tion	tool												
TBPS/TB2S insertion tool assembly and QC																											1	nser	tion	tool							
ATLAS Itk & 166 WS/Lab																																					
Prototyping & qualification of Local Supports																																					
Pre-production of Bare Local Supports (including manufacturing of tooling)																																					
Production of Bare Local Supports (including machining of final detector components)														Τ	Τ																						
Pre-production of Loaded Local Supports (including machining of tooling)																																					
Prototyping and qualification of Global Support																Т	Τ											Τ								Т	Т
Production of Global Support Structures (including tooling)																																					
Production of Integration Tooling							Pc	sibl	le w	ind	w																										

The mechanical processing implies mainly CNC machines and the full capabilities of the Fine Mechanics Workshop/Laboratory for the manufacture high precision of work pieces. Any delay in Workshop/Laboratory activities translates one to one in delays to the ATLAS and CMS phase II upgrade schedules.

Infrastructure	Openings	Facilities
Floor : Resin	Windows : 15	Crane : 2 - Load (t) : 0.5
Wall: Concrete	Glass Doors : 1	Temperature control : Yes
Ceiling Height : 4,30	width : 2m80	T°: 20
Ventilation : Yes	Sectional Door : No	Air-conditioning System : 2
Heating : Radiator	Skydome : 3	Hygrometry control : No
Chilled water system : No		Class ISO : No Norm : No
Water system : Yes		Waste disposal : metal chips
Special Light : Specific frequency range		

Safety (EDMS 2448108)

Domain		Specific systems / equipment	Existing mitigation measures
Mechanical Safety		Compressed air circuit	
Mechanical Salety		Lifting equipment (hoist)	
Cryogenic Safety			
Structural Safety	V	Platform for storage (mezzanine R-001)5.0kn/m2 - 30m3	
Electrical Safety	1		🗹 AUG 🖾 AUL 🖾 AUE
Chemical safety	V	Storage of chemical products	Flammable liquid storage cabinet
Biological Safety			
Non-ionising radiation Safety			
Ionising radiation safety			
Fire Safety	V		☑ Extinguisher - Type CO2 ☑ Skydomes (3)
Environment	V	Waste generation	<pre> Metal waste containers (Cu, Al, steel) </pre>
Workplace 🛛		Lighting constraints linked to the use of machines Ventilation / extraction	☑ 1000 Lx
Security	\checkmark	Access	🗹 TRAKA Box System

Evolution / Adaptability :

The Fine Mechanics Workshop/Laboratory is suffering from a lack of space and would need to be expanded to offer an improve workplace and optimise facilities.

The facilities should meet the following expectations :

- Main workshop / laboratory : An appropriate air-conditioning system for the CNC machines should be provided.

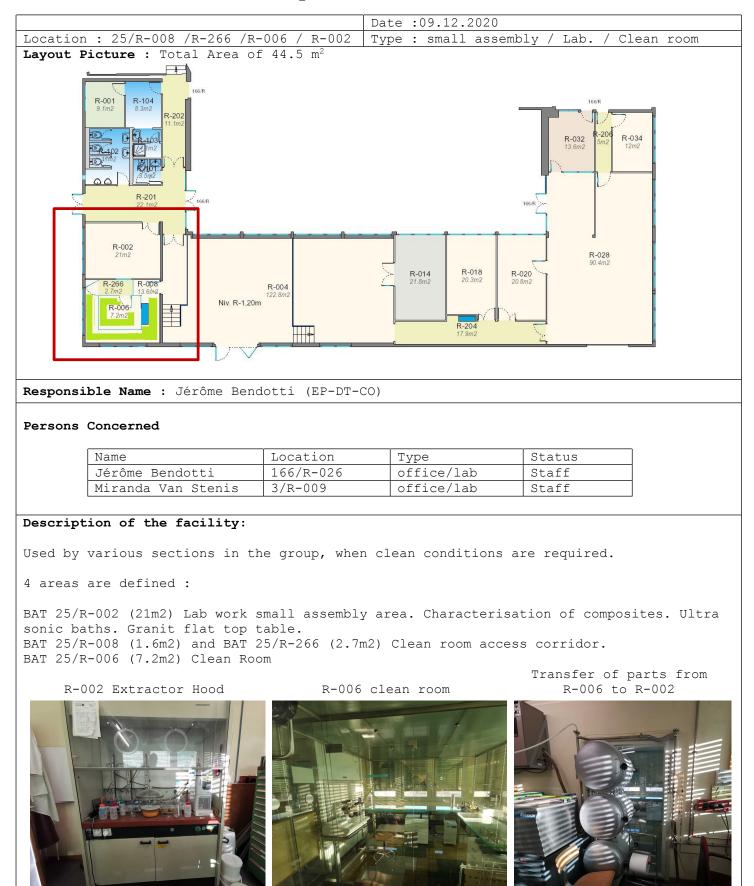
- The integration of the composites workshop currently located in building 153. Composites are very dependent on the 166 laboratory for pre and post processing.

- A reorganization of the assembly and metrology into one area (moving of the granite tables and measuring tools currently located in building 154) and an appropriate lighting installation.

- A wet room complying with the acoustic standards, providing drain connection and an integration of the vapour blaster (presently in building 154).

- A dedicated storage space for raw materials.

These facilities are interlinked and the closeness of the machines need to be maintained.


Visibility: Student training, Visit, Exhibition/Demonstration

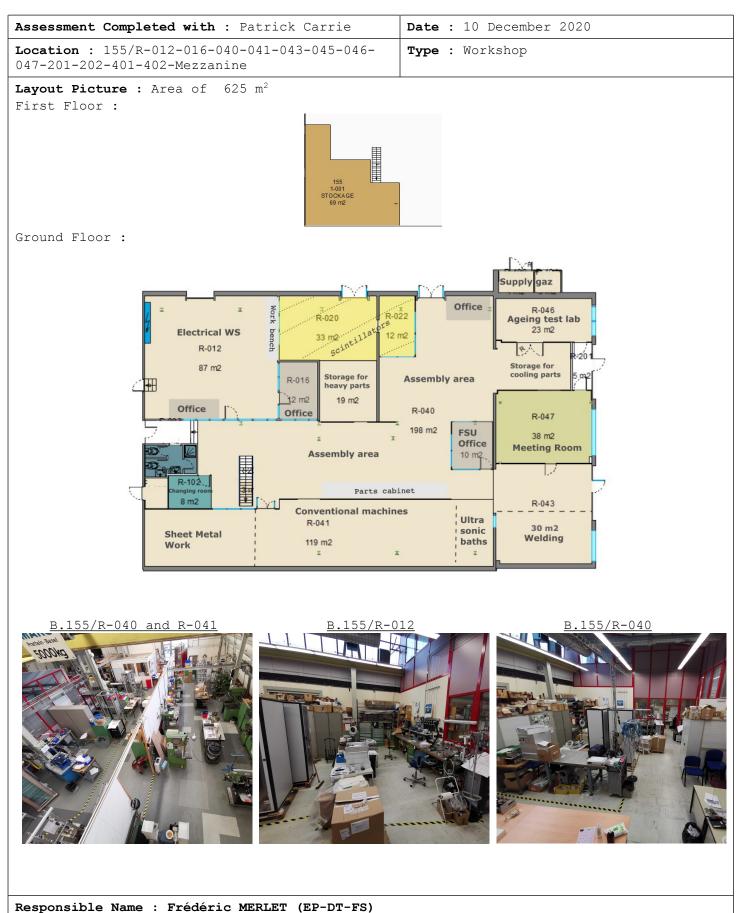
The laboratory offers training/supervision for technical students, fellows, Users and consultancy visits on detector construction and assembly techniques.

Much effort has been injected in the Fine Mechanics Workshop/Laboratory, as technology evolved, equipment is being updated. This benefits when welcoming outside users and visitors.

The CNC machines are of great interest for their visual aspects, improved safety and operator ergonomy, and they represent new technologies in the field of mechanical engineering.

Small Assembly area & Clean Room B.25

Infrastructure	Openings	Facilities
Floor : Glass and plastic floor tiles Wall: Concrete, + glass Ceiling Height : 2.5m Ventilation : Yes extractor and A/C R-002. Controlled air in clean room R-006 Heating : Heater Chilled water system :No Water system : Yes Special Light : No Compressed air: R-002 Plumbed vacuum system R-002	Windows: R-002 : 3 windows R-006 : 6 windows Doors :One double door Glass Doors : No Sectional Door : No Skydome : No	Crane : No - Load (t) : Temperature control : in clean room T° : 22 Δ (T) :TBA Hygrometry control : No Class ISO : No Norm : TBA Waste disposal : none


Safety (EDMS 2448108)

Domain		Specific systems / equipment	Existing mitigation measures
Mechanical Safety	7	Ventilation system (ducts in offices, air conditioning in chemical lab R-002) Clean room/ isolated work area	
Cryogenic Safety		N/A	
Structural Safety			
Electrical Safety	V	Emergency lighting, AUL in in flammable lab	🗹 AUG 🛛 AUL 🗆 AUE
Chemical safety	V	Fume cupboard, acid store, positive pressure/sealed work area	☑ Fume Cupboard (R-002) ☑ Chemical (acid) cabinet ☑ Clean Room
Biological Safety		N/A	
Non-ionising radiation Safety		N/A	
Ionising radiation safety		N/A	
Fire Safety			☑ Extinguisher - Type CO2 □ Smoke dampers
Environment	V	Offices - 500 lux, metalic film window blinds (design office) office areas/chemical lab	☑ 500 lux (offices) ☑ Special window blinds
Workplace			
Security	V		Restricted access to clean room lab (key)

Evolution / Adaptability :

R-006 Used for the assembly and repair of small detectors. Used by gas detectors NMX (made for ISS) Lund University Upgrade for COMPASS GEM detectors General small modifications and repair for GDD (gas detector group) NMSNMXR-002 assembly of small detectors, and characterisation of composite materials (use of air extraction system)

Construction, Upgrade and Prototypes Workshop for Fluidic Systems B.155

Persons Involved Presence in Name Location Туре Status facility B.155 Patrick CARRIE 155/R-016 Office 80% Staff Jonathan DUMOLLARD 155/R-012 Office/Lab 70% FSU 155/R-012 Loris ROBIN Office/Lab 80% Staff Cyril COT 155/R-012 Office/Lab 70% FSU 155/R-041 FSU Cédric LANDRAUD Office/Lab 60% Franck MORGADINHO 155/R-043 Office/Lab FSU 70% Hervé MARTINATI 155/R-041 Office/Lab 80% FSU Eric THABUIS 155/R-041 Office/Lab 70% FSU 155/R-043 Office/Lab 70% Abdelmajid LAASSIRI FSU 21/1-011 Office 30% Frédéric MERLET Staff Michal Zimny 21/1-011 Office 10% Staff 21/1-017 20% Roberto GUIDA Office Staff Béatrice MANDELLI 21/1-017 Office 20% Staff Andréa D'AURIA 21/1-023 Office 20% Staff Léonardo NESTI 21/1-023 Office 30% Staff Kacper KAPUSNIAK 21/1-027 Office 40% Staff Louis-Philippe DE MENEZES 21/1-027 Office 40% Staff Fabio BORDON 21/1-029 Office 50% Staff 21/1-035 Office Staff Mara CORBETTA 20% Gianluca RIGOLETTI 21/1-035 Office 20% Staff Demetrio MAGATTI 21/1-035 Office 20% Staff Description of the facility : Construction, Upgrade and Prototypes of all the gas systems and cooling unit of the 4 LHC experiments + the smaller experiments of CERN - Engineering (drawing and schematics by the people in office BAT 21 & 155. - Mechanical assembly (machining, installation of the components) - Piping and welding of stainless steel pipes. (Bending) - Cabling (Electrical chassis, electrical cupboard, racks, ...) - Functional test of all the elements (Pressure transmitter, analyser, ...) - Leak test with Helium - Installation on site + test and commissioning of the systems. The laboratory is divided into 8 areas :

- 155/R-012 & R-016 (99m²): The electrical workshop for the construction and upgrade of fluidic systems; metrology (air conditioning in the room to keep a stable t[°].
- 155/R-040 & R-020 (217m²): Dedicated for the assembly. Due to lack of space, we store our racks inside B.187. (gas supply panel)
- 155/R-041 (119m²): Mechanical workshop with milling machine, lathe, bending machine, sheet metal machine.
- 155/R-043 (30m²): Welding area with smoke extraction (gas supply panel) and dedicated power supply.
- 155/R-047 (38m²): Meeting room (air conditioning)
- 155/R-046 (23m²): Laboratory for ageing test; presence of a source ;(fire detection and air conditioning)
- Mezzanine (69m²): Storage area for construction parts
- 155/R-102 (8m²) & R-045 (10m2) : Changing room for the workshop and office (FSU)

- 155/R-401 & R-402 (12m²): Supply gas for bottles

Main involvements in Projects:

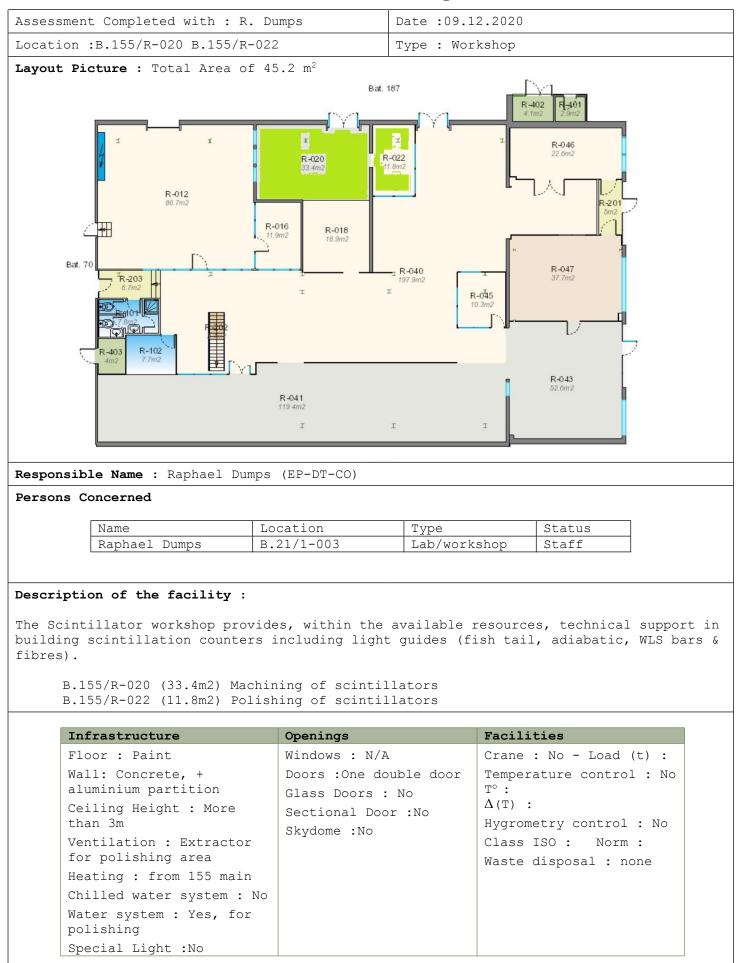
- Gas systems of the LHC 4 experiments (ATLAS, CMS, ALICE, LHCb)

- NA-62

- GIF++ (EHN1)

- NA-61
- LINAC 4
- CLOUD
- DEMO CO2 cooling project for ATLAS and CMS : this development is on the critical path for both experiments, for multiple sub-systems. For example, in CMS the Tracker, HGCAL and MIP-timing detector (about 90% of the phase-2 upgrade projects) rely upon the success of the DEMO.
- LHCb VELO & UT cooling systems

Infrastructure	Openings	Facilities
Floor : Resin	Windows :	Crane : 3 (5T, 1T, 0.5T)
Wall: Concrete	Sectional Door : 1 with	Extraction : welding smoke
Ceiling Height : 5 m	windows	Air-conditioning System :
Ventilation : Yes	Windows on the top of	Yes (R-012)
Heating : Force air	the building	Hygrometry control : No
Chilled water system : No		Class ISO : No Norm : No
-		Waste disposal : metal chips
Water system : Yes		and pieces of tubes


Safety (EDMS 2448108)

Domain		Specific systems / equipment	Existing mitigation measures
Mechanical Safety	2	Gantry crane/host 5T Compressed air circuit Temperature controlled in R012	🛛 Traka box
Cryogenic Safety			ODH 🗆
Structural Safety	\checkmark	Storage platform	
Electrical Safety			☑ AUG ☑ AUL ☑ AUE(few equipments)
Chemical safety		Gas distribution - wall mounted, no visible detection (TBC) External gas point Use of Argon, Azote, CO2, Helium	 ☑ Cupboards with Acetone, white spirit, chemical solid ☑ Presence of exhaust ventilation systems in R-043 □ Detector - Type
Biological Safety			
Non-ionising radiation Safety			
Ionising radiation safety	Ø	Fe55 4925RP 3.3 GBq (2018) Fe55 4605RP 1.35 GBq(2018) Fe55 4606RP 1.35 GBq(2018)	
Fire Safety	\checkmark		🗹 Extinguisher - Type CO2
Environment	\Box	🗹 Waste generation	🗹 Metal waste containers
Workplace	\checkmark	Changing room/locker room	☑ 750 - 1000 Lx
Security	\checkmark		🗹 TRAKA box system

Evolution / Adaptability :

The workshop is suffering from a lack of space and would need to be expanded to offer an improved workplace and optimised facilities.

- The facilities should meet the following expectations :
- overhead crane for the handling of large parts (min 5T)
- a dedicated space for raw materials and components.
- a dedicated space to make leak test (large volume because of the safety for gas usage)
- a dedicated space for welding (noisy and dusty)
- a dedicated space for FSU (kitchenette area and changing room)

Scintillator Workshop B.155

Safety (EDMS 2448108) - Covered by B.155 Safety summary Existing mitigation measures Domain Hazards Mechanical Safety Cryogenic Safety 🗆 ODH N/A Structural Safety N/A Electrical Safety Yes 🗹 AUG 🗆 AUL. 🗆 AUE Chemical safety N/A Detector - Type Biological Safety N/A Non-ionising radiation Safety N/A Ionising radiation safety N/A Extinguisher Type ... Fire Safety Smoke dampers Environment Workplace Security

Evolution / Adaptability :

Building 21: Ground floor

This Laboratory could be consolidated, to improve efficiency:

21/R-047 (60.4m2) in which the "Deckel" machine from 155/R-20 could be installed. Workshop /scintillators

21/R-031 (33.3m2) current laboratory.

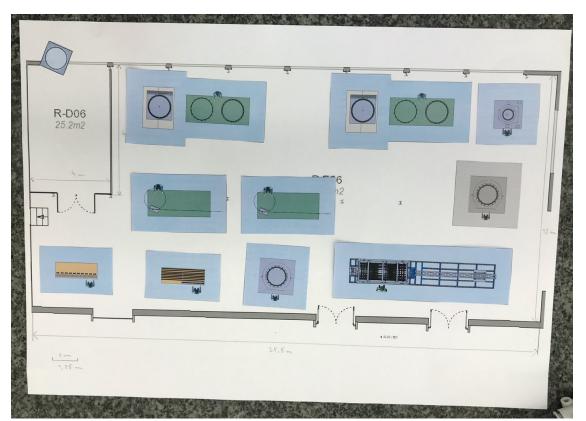
21/R-029 (19.9m2) currently an unused office, but could be returned to a scintillator laboratory, and combined with R-031 once the partition is removed.

21/R-073 (18.8m2) Needs to have the polishing machines installed.

This consolidation frees 33.4 + 11.8 = 45.2 m2 from B.155.

This consolidation gives a total laboratory and workshop space in B.21 of: 60.4+33.3+19.9+18.8 = 132.4 m2.

Visibility : Student training, Visit, Exhibition/Demonstration


Scintillator parts exhibition, currently in B.187. Remote from the area described above. Fits in one standard cupboard with a transparent front

Modular Assembly area : CMS Tracker TBPS B.187

Assessment Completed with : Antti	Date :09.12.2020
Onnela, Francisco Perez	
Location :BAT 187	Type : Assembly facility
Lavout Picture : Area of 288 m ²	

re : Area of 288 m

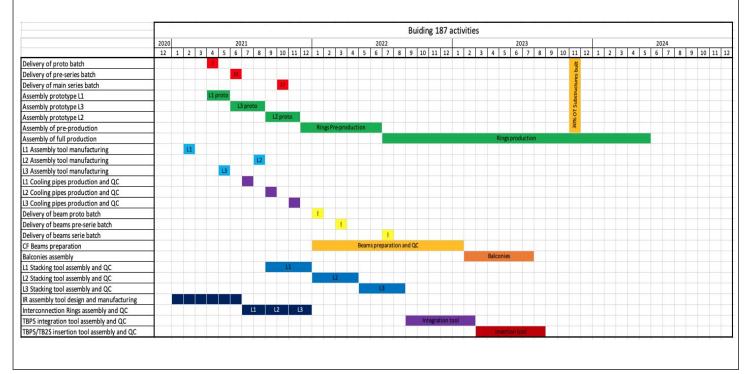
Image here shows its projected use (in basic terms) for the future CMS Tracker TBPS mechanical assembly, due to start in Spring 2021, as its current state (including storage and COVID-19 activities) is not representative of its critical future use.

The two photos show a prototype carbon-fibre ring of the TBPS, as well as one of the toolings required for its assembly.

Responsible Name : Antti Onnela (EP-DT-CO)

It is a large climate-controlled (+/-1 degree) area, but is deliberately not a clean room, due to the mechanical work necessary (sanding, some grinding etc. of prototype pieces, both of the detector mechanics and assembly tooling). A large fraction of the area is currently used for storage, but a majority of the items (large mockups, some machines) are scheduled for removal in the first months of 2021. A part of the area has also been used extensively - and to excellent effect - by EP-DT during the COVID-19 pandemic, for the fabrication and assembly of face shields. Again, this area will be cleared at the beginning of 2021.

The main activity for the coming years is the assembly of the individual rings of the 2.5m-long, 1.1m-diameter TBPS, together with all of the parts required for the assembly of rings into three concentric layers.


Parts for the carbon-fibre structures that form the rings, and that are used to support the silicon-sensor modules, are fabricated in industry and come to CERN for high-precision gluing assembly.

The tooling used for this assembly is designed and built in the close-by EP-DT mechanical workshops - the proximity is a definite advantage as each set of tooling will need fine-tuning throughout the assembly project, as the tooling is modified in several iterations to match the different detector tilt angles. It should be noted that the production of the tooling, and its use in the assembly, will be performed by the same EP-DT technicians.

The use and curing (which takes ~24 hours at room temperature) of the glues requires a stable temperature to ensure the required high precision by minimizing thermal deformations of the aluminum tooling. Preparation of parts and finishing of assembled rings often require sanding to remove burrs etc., which will be performed here. After the gluing of the carbon-fibre pieces, the cooling tubes (to be produced in industry and bent to required geometry in this facility) will be added to the rings.

Finished rings will be sent to Pisa for addition of the silicon-sensor modules. Then the completed rings are returned to CERN for final assembly into cylinders in building 186 (the Tracker Integration Facility), where subsequent testing also takes place.

The ring assembly should begin in Spring 2021 and will last 3-4 years: the present schedule is for the work to be completed in the middle of 2024. This planning assumes the production of one ring per week. The same timescale is relevant for the carbon-fibre pieces and tools (carbon-fibre beams and balconies, stacking tools, carbon-fibre interconnection rings and final TBPS integration tooling) necessary for the assembly of the rings into cylinders, also produced in this facility. Details are given below:

The annex to this document shows a summary of the tooling and assemblies that will be required to be produced and used in this facility. In total there are 43 varieties of ring-assembly tooling to be manufactured and used in this facility, as well as six types of cylinder-assembly tooling and several other pieces/activities.

The diagram above shows the estimated area for the TBPS assembly stations - including space for personnel to move around the stations. The primary work stations are (from top left to bottom right in the first image):

- Ring Inner Assembly
- Ring Outer Assembly
- Layer Stacking Tool Assembly and/or Ring QC station
- Two stations for Cooling Pipe Bending, Joining and Testing
- Material transit (reception and shipping) area close to the large door
- Cooling Plate Assembly
- Beam Assembly
- Layer Stacking Tool Assembly and Services Installation
- TBPS Layer Integration Tool

Not shown in the image are the needed received & ready part storages, tooling storages and the transport boxes (each of the 90 rings to be produced will require an individual storage/transport box for shipping to Pisa and back to CERN).

Additional side-activities to be done in this facility, and partially by the same technical team as the TBPS, include reception and quality control of carbon-fibre C-profiles for the TB2S sub-detector and preparation of services mockups for the TBPS, TB2S and Outer Tracker of the CMS Tracker Upgrade.

The facility does not require heavy-lifting equipment, nor special services (high-power electrical supplies, gases, chemicals etc.).

It is equipped with a high-power air-conditioning unit, pressure air circuitry and wash basin. Lighting is also important: the combination of a large amount of natural light supplemented by fluorescent lighting is excellent for the fine work and rather long hours. The temperature is stable at 21+/-1 degree C at all times of year. This temperature stability and the physical dimensions of the room, coupled with the proximity to the EP-DT workshops (and the CMS Tracker Engineers), are the main conditions needed for this facility.

It currently has a couple of stable marble assembly benches, and is foreseen to be equipped with a couple more in the coming months. Part of the equipment used in the TBPS project (notably high-precision 3D measurement equipment) is shared with DT's Atlas Tracker upgrade work that happens in the neighboring building 154. Fast and efficient transfer of that equipment is essential for both projects.

In terms of the physical dimensions of the facility, the image above shows a draft plan of the assembly area. It is clear that the area of 288m2 is necessary for the preparation and assembly areas. Not shown in the diagram are the necessary storage facilities for components - carbon-fibre pieces and cooling tubes etc.

The engineers and technicians using the facility (full or part-time during the Tracker production phase) are EP-DT staff, with one or two FSUs, as well as fellows and students from EP-DT, EP-CMX and CMS Tracker. In total about 20 persons.

To be noted that there is a small inner building - 187-R-D06 - that has been used as a dark-room for detector testing work in the past, and is currently used for 3D printing and some other laboratory work. The exact use of this room is still to be defined for the future. It could be dismantled, leaving more space for the TBPS assembly work, if appropriate.

Infrastructure	Openings	Facilities
Floor : Lino tiles Wall: Concrete Ceiling Height : ~4m Ventilation : Yes Heating : climate control Chilled water system : No Water system : wash basin Special Light :No, but good mix of natural and artificial light	Windows : 16 + 2 at height Doors : 2 Glass Doors : No Sectional Door :Yes Skydome :No	Crane : Yes two, but rarely needed Load (t) : 0,5 Temperature control: Yes T° : 21 Δ (T) : 1 Hygrometry control : No Class ISO: No Norm:No Waste disposal : nothing special

Safety (EDMS 2448108)

Domain		Specific systems / equipment	Existing mitigation measures
Mechanical Safety	7	Compressed Air Climate-controlled area (+/-1 degree) Lifting beam + manual holst	
Cryogenic Safety			🗆 одн 🗆
Structural Safety		Roof storage area (no access, materials only)	
Electrical Safety	2	Accessile isolators on switchboards (coupure d'urgence). emergencyy lighting	🗹 AUG 🛛 AUL 🖓 AUE
Chemical safety			Flammable liquid storage cabinet
Biological Safety			
Non-ionising radiation Safety			
Ionising radiation safety			
Fire Safety	\checkmark		🗹 Extinguisher Type CO2
Environment			☑ 1000 Lx
Workplace	7	Old ATEX zone (R-006), seems no longer ATEX but still equipped	
Security			

Evolution / Adaptability :

As with all large-surface-area climate-controlled areas, building 187's use evolves with time and project. The next several years are foreseen for the critical Tracker mechanical assembly. After that, it is likely that it could be used for EP R&D prototyping activities, again benefiting from the proximity to engineers, technicians and workshops. If necessary, the high ceiling could facilitate an internal ISO 8 or 7 clean room - of course this would require significant investment

Visibility : Student training, Visit, Exhibition/Demonstration

Given that it is not a clean room, but the construction work foreseen will be highly photogenic and interesting for visitors, it could be envisaged to have a visitor's path for a sub-section of the facility.

Summary of Findings

The bui	ldings	revi	ewed a	re:			
187	built	1963	(Age:	57)	footprint	355 m²	(Antti Onnella)
70	built	1955	(Age:	65)	footprint	209 m²	(office space)
155	built	1955	(Age:	65)	footprint	714 m²	(Frederic Merlet)
166	built	1965	(Age:	55)	footprint	449 m²	(Jérôme Bendotti)
25	built	1975	(Age:	45)	footprint	438 m²	(office space)

All of the buildings were visited with local supervisor or representative present. The following information present a selection of key findings from the assessed facilities.

Offices and open spaces

The geographic proximity between the fellows, students and project/ section leaders is an undeniable asset, as well as the proximity to the engineering office and the Fine Mechanics Workshop and Assembly Laboratory.

Fine Mechanics Workshop/Laboratory B.166

- Four (4) separate spaces in which the machine tools of EP/DT are located.
 A wide variety of complementary machines from conventional to the latest CNC technology, dedicated to prototype, complex parts and tool making.
- ◆ Very tight link with the Engineering office, as well as the project leaders.
- Clear lack of space, as the modern workshop has outgrown the antique buildings.
- Strong involvement in LHC phase II upgrades; some are on the critical path.
- ✤ Added value of being able to train and transfer technology to users from outside institutes and provide hands-on experience for technical students.

Small Assembly area & Clean Room B.25

 Used by various sections when clean conditions are required for repairing small detectors.

Construction, Upgrade and Prototypes Workshop for Fluidic Systems B.155

Present infrastructure to be replicated : stable air-conditioning, an overhead crane of at least 5T, a high ceiling for pipe bending and proximity of conventional machines, the space dedicated to welding is currently too small. B.155/R-012 is temperature controlled for leak test purposes. BAT 155/R-046 contains a radioactive source and active gas systems for ageing tests.

Scintillator Workshop B.155

Workshop to be consolidated, actually split into two buildings (building 155 & 21)

Modular Assembly area : CMS Tracker TBPS B.187

- Has served EP/DT in many varied ways. From being the scintillator workshop and evolving into a prototype assembly area, with a future that has a critical role in the Phase II upgrade of CMS.
- ✤ Area is climate controlled +- 1 degree C, open space and modular.

 Currently essential and fully allocated until 2024 for the CMS experiment tracker mechanics assembly.

General comment :

- These facilities should remain on the CERN Swiss territory because of the FSU contract.
- ✤ We have observed that the infrastructure has a lack of space, the planning and the projects may suffer from this situation. An evolution towards an improved workplace with optimised facilities would be in the interest of all.

Annex I : Matrix of activities and buildings

1111110					ucc.				Durr											
	3	108	164	25	155	166	187	153	154	14	157	867	162	167	20	21	168	107	28	186
		ATLAS	WS for		Gas &	ATLAS							ALICE							
		LHCb	Magnet		Coolin	& CMS														
н			under		g	Upgr.														
р С			renov.		System	Office														
л.					for	Space														
WS					LHC	opaco														
ch					Ex,															
Mechanical WS					CLOUD															
					T2K															
					etc.															
					LHC Ex										R&D	Office				
Gas system					CLOUD										(CEPS)	Space				
te															(CEFS)	Space				
Gå Vs					FT exp T2K															
S					IZA															
		1		Office				ATLAS												
S				Space				CMS												
bc bc				space				ALICE												
Compos ite Lab																				
U								Upgr.												
								DEMO							Offico	Office	TUC EV			
50 00								projec							Space		Cool.			
in e								t t							space	Space	contro			
11 te								ATLAS									1			
Cooling systems								CMS									⊥ auatom			
N C																	system			
								Upgr.									S			LUC En
de de																				LHC Ex EP-ESE
E II C																				EP-ESE
DS DS																				R&D
DSF BondLab QartLab																				
				THO DO																
Engineeri ng office				LHC Ex																
н. В.				NA62																
ff				Neutri																
gi o				no																
u d U d				Platfo																
				rm				-												
Magnet M&O															Office		LHC Ex			
ue v															Space		20			
M																				
Má																				
															Office		LHC Ex			
1g t CS															Space		FT Exp			
DO I I															Space		Neutri			
Q I PPC ild MS																	no			
DAQ DCS Support Cabling WS																	Prog.			
																	riog.			

MPT Workshop														MPGDs for the Part. Phys, PCBS		
B-Field measure ments.			LHC Ex MPD Dubna sPHENI X										LHC Ex MPD Dubna sPHENI X			
Irrad .Faci litie								LHC Ex and other users	LHC Ex and other users	LHC Ex GIF ++						
Thin film & Glas lab	LHCb RICH, users (e.g BE Dep	LHCb RICH														
Métrolog ie 3D					LHC Ex		LHC Ex									
Detector assembly WS						CMS	ATLAS				ALICE					EP/DT for final Integr
Sintillat or WS & lab				LHC Ex incl. FASER, other users								LHC Ex incl. FASER, other users				
Gas Detector Dev.							RD51									
Solid State Detect															RD50	RD50

AnnExp II : List of machines - Fine Mechanics Workshop / Laboratory 166

Туре	Serial N. CERN	Date of first use	lxLxH	Workspac e lxL	Weight Kg		e	Additional Service (compressed air, demineraliz ed water,)	(current	ted usage	level (db)	Other characteris tics	Fixing Method
DATRON M10 PRO	MFHX 52- 465	2017	2m x 2m x 2,4m	4m x 5m	2000	Triphase	16A	compressed air	Full year	Full year	74.5	Milling by Ethanol	Not Fixed
SPINNER VC850	installati on dec.2020	2020	2m x 2m x 2,5m	5m x 4m	4500	Triphase	16A	compressed air / water	janv21	Full year	coming soon		Not Fixed
SPINNER TC400	MFHX 52- 388	2008	2,3m x 1,6m x 2,3m	4m x 3,4m	3000	Triphase	32A	compressed air / water	Full year	Full year	73.5		Not Fixed
deckel FP2	MFHX 52- 121	1990	1,5m x 1,3m x 2m	2,5m x 2,4m	1000	Triphase	16A	compressed air / water	Full year	Full year	88.5		Anchored in Concrete
HURON MU5	MFHX 52- 423	1960	3m x 2,5m x 2,1m	4,5m x 4m	4000	Triphase	32A/16A	compressed air / water	Full year	Full year	87.5		Anchored in Concrete
ASTOBA MEYER	MFHX 52- 117	1960	0,6m x 1,3m x 1,5m	2,2m x 2,5m	200	Triphase	16A	compressed air	Full year	Full year	79		Anchored in Concrete
ASTOBA MEYER	MFHX 52- 108	1960	0,6m x 1,3m x 1,5m	2,2m x 2,5m	200	Triphase	16A	compressed air	Full year	Full year	79		Anchored in Concrete
SCHAUBLIN 102-NVM	MFHX 5-155	<1990	1,5m x 0,9m x 1,5m	2,3m x 1,6m	500	Triphase	16A	compressed air	Full year	Full year	74.5		Anchored in Concrete
SCHAUBLIN 102-80	MFHX 51- 164	<1990	1,5m x 0,9m x 1,5m	2,3m x 1,6m	500	Triphase	16A	compressed air	Full year	Full year	74.5		Anchored in Concrete
SCHAUBLIN 102-80	МFHX 51- 095		1,5m x 0,9m x 1,5m	2,3m x 1,6m	500	Triphase	16A	compressed air	Full year	Full year	74.5		Anchored in Concrete
2 PERCEUSES ACIERA	MFHX 54- 168/144		1,4m x 1m x 1,8m	2,6m x 2m	150	Triphase	16A	compressed air	Full year	Full year	68.5		Not Fixed
PERCEUSES	MFHX 49-	<1990	0,5m x	1,5m x	150	Triphase	16A	compressed	Full	Full	coming		Not Fixed

ACIERA	410		1,10m x 1,7m	1,8m				air	year	year	soon	
RECTIFIEU SE LIP	MFHX 50- 013	<1990	1,2m x 1m x 1,6m	2,2m x 2m	250	Triphase	16A	compressed air / water	3 weeks	3 weeks	72	Not Fixed
2 AFFUTEUSE S OFFMAN	MFHX 54- 146/014		0,3m x 0,3m x 0,3m	0,5m x 0,5m	20	Triphase	16A	no	Full year	Full year	Portable machine noise	Not Fixed
AFFUTEUSE MEGA POINT	MFHX 50- 030		0,5m x 0,4m x 0,5m	0,8m x 0,8m	20	Triphase	16A	no	Full year	Full year	Portable machine noise	Not Fixed
TOURETS MEULE IFANGER	MFHX 53- 031		0,6m x 0,4m x 1,2m	lm x lm	50	Triphase	16A	no	Full year	Full year	Portable machine noise	Not Fixed
TOURETS MEULE MAPE	MFHX 53- 062		0,6m x 0,4m x 1,2m	lm x lm	50	Triphase	16A		Full year	Full year	Portable machine noise	Not Fixed
DECOUPE JET D'EAU	MFHX 62- 012		1.0m x 1.2m x 1,9m	2m x 2m	250	Triphase	30A	compressed air / water	Full year	Full year	less 80	Not Fixed
SABLEUSE HUMIDE	MFHX ??	2019	1.2m x 1.1m x 1m	2m x 2m	200	Triphase	30A	compressed air / water	Full year	Full year	75	Not Fixed
MARBRE GRANIT	NO	1970	1m x 1m x 1.5m	2m x 2m	450				Full year	Full year		Not Fixed
MARBRE GRANIT	NO		2m x 1.6m x 0.9m	3m x 2.6m	800				Full year	Full year		Not Fixed
MARBRE ACIER	NO			3.6m x 2.6m	3000				Full year	Full year		Not Fixed
STOCKAGE MATIERE PLATEFORM E	NO		6.5m x 2.2m x 2m						Full year	Full year		Not Fixed
STOCKAGE MATIERE INSIDE	NO	1971	3m x 0.6m x 1.3m						Full year	Full year		Not Fixed
STOCKAGE MATIERE OUTSIDE	NO		4.7m x 2m x 2.3m						Full year	Full year		Not Fixed

Numeric command	Conventional command	Manual command	Zone Humide	Marbres
Stokages Matières				

Serial N. CERN	Туре	Dimension/ Workspace	Location	Weight	Power supply	Amperage
MFHX38-355	PLIEUSE		155/R041			
MFHX51-168	TOUR Weiler		155/R041			
MFHX52-077	FRAISEUSE		155/R041			
MFHX53-007	TOURET A MEULER		155/R041			
MFHX54-395	PERCEUSE		155/R041			
MFHX58-025	CISAILLE		155/R041			
MFHX59-244	SCIE A RUBAN		155/R041			
MFHX59-295	SCIE A RUBAN		155/R-041			
MFHX66-236	POSITIONNEUR		155/R-041			
MFHX35-011	TOURET A BANDE Mape		155/R-041			
MFHX52-096	TOUR MEYER & BURGER AG		155/R-041			
MFHX51-196	TOUR SCHAUBLIN		155/R-041			
MFHX60-023	SCIE KASTO		155/R-041			
MFHX41-004	Tubo Bend	Ceiling Height ≈ 5m	155/R-041			
MFHX54-399	PERCEUSE - FRAISEUSE FEHLMANN		155/R-041			
38-352	Plieuse sur pied JORG		155/R-041			
43-217	Cisaille d'angle JORG		155/R-041			
62-004	CC120 AXXAIR coupe tube		155/R-041			
54-053	Perceuse MFHX		155/R-041			
	MACHINE POUR SOUDURE ORBITAL		155/R-040		220 V	16 A
	MACHINE POUR SOUDURE ORBITAL		155/R-040		220 V	16 A
	MACHINE POUR SOUDURE ORBITAL		155/R-040		220 V	16 A
	POSTE A SOUDER MANUEL		155/R-040		220 V	16 A
	POSTE A SOUDER MANUEL		155/R-043		380 V	32 A
	POSTE A SOUDER MANUEL		155/R-043		380 V	32 A

Annex III : List of machines - Workshop for Fluidic Systems B.155

Annex IV : List of machines - Scintillators Workshop B.155

Туре	Serial N.	Date of first use	Dimensi ons	Work space	Weight	Power Supply (Tri / Mono)	Ampera ge	Additional Service (compresse d air, deminerali zed water,)	Frequen cy of use (curren tly)	Expecte d usage (coming years)	Noise level (db)	Other characte ristics	Fixing Method
POLISSEUSE	MFHX36 -014									YES			BOLTED TO FLOOR
EXTRACTEUR POUR POLISSEUSE										YES			BOLTED TO FLOOR
FRAISEUSE	MFHX52 -064									NO		ASTOBA	
PERCEUSE	MFHX54 -260									NO		ACIERA	BOLTED TO BENCH
FRAISEUSE	MFHX52 -327									YES		DECKEL	
TOUR	MFHX51 -156									NO		WEILER	

Annex V : list of toolings etc. to produce for CMS Tracker TBPS

Description	Quantity	Comments	Design
Cooling Plate Assembly	8	1 per Ring type	1-34 TF
Inner Cooling Pipe Bending	8	1 per Ring Type	
Outer Cooling Pipe Bending	8	1 per Ring Type	Note for a long of the
Ring Inner Assembly	3 (with 8 variants)	1 per Layer	0.
Ring Outer Assembly	3 (with 8 variants)	1 per Layer	0
Beam Assembly	3	1 per Layer	
Tilted section Stacking Assembly	6	2 per Layer (Z+ and Z-)	
TBPS Layer Assembly	1		
Ring Carrier Frame	90	30 per Layer	

Tilted TBPS Manufacturing and Assembly Tooling

Annex VI : List of offices / open space occupants

Building 25 : Engineering office

Room	(m2)	Prs	Pct	Name	Stat	Org. Unit	Experiment(s)
R-020	21	1	100	CATINACCIO ANDREA	STAF	EP-DT-EO	ATLAS, NA62
R-028	90	8	100	ALVAREZ FEITO DIEGO	STAF	EP-DT-EO	ATLAS
			100	BATISTA LOPES JOAO CARLO	STAF	EP-DT-EO	LHCb, CMS
			100	BAULT CHRISTOPHE DANIEL	STAF	EP-DT-EO	ATLAS
			100	DEGRANGE JORDAN	STAF	EP-DT-EO	NA62, ATLAS
			100	ESALA JAAKKO JOHANNES	FELL	EP-DT-EO	ATLAS Neutrinos
			100	LENOIR PHILIPPE	STAF	EP-DT-EO	CMS
			100	PEREZ ALEXANDRE PASCAL	STAF	EP-DT-EO	ATLAS CMS
				TAVARES REGO RICARDO	FELL	EP-DT-EO	ATLAS CMS

<u>Open space</u>

Room	(m2)	Prs	Pct	Name	Stat	Org. Unit	Experiment(s)
R-004	123	14	100	BARINOFF MIKKO TAPANI	TECH	EP-DT-CO	CMS
			100	BOYER FRANCOIS	STAF	EP-DT-EO	Composite Lab responsible ATLAS, CMS
			100	CICHY KAMIL NORBERT	COAS	EP-DT	PDM-PLM, 3D orienting, CAD, support
			100	DUDEK MACIEJ	TECH	EP-DT-CO	CMS
			100	FAVRE PHILIPPE JOHN	USER	EP-UAT	ATLAS
			100	FILENIUS AXEL JAN WALDEM	USER	EP-UCM	CMS
			100	KOMPOGIANNIS SPYRIDON	PJAS	EP-ADE-TK	ATLAS
			100	LAFUENTE MAZUECOS ANTONI	STAF	EP-AIO	ALICE
			100	LEDEY GAEL	STAF	EP-AIO	ALICE
			100	MOLINA GONZALEZ MARIA SO	TECH	EP-DT-EO	EP R&D
			100	REALES GUTIERREZ GUILLER	DOCT	EP-CMX-DA	CMS
			100	ROSE PIERRE	FELL	EP-DT-CO	CMS
			100	SECOUET PASCAL JEAN	STAF	EP-AIO	ALICE
			100	SLIWA KRZYSZTOF	PJAS	EP-DT-EO	ATLAS

<u>Offices</u>

Room	(m2)	Prs	Pct	Name	Stat	Org. Unit	Experiment(s)
R-014	22	2	100	GARGIULO CORRADO	STAF	EP-DT-EO	ALICE Leader AMS
			100	LAUDI ELISA	STAF	EP-DT-EO	ALICE AMS
R-018	20	1	100	WERTELAERS PIET	STAF	EP-DT-TP	SHIP, NA62

Building 166 : Offices

Room	(m2)	Prs	Pct	Name	Stat	Org. Unit	Experiment(s)
R-004	13.6	1	100	ONNELA ANTTI TERO OLAVI	STAF	EP-DT-CO	Section Leader CMS, PS215, Cloud
R-008	13.8	1	100	DANIELSSON HANS OLOF	STAF	EP-DT-EF	Section Leader, ATLAS, NA62
R-010	13.8	6	100	WEDLAKE VERONIQUE	STAF	EP-AGS-SE	Group secretary
R-014	18.6	1	100	SCHMIDT BURKHARD	STAF	EP-DT	Group Leader, LHCB
R-020	18.6	1	100	KOTTELAT LUC-JOSEPH	STAF	EP-DT-CO	ATLAS machine laboratory
R-026	18.4	1	100	BENDOTTI JEROME	STAF	EP-DT-CO	ATLAS, CMS

Building 70 : Offices

Room	(m2)	Prs	Pct	Name	Stat	Org. Unit	Experiment(s)
R-001	14.8	1	100	PEREZ GOMEZ FRANCISCO	STAF	EP-DT-CO	CMS, ATLAS,NA62
R-002	15.5	1	100	JAEKEL MARTIN RICHARD	STAF	EP-DT-DD	ATLAS, CMS, GIF++
R-003	15.5	2	10	BRESKIN AMOS	USER	EP-URD	RD51
			100	ROPELEWSKI LESZEK	STAF	EP-DT-DD	GAS DETECTORS Development RD51
R-004	15.5	1	100	AKHNAZAROV VALERY	USER	EP-UAT	ATLAS
R-005	15.5	1	100	DIXON NEIL DAVID	STAF	EP-DT-CO	ATLAS
R-006	15.5	1	100	LAHU GREGORY	STAF	EP-DT-CO	ALICE
R-007	15.5	2	100	ANGELETTI MASSIMO	DOCT	EP-DT-EO	ALICE PhD R&D
			100	PIAZZA QUENTIN OLIVIER	FELL	EP-DT-CO	ATLAS CMS
R-008	15.5	2	100	PACIFICO NICOLA	STAF	EP-DT-TP	ATLAS, Magnetic measurements, Irradiation
			100	TEOFILI LORENZO	FELL	EP-DT-EO	R and D
R-009	15.5	1	100	RIEDLER PETRA	STAF	EP-DT-DD	Section Leader, ATLAS
R-010	15.8	5	10	DOLENC KITTELMANN IRENA	USER	EP-URD	RD51
			100	HRACEK MAREK	USER	EP-URD	RD51
			100	PFEIFFER DOROTHEA	USER	EP-URD	RD51
			100	SAMARATI JEROME	USER	EP-URD	RD51
			15	TAUREG HANS	USER	EP-URD	RD51

Building 155 : Offices

Room	(m2)	Prs	Pct	Nom Prenom	Stat	Org. Unit	Experiment (s)
R-012	87	3	100	ROBIN LORIS	STAF	EP-DT-FS	Gas & cooling systems service
			100	COT CYRIL	ENTC	EP-DT-FS	Gas & cooling systems service
			100	DUMOLLARD JONATHAN	ENTC	EP-DT-FS	Gas & cooling systems service
R-016	12	1	100	CARRIE PATRICK	STAF	EP-DT-FS	Gas & cooling systems service
R-040	119	3	100	THABUIS ERIC	ENTC	EP-DT-FS	Gas & cooling systems service
			100	MORGADINHO FRANCK	ENTC	EP-DT-FS	Gas & cooling systems service
			100	LAASSIRI ABDELMAJID	ENTC	EP-DT-FS	Gas & cooling systems service
R-045	10	2	100	LANDRAUD CEDRIC	ENTC	EP-DT-FS	Gas & cooling systems service
			100	MARTINATI HERVE	ENTC	EP-DT-FS	Gas & cooling systems service