Nuclear moments and charge radii of the ₅₁Sb isotopes via collinear laser spectroscopy

APS 1901

Z.Y. Xu¹, D.T. Yordanov², D.L. Balabanski³, J. Billowes⁴, M.L. Bissell⁴, K. Blaum⁵,
B. Cheal⁶, S. Malbrunot-Ettenauer⁷, S. Franchoo², R.F. Garcia Ruiz⁴, G. Georgiev⁸,
W. Gins¹, C. Gorges⁹, H. Heylen⁵, A. Koszorús¹, S. Kaufmann⁹, J. Krämer⁹,
M. Kowalska⁷, G. Neyens¹, R. Neugart^{5,10}, L. V. Rodriguez², W. Nörtershäuser⁹,
R. Sánchez¹¹, C. Wraith⁶, L. Xie⁴, and X.F. Yang¹.

¹KU Leuven, Instituut voor Kern-en Stralingsfysica, B-3001 Leuven, Belgium
²Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay, France
³ELI-NP, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125 Magurele, Romania
⁴School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
⁵Max-Plank-Institut für Kernphysik, D-69117 Heidelberg, Germany
⁶Oliver Lodge Laboratory, Oxford Street, University of Liverpool, L69 7ZE, United Kingdom
⁷Physics Department, CERN, CH-1211 Geneva 23, Switzerland
⁸CSNSM, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
⁹Institut für Kernphysik, TU Darmstadt, D-64289 Darmstadt, Germany
¹⁰Institut für Kernchemie, Universität Mainz, D-55128 Mainz, Germany

z	z				121 P r	122 P r	123 F r	124 F r	125 P r	126 P r	127 P r	126Pr	129 F r	130Pr	131 P r	132 F r	133 P r	134Pr	135 P r	136Pr	137Pr	136Pr	139 P r	140Pr	14 I Pr	142Pr	14 3Pr	144 Pr	145 P r
				119Co	120 C o	121 C o	122 C o	123 C o	124 C o	125 C o	126 C o	127 C o	128Co	129 C o	130 C o	131 C o	132 C o	133Co	134Co	135Co	136 C o	137Co	138Co	139Co	140Cc	14 ICo	142Co	143Co	144 C o
57			117Le	116Le	119Le	120Le	121La	122La	123Le	124Ls	125Le	126Ls	127Le	128Ls	129Le	130Le	131Le	132Le	133Le	134Le	135Le	136Le	137Le	136Le	139L∎	140Ls	141Ls	142Ls	143Le
	114 B a	115Be	116Ba	117Đe	116Ba	119Đe	120Be	121Ba	122Ba	123Đa	124Be	125 B a	126Đa	127Bs	126Ba	129Ba	130Đe	131Be	132Be	133Be	134Be	135Đe	136Ð∎	137Be	136Be	139Đa	140Bs	14 I Da	142Bs
55	113 C s	114Cs	115Cs	116 C s	117Cs	116 C s	119Cs	120 C s	121 C s	122 C s	123 C s	124 C s	125 C s	126 C s	127 C s	128 C s	129 C s	130 Cs	131 C s	132 C s	133 C s	134 C s	135 C s	136 C s	137 C s	136 C s	139 C s	140 Cs	141Cs
	112Xo	113Xo	114Xo	115Xc	116Xo	117Xo	116Xc	119Xo	120Xo	121Xo	122Xo	123Xo	124Xo	125Xo	126Xo	127Xc	126Xc	129Xo	130Xc	131Xo	132Xo	133Xc	134Xo	135Xo	136Xc	137Xo	136Xo	139Xo	140Xo
53	1111	1121	1131	1141	1151	1161	1171	1161	1191	1201	1211	1221	1231	1241	1251	1261	1271	1281	1291	1301	1311	1321	1331	1341	1351	1361	1371	1361	1391
	110To	111Tc	112To	113To	114Tc	115Tc	116To	117To	118Tc	119To	120Tc	121To	122Tc	123Tc	124Tc	125Tc	126Tc	127To	126Tc	129Tc	130Tc	131To	132Tc	133Tc	134To	135Tc	136Tc	137Tc	136Tc
51	10955	1105Ъ	1115Ъ	1125Ъ	1135Ъ	11455	1155Ъ	11655	1175Ъ	11655	11955	1205Ъ	121 5 5	122 5 5	123 5 5	1245Ъ	125 5 5	126 5 5	1275Ъ	126 5 5	129 5 5	1305Ъ	1315Ъ	1325Ъ	1335b	13455	1355Ъ	136 S D	1375Ъ
	1065n	1095n	1105n	111Sn	1125n	1138n	1145л	1158л	116Sn	1178л	1165n	119Sn	1205л	1218n	1225л	1238n	1245л	1258n	1265л	1278n	1265n	1298n	130Sn	13.Sn	1328n	13 Sn	1348n	1358n	1368n
49	•	132	Sn -	→ d	oul	bly	ma	gic	nu	cleu	us f	ar f	ron	n st	abi	lity	lin	e.							13115	132In	133In	134In	135In
			.:+f.	م ار	امىر	0 0 r	otr	uot		inf	orn	aati	on		. ha	ah	tai	aad			a 1:	32 C r			130 C ð	131 C a	132 C đ	133 C a	
47	•	sh	ell e	n n evo	uci luti	ear on	tow	vard	ure Is A	/=8	0m 2. n	nau nan	v a	car ues	ibe	ns i	nee	d to	be	e ar	ia ISW	ere	ı → d.		129Ag	130Ag			
											_,		5 1												126 F d				
45	• The Z=51 isotopes provide an unique opportunity to study proton																												
	single-particle levels beyond the Z=50 shell gap.																												
43																													
	58		60		62		64		66		68		70		72		74		76		78		80		82	1	84		N

The magnetic moments are reproduced by introducing negative collective g factors g_{R} [1].

If the states are of pure single-particle character?

- spectroscopic factors of the low-lying states via (α , t) reaction are close to unity [2].
- based on (³He, *d*) reactions, the low-lying 11/2⁻ states are claimed to be strongly correlated [3].

The theoretical work in Ref. [4] shows the spectroscopic factors of the ground 7/2⁺ states ~0.6. \rightarrow Core collectivity can be addressed by nuclear quadrupole moments.

[1] N.J. Stone *et al.*, Phys. Rev. Lett. **78**, 820 (1997).

- [2] J.P. Schiffer et al., Phys. Rev. Lett. 92, 162501 (2004).
- [3] O. Sorlin and M. -G. Porquet, Prog. Part. Nucl. Phys. 61, 602 (2008).
- [4] Y. Utsuno et al., EPJ Web of Conferences 66, 02106 (2014).

Compared with magnetic moments, the g.s. quadrupole moments are scarce.

 \rightarrow missing experimental data from *N*=74 to *N*=82!

Along the *N*=80 isotonic chain, quadrupole moments can be approximated by the $(\pi g_{7/2})^n$ configurations. According to the seniority scheme, they should follow a linear relationship as a function of proton number *n*, and cross 0 at the mid-shell (*n*=4) [1,2].

What do we expect at Z=51?

[1] G. Neyens, Rep. Prog. Phys. 66, 633 (2003).
[2] D.T. Yordanov *et al.*, Phys. Rev. Lett. 110, 192501 (2013).

Nuclear charge radius is another sensitive probe to investigate nuclear shell structure.

Experimental data is taken from I.Angeli, and K.P.Marinova, At.Data Nucl.Data Tables 99, 69 (2013)

The kink at *N*=82 becomes weaker when Z=54 \rightarrow 52. Similar behavior can be found at *N*=126 in the Pb region [1] but not at *N*=28 towards ⁴⁸Ca [2]. Only the charge radii of ^{121,123}Sb are known so far.

[1] T.E. Cocolios *et al.*, Phys. Rev. Lett. **106**, 052503 (2011).
 [2] K. Kreim *et al.*, Phys. Lett. B **731**, 97 (2014).

Experimental approach

Beam-time request

Production yield from TAC report: UC303/RILIS

¹³³ Sb:	4e5/µC	
^{134m} Sb:	2e5/µC	
^{134g} Sb:	4e3/µC ◀	—g.s. spin = 0
¹³⁵ Sb:	5e4/µC	

Sensitivity limit of COLLAPS with bunched beam: 10⁴ ions/µC \rightarrow $^{112\text{-}135}Sb$ are accessible

Isotopes	target	# of shifts
¹¹³⁻¹³¹ Sb (odd mass)	UCx	6 shifts
¹¹²⁻¹³² Sb (even mass)	UCx	7 shifts
¹³⁴ Sb	UCx	2 shifts
^{133,135} Sb	UCx	3 shifts

 \rightarrow 20 shifts (18 radioactive beam and 2 stable beam) are requested to measure

- the ground- and isomeric state spins of the odd-odd and a few odd-even neutron-rich Sb isotopes, and confirm earlier measured spins;
- the quadrupole moments for the neutron-rich isotopes (odd-even and odd-odd);
- the charge radii, with the aim to go beyond *N*=82 to investigate the slope of the kink.

Thanks for your attention

			Magnetic	moment	Quadrupole moment			
Nuclide	I^{π}	$T_{1/2}$	μ (μ_N)	method	Q (barn)	method		
$^{112}\mathrm{Sb}$	(3^+)	53.5(6) s						
$^{113}\mathrm{Sb}$	$5/2^{+}$	6.67(7) min						
$^{114}\mathrm{Sb}$	3^{+}	3.49(3) min	1.72(8)	NO/S				
$^{115}\mathrm{Sb}$	$5/2^{+}$	32.1(3) min	+3.46(1)	AB	-0.36(6)	AB		
$^{116}\mathrm{Sb}$	3^{+}	15.8(8) min	2.715(9)	NMR/ON				
$^{117}\mathrm{Sb}$	$5/2^{+}$	2.80(1) h	+3.43(6)	AB	0.2(12)	AB		
$^{118}\mathrm{Sb}$	1+	$3.6(1) \min$	2.47(7)	AB				
	8-	5.00(2) h	2.32(4)	NMR/ON				
$^{119}\mathrm{Sb}$	$5/2^{+}$	38.19(22) h	+3.45(1)	AB	-0.37(6)	AB		
$^{120}\mathrm{Sb}$	1+	15.89(4) min	2.3(2)	AB				
	8-	5.76(2) d	2.34(1)	NMR/ON				
$^{121}\mathrm{Sb}$	$5/2^{+}$	stable	+3.3634(3)	NMR	-0.543(11)	О		
$^{122}\mathrm{Sb}$	2^{-}	2.7238(2) d	-1.90(2)	NO/D	+1.28(8)	0		
$^{123}\mathrm{Sb}$	$7/2^{+}$	stable	+2.5498(2)	NMR	-0.692(14)	0		
$^{124}\mathrm{Sb}$	3^{-}	60.20(3) d	1.20(2)	NMR/ON	+2.8(2)	NO/S		
	5^{+}	93(5) s						
	(8)-	20.2(2) min						

			Magnetic	e moment	Quadrupole moment			
Nuclide	I^{π}	$T_{1/2}$	μ (μ_N)	method	Q (barn)	method		
$^{125}\mathrm{Sb}$	$7/2^{+}$	2.75856(25) y	+2.63(4)	NMR				
$^{126}\mathrm{Sb}$	(8^{-})	12.35(6) d	1.28(7)	NO/S				
	(5^+)	19.15(8) min						
	(3^{-})	about 11 s						
$^{127}\mathrm{Sb}$	$7/2^{+}$	3.85(5) d	2.697(6)	NMR/ON				
$^{128}\mathrm{Sb}$	8-	9.05(4) h	1.3(2)	NO/S				
	5^{+}							
$^{129}\mathrm{Sb}$	$7/2^{+}$	4.366(26) h	2.79(2)	NMR/ON				
	$(19/2^{-})$	17.7(1) min						
$^{130}\mathrm{Sb}$	(8^{-})	39.5(8) min						
	$(4,5)^+$	6.3(2) min						
$^{131}\mathrm{Sb}$	$(7/2^+)$	23.03(4) min	2.89(1)	NMR/ON				
$^{132}\mathrm{Sb}$	$(4)^+$	2.79(7) min						
	(8-)	4.10(5) min						
$^{133}\mathrm{Sb}$	$(7/2^+)$	2.34(5) min	3.00(1)	NMR/ON				
$^{134}\mathrm{Sb}$	(0^{-})	0.78(6) s						
	(7^{-})	10.07(5) s						
^{135}Sb	$(7/2^+)$	1.679(15) s						

