LORENTZ GROUP EQUIVARIANT NEURAL NETWORK

Alexander Bogatskiy, Brandon Anderson, Risi Kondor, David W. Miller, Jan T. Offermann, Marwah Roussi

Fermilab — October 15,2020

MACHINE LEARNING IN HIGH-ENERGY PHYSICS

ML has a long history of use in HEP.

MACHINE LEARNING IN HIGH-ENERGY PHYSICS

ML has a long history of use in HEP.

- This story is over-simplified.
 - Neural networks have been used in HEP since the late 1980's (track-finding, classification).
 - Multivariate methods and BDT's are still in use.

- HEP is replete with examples and uses of neural networks.
- One common task our focus for today is jet tagging.
 - Some approaches use out-of-the-box methods from other fields, e.g. image recognition.
 - Others use more physics-inspired architectures.

AN IMAGE-BASED APPROACH

Convolutional neural networks allow one to take advantage of symmetries in image-recognition.

Translational Symmetry

Convolutional neural networks allow one to take advantage of symmetries in image-recognition.

BUT WAIT...

- What if the data does *not* exhibit these symmetries?
- Consider "jet images" projections of jet constituents onto (η, ϕ) .
 - Let's fix E and p_T , and transform the images in the (η, ϕ) plane.

BUT WAIT...

- What if the data does *not* exhibit these symmetries?
- Consider "jet images" projections of jet constituents onto (η, ϕ) .
 - Let's fix E and p_T , and transform the images in the (η, ϕ) plane.

BUT WAIT...

- What if the data does *not* exhibit these symmetries?
- Consider "jet images" projections of jet constituents onto (η, ϕ) .

- HEP is replete with examples and uses of neural networks.
- One common task our focus for today is jet tagging.
 - Some approaches use out-of-the-box methods from other fields, e.g. image recognition.

Others use more physics-inspired architectures.

SOME NOTABLE EXAMPLES

- Lorentz Layer^[1]
 - Network layer explicitly calculates *Lorentz invariants* m^2 , p_T etc. from some input p^{μ} .
- Particle/Energy Flow Networks^[2]
 - Construct observables as some F

$$\left(\sum_{i=1}^{M} (z_i) \Phi(\hat{p}_i)\right).$$

- Lorentz Boost Networks^[3]
 - Lorentz-boosts into momenta's rest frames to extract features (to feed into a deep neural network).

[Butter, A., Kasieczka, G., Plehn, T., Russell, M. (LoLa – Lorentz Layer, 2018)] [Thaler, J., Komiske, P. T., Metodiev, E. M. (Energy/Particle Flow Networks, 2018)] [Erdmann, M., Geiser, E., Rath, Y., Rieger, M. (Lorentz Boost Networks, 2018)]

LGN: THE MOTIVATING IDEA

- We wish to construct a network equivariant under action by members of the Lorentz group.
- Similar in spirit to image identification, but built from the correct symmetry group for the problem: SO(1,3)⁺ vs SO(3).

[credit to Alex Bogatskiy]

Le

- Input: N particles' 4-momenta p_i^{μ} .
- Nactivations \mathcal{F}_i at each level live in representations of the Lorentz group.
- The update rule involves pair interactions.

$$\mathcal{F}_{i} \mapsto W \cdot \begin{pmatrix} \mathcal{F}_{i} \oplus \mathcal{F}_{i}^{\otimes 2} \oplus \sum_{j}^{p_{ij} \equiv p_{i} - p_{j}} \\ \downarrow \\ \uparrow \\ \text{self-interaction} \end{pmatrix} \mathcal{F}_{j} \end{pmatrix} \xrightarrow{p_{ij} \equiv p_{i} - p_{j}} \\ \downarrow \\ \uparrow \\ \text{self-interaction} \end{pmatrix} \xrightarrow{p_{ij} = p_{i} - p_{j}} \\ \downarrow \\ \downarrow \\ \text{zonal harmonics} \end{pmatrix} \mathcal{F}_{j}$$

- Arbitrary traditional sub-networks can be applied to Lorentz invariants.
- Output layer sums over i and projects onto invariants.(or other irrep).

ARCHITECTURE

- lnput: N particles' 4-momenta p_i^{μ} .
- Nactivations \mathscr{F}_i at each level live in representations of the Lorentz group.
- The update rule involves pair interactions.

- Finite-dimensional representations of the Lorentz group are decomposable.
- We decompose the activations via Clebsch-Gordan decompositions.

ARCHITECTURE

• We require W, our linear operation, to observe Lorentz equivariance.

As a consequence of Schur's lemma, W acts as a scalar multiplication on each irrep, and only linearly combines vectors of the same weight.

> Let U and V be completely reducible representations of G: $V = \bigoplus_{\alpha} R_{\alpha}^{\oplus \tau_{\alpha}}, \quad U = \bigoplus_{\alpha} R_{\alpha}^{\oplus \tau_{\alpha}'}.$

Then linear equivariant map $W: V \rightarrow U$ can be parametrized by

 $\{W_{\alpha} \in Mat(\tau'_{\alpha}, \tau_{\alpha})\}$, with W_{α} acting on the irreps within $R_{\alpha}^{\oplus \tau_{\alpha}}$.

[Kondor, R., Trivedi, S. (On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups, 2018)]

[credit to Alex Bogatskiy]

[[]credit to Alex Bogatskiy]

[[]credit to Alex Bogatskiy]

[credit to Alex Bogatskiy]

26

INVARIANCE TEST

TESTING LORENTZ INVARIANCE

- We have set up LGN for top-tagging, a Lorentz-invariant task.
- Let's test network invariance.
 - Feed in some dummy p^µ twice once with some Lorentz boost applied – and look for differences in network output.

- > 2M jets (anti- $k_T R = 0.8$).
 - ▶ $p_T(j) \in [550,650] \text{ GeV}, |\eta(j)| < 2.$
- *c w c w c b b b j*et
 *j*et
 *j*et

- 1M hadronic top decays (signal).
- IM leading jets from QCD dijet events (background).
- Simulated with DELPHES + E-flow (fast detector sim).
- For each jet, the 200 leading jet constituents' p^{μ} stored in Cartesian coordinates, along with the truth top p^{μ} for signal.

[Kasieczka, G., Plehn, T., Thompson, J., Russel, M. (2019). Top Quark Tagging Reference Dataset (Version v0 (2018_03_27)) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.2603256]

PREPARING THE DATA

- LGN does not require any pre-processing of data.
- We repackage the dataset from a pandas DataFrame saved in an HDF5 file, to a native HDF5 format via h5py.

		AUC	Acc	$1/\epsilon_B \ (\epsilon_S = 0.3)$			#Param	
				single	mean	median		32
	CNN ResNeXt	$\begin{array}{c} 0.981\\ 0.984\end{array}$	$\left \begin{array}{c}0.930\\0.936\end{array}\right $	$\begin{array}{c}914{\pm}14\\1122{\pm}47\end{array}$	$995{\pm}15\ 1270{\pm}28$	$975{\pm}18$ 1286 ${\pm}31$	$\begin{array}{c} 610 \mathrm{k} \\ 1.46 \mathrm{M} \end{array}$	
	 TopoDNN Multi-body N-subjettiness 6 Multi-body N-subjettiness 8 TreeNiN P-CNN ParticleNet 	$\begin{array}{c} 0.972 \\ 0.979 \\ 0.981 \\ 0.982 \\ 0.980 \\ 0.985 \end{array}$	$\begin{array}{c c} 0.916 \\ 0.922 \\ 0.929 \\ 0.933 \\ 0.930 \\ 0.938 \end{array}$	295 ± 5 792 ± 18 867 ± 15 1025 ± 11 732 ± 24 1298 ± 46	382 ± 5 798 ± 12 918 ± 20 1202 ± 23 845 ± 13 1412 ± 45	$egin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	59k 57k 58k 34k 348k 498k	
iverage of 6 ndependently- rained	 LBN LoLa LDA Energy Flow Polynomials Energy Flow Network Particle Flow Network 	$\begin{array}{c} 0.981 \\ 0.980 \\ 0.955 \\ 0.980 \\ 0.979 \\ 0.982 \end{array}$	$\begin{array}{c} 0.931 \\ 0.929 \\ 0.892 \\ 0.932 \\ 0.927 \\ 0.932 \end{array}$	$836{\pm}17$ $722{\pm}17$ $151{\pm}0.4$ 384 $633{\pm}31$ $891{\pm}18$	859 ± 67 768 ± 11 151.5 ± 0.5 729 ± 13 1063 ± 21	$966{\pm}20$ $765{\pm}11$ $151.7{\pm}0.4$ $726{\pm}11$ $1052{\pm}29$	705k 127k 184k 1k 82k 82k	[Kasieczka, G., Plehn, T., et. al. (ML Landscape of top taggers,
nstances ——	LGN	0.964	0.929		424 ± 82		4.5k	2019)]
Background rejection ¹ 10 ⁴ 10 ³ 10 ²	EFN EFP P-CNN PFN ParticleNet ResNeXt50 TopoDNN LGN	[Maca [Xie, S [Peark [Moor [Maca [The C [Qu, H [Erdm	luso, S., ., Girshi es, J., Fe e, L., No luso, S., Iuso, S., MS Col I., Goush ann, M., r. A., Kas	Shih, D. (CN ck, R., Dollár edorko, W., L rdström, K., Cranmer, K laboration (F cos, L. (Partic Geiser, E., R	N, 2018)] ; P., Tu, Z., He ister, A., Gay Varma, S., Fa (TreeNiN, 20 P-CNN, 2017 eleNet, 2019 Rath, Y., Riege Plehn, T., Rus	e, K. (ResNe) /, C. (TopoDI airbairn, M. ()19)] /)] er, M. (LBN, sell. M. (LOI ;	Kt, 2016)] NN, 2017)] Multi-body 2018)] a. 2018)]	N-subjettiness, 2018)]
101		[Dillon B M Faroughy D A Kamenik J F (I DA 2019)]						
		[Komiske P.T. Metodiev F. M. Thaler, J. (Energy Flow Polynomials, 2017)]						
0.0 0.	1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Signal efficiency ε _s	[Komis	ske, P. T.	, Metodiev, I	E. M., Thaler,	J. (Energy/F	Particle Flow	/ Networks, 2018)]

TRIMMING JET CONSTITUENTS

All jets have notably fewer jet constituents than the maximum value of 200.

TRIMMING JET CONSTITUENTS

By default, we use the 126 leading constituents of each jet as input. We can alter this cut to test network dependence.

TRIMMING JET CONSTITUENTS

- We find that performance is quite stable across choices of the cut in number of jet constituents used as input.
- We can characterize performance by looking at the network accuracy, area under the ROC curve, loss (crossentropy), and background rejection at 30% signal efficiency as performance benchmarks.

JET CONSTITUENT STUDY

TRANSFER LEARNING

- We can also explore how well LGN can extrapolate results from one region of phase space to another.
- Consider the reconstruction-level jet p_T distribution.

TRANSFER LEARNING: JET p_T

- We divide the data into ten 10 GeV reco jet p_T bins.
 - We discard events such that each bin has an even split of signal and background, and the same total number of training events.

TRANSFER LEARNING: JET p_{T}

- LGN is relatively agnostic to the jet p_T bin used for training.
 - > Performance is correlated with the jet p_T of the testing bin, but this correlation is consistent across training bins.

Each metric is averaged over 6-8 trained instances. Error bars are given by $\pm 1/2$ standard error on the mean.

A FEW IMPORTANT DETAILS...

- LGN is currently <u>slow</u> to train.
 - ~8 hours/epoch, on a single Nvidia GeForce RTX 2080.
 - Could be improved by parallelization across GPU's, or a custom CUDA kernel.
- We have not performed a full hyper-parameter scan.
 - Better-performing configurations *may* exist.

INTERPRETABILITY

LGN is not the highest performer, but trades a small amount of performance for prospects of interpretability.

	#Param
CNN	610k
ResNeXt	$1.46\mathrm{M}$
TopoDNN	59k
Multi-body N-subjettiness 6	57k
Multi-body N -subjettiness 8	58k
TreeNiN	34k
P-CNN	348k
ParticleNet	498k
LBN	705k
LoLa	127k
LDA	184k
Energy Flow Polynomials	1k
Energy Flow Network	82k
Particle Flow Network	82k
LGN	4.5k

lgn_cg.atom_levels.0.cat_mix.mix_reps.weights.(1, 1) (mag)

INTERPRETABILITY

- LGN is not the highest performer, but trades a small amount of performance for prospects of interpretability.
- Among theory-inspired networks, it has far fewer learnable parameters than any others except for EFP.

	#Param
LBN	 705k
LoLa	127k
LDA	184k
Energy Flow Polynomials	1k
Energy Flow Network	82k
Particle Flow Network	82k
LGN	4.5k

lgn_cg.atom_levels.0.cat_mix.mix_reps.weights.(1, 1) (mag)

43

INTERPRETABILITY

Furthermore, these parameters correspond with physically-meaningful quantities – Lorentzequivariant expressions formed by tensor products of momenta.

lgn_cg.atom_levels.0.cat_mix.mix_reps.weights.(1, 1) (mag)

CONCLUSION

- To the best of our knowledge, LGN is the first example of a neural network in particle physics with the symmetries of the Lorentz group fully embedded in the architecture.
- This architecture can be naturally extended for data containing additional particle information, such as charge.
- Furthermore, LGN can in principle be used for Lorentzcovariant tasks, such as four-momentum regression.

ONGOING AND NEAR-FUTURE WORK

- Studying irrep mixing weights.
 - Are there patterns among better-performing networks?
 - Correlations with training bin jet p_T ?
- Covariant top quark four-momentum measurement.
 - Can we predict momenta in $t \to W(q\bar{q})b$?*

REFERENCES

- Past talks:
 - ML4Jets 2020: <u>https://indi.to/xmXL8</u>
 - ICML 2020: <u>https://icml.cc/virtual/2020/poster/5843</u>
- Papers:
 - ICML 2020: <u>https://arxiv.org/abs/2006.04780</u>
 - A more HEP-oriented companion paper coming soon...
- GitHub: <u>https://github.com/fizisist/LorentzGroupNetwork</u>

THE UNIVERSITY OF CHICAGO Physics Department

Computer Science Department

Alexander Bogatskiy

Brandon Anderson

Risi Kondor

David Miller

Jan Offermann

Marwah Roussi

BACKUP

50 1) DATASET KINEMATIC DISTRIBUTIONS 2) DATASET EVENT DISPLAYS **3) TRAINING STATS 4) COMPARISON TOP TAGGER\$** 5) SCHUR'S LEMMA 6) CLEBSCH-GORDAN COEFFICIENTS

$JET p_T$

JET $\eta \& \phi$

JET NUMBER OF CONSTITUENTS & m

JET NUMBER OF CONSTITUENTS VS. m

JET NUMBER OF CONSTITUENTS VS. p_T

JET NUMBER OF CONSTITUENTS VS. p_T

SAMPLE EVENT DISPLAYS (SIGNAL & BACKGROUND)

TRAINING ON THE FULL DATASET

Note: Data from earlier epochs missing for run2.

TRAINING ON $p_T \in [550, 560]$ GeV

TRAINING ON $p_T \in [640, 650]$ GeV

CNN

Uses jet images (in (η, ϕ)).

Images are pre-processed by centering on the jet's p_Tweighted centroid, rotating so that the 2nd highestintensity cluster is along the vertical axis.

Takes advantage of multiple channels $\left(p_T^{\text{neutral}}, p_T^{\text{track}}, N^{\text{track}}, N^{\text{muon}}\right)$.

[Macaluso, S., Shih, D. (Pulling Out All the Tops with Computer Vision and Deep Learning, 2018)]

رب

RESNEXT

- Uses jet images (in (η, ϕ)).
 - Images are pre-processed by centering on the jet's p_T -weighted centroid.
- An "out-of-the-box" application of an image-identification.

TOPODNN

- Deep neural network using jet constituents' 4-momenta components (p_T, η, ϕ) as inputs.
- Jets are preprocessed by translation in (η, ϕ) to center the leading subjet. Then the momenta are transformed:

 $p'_{y,n} = p_{y,n} \cos \theta - p_{z,n} \sin \theta , \quad p'_{z,n} = p_{y,n} \sin \theta - p_{z,n} \cos \theta , \quad \text{with } \theta = \arctan\left(\frac{p_{y,2}}{p_{z,2}}\right) + \frac{\pi}{2} .$

[Pearkes, J., Fedorko, W., Lister, A., Gay, C.

(Jet Constituents for Deep Neural Network Based Top Quark Tagging, 2017)]

ų

64

MULTI-BODY N-SUBJETINESS

- Dense neural network.
- Uses a family of N-subjetiness variables $\{\tau_i^{(\alpha)}\}$ as input.^[*]

$$\tau_{N}^{(\beta)} = \frac{1}{p_{T,J}} \sum_{i \in J} p_{T,i} \min\left\{ R_{1i}^{\beta}, R_{2i}^{\beta} \dots R_{Ni}^{\beta} \right\}$$

- No (unphysical) pre-processing of data necessary.
 - ► $\{\tau_i^{(\alpha)}\}$ may need to be calculated, but these are wellunderstood high-level variables.

* [Thaler, J., Van Tilburg, K. (Identifying Boosted Objects with N-subjettiness, 2010)] [Moore, L., Nordström, K., Varma, S., Fairbairn, M. (Multi-body N-subjettiness, 2018)]

TREE NIN

- Jets are restructured as binary trees, with each node carried a set of features $(|\vec{p}|, \eta, \phi, E, E_{\text{frac}}, p_T, \theta)$.
- The "Network in Network" structure allows for fullyconnected layers in each binary tree node.

* [Roy, D., Priyadarshini, P., Roy K. (Tree-CNN: A Hierarchical Deep Convolutional Neural Network for Incremental Learning, 2018)] [Macaluso, S., Cranmer, K (Tree Network in Network (TreeNiN) for Jet Physics, 2019)]

P-CNN

- Jets are input as a p_T-ordered list of the 100 leading constituents.
- For each jet, P-CNN computes input features $\left\{\log p_T^i, \log E^i, \log(p_T^i/p_t^{jet}), \Delta \eta^i, \Delta \phi^i, \Delta R^i\right\}$, with angular distances computed with respect to the jet axis.

*[The CMS Collaboration (Boosted jet identification using particle candidates and deep neural networks, 2017)] [Kasieczka, G., Plehn, T., et. al. (ML Landscape of top taggers, 2019)]

PARTICLENET

- Deep graph CNN.
- Jets are represented as unordered sets of particles.
- A graph is constructed for each jet, with particles as vertices.
 Edges connect each constituent to its k nearest neighbors in (η, φ).
- Edge convolutions^[*] are applied to the graph, with graph distances updated after_{*[Wang, Y., Sun, Y., Liu, Z., Sarma, S., Bronstein, M. M., Solomon, J. M. each convolution. (Dynamic Graph CNN for Learning on Point Clouds, 2018)] [Qu, H., Gouskos, L. (ParticleNet, 2019)]}

coordinates

k-NN indices

LORENTZ BOOST NETWORK

Jet constituents are input as four-momenta.

- The jets are pre-processed by anti- k_T reclustering, with $\Delta R = 0.2$, to provide a consistent constituent ordering.
- An intermediate layer treats half the inputs as constituents and the other half as rest frames, into which the constituents are boosted.
- An output layer computes a set of features from the boosted constituents, (E, m, p_T, φ, η), as well as cosine of the angles between all boosted constituents.

LORENTZ LAYER

- Jet constituents are input as four-momenta.
- A combination layer (CoLa) linearly combines the momenta: $k_{\mu,i} \rightarrow \tilde{k}_{\mu,j} = k_{\mu,i}C_{ij}$.
- The Lorentz Layer (LoLa) calculates a set of Lorentz invariants:

$$k_j \to \hat{k}_j = \left\{ m^2(\tilde{k}_j), \ p_T(\tilde{k}_j), \ w_{jm}^{(E)} E(\tilde{k}_m), \ w_{jm}^{(m^2)} m^2(\tilde{k}_m), \ w_{jm}^{(d)} d_{jm}^2 \right\}.$$

[Butter, A., Kasieczka, G., Plehn, T., Russell, M. (LoLa – Lorentz Layer, 2018)]

LATENT DIRICHLET ALLOCATION

- ▶ Jets are input as a series of subjets, which are produced by Cambrige-Aachen clustering, followed by sequential de-clustering $j_0 \rightarrow j_1 j_2$.
 - For each subjet j_0 , inputs are given as the observables

$$\left\{m_{j0}, \ \frac{m_{j1}}{m_{j0}}, \ \frac{m_{j2}}{m_{j1}}, \ \frac{\min(p_{T,1}^2, p_{T,2}^2)}{m_{j0}^2} \Delta R_{1,2}^2\right\}$$

The likelihood of generating jet $j = \{o_1, o_2, \dots, o_n\}$ is modeled by

$$p(j \mid \alpha, \beta) = \int_{\omega} p(\omega \mid \alpha) \prod_{o \in j} \left(\sum_{t} p(t \mid \omega) p(o \mid t, \beta) \right) d\omega.$$

theme hyper-theme theme

- Model does not account for $p(o_i | o_{i-1})$.
- A neural network is trained to invert the above expression to find (β, ω) .

[Dillon, B. M., Faroughy, D. A., Kamenik, J, F. (Uncovering latent jet substructure, 2019)]

ENERGY FLOW POLYNOMIALS

For a jet with M constituents and a multigraph G with N vertices and edges $(k, l) \in G$, the corresponding EFP is $\mathsf{EFP}_G = \sum_{i_1=1}^M \dots \sum_{i_N=1}^M z_{i_1} \dots z_{i_N} \prod_{(k,l)\in G} \theta_{i_k i_l}, \text{ with } z_i \equiv \frac{E_i}{\sum_{j=1}^M E_j}.$

FP's form a complete linear basis for jet substructure, so that any IRC-safe observable can be computed as $S \simeq \sum_{G \in \mathscr{G}} s_G \operatorname{EFP}_G$.

> In practice, one truncates ${\mathscr G}$ via a max number of edges.

EFP's can be used in linear regression or as DNN inputs.

[Komiske, P. T., Metodiev, E. M., Thaler, J. (Energy flow polynomials: A complete linear basis for jet substructure, 2017)]

ENERGY/PARTICLE FLOW NETWORKS

IRC-safe observables can be approximated as

$$F\left(\sum_{i=1}^{M} (z_i) \Phi(\hat{p}_i)\right)$$
, where:

$$z_i = \{E_i, p_{T,i}\} \text{ for EFN, } z_i = 1 \text{ for PFN, } \hat{p}_i = \frac{\overrightarrow{p}}{|\overrightarrow{p}|}.$$

- $\Phi: \mathbb{R}^d \to \mathbb{R}^l$ is a per-particle mapping, $F: \mathbb{R}^l \to \mathbb{R}$ is a continuous function.
 - These can be parametrized as neural network layers for complicated observables.

[Komiske, P. T., Metodiev, E. M., Thaler, J. (Energy Flow Networks: Deep Sets for Particle Jets, 2018)]

L
One formulation (from Kondor & Trivedi):

Let $\{\rho(g) : U \to U\}_{g \in G}$ and $\{\rho'(g) : V \to V\}_{g \in G}$ be two irreducible representations of a compact group G.

Let $\phi : U \to V$ be an equivariant linear mapping for these reps, i.e. $\phi(\rho(g)(u)) = \rho'(g)(\phi(u)) \forall u \in U.$

Then, unless ϕ is the zero map, ρ and ρ' are equivalent representations.

[Kondor, R., Trivedi, S. (On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups, 2018)]

$$SO(3), SU(2): B^{-1}: R_{l_{1}} \otimes R_{l_{2}} \rightarrow \bigoplus_{l=|l_{1}-l_{2}|}^{l_{1}+l_{2}} R_{l} \qquad \left| l_{1}, m_{1} \right\rangle \otimes \left| l_{2}, m_{2} \right\rangle = \sum_{l,m} B_{l,m_{1};l_{2},m_{2}}^{l,m} \left| l,m \right\rangle$$

$$(2l_{1}+1)(2l_{2}+1) \times (2l+1)$$

$$SO(1,3)^{+}, SL(2,\mathbb{C}): T^{(k,n)} \simeq \bigoplus_{l=|k-n|/2}^{(k+n)/2} R_{l}$$

$$H^{-1}: T^{(k_{1},n_{1})} \otimes T^{(k_{2},n_{2})} \rightarrow \bigoplus_{k=|k_{1}-k_{2}|}^{k_{1}+k_{2}} \bigoplus_{n=|n_{1}-n_{2}|}^{n_{1}+n_{2}} T^{(k,n)}$$

$$H_{(k,n),l,m}^{(k_{1},n_{1}),l_{1},m_{1};(k_{2},n_{2}),l_{2},m_{2}}^{k_{2},m_{1}+m_{2};\frac{n}{2},m-m_{1}'-m_{2}'} B_{\frac{k_{1}}{2},m_{1}+m_{2}'}^{\frac{k_{1}}{2},m_{1}',m_{1}',m_{1}',m_{1}',m_{1}',m_{1}',m_{1}',m_{1}',m_{1}',m_{1}',m_{2}',m-m_{1}'-m_{2}'}^{k_{2}} B_{\frac{k_{1}}{2},m_{1}+m_{2}'}^{\frac{k_{1}}{2},m_{1}',$$

$$D_{(k,n)}(\alpha,\beta,\gamma) = \left(H_{(k,n)}^{(k,0),(0,n)}\right)^{I} \cdot \left(D^{k/2}(\alpha,\beta,\gamma) \otimes \overline{D^{n/2}(-\alpha,\beta,-\gamma)}\right) \cdot \left(H_{(k,n)}^{(k,0),(0,n)}\right).$$
[credit to Alex Bogatskiy]