Ecological Archives

1 2

> 3Christopher N. Kaiser-Bunbury, Diego P. Vázquez, Martina Stang, and Jaboury Ghazoul. 2014. 4Determinants of the microstructure of plant-pollinator networks. *Ecology*.

5

6Appendix A: Detailed supplementary information on the methods, including tables and figures 7

8 A.1 Plant-pollinator networks

9In total, 97 flower visitor taxa were recorded, of which 14 taxa, belonging to the groups of 10spiders, crickets, true bugs (hemiptera) and ants, were excluded from the networks as they were 11not considered pollinators of the inselberg plants. Pollinators were identified to species level for 1228 taxa (34%) and to morpho-species level for the remaining 55 taxa (66%; hereafter all 13pollinator taxa are referred to as 'pollinator species'). Morpho-species were not pooled based on 14morphological traits such as size, but they were distinguished at the smallest possible level 15without taxonomic determination and assigned a species code. Flower visitors were recorded as 16pollinators when they touched the sexual parts of flowers. Sampling of interactions was 17conducted by the same three observers throughout the 8-month flowering season and sampling 18was standardized between observers fortnightly. We used equal observation periods for all plant 19species to reduce sampling bias and to collect data on interaction frequency independent of size 20constraints and flower abundance (Ollerton and Cranmer 2002).

21 To assess the effect of sampling on network dissimilarities we conducted a rarefaction 22analysis (Hurlbert 1971, Heck et al. 1975). We calculated Bray-Curtis dissimilarities (see Section 23D below for a detailed description on dissimilarity matrices) between rarefied interaction 24matrices sampled at four different proportions (0.8, 0.6, 0.4 and 0.2) and compared the resulting 25mean \pm 95% CI dissimilarities of the rarefied matrices to the dissimilarity between the original 26matrices. Sampling simulation was carried out with the function rarefmat in R (the code of the 27 function is provided in Appendix A.1). Interaction matrices consisted of all plant and animal 28species in rows and columns, respectively. Cells contained a normalized measure of interaction 29 frequency, which was rounded up to the next integer to allow for rarefaction. Dissimilarities were 30calculated based on relative frequencies in the rarefied and observed matrices. We ran a 31 subsample (N = 86) of all possible pairwise matrix comparisons within and across sites and time 32periods. All comparisons showed similar results: None of the rarefied matrices were significantly 33more or less dissimilar than the observed matrices even at low sampling proportions, and the 34overall differences in dissimilarities between rarefied and observed matrices were relatively 35small (Fig. B4). These findings suggest that the comparison of dissimilarities between interaction 36matrices is robust to sampling effects.

37

38 A.2 Plant traits – floral complexity and exotic plants

39To quantify floral complexity, we identified *a priori* four flower traits to describe a gradient of 40increasing floral restrictiveness and handling complexity: (1) floral symmetry and pollen 41presentation patterns within the flower, (2) flower dimensionality, (3) accessibility of nectar, and

42(4) flower orientation (Table A5). Scores from 0–5 were assigned to each trait reflecting an 43 increasing degree of handling complexity, and added up to one single value per plant species, 44 reflecting its total floral complexity. Plants with total scores close to 20 were considered 45 extremely complex, restricting flower access to a small group of specialized pollinator species. 46 In contrast, plants with scores close to 0 presented flowers accessible to a large variety of 47 pollinator species. Pollinator species richness decreased significantly with increasing floral 48 complexity (Fig. B5; linear regression: $R^2 = 0.198$, df = 36, P = 0.0052). The species included in 49 this study were scored independently by three people based on photographs and handling 50 experience of the flowers, and the assigned scores differed only minimally in two of 37 plant 51 species (scores in Table A3). To assess the influence of the category size on the model fit, we 52 conducted the same analysis with five and seven equally-sized categories which generated 53 comparable statistical models. The model with five categories (width of categories: 0–3, 4–7, 8–5411, 12–15, \leq 16 complexity scores) had the better overall fit and we therefore used only the model 55 with five categories in the analysis.

56 The proportion of exotic flowers in the communities was included as an independent 57predictor variable in our models for two reasons: (1) exotic flowers have been shown to be 58particularly attractive to pollinators as a result of their high energy nectar and attractive flowers 59(e.g., Chittka and Schürkens 2001), and (2) the attractiveness of exotic plants can be unevenly 60distributed within the pollinator community (e.g., exotic pollinators are more frequently attracted 61to exotic plants than native pollinators; Aizen et al. 2008, Kaiser-Bunbury et al. 2011). These 62properties of exotic plants are not part of plant abundance and trait variables and thus warrant 63independent inclusion in the model.

64

65 A.3 Pollinator traits – body size

66We used body dimensions of pollinators to define functional groups of pollinator traits. We 67recorded thorax width and total body length of invertebrates, head width and body length 68(without tail) of birds, and head width and snout to vent length of geckos (Table A4) as proxy for 69pollinator functional diversity (Stang et al. 2006). Total body length (head, thorax and abdomen) 70was recorded on straightened insects, and we used calipers to measure body dimensions to the 71nearest 0.1 mm. Thorax width and body length were highly correlated (log-transformed; r = 0.80, $72P \le 0.001$, N = 83). To determine the optimal number of size classes, we plotted a histogram of 73thorax width (log-transformed) and selected the lowest number of equal size categories which 74created a good fit to the normal distribution. We tested the robustness of the classification by 75running the same analysis with seven, eight and nine categories, both with thorax width and body 76size. All possible combinations generated similar qualitative effects but the best fit showed the 77model with thorax width and eight size classes. Thus, we used eight size classes of pollinator 78functional groups in the analysis.

79

80 A.4 Dissimilarity variables

81We created 48 interaction matrices consisting of 37 plant species in rows and 83 pollinator 82species in columns. Interaction frequency between two mutualistic partners was normalized by

83 dividing by total interaction frequency in the network. We computed Bray-Curtis dissimilarity 84 values for all pair-wise combinations of the interaction matrices. The output was a 48×48 lower 85triangular matrix with cells containing interaction dissimilarities quantifying the degree of 86 dissimilarity between every pair of interaction matrices $(D_{x,y})$. Following a similar procedure, we 87created dissimilarity matrices for all observed indicator variables. Dissimilarity matrices were 88calculated from the following matrices with 48 networks in rows: Floral and pollinator 89abundance contained plant and animal species, respectively, in columns ordered by decreasing 90relative abundance in each network, independent of species identity, and relative floral 91abundance in cells; floral composition and pollinator composition contained plant and pollinator 92species in columns and sum of floral abundance and mean interaction frequency in cells, 93 respectively; the proportion of exotic flowers in each network contained the proportion of exotic 94 flowers in communities +1 in one row-1 was added to avoid zero in the denominator when 95calculating dissimilarities of communities without exotic flowering plants; and plant and 96pollinator trait matrices had categories in columns and the sum of floral abundance and mean 97 interaction frequency in cells, respectively. Bray-Curtis dissimilarities index ranges from 1 to 0, 98where values close to 0 are relatively similar and values close to 1 are highly dissimilar.

99 All variables except time of year and geographic location were normalized prior to 100calculating dissimilarity values by dividing each cell by the marginal sums of the rows. For time 101 of year and location we calculated Euclidean distances with unnormalized number of days and 102 distance in meters between network pairs, respectively. To account for a weak seasonality effect 103 of species richness and abundance, we used periodic instead of a linear temporal distance 104 between networks fitted to an annual cycle. That is, the maximum temporal distance between 105 two networks was 182 days.

106

107 A.5 Model fit and analysis quality

108We employed goodness-of-fit indices using discrepancy functions, comparisons with null 109models, and information theory to assess model fit, including chi-square tests (compared to 110hypothesized and null model), adjusted goodness-of-fit index, root mean square error of 111approximation (RMSEA), Tucker-Lewis non-normed fit index (NNFI), Bentler-Bonnett normed 112fit index (NFI), Bentler comparative fit index (CFI) and standardized root mean square residual 113(SRMR). Index criteria, model fit thresholds, and index values for all three models are 114summarized in Table A6.

Using a correlation matrix in structural equation modelling instead of a covariance matrix 116can result in incorrect standard errors of the coefficients as they fail to take account of sampling 117variance in the standard deviations (Cudeck 1989, Grace 2006). Given the large sample size of 118our data sets and the normalized dissimilarity matrices, however, we believe that any potential 119inaccuracy in the calculation of the standard errors is of little biological relevance. The author of 120the sem library in R provided specific examples on building structural equation models on 121correlation matrices (Duncan et al. 1968 in manual to the R library 'sem', Fox 2012) and 122confirmed the use of Wald tests as appropriate tools to determine the statistical significance of 123model coefficients (J. Fox, pers. comm.). Further, to verify the results of our path analysis in R, 124we ran the same full model with Reticular Action Model or Near Approximation (RAMONA) 125implemented in the statistical package SYSTAT 12. Both sem and RAMONA use reticular action 126model notation (McArdle and McDonald 1984). RAMONA, however, accounts for the 127correlation matrix when fitting path analysis models and thereby avoids the potential errors 128associated to path analysis that treat a correlation matrix as if it were a covariance matrix. The 129results of the RAMONA model were comparable to those generated in R, suggesting that the 130influence of the correlation matrix on the standard errors of the coefficients was negligible.

131 The correlation between floral composition and floral complexity was non-linear and 132showed a triangular pattern (Fig. A2). The pattern arises because networks that are similar in 133 floral trait composition can be similar or dissimilar in plant species composition, networks that 134are very dissimilar in flower trait composition can only be dissimilar in plant species 135composition. To address this constraint, we developed a null-model to calculate Spearman 136 correlation coefficients r_s of randomly generated data (999 iterations) that were restricted by 137the limits of the observed data (the R code of the null model is provided in AppendixA.2). We 138 evaluated the statistical significance of \dot{r}_{s} by calculating its 97.5% confidence intervals. To 139test the effect of the randomised \dot{r}_s on our SEM, we fixed the path between floral 140 composition and floral complexity to \dot{r}_{s} (Fox 2006) and compared this model, following the 141model simplification procedure described above, to the model in which the path between floral 142composition and floral complexity is allowed to vary randomly (Shipley 2000). The model with 143the fixed parameter had a significantly worse model fit ($\Delta BIC = 13.9$; likelihood ratio test: $\chi^2 =$ 14420.9, $P \stackrel{<}{} 0.0001$); we thus present here results on the original model with free parameter 145 estimates only.

146

147

148LITERATURE CITED

149Bentler, P. M. 1990. Comparative fit indexes in structural models. Psychological Bulletin150 107:238-246.

151Bentler, P. M. and D. G. Bonett. 1980. Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin 88:588-606.

153Cudeck, R. 1989. Analysis of correlation matrices using covariance structure models.

154 Psychological Bulletin 105:317-327.

155Duncan, O. D., A. O. Haller, and A. Portes. 1968. Peer influences on aspiration: A

reinterpretation. American Journal of Sociology 74:119-137.

- 157Fox, J., Z. Nie, and J. Byrnes. 2012. sem: Structural Equation Models. R package version 3.0-0.
 http://CRAN.R-project.org/package=sem
- 159Fox, J. 2006. Teacher's corner: Structural equation modeling with the sem package in R.
- 160 Structural Equation Modeling: A Multidisciplinary Journal 13:465-486.

161Grace, J. B. 2006. Structural equation modeling and natural systems. Cambridge University

162 Press, Cambridge, UK.

163Heck, K. L., G. van Belle, and D. Simberloff. 1975. Explicit calculation of the rarefaction 164 diversity measurement and the determination of sufficient sample size. Ecology 56:1459-165 1461. 166Hu, L.-t. and P. M. Bentler. 1998. Fit indices in covariance structure modeling: Sensitivity to 167 underparameterized model misspecification. Psychological Methods 3:424-453. 168Hurlbert, S. H. 1971. The nonconcept of species diversity: A critique and alternative parameters. 169 Ecology 52:577-586. 170Kaiser-Bunbury, C. N., T. Valentin, J. Mougal, D. Matatiken, and J. Ghazoul. 2011. The tolerance 171 of island plant-pollinator networks to alien plants. Journal of Ecology 99:202-213. 172MacCallum, R. C., M. W. Browne, and H. M. Sugawara. 1996. Power analysis and determination of sample size for covariance structure modeling. Psychological Methods 1:130-149. 173 174McArdle, J. J. and R. P. McDonald. 1984. Some algebraic properties of the Reticular Action 175 Model for moment structures. British Journal of Mathematical and Statistical Psychology 176 37:234-251. 177Ollerton, J. and L. Cranmer. 2002. Latitudinal trends in plant-pollinator interactions: are tropical plants more specialised? Oikos 98:340-350. 178 179Schumacker, R. E., and R. G.Lomax. 2004. A beginner's guide to structural equation modeling. 180 Second edition. Lawrence Erlbaum Associates. Mahwah, NJ. 181Shipley, B. 2000. Cause and correlation in biology. A user's guide to path analysis, structural equations, and causal inference. . Cambridge University Press, Cambridge, UK. 182 183Stang, M., P. G. L. Klinkhamer, and E. van der Meijden. 2006. Size constraints and flower 184 abundance determine the number of interactions in a plant-flower visitor web. Oikos 185 112:111-121. 186 187

188TABLE A1. Relationships between ecological variables that justify paths between dissimilarity variables shown in the hypothesized models (Fig. 1 189and A1). In the hypothesized models there are directed paths from dissimilarities in variable 1 to dissimilarities in variable 2. While the justifications 190are based on ecological relationships they take into account that dissimilarities of the variables are used in the models. For definitions and detailed 191explanations on the variables see Appendix A.2-4. 192

Variable 1	Variable 2	Justification	Reference
Time	Pollinator abundance	Species abundance and composition of	Alarcón, R., N. M. Waser, and J. Ollerton. 2008. Year-to-year
	distribution	a community are determined by	variation in the topology of a plant-pollinator interaction network.
	Pollinator	species' phenophases. Networks that	Oikos 117:1796-1807.
	composition	are closer in time are more likely to	Herrera, J. 1988. Pollination relationships in southern Spanish
	Interaction pattern	share the same species, their relative	Mediterranean shrublands. Journal of Ecology 76:274-287.
	Floral composition	and total abundances, and,	Olesen, J. M., J. Bascompte, H. Elberling, and P. Jordano. 2008.
	Floral abundance	consequently, pairwise interactions	Temporal dynamics in a pollination network. Ecology 89:1573-
	distribution	than networks that are temporally	1582.
	Exotics dominance	further apart.	Olesen, J. M., Y. L. Dupont, E. J. O'Gorman, T. C. Ings, K. Layer,
	Exoties dominance		C. J. Melian, K. Trojelsgaard, D. E. Pichler, C. Rasmussen, and G.
			Woodward. 2010. From Broadstone to Zackenberg: Space, Time
			and Hierarchies in Ecological Networks. Pages 1-69 in G.
			Woodward, editor. Advances in Ecological Research: Ecological
			Networks, Vol 42.
			Petanidou, T., A. S. Kallimanis, J. Tzanopoulos, S. P. Sgardelis, and
			J. D. Pantis. 2008. Long-term observation of a pollination network
			fluctuation in species and interactions, relative invariance of
			network structure and implications for estimates of specialization.
			Ecology Letters 11:564-575.
			Rasmussen, C., Y. L. Dupont, J. B. Mosbacher, K. Trøjelsgaard, and
			J. M. Olesen. 2013. Strong impact of temporal resolution on the
			structure of an ecological network. PLoS ONE 8:e81694.
Location	Pollinator abundance	Spatial distance refers to the distance in	Bronstein, J. L. 1994. Our current understanding of mutualism.
	distribution	meters between two communities.	Quarterly Review of Biology 69:31-51.
	Pollinator	Within habitat types, the similarity of	Burkle, L. and R. Irwin. 2009. The importance of interannual
	composition		

	Interaction pattern	communities in terms of species	variation and bottom-up nitrogen enrichment for plant-pollinator
	Floral composition	abundance and composition and exotic	networks. Oikos 118:1816-1829.
	Floral abundance	species dominance decreases with	Nekola, J. C. and P. S. White. 1999. The distance decay of similarity
	distribution	spatial distance. Interactions may be	in biogeography and ecology. Journal of Biogeography 26:867-878.
	Exotics dominance	influenced by species abundance and	Steffan-Dewenter, I. and T. Tscharntke. 1999. Effects of habitat
		composition, and we thus expect the	isolation on pollinator communities and seed set. Oecologia
		similarity of the identity and frequency	121:432-440;
		of interactions also to decreases with	
		spatial distance.	
Exotics	Pollinator abundance	Pollinator abundance and community	Cox, P. A. and T. Elmqvist. 2000. Pollinator extinction in the Pacific
dominance	distribution	composition can be altered by exotic	Islands. Conservation Biology 14:1237-1239.
	Pollinator	plants. In the Seychelles, exotic plants	Graves, S. D. and A. M. Shapiro. 2003. Exotics as host plants of the
	composition	attract few, generalised and mostly	California butterfly fauna. Biological Conservation 110:413-433.
		abundant pollinator species compared	Kaiser-Bunbury, C. N., T. Valentin, J. Mougal, D. Matatiken, and J.
		to native plant species, suggesting that	Ghazoul. 2011. The tolerance of island plant–pollinator networks to
		networks with high levels of plant	alien plants. Journal of Ecology 99:202-213.
		invasion, but otherwise similar plant	Williams, N. M., D. Cariveau, R. Winfree, and C. Kremen. 2011.
		species diversity, are more similar in	Bees in disturbed habitats use, but do not prefer, alien plants. Basic
		pollinator abundance and composition	and Applied Ecology 12:332-341.
		compared to networks with few or no	
		exotic flowers.	

	Interaction pattern	Exotic plant species that have invaded	Aizen, M. A., C. L. Morales, and J. M. Morales. 2008. Invasive
	patterni	natural areas compete with native	mutualists erode native pollination webs. PLoS Biology 6:396-403.
		species for pollination. Interaction	Bjerknes, AL., Ø. Totland, S. J. Hegland, and A. Nielsen. 2007. Do
		patterns are thus influenced by exotic	alien plant invasions really affect pollination success in native plant
		flowering plants through changes in	species? Biological Conservation 138:1-12.
		pollinator behaviour.	Brown, B. J., R. J. Mitchell, and S. A. Graham. 2002. Competition
			for pollination between an invasive species (purple loosestrife) and
			a native congener. Ecology 83:2328-2336.
			Flanagan, R., R. Mitchell, and J. Karron. 2010. Increased relative
			abundance of an invasive competitor for pollination, Lythrum
			salicaria, reduces seed number in Mimulus ringens. Oecologia 164:445-454.
			Ghazoul, J. 2004. Alien abduction: disruption of native plant-
			pollinator interactions by invasive species. Biotropica 36:156-164.
			Morales, C. L. and A. Traveset. 2009. A meta-analysis of impacts of
			alien vs. native plants on pollinator visitation and reproductive
			success of co-flowering native plants. Ecology Letters 12:716-728.
			Muñoz, A. A. and L. A. Cavieres. 2008. The presence of a showy
			invasive plant disrupts pollinator service and reproductive output in
			native alpine species only at high densities. Journal of Ecology
			96:459-467.
	Floral composition	Exotic plants compete with natives for	Cox, P. A. and T. Elmqvist. 2000. Pollinator extinction in the Pacific
		resources, light and water, thus causing	Islands. Conservation Biology 14:1237-1239.
	Floral abundance	displacement and changes in the plant	Gurevitch, J. and D. K. Padilla. 2004. Are invasive species a major
	distribution	community. Therefore, networks with	cause of extinctions? Trends in Ecology & Evolution 19:470-474.
		similar levels of exotic dominance are	Williams, N. M., D. Cariveau, R. Winfree, and C. Kremen. 2011.
		likely to be more similar in floral	Bees in disturbed habitats use, but do not prefer, alien plants. Basic
		abundance and composition.	and Applied Ecology 12:332-341.
Pollinator	Pollinator traits	We expect that communities with	Morse, D. R., N. E. Stork, and J. H. Lawton. 1988. Species number,
abundance		similar pollinator abundance	species abundance and body length relationships of arboreal beetles
distribution		distributions are likely to show similar	in Bornean lowland rain forest trees. Ecological Entomology 13:25-
		body size abundance distributions.	37.

	Pollinator	Communities that are similar in	Siemann, E., D. Tilman, and J. Haarstad. 1996. Insect species
	composition	pollinator abundance distribution	diversity, abundance and body size relationships. Nature 380:704-
		should also be similar in terms of	706.
		composition because the same species	
		are likely to contribute equivalently to	
		abundance.	
	Interaction pattern	The neutrality hypothesis posits that	Vázquez, D. P., N. P. Chacoff, and L. Cagnolo. 2009. Evaluating
		individuals interact randomly. This	multiple determinants of the structure of plant-animal mutualistic
		implies that the abundance of species	networks. Ecology 90:2039-2046.
		determines interaction frequency and	Dupont, Y. L., D. M. Hansen, and J. M. Olesen. 2003. Structure of a
		diversity. Similarity in pollinator	plant-flower-visitor network in the high-altitude sub-alpine desert of
		abundance distribution between	Tenerife, Canary Islands. Ecography 26:301-310.
		networks should therefore correspond	Ollerton, J., S. D. Johnson, L. Cranmer, and S. Kellie. 2003. The
		to similarity in interaction pattern	pollination ecology of an assemblage of grassland asclepiads in
		among networks.	South Africa. Annals of Botany 92:807-834.
			Vázquez, D. P., C. J. Melian, N. M. Williams, N. Bluthgen, B. R.
			Krasnov, and R. Poulin. 2007. Species abundance and asymmetric
			interaction strength in ecological networks. Oikos 116:1120-1127.
Floral	Floral traits	Floral traits that determine the	Sargent, R. D. and S. P. Otto. 2006. The role of local species
abundance		pollinator spectrum evolved depending	abundance in the evolution of pollinator attraction in flowering
distribution		on their relative abundance in the	plants. The American Naturalist 167:67-80.
		community. Floral traits in	
		communities of the same habitat type	
		are thus expected to be more similar	
		when they show similar floral	
		abundance distributions.	

	Floral composition	Communities that are more similar in	Kunin, W. E. 1997. Population size and density effects in
		the distribution of floral abundance	pollination: Pollinator foraging and plant reproductive success in
		should also be more similar in terms of	experimental arrays of Brassica kaber. Journal of Ecology 85:225-
		composition because the same species	234.
		are likely to contribute equivalently to	Stang, M., P. G. L. Klinkhamer, and E. van der Meijden. 2006. Size
		abundance.	constraints and flower abundance determine the number of
			interactions in a plant-flower visitor web. Oikos 112:111-121.
			Vázquez, D. P., N. P. Chacoff, and L. Cagnolo. 2009. Evaluating
			multiple determinants of the structure of plant-animal mutualistic networks. Ecology 90:2039-2046.
	Interaction pattern	The neutrality hypothesis posits that	Dupont, Y. L., D. M. Hansen, and J. M. Olesen. 2003. Structure of a
	F	individuals interact randomly. This	plant-flower-visitor network in the high-altitude sub-alpine desert of
		implies that floral abundance	Tenerife, Canary Islands. Ecography 26:301-310.
		determines interaction frequency and	Ollerton, J., S. D. Johnson, L. Cranmer, and S. Kellie. 2003. The
		diversity independent of the identity of	pollination ecology of an assemblage of grassland asclepiads in
		the flowering plant species. Similarity	South Africa. Annals of Botany 92:807-834.
		in the distribution of floral abundance	Vázquez, D. P., C. J. Melian, N. M. Williams, N. Bluthgen, B. R.
		between networks should therefore	Krasnov, and R. Poulin. 2007. Species abundance and asymmetric
		correspond to similarity in interaction	interaction strength in ecological networks. Oikos 116:1120-1127.
		patterns between networks.	Vázquez, D. P., N. P. Chacoff, and L. Cagnolo. 2009. Evaluating
			multiple determinants of the structure of plant-animal mutualistic
			networks. Ecology 90:2039-2046.
Pollinator	Pollinator	Functional traits and environmental	Sargent, R. D. and D. D. Ackerly. 2008. Plant-pollinator
traits	composition	filtering are prominent mechanisms	interactions and the assembly of plant communities. Trends in
		that structure species abundance and	Ecology & Evolution 23:123-130.
	Interaction pattern	- composition. We expect that a change	Stang, M., P. G. L. Klinkhamer, N. M. Waser, I. Stang, and E. van
		in composition could lead to a change	der Meijden. 2009. Size-specific Interaction pattern and size
		in traits and a change in traits will	matching in a plant-pollinator interaction web. Annals of Botany
		imply a change in composition	103:1459-1469.
		(reciprocal causation). Thus, networks	Webb, C. O., D. D. Ackerly, M. A. McPeek, and M. J. Donoghue.
		with similar distributions of pollinator	2002. Phylogenies and community ecology. Annual Review of
		traits are similar in pollinator	Ecology and Systematics 33:475-505.

		community composition and interaction patterns	
Floral traits	Floral composition	Mechanisms such as environmental filtering based on floral traits determine the abundance and identity of flowering plant species in the community. Thus, filtering mechanism can result in communities of species that share similar morphological traits.	Sargent, R. D. and D. D. Ackerly. 2008. Plant–pollinator interactions and the assembly of plant communities. Trends in Ecology & Evolution 23:123-130. Webb, C. O., D. D. Ackerly, M. A. McPeek, and M. J. Donoghue. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33:475-505.
	Interaction pattern	Floral traits determine which species in a community can interact with each other. Such phenotypic constraints drive the positive relationship in network similarity in floral traits and interactions patterns.	 Gibson, M. R., D. M. Richardson, and A. Pauw. 2012. Can floral traits predict an invasive plant's impact on native plant–pollinator communities? Journal of Ecology 100:1216-1223. Jordano, P., J. Bascompte, and J. M. Olesen. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. Ecology Letters 6:69-81. Lázaro, A., S. J. Hegland, and Ø. Totland. 2008. The relationships between floral traits and specificity of pollination systems in three Scandinavian plant communities. Oecologia 157:249-257. Rezende, E. L., P. Jordano, and J. Bascompte. 2007. Effects of phenotypic complementarity and phylogeny on the nested structure of mutualistic networks. Oikos 116:1919-1929. Stang, M., P. G. L. Klinkhamer, N. M. Waser, I. Stang, and E. van der Meijden. 2009. Size-specific Interaction pattern and size matching in a plant–pollinator interaction web. Annals of Botany 103:1459-1469.

Pollinator	Pollinator traits	The abundance and identity of	Stang, M., P. G. L. Klinkhamer, and E. van der Meijden. 2006. Size
composition		pollinators determines the distribution	constraints and flower abundance determine the number of
		of pollinator traits in the community.	interactions in a plant-flower visitor web. Oikos 112:111-121.
		We expect that communities similar in	
		pollinator composition are also similar	
		in the distribution of pollinator traits.	
	Interaction pattern	Pollinator community composition	Kaiser-Bunbury, C. N., J. Memmott, and C. B. Müller. 2009.
		determines which and how frequent co-	Community structure of pollination webs of Mauritian heathland
		evolved species interact, so that	habitats. Perspectives in Plant Ecology, Evolution and Systematics
		interaction patterns are a direct	11:241-254.
		consequence of pollinator community	
		composition.	
Floral	Floral traits	Floral community composition	Stang, M., P. G. L. Klinkhamer, and E. van der Meijden. 2006. Size
composition		determines the distribution of flower	constraints and flower abundance determine the number of
		traits in the community. We therefore	interactions in a plant-flower visitor web. Oikos 112:111-121.
		expect that communities similar in	
		floral community composition are also	
		similar in floral traits.	

Pollinator	There is theoretical and empirical	Hegland, S. J. and L. Boeke. 2006. Relationships between the
composition	evidence that increasing resource	density and diversity of floral resources and flower visitor activity
	diversity (i.e., plants) increases	in a temperate grassland community. Ecological Entomology
	consumer diversity (i.e., pollinators).	31:532-538.
	We predict that similarity in floral	Lázaro, A., A. Jakobsson, and Ø. Totland. 2013. How do pollinator
	community composition is reflected by	visitation rate and seed set relate to species' floral traits and
	similarities in pollinator community	community context? Oecologia 173:881-893.
	composition as pollinators respond	Potts, S. G., B. Vulliamy, A. Dafni, G. Ne'eman, and P. Willmer.
	directly to changes in floral resources	2003. Linking bees and flowers: How do floral communities
	offered in the community.	structure pollinator communities? Ecology 84:2628-2642.
		Ricketts, T. H. 2004. Tropical forest fragments enhance pollinator
		activity in nearby coffee crops. Conservation Biology 18:1262-
		1271.
		Siemann, E., D. Tilman, J. Haarstad, and M. Ritchie. 1998.
		Experimental tests of the dependence of arthropod diversity on plant
		diversity. The American Naturalist 152:738-750.
		Stang, M., P. G. L. Klinkhamer, and E. van der Meijden. 2006. Size
		constraints and flower abundance determine the number of
		interactions in a plant-flower visitor web. Oikos 112:111-121.
		Steffan-Dewenter, I. and T. Tscharntke. 1999. Effects of habitat
		isolation on pollinator communities and seed set. Oecologia
		121:432-440.
		Steffan-Dewenter, I., AM. Klein, V. Gaebele, T. Alfert, and T.
		Tscharntke. 2006. Bee diversity and plant-pollinator interactions in
		fragmented landscapes. Pages 387-407 in N. M. Waser and J.
		Ollerton, editors. Plant-Pollinator Interactions: From Specialization
		to Generalization. University of Chicago Press, Chicago.

Inter	eraction pattern	Floral community composition	Lázaro, A., A. Jakobsson, and Ø. Totland. 2013. How do pollinator
		determines the type, amount and	visitation rate and seed set relate to species' floral traits and
		accessibility of resources in a	community context? Oecologia 173:881-893.
		community, thereby directly regulating	Stang, M., P. G. L. Klinkhamer, and E. van der Meijden. 2006. Size
		the distribution and frequency of	constraints and flower abundance determine the number of
		interactions in a network. We expect	interactions in a plant-flower visitor web. Oikos 112:111-121.
		that similarity in floral composition	Vázquez, D. P., C. J. Melian, N. M. Williams, N. Bluthgen, B. R.
		between networks entails similarity in	Krasnov, and R. Poulin. 2007. Species abundance and asymmetric
		interaction pattern between networks.	interaction strength in ecological networks. Oikos 116:1120-1127.
			Vázquez, D. P., N. P. Chacoff, and L. Cagnolo. 2009. Evaluating
			multiple determinants of the structure of plant-animal mutualistic
			networks. Ecology 90:2039-2046.

193TABLE A2. Distances (in meters) between the six study sites.

	Bernica	Casse Dent	Copolia	La Reserve	Tea Plantation	Trois Frères
Casse Dent	2172					
Copolia	2272	2313				
La Reserve	7681	9720	8289			
Tea Plantation	1319	876	2107	8966		
Trois Frères	3745	2314	2122	10299	2888	

198TABLE A3. Plant species included in the study. Given are species and family names, origin, IUCN status of endangerment, floral abundance and

199 floral complexity scores. The following species were recently renamed: *Gastonia crassa = Polyscias crassa*; *Canthium bibracteatum =*

200 Pyrostria bibracteata; Paraserianthes falcataria = Falcataria moluccana

Plant species	Family	Origin	IUCN Status*	Floral abundance across all networks [# flowers/cube]	Floral complexity scores†
Alstonia macrophylla	Apocynaceae	Exotic	-	0.405	12
Aphloia theiformis var. seychellensis	Flacourtiaceae	Native	NT	0.227	6
Campnosperma seychellarum	Anacardiaceae	Endemic	CR	0.126	5
Chrysobalanus icaco	Chrysobalanaceae	Exotic	-	1.116	6
Cinnamomum verum	Lauraceae	Exotic	-	0.707	9
Colea seychellarum	Bignoniaceae	Endemic	EN	0.016	16
Craterispermum microdon	Rubiaceae	Endemic	EN	0.100	11
Deckenia nobilis	Palmae	Endemic	NT	0.383	3
Dillenia ferruginea	Dilleniaceae	Endemic	NT	0.189	8
Dillenia suffruticosa	Dilleniaceae	Exotic	-	0.031	8
Diospyros seychellarum	Ebenaceae	Endemic	NT	0.064	9
Dracaena reflexa	Dracenaceae	Native	LC	0.047	9
Erythroxylum sechellarum	Erythroxylaceae	Endemic	LC	0.762	8
Euphorbia pyrifolia	Euphorbiaceae	Native	LC	0.039	7
Excoecaria benthiamiana	Euphorbiaceae	Endemic	VU	0.329	7
Falcataria moluccana	Mimosaceae	Exotic	-	0.105	11
Glionnetia sericea	Rubiaceae	Endemic	EN	0.024	13
Ixora pudica	Rubiaceae	Endemic	NT	0.038	11
Medusagyne oppositifolia	Medusagynaceae	Endemic	CR	0.522	10
Memecylon eleagni	Melastomataceae	Endemic	LC	1.994	4
Mimusops sechellarum	Sapotaceae	Endemic	NT	0.122	13
Nepenthes pervillei	Nephentaceae	Endemic	NT	0.658	4
Nephrosperma vanhoutteanum	Palmae	Endemic	VU	2.928	3
Northea hornei	Sapotaceae	Endemic	VU	0.101	12

Ochnaceae	Exotic	-	0.219	6
Rubiaceae	Endemic	NT	0.958	13
Palmae	Endemic	LC	2.674	3
Pittosporaceae	Native	VU	0.070	7
Araliaceae	Endemic	VU	0.109	6
Lamiaceae	Native	LC	0.056	1
Myrtaceae	Exotic	-	0.030	5
Rubiaceae	Endemic	VU	0.246	10
Rubiaceae	Endemic	LC	4.048	10
Palmae	Endemic	NT	1.660	3
Simaroubaceae	Endemic	VU	0.380	6
Myrtaceae	Endemic	VU	0.323	15
Rubiaceae	Endemic	VU	0.077	11
	Rubiaceae Palmae Pittosporaceae Araliaceae Lamiaceae Myrtaceae Rubiaceae Rubiaceae Palmae Simaroubaceae Myrtaceae	RubiaceaeEndemicPalmaeEndemicPittosporaceaeNativeAraliaceaeEndemicLamiaceaeNativeMyrtaceaeExoticRubiaceaeEndemicRubiaceaeEndemicPalmaeEndemicSimaroubaceaeEndemicMyrtaceaeEndemicSimaroubaceaeEndemicMyrtaceaeEndemicSimaroubaceaeEndemicMyrtaceaeEndemic	RubiaceaeEndemicNTPalmaeEndemicLCPittosporaceaeNativeVUAraliaceaeEndemicVULamiaceaeNativeLCMyrtaceaeExotic-RubiaceaeEndemicVURubiaceaeEndemicVURubiaceaeEndemicVUSimaroubaceaeEndemicVUMyrtaceaeEndemicVUVuMyrtaceaeEndemicVUVuMyrtaceaeEndemicVUMyrtaceaeEndemicVUMyrtaceaeEndemicVU	RubiaceaeEndemicNT0.958PalmaeEndemicLC2.674PittosporaceaeNativeVU0.070AraliaceaeEndemicVU0.109LamiaceaeNativeLC0.056MyrtaceaeExotic-0.030RubiaceaeEndemicVU0.246RubiaceaeEndemicLC4.048PalmaeEndemicNT1.660SimaroubaceaeEndemicVU0.380MyrtaceaeEndemicVU0.323

202* LC = least concern, NT = near threatened, VU = vulnerable, EN = endangered, CR = critically endangered; - = exotic species, not listed. 203† Describes the floral resource accessibility and floral morphology on an ordinal scale. Values range from 0–20, with 0 describing very simple and 204 easily accessible flowers (TABLE A5) 205TABLE A4. Pollinator taxa included in the study. Shown are species and orders where possible, total number of visits across the entire 8 month study 206 period, thorax width and body length, and the size class used to categorize pollinator taxa by morphological traits. Pollinators that could not 207 be identified to species level due to size or lack of taxonomic expertise were assigned a species code. Taxa IDs correspond to pollinator codes 208 that can be provided for FIG. B1.

Ι						
D	Pollinator taxa	Class/Order	Visits	Thorax width [mm]	Body length [mm]	Size class (1-8)
48	Foudia madagascariensis	Aves	1	8.5*	130.0	8
68	Cinnyris dussumieri	Aves	199	9.5*	120.0	8
7	Beetle sp1	Coleoptera	5	0.5	2.8	3
25	Beetle sp10	Coleoptera	64	0.8	1.6	4
88	Beetle sp13	Coleoptera	20	0.6	1.8	4
57	Beetle sp14	Coleoptera	79	0.9	2.0	4
4	Beetle sp4	Coleoptera	257	0.8	1.9	4
5	Beetle sp5	Coleoptera	325	0.9	3.2	4
17	Beetle sp6	Coleoptera	3	0.3	2.1	3
77	Beetle sp7	Coleoptera	5	0.2	2.5	2
14	Beetle sp8	Coleoptera	1	0.9	2.1	4
41	Beetle sp9	Coleoptera	2	0.2	2.6	2
92	Cratopus aurostriatus	Coleoptera	60	2.3	10.0	6
36	Curculionidae sp12	Coleoptera	51	0.6	2.9	4
27	Elateroidea sp2	Coleoptera	26	0.8	3.4	4
19	Elateroidea sp3	Coleoptera	12	0.6	3.0	4
18	Mordellidae sp11	Coleoptera	26	0.6	2.7	4
78	Perissoma aenescens	Coleoptera	2	4.0	9.9	7
75	Eristalinus vicarians	Diptera	29	4.1	11.3	7
37	Eristalodes seychellarum	Diptera	1	4.4	10.9	7
3	Fly sp1	Diptera	184	0.3	2.9	3
82	Fly sp10	Diptera	10	1.6	7.8	5
80	Fly sp11	Diptera	22	2.1	5.3	6
10	Fly sp12	Diptera	1	0.6	2.8	4

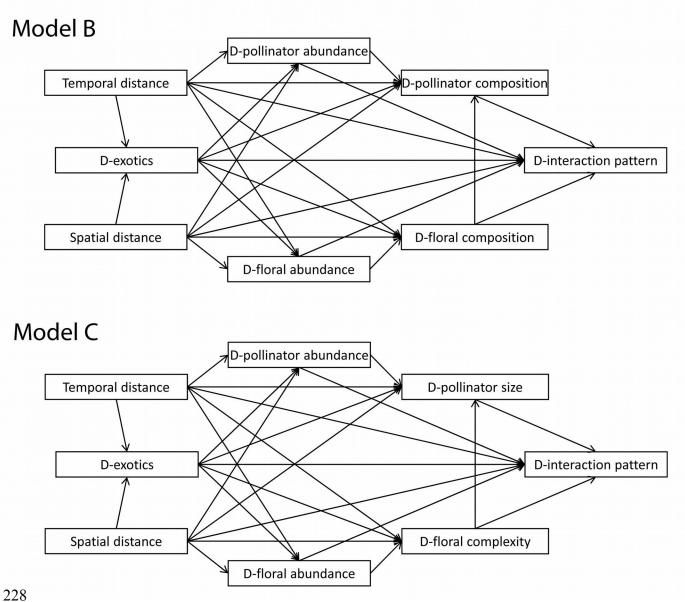
15	Fly sp13	Diptera	3	0.5	2.5	3
54	Fly sp14	Diptera	24	2.9	7.1	6
34	Fly sp15	Diptera	218	2.6	6.5	6
26	Fly sp16	Diptera	177	0.1	0.8	1
28	Fly sp17	Diptera	13	0.1	0.2	1
30	Fly sp18	Diptera	59	0.2	1.0	2
31	Fly sp19	Diptera	3	0.2	2.2	2
8	Fly sp2	Diptera	1	0.7	1.8	4
39	Fly sp20	Diptera	1	0.2	1.6	2
43	Fly sp21	Diptera	1	1.2	4.3	5
44	Fly sp22	Diptera	1	0.1	2.4	1
51	Fly sp23	Diptera	2	1.2	4.3	5
56	Fly sp24	Diptera	26	0.3	1.3	3
58	Fly sp25	Diptera	18	0.1	0.3	1
59	Fly sp26	Diptera	12	0.1	0.2	1
83	Fly sp27	Diptera	28	1.1	3.0	5
94	Fly sp28	Diptera	1	0.1	2.1	1
16	Fly sp3	Diptera	164	0.1	1.9	1
6	Fly sp30	Diptera	24	0.1	0.1	1
62	Fly sp31	Diptera	13	0.1	0.1	1
66	Fly sp32	Diptera	1	0.1	0.1	1
96	Fly sp33	Diptera	1	0.1	0.2	1
95	Fly sp34	Diptera	1	0.1	0.2	1
12	Fly sp35	Diptera	6	0.4	1.8	3
81	Fly sp4	Diptera	17	0.1	1.1	1
73	Fly sp5	Diptera	28	0.6	2.4	4
55	Fly sp6	Diptera	8	1.1	4.1	5
24	Fly sp7	Diptera	1	1.0	4.8	5
74	Fly sp8	Diptera	37	1.6	5.8	5
23	Fly sp9	Diptera	3	1.8	6.1	5
21	<i>Hemipyrellia</i> sp.	Diptera	73	3.1	8.4	6

89	Melanostoma annulipes	Diptera	19	1.6	8.1	5
79	Neavella albipectus	Diptera	13	3.4	11.3	6
72	Ornidia obesa	Diptera	224	4.7	10.6	7
91	Sarcophagidae sp.	Diptera	3	2.4	12.0	6
52	Simosyrphus aegyptius	Diptera	25	1.6	7.7	5
29	Allodapini sp.	Hymenoptera	31	1.0	5.3	5
50	Apis mellifera adansonii	Hymenoptera	3180	3.6	10.3	6
2	Bee sp1	Hymenoptera	1	1.5	6.2	5
32	Bee sp3	Hymenoptera	4	1.5	6.2	5
47	Bee sp4	Hymenoptera	10	0.4	2.0	3
53	Bee sp5	Hymenoptera	14	0.1	0.6	1
35	Ceratina tabescens	Hymenoptera	39	1.2	5.6	5
22	Chalicodoma disjuncta	Hymenoptera	20	4.6	14.3	7
90	Euodynerus cylindricus	Hymenoptera	3	2.4	10.2	6
38	Lasioglossum mahense	Hymenoptera	2218	1.5	6.2	5
20	Megachile seychellensis	Hymenoptera	135	3.0	10.6	6
65	Polistes olivaceus	Hymenoptera	29	4.1	17.2	7
86	Rhynchium brunneum	Hymenoptera	63	4.8	16.4	7
70	Trypoxylon errans	Hymenoptera	3	1.8	10.0	5
97	Xylocopa caffra	Hymenoptera	114	8.5	18.6	8
49	Agrius convolvuli	Lepidoptera	8	11.9	44.8	8
1	Cenophodes tamsi	Lepidoptera	1	10.0	45.0	8
87	Eagris sabadius maheta	Lepidoptera	8	4.6	15.1	7
84	Lampides boeticus	Lepidoptera	3	1.5	9.6	5
46	Leptotes pirithous	Lepidoptera	5	1.8	8.2	5
63	Phalanta phalantha aethiopica	Lepidoptera	1	6.0	26.0	7
67	Mabuya sechellensis	Lizard	34	11.5†	84.0†	8
64	Phelsuma astriata	Lizard	156	8.2†	55.0†	8

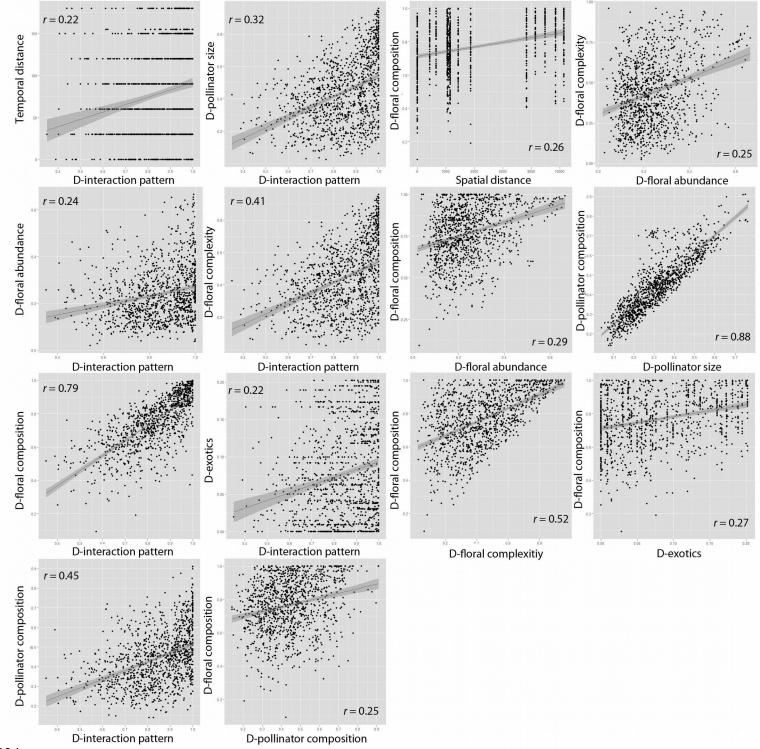
* Head width (G. Rocomora, pers. com.; Craig A. (2010). Ploceidae. In del Hoyo, J., Eliott, A. and Christie D. Handbook of the birds of the World. Volume 15. Lynx Edicions, Barcelona, Spain)

[†] Head width and snout to vent length (S. Rocha and A. Perera, unpubl. data)

TABLE A5. Floral complexity scoring table based on four traits of a flower complexity index (M. Stang, unpublished data). Total floral


213 complexity scores are obtained by adding the scores for each of the four traits. Each category is scored independently within and between 214 species.

Scores	Pollen presentation pattern*	Flower dimensionality**	Accessibility of nectar ⁺	Flower orientation
0	Diffuse (many portions without regular presentation pattern)	2D (e.g., dish-shaped)	Open and easy	Upright (0°)
1	Diffuse to marginal (many portions in 2-3 circles)	2-3D (e.g., bowl-shaped)	Open but not easy, concealed behind hairs or in wide shallow cups (max. depth 1-3 mm)	Upright to horizontal (0-90°)
2	Marginal (many portions in one marginal circle)	2D and 3D (e.g., flat rim with tube, flat heads with tubes)	Semi-concealed in 1-4 mm deep tubes, partly flexible or wide	Upright to pendant; variable (45- 135°)
3	Marginal to central (several portions more centralized presented)	3D with minimal crawling (e.g., funnel, tubes or brush)	Concealed in 4-10 mm flexible, wide or funnel- shaped tubes	Horizontal (90°)
4	Pollen presentation central	3D with short crawling (e.g., funnel, bell, gullet, flag)	Concealed in 8-20 mm narrow or angled tubes or in 10-30 mm very narrow tubes	Horizontal to pendant (90-135°)
5	Pollen presentation more or less excentric, corolla often zygomorphic	3D with deep crawling or closed entrance (e.g., bell, gullet or flag, traps)	Concealed in 8-20 mm narrow tubes with crawling access or with closed entrance or in extremely deep tubes (> 30 mm)	Pendant (135-180°)


 $21\overline{6}$

223TABLE A6. Goodness-of-fit indices for structural equation modelling and the modelling indices of Models A-C. 224

Index name	Model A	Model B	Model C	Threshold	Model fit	Reference
NFI	0.9897	0.9856	0.9842	> 0.95	acceptable fit	Bentler and Bonnett 1980, Schumacker
						and Lomax 2004
NNFI	0.9950	0.9903	1.0	> 0.95	acceptable fit	Hu and Bentler 1998
RMSEA	0.0195	0.0231	0.0001	0.01-0.05	excellent-good fit	MacCallum et al. 1996
CFI	0.9969	0.9945	1.0	close to 1	acceptable fit	Bentler 1990
SRMR	0.0247	0.0233	0.0177	< 0.08	good fit	Hu and Bentler 1998

230FIG. A1. Path diagram describing two reduced (nested) hypothesized models of the relationships of231dissimilarities, in which either community composition (model B) or trait variables (model C) were entered232separately. See FIG. 1 for a depiction of the complete model. Path justifications are provided in TABLE A1.233

235FIG. A2. Correlation plots depict bivariate relationship between dissimilarities (range 0-1) and temporal and 236spatial distances (days and meters, respectively) of variables across networks and the best-fit line with its 237standard error (dark shade surround lines). Shown are only significant Spearman correlations at a Bonferroni-238corrected α of 0.001; for all bivariate relationships refer to TABLE B2. Note the triangular relationship between 239networks in D-floral composition and D-floral complexity. 240

Ecological Archives

Christopher N. Kaiser-Bunbury, Diego P. Vázquez, Martina Stang, and Jaboury Ghazoul. 2014. Determinants of the microstructure of plant-pollinator networks. *Ecology*.

APPENDIX B: Supplementary figures and table supporting the results.

TABLE B1. Summary statistics of the 48 pollination networks. Numbers shown for each network include number of plant and pollinator taxa, number of visits (pollinator individuals observed visiting flowers), number of links between species in a network, total interaction frequency, floral abundance (total number of flowers per sample cube) and the proportion of exotic flowers in a network. Network size is the number of possible links (number of plant species times the number of pollinator species).

.....

. .

.

D

4.

Site	Month	Plant species	Pollinator taxa	Visits	Links	Network size	Interaction frequency	Floral abundance across all species [# flowers/cube]	Proportion of exotic flowers
Bernica	September	5	20	100	35	100	0.29	0.12	0
	October	5	22	135	35	110	0.40	0.23	0
	November	8	18	172	32	144	0.96	0.51	0.40
	December	8	15	219	30	120	1.95	1.08	0
	January	12	24	261	55	288	0.91	1.03	0
	February	11	27	317	62	297	1.16	0.76	0
	March	9	25	373	66	225	2.77	0.92	0.15
	April	6	22	174	37	132	2.12	0.60	0
Casse Dent	September	7	15	38	22	105	0.13	0.23	0.08
	October	6	18	75	28	108	0.12	0.11	0
	November	6	14	156	20	84	1.24	0.81	0.27
	December	7	14	128	27	98	1.00	0.69	0.03
	January	10	22	230	44	220	1.71	0.62	0
	February	6	12	188	19	72	0.35	0.21	0.15

	March	8	21	218	37	168	0.90	0.23	0
	April	8	22	216	44	176	1.02	0.51	0
Copolia	September	11	21	61	50	231	0.27	0.25	0.32
	October	12	23	129	53	276	0.31	0.37	0
	November	12	24	176	47	288	0.54	0.53	0.08
	December	12	16	110	27	192	1.00	1.00	0
	January	12	19	288	47	228	1.11	0.45	0
	February	10	20	136	30	200	0.29	0.23	0
	March	11	27	264	46	297	0.24	0.08	0.09
	April	11	20	240	48	220	0.59	0.25	0
La Reserve	September	6	17	72	34	102	0.33	0.23	0.27
	October	7	18	130	47	126	0.53	0.64	0.30
	November	6	17	155	28	102	0.29	0.14	0.55
	December	8	21	299	38	168	5.59	1.78	0.08
	January	8	21	277	44	168	0.17	0.18	0.47
	February	9	15	209	32	135	0.50	0.38	0.09
	March	6	21	268	37	126	0.47	0.3	0.13
	April	6	19	195	29	114	1.07	0.88	0.02
Tea Plantation	September	4	9	18	11	36	0.14	0.15	0.44
	October	3	8	46	10	24	0.23	0.11	0.50
	November	11	16	82	22	176	0.23	0.41	0.38
	December	9	23	161	38	207	0.53	0.42	0
	January	11	20	214	44	220	0.62	0.37	0.22
	February	10	28	185	54	280	0.65	0.30	0.11
	March	10	24	245	48	240	0.93	0.37	0.42
	April	9	27	397	59	243	2.70	0.59	0.48
Trois Frères	September	4	13	31	18	52	0.20	0.25	0
	October	6	16	121	27	96	0.58	0.29	0.16

November	10	18	149	30	180	0.90	0.53	0.12
December	11	14	139	27	154	0.38	0.45	0.20
January	12	26	317	56	312	0.59	0.32	0.02
February	13	22	202	46	286	1.51	0.47	0.06
March	10	28	260	61	280	0.62	0.33	0.14
April	9	16	138	34	144	0.58	0.30	0.42

TABLE B2. Correlation matrix showing non-parametric Spearman coefficients between dissimilarity matrices; numbers in bold are significant at a Bonferroni-corrected α of 0.001. Significant correlations are depicted in FIG. A2.

	D-	Temporal	Spatial	D-	D-floral	D-	D-floral	D-pollinator	D-floral
	interaction	distance	distance	exotics	abundance	pollinator	composition	composition	complexity
	pattern					abundance			
Temporal distance	0.218								
Spatial distance	0.191	-0.048							
D-exotics	0.216	0.031	0.020						
D-floral abundance	0.243	0.054	0.109	-0.003					
D-pollinator abundance	0.085	0.040	-0.043	0.071	0.051				
D-floral composition	0.790	0.199	0.256	0.267	0.294	0.263			
D-pollinator composition	0.446	0.166	0.100	0.025	0.062	0.119	0.247		
D-floral complexity	0.414	0.088	0.173	0.164	0.249	0.041	0.517	0.085	
D-pollinator size	0.319	0.069	0.073	0.012	0.021	0.144	0.150	0.876	0.053

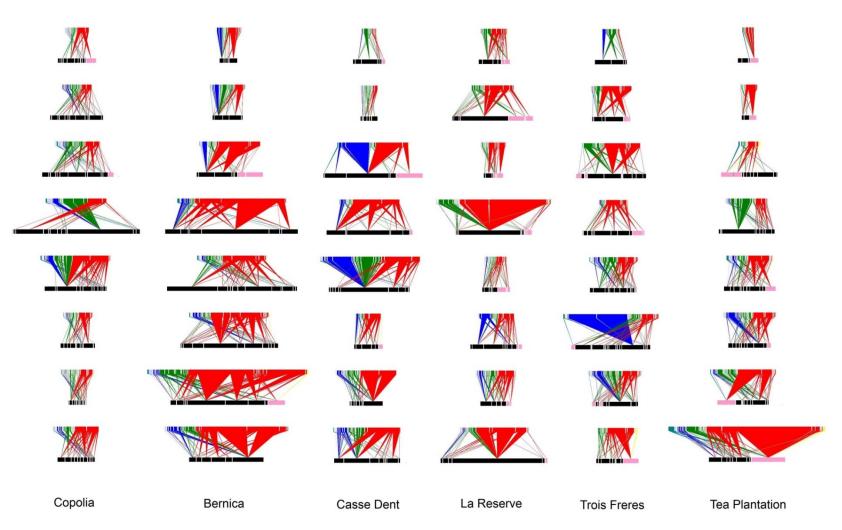


FIG. B1. Pollination webs of all 48 plant–pollinator networks arranged across time (vertical; from September to April) and space (horizontal; six sites). Pollinators are shown as rectangles at the top and plant species are shown at the bottom (light red rectangles depict introduced plant species). The width of the rectangles reflects the relative abundance of pollinators and flowers. Links represent interactions between species, and the width of the lines indicates the interaction frequency between species. Webs are drawn to the same scale except for the December network at La Reserve, which was drawn at half scale. Species names for all webs can be

provided on request. Webs were drawn with Visual Basic in MS Office Excel (C. Kaiser-Bunbury, unpublished data). Webs are arranged by increasing plant invasion intensity (from left to right; see Kaiser-Bunbury et al. 2011). Blue green: birds, light blue: Geckos and skinks, dark blue: beetles, green: flies, red: bees and wasps, and yellow: butterflies and moths.

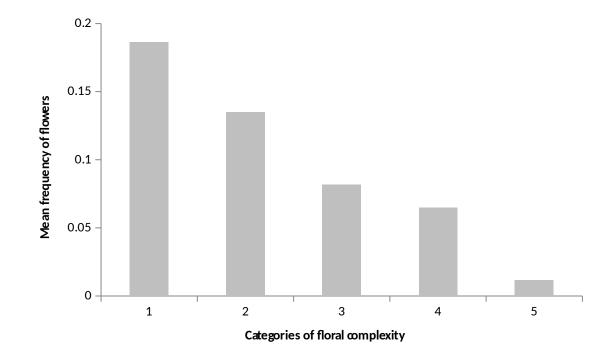


FIG. B2. Mean (\pm SE) frequency of floral complexity categories across networks. The frequency distribution is based on relative abundance of flowers in a floral complexity category per network. The numbers in the bars show the number of cases (species across networks) in each category. Floral complexity across networks is, on average, low, which may explain weak constraints expressed by floral morphology.

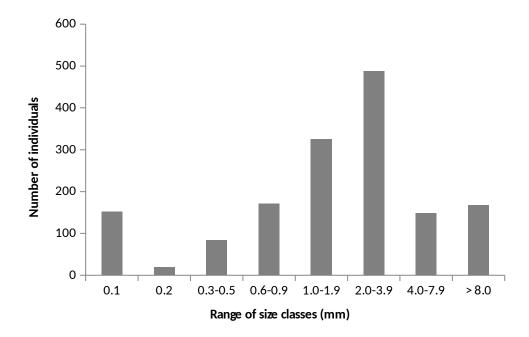


FIG. B3. Distribution of pollinator size (thorax width) of all observed individuals across the size classes. Pollinator size was categorized based on a logarithmic scale, hence the increasing range in size classes with increasing pollinator size.

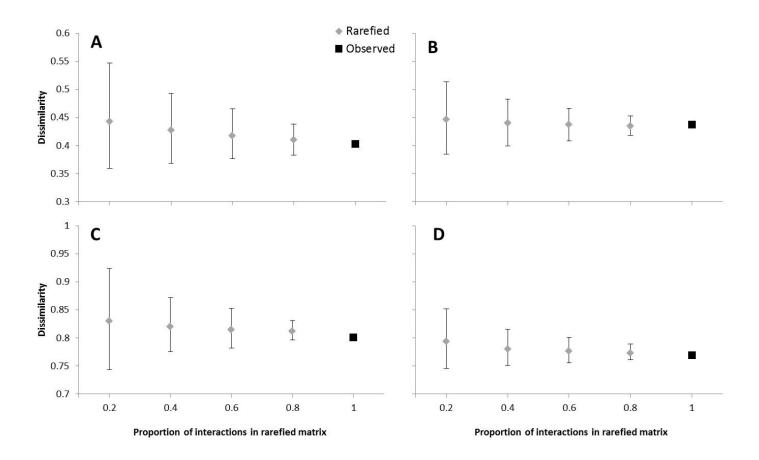


FIG. B4. Dissimilarities (mean ± 95% CI for rarefied matrices) in interaction patterns between four network pairs of original and rarefied matrices. The rarefied matrices were sampled at four subsamples representing 0.8, 0.6., 0.4 and 0.2 of the full sample size. The observed dissimilarities between original matrices were similar to the rarefied dissimilarities. The graphs represent typical examples of within-site (A: Bernica 1 vs Bernica 2; C: Bernica 1 vs Bernica 7) and within-time period comparisons (B: Bernica 3 vs Trois Frères 3; D : Casse Dent 5 vs Tea Plantation 5). Further, shown are comparisons of networks of similar size with a relatively low level of dissimilarity (A and B) and networks of different size, which are relatively dissimilar (C and D).

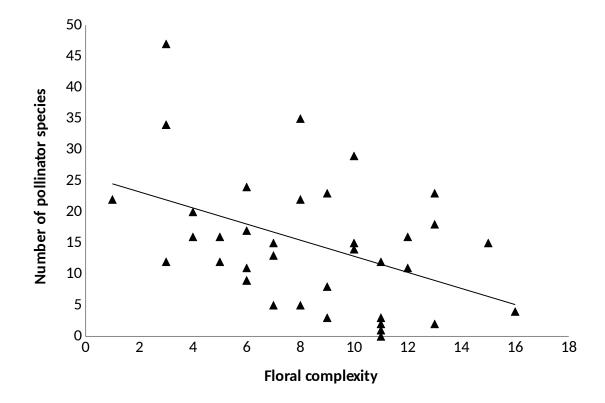


FIG. B5. Relationship between floral complexity scores and pollinator species richness across networks. Each data point represents one plant species. ** $P \stackrel{<}{} 0.01$

Ecological Archives

Christopher N. Kaiser-Bunbury, Diego P. Vázquez, Martina Stang, and Jaboury Ghazoul. 2014. Determinants of the microstructure of plant-pollinator networks. *Ecology*.

```
APPENDIX C: R functions used for the rarefaction analysis and null model code to assess data constraints
```

C.1 Function *rarefmat* in R. The function compares the Bray-Curtis dissimilarities between two matrices of the same dimensions, and rarefies one by sampling a given proportion of interactions (0.8, 0.6, 0.4 and 0.2). It returns the observed dissimilarity between the original matrices and the mean and confidence limits of dissimilarities of rarefied matrices for each level of sampling.

```
rarefmat<-function(mat,mat2, raref.prop=c(0.8,0.6,0.4,0.2),iter=1000,</pre>
method="bray", rel.freqs=TRUE) {
  L=sum(mat) #Total number of interactions in matrix
  L.raref=round(L*raref.prop) #Rarefaction sample sizes
  i=which(mat>0) #Index of matrix cells with non-zero values
  probs=mat[i]/sum(mat[i]) #Probability matrix for selecting interactions
  rar.dist=matrix(0,iter,length(raref.prop)) #Matrix to store similarities
  colnames(rar.dist)=raref.prop #Label columns with raref.prop values
  k=0 #Index variable
  for (rp in raref.prop) {
   k=k+1
   for (it in 1:iter) {
    mat.s=matrix(0,nrow(mat),ncol(mat)) #Matrix to store sampled interactions
    ints.v=rep.int(i,mat[i]) #Vector of indices of interactions to sample
    ints.s=sort(sample(ints.v,L.raref[k],replace=FALSE)) #Sampled indices
    ints.t=table(ints.s) #Number of interactions sampled per cell
    mat.s[as.integer(names(ints.t))]=ceiling(ints.t) #Rounded sampled
      interactions
    if (rel.freqs==FALSE)rar.dist[it,k]=vegdist(rbind(array(mat.s),
    array(mat2)), method=method) #Matrix with rarefied similarities
    if(rel.freqs==TRUE)rar.dist[it,k]=vegdist(rbind(array(mat.s)/sum(mat.s),
    array(mat2)/sum(mat2)), method=method) #Matrix with rarefied similarities
    }
  }
if (rel.freqs==FALSE) obs.dist=vegdist(rbind(array(mat),array(mat2)),method=meth
      #Similarity with observed (unrarefied) matrix
od)
if(rel.freqs==TRUE)obs.dist=vegdist(rbind(array(mat)/sum(mat),
  array(mat2)/sum(mat2)), method=method) #Similarity with observed matrix
rar.dist.upper.cl=apply(rar.dist,2,quantile,probs=0.975)
rar.dist.mean=apply(rar.dist,2,mean)
rar.dist.lower.cl=apply(rar.dist,2,quantile,probs=0.025)
rar.dist.summary=rbind(rar.dist.upper.cl,rar.dist.mean,rar.dist.lower.cl)
```

```
results=list()
results$obs.dist=as.numeric(obs.dist)
results$rar.dist=rar.dist.summary
results
}
```

C.2 Null model in R. R code of the null model to assess the constraints of a triangular pattern in the relationship between floral composition and flower traits. The null-model calculates Spearman correlation coefficients r_s of randomly generated data (999 iterations) that were restricted by the limits of the observed data

```
# C = vector of dissimilarity of floral complexity
# y_ran = Random y variable uncorrelated with x, with triangular relationship
        with x
iter=999 #Number of iterations for randomization
n=length(C) #Sample size of the original variables
r.ran=array(0,iter) #Array to store results of randomization
for (i in 1:iter) {
    y_ran=C*runif(n, min=min(C), max=max(C))
    y_ran=max(C) - (max(C) - C) *runif(n,min=min(C),max=max(C))
    r.ran[i]=cor(C, y_ran, method=c("spearman"))
}
r.new=mean(r.ran)
r.new
```

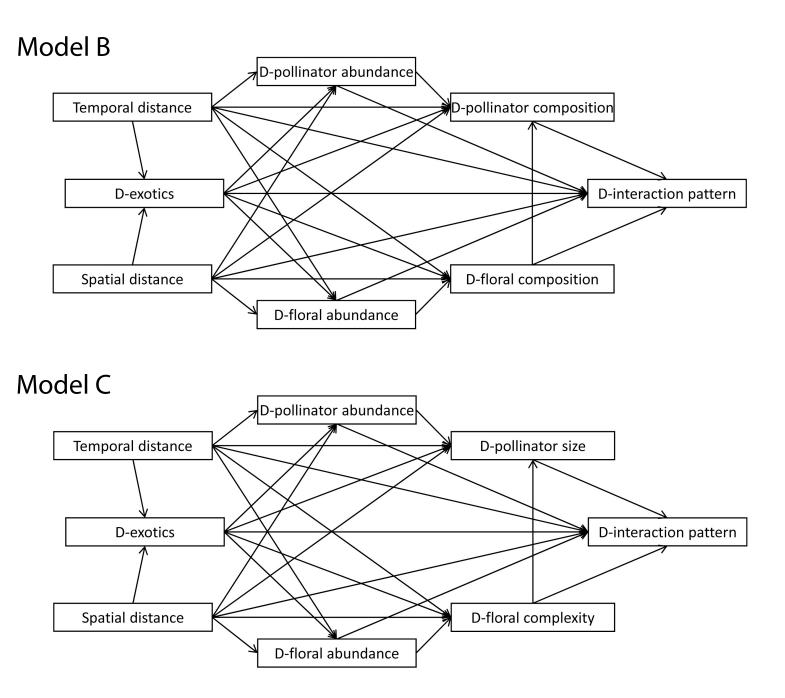


Fig. A1. Path diagram describing two reduced (nested) hypothesized models of the relationships of dissimilarities, in which either community composition (model B) or trait variables (model C) were entered separately. See Fig. 1 for a depiction of the complete model. Path justifications are provided in TABLE A1.

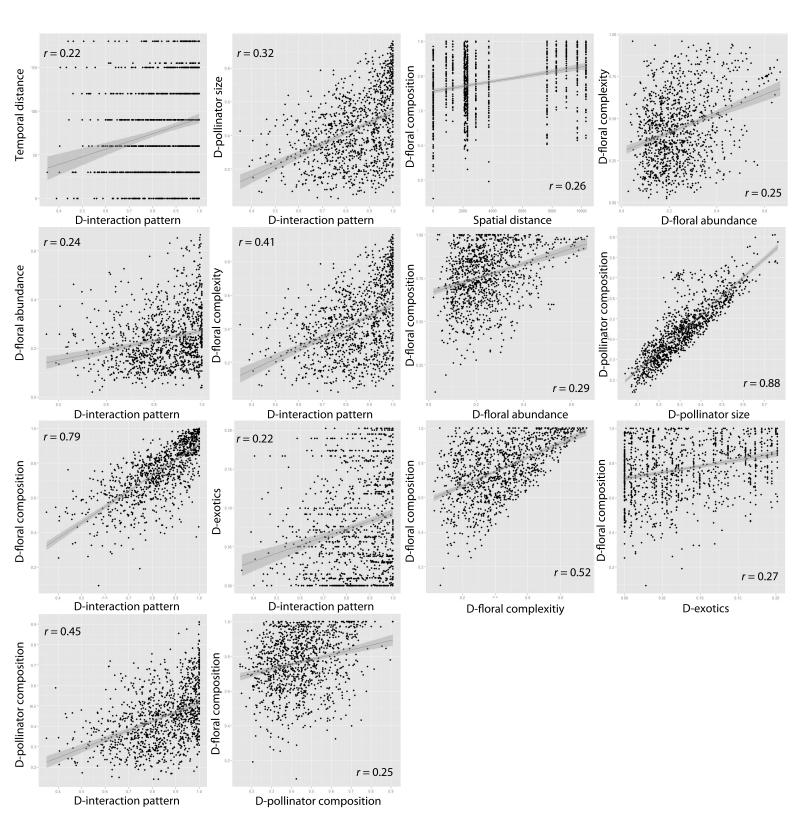


FIG. A2. Correlation plots depict bivariate relationship between dissimilarities (range 0-1) and temporal and spatial distances (days and meters, respectively) of variables across networks and the best-fit line with its standard error (dark shade surround lines). Shown are only significant Spearman correlations at a Bonferroni-corrected α of 0.001; for all bivariate relationships refer to TABLE B2. Note the triangular relationship between networks in D-floral composition and D-floral complexity.