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Abstract: Xanthones are a class of secondary metabolites produced by plant organisms. They are
characterized by a wide structural variety and numerous biological activities that make them valuable
metabolites for use in the pharmaceutical field. This review shows the current knowledge of the xanthone
biosynthetic pathway with a focus on the precursors and the enzymes involved, as well as on the cellular
and organ localization of xanthones in plants. Xanthone biosynthesis in plants involves the shikimate and
the acetate pathways which originate in plastids and endoplasmic reticulum, respectively. The pathway
continues following three alternative routes, two phenylalanine-dependent and one phenylalanine-
independent. All three routes lead to the biosynthesis of 2,3′,4,6-tetrahydroxybenzophenone, which
is the central intermediate. Unlike plants, the xanthone core in fungi and lichens is wholly derived
from polyketide. Although organs and tissues synthesizing and accumulating xanthones are known
in plants, no information is yet available on their subcellular and cellular localization in fungi and
lichens. This review highlights the studies published to date on xanthone biosynthesis and trafficking
in plant organisms, from which it emerges that the mechanisms underlying their synthesis need to be
further investigated in order to exploit them for application purposes.

Keywords: xanthones; biosynthetic pathways; plants; fungi; lichens; subcellular and cellular localization;
biological activity

1. Introduction

The designation “xanthone” derives from the Greek word “xanthós”, meaning yellow,
and was coined by Schmid in 1855 to indicate the yellow color of the compound isolated
from the pericarp of mangosteen (Garcinia mangostana L.), a tropical fruit belonging to the
Clusiaceae (or Guttiferae) family.

Xanthone is an aromatic oxygenated heterocyclic molecule, with a dibenzo-γ-pirone
scaffold, known as 9H-xanthen-9-one, with the molecular formula of C13H8O2 (Figure 1).
The number and class of rings A and B derive from the biosynthetic pathways in higher
plants leading to the acetate-derived A-ring (carbons 1–4) and the shikimic acid pathway-
derived B-ring (carbons 5–8). Xanthone derivatives consist of slight differences that can be
found depending on the nature of the substituents and their localization on the scaffold.
Different possible configurations of the two benzene rings and various substituents can be
found, leading to higher complexity.

Xanthones are widely distributed in nature and synthesized by several living organ-
isms, even when phylogenetically distant from each other. By January 2016, the Dictionary
of Natural Products revealed that natural xanthones are ca. 2000, including their reduced
derivatives di-, tetra- and hexahydroxanthones. Plants remain the prevalent source of xan-
thones, accounting for nearly 80% of natural xanthones. In a pie diagram, shown by Pierre
Le Pogam and Joël Boustie, fungi represent 15% while lichens represent the remaining
5% [1]. Algae and bacteria are also able to synthesize xanthones [2–4]. Xanthones have
been found even in fossil fuels, demonstrating their chemical stability [3,5].
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the remaining 5% [1]. Algae and bacteria are also able to synthesize xanthones [2–4]. 
Xanthones have been found even in fossil fuels, demonstrating their chemical stability 
[3,5]. 

Historically, the first natural xanthone described was gentisin (1,7-dihydroxy-3-
methoxyxanthone) isolated from the plant Gentiana lutea L. in 1821 [6] and the first 
prenylxanthone derivative, tajixanthone, was isolated from the mycelium of Aspergillus 
stellatus in 1970 [7]. The most studied plant species producing xanthones belong to the 
Clusiaceae, Hypericaceae, Gentianaceae and Cariophyllaceae families [8–10]. Xanthone is 
well-known to have “privileged structures” because this simple tricyclic compound 
exhibits wide biological activities such as anticancer, antimicrobial, antifungal, 
antimalarial, anti-HIV, anticonvulsant, anticholinesterase, antioxidant, anti-
inflammatory, and antimalarial activities, among others [11–19]. Their interesting 
structural scaffold and pharmacological importance have encouraged scientists to isolate 
these compounds from natural products and synthesize them as novel drug candidates. 
For this reason, biotechnological strategies for xanthone production, such as cell and root 
cultures grown in bioreactors, and hairy roots, have been studied in recent years in order 
to obtain efficient protocols for future large-scale production [15,20–28]. 

In view of the importance of xanthone derivatives in medicinal chemistry, we have 
made efforts to summarize the different classes of xanthones, their biosynthesis and 
trafficking mechanisms in plant organisms reported in the literature over the last decades.  

This review shows the current knowledge of the xanthone biosynthetic pathway with 
a focus on the precursors and the enzymes involved, as well as on the cellular, tissue and 
organ localization of xanthones in plants. As far as fungi and lichens are concerned, only 
biosynthetic pathways have been studied; no information is yet available on the 
subcellular and cellular localization in these organisms. The selected articles about the 
topic xanthone biosynthesis, and trafficking in plant organisms, have been screened from 
Web of Science, Scopus, Pubmed, and Google Scholar to highlight the current 
advancement and future direction toward completion of the biosynthetic pathways of 
xanthones. 

 
Figure 1. Structure of 9H-xanthen-9-one. A-ring (carbons 1-4) and B-ring (carbons 5-8) are attached 
through an oxygen atom and a carbonyl group. 
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With the exception of simple xanthones that have only methyl groups attached to the core 
structure, all other xanthones can be divided into six main groups based on their 
substituents: oxygenated xanthones, glycosylated xanthones, prenylated xanthones, 
xantholignoids, bisxanthones, and various xanthones [29,30]. These molecules are 
biosynthesized and accumulated in various plant organs (leaves, stems, roots, flowers, 
and fruits) and tissues, and in other organisms [3,31–33]. The xanthones identified in 
plants, fungi, and lichens are reported in Tables 1–3. 

Figure 1. Structure of 9H-xanthen-9-one. A-ring (carbons 1–4) and B-ring (carbons 5–8) are attached
through an oxygen atom and a carbonyl group.

Historically, the first natural xanthone described was gentisin (1,7-dihydroxy-
3-methoxyxanthone) isolated from the plant Gentiana lutea L. in 1821 [6] and the first
prenylxanthone derivative, tajixanthone, was isolated from the mycelium of Aspergillus
stellatus in 1970 [7]. The most studied plant species producing xanthones belong to the
Clusiaceae, Hypericaceae, Gentianaceae and Cariophyllaceae families [8–10]. Xanthone is
well-known to have “privileged structures” because this simple tricyclic compound exhibits
wide biological activities such as anticancer, antimicrobial, antifungal, antimalarial, anti-
HIV, anticonvulsant, anticholinesterase, antioxidant, anti-inflammatory, and antimalarial
activities, among others [11–19]. Their interesting structural scaffold and pharmacological
importance have encouraged scientists to isolate these compounds from natural products
and synthesize them as novel drug candidates. For this reason, biotechnological strategies
for xanthone production, such as cell and root cultures grown in bioreactors, and hairy
roots, have been studied in recent years in order to obtain efficient protocols for future
large-scale production [15,20–28].

In view of the importance of xanthone derivatives in medicinal chemistry, we have
made efforts to summarize the different classes of xanthones, their biosynthesis and traf-
ficking mechanisms in plant organisms reported in the literature over the last decades.

This review shows the current knowledge of the xanthone biosynthetic pathway with
a focus on the precursors and the enzymes involved, as well as on the cellular, tissue and
organ localization of xanthones in plants. As far as fungi and lichens are concerned, only
biosynthetic pathways have been studied; no information is yet available on the subcellular
and cellular localization in these organisms. The selected articles about the topic xanthone
biosynthesis, and trafficking in plant organisms, have been screened from Web of Science,
Scopus, Pubmed, and Google Scholar to highlight the current advancement and future
direction toward completion of the biosynthetic pathways of xanthones.

2. Classification

In recent decades, there has been widespread interest in studying the classification
of xanthones, motivated primarily by the great potential of these compounds for their
medically useful biological properties. Because of the great diversity of substituents and the
discovery and synthesis of new xanthones, their classification by groups has evolved. With
the exception of simple xanthones that have only methyl groups attached to the core struc-
ture, all other xanthones can be divided into six main groups based on their substituents:
oxygenated xanthones, glycosylated xanthones, prenylated xanthones, xantholignoids,
bisxanthones, and various xanthones [29,30]. These molecules are biosynthesized and
accumulated in various plant organs (leaves, stems, roots, flowers, and fruits) and tissues,
and in other organisms [3,31–33]. The xanthones identified in plants, fungi, and lichens are
reported in Tables 1–3.
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Table 1. Xanthones in Plants.

Plants Xanthone Organ/Tissue References

Acanthaceae Oxygenated
xanthones Root

Andrographis paniculata
(Burm.f.)Nees [34,35]

Anacardiaceae Xanthone glycosides Fruit peel
Mangifera indica L. [36,37]

Annonaceae
Oxygenated xanthones
Prenylated xanthones
Xantholignoids

Fruit, resin, leaf,
heartwood

Anaxagorea luzonensis A.Gray [38]
Orophea corymbosa Miq. [39]

Asparagaceae
Xanthone glycosides,
oxygenated xanthones
Xantholignoids

Rootstock, apical part,
bulb, tuber

Anemarrhena asphodeloides Bunge [40–42]
Drimiopsis maculata Lindl. & Paxton [43]
Ledebouria graminifolia (Baker) Jessop [44]

Asteraceae
Oxygenated
xanthones
Xantholignoids

Leaf

Senecio mikanioides Otto ex Harv. [45]

Bignoniaceae Xanthone glycosides Apical part
Arrabidaea samydoides
(Cham.) Sandwith [46]

Bombacaceae Xanthone glycosides Leaf, flower
Bombax ceiba L. [47,48]
B. malabaricum DC. [49]

Bonnetiaceae Xanthone glycosides Apical part
Bonnetia dinizii Huber [50]

Calophyllaceae
Calophyllum apetalum Willd.

Oxygenated xanthones
Xantholignoids

Heartwood stem bark,
seed, root, wood [51]

C. austroindicum Kosterm. ex
P.F.Stevens [52]

C. bracteatum Thwaites [53]
C. brasiliense Vesque [53–60]
C. calaba L. [53,61]
C. canum Hook.f. ex T.Anderson [62]
C. caledonicum Vieill. ex Planch.
& Triana [63–67]

C. castaneum P.F.Stevens [9]
C. fragrans Ridl. [68]
C. inophyllum L. [69–78]
C. moonii Wight [79]
C. neo-ebudicum Guillaumin [80]
C. ramiflorum O.Schwarz [81]
C. sclerophyllum Vesque [82]
C. scriblitifolium
M.R.Hend. & Wyatt-Sm. [83]

C. tetrapterum Miq. [84]
C. tomentosum Wight [85,86]
C. zeylanicum Kosterm. [87]
Caraipa densiflora Kubitzki [88,89]
Haploclathra leiantha Benth. [90,91]



Plants 2023, 12, 694 4 of 34

Table 1. Cont.

Plants Xanthone Organ/Tissue References

H. paniculata Benth. [92,93]
Kielmeyera coriacea Mart. & Zucc. [88]
K. ferruginea A.P.B.Santos & Trad [94]
K. rupestris Duarte [95–97]
K. speciosa A.St.-Hil.,
A.Juss. & Cambess. [98]

K. variabilis Mart. & Zucc. [99]
Mesua ferrea L. [78,100]

Cannabaceae Bisxanthones Bark
Trema orientalis (L.) Blume [101]

Caryophyllaceae Oxygenated xanthones Apical part
Saponaria vaccaria L. [102,103]

Celastraceae Xanthone glycoside Root
Salacia reticulata Wight [104]

Clusiaceae

Prenylated xanthones
Xantholignoids
Bisxanthones
Oxygenated xanthones

Heartwood, stem
bark, fruit, seeds,
leaf, root

Allanblackia floribunda Oliv. [105,106]
A. monticola Mildbr. ex Engl. [107,108]
Garcinia cowa Roxb. [109,110]
G. echinocarpa Thwaites [111]
G. forbesii King [112]
G. mangostana L. [113–123]
G. nobilis Engl. [124]
G. opaca King [125]
G. ovalifolia Oliv. [126]
G. paucinervis Chun & F.C.How [117]
G. pedunculata Roxb. ex
Buch.-Ham. [127]

G. quadrifaria Baill. ex Pierre [128]
G. staudtii Engl. [128]
G. terpnophylla Thwaites [113]
G. vieillardii Pierre [129]
G. xanthochymus Hook.f. [130]
Pentadesma butyracea Sabine [131]
Symphonia globulifera L.f. [132,133]

Eriocaulaceae Oxygenated xanthones Apical part
Leiothrix curvifolia
(Bong.) Ruhland [134]

L. flavescens (Bong.) Ruhland [134]

Fabaceae Xanthone glycosides
Prenylated xanthones Shoot

Baphia kirkii Baker [135]
Cyclopia genistoides (L.) R.Br. [136]
C. intermedia E.Mey. [136]
C. maculata (Andrews) Kies [136]
C. sessiliflora Eckl. & Zeyh. [136]

Gentianaceae Oxygenated xanthones
Xanthone glycosides

Seed, root, leaf,
rhizome

Canscora decussata Schult. [78]
Centaurium erythraea Raf. [137–139]
C. cachanlahuen B.L.Rob. [140]
C. linarifolium (Lamark) G. Beck
Frasera caroliniensis Walter

[78,141]
[142]

Gentiana acaulis L. [143]
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Table 1. Cont.

Plants Xanthone Organ/Tissue References

G. lutea L.
G. rhodantha Franch.

[144–146]
[147]

Gentianella turkestanorum
(Gand.) Holub
Hoppea fastigiata Griseb.

[148]
[149]

Swertia chirata Buch.-Ham. ex Wall. [150,151]
S. mileensis T.N.Ho & W.L.Shih [152]
S. punicea Hemsl. [153,154]
S. purpurascens Wall. [155]
S. randaiensis Hayata [156]
S. japonica Makino [156]
S. swertopsis Makino [156]
S. davidii Franch. [154,157]

Hypericaceae

Prenylated
xanthones
Oxygenated xanthones
Xantholignoids
Miscellaneous
xanthones

Fruit, stem bark,
root, leaf

Cratoxylum cochinchinense
(Lour.) Blume [158,159]

C. formosum (Jack) Benth. &
Hook.f. ex Dyer

[117,159,
160]

C. pruniflorum Kurz [161]
Harungana madagascariensis
Lam. ex Poir. [71]

Hypericum androsaemum L. [162]
H. canariensis L. [163]
H. geminiflorum Hemsl.
H. japonicum Thunb

[164]
[165]

H. maculatum Crantz [166]
H. oblongifolium Choisy
H. patulum Thunb.

[167]
[168–171]

H. perforatum L. [13,172]
H. reflexum L.f. [173]
H. riparium A.Chev. [174]
H. roeperianum G.W.Schimp.
ex A.Rich.
H. sampsonii Hance

[175]
[176–178]

H. subalatum Hayata [179]
Psorospermum adamauense Engl.
Vismia guaramirangae Huber

[180]
[181]

Iridaceae Xanthone glycosides Apical part
Iris adriatica Trinajstić ex Mitić [182]
I. albicans Lange [183]
I. florentina L. [184]
I. germanica L. [185]
I. nigricans Dinsm. [186]

Lamiaceae Oxygenated xanthones Roots
Premna microphylla Turcz. [187]

Lecythidaceae Oxygenated
xanthones Wood, bark

Gustavia hexapetala (Aubl.) Sm. [188]

Moraceae

Oxygenated xanthones
Prenylated xanthones
Xantholignoids
Xanthone glycoside

Root, twig, bark
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Table 1. Cont.

Plants Xanthone Organ/Tissue References

Cudrania cochinchinensis (Lour.)
Yakuro Kudo & Masam.
Monnina obtusifolia Kunth
Tovomita brasiliensis Mart.

[189]
[78,117]
[190]

Nyssaceae Oxygenated xanthones Flower, fruit,
stem, leaf

Camptotheca acuminata Decne. [191]

Poaceae Xantholignoids Apical part
Chionochloa flavicans Zotov [192]

Polygalaceae
Polygala caudata Rehder &
E.H.Wilson

Oxygenated xanthones Root [193]

P. sibirica L. [194]
P. tenuifolia Willd. [195]
P. vulgaris L. [196]

Polypodiaceae Xanthone glycoside Whole plant
Pyrrosia sheareri (Baker) Ching [154]

Rubiaceae Xanthone glycoside Leaf
Coffea pseudozanguebariae Bridson [32,197]

Thymeleaceae Xanthone glycoside Leaf, stem
Gnidia involucrata Steud.
ex A.Rich. [198]

Zingiberaceae Prenylated xanthones Rhizome
Hedychium gardnerianum
Sheppard ex Ker Gawl. [199]

Table 2. Xanthones in Fungi.

Fungi (Genus) Xanthones References

Actinomadura Oxygenated xanthones
Prenylated xanthones [200,201]

Apiospora Oxygenated xanthones [202]

Aspergillus Oxygenated xanthones [3,203–211]

Chaetomium Miscellaneous xanthones [204]

Emericella
Oxygenated xanthones
Prenylated xanthones
Miscellaneous xanthones

[204,208,212]

Gibberella Oxygenated xanthones [213]

Guanomyces Oxygenated xanthones [214]

Humicola Oxygenated xanthones [215]

Monodictys Oxygenated xanthones
Miscellaneous xanthones [204]

Paecilomyces Prenylated xanthones [204]

Penicillium Oxygenated xanthones
Miscellaneous xanthones [204,205,216]

Phomopsis Oxygenated xanthones [217,218]

Phoma Oxygenated xanthones [204]
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Table 2. Cont.

Fungi (Genus) Xanthones References

Wardomyces Oxygenated xanthones
Miscellaneous xanthones [204,219]

Xylaria Oxygenated xanthones
Miscellaneous xanthones [219]

Table 3. Xanthones in Lichens.

Lichens (Genus) Xanthones References

Calopadia Miscellaneous xanthones [220]

Diploicia Bixanthones [221]

Lecanora Oxygenated xanthones
Miscellaneous xanthones [209,222–224]

Lecidella Oxygenated xanthones [224]

Myriolecis Oxygenated xanthones
Miscellaneous xanthones [223]

Micarea Oxygenated xanthones [10,209,224,225]

Pertusaria Miscellaneous xanthones [226]

Phyllopsora Miscellaneous xanthones [227]

Pseudoparmelia Oxygenated xanthones
Miscellaneous xanthones [228]

Pyrenula Oxygenated xanthones [229]

Sporopodium Miscellaneous xanthones [230]

Teloschistale Bixanthones [2]

Umbilicaria Xanthone glycosides [231]

2.1. Oxygenated Xanthones

Oxygenated simple xanthones are xanthones with simple substituents such as hy-
droxyl or methoxy, subdivided according to the degree of oxygenation into unoxygenated,
mono-, di-, tri-, tetra-, penta-, and hexaoxygenated molecules [232,233]. This class of
xanthones is produced both by plants, but also by fungi and lichens (Tables 1–3). This
group is abundant in many natural products and is the starting point for many more com-
plex xanthones [232,234]. Many monooxygenated xanthones have been isolated from the
Gentianaceae family, for example, 2-hydroxyxanthone (Figure 2), 4-hydroxyxanthone and
2-methoxanthone; however, these xanthones have also been found in other plant families
such as Clusiaceae, Hypericaceae, Moraceae (Table 1).
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More than fifteen deoxygenated xanthones have been reported from plants in the fam-
ily Clusiaceae. 1,5-dihydroxyanthone, 1,7-dihydroxyanthone, and 2,6-dihydroxyanthone
have been found quite widely. Other deoxygenated xanthones such as 1-hydroxy-5-
methoxanthone, 1-hydroxy-7-methoxanthone, 2-hydroxy-1-methoxanthone, 3-hydroxy-
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2-methoxanthone, 3-hydroxy-4-methoxanthone, 5-hydroxy-1-methoxanthone, and 1,2-
methylenedioxanthone have been reported from plants belonging to Polygalaceae and
Calophyllaceae families (Table 1) [97,193]. The natural trioxygenated xanthones 1,3-
dihydroxy-5-methoxy-xanthone-4-sulfonate and 5-O-β-D-glucopyranosyl-1,3-dihydroxy-
xanthone-4-sulfonate were isolated from Hypericum sampsoni Hance., and Centaurium
erythraea [137,176]. Tetraoxygenated xanthones have been reported mainly from plants
in the families Gentianaceae, Clusiaceae, and Polygalaceae. The xanthones isolated from
Polygala vulgaris L. were 7-chloro-1,2,3-trihydroxy-6-methoxanthone, 1,3,5,6-, 1,3,5,7-, and
1,3,6,7-tetrahydroxanthones [196].

Xanthones isolated from Gentiana rhodantha Franch. were methylated pentaoxygenated xan-
thones, namely 1,8-dihydroxy-2,3,7-trimethoxanthone, 5,6-dihydroxy-1,3,7-trimethoxanthone,
1,7-dihydroxy-2,3,8-trimethoxanthone, and 3,8-dihydroxy-1,2,6-trimethoxanthone [147]. In
addition, hexoxygenated xanthones such as 8-hydroxy-1,2,3,4,6-pentamethoxanthone, 1,8-
dihydroxy-2,3,4,6-tetramethoxanthone and 1-hydroxy-3,5,6,7,8-pentamethoxyxanthone
have been isolated from two species of Centaurium [4,137,138] (Table 1).

2.2. Xanthone Glycosides

Xanthone glycosides are synthesized in higher plants and mainly found in the families
Gentianaceae and Polygalaceae (Table 1). These xanthones are known to have a glycosidic
residue associated with a C- or O-. Many xanthones of this group have the glycosidic
residue linked to C-6 carbon and may consist of xylose, glucose, or epiose. The presence
of two glycosidic residues can also be observed, the second generally being linked to the
C-2 of the main structure [235]. Mangiferin and isomangiferin are the most common C-
glycosides (Figure 3a). Mangiferin (2,-C-β-Dglucopyranosyl-1,3,6,7-tetrahydroxyxanthone)
is of widespread occurrence in angiosperms and ferns and was first isolated from Mangifera
indica [236]. Natural xanthone O-glycosides are restricted to the family Gentianaceae
and in this review gentiacauloside from Gentiana acaulis L., gentioside from G. lutea, and
swertianolin (Figure 3b) from Swertia japonica Makino have been reported [143,144,156].
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2.3. Prenylated Xanthones

There is considerable variability in the classification of prenylated xanthones; in fact,
it is possible to observe the presence of the prenyl group in different positions of the basic
structure. These groups can have carbon chains consisting of a single prenyl group, composed
of five carbons (e.g., allanxanthone A, Figure 4), or multiples such as 10 or 15 carbons. In
addition, prenylated xanthones can have varying degrees of oxygenation. These molecules are
predominantly extracted from species belonging to Hypericaceae family, such as H. sampsonii
(Table 1), from which an antiviral xanthone against hepatitis B, hyperxanthone, has been
isolated [176]. Numerous prenylated xanthones have also been isolated from fungi belonging
to the genera Actinomadura, Emericella and Paecilomyces [200,201,204,212]. Other prenylated
xanthones isolated from fungi are reported in Table 2.
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2.4. Bisxanthones

Bisxanthones were identified in higher plants, fungi, and lichens [3,165], and reported
in Tables 1–3. Their chemical structure consists of a 9H-xanthen-9-one dimer with several
substituent groups. These include jacarelhyperols A and B isolated from the aerial parts of
Hypericum japonicum Thunb and the dimeric xanthone, and globulixanthone E (Figure 5),
from the roots of Symphonia globulifera L.f. [132,133,165]. Many xanthones belonging to
this group have also been isolated in lichens, particularly in the genera Teloschistale and
Diploicia (Table 3). In addition, tetrahydroxanthone dimeric C2-C2 dicerandrols A, B,
and C have been isolated from the fungus Phomopsis longicolla [237] (Table 2). A dimeric
C4-C4 xanthone isolated from the root bark of Centaurium erythrea Raf. has remarkable
antimicrobial properties against gram positives such as Staphylococcus spp. [139].
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2.5. Xantholignoids

The group of xantholignoids, characterized by a connection between xanthones and lignin
(conifer alcohol) structures, is limited. Cadensins A and B were isolated from Caraipa densifora
Kubitzki. Kielcorin (Figure 6) was initially obtained from Hypericum species but has also been
isolated from Vismia guaramirangae Huber [181], Kielmeyera variabilis Mart. & Zucc. [99], and
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Hypericum canariensis L. (Table 1), [163]. In fungi and lichens, this class of xanthones is
present in many genera (Tables 2 and 3).
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2.6. Miscellaneous Xanthones

Miscellaneous xanthones are defined for all xanthone derivatives that cannot be classified
into other groups. They are found in the kingdom of plants and fungi (Tables 1–3). Among
them, we include xanthofulvin (Figure 7) and vinaxanthone, isolated from Penicillium spp.
(Table 1) SPF-3059 [238], and thioxanthones and azaxanthones [239].
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3. Xanthone Biosynthesis
3.1. Xanthone Biosynthesis in Plants
3.1.1. Shikimate Pathway

Xanthones are synthesized in plants via the shikimate pathway with the contribution
of the acetate (or polyketide) pathway. Shikimate links carbohydrate metabolism, glycoly-
sis and pentose phosphate pathway, to aromatic compound biosynthesis (Figure 8). The
shikimate pathway occurs in green and non-green plastids, thus dependently or indepen-
dently from light [240]. However, it is known that non-photosynthetic tissues are partially
supplied with amino acids transported by the phloem, so production does not occur ex-
clusively within the cell; it can also occur in other tissues or organs, and then transport to
other locations occurs [241]. Moon and Mitra [149] showed that shikimate dehydrogenase
(SKD) and shikimate kinase (SK), key enzymes of the shikimate pathway, are activated
after elicitation by a Ca2+-mediated H2O2 generation, leading to a consequent increase in
the xanthone biosynthesis, giving further confirmation to the role of xanthones as defense
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metabolites as described by numerous articles on the subject [242]. This study revealed for
the first time the link between ROS and the pathways involved in xanthone biosynthesis.
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Figure 8. Pathways involved in xanthone biosynthesis in plants. ?: unknown proteins; 1,3,5,6-THX: 1,3,5,6-
tetrahydroxyxanthone; 1,3,5,8-THX: 1,3,5,8-tetrahydroxyxanthone; 1,3,5-THX: 1,3,5-trihydroxyxanthone;
1,3,6,7-THX: 1,3,6,7-THX-tetrahydroxyxanthone; 1,3,7-THX: 1,3,7-trihydroxyxanthone; 2,3′,4,6-THB:
2,3′,4,6-tetrahydroxybenzophenone; 2,4,6-THB: 2,4,6-trihydroxybenzophenone; 3-BZL: 3-benzoate-CoA lig-
ase; 3-DHQS: 3-dehydroquianate synthase; 8-prenyl-1,3,6,7-THX: 8-prenyl-1,3,6,7-tetrahydroxyxanthone;
ACC: acetyl-CoA carboxylase; ADT: arogenate dehydratase; B3′H: benzophenone 3′-hydroxylase; BD:
benzaldehyde dehydrogenase; BPS: benzophenone synthase; BZL: benzoate-CoA ligase; CHL: cinnamoyl-
CoA hydratase/lyase; CM: chorismate mutase; CNL: cinnamate-CoA ligase; CoASH: coenzyme A; CS:
chorismate synthase; CYP81AA1/2: Cytochrome P450 oxydase 81AA1/2; DAHP: 3-deoxy-D-arabino-
heptulosonate-7-phosphate; DAHPS: DAHP synthase; DHQD: 3-dehydroquinase dehydratase; EPSP:
5-enolpyruvylshikimate 3-phosphate; EPSPS: EPSP synthase; PAL: phenylalanine ammonia lyase;
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pCAT: plastidial cationic amino acid transporter; PDT: prephenate dehydratase; PPA-AT: prephenate
aminotransferase; PPP: pentose phosphate pathway; PPY-AT: phenylpyruvate aminotransferase;
PT8PX: 8-prenylxanthone-forming prenyltransferase; PTpat: patulone-forming prenyltransferase;
SD: shikimate 5-dehydrogenase; SK: shikimate kinase; StrAT2: malonyl-CoA acyltransferase; StrGT9:
norathyriol 6-O-glucosyltransferase; X6H: xanthone-6-hydroxylases; Xt1: norathyriol 6-O-glucoside;
Xt2: norathyriol-6-O-(6′-Omalonyl)-glucoside.

After the shikimate pathway, xanthone biosynthesis can proceed with an L-phenylalanine-
dependent pathway, as in Hypericum androsaemum L. [243], G. mangostana, and G. lutea [145,244]
or an L-phenylalanine-independent pathway, as in Swertia chirata Buch.-Ham. ex Wall. [151],
C. erythraea [243,245,246] and Hoppea fastigiata Griseb. [151]. Both the phenylalanine-
dependent and phenylalanine-independent pathways pass through the production of
2,3′,4,6-tetrahydroxybenzophenone (2,3′,4,6-THB), which is therefore a central intermediate
in the biosynthesis of xanthones (Figure 8).

3.1.2. Phenylalanine-Dependent Pathway

In the phenylalanine-dependent pathway, shikimate forms the amino acid phenylala-
nine through numerous reactions occurring in two different cell compartments, plastid
and cytosol [247,248] (Figure 8). Phenylalanine is biosynthesized from chorismate, the
final product of the shikimate pathway. In plastids, chorismate is converted to prephen-
ate which in turn is transaminated producing arogenate. This compound is then de-
hydrated/decarboxylated to phenylalanine which is then transported to cytosol by the
plastidial cationic amino acid transporter (pCAT) [249]. In plants, the arogenate path-
way is the predominant route for phenylalanine biosynthesis although another pathway,
more common in microorganisms [250], has been described. This route, which has yet
to be clarified, involves phenylpyruvate, another product downstream of prephenate.
Phenylpyruvate may originate from prephenate in plastids by the action of arogenate
dehydratases (ADTs) [251,252] or in the cytosol, requiring a cytosolic pool of prephenate
supposedly formed by the action of a cytosolic chorismate mutase (CM) from chorismate
previously synthesized in the plastid and then transported to the cytosol [249]. Indeed, as
described by Yoo and co-workers [253] in Petunia hybrida E.Vilm, prephenate seems to be
produced in the plastid but converted to phenylalanine in the cytosol by a phenylpyruvate
aminotransferase (PPY-AT), which preferentially uses prephenate as a substrate, suggesting
that this alternative route to phenylalanine biosynthesis is also active in the plants. Once in
the cytosol, the amino acid is converted to trans-cinnamic acid by the action of the enzyme
phenylalanine ammonia-lyase (PAL), which catalyzes the deamination. Trans-cinnamic acid
is the substrate of cinnamate-CoA ligase (CNL), which leads to cinnamoyl-CoA. Cinnamoyl-
CoA is an intermediate from which benzoyl-CoA is formed as a result of three reactions that
are catalyzed by the enzymes cinnamoyl-CoA hydratase/lyase (CHL), benzaldehyde dehy-
drogenase (BD), and benzoate-CoA ligase (BZL). BZL expression has been demonstrated to
increase before xanthone biosynthesis, when the plant is exposed to elicitation, suggesting
its role in the biosynthetic pathway upstream of xanthones. Singh and co-workers [254]
have shown in Hypericum calycinum L. that BZL is localized in both peroxisomes and cytosol,
indicating the activation of the CoA-dependent non-β-oxidative pathway for benzoyl-CoA
production. The activation of this pathway was previously demonstrated at the biochemical
level in Hypericum androsaemum L. cell cultures [255]. Furthermore, it is hypothesized that
the enzyme is purely involved in the phenylalanine-dependent pathway having benzoic
acid as a preferential substrate.

The subsequent reaction is catalyzed by benzophenone synthase (BPS), a type III
polyketide synthase, which condenses the benzoyl-CoA molecule with three malonyl-
CoAs originating 2,4,6-trihydroxybenzophenone (2,4,6-THB). BPS in H. androsaemum and
G. mangostana has benzoyl-CoA as a specific substrate, suggesting that the phenylalanine-
dependent pathway is the one followed for xanthone production in these species [243].
CYP81AA, a cytochrome P450 (CYP) monooxygenase that possesses benzophenone 3′-
hydroxylase (B3′H) activity, converts 2,4,6-THB to 2,3′,4,6-THB. Thus, these compounds
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are the precursors of various benzophenones and xanthones. The two main precursors
of xanthones are formed from 2,3′,4,6-THB ring closure. 1,3,5-trihydroxyxanthone (1,3,5-
THX) and 1,3,7-trihydroxyxanthone (1,3,7-THX) originate from oxidative phenol coupling
reaction that occurs either at the ortho or para position of the 3′-OH group, respectively.
Cyclization to 1,3,5-THX and 1,3,7-THX depends on the species [146,256–258]. These reac-
tions are catalyzed by two xanthone synthases belonging to the CYP oxidases [256]. They
are now known as 1,3,5-THX synthase (CYP81AA2) and 1,3,7-THX synthase (CYP81AA1),
respectively [258,259]. One of the two pathways could be used preferentially by a species,
but it has been shown from transcriptome databases of Hypericum spp. that genes for
both CYPs are present, so both isomers of the enzyme could be synthesized in a species in
response to certain signals [145,258]. Kitanov and Nedialkov [260] proposed that 1,3,7-THX
is generated from 2,4,5′,6-tetrahydroxybenzophenone-2′-O-glucoside (hypericophenono-
side) in H. annulatum firstly removing the glucoside group by hydrolysis before cyclization.
Many different xanthones will then be produced from these precursors, although to date
the biosynthetic pathways of many of them are only assumed.

3.1.3. Phenylalanine-Independent Pathway

In the phenylalanine-independent pathway, the biosynthetic pathway originates
from shikimate to produce 3-hydroxybenzoic acid in the cytoplasm without the involve-
ment of phenylalanine (Figure 8). To date, how shikimate leaves plastids and which
enzymes are responsible for the conversion to 3-hydroxybenzoic acid is unknown. The
3-hydroxybenzoic acid is then thioesterified by 3-hydroxybenzoateCoA ligase (3-BZL)
to form 3-hydroxybenzoyl-CoA, and subsequent condensation by BPS leads to the for-
mation of 2,3′,4,6-THB. In Centaurium species, 3-BZL enzyme has been shown to have
3-hydrobenzoic acid rather than benzoic acid as a preferred substrate, suggesting that
the phenylalanine-independent pathway is the one followed in these species [261]. The
biosynthetic pathway continues as described for the phenylalanine-dependent route.

Although the phenylalanine-dependent pathway is more studied and it is assumed
that most xanthones are produced downstream of phenylalanine or indistinctly by both
the phenylalanine-dependent and independent pathways, some xanthones such as 1,3,5,8-
tetrahydroxy xanthone and 1,5,7-trihydroxy-3-methoxy xanthone appear to be produced
only through the phenylalanine-independent pathway [151] (Figure 8).

3.1.4. Xanthone Derivatives of 1,3,5-Trihydroxyxanthone

Xanthone-6-hydroxylases (X6H), a CYP-dependent monooxygenase, has been shown
to hydroxylate 1,3,5-THX to 1,3,5,6-tetrahydroxyxanthone (1,3,5,6-THX) in H. androsaemum
and C. erythraea [262]. In S. chirata, the hydroxylation of 1,3,5-THX occurs at the C-8 position
of the ring, originating 1,3,5,8-tetrahydroxyxanthone (1,3,5,8-THX) [263]. On the other
hand, Beerhues and Berger [245], studied the elicited cell cultures of C. erythraea and C.
littorale proposing a direct formation of 1,5-dihydroxy-3-methoxyxanthone from 1,3,5-THX.
Moreover, the authors proposed a biosynthetic pathway downstream 1,3,5-THX in the cell
cultures of these species which produce xanthones such as 1,5-dihydroxy-3-methoxyxanthone,
1-hydroxy-3,5,6,7tetramethoxyxanthone, and 1,8-dihydroxy-3,5-dimethoxyxanthone. How-
ever, the enzymes involved in these reactions have not been identified [10,245].

3.1.5. Xanthone Derivatives of 1,3,7-Trihydroxyxanthone

Many more xanthones derive from 1,3,7-THX. X6H is also involved in the forma-
tion of 1,3,7-THX derivatives [264,265]. Indeed, the hydroxylation of 1,3,7-THX forms
1,3,6,7-tetrahydroxyxanthone (1,3,6,7-THX) in H. androsaemum and G. mangostana [262] and
potentially resides in the endoplasmic reticulum [258].

1,3,7-THX is proposed to be a precursor compound for prenylated xanthones, such as
rubraxanthone from Garcinia [266,267] and Calophyllum species [9,268,269] and scortechi-
none B from Garcinia scortechinii King [270,271], as well as simple xanthones, such as
1,7-dihydroxy-3-methoxyxanthone (gentisin) and 1,3-dihydroxy-7-methoxyxanthone (iso-
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gentisin) from G. lutea [146,272]. In G. mangostana, γ-mangostin is proposed to be generated
by prenylation of the 1,3,6,7-tetrahydroxyxanthones, and α-mangostin by the subsequent
O-methylation [273,274]. Another pathway which produces patulone, hyperxanthone
E, and hyperixanthone A starting from 1,3,6,7tetrahydroxyxanthones has been reported
in Hypericum spp. [275,276]. Two enzymes involved in these reactions are known: 8-
prenylxanthone-forming prenyltransferase (PT8PX) and patulone-forming prenyltrans-
ferase (PTpat). The former has prenylation activity and is mainly localized at the envelope
of the chloroplast [276] (Figure 8). The latter is also a prenyltransferase which prenylates
the reaction product of the previous reaction, 8-prenyl-1,3,6,7tetrahydroxyxanthone, and
produces patulone [275,276]. Other xanthones are supposed to be formed from this route,
such as hyperxanthone A and E, but the enzymes involved are unknown [275,276].

Among the glycosylated xanthones, norathyriol 6-O-glucoside (tripteroside or Xt1)
and norathyriol-6-O-(6′-Omalonyl)-glucoside (Xt2) have recently been characterized at
the molecular level [33]. The enzymes responsible for the reaction that produces these
xanthones from 1,3,6,7-THX are norathyriol 6-O-glucosyltransferase (StrGT9) and malonyl-
CoA acyltransferase (StrAT2). StrGT9 glucosylates 1,3,6,7-THX to Xt1, which in turn is
malonylated in the presence of malonyl-CoA to Xt2 by StrAT2 (Figure 8).

Mangiferin is a well-studied C-glucoside xanthone. A route for its biosynthesis was
proposed by Fujita and Inoue [40] and Chen and co-workers [277] in Anemarrhena asphode-
loides Bunge and M. indica, respectively, and reviewed by Ehianeta and co-workers [278].
The results suggest that mangiferin and related xanthone C-glycosides are produced
through an intermediate, maclurin 3-C-glucoside, which is converted to mangiferin and
isomangiferin by C-glycosyltransferase (CGT).

3.2. Xanthone Biosynthesis in Fungi and Lichens

Xanthones are highly unique in fungi and lichens, legitimating, compared to plants, the
vastness of chemical diversity of these “privileged structures” with a pronounced biological
activity. The biosynthesis of xanthones in fungi and lichens is a topic of considerable
interest, but up to now only a few studies report detailed information on the metabolic
pathways and trafficking in these organisms.

Xanthones from fungi result from biosynthetically distinct pathways compared to
those in plants. The synthesis of the xanthones in fungi has been suggested in 1953 by
Birch and Donovan [279], and studied in detail in 1961 by Roberts through the radiolabeled
acetate feeding experiments [280] that showed polyketides are the biosynthetic precursors
of the xanthone core in Penicillium and Aspergillus species. Acetyl-CoA is the starter com-
pound cyclized to form anthraquinone emodin (6-methyl-1,3,8-trihydroxyanthraquinone),
which in turn produces chrysophanol as a result of 6-deoxygenation. The quinone ring
of chrysophanol is cleaved by enzymes MdpL (Baeyer–Villiger oxidase) and MdpJ (glu-
tathione S transferase) leading to the formation of thioester intermediate, which is in turn
reduced by the action of an oxidoreductase MdpK to benzophenone alcohol. The latter
compound is dehydrated producing 1-hydroxy-6-methyl-8-hydroxymethylxanthone which
is further hydroxylated to 1,7-dihydroxy-6-methyl-8-hydroxymethylxanthone by MdpD,
a monooxygenase [281]. As observed in Aspergillus nidulans, this compound then under-
goes two consecutive prenylations (O-prenylation and C-prenylation) by prenyltransferase
enzymes XptB and XptA. The O-prenylation catalyzed by XptB forms variecoxanthone
Awhich undergoes a C-prenylation step by XptA leading to the final product emericellin,
which in turn cyclizes due to the oxidoreductase XptC to shamixanthone and epishamixan-
thone, as reported in Aspergillus variecolor and Aspergillus rugulosus, respectively [282,283].
Other prenylated xanthones were identified in Ascomycetes fungi as Aspergillus and Peni-
cillium genera. In other fungi, such as Paecilomyces variotii, Acetyl-CoA/Malonyl-CoA are
cyclized by AgnPKS to form a PKS-bound octaketide that is hydrolyzed in the atochrysone
carboxylic acid by AgnL7. The atochrysone carboxylic acid is decarboxylated to emodin
anthrone by AgnL1 and then oxidized to emodin by AgnL2. Emodin can be reduced by
AgnL4 to dihydroquinone and then to hydroxyketone by AgnL6. AgnL8 is responsible for
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dehydration reactions leading to chrysophanol. The following Baeyer–Villiger oxidation
carried out by monooxygenase AgnL3 forms monodictylactone, whose hydrolyzation to
monodictyphenone and reduction to dihydro-monodictyphenone leads to Agnestin C
and a rearrangement to either A and B, which are interconvertible [284]. The xanthone
biosynthetic pathway in fungi is reported in Figure 9. In a recent review, Khattab and
Farag 2022 [281] widely describe the unique structural characteristics of dimeric, dihydro-,
tetrahydro, or hexahydroxanthones as well as prenylated and chlorinated xanthones in
terrestrial and marine fungi. Fungi-derived lichens are reported in Table 2.
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Lichens are symbiotic organisms that are composed of fungi and algae and/or cyanobac-
teria. They produce a variety of characteristic xanthones metabolites with various biological
properties including antimicrobial, antiviral, and antitumor activities.

The biosynthesis of xanthones proceeds through the polyacetate/polymalonate path-
way, where the single polyketide chain undergoes ring-closure, and possibly through a
benzophenone intermediate gives two distinct series of xanthones, depending on this fold-
ing pattern. In the first pathway, the single polyketide undergoes the aldol condensation
and Claisen-type cyclization to form a benzophenone intermediate that might sponta-
neously dehydrate to obtain the central pyrone core. This biosynthetic pathway gives
rise to the common oxygen substitution pattern of lichexanthone and norlichexanthone
characterized by a methyl group in the 8-position (1,3,6-trihydroxy-8-methylxanthone) [2].
A limited number of structures derived from a biosynthetically distinct pathway gives the
ravenelin skeleton characterized by a methyl group in the 3-position. This biosynthetic
pathway starts with the widespread anthraquinone emodin as a precursor. The cleavage
of the hydroxyl group on C-6 of the emodin leads to chrysophanol, as observed in the
fungus Pyrenochaeta terrestris [285,286]. After the oxidative ring opens, the hydroxyl group
on C-4 is then incorporated and an aryl epoxidation across an A-ring edge of chrysophanol
yields an intermediate which has lost its A-ring aromaticity, as proposed by Henry and
Townsend [287]. This intermediate, which is stabilized by a hydrogen bond between its
newly formed phenol group and the neighboring quinone group, recovers its A-ring aro-
maticity to grant islandicin as a shunt product. Alternatively, a second oxidation, most
likely by the same P450 oxygenase, occurs to afford a Baeyer–Villiger cleavage of the central
quinone ring to yield an ortho carboxybenzophenone that might follow several metabolic
fates [2].

A first possibility is the 1,4-addition of a B-ring phenol to the A-ring dienone fol-
lowed by dehydration and decarboxylation to access ravenelin-like xanthones after a
final oxidation [287]. These reactions lead to xanthones displaying an archetypical 1,4,8-
trihydroxy-3-methylxanthone skeleton. A second metabolic pathway, granting access to
eumitrins and secalonic acids, assumes the methylation of the carboxy group to prevent its
subsequent elimination after a similar 1,4-addition. Finally, a subsequent 1,2-addition to the
benzophenone intermediate leads to further cores similar to that of tajixanthone produced
by A. variecolor, a skeleton thus far unknown from lichens. The xanthone biosynthetic
pathway in lichens is reported in Figure 10.

From this point, the other compounds differ in the position and extent of substitution,
including hydroxylation, methylation of these hydroxyl groups, and chlorination [2,3].
Lichen-derived xanthones are reported in Table 3.

It is interesting to underline that even though xanthones from free-living fungi are well
known, an algae-fungus collaboration has been suggested for the synthesis of several lichen
xanthones. As observed in lichen Lecanora dispersa [222] or in Lecanora rupicola [288], when
the fungus is cultivated in the absence of the alga, the xanthone production is diverted to
other secondary metabolites being produced (e.g., depsidones such as pannarin and related
compounds). However, lichens offer the widest diversity of compounds in the fungal realm,
even though their bioactivities remain under-investigated despite being widely considered
a promising class of compounds exerting pleiotropic pharmacological activities.
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4. Organ and Tissue Localization of Xanthones and Their Possible Functions in Plants

From the chemical studies, data shown in the literature made it possible to obtain
information about the different types of plant xanthones identified in plants and which
are the organs of accumulation. On the contrary, little is known about the tissue sites of
xanthones biosynthesis in plants. Tissue localization of xanthone biosynthesis has been
investigated in a few studies which are described below. Immunofluorescence localization
of polyketide synthase key enzymes of flavonoids, and xanthone biosynthesis, namely
chalcone, and benzophenone synthases were carried out in the leaves [289] of H. perfo-
ratum. Benzophenones are metabolized to xanthones through benzophenone synthase
(BPS) activity [258,290]. Upon mutation in a single active site position, H. androsaemum
BPS formed phenylpyrones [291]. Berkleir and collaborators [289] studied cross-sectioned
leaves of H. perforatum incubated with anti-His6–BPS IgG and anti–His6-CHS IgG at vari-
ous developmental stages. Immunofluorescence localization of both CHS and BPS was in
the mesophyll and the intensity of immunofluorescence varied with leaf age. Maximum
immunolabeling of CHS was observed in approximately 0.5 cm long leaves, while BPS
was undetectable. The CHS-specific fluorescence rapidly decreased in more developed
leaves (1 cm long), which instead presented high levels of BPS immunofluorescence. Unlike
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leaves, the roots appear to be the richest organs in xanthones [15,178,292], which is consis-
tent with the high level of BPS transcription found in both H. sampsonii and H. perforatum
roots [172,178]. In situ detection of BPS transcripts and proteins has also been carried out in
situ mRNA hybridization and indirect immunofluorescence detection. Moreover, label-free
localization of xanthones was studied by AP-SMALDI-FT/MS imaging [172]. It should
also be noted that the concentration of xanthone precursors, particularly polyprenylated
benzophenones, is very high in the root system [172]. BPS protein was immunodetected
in the root exodermis and the endodermis but not in the epidermis. The exodermis and
the endodermis are the outermost and innermost layers of the root cortex. The authors
emphasize that these tissues are structurally and functionally related [293,294], sharing the
barrier role and controlling the radial transport of water and solutes in the root. As is well
known, both tissues also play a role in defense against pathogens. Tocci and co-workers [22]
demonstrated that root cultures of H. perforatum treated with the elicitor chitosan, which
mimics the fungal pathogen attack, showed high levels of xanthone content. In a subse-
quent study performed through the 1H-NMR-based metabolomics approach, it has been
observed that H. perforatum root cultures elicited by chitosan, and under “overcrowding
stress”, produced a yield of total xanthones ten times higher compared to the previous
study. Moreover, in this study the brasilixanthone B has been isolated and identified in H.
perforatum for the first time [295]. Strengthening the defensive role of xanthones, Huang and
collaborators in H. sampsonii [178,296] showed that cDNAs encoding HsBPS and HsCHS
were differentially regulated in the vegetative and in reproductive stages. In the vegetative
stage, HsBPS was highly expressed in the roots; its transcript level was approximately
100 times higher than that of HsCHS, whereas the young leaves contained higher transcript
levels of HsCHS. In the reproductive stage, maximum HsCHS expression was detected
in flowers, the transcript level being approximately five times higher than that of HsBPS.
The inverted situation with a 10-fold difference in the expression levels was observed in
the fruits.

To prove the defensive role of xanthones against fungal pathogens, Crockett and co-
workers [297] demonstrated that 1,6-dihydroxy-5-methoxy-4′,5′-dihydro-4′,4′,5′-trimethylfurano-
(2′,3′:3,4)-xanthone, isolated by H. perforatum roots, inhibited the plant pathogenic fungi
Phomopsis obscurans and P. viticola.

As shown in Table 1, several papers are published on xanthone production in other
genera and species belonging to other families besides the Hypericaeae; however, organ
and tissue localization studies are few.

Xanthones in Calophyllum inophyllum L. (Calophyllaceae) roots have been studied [298].
Different xanthones were accumulated in root bark and in root hearthwood. A new xan-
thone named caloxanthone D has been found in the bark and caloxanthone E in the
hearthwood. Chemical investigation of dichloromethane and ethyl acetate extracts from the
stem and root bark of Trema orientalis L. (Ulmaceae) led to the isolation of 16 compounds,
including four xanthones [101].

Xanthones have also recently been found in the flowers of Japanese Gentiana culti-
vars, which show red petals rather than blue. The authors characterized the pigments
responsible for the red color in these cultivars revealing the presence of cyanidin-based
anthocyanins and xanthones. In particular, two compounds have been identified for the
xanthones: norathyriol 6-O-glucoside and norathyriol-6-O-(60 -O-malonyl)-glucosid. These
compounds contributed to the red color of flowers [33].

Xanthone content has also been studied in the leaves of Coffea pseudozanguebariae Brid-
son (family Rubiaceae) wild-grown plants, collected at different developmental stages [197].
The authors showed that C-glycosylated xanthones, i.e., mangiferin 1 and isomangiferin
2, represented 6% of the dry mass in the young leaves, while they were much lower in
the older leaves; these results support the hypothesis that the xanthones play a defense
role in the most delicate phases of the leaf development, as demonstrated in Hypericum.
In a subsequent study, Talamond and co-workers [32] using a multiphoton fluorescence
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imaging, demonstrated that mangiferin, identified as the spectrum emission, was localized
in the upper epidermis and in some mesophyll cells.

Still in Coffea, leaf phenolic composition has been studied in 23 species and focus on
mangiferin content [299]. Leaves of Coffea arabica L., Coffea canephora Pierre ex A. Froehner,
Coffea eugenioides S. Moore and C. pseudozanguebariae were sampled at different develop-
mental stages. In particular, leaves were collected at three stages: (1) young leaves from the
apex; (2) leaves from the first node below the apex; (3) leaves from the second node below
the apex. Microscopic observations carried out with UV light (filter UV-1A: 365 nm excita-
tion filter) revealed yellow autofluorescence of mangiferin and its preferential localization
in palisade and spongy parenchyma tissues of C. pseudozanguebariae leaves. In contrast,
mangiferin was absent in C. canephora and present at low concentration in C. arabica. In the
same study, xanthone localization in the fruits has been studied. Samples were obtained
from C. pseudozanguebariae and C. canephora and collected at three developmental stages:
(1) fruit when green with a partially formed seed (immature); (2) fruit when yellowish green,
pericarp (exocarp, mesocarp, endocarp) and (3) fruit when reddish yellow. An intense
yellow autofluorescence was shown in the cells of the exocarp and the external layers of
the mesocarp of young green fruits, indicating high content of mangiferin. Mangiferin was
absent in the seeds and endocarp of the three species examined. The authors speculate
that the mangiferin accumulation within the fruit could be associated with photosynthetic
tissues; in fact, the receptacle and young fruit are green and photosynthetic, while the ovary
is not.

Moreover, in the same study, Campa and collaborators [299] demonstrated that
mangiferin is accumulated in the leaves and fruits of seven of 23 Coffea species (24 taxa)
studied, including two hybrids (C. arabica ‘Laurina’ and C. heterocalyx Stoff. cf.), originat-
ing from different localities in Africa. On the contrary, none of the Madagascan species
contained mangiferin, perhaps due to the different environmental conditions. A rela-
tionship between mangiferin accumulation, altitude, and UV levels was speculated. The
peripheral localization of mangiferin in Coffea plant organs and its association with pho-
tosynthetic tissue strengthens the hypothesis of a protective action against UV-radiation.
Thus, in addition to a defense role against pathogens, xanthones also appear to play a role
toward environmental factors. Soil conditions and altitude influenced xanthone content
of H. perforatum roots. Young wild plants of H. perforatum subsp.angustifolium collected
in two areas (Lazio Region, Italy) at two different altitudes (68 and 453 m above sea level)
and in different soils (calcareous and volcanic) showed different amounts and quality of
xanthones [13].

Some authors [242,300,301] consider xanthones a powerful antioxidant system and
that they effectively suppress ROS production and prevent lipid peroxidation. Moreover,
they could play a role in adaptation to environmental change [302].

5. Recent Insight on Biological Activities of Xanthones

The ability of xanthones to bind to multiple and unrelated classes of protein re-
ceptors as high affinity ligands, allow these molecules to be considered “promiscuous
binders”, because they are able to interfere with a variety of biological targets exerting
pronounced pharmacological activity against several diseases [17]. This ability is related
with some special molecular features, such as the presence of the heteroaromatic tricyclic
ring system being predominantly planar and rigid, the carbonyl group at the central
ring capable of several interactions, the biaryl ether group contributing to the electronic
system, and the xanthone core that accommodates a vast variety of substituents at differ-
ent positions. Their interesting structural scaffold and pharmacological importance have
encouraged scientists to isolate these compounds from natural products and synthesize
them as novel drug candidates in the field of medicinal chemistry. Numerous naturally
occurring and synthetic xanthone derivatives have been reported in the literature with
several beneficial heterogeneous pharmacological activities. According to several authors,
anticancer, antimicrobial, antimalarial, anti-HIV, anticonvulsant, anticholinesterase, antioxi-
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dant, anti-inflammatory, as well as an inhibitory activity on different enzymes, including
a-glucosidase, topoisomerase, protein kinase C, miRNA, intestinal P-glycoprotein, acyl-
CoA:cholesterol acyltransferase, xanthine oxidase, and aromatase have been attributed to
xanthones [16,30]. All xanthone classes have already demonstrated cytotoxic effects. An
antiproliferative activity of xanthone carbaldehyde derivatives, prenylated xanthones, and
chiral xanthone derivatives has been demonstrated in MCF-7 (breast adenocarcinoma),
KB 3.1 (squamous cell oral carcinoma), A375-C5 (melanoma), and NCI-H460 (non-small
cell lung cancer) cell lines [303–305]. The growth inhibitory effect on human tumor cell
lines was dependent on the nature and position of substituents on the xanthone scaffold
and the stereochemistry of the xanthones. Among them, the major group of naturally
occurring xanthones are prenylated xanthones, in which the presence of prenyl groups
in key positions on the xanthone nucleus can influence the physicochemical properties,
namely lipophilicity, and affect the interaction with the biological targets exerting sev-
eral biological activities, such as antitumor, anti-inflammatory, and human lymphocyte
proliferation inhibitory effects [306]. In this context, C-prenylated xanthones are able to
decrease cellular proliferation and induce S-phase cell cycle arrest and apoptosis, increasing
cleaved PARP and Bid levels and decreasing Bcl-xL in K-562 cells [307] in MCF-7 (breast
adenocarcinoma), NCI-H460 (non-small cell lung cancer), A375- C5 (melanoma), and HL-60
(acute myeloid leukemia) cell lines [30]. It is known that the p53 tumor suppressor is a
major transcription factor with a crucial role in cell proliferation and death. The activity
of p53 is commonly lost in cancers either by mutation in the TP53 gene, or by inactivation
due to the overexpression of the main endogenous negative regulator, murine double
minute 2 (MDM2). Therefore, restoration of p53 activity by inhibiting the MDM2-p53
interaction represents an appealing therapeutic strategy for many wild-type p53 tumors
with overexpressed MDM2 [308]. It has been demonstrated that prenylated xanthone
α-mangostin and gambogic acid are inhibitors of MDM2-p53 interaction [309], while the
pyranoxanthone has shown a promising growth inhibitory activity as a putative inhibitor of
MDM2-p53 interaction in human tumor cells expressing wild-type p53 and overexpressed
MDM2 [308]. Moreover, the oxygenated xanthones characterized by simple substituents
such as hydroxyl, methoxy, or methyl groups showed antioxidant properties implicating
cancer chemopreventive [310], hepatoprotective [311], antifungal [312], antibacterial [313],
and anti-obesity [314] actions involving targets such as monoaminoxidase (MAO) [315],
P-glycoprotein (P-gp) [316], protein kinase C (PKC) [317], and tyrosinase [318]. Concerning
MAO studies, xanthones acted preferentially as MAO-A competitive, reversible inhibitors
with IC50 values in the micro- to nanomolar range, and 1,5- dihydroxy-3-methoxyxanthone
with an IC50 of 40 nM for MAO-A emerged as the most active inhibitor. Along with
xanthonolignoids, 3,4-dihydroxy xanthone derivatives with synthetic intermediates of
3,4-dihydroxy-2-methoxyxanthone and 2,3-dihydroxy-4-methoxyxanthone were found
to be the most potent lignoids, with promising antiproliferative and apoptotic effects in
leukemia cell lines [30,307]. 1,2-dihydroxyxanthone, initially considered promising for its
effect against melanoma [319], due to its catechol structure peri to carbonyl, is also the most
promising antioxidant agent for its chelating properties, stability, phototoxicity, cytotoxic ef-
fect on a human keratinocyte cell line [320], and its modulatory effects on the activity of the
THP-1 macrophage cell line, namely cytokine production [321]. Rosa et al. [318] found that
the partial negative surface area, the relative number of oxygen atoms, and the substitution
pattern of the 1-methyl-3,4,6-trihydroxyxanthone contributed to the tyrosinase inhibitory
activity. Methoxylated xanthone derivatives were found to be promising PKC activators
showing high selectivity for individual PKC isoforms, proving their utility for a detailed
study of the physiological and pathophysiological roles of PKC isoforms [317,322,323].
Among the most promising xanthones for activities in which redox mechanisms are in-
volved, it is interesting to mention dihydroxyxanthones, particularly those with a catechol
moiety considered PAINS, or pan-assay interference compounds [324]. Although their
activity does not depend on a specific, drug-like interaction between the molecule and
a protein, dihydroxyxanthones are able to coat a protein or sequester metal ions that
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are essential to a protein’s function. These mechanisms are recognized for some FDA
approved-drugs. Several authors have highlighted the antimicrobial activity of xanthones
against diverse human pathogenic microorganisms. The antimicrobial activity of synthetic
xanthones, xanthenediones, and spirobenzofurans against the yeasts Cryptococcus neofor-
mans and Candida albicans has been reported [22,325,326]. Hydroxyxanthones have been
proposed as novel antimalarial agents, with activity against multidrug-resistant Plasmod-
ium parasites being able to exert complexation to the heme and inhibition of hemozoin
formation [327]. Interestingly, 1,3-dihydroxyxanthone derivatives showed the ability to
inhibit acetylcholinesterase (AChE) and block the acetylcholinesterase-induced by-amyloid
aggregation [70]. The research for new cholinesterase inhibitors is an important strategy to
identify new drug candidates to treat Alzheimer’s disease and related dementias. Most
currently known natural inhibitors of acetylcholinesterase (AChE) are alkaloids, which
have the disadvantages of short half-lives and/or undesirable side effects [328]. A pool of
xanthones, such as bellidifolin, bellidin, swertianolin, and norswertianolin from Gentiana
campestris Geners. exhibited potent inhibitory activities against AChE with MIC values
of 0.01, 0.04, 0.08, and 0.5 µM, respectively [329]. Reutrakul et al. [330,331] demonstrated
the anti-HIV-1 activities of the 1,3,8-trihydroxy-2,4-dimethoxyxanthone and euxanthone
from Cratoxylum arborescens Blume in the syncytium assay, with EC50 values of 17.9 and
18.8 µM [330]. In addition, morellic acid, gambogic acid, and dihydroisomorellin have
shown moderate HIV-1 inhibitory activities in the reverse transcriptase assay, with IC50
values of 11, 15, and 42.3 µM, respectively [331]. Xanthones have been shown to have bene-
ficial effects on several cardiovascular diseases, including atherosclerosis, hypertension,
thrombosis and ischemic heart disease [332]. Wang et al. [333] have shown that 1-hydroxy
2,3,5-trimethoxyxanthone, a tetraoxygenated xanthone from Halenia elliptica D.don (Gen-
tianaceae), induces potent concentration-dependent relaxation in rat coronary artery rings
pre-contracted with 1 µM of 5- hydroxytryptamine (EC50, 1.67 µM), while one of its major
metabolites, 1,5-dihydroxy-2,3-dimethoxyxanthone, induces a relaxation effect with an
EC50 of 4.4 µM. It is important to underline that single xanthones may have multiple
pharmacological effects, since pharmacophores with diverse effects share the same tricyclic
scaffold but differ in the nature and/or positions of substituents. It should be noted that
the inventory of natural xanthones remains far from complete, and the functional-group
diversity and architectural platforms of natural products generated in their biosynthesis
continue to provide new information for synthetic and medicinal chemists in strategies for
making biologically active mimics.

6. Conclusions

This review describes the biosynthetic process of xanthone in plants, fungi, and
lichens which has yet to be updated comprehensively in the last decade. In higher plants,
xanthone biosynthesis involves the shikimate and the acetate pathways which originate
in plastids and endoplasmic reticulum, respectively. The pathway continues following
three alternative routes, two phenylalanine-dependent and one phenylalanine-independent.
However, all three routes lead to the biosynthesis of 2,3′,4,6-tetrahydroxybenzophenone,
which is the central intermediate of xanthone biosynthesis. Unlike plants, the xanthone core
in fungi and lichens is wholly derived from polyketide. Several xanthone derivatives can
be originated from these precursors and differ between plants, fungi, and lichens. Despite
there being several studies on chemical and biochemical synthesis of xanthones in plants,
there has been little investigation on their subcellular, cellular, and tissue trafficking. As it
was reported in this review, these issues have been deeply explored only in few species,
including Hypericum spp. and a few others. No study has been reported about these aspects
in fungi and lichens. Xanthones are molecules involved in defense response to both biotic
and abiotic agents in plants, although their role in fungi and lichens has not yet been
exhaustively explored. Interestingly, xanthones derived from plants, fungi, and lichens
show biological activities in many human diseases. In this context, further knowledge of
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mechanisms underlying xanthone biosynthesis in different plant organisms will be useful
to optimize the production of these high-value products for application purposes.
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