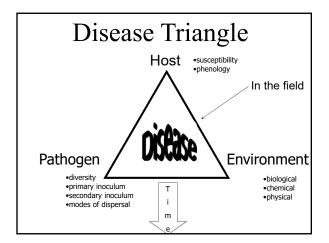
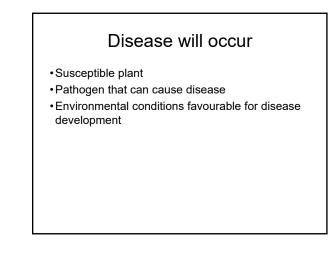
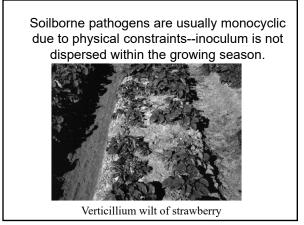

Most of vegetables are grown from seeds

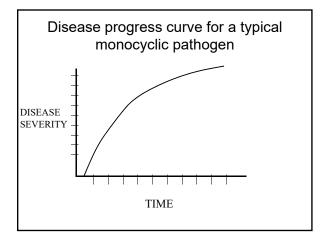
Significance of seed-borne diseases

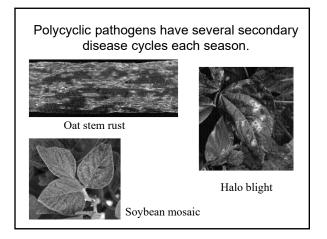

- •Prolonged transmissibility
- •Maximum infection
- •Dissemination over long distance
- •Introduction to new area
- •Infected new soil
- •Random infection foci in production field

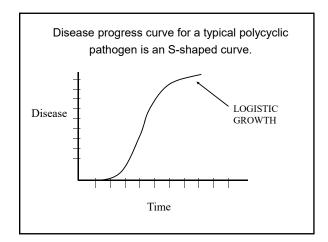

		No. of	Storage	See infecte	
Fungus	Host		period (years)	Start	End
Ascochyta pisi	Pea	8	8-11	18	14
Ascochyta fabae	Vicia bean*	5	9-13	14	14
Pleospora betae	Sugarbeet	2	14	30	23
Leptosphaeria nodorum	Wheat	9	9-14	50	39
Micronectriella nivalis	Wheat, rye, barley	5	9-12	19	19
Cochliobolus sativus	Wheat, barley	9	8-12	43	33
Pyrenophora teres	Barley	5	8-12	24	16
Pyrenophora graminea	Barley	4	11-12	47	44
Colletotrichum lindemuthianum	Phaseolus bean [†]	1	12	99	93
Ascochyta boltshauseri	Phaseolus bean	1	12	52	41
Leptosphaeria maculans	Cabbage	1	11-13	13	12
Alternaria dauci	Carrot	4	9-14	22	21
Alternaria radicina	Carrot	3	14	37	28

. In	oculum thresholds and crop losses.	
Crop	Pathogen	No. of affected seeds/ seedlings causing economic loss
Lettuce	Lettuce mosaic virus	1/30.000
Bean	Pseudomonas syringae pv. phaseolicola	1/10,000 to 1/16,000
Cabbage	Leptosphaeria maculans	1/10.000
Celery	Septoria apiicola	1/7000
Onion	Botrytis allii	1/100
Peas	Ascochyta pisi	> 5/100
Field bean	Didymella fabae	> 2/100

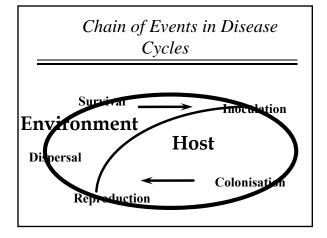


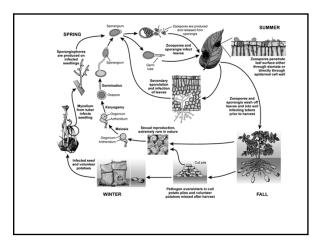



Plant Disease Epidemiology


- Components of an Epidemic:
 - (1) Susceptible Host
 - (2) Virulent Pathogen
 - (3) Conducive Environment
 - (4) Favorable Time
 - (5) Extensive Space
 - (6) Favorable Human Activity

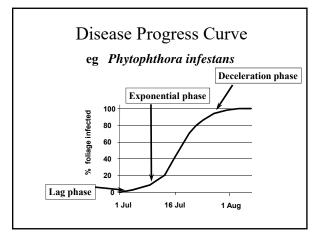
A monocyclic pathogen completes just one disease cycle per season. There are no secondary disease cycles

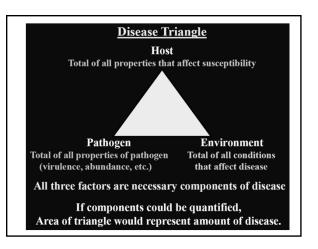



Natural vs "Cultivated" Systems

- "Natural" Systems
 - Genetically Diverse
 - Many plant species
 - Factors of genetics, spatial separation
 - Pathogens (usually) have evolved with their hosts

Cultivated Systems


- · Economics of production
- Productivity
- Quality control
- All require genetically homogenous crops that are:
- Prime targets for epidemics



Epidemic

 Natural consequence of introducing a virulent pathogen into a relatively homogeneous susceptible host population

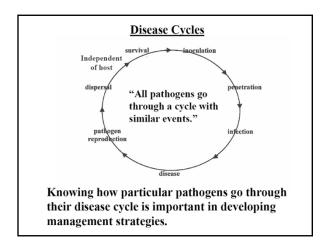
PLANT DISEASE MANAGEMENT General Concepts

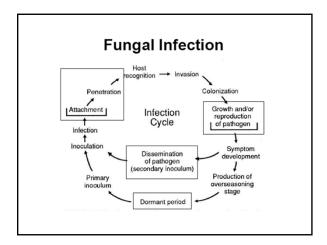
Vanderplank's Equivalence Theorem

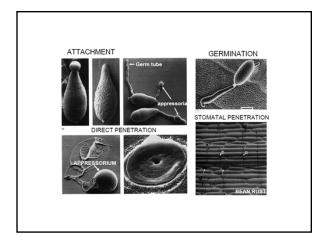
"Effects of host, pathogen and environment can be translated into terms of the rate parameter of an epidemic"

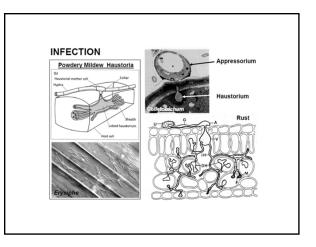
Change in any component has an equivalent effect on disease

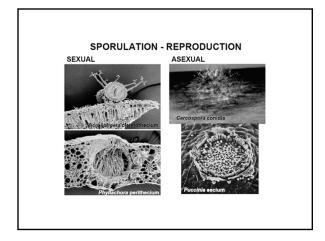
- More-less susceptible host
- More-less aggressive pathogen -

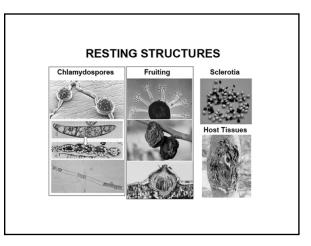

All affect

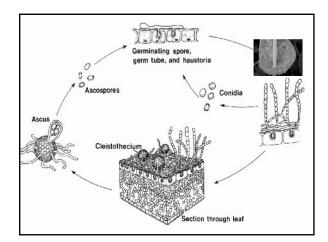

amount of

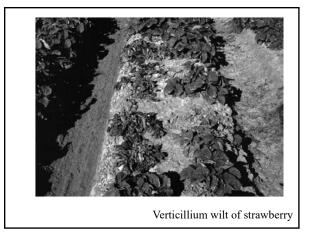

- More-less favorable environment J disease

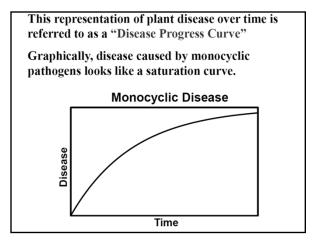

Therefore, disease management principles and practices are often centered around the concept of the Disease Triangle.


Management tactics often seek to manipulate one or more of the components of the disease triangle.







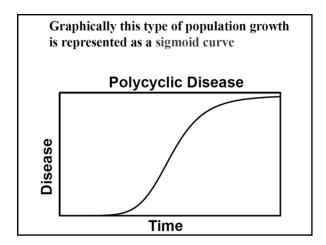

A central concept to epidemiology is that different pathogen populations have different disease cycles.

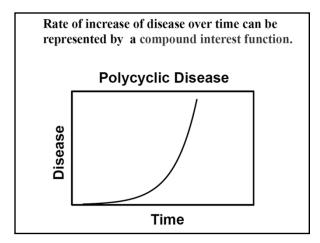
I. Pathogens that complete one or even part of one disease cycle/year are called <u>monocyclic.</u>

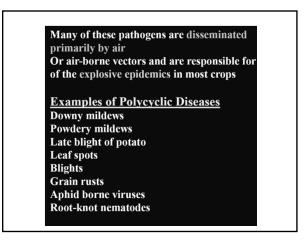
In monocyclic pathogens the primary inoculum is the only inoculum available for the entire season. There is no secondary inoculum and no secondary infection.

The amount of inoculum produced at the end of the season, however, is greater than at the start of the season so the amount of inoculum may increase steadily from year to year.






Examples of Monocyclic Diseases


Blackleg of potato (*Erwinia caratovora*) *Verticillium* wilt Cereal Cyst Nematode II. <u>Polvcyclic</u> = multiple cycles/year (compound interest) Most pathogens go through more than one (2-30) disease cycles in a growing season and are referred to as polycyclic.
Only a small number of sexual spores or other hardy structures survive as primary inoculum that cause initial infections.
Once infection takes place, large numbers of asexual spores are produced as secondary inoculum at each infection site.
These spores can produce new (secondary) infections that produce more asexual spores and so on.

With each cycle the amount of inoculum is multiplied many fold.

Implications for Disease Management Strategies

Monocyclic Diseases

Reduce the <u>amount of primary inoculum</u>, or affect the efficiency of invasion by the primary inoculum

Polycyclic Diseases

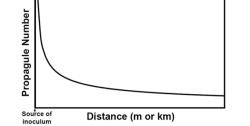
Reducing the amount of primary inoculum has less impact.

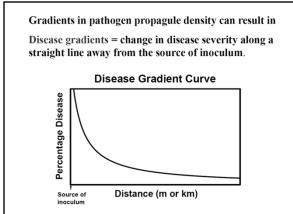
Reducing the <u>rate of increase</u> of the pathogen more beneficial.

Stay tuned....

Other Concepts Related to Disease Cycles Successful Infections => symptoms Before symptoms: Incubation period = time between infection and appearance of the disease symptom. The length of the incubation period of different pathogens/diseases varies with: 1. the particular pathogen-host combination 2. the stage of development of the host 3. the temperature in the environment. Can make disease assessments misleading

If infections are presymptomatic during scouting.

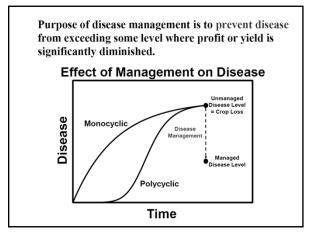

Latent period = time from infection until production of new inoculum (reproduction).

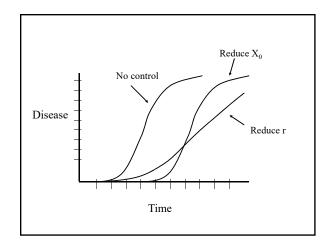

Duration can have a large effect on the <u>rate</u> of the epidemic.

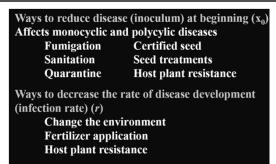
Affected by characteristics of the host (stage of development, age of tissue, physiological condition), the pathogen,

and the environment (temperature, moisture).


Gradients in pathogen densities and disease are frequently observed. Factors that affect spatial variation in the amount of incoming inoculum lead to dispersal gradients. Dispersal Gradient Curve




The <u>percentage of disease</u> and the <u>scale for distance</u> vary with the type of pathogen or its method of dispersal, being small for soilborne pathogens or vectors and larger for airborne pathogens.


Disease gradients can also be caused by environmental gradients such as, variations in <u>soil</u> <u>type, fertility</u>, or gradual changes in <u>microclimate</u>.

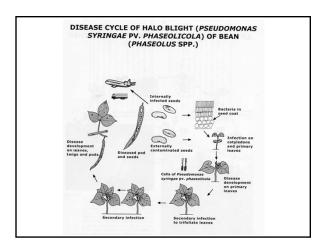
Principles of epidemiology indicate that control measures can do this in only two ways:
1. They may reduce (or delay) disease at the beginning of the season (x₀) or
2. They may decrease the <u>rate</u> of disease development (*r*) during the growing period.

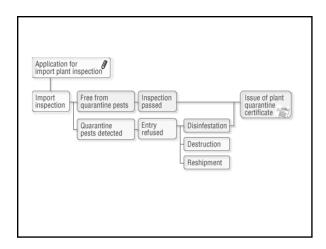
Ways to change t (see "b" on figure) Harvest early before disease becomes severe Plant early (cereal cyst nematode)

Control of different diseases requires different strategies.

Some pathosystems, monocyclic and polyetic diseases can be affected by use of an x_0 -reducing practice only.

However, for most diseases more than one control procedure is used and these are often chosen to reduce x_0 and r.

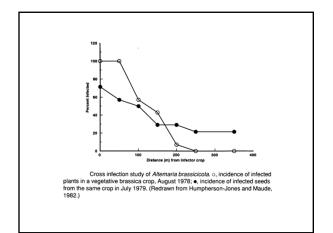

These integrated control measures use a combination cultural methods, resistance breeding regulatory actions, chemical control measures

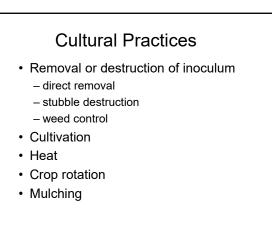

Disease Control Measures

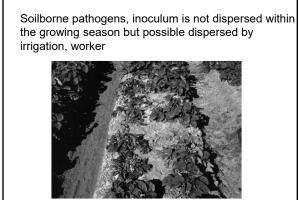
- Quarantine and other exclusion mechanisms
- Cultural practices
- Crop protection chemicals – fumigants, fungicides
- · Resistant cultivars
- · Biological control

Pathogen exclusion -Quarantine & Sanitation

- •Sanitation a matter of common sense
 - -machinery, boots etc should be cleaned between fields (soil-borne diseases)
 - -recycle run-off irrigation water within same field (*Phytophthora, Pythium, Fusarium*)
 - •in nurseries, use chlorinated water

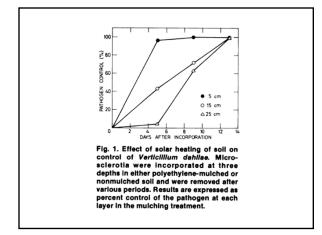


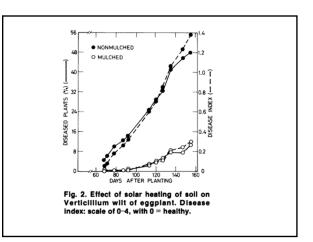



Strategies: Prohibition Quarantine & Embargo Intercept Inspection Elimination Treatment

Sanitation

- Avoid growing crops in fields near (downwind of) inoculum sources
- Avoid sequential cropping
- Destroy stubble. (Foliar diseases)
- Disease-free, or "pathogen tested" planting materials
- · Eliminate alternate and reservoir hosts



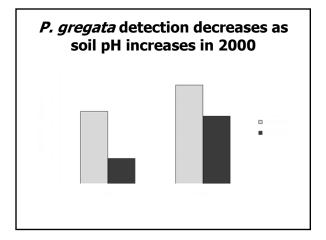


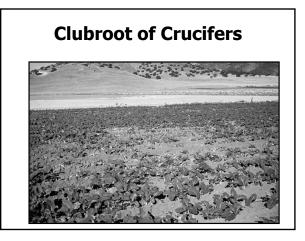
Verticillium wilt of strawberry

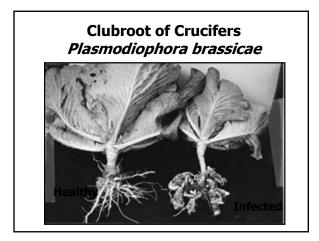
Year, solarization period (days)	Soll temperature (°C) ^y	Beds shaped	Disease incidence (%) ^z
2004			
0	37	No	50 a
41	41	No	29 b
2005			
0	41	Yes	92 a
28	47	Yes	9 b
56	46	Yes	8 b
2006			
0	38	No	100 a
0	38	Yes	100 a
30	45	No	84 ab
27	49	Yes	52 b
69	44	No	79 ab
66	48	Yes	44 b
2007			
0	41	Yes	67 a
33	44	Yes	25 b

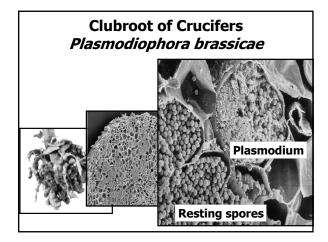
Crop Rotation

- The most important cultural measure for disease control
- Breaks disease-cycle of pathogens
- Works best on pathogens with:
 - limited host range
 - low competitive saprophytic ability
 - no survival structures produced during the "non-host" phase
 - short period of viability of survival structures (1-2 years).


	1		Incidence of Verticillium wilt (%)*			
		ndividual rotation wedges	Individual rotation wedges			
riable ^x	В	с	D	ROT	CC ^z	
R						
5	0.7 a	0.2 b	1.3 b	0.8 b	5.6 b	
	3.0 a	3.0 ab	1.3 b	2.6 ab	18.0 ab	
5	9.5 a	9.0 a	7.3 a	8.8 a	33.8 a	
ltivar						
R	4.3 a 4.5 a	2.3 a 5.9 a	2.2 b 4.4 a	3.3 a 4.8 a	17.5 a 20.8 a	
-		10.1				
alues. Different lette	ed on arcsine(incidence of w rs indicate that treatments we nate in Proc Mixed using the	re significantly different at	$P \le 0.05$, based on the PI	DIFF test using Proc Mixed	d in SAS.	
tOT is the mean estimated and a vear of cotton of the state of the sta		three rotation wedges (B,	C, and D). Wedge B was	in cotton in both years, w	hile wedges C and D e	
C = continuous cotte						
C = continuous cotto NRs were a base rate		esigned to replace approxi	mately 80% of the evapo	transpiration needs of the		
NRs were a base rate	e (designated as 1) that was d the. PR stands for partially re-					
NRs were a base rate	(designated as 1) that was d ite. PR stands for partially re					
NRs were a base rate nd below the base rate	(designated as 1) that was d ite. PR stands for partially re					


Management of Soil Environment


- Lime, nitrate increase soil pH
- Sulphur, ammonium decrease pH
- · Sometimes act through direct toxicity
 - eg ammonia vs *Sclerotium, Fusarium, Phytophthora,* nematodes
- Ca in lime can increase Ca pectate formation in roots, which are then less susceptible to attack by *Rhizoctonia solani*

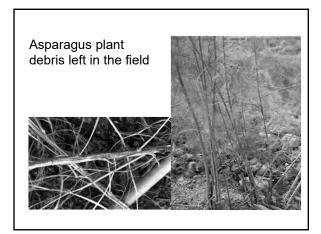

Manipulation of Environment to Modify Inoculum Potential

- Potato scab
- Streptomyces scabies
- Modify soil pH (<6.0) to reduce incidence of scabby potato tubers
- General concept that bacteria favor a "basic" environment and fungi an "acidic"" environment

Organic Amendments

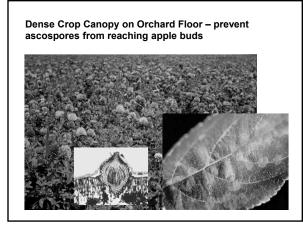
- Straw, Lucerne hay, chitinous by-products
- Green manure crops
- Change in nutritional status of soil for microorganisms
- Complex actions
 - stimulation of antagonists
 - toxic action of breakdown products eg ammonia, saponins

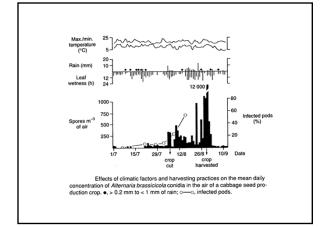
Organic Amendments: Generally incorporated into soil

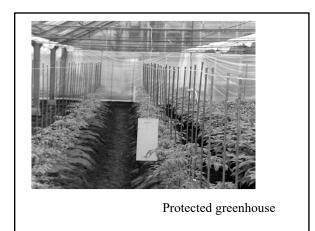

◆Green manure – Grow green manure crop and incorporate living plant material into soil immediately prior to planting.

- Sudan grass dhurrin (cyanoglucoside) => Hydrogen cyanide
- Species within mustard family glucosinolates => isothiocynates

Organic matter – many sources


- Soybean meal
- Meat and bone meal
- Sphagnum peat moss
- Black peat
- Compost-Amended Potting Mixes Successful in control of root rot pathogens in container systems. (Hoitink et al. 1991. Plant Disease 75:869-873)


Manipulation of Environment to Modify Inoculum Potential


- Application of urea (nitrogen) to orchard litter to enhance microbial decomposition of apple leaves
- Goal to reduce survival of *Venturia inaequalis* in apple leaves
- Reduce primary inoculum

Management of Atmospheric Environment/Climate

- · Effect of temperatures on disease
- Management of Microclimate -
 - Irrigation
 - Canopy Management
- Avoid Water stress
- Avoid Heat stress
- Develop forecasting system

FUNGICIDES

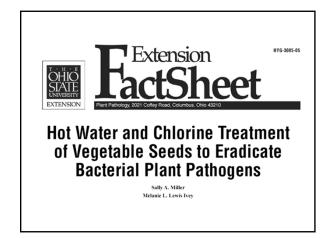
- Sterilants and Fumigants
- Protectants
- Therapeutics ("systemics", "eradicants")

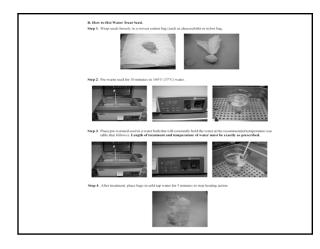
Protectants

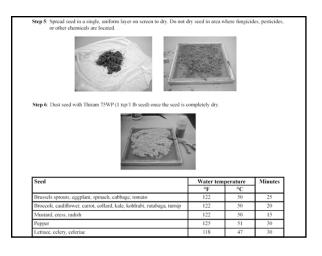
- remain on plant surface
- have no effect on established infections
- vary in properties of persistence, redistribution
- broad spectrum
- · relatively inexpensive

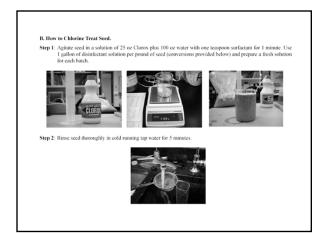
Therapeutants (systemic)

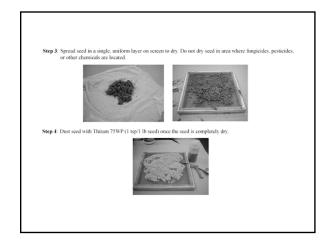
- compound or a metabolite penetrates host tissue
- may inhibit development of established infections
- · often highly specific to certain fungal groups
- vary in "systemicity", translocation, persistence
- · often relatively expensive

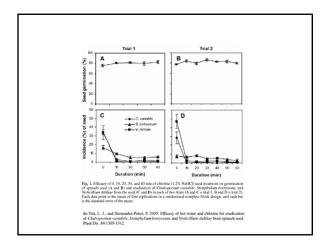

Fungicide Application


- Seed treatment
- Soil treatment / "in-furrow"
- Foliar sprays


Kinds	Active ingredient
Fungicides	Benomyl,bitertanol, captan,carbendazim, carboxin difenoconazole,
	Diniconazole, fenpiconil, iprodione, mancozeb, metalaxyl, metconazole, oxine-copper, pencycuron quintozene, tebuconazole, thiabendazole, thiram, triadmenol, triazoxide
Bacteriocides	Bronopol, copper hydroxide, kasugamycin, oxolinic acid, streptomyces
Nematicides	Fenitrothion, fenthion, cartap, benomyl
Microorganisms	Trichoderma, Bacillus subtilis, Pseudomonas cepacia, Rhizobium, Streptomyces griseoviridis

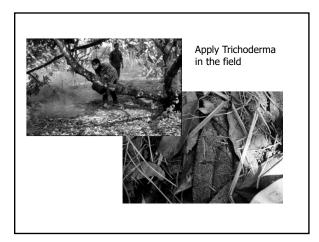

Treatment	Major catagory	Major purpose or application	Horticultural crop
Physical	Irradiation	Sterilization seed-borne diseases	Some crops, if need
	Heat Treatment	Sterilization seed-borne diseases	Many vegetables
	Dry heat treatment	Sterilization seed-borne diseases including tobamovirus and others	Solanaceous & cucurbitaneous vegetables
Chemical	Pesticide treatment	Control of seed-borne diseases and insects in seeds and seedling	Selected vegetables
Biological	Useful microorganism	Trichoderma, Bacillus, Rhizobia, Pseudomonas, and others	Legume and mos crops


Crop	Disease	Seed treatment
Radish	Alternaria brassicae	50 C HWT for 10-40 min after 6 hr cold water soaking; 75 C DHT for 72 hr.
Brassica	Black spot (<i>Alternaria</i>)	50 C HWT for 30 min after 6 hr cold water soaking; 75 C DHT for 72 hr
	Rhizoctonia root rot	50 C HWT for 30 min after 6 hr cold water soaking
	Xanthomonas campestris	50 C HWT for 15-25 min after 6 hr cold water soaking
	Bacterial leaf spot	50 C HWT for 30 min after 6 hr cold water soaking
Tomato	Stem canker	45-50 C HWT for 30 min
	Bacterial canker	50 C HWT for 1-2 min followed by 55 C for 25 min and washing
	Tobacco Mosaic Virus	70 C DHT for 48 hr.
Cucurbits	Anthracnose	50 C HWT for 15 min.
	Cucumber Green Mottle Mosaic Virus	70 C DHT for 48 hr or a long term storage
	Fusarium root rot	55 C HWT for 15 min.
	Scab (Cladosporium sp.)	70 C DHT for 48 hr.

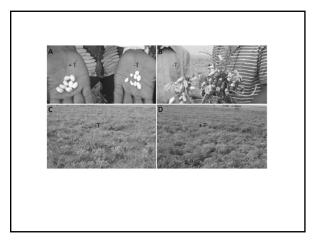


- STAGE OF CROP GROWTH - bud -swell, flowering, ripening
- SPEED OF CROP GROWTH – emergence of leaves, flowers etc after spraying
- WEATHER CONDITIONS – rainfall and temperatures following disease

BIOLOGICAL CONTROL


- · Biological Control = applied ecology
 - management of a microbial community to favour the biocontrol agent and disfavour the pathogen
- Biocontrol of soil-borne pathogens
- · Biocontrol of foliar pathogens.

Classical Biological control


- "Classical biological control" of insect pests or diseases is the one-time introduction of exotic natural enemies into a region for long-term suppression and regulation of populations of naturalized pests
- Biocontrol agent usually found near centre of origin of pest/disease

Biological Control

- Inundative "swamping" the system with large numbers of propagules of biocontrol agent
- Augmentative Repeated introduction of biocontrol agent at critical times

Full-scale registration and posticide model 1.2 str00000 30 of years production—the total posticide model 2.Development of production and total strong value and production development of translation system 3.1 of system 3.0 of years 3. Pietering of strain and/or process 4. A least \$50,0000 streamational coverage, at least \$50,0000 3.0 of years 3. Pietering in general production and of multiation system 5.100,000 1.0 of years 4. A least \$50,0000 1. Totaxiology and other testing 5.100,000 1.0 of years 5.100,000 1. Bioderfullizer, incourta, risk 7. Nationwide or international matering remaining of strain and/or process 1.0 of years 1.0 of years 1. Discovery of a good agent 1. Discovery of a good strain S. Nationwide or international matering refusit \$100,000 or international coverage, al. up to \$20,000 for international coverage, streamatic refusit \$20,000 for one coverative streamatic refusit \$20,000 for one coverative streamatic refusit \$20,000 for one severative refusit \$20,000 for one severative and philosophy Least that 1 year refusit \$20,000 for least	System	Steps required	Approximate costs/step	Time to significant market penetration
plant strengthening agent 2. Development of production and formation system 3. Up to \$200,000 for international coverage, and least \$3,0000 for one country 3. Patenting of strain and/or process 4. Up to \$1 million 4. Up to \$1 million 4. Number of strain and/or process 5.05 million 5.00000 for one country 5. Development of production system 5.000 for an example. 5.0000 for an example. Local production Discovery of a good strain 5100,000 for less Less than 1 year Goversment sponsored of endeced agents Depends upon spversmental direction and philosophy Uakown Uakown	production-the chemical	Development of production and formulation system 3. Patenting of strain and/or process 4. Toxicology and other testing 5. Registration 6. Building large-scale production system	 Up to \$200,000 for international coverage, at least \$30,000 for one country At least \$500,000 \$100,000 Up to \$3-4 million \$2-3 million 	3 to 6 years
Total: \$100,000 or less Governments ponsored or Depends upon governmental direction Unknown Unknown Unknown		2. Development of production and formulation system 3. Patenting of strain and/or process 4. Building large-scale production system	 Up to \$200,000 for international coverage, at least \$30,000 for one country Up to \$1 million \$0.5 million 	1 to 2 years
produced agents and philosophy	local production	Discovery of a good strain		Less than 1 year
		and philosophy	Unknown	Unknown

Recommendation for controlling of Phytophthora blight in USA

- Select fields with no history of Phytophthora blight.
 Select fields that did not have cucurbit, eggplant, pepper, or tomato for at least 3 years. No rotation period has been
 - established for effective management of Phytophthora blight of cucurbits.
- 3. Select fields that are well isolated from fields infested with P.

- Select fields that are well isolated from fields infested with *P. capsici.* Select well-drained fields, or do not plant the crop in the areas of the field which do not drain well.
 Clean farm equipment of soil between fields.
 Plant non-vining crops (i.e., summer squash) on dome-shaped raised beds (approximately 25 cm high).
 Plant resistant varieties, if available.
 Avoid excessive irrigation.

9. Do not irrigate from a pond that contains water drained from an infested field. Do not work in wet fields. Scout the field for the Phytophthora symptoms, especially after major rainfall, and particularly in low areas. When symptoms are localized in a small area of the field, disk

- The area.
 Discard infected fruit, but not in the field.
 Do not save seed from a field where Phytophthora blight
- occurred.
- 15. Remove healthy fruit from the infested area as soon as possible and check them routinely.

Postharvest handling

- Harvesting
- Transportation
- Precooling and Packing
- Hygiene
- Storage