

Chemical Constituents from the Roots of Caesalpinia mimosoides and Caesalpinia pulcherrima and their Anti-inflammatory activity

Orapun Yodsaoue

A Thesis Submitted in Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Organic Chemistry Prince of Songkla University

 2012 Copyright of Prince of Songkla University| Thesis Title | Chemical Constituents from the Roots of Caesalpinia mimosoides
 and Caesalpinia pulcherrima and their Anti-inflammatory activity |
| :--- | :--- |
| Author | Miss Orapun Yodsaoue |
| Major Program | Organic Chemistry |

Major Advisor :

\qquad
(Assoc. Prof. Dr. Chatchanok Karalai)

Co-advisor :
\qquad
(Assoc. Prof. Chanita Ponglimanont)
\qquad
(Assoc. Prof. Dr. Supinya Tewtrakul)

Examining Committee :

...................................Chairperson
(Assoc. Prof. Dr. Kan Chantrapromma)
.......................................Committee
(Assoc. Prof. Dr. Chatchanok Karalai)
\qquad (Assoc. Prof. Chanita Ponglimanont)
\qquad (Assoc. Prof. Dr. Supinya Tewtrakul)

Committee (Dr. Suda Chakthong)

The Graduate School, Prince of Songkla University, has approved this thesis as fulfillment of the requirements for the Doctor of Philosophy in Oraganic Chemistry.

This is to certify that the work here submitted is the result of the candidate's own investigation. Due acknowledgement has been made of any assistance received.

Signature
(Assoc. Prof. Dr. Chatchanok Karalai)
Major Advisor

Signature
(Orapun Yodsaoue)
Candidate

I hereby certify that this work has not already been accepted in substance for any degree, and is not being concurrently submitted in candidature for any degree.

Signature
(Orapun Yodsaoue)
Candidate

ชื่อวิทยานิพนธ์ องค์ประกอบทางเคมีจากรากของผักปู่ย่าและหางนกยูงไทยและ ฤทธิ์ต้านการอักเสบ
ผู้เขียน นางสาวอรพรรณ ยอดสะอึ
สาขาวิชา เคมีอินทรีย์
ปีการศึกษา 2555
\section*{บทคัดย่อ}

ส่วนที่ 1 การศึกษาองค์ประกอบทางเคมีจากส่วนรากต้นผักปู่ย่า

ส่วนสกัดหยาบไดคลอโรมีเทนและอะซิโตนจากรากของต้นผักปู่ย่่าได้แสดงฤทธิ์ การต้านไนตริกออกไซด์ที่ดีมาก ที่ค่า $\mathrm{IC}_{50} 11.0$ และ $21.6 \mu \mathrm{~g} / \mathrm{ml}$ ตามลำดับ จึงนำมาสู่การ การศึกษาองค์ประกอบทางเคมีจากรากต้นผักปู่ย่า สามารถแยกสารใหม่เป็นสารกลุ่มไดเทอร์พีน ได้ 4 สาร คือ mimosol A-D (CM1-CM4), สารกลุ่มไดเมอร์ไดเทอร์พีน 1 สาร คือ mimosol E (CM9) และ สารกลุ่ม dibenzo[b,d]furans จำนวน 2 สาร คือ mimosol F, G (CM10, CM11) นอกจากนี้ยังสามารถแยกสารประกอบที่มีการรายงานแล้ว 11 สาร ซึ่งแบ่งเป็นสารกลุ่ม ไดเทอร์พีน 4 สาร [taepeenin A (CM5), taepeenin D (CM6), nortaepeenin A (CM7) และ taepeenin L (CM8)] สารกลุ่มโฮโมไอโซฟลาโวน 3 สาร $[(E)-7$-hydroxy-3-(4-methoxybenzyl)chroman-4-one (CM12), (E)-7,8-dihydroxy-3-(4-methoxybenzyl) chroman-4-one (CM13) และ (E)-7-hydroxy-8-methoxy-3-(4-methoxybenzyl)chro man-4-one (CM14)] สารกลุ่มฟีนิลโพรพานอยด์ 3 สาร [tetracosyl caffeate (CM15) resveratrol (CM16) และ bergenin (CM17)] และ สารประกอบเซสควิเทอร์พีน 1 สาร $[(+)-$
pterocarpol (CM18)] โครงสร้างของสารประกอบเหล่านี้ วิเคราะห์ด้วยข้อมูลสเปกโทรสโกปี และเปรียบเทียบข้อมูลกับที่มีรายงานมาก่อนหน้านี้

สารทั้งหมดได้ถูกนำไปทดสอบฤทธิ์ต้านการอักเสบ โดยการยับยั้งไลโพโพลีแซค คาไรด์ (LPS) ซึ่งเป็นตัวเหนี่ยวนำให้เกิดไนตริคออกไซด์ (NO) ใน RAW264.7 เซลล์โมเดล และเนื่องจากว่าสารประกอบ CM4, CM6, CM8 และ CM12-CM14 แสดงฤทธิ์ยับยั้ง NO ใน ระดับที่ดีมาก จึงได้นำสารดังกล่าวมาทดสอบฤทธิ์การต้าน $\mathrm{TNF}-\alpha$ ต่อไป ผลที่ได้พบว่าสาร CM 4 แสดงฤทธิ์การต้าน NO และ $\mathrm{TNF}-\alpha$ ในระดับที่ดีมากด้วยค่า $\mathrm{IC}_{50}=3.0$ and $6.5 \mu \mathrm{M}$ ตามลำดับ

CM1: $\mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{CH}_{2}$
CM7: $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{O}$

CM5: $\mathrm{R}=\mathrm{H}$

CM2: $\mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{H}$
CM4
CM3: $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{OH}$
CM8: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$

CM9

CM6: $\mathrm{R}=\mathrm{OAc}$

CM10: $\mathrm{R}=\mathrm{OH}$

CM11: $\mathrm{R}=\mathrm{OMe}$

CM15

CM1 7

CM12: $\mathrm{R}=\mathrm{H}$

CM13: $\mathrm{R}=\mathrm{OH}$

CM14: R = OMe

CM1 6

CM1 8

ส่วนที่ 2 การศึกษาองค์ประกอบทางเคมีจากส่วนรากต้นหางนกยูงไทย

 การแยกสารในส่วนสกัดไดคลอโรมีเทนของส่วนรากจากต้นหางนกยูงไทยได้สาร ใหม่ในกลุ่มของไดเทอร์พีน 15 สาร คือ pulcherrins $\mathrm{D}-\mathrm{R}$ (CP1-CP15) รวมทั้งสารที่มีการ รายงานมาแล้ว 11 สาร คือ vouacapen- 5α-ol (CP16), isovouacapenol $\mathrm{C}(\mathbf{C P 1 7)}, 6 \beta-$ cinnamoyl- 7β-hydroxyvouacapen- 5α-ol (CP18), pulcherrin A (CP19), pulcherrin B (CP20), pulcherrimin C (CP21), pulcherrimin A (CP22), pulcherrimin E (CP23), pulcherrin C (CP24), pulcherrimin B (CP25) และ 8,9,11,14-didehydrovouacapen-5 α ol (CP26) โครงสร้างสารประกอบทั้งหมดวิเคราะห์โดยใช้วิธีทางสเปกโทรสโกปีและเปรียบเทียบ กับข้อมูลที่มีรายงานมาแล้ว สำหรับโครงสร้างสารประกอบ CP16 และ CP17 ยืนยันโครงสร้าง ด้วยเทคนิคการเลี้ยวเบนของรังสีเอกซ์บนผลึกเดี่ยวสารทั้งหมดได้ถูกนำไปทดสอบฤทธิ์ต้านการอักเสบ โดยการยับยั้งไลโพโพลีแซค คาไรด์ (LPS) ซึ่งเป็นตัวเหนี่ยวนำให้เกิดไนตริคออกไซด์ (NO) ใน RAW264.7 เซลล์โมเดล พบว่าสารประกอบ $\mathrm{CP} 8, \mathrm{CP} 9, \mathrm{CP} 11-\mathrm{CP} 15$ และ $\mathrm{CP} 17-\mathrm{CP} 26$ แสดงฤทธิ์ยับยั้งไนตริคออก ไซด์ (NO) ที่เป็นสาเหตุของการเกิดการอักเสบอยู่ในระดับที่ดีมากด้วยค่า $\mathrm{IC}_{50} 2.9-12.5 \mu \mathrm{M}$ ซึ่งดีกว่ายามาตรฐานคือ indomethacin $\left(\mathrm{IC}_{50}=14.5 \mu \mathrm{M}\right)$

	R_{1}	R_{2}	R_{3}
CP1	H	H	OAc
CP2	H	OH	OAc
CP3	H	OAc	OH
CP4	H	OH	OCOPh
CP5	OCOPh	H	H
CP6	H	OCOPh	H
CP7	H	$\mathrm{OCOCH}=\mathrm{CHPh}$	H
CP16	H	H	H
CP17	H	OCOPh	OH
CP18	H	$\mathrm{OCOCH}=\mathrm{CHPh}$	OH
CP19	H	OH	$\mathrm{OCOCH}=\mathrm{CHPh}$
CP20	OCOPh		

CP14

CP25

CP15

CP26

Thesis Title	Chemical Constituents from the Roots of Caesalpinia mimosoides
and Caesalpinia pulcherrima and their Anti-inflammatory activity	

Abstract

\section*{Part I Chemical Investigation of the Roots of C. mimosoides}

The crude $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and acetone extracts showed potent NO inhibitory activity with IC_{50} values of 11.0 and $21.6 \mu \mathrm{~g} / \mathrm{ml}$, respectively. Further separation and purification led to the isolation of four diterpenes, named mimosol A-D (CM1CM4), a dimer, named mimosol E (CM9) and two dibenzo[b,d]furans, named mimosol F, G (CM10, CM11), along with eleven known compounds including four diterpenes [taepeenin A (CM5), taepeenin D (CM6), nortaepeenin A (CM7) and taepeenin $\mathrm{L}(\mathbf{C M 8})]$, three homoisoflavones [(E)-7-hydroxy-3-(4-methoxybenzyl)chro man-4-one (CM12), (E)-7,8-dihydroxy-3-(4-methoxybenzyl)chroman-4-one (CM13) and (E)-7-hydroxy-8-methoxy-3-(4-methoxybenzyl)chroman-4-one (CM14)], three phenylpropanols [tetracosyl caffeate (CM15), resveratrol (CM16) and bergenin (CM17)] and a sesquiterpene [(+)-pterocarpol (CM18)]. Their structures were elucidated by analysis of their spectroscopic data and comparison with literature data.

The anti-inflmmatory activity of all compounds were evaluated for inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 macrophage cell line of which compounds CM4, CM6, CM8, and CM12-CM14 showed strong NO-inhibitory activity. These compounds were also tested for the inhibitory effect on LPS-induced tumor necrosis factor-alpha (TNF- α) release in RAW264.7 cells. The results indicated that CM4 possessed potent inhibitory activity for both tests with IC_{50} values of 3.0 and $6.5 \mu \mathrm{M}$, respectively.

CM1: $\mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{CH}_{2}$

$$
\text { CM7: } \mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{O}
$$

CM5: $\mathrm{R}=\mathrm{H}$

CM6: $\mathrm{R}=\mathrm{OAc}$

CM10: $\mathrm{R}=\mathrm{OH}$

CM11: $\mathrm{R}=\mathrm{OMe}$

CM2: $\mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{H}$

CM4

CM8: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$

CM9

CM12: $\mathrm{R}=\mathrm{H}$

CM13: $\mathrm{R}=\mathrm{OH}$

CM14: $\mathrm{R}=\mathrm{OMe}$

CM15

CM1 7

CM1 6

CM1 8

Part II Chemical Investigation of the Roots of C. pulcherrima

The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract from the roots of C. pulcherrima was separated to afford 15 new diterpenes, named pulcherrin D-R (CP1-CP15) together with eleven known compounds (CP16-CP26). The known compounds were identified as vouacapen- 5α-ol (CP16), isovouacapenol C (CP17), 6β-cinnamoyl-7 β -hydroxyvouacapen- 5α-ol (CP18), pulcherrin A (CP19), pulcherrin B (CP20), pulcherrimin $\mathrm{C}(\mathbf{C P 2 1})$, pulcherrimin $\mathrm{A}(\mathbf{C P 2 2})$, pulcherrimin $\mathrm{E}(\mathbf{C P 2 3})$, pulcherrin C (CP24), pulcherrimin B (CP25) and 8,9,11,14-didehydrovouacapen- 5α-ol (CP26). All compounds were identified by spectroscopic data and comparison with those reported in the literatures. Moreover, the structures of compounds CP16 and CP17 were also confirmed by X-ray diffraction analysis.

The anti-inflammatory activity of all isolated compounds were investigated with the lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW264.7 macrophage cell line. Compounds CP8, CP9, CP11-CP15 and CP17CP26 showed potent NO inhibitory activity with IC_{50} values in the range of 2.9-12.5 $\mu \mathrm{M}$ better than that of the positive control (indomethacin $\mathrm{IC}_{50}=14.5 \mu \mathrm{M}$).

	R_{1}	R_{2}	R_{3}
CP1	H	H	OAc
CP2	H	OH	OAc
CP3	H	OAc	OH
CP4	H	OH	OCOPh
CP5	OCOPh	H	H
CP6	H	OCOPh	H
CP7	H	$\begin{gathered} E \\ \mathrm{OCOCH} \end{gathered}=\mathrm{CHPh}$	H
CP16	H	H	H
CP17	H	OCOPh	OH
CP18	H	$\begin{gathered} E \\ \mathrm{OCOCH}=\mathrm{CHPh} \end{gathered}$	OH
CP19	H	OH	$\stackrel{E}{\mathrm{OCOCH}}=\mathrm{CHPh}$
CP20	OCOPh	H	OH

	R_{1}	R_{2}	R_{3}	R_{4}
CP8	H	CHO	OCOPh	OH
CP9	H	$\mathrm{CH}_{2} \mathrm{OCOPh}$	OH	H
CP10	H	$\mathrm{CO}_{2} \mathrm{H}$	OCOPh	H
CP11	OCOPh	$\mathrm{CO}_{2} \mathrm{H}$	OCOPh	H
CP21	H	$\mathrm{CO}_{2} \mathrm{H}$	OCOPh	OCOPh
CP22	OH	$\mathrm{CO}_{2} \mathrm{H}$	OCOPh	OCOPh
CP23	OCOPh	$\mathrm{CO}_{2} \mathrm{H}$	OCOPh	OAc

	R_{1}	R_{2}	R_{3}
CP12	Me	OAc	OH
CP13	$\mathrm{CH}_{2} \mathrm{OAc}$	OH	OAc
CP24	Me	OH	OAc

CP14

CP25

CP15

CP26

ACKNOWLEDGEMENT

This work is the result of many years and the contributions of many people. My research would not be successful without them. Firstly, I would like to express my sincere thankfulness to my supervisor, Assoc. Prof. Dr. Chatchanok Karalai for his kind help, valuable advices, patience and understanding throughout my years of research. I express my deep sense of gratitude to Assoc. Prof. Chanita Ponglimanont, who always gave me the valuable guidance, encouragement, patience, understanding, the moral supports and help to minimize the errors. Special thanks are addressed to Prof. Dr. Reymond J. Anderson, Department of Chemistry, University of British Columbia, Canada for a short training on the synthesis of some unnatural analogues of bioactive marine natural products. I am very grateful to Assoc. Prof. Dr. Supinya Tewtrakul for her kind help, profitable advices and anti-inflammatory testing. I wish to express my sincere gratitude to Prof. Hoong-Kun Fun at X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia and Assoc. Prof. Dr. Suchada Chantrapromma for performing the single crystal X-ray analysis and especially for providing me the good opportunity to work with them.

I also would like to thank Dr. Sarot Cheenpracha and Asst. Prof. Dr. Surat Laphookhieo for their helpful suggestions, encouragement and assistance during my research activities. I also would like to acknowledge my sincere thanks to any person whose name is not mentioned here but who has helped me directly or indirectly in the completion of this research.

I am very greatly indebted to the Office of the Higher Education Commission, Thailand for supporting by grant fund under the program Strategic Scholarships for Frontier Research Network for the Joint Ph.D. Program Thai Doctoral degree for this research. I would like to thank Department of Chemistry, Prince of Songkla University for making available the facilities used in this research. Financial supports from the Thailand Research Fund (TRF), the Graduate School, Prince of Songkla University toward this study are gratefully acknowledged.

CONTENTS

Page
ABSTRACT (THAI) v
ABSTRACT (ENGLISH) xii
ACKNOWLEDGEMENT xix
CONTENTS xx
LISTS OF TABLES xxiv
LISTS OF ILLUSTRATIONS xxix
LISTS OF SCHEMES xxxiv
ABBREVIATIONS AND SYMBOLS xxxv
CHAPTER 1 INTRODUCTION
1.1 General introduction 1
1.2 The cassane-type diterpenes 1
1.3 Biological activity of cassane 2
1.4 Caesalpinia genus 2
1.4.1 Caesalpinia mimosoides Lamk. 3
1.4.2 Caesalpinia pulcherrima Swartz. 5
1.5 Review of literatures 6
1.6 Objective of this study 23
CHAPTER 2 EXPERIMENTAL
2.1 Instruments and chemicals 24
2.2 Plants material 25
2.2.1 The roots of C. mimosoides 25
2.2.2 The roots of C. pulcherrima 25
2.3 Plants extraction 25
2.3.1 The extraction of the roots of C. mimosoides 25
2.3.2 The extraction of the roots of C. pulcherrima 26
2.4 Isolation and chemical investigation 26
2.4.1. Investigation of the crude methylene chloride extract from 26 the roots of C. mimosoides

CONTENTS (Continued)

Page
2.4.2 Investigation of the crude acetone extract from the roots of 28 C. mimosoides
2.4.3 Investigation of the crude methylene chloride extract from the 32 roots of C. pulcherrima
2.5 Bioassay 39
2.5.1 Anti-inflammatory activity assay 39
2.5.1.1 Inhibitory effects of compounds on LPS-induced NO 39 production from RAW264.7 cells
2.5.1.2 Inhibitory effects of compounds on LPS-induced 40
TNF- α release from RAW264.7 cells
2.5.1.3 Statistical analysis 40
CHAPTER 3 RESULTS AND DISCUSSION
3.1 Structural elucidation of compounds from the roots of C. mimosoides 41
3.1.1 Compound CM1 42
3.1.2 Compound CM2 45
3.1.3 Compound CM3 48
3.1.4 Compound CM4 50
3.1.5 Compound CM5 53
3.1.6 Compound CM6 56
3.1.7 Compound CM7 59
3.1.8 Compound CM8 62
3.1.9 Compound CM9 65
3.1.10 Compound CM10 69
3.1.11 Compound CM11 72
3.1.12 Compound CM12 74
3.1.13 Compound CM13 77
3.1.14 Compound CM14 80
3.1.15 Compound CM15 83

CONTENTS (Continued)

Page
3.1.16 Compound CM16 86
3.1.17 Compound CM17 89
3.1.18 Compound CM18 92
3.2 Anti-inflammatory of compounds CM1-CM18 from the roots of 95
C. mimosoides
3.3 Structural elucidation of compounds from the roots of 98
C.pulcherrima
3.3.1 Compound CP1 99
3.3.2 Compound CP2 102
3.3.3 Compound CP3 104
3.3.4 Compound CP4 106
3.3.4 Compound CP5 108
3.3.6 Compound CP6 110
3.3.7 Compound CP7 112
3.3.8 Compound CP8 114
3.3.9 Compound CP9 117
3.3.10 Compound CP10 120
3.3.11 Compound CP11 122
3.3.12 Compound CP12 125
3.3.13 Compound CP13 128
3.3.14 Compound CP14 131
3.3.15 Compound CP15 134
3.3.16 Compound CP16 137
3.3.17 Compound CP17 140
3.3.18 Compound CP18 143
3.3.19 Compound CP19 147
3.3.20 Compound CP20 150
3.3.21 Compound CP21 153

CONTENTS (Continued)

Page
3.3.22 Compound CP22 157
3.3.23 Compound CP23 161
3.3.24 Compound CP24 165
3.3.25 Compound CP25 168
3.3.26 Compound CP26 172
3.4 Anti-inflammatory of compounds CP1-CP26 from the roots of 175
C. pulcherrima
3.5 Proposed biogenesis of cassane and cyclopimarane diterpenes 177
CHAPTER 4 CONCLUSION 179
REFERENCES 181
APPENDIX 187
VITAE 247

LIST OF TABLES

Tables Page
1 Species of Caesalpinia genus in Thailand 2
2 Compounds from plants of Caesalpinia genus 6
$3 \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM1 43
$4 \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM2 46
$5 \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM3 49
$6 \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM4 52
$7 \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM5 54
8 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra data between compounds 55
CM5 (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{~Hz}$) and taepeenin $\mathrm{A}(\mathbf{R}$, recorded in$\mathrm{CDCl}_{3}, 300 \mathrm{~Hz}$)
$9 \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM6 57
10 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra data between compounds 58
CM6 (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{~Hz}$) and taepeenin $\mathrm{D}(\mathbf{R}$, recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{~Hz}$)${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM760
Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra data between compounds 61
CM7 (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{~Hz}$) and nortaepeenin $\mathrm{A}(\mathbf{R}$, recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{~Hz}$)${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM863
Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra data between compounds 64
CM8 (recorded in $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~Hz}\right)$ and taepeenin $\mathrm{L}(\mathbf{R}$, recorded in$\mathrm{CDCl}_{3}, 300 \mathrm{~Hz}$)
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM9 67
(Fragment A)
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM9 68(Fragment B)$17 \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM1071

LIST OF TABLES (Continued)

Tables

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM11
Page
73
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM12 75
Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra data between compounds
CM12 (recorded in acetone- $d_{6}, 300 \mathrm{MHz}$) and (E)-7-hydroxy-3-(4-methoxybenzyl-chroman-4-one) (R, recorded in DMSO- $d_{6}, 500 \mathrm{~Hz}$)
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM13
Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra data between compounds CM13 (recorded in acetone- $d_{6}, 300 \mathrm{MHz}$) and (E)-7,8-dihydroxy-3-(4-methoxybenzylchroman-4-one) (\mathbf{R}, recorded in DMSO- $d_{6}, 500 \mathrm{~Hz}$)
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM14
Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra data between compounds
CM14 (recorded in acetone- $d_{6}, 300 \mathrm{MHz}$) and (E)-7-hydroxy-8-
methoxy-3-(4-methoxybenzyl-chroman-4-one) (R, recorded in DMSO$\left.d_{6}, 500 \mathrm{~Hz}\right)$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM1584
Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data between compounds CM15(recorded in acetone- $d_{6}, 300 \mathrm{MHz}$) and tetracosyl caffeate $(\mathbf{R}$, recordedin acetone- d_{6})
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM16Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra data between compoundsCM16 (recorded in acetone- $d_{6}, 300 \mathrm{MHz}$) and trans-resveratrol (\mathbf{R},recorded in acetone- d_{6})
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM17
Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra data between compounds 91CM17 (recorded in DMSO- $d_{6}, 300 \mathrm{~Hz}$) and bergenin (\mathbf{R}, recorded inDMSO- $\left.d_{6}, 500 \mathrm{~Hz}\right)$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM188790

LIST OF TABLES (Continued)

Tables

Page

32 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds

> CM18 (recorded in acetone- $\left.d_{6}, 300 \mathrm{~Hz}\right)$ and (+)-ptercarpol $(\mathbf{R}$, recorded in $\left.\mathrm{CDCl}_{3}, 400 \mathrm{~Hz}\right)$

Inhibitory effects on NO production of compounds CM1-CM18 from C. mimosoides

Inhibition on TNF- α production of compounds CM4, CM6, CM8, and recorded in $\mathrm{CDCl}_{3}, 360 \mathrm{MHz}$)
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP17

LIST OF TABLES (Continued)

Tables Page53 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds142
$\mathbf{C P 1 7}$ (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and isovouacapenol C (\mathbf{R},recorded in $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP18144
Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds 146$\mathbf{C P 1 8}$ (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and 6β-cinnamoyl- 7β-hydroxyvouacapen- 5α-ol (\mathbf{R}, recorded in $\mathrm{CDCl}_{3}, 360 \mathrm{MHz}$)
56
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP19148
57
Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds 149
$\mathbf{C P 1 9}$ (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and pulcherrin $\mathrm{A}(\mathbf{R}$, recorded in$\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$)151
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP20 5859 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds152CP20 (recorded in acetone- $d_{6}, 300 \mathrm{MHz}$) and pulcherrin B (\mathbf{R}, recordedin $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$)
60
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP21 154
61 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds 155
$\mathbf{C P 2 1}$ (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and pulcherrimin $\mathrm{C}(\mathbf{R}$, recordedin $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)$62{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP22158
63
Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds 159
$\mathbf{C P 2 2}$ (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and pulcherrimins A (\mathbf{R}, recordedin $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)$64 \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP23162
65 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds 163$\mathbf{C P 2 3}$ (recorded in acetone- $d_{6}, 300 \mathrm{MHz}$) and pulcherrimin $\mathrm{E}(\mathbf{R}$,recorded in $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)

LIST OF TABLES (Continued)

Tables Page
$66 \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP24 166
67 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds 167
$\mathbf{C P 2 4}$ (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and pulcherrin $\mathrm{C}(\mathbf{R}$, recorded in$\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$)
$68 \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP25 169
69 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds 170$\mathbf{C P 2 5}$ (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and pulcherrimin B (\mathbf{R}, recordedin $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)
70
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP26 173
71 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds 174
CP26 (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and 8,9,11,14-
didehydrovouacapen- 5α-ol (\mathbf{R}, recorded in $\mathrm{CDCl}_{3}, 360 \mathrm{MHz}$)
72
Inhibitory effects on NO production of compounds CP1-CP26176

LIST OF ILLUSTRATIONS

Figures Page
1 Different parts of Caesalpinia mimosoides Lamk. 4
2 Different parts of Caesalpinia pulcherrima 5
3
UV (MeOH) spectrum of compound CM1 18845
IR (neat) spectrum of compound CM1 188
${ }^{1}$ H NMR (300 MHz) (acetone- d_{6}) spectrum of compound CM1 189
${ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound CM1 189
DEPT 135° (acetone- d_{6}) spectrum of compound CM1 190
DEPT 90° (acetone- d_{6}) spectrum of compound CM1 190
2D COSY (acetone- d_{6}) spectrum of compound CM1 191
2D HMQC (acetone- d_{6}) spectrum of compound CM1 191
2D HMBC (acetone- d_{6}) spectrum of compound CM1 192
UV (MeOH) spectrum of compound CM2 193
IR (neat) spectrum of compound CM2 193
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM2 194
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C M 2}$ 194
DEPT $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM2 195
2D COSY $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM2 195
2D HMQC (CDCl_{3}) spectrum of compound CM2 196
2D HMBC (CDCl_{3}) spectrum of compound CM2 196
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C M} 3$ 197
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C M} 3$ 197
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM4 198
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C M 4}$ 198
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM5 199
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM5 199
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C M 6}$ 200

LIST OF ILLUSTRATIONS (Continued)

Figures Page
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM6 200
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM7
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM7 201
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM8 202
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM8 202
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM9 203
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM9 203
UV (MeOH) spectrum of compound CM10 204
IR (neat) spectrum of compound CM10 204
${ }^{1}$ H NMR (300 MHz) (acetone- d_{6}) spectrum of compound CM10 205
${ }^{13}$ C NMR (75 MHz) (acetone- d_{6}) spectrum of compound CM10 205
DEPT 135° (acetone- d_{6}) spectrum of compound CM10 206
DEPT 90° (acetone- d_{6}) spectrum of compound CM10 206
2D COSY (acetone- d_{6}) spectrum of compound CM10 207
2D HMQC (acetone- d_{6}) spectrum of compound CM10 207
2D HMBC (acetone- d_{6}) spectrum of compound CM10 208
${ }^{1}$ H NMR (300 MHz) (acetone- d_{6}) spectrum of compound CM11 209
${ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound CM11 209
${ }^{1}$ H NMR (300 MHz) (acetone- d_{6}) spectrum of compound CM12 210
${ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound CM12 210
${ }^{1}$ H NMR (300 MHz) (acetone- d_{6}) spectrum of compound CM13 211
${ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound CM13 211
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM14 212
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM14 212
${ }^{1}$ H NMR (300 MHz) (acetone- d_{6}) spectrum of compound CM15 213
${ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound CM15 213

LIST OF ILLUSTRATIONS (Continued)

Figures Page
53 ${ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound CM16 214
${ }^{13}$ C NMR (75 MHz) (acetone- d_{6}) spectrum of compound CM16 214
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of compound $\mathbf{C M 1 7}$ 215
${ }^{13} \mathrm{C}$ NMR (75 MHz) ($\mathrm{CD}_{3} \mathrm{OD}$) spectrum of compound CM17 215
${ }^{1}$ H NMR (300 MHz) (acetone- d_{6}) spectrum of compound CM18 216
${ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound CM18 216
UV (MeOH) spectrum of compound CP1 217
IR (neat) spectrum of compound CP1 217
60${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1}$218
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1}$ 218
DEPT $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP1 219
DEPT $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1}$ 219
2D COSY $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1}$ 220
2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1}$ 220
2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1}$ 221
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2}$ 222
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2}$ 222
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 3}$ 223
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P} 3$ 223
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP4 224
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 4}$ 224
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 5}$ 225
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 5}$ 225
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP6 226
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 6}$ 226
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 7}$ 227
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P} 7$ 227

LIST OF ILLUSTRATIONS (Continued)

Figures Page
80 ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 8}$ 228
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP8 228
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 9}$ 229
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 9}$ 229
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 0}$ 230
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 0}$ 230
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 1}$ 231
${ }^{1} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 1}$ 231
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 2}$ 232
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 2}$ 232
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 3}$ 233
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 3}$ 233
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 4}$ 234
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 4}$ 234
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 5}$ 235
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 5}$ 235
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP16 236
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 6}$ 236
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 7}$ 237
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 7}$ 237
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 8}$ 238
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 8}$ 238
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 9}$ 239
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 9}$ 239
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound CP20 240
${ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound $\mathbf{C P 2 0}$ 240
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2 1}$ 241

LIST OF ILLUSTRATIONS (Continued)

Figure Page
$107 \quad{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2 1}$ 241
$108{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2} 2$ 242
$109 \quad{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2 2}$ 242
$110 \quad{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound CP23 243
$111{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound CP23 243
$112{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2 4}$ 244
$113 \quad{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2 4}$ 244
$114{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2 5}$ 245
$115 \quad{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2 5}$ 245
$116{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP26 246
$117{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2 6}$ 246

LISTS OF SCHEMES

Schemes Page
1 Extraction of the roots of C. mimosoides 25
2 Extraction of the roots of C. pulcherrima 26
3 Isolation of compounds CM1-CM9, CM11-CM13 and CM15 26
from the crude $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ of the roots of C. mimosoides
4 Isolation of compounds CM10, CM13, CM14 and CM16-CM18 28
from the crude acetone of the roots of C. mimosoides
5 Isolation of compounds CP1-CP26 from C. pulcherrima 32
6 Plausible biosynthesis pathway of cassane and cyclopimarane 178 diterpenes.

ABBREVIATIONS AND SYMBOLS

s	$=$	singlet
d	$=$	doublet
t	=	triplet
q	=	quartet
m	=	multiplet
$d d$	=	doublet of doublet
$d t$	=	doublet of triplet
br s	=	broad singlet
R_{f}	=	Retention factor
g	=	Gram
nm	=	Nanometer
mp	=	melting point
cm^{-1}	=	reciprocol centimeter (wavenumber)
δ	=	chemical shift relative to TMS
J	=	coupling constant
$[\alpha]_{\mathrm{D}}$	=	specific rotation
$\lambda_{\text {max }}$	=	maximum wavelength
v	$=$	absorption frequencies
ε	$=$	molar extinction coefficient
m/z	$=$	a value of mass divided by charge
${ }^{\circ} \mathrm{C}$	=	degree celcius
MHz	=	Megahertz
ppm	=	part per million
c	$=$	Concentration
IR	$=$	Infrared
UV-VIS	$=$	Ultraviolet-Visible
MS	=	Mass Spectroscopy

ABBREVIATIONS AND SYMBOLS (continued)

NMR	=	Nuclear Magnetic Resonance
2D NMR	=	Two Dimensional Nuclear Magnetic Resonance
COSY	=	Correlation Spectroscopy
DEPT	=	Distortionless Enhancement by Polarization Transfer
HMBC	=	Heteronuclear Multiple Bond Correlation
HMQC	=	Heteronuclear Multiple Quantum Coherence
NOE	=	Nuclear Overhauser Effect Spectroscopy
CC	=	Column Chromatography
QCC	=	Quick Column Chromatography
PLC	=	Preparative Thin Layer Chromatography
TMS	=	Tetramethylsilane
CDCl_{3}	=	Deuterochloroform
$\mathrm{CD}_{3} \mathrm{OD}$	=	Deuteromethanol
DMSO- d_{6}	$=$	Deuterodimethylsulfoxide
NO	=	Nitric Oxide
LPS	=	Lipopolysaccharide
$\mu \mathrm{M}$	=	micro molar
$\mu \mathrm{g}$	=	micro gram
IC_{50}	=	the half maximal inhibitory concentration

CHAPTER 1

INTRODUCTION

1.1 General introduction

Natural products represent a rich source of biologically active compounds and are examples of molecular diversity. Recognized potential in drug discovery and development in the areas of human diseases, animal diseases and plant diseases of new drugs originated from natural sources: plant, animal, microbial or mineral origin.

1.2 The cassane-type diterpenes

Diterpenoids are group of geranylgeranyl diphosphate which derived from farnesyl diphosphate and isopentenyl-diphosphate. Diterpenes can be found from many sources such as groups of organisms including terrestrial fungi, lichens, marine origins, and insects, but the majority of diterpenes are from plants. Diterpenoids exhibit diverse biological properties, such as anti-inflammatory, cytotoxic, antifeedant, platelet-aggregation, and antimicrobial effects.

Despite being relatively the smallest class of terpenoid compounds, the chemical structures of diterpenes are otherwise widely varied, ranging in term of numbers of carbocyclic systems from non-cyclic to as high as tetra-carbocyclic core skeletons. Among various groups of diterpenes, the cassanes, which are the focus of this investigation, is possibly the most common and most extensively studied class.

Chemically, cassanes-type diterpenes possess tricarbocyclic core skeleton, occasionally with a furanoid extension attached to ring C, which was called "furanocassane-type diterpenes". These compounds are found most exclusively in the plants, especially of the genus Caesalpinia.

Cassane skeleton

Furanocassane skeleton

1.3 Biological activity of cassane

To date, there have been up to more than 100 naturally occurring furanocassane-type diterpenes reported. These can be classified into two categories, namely furanocassane and non-furanocassane. The biological activities of this class of compounds were reported such as DNA repair-deficient yeast mutant (Patil et al., 1997), antiviral (Jiang,et al., 2002a; Jiang, et al., 2002b), antitubercular (Promsawan et al., 2003), antimalarial (Linn et al., 2005; Kalauni et al., 2006; Pudhom et al., 2007), anitrypanosomal (Torres-Mendoza et al., 2004), antibacterial (Dickson et al., 2007), antioxidant (Dickson et al., 2007) and cytotoxic activities (McPherson et al., 1986; Yadav et al., 2009).

1.4 Caesalpinia genus

Caesalpinia belongs to the Leguminosae-Caesalpinioideae family. This family contains about 150 genera with 2,200 species. In Thailand only 20 genera with 113 species are found, from Caesalpinia genus only 19 species are found (Smitinand, T. 2001).

Table 1. Species of Caesalpinia genus in Thailand

1. Caesalpinia andamanica (Prain) Hattink
2. Caesalpinia bonduc (L.) Roxb.
3. Caesalpinia coriaria (Jacq.) Willd.
4. Caesalpinia crista L.
5. Caesalpinia cucullata Roxb.

Table 1 (continued)
6. Caesalpinia decapetala (Roth) Alston
7. Caesalpinia digyna Rottl.
8. Caesalpinia enneaphylla Roxb.
9. Caesalpinia furfuracea (Prain) Hattink
10. Caesalpinia godefroyana O. Kuntze
11. Caesalpinia hymenocarpa (Prain) Hattink
12. Caesalpinia major (Medik.) Dandy \& Exell
13. Caesalpinia mimosoides Lamk.
14. Caesalpinia minax Hance
15. Caesalpinia parviflora Prain
16. Caesalpinia pubescens (Desf.) Hatt.
17. Caesalpinia pulcherrima (L.) Swartz
18. Caesalpinia sappan L.
19. Caesalpinia tortuosa Roxb.

Plants from several species of this genus have shown diverse biological activities such as C. pulcherrima exhibit antitubercular (Promsawan et al., 2003), C. crista exhibits antimalarial (Linn et al., 2005; Kalauni et al., 2006), C. benthamiana exhibits antibacterial and antioxidant (Dickson et al., 2007), and C. bonduc exhibits antimalarial and cytotoxic activities (Pudhom et al., 2007).

1.4.1 Caesalpinia mimosoides Lamk.

Caesalpinia mimosoides Lamk. has many local Thai names such as "Phak pu ya (ผักปู่ย่า)" and Cha-Luead (ช้าเลือด), the origin of C. mimosoides is not certain, but is thought to be in the region from India, Burma, Laos, Vietnam and China. C. mimosoides has been found in old clearings, scrub areas, and mixed deciduous forests in northern and north-eastern Thailand. C. mimosoides is erect or climbing shrub, densely hispid and bristly on all parts. Stipules have awl shaped, 7-15 mm long, but caducous. The leaves are bipinnate, rachis $25-40 \mathrm{~cm}$ long; bearing 10-30
pairs of pinnae, each with 10-20 pairs of leaflets, leaflets are ovate-oblong, opposite, 10 mm long and 4 mm wide. Inflorescence has large terminal panicle. The flowers are broadly obovate petals, $1.5-2 \mathrm{~cm}$ long, $1.2-1.5 \mathrm{~cm}$ wide which appear bright yellow. Pods are flat and glabrescent, $20-30 \mathrm{~cm}$ long, $1-1.5 \mathrm{~cm}$ wide. Seeds are ovate and flat, 1.15 cm long, $5-6 \mathrm{~mm}$ wide, light brown. The young shoots and leaves are locally consumed as fresh vegetables and appetizers. The young shoots and flowers have also been used as a carminative and to relieve dizziness and fainting. This plant has been reported to exhibit antimicrobial (Chanwitheesuk et al., 2007) and antioxidant activities (Chanwitheesuk et al., 2005).

Figure 1 Different parts of Caesalpinia mimosoides Lamk.
a) Tree
b) Stem
c) Leaves
d) Flowers
e) Fruits
f) Seeds

1.4.2 Caesalpinia pulcherrima Swartz.

Caesalpinia pulcherrima Swartz. is known locally as "Hang Nok Yung Thai (หางนกยูงไทย)". Other common names for this species are Poinciana, Peacock Flower, Red Bird of Paradise, Mexican Bird of Paradise, Dwarf Poinciana, Pride of Barbados, and flamboyan-de-jardin. C. pulcherrima is a large perennial shrub or small tree, $1-3 \mathrm{~m}$ tall that is widely distributed in tropical areas and has been used as ornamental plant. (Smitinand, 2001) The leaves are bipinnate, $20-40 \mathrm{~cm}$ long, bearing 3-10 pairs of pinnae, each with 6-10 pair of leaflets $15-25 \mathrm{~mm}$ long and $10-15 \mathrm{~mm}$ broad. The flowers are borne in recemes up to 2 cm long which appear yellow, pink, off-white and red with yellow margins. This plant is a striking ornamental plant, widely grown in tropical gardens. It is also the national flower of the Caribbean island of Barbados, and is depicted on the Queen's personal Barbadian flag.

Figure 2 Different parts of Caesalpinia pulcherrima
a) Tree
b) Leaves
c) Flowers
d) Fruits
e) Seeds

1.5 Review of literatures

Chemical constituents isolated from 19 species of the genus Caesalpinia were summarized by Sarot Cheenpracha in 2007 (Cheenpracha, 2007). Information from NAPRALERT database developed by University of Illinois at Chicago and Chemical Abstracts of the year 2007 reported additional constituents from three new species of the Caesalpinia genus and they could be classified into groups, such as benzenoids, coumarins, diterpenes, flavonoids, flavonols, flavones, flavonones, sesquiterpenes, steroids and triterpenes. These compounds are presented in Table 2.

Table 2. Compounds from plants of Caesalpinia genus
a : Benzenoids
b: Chalcones
c: Diterpenes
d : Flavonoids
e: Iridoids
f: Quinones
g: Phenylpropanoids
h : Sesquiterpenes
I : Steroids
\mathbf{j} : Triterpenes

Scientific Name	Investigated part	Compound	Bibliography
C. benthamiana	Root bark	Benthaminin 1, 14c Benthaminin 2, 15c Deoxycaesaldekarin C, 44c	Dickson et al., 2007
C. bonduc	Part not Specified	Caesalpinolide A, 39c Caesalpinolide B, 41c 6β-Acetoxy-17- methylvoucapane- 8(14),9(11)-diene, 12c 17-Methylvouacapane- 8(14),9(11)-diene, 13c Caesalpinolide D, 40c Caesalpinolide C, 42c Caesalpinolide E, 43c	Yadav et al., 2007 Yadav et al., 2009

Table 2 (Continued)

Scientific name	Investigated part	Compound	Bibliography
C. bonduc	Part not Specified	Friedelin, 113j Lupeol, 114j	$\begin{aligned} & \text { Yadav et al., } \\ & 2009 \end{aligned}$
	Bark	Caesaldekarin J, 21c 17-Hydroxycampesta-4,6-dien- 3-one, 109i 13,14-seco-Stigmasta-5,14-dien- 3α-ol, 110i 13,14-seco-Stigmasta-9(11), 14-dien-3 α-ol, 111i Pipataline, 105g Caesalpinianone, 75d 6-O-Methylcaesalpinianone, 76d Hematoxylol, 88d Stereochenol A, 103f 4'-O-Acetylloganic acid, 101e 6'-O-Acetylloganic acid, 102e 2-O- β-D-Glucosyloxy-4-metho xybenzenepropanoic acid, 104g	Udenigwe et al., 2007 Ata et al., 2009
	Kernels	2-Acetoxycaesaldekarin E, 11c Bonducellpin B, 16c Bonducellpin C, 17c Bonducellpin E, 18c Bonducellpin F, 19c Bonducellpin G, 20c Caesalmin B, 22c Caesalmin D, 26c Caesalmin E, 27c	Pudhom et al., 2007

Table 2 (Continued)

Scientific name	Investigated part	Compound	Bibliography
C. bonduc	Kernels	α-Caesalpin, 28c ε-Caesalpin, 29c Caesalpinin C, 31c 14 (17)-Dehydrocaesalpin F, 32c Caesalpinin I, 33c Caesalpinin K, 34c	Pudhom et al., 2007
	Seeds	Neocaesalpin W, 51c β-Amyrin, 112j	$\begin{aligned} & \text { Wu et al., } \\ & 2007 \end{aligned}$
C. crista	Seeds	Caesaljapin, 23c Caesaljapin B, 24c Caesaljapin C, 25c Caesalpinilinn, 30c Caesalpinista A, 36c Caesalpinista B, 37c Deoxycaesaldekarin C, 38c	$\begin{aligned} & \text { Yang et al., } \\ & 2009 \end{aligned}$
C. ferrea	Stem	Pauferrol A, 10b	Nozaki et al., 2007
C. magnifoliolata	Seeds	Caesalmins D, 26c Caesalmins E, 27c Magnicaesalpin, 45c Neocaesalpin L, 46c Neocaesalpin O, 47c	$\begin{aligned} & \text { Yin et al., } \\ & 2008 \end{aligned}$
C. millettii HOOK. Et ARN	Stems	Bonducellin, 80d Eucomin, 85d Intricatinol, 86d 8-Methoxybonducellin, 87d 8-Methoxyisobonducellin, 90d	Chen and Yang, 2007

Table 2 (Continued)

Scientific name	Investigated part	Compound	Bibliography
C. millettii HOOK. Et ARN	Stems	Tamarixetin 3-O-(6"-O-E-caffeoyl) - β-D-alactopyranoside, 99d	Chen and Yang, 2007
C. mimosoides	Part not specified	Gallic acid, 6a	Chanwitheesuk et al. 2007
C.paraguariensis	Stem bark	Ellagic acid, 4a 3-O-Metilellagic acid, 5a	Sgariglia et al., 2011
C. pulcherrima	Aerial parts	(3E)-3-(1,3-Benzodioxol-5-yl methylene)-2,3-dihydro-7-hydroxy -4H-1-benzopyran-4-one, 70d (3E)-3-(1,3-Benzodioxol-5-yl methylene)2,3-dihydro-7-methoxy-4H-1-benzopyran-4-one, 71d (3E)-2,3-Dihydro-3-[(3,4-dimetho xyphenyl)methylene]-7-methoxy-4H-1benzopyran-4-one, 77d (3E)-2,3-Dihydro-6,7dimethoxy-3[(3-hydroxy-4-methoxyphenyl) methylene]-4H1-benzopyran-4one, 78d (3E)2,3-Dihydro-7-hydroxy-3-[(3-hydroxy-4-methoxyphenyl) methylene]-4H-1-benzopyran-4one, 79d Bonducellin, 80d Sappanone A, 81d 7-O-Methyl bonducellin, 82d 2-Methoxybonducellin, 89d	Das et al., 2009

Table 2 (Continued)

Scientific name	Investigated part	Compound	Bibliography
C. pulcherrima	Stems	Neocaesalpin P, 48c Neocaesalpin Q, 49c Neocaesalpin R, 50c Pulcherrin A, 63c Pulcherrin B, 64c Isovouacapenol C, 65c 6β-Cinnamoyl-7 β-hydroxyvoua- capen- 5α-ol, 66c Pulcherrimin E, 67c Pulcherrimin C, 68c Pulcherrin C, 69c Bonducellin, 80d α-Cadinol, 106h 7-Hydroxycadalene, 107h Teucladiol, 108h	Pranithanchai et al., 2009
C. sappan	Heartwood	Protosappanin A, 92d Sappanchalcone, 86d Sappanone B, 98d 3'-Deoxy-4-O-methylepisappanol, 84d ($8 S, 8^{\prime} S$)-Bisdihydrosiringenin, 1a Brazilein, 74d 3-Deoxysappanchalcone, 9b (+)-Lyoniresinol, 7a 3-Deoxysappanone B, 83d Protosappanin B, 93d Isoprotosappanin B, 25c	Fu et al., 2008

Table 2 (Continued)

Scientific name	Investigated part	Compound	Bibliography
C. sappan	Heartwood	3'-O-Methylbrazilin, 73d Brazilin, 72d	Fu et al., 2008
		Caesappanin A, 2a Caesappanin B, 3a	$\begin{aligned} & \text { Shu et al., } \\ & 2011 \end{aligned}$
		7,3',4'-Trihydroxy-3-benzyl-2Hchromene, 100d 4-O-Methylsappanol, 91d	$\begin{aligned} & \text { Zhao et al., } \\ & 2008 \end{aligned}$
		Brazilin, 72d Sappanchalcone, 8b Protosappanin A, 92d Protosappanin B, 93d Protosappanin C, 94d Protosappanin D, 96d Protosappanin E, 97d	Washiyama et al., 2009
	Seeds	Phanginin A, 52c Phanginin B, 53c Phanginin C, 54c Phanginin D, 55c Phanginin E, 56c Phanginin F, 57c Phanginin G, 58c Phanginin H, 59c Phanginin I, 60c Phanginin J, 61c Phanginin K, 62c	Yodsaoue et al., 2008
	Part not specified	Sappanchalcone, 8b 3'-Deoxy-4-O-ethylepisappanol, 84d	Moon et al., 2010

a: Benzenoids

1a: (+)-($\left.8 S, 8^{\prime} S\right)$-Bisdihydrosiringenin

2a: Caesappanin A

4a: $\mathrm{R}=\mathrm{OH}$; Ellagic acid
5a: $\mathrm{R}=\mathrm{OMe} ; 3-O-$ Metilellagic acid

7a: (+)-Lyoniresinol

b: Chalcones

8b: $\mathrm{R}=\mathrm{OH}$; Sappanchalcone
9b: $\mathrm{R}=\mathrm{H} ; 3$-Deoxyappanchalcone
c: Diterpenes

11c: 2-Acetoxycaesaldekarin E

12c: $\mathrm{R}=\mathrm{OAc} ; 6 \beta$-Acetoxy-17-
methylvoucapane-8(14),9(11)-diene

13c: $\mathrm{R}=\mathrm{H} ;$ 17-Methylvouacapane-8(14),9(11)diene

14c: Benthaminin 1

15c: Benthaminin 2

16c: Bonducellpin B

17c: Bonducellpin C

18c: Bonducellpin E

19c: Bonducellpin F

20c: Bonducellpin G

21c: Caesaldekarin J

22c: Caesalmin B

23c: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Me}$; Caesaljapin
24c: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$; Caesaljapin B

26c: $\mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{OH}$; Caesalmin D
27c: $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{Me}$; Caesalmin E

25c: $\mathrm{R}_{1}=\mathrm{OAc}, \mathrm{R}_{2}=\mathrm{Me}$; Caesaljapin C

28c: α-Caesalpin

29c: ε-Caesalpin

30c: Caesalpinilinn

33c: Caesalpinin I

39c: $\mathrm{R}=\mathrm{OAc}$; Caesalpinolide A
40c: $\mathrm{R}=\mathrm{H}$; Caesalpinolide D

42c: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OH}$; Caesalpinolide C
43c: $\mathrm{R}_{1}=\mathrm{OAc}, \mathrm{R}_{2}=\mathrm{OH}$; Caesalpinolide E

41c: Caesalpinolide B

44c: Deoxycaesaldekarin C

45c: Magnicaesalpin

46c: Neocaesalpin L

47c: Neocaesalpin O

51c: Neocaesalpin W
48c: $\mathrm{R}_{1}=\mathrm{OCOCH}=\mathrm{CHPh}, \mathrm{R}_{2}=\mathrm{OH}$; Neocaesalpin P 49c: $\mathrm{R}_{1}=\mathrm{OCOPh}, \mathrm{R}_{2}=\mathrm{H}$; Neocaesalpin Q
50c: $\mathrm{R}_{1}=\mathrm{OCOPh}, \mathrm{R}_{2}=\mathrm{OH}$; Neocaesalpin R

52c: $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}$; Phanginin A
53c: $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}$; Phanginin B
54c: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{4}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{OMe}$; Phanginin C
55c: $\mathrm{R}_{1}=\mathrm{OMe}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}$; Phanginin D
56c: $\mathrm{R}_{1}=\mathrm{O}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}$; Phanginin E
57c: $R_{1}=R_{2}=H, R_{3}=R_{4}=O H$; Phanginin F

58c: $\mathrm{R}=\mathrm{OH}$; Phanginin G
59c: $R=H$; Phanginin H

60c: $\mathrm{R}=\mathrm{Me}$; Phanginin I
61c: $\mathrm{R}=\mathrm{CHO}$; Phanginin J
62c: $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$; Phanginin K

63c: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Me}, \mathrm{R}_{3}=\mathrm{OH}, \mathrm{R}_{4}=\mathrm{OCOCH}=\mathrm{CHPh}$; Pulcherrin A
64c: $\mathrm{R}_{1}=\mathrm{OCOPh}, \mathrm{R}_{2}=\mathrm{Me}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{4}=\mathrm{OH}$; Pulcherrin B
65c: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Me}, \mathrm{R}_{3}=\mathrm{OCOPh}, \mathrm{R}_{4}=\mathrm{OH}$; Isovouacapenol C
66c: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Me}, \mathrm{R}_{3}=\mathrm{OCOCH}=\mathrm{CHPh}, \mathrm{R}_{4}=\mathrm{OH} ; 6 \beta$-Cinnamoyl-7 β-hydroxy-vouacapen-5 α-ol

67c: $\mathrm{R}_{1}=\mathrm{OCOPh}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{H}, \mathrm{R}_{3}=\mathrm{OCOPh}, \mathrm{R}_{4}=\mathrm{OAc}$; Pulcherrimin E
68c: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{H}, \mathrm{R}_{3}=\mathrm{OCOPh}, \mathrm{R}_{4}=\mathrm{OCOPh} ;$ Pulcherrimin C

69c: Pulcherrin C
d : Flavonoids

70d: $\mathrm{R}=\mathrm{OH}$; (3E)-3-(1,3-Benzodioxol-5-ylmethylene)-
2,3-dihydro-7-hydroxy-4H-1-benzopyran-4-one
71d: $\mathrm{R}=\mathrm{OMe}$; (3E)-3-(1,3-Benzodioxol-5-ylmethylene)-
2,3-dihydro-7-methoxy-4H-1-benzopyran-4-one

72d: $\mathrm{R}=\mathrm{OH}$; Brazilin

74d: Brazilein

73d: $\mathrm{R}=\mathrm{OMe}$; 3'-O-Methylbrazilin

75d: $\mathrm{R}=\mathrm{H}$; Caesalpinianone
76d: $\mathrm{R}=\mathrm{CH}_{3} ; 6$ - O-Methylcaesalpinianone

77d: $\mathrm{R}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{OMe}, \mathrm{R}_{1}=\mathrm{H} ;(3 E)$-2,3-Dihydro-3-[(3,4-dimethoxyphenyl)methylene]-7-methoxy-4H-1benzopyran-4-one

78d: $\mathrm{R}=\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{OMe}, \mathrm{R}_{2}=\mathrm{OH}$; (3E)-2,3-Dihydro-6,7-dimethoxy-3[(3-hydroxy-4-methoxyphenyl)methylene]-4H1-benzopyran-4-one

79d: $\mathrm{R}=\mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{OMe}$; (3E)2,3-Dihydro-7-hydroxy-3-[(3-hydroxy-4-methoxyphenyl)methylene]-4H-1-benzopyran-4-one

80d: $\mathrm{R}=\mathrm{OH}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{OMe}$; Bonducellin

81d: $R=R_{2}=R_{3}=O H, R_{1}=H$; Sappanone A

82d: $\mathrm{R}=\mathrm{R}_{3}=\mathrm{OMe}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$; 7-O-Methylbonducellin

83d: 3-Deoxysappanone B

84d: 3'-Deoxy-4-O-methylepisappanol

85d: $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$; Eucomin
86d: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}$; Intricatinol
87d: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OMe}$; 8-Methoxybonducellin

88d: Hematoxylol

90d: 8-Methoxyisobonducellin

92d: Protosappanin A

89d: 2-Methoxybonducellin

91d: 4-O-Methylsappanol

93d: $\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}_{2}=\mathrm{OH}$; Protosappanin B
94d: $\mathrm{R}_{1}=\mathrm{CHO}, \mathrm{R}_{2}=\mathrm{OH}$; Protosappanin C
95d: $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{OH}$; Isoprotosappanin B

96d: Protosappanin D

98d: Sappanone B

99d: Tamarixetin 3-O-(6"-O-E-caffeoyl)- β-D-alactopyranoside

100d: 7, $3^{\prime}, 4^{\prime}$-Trihydroxy-3-benzyl- $2 H$-chromene

e: Iridoids

101e: $\mathrm{R}_{1}=\mathrm{OAc}, \mathrm{R}_{2}=\mathrm{OH} ; 4^{\prime}-O$-Acetylloganic acid
102e: $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{OAc}$; 6' $-O$-Acetylloganic acid

f: Quinones

103f: Stereochenol A

g: Phenylpropanoids

104g: 2-O- β-D-Glucosyloxy-4-methoxybenzenepropanoic acid

105g: Pipataline
h: Sesquiterpenes

106h: α-Cadinol

107h: 7-Hydroxycadalene

108h: Teucladiol
i: Steroids

109i: 17-Hydroxycampesta-4,6-dien-3-one

110i: 13,14-seco-Stigmasta-5,14-dien-3 α-ol

111i: 13,14-seco-Stigmasta-9(11),14-dien-3 α-ol
j: Triterpenes

112j: β-Amyrin

113j: Friedelin

114j: Lupeol

1.6 Objectives of this study

1. Isolation of chemical constituents from the roots of Caesalpinia mimosoides Lamk. and Caesalpinia pulcherrima Swartz.
2. Structures elucidation of pure compounds by spectroscopic techniques such as UV, IR, NMR, MS
3. Anti-inflammatory activity evaluation of the isolated pure compounds

CHAPTER 2

EXPERIMENTAL

2.1 Instruments and chemicals

Melting point was recorded in ${ }^{\circ} \mathrm{C}$ on a Fisher-Johns melting point apparatus. Infrared spectra were recorded using FTS FT-IR spectrophotometer and major bands (v) were recorded in wave number $\left(\mathrm{cm}^{-1}\right)$. Ultraviolet (UV) absorption spectra were recorded using a SPECORD S 100 (Analytikjena) and UV-160A spectrophotometer (SHIMADZU) and principle bands ($\lambda_{\max }$) were recorded as wavelengths (nm) and $\log \varepsilon$ in chloroform and methanol solution. Nuclear magnetic resonance spectra were recorded using 300 MHz Bruker FTNMR Ultra Shield ${ }^{\mathrm{TM}}$. Spectra were recorded in deuterochloroform, deuteroacetone, deuteromethanol and deuterodimethyl sulphoxide solution and were recorded as δ value in ppm downfield from TMS (internal standard $\delta 0.00$). The EI-MS was performed using a MAT 95 XL. Single-crystal X-ray diffraction measurements were collected using SMART 1-K CCD diffractometer with monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA$) using ω scan mode and SHELXTL for structure solution and refinement. Optical rotation was measured in chloroform and/or methanol solution with sodium D line (590 nm) on an AUTOPOL $^{\mathrm{R}}$ II automatic polarimeter. Solvent for extraction and chromatography were distilled at their boiling point ranges prior to use. Quick column chromatography was performed on silica gel $60 \mathrm{GF}_{254}$ (Merck). Column chromatography was performed on silica gel (Merck) type $100(0.063-0.200)$.

2.2 Plants material

2.2.1 The roots of C. mimosoides Lamk.

The roots of C. mimosoides Lamk. was collected from Khonkaen province, north-eastern part of Thailand in October 2006. Botanical identification was achieved through comparison with a voucher specimen number QBG33200 in the herbarium collection of Queen Sirikit Garden, Mae Rim District, Chiang Mai, Thailand.

2.2.2 The roots of C. pulcherrima Swartz.

The roots of C. pulcherrima (L.) Swartz. was collected from Songkhla province, Thailand in October 2005. Identification was made by Assoc. Prof. Dr. Kitichate Sridith, Department of Biology, Faculty of Science, Prince of Songkla University and a specimen (No. SC51) deposited at Prince of Songkla University Herbarium.

2.3 Plants extraction

2.3.1 The extraction of the roots of \boldsymbol{C}. mimosoides

The air-dried roots (1.7 Kg) of C. mimosoides were extracted with dichloromethane and acetone successively (each $2 \times 10 \mathrm{~L}$, for 5 days) at room temp. The crude extracts were evaporated under reduced pressure to afford brownish dichloromethane $(40.3 \mathrm{~g})$ and acetone extracts $(47.1 \mathrm{~g})$, respectively.

Scheme 1 Extraction of the roots of C. mimosoides

2.3.2 The extraction of the roots of C. pulcherrima

Air-dried roots (6.3 kg) of C. pulcherrima was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (each $2 \times 10 \mathrm{~L}$, for 5 days) at room temperature. The crude extract was evaporated under reduced pressure to afford brownish $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75.3 \mathrm{~g})$.

Scheme 2 Extraction of the roots of C. pulcherrima

2.4 Isolation and Chemical Investigation

2.4.1 Investigation of the crude methylene chloride extract from the roots of C. mimosoides

* Not further investigated

Scheme 3 Isolation of compounds CM1-CM9, CM11-CM13 and CM15 from the crude $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ of the roots of C. mimosoides

The crude $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was further purified by QCC using hexane as eluent and increasing polarity with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, acetone and MeOH successively to give ten fractions (C1-C10).

Fraction C3 (2.41 g) was subjected to QCC with EtOAc-hexane (1:19, v / v) to afford five subfractions (C3a-C3e). Subfraction C3b (851.6 mg) was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give CM6 (680.3 mg) and the mother liquor (160.5 mg) which was further subjected to CC with EtOAc-hexane (1:49, v/v) to give CM5 (40.6 mg) and CM8 (7.2 mg). Subfraction C3c (793.7 mg) was separated by CC eluting with EtOAc-hexane ($1: 19, \mathrm{v} / \mathrm{v}$) to give CM6 (15.6 mg) and CM8 (35.2 mg).

Fraction C5 (6.49 g) was subjected to QCC using hexane as eluent and increasing polarity with EtOAc to afford six subfractions (C5a-C5f). Subfraction C5c (793.7 mg) was separated by CC with acetone-hexane ($1: 49$, v/v) to give CM5 (460.4 mg), CM9 (10.2 mg) and CM1 (50.8 mg). Subfraction C5e (742.8 mg) was purified by CC with acetone-hexane ($1: 19, \mathrm{v} / \mathrm{v}$) to give CM7 (10.4 mg).

Fraction C7 (1.18 g) was subjected to CC with acetone-hexane (1:9, v / v) to afford six subfractions (C7a-C7f). Subfraction C7c (350.8 mg) was purified by CC with acetone-hexane ($3: 17, \mathrm{v} / \mathrm{v}$) to give CM3 (102.4 mg), CM2 (7.4 mg) and CM4 (7.0 mg). Subfraction C7e (110.0 mg) was separated by CC with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give CM11 (10.3 mg).

Fraction C9 (3.83 g) was subjected to QCC using hexane as eluent and increasing polarity with acetone to afford six subfractions (C9a-C9f). Subfraction C9b (384.7 mg) was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give CM15 (230.3 mg). Subfraction C9d (793.7 mg) was purified by CC with acetone- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 49, \mathrm{v} / \mathrm{v})$ to give CM12 $(13.3 \mathrm{mg})$. Subfraction C9e (220.5 mg) was separated by CC with acetone- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:19, v/v) to give CM13 (10.3 mg).
2.4.2 Investigation of the crude acetone extract from the roots of C. mimosoides

* Not further investigated

Scheme 4 Isolation of compounds CM10, CM13, CM14 and CM16-CM18 from the crude acetone of the roots of C. mimosoides

The crude acetone (47.1 g) extract was fractionated by QCC using hexane as eluent and increasing polarity with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, acetone and MeOH successively to give nine fractions (A1-A9, Scheme 4).

Fraction A3 $(1.05 \mathrm{~g})$ was subjected to QCC with acetone $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:49, v / v) to give CM14 (35.3 mg).

Fraction A5 (1.33 g) was separated by QCC with acetone- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($1: 49, \mathrm{v} / \mathrm{v}$) to afford seven subfractions (A5a-A5g). Subfraction A5c (88.1 mg) was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give CM13 (15.3 mg). Subfraction A5e (350.0 mg) was purified by CC with $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 24, \mathrm{v} / \mathrm{v})$ to afford $\mathbf{C M 1 8}$ (70.3 mg) and CM16 (51.3 mg). Subfraction A5f (80.0 mg) was separated by CC with $\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 9$, v / v) to give CM10 (10.3 mg).

Fraction A7 (235.2 mg) was recrystallized from MeOH to give CM17 (150.3 mg).

Compound CM1

White solid; mp 214-216 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{27}-41.4^{\circ}$ (c $\left.0.76, \mathrm{CHCl}_{3}\right)$; UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }}(\log \varepsilon) 210(4.95), 235(4.65) \mathrm{nm}$; IR (neat) $v_{\max } 3429(\mathrm{O}-\mathrm{H}), 2930(\mathrm{C}-$ H), 1718 (C=O) cm ${ }^{-1}$; HREIMS: $m / z 344.1997[M]^{+}$(calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4}, 344.1988$); ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75 \mathrm{MHz}$), see Table 3.

Compound CM2

White solid; mp 143-145 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{27}-40.6^{\circ}\left(c 0.30, \mathrm{CHCl}_{3}\right)$; UV $\left(\mathrm{CHCl}_{3}\right)$ $\lambda_{\max }(\log \varepsilon) 225$ (3.47) nm; IR (neat) $v_{\max } 3397(\mathrm{O}-\mathrm{H}), 2928(\mathrm{C}-\mathrm{H}) \mathrm{cm}^{-1}$; HREIMS: m / z $288.2460\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4}, 288.2453$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 4.

Compound CM3

White solid; $\mathrm{mp} 102-103{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{27}-37.1^{\circ}$ (c $\left.1.10, \mathrm{CH}_{3} \mathrm{OH}\right)$; UV $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}(\log \varepsilon) 223$ (3.45) nm; IR (neat) $v_{\max } 3364(\mathrm{O}-\mathrm{H}), 2930(\mathrm{C}-\mathrm{H}) \mathrm{cm}^{-1}$; HREIMS: $m / z 306.2545[\mathrm{M}]^{+}$(calcd for $\left.\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2}, 306.2559\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 5.

Compound CM4

Viscous oil; $[\alpha]_{\mathrm{D}}^{27}+24.16^{\circ}$ ($c 1.02, \mathrm{CHCl}_{3}$); IR (neat) $v_{\text {max }} 1735(\mathrm{C}=\mathrm{O}$), $1243 \mathrm{~cm}^{-1}$; HREIMS: $m / z 390.2780[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{4}, 390.2770$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 6.

Compound CM5

White solid; mp $155-156{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{27}+101.9^{\circ}$ (c 0.77 in CHCl_{3}); UV $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}(\log \varepsilon): 253$ (3.55), 281 (2.90), 292 (2.87) nm; IR (neat) $v_{\text {max }}: 2930(\mathrm{C}-$ $\mathrm{H}), 1720(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 7.

Compound CM6

White solid; $\mathrm{mp} 116-117{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{27}-41.1^{\circ}$ (c 0.02 in CHCl_{3}); UV $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max }(\log \varepsilon): 254$ (4.79), 281 (4.47), 290 (4.40) nm; IR (neat) $v_{\text {max }}: 2927$ (C$\mathrm{H}), 1735(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 9.

Compound CM7

Viscous oil; $[\alpha]_{\mathrm{D}}^{27}-3.90^{\circ}\left(c 0.58\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }}(\log \varepsilon)$: 253 (4.65) nm; IR (neat) $v_{\text {max }}: 2927(\mathrm{C}-\mathrm{H}), 1728(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz})$, and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 11.

Compound CM8

White solid; mp $124-126{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{]^{27}}+25.4^{\circ}$ (c 0.67 in CHCl_{3}); UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }}(\log \varepsilon): 243$ (3.22) nm; IR (neat) $v_{\text {max }}: 3359(\mathrm{O}-\mathrm{H}), 2935(\mathrm{C}-\mathrm{H}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 13.

Compound CM9

White solid; $\mathrm{mp} 141-142{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{27}+132.8^{\circ}$ (c $0.37, \mathrm{CHCl}_{3}$); UV $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}(\log \varepsilon) 258(5.28), 283(4.93), 293(4.89) \mathrm{nm}$; IR (neat) $v_{\text {max }} 2929(\mathrm{C}-\mathrm{H})$, $1720(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; HREIMS: $m / z 654.3948[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{42} \mathrm{H}_{54} \mathrm{O}_{6}, 654.3920$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Tables 15 and 16.

Compound CM10

White solid; mp 215-216 ${ }^{\circ} \mathrm{C}$; UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }(\log \varepsilon) 207$ (5.33), 222 (5.35), 250 (5.12), 309 (5.12), 318 (5.11) nm; IR (neat) $v_{\max } 3386$ (O-H), 2927 (C-H) cm^{-1}; HREIMS: $\mathrm{m} / \mathrm{z} 300.1011[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5}, 300.1007$); ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$), and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75 \mathrm{MHz}$), see Table 17.

Compound CM11

White solid; mp 152-153 ${ }^{\circ} \mathrm{C}$; UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }(\log \varepsilon) 209(5.28), 222$ (5.32), 250 (5.11), 258 (5.08), 308 (5.10), 315 (5.07) nm; IR (neat) $v_{\max } 3419(\mathrm{O}-\mathrm{H})$, 2927 (C-H) cm ${ }^{-1}$; HREIMS: $m / z 314.1118[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}, 314.1154$); ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$), and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75 \mathrm{MHz}$), see Table 18.

Compound CM12

Yellow solid; mp $178-180{ }^{\circ} \mathrm{C}$; UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }}(\log \varepsilon)$: 209 (5.43), 232 (5.24), 317 (5.23), 357 (5.29) nm; IR (neat) $v_{\text {max }}: 3367$ (O-H), 2927 (C-H), 1700 $(\mathrm{C}=\mathrm{O}), 1605(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$), and ${ }^{13} \mathrm{C}$ NMR (acetone- d_{6}, 75 MHz), see Table 19.

Compound CM13

Yellow solid; mp 191-192 ${ }^{\circ} \mathrm{C}$; UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }(\log \varepsilon)$: 211 (5.62), 350 (5.58) nm; IR (neat) $v_{\text {max }}: 3367(\mathrm{O}-\mathrm{H}), 2928(\mathrm{C}-\mathrm{H}), 1697(\mathrm{C}=\mathrm{O}), 1603(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$), and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75 \mathrm{MHz}$), see Table 21.

Compound CM14

Yellow solid; mp 103-105 ${ }^{\circ} \mathrm{C}$; UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }(\log \varepsilon)$: 210 (5.40), 327 (5.23), 350 (5.24) nm; IR (neat) $v_{\max }: 3376(\mathrm{O}-\mathrm{H}), 2928(\mathrm{C}-\mathrm{H}), 1699(\mathrm{C}=\mathrm{O})$, $1598(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$), and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75$ MHz), see Table 23.

Compound CM15

White solid; mp $85-86^{\circ} \mathrm{C}$; $\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }(\log \varepsilon): 205(5.28), 243$ (4.92), 298 (4.98), 330 (5.09) nm; IR (neat) $v_{\text {max }}: 3367$ (O-H), 2918 (C-H), 1700 $(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$), and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75 \mathrm{MHz}$), see Table 25.

Compound CM16

White solid; mp $250-251^{\circ} \mathrm{C} ; \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }(\log \varepsilon): 216(6.17), 305$ (6.23), 318 (6.21) nm; IR (neat) $v_{\text {max }}: 3360(\mathrm{O}-\mathrm{H}), 2925(\mathrm{C}-\mathrm{H}), 1607(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$), and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75 \mathrm{MHz}$), see Table 27.

Compound CM17

White solid; mp $154-156{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{27}-53.1^{\circ}$ (c 1.71 in $\mathrm{CH}_{3} \mathrm{OH}$); UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }}(\log \varepsilon): 219$ (4.48), 275 (5.02), 311 (4.90) nm; IR (neat) $v_{\text {max }}: 3381$ (OH), $2925(\mathrm{C}-\mathrm{H}), 1699(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300 \mathrm{MHz}$), and ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 75 \mathrm{MHz}$), see Table 29.

Compound CM18

White solid; mp 99-100 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{27}+45.6^{\circ}$ (c 0.24 in $\mathrm{CH}_{3} \mathrm{OH}$); IR (neat) $v_{\text {max }}: 3365(\mathrm{O}-\mathrm{H}), 2934(\mathrm{C}-\mathrm{H}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$), and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75 \mathrm{MHz}$), see Table 31.
2.4.3 Investigation of the crude methylene chloride extract from the roots of C. pulcherrima

* No further investigated

Scheme 5. Isolation of compounds CP1-CP26 from C. pulcherrima

The crude $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was further purified by VLC using hexane as eluent and increasing polarity with EtOAc and MeOH to give sixteen fractions (P1P16).

Fraction P2 (5.9 g) was further purified by VLC with hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:4, v/v) to give CP26 (90.5 mg), CP16 (50.2 mg), CP6 (275.2 mg), CP7 (90.0 mg) and CP5 (28.1 mg) and a mixture of two compounds (158.0 mg) which was further separated by CC with acetone-hexane (1:9, v/v) to give CP4 (15.0 mg) and CP1 (10.3 mg).

Fraction P4 (10.0 g) was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give CP17 $(2.54 \mathrm{~g})$, and the mother liquor (7.5 g) was further subjected to VLC with hexane as eluent and increasing polarity with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and EtOAc to afford six subfractions ($\mathrm{P} 4 \mathrm{a}-$ P4f). Subfraction P4c (183.4 mg) was purified by CC with acetone-hexane ($1: 9, \mathrm{v} / \mathrm{v}$) to give CP2 (5.8 mg). Subfraction P4d (584.9 mg) was separated by CC with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane (7:3, v/v) to yield CP14 (5.2 mg) and CP9 (10.0 mg).

Repeated recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ of fraction $\mathrm{P} 6(624.2 \mathrm{mg})$ yielded CP18 (138.0 mg).

Fraction P7 (2.9 g) was separated by VLC with hexane as eluent and increasing polarity with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and EtOAc to give nine subfractions ($\mathrm{P} 7 \mathrm{a}-\mathrm{P} 7 \mathrm{i}$) and CP21 (355.0 mg). Each subfraction was further separated by CC with acetone-hexane (1:4, v/v) to afford CP19 (50.0 mg) from subfraction P7b (80.0 mg), CP8 (18.2 mg) and CP11 (25.0 mg) from subfraction P7e (401.4 mg), CP3 (3.0 mg) from subfraction P7f (273.5 mg) and finally CP10 (25.0 mg) from subfraction P7g (117.0 mg).

Fraction P9 (5.0 g) was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\mathbf{C P 2 3}$ (1.24 g), with the mother liquor (3.8 g) further subjected to VLC with $\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3:7, v / v) to afford five subfractions (P9a-P9e). Subfraction P9c (256.4 mg) was purified by CC with acetone- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3: 7, \mathrm{v} / \mathrm{v})$ to yield $\mathbf{C P 2 0}(70.0 \mathrm{mg})$.

Fraction P10 (2.9 g) was further purified by VLC and eluted with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}(1: 4$ to $1: 1, \mathrm{v} / \mathrm{v}$) to give seven subfractions ($\mathrm{P} 10 \mathrm{a}-\mathrm{P} 10 \mathrm{~g}$). Purification of subfraction P10c (283.2 mg) by CC with acetone- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 3, \mathrm{v} / \mathrm{v})$ afforded CP15 (7.0 mg) while CP25 (13.0 mg) was purified from subfraction P10f $(124.7 \mathrm{mg})$ by CC with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ acetone ($1: 9, \mathrm{v} / \mathrm{v}$).

Fraction P13 (2.7 g) was further purified by VLC with acetone- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:4, v/v) to give six subfractions (P13a-P13f). Subfraction P13c (151.7 mg) was separated by CC with EtOAc-hexane (2:3, v/v) to yield CP13 (10.0 mg) and CP24 $(90.0 \mathrm{mg})$. Subfraction P13e (197.8 mg) was isolated by CC with $\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 9$, v / v) to give CP12 (10.0 mg).

Finally, CP22 (12.5 mg) was isolated from fraction P15 (941.4 mg) by VLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3: 7$, v/v $)$ and followed by CC with $\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:19, v/v).

Compound CP1

Viscous oil; $[\alpha]_{\mathrm{D}}{ }^{25}+23.7\left(c 0.27, \mathrm{CHCl}_{3}\right)$; UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 216$ (3.88) nm; IR (neat) $v_{\text {max }} 3453(\mathrm{O}-\mathrm{H}), 2931(\mathrm{C}-\mathrm{H}), 1723(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; HREIMS: m / z $360.2301[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{4}, 360.2301$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$), see Table 35.

Compound CP2

Viscous oil; $[\alpha]_{\mathrm{D}}{ }^{25}+36.1\left(c 0.20, \mathrm{CHCl}_{3}\right)$; UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 214$ (3.84) nm; IR (neat) $v_{\max } 3455(\mathrm{O}-\mathrm{H}), 2920(\mathrm{C}-\mathrm{H}), 1723(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; HREIMS: m / z $376.2250[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5}, 376.2250$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$), and ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 36.

Compound CP3

Viscous oil; $[\alpha]_{\mathrm{D}}{ }^{25}+67.4\left(c 0.08, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 215$ (3.78) nm; IR (neat) $v_{\max } 3425(\mathrm{O}-\mathrm{H}), 2929(\mathrm{C}-\mathrm{H}), 1734(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; HREIMS: m / z $376.2252[\mathrm{M}]^{+}$(calcd for $\left.\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5}, 376.2250\right)$) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$), and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 37.

Compound CP4

White solid; mp $126-128{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}+57.1$ (c $0.18, \mathrm{CHCl}_{3}$); UV $(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 225(3.26) \mathrm{nm}$; IR (neat) $v_{\text {max }} 3494(\mathrm{O}-\mathrm{H}), 2932(\mathrm{C}-\mathrm{H}), 1710$ ($\mathrm{C}=\mathrm{O}$) cm^{-1}; HREIMS: $m / z 438.2410[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{5}, 438.2406$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 38. The physical and spectral data of CP4 from the synthesis (Roach et al., 2003): white solid; mp 125-127 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}+23.7\left(\mathrm{c} 0.27, \mathrm{CHCl}_{3}\right)$.

Compound CP5

White solid; $\mathrm{mp} 195-196{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{25}+106.5\left(c \quad 0.25, \mathrm{CHCl}_{3}\right)$; UV $(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 228(3.96) \mathrm{nm}$; IR (neat) $v_{\max } 3525(\mathrm{O}-\mathrm{H}), 2929(\mathrm{C}-\mathrm{H}), 1700$ (C=O) cm ${ }^{-1}$; HREIMS: m/z $422.2454[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{4}, 422.2457$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$), see Table 39.

Compound CP6

White solid; mp 131-133 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}+28.8$ (c $0.18, \mathrm{CHCl}_{3}$); UV $(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 226(3.87) \mathrm{nm}$; IR (neat) $v_{\max } 3549(\mathrm{O}-\mathrm{H}), 2934(\mathrm{C}-\mathrm{H}), 1708$ $(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; HREIMS: $m / z 422.2459[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{4}, 422.2457$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$), see Table 40.

Compound CP7

White solid; mp $135-136{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}+52.8$ (c $0.17, \mathrm{CHCl}_{3}$); UV $(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 216(3.65), 275(3.67) \mathrm{nm}$; IR (neat) $v_{\max } 3516(\mathrm{O}-\mathrm{H}), 2933(\mathrm{C}-$ H), 1709 (C=O) cm ${ }^{-1}$; HREIMS: $m / z 448.2617[M]^{+}$(calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{4}, 448.2614$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 41.

Compound CP8

Viscous oil; $[\alpha]_{\mathrm{D}}{ }^{25}+20.3\left(c 0.21, \mathrm{CHCl}_{3}\right)$; UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 225$ (3.94) nm; IR (neat) $v_{\max } 3471(\mathrm{O}-\mathrm{H}), 2935(\mathrm{C}-\mathrm{H}), 1710(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; HREIMS: m / z $452.2198[\mathrm{M}]^{+}$(calcd for $\left.\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{6}, 452.2199\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 42.

Compound CP9

Viscous oil; $[\alpha]_{\mathrm{D}}{ }^{25}+64.1\left(c 0.07, \mathrm{CHCl}_{3}\right)$; UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 227$ (3.82) nm; IR (neat) $v_{\max } 3471(\mathrm{O}-\mathrm{H}), 2927(\mathrm{C}-\mathrm{H}), 1720(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; HREIMS: m / z $438.2405[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{5}, 438.2406$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$), and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$), see Table 43.

Compound CP10

Viscous oil; $[\alpha]_{\mathrm{D}}{ }^{25}+19.7\left(c 0.20, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 225$ (3.90) nm; IR (neat) $v_{\max } 3508(\mathrm{O}-\mathrm{H}), 2931(\mathrm{C}-\mathrm{H}), 1707(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; HREIMS: m / z $452.2196[\mathrm{M}]^{+}$(calcd for $\left.\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{6}, 452.2199\right)$) ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$), and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$), see Table 44.

Compound CP11

Viscous oil; $[\alpha]_{\mathrm{D}}{ }^{25}+23.6\left(c 0.14, \mathrm{CHCl}_{3}\right)$; UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 226$ (3.96) nm; IR (neat) $v_{\max } 3508(\mathrm{O}-\mathrm{H}), 2934(\mathrm{C}-\mathrm{H}), 1704(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; HREIMS: m / z $572.2411[\mathrm{M}]^{+}$(calcd for $\left.\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{8}, 572.2410\right)$) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 45.

Compound CP12

Viscous oil; $[\alpha]_{\mathrm{D}}{ }^{25}+26.7\left(c 0.30, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 228$ (3.98) nm; IR (neat) $v_{\max } 3470(\mathrm{O}-\mathrm{H}), 2930(\mathrm{C}-\mathrm{H}), 1720(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; HREIMS: m / z $540.2361[\mathrm{M}]^{+}$(calcd for $\left.\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{9}, 540.2359\right)$) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$), and ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 46.

Compound CP13

Viscous oil; $[\alpha]_{\mathrm{D}}{ }^{25}+54.7\left(c 0.18, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 227$ (3.89) nm; IR (neat) $v_{\max } 3468(\mathrm{O}-\mathrm{H}), 2927(\mathrm{C}-\mathrm{H}), 1716(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; HREIMS: m / z $598.2423[\mathrm{M}]^{+}$(calcd for $\left.\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{11}, 598.2414\right)$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$), and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 47.

Compound CP14

Viscous oil; $[\alpha]_{\mathrm{D}}{ }^{25}+48.8\left(c 0.17, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 226$ (3.92) nm; IR (neat) $v_{\max } 3436(\mathrm{O}-\mathrm{H}), 2930(\mathrm{C}-\mathrm{H}), 1713(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; HREIMS: m / z $436.2250[\mathrm{M}]^{+}$(calcd for $\left.\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{5}, 436.2250\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$), see Table 48.

Compound CP15

Viscous oil; $[\alpha]_{\mathrm{D}}{ }^{25}+83.8\left(c 0.20, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\text {max }} 3372(\mathrm{O}-\mathrm{H})$, $2926(\mathrm{C}-\mathrm{H}), 1688(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; HREIMS: $\mathrm{m} / \mathrm{z} 304.2405[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}$, 304.2402); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 49.

Compound CP16

White solid; mp 98-100 ${ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{25}+80.9^{\circ}\left(c 0.26, \mathrm{CHCl}_{3}\right) ;\left(\mathrm{CHCl}_{3}\right) \lambda_{\max }$ $(\log \varepsilon) 225(3.47) \mathrm{nm}$; IR (neat) $v_{\max } 3574(\mathrm{O}-\mathrm{H}), 2931(\mathrm{C}-\mathrm{H}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 300 MHz), and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$), see Table 50.

Compound CP17

White solid; mp 116-118 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+60.0^{\circ}\left(c 0.28, \mathrm{CHCl}_{3}\right)$; $\mathrm{UV}(\mathrm{MeOH})$ $\lambda_{\max }(\log \varepsilon) 227$ (3.37) nm; IR (neat) $v_{\text {max }} 3515(\mathrm{O}-\mathrm{H}), 2936(\mathrm{C}-\mathrm{H}), 1708(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 52.

Compound CP18

White solid; mp 220-222 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+59.9^{\circ}\left(c 0.13, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH})$ $\lambda_{\max }(\log \varepsilon) 217$ (3.63), 273 (3.45) nm; IR (neat) $v_{\text {max }} 3458$ (O-H), $2932(\mathrm{C}-\mathrm{H}), 1704$ $(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 54.

Compound CP19

Viscous oil; $[\alpha]_{\mathrm{D}}^{25}+41.5^{\circ}\left(c 0.08, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 216$ (3.66), 276 (3.53) nm; IR (neat) $v_{\max } 3493(\mathrm{O}-\mathrm{H}), 2931(\mathrm{C}-\mathrm{H}), 1712(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 56.

Compound CP20

White solid; mp $161-163{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+71.5^{\circ}\left(c 0.21, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH})$ $\lambda_{\text {max }}(\log \varepsilon) 225(3.52) \mathrm{nm}$; IR (neat) $v_{\max } 3470(\mathrm{O}-\mathrm{H}), 2936(\mathrm{C}-\mathrm{H}), 1713(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$), and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75 \mathrm{MHz}$), see Table 58.

Compound CP21

White solid; mp 140-142 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+72.2^{\circ}\left(c 1.84, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH})$ $\lambda_{\max }(\log \varepsilon) 227$ (3.45) nm; IR (neat) $v_{\text {max }} 3486(\mathrm{O}-\mathrm{H}), 2935(\mathrm{C}-\mathrm{H}), 1714(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 60.

Compound CP22

White solid; mp 193-195 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+78.1^{\circ}\left(c 0.03, \mathrm{CHCl}_{3}\right)$; $\mathrm{UV}(\mathrm{MeOH})$ $\lambda_{\text {max }}(\log \varepsilon) 228(3.44) \mathrm{nm}$; IR (neat) $v_{\text {max }} 3483(\mathrm{O}-\mathrm{H}), 2932(\mathrm{C}-\mathrm{H}), 1711(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 62.

Compound CP23

White solid; mp 220-221 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+58.5^{\circ}\left(c 0.11, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH})$ $\lambda_{\text {max }}(\log \varepsilon) 224$ (3.43) nm; IR (neat) $v_{\text {max }} 3454(\mathrm{O}-\mathrm{H}), 2957(\mathrm{C}-\mathrm{H}), 1725(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$), and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75 \mathrm{MHz}$), see Table 64.

Compound CP24

Viscous oil; $[\alpha]_{\mathrm{D}}^{25}+73.9^{\circ}\left(c 0.07, \mathrm{CHCl}_{3}\right)$; UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon) 228$ (3.49) nm; IR (neat) $v_{\max } 3534(\mathrm{O}-\mathrm{H}), 2932(\mathrm{C}-\mathrm{H}), 1721(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$), see Table 66.

Compound CP25

Viscous oil; $[\alpha]_{\mathrm{D}}^{25}+177.1^{\circ}\left(c 0.11, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon)$ 229 (3.57) nm; IR (neat) $v_{\max } 3456(\mathrm{O}-\mathrm{H}), 2931(\mathrm{C}-\mathrm{H}), 1728(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 68.

Compound CP26

Viscous oil; $[\alpha]_{\mathrm{D}}^{25}+60.5^{\circ}\left(c 0.18, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 218$ (3.46), 283 (3.37), 289 (3.30) nm; IR (neat) $v_{\max } 3402(\mathrm{O}-\mathrm{H}), 2918(\mathrm{C}-\mathrm{H}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 70 .

2.5 Bioassay

2.5.1 Anti-inflammatory activity assay

2.5.1.1 Inhibitory effects of compounds on LPS-induced NO

 production from RAW264.7 cellsInhibitory effects on NO production by murine macrophage-like RAW264.7 cells were evaluated using a modified method from that previously reported (Banskota et al., 2003). Briefly, the RAW264.7 cell line [purchased from Cell Lines Service (CLS)] was cultured in Rosewell Park Memorial Institute (RPMI) medium supplemented with 0.1% sodium bicarbonate and 2 mM glutamine, penicillin G (100 units/ml), streptomycin ($100 \mu \mathrm{~g} / \mathrm{ml}$) and 10% fetal calf serum (FCS). The cells were harvested with trypsin-ethylenediaminetetraacetic acid (EDTA) and diluted to a suspension in a fresh medium. The cells were seeded in 96 -well plates with 1 x 10^{5} cells/well and allowed to adhere for 1 h at $37^{\circ} \mathrm{C}$ in a humidified atmosphere containing $5 \% \mathrm{CO}_{2}$. After that the medium was replaced with a fresh medium containing $200 \mu \mathrm{~g} / \mathrm{ml}$ of LPS together with the test samples at various concentrations and was then incubated for 48 h . NO production was determined by measuring the accumulation of nitrite in the culture supernatant using the Griess reagent. Cytotoxicity was determined using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2Htetrazolium bromide (MTT) colorimetric method. Briefly, after 48 h incubation with the test samples, MTT solution ($10 \mu \mathrm{l}, 5 \mathrm{mg} / \mathrm{ml}$ in phosphate buffer saline (PBS)) was added to the wells. After 4 h incubation, the medium was removed, and isopropanol containing 0.04 M HCl was then added to dissolve the formazan production in the cells. The optical density of the formazan solution was measured with a microplate reader at 570 nm . The test compounds were considered to be cytotoxic when the optical density of the sample-treated group was less than 80% of that in the control (vehicle-treated) group. L-NA and caffeic acid phenethylester (CAPE) were used as positive controls. The stock solution of each test sample was dissolved in DMSO, and the solution was added to the medium RPMI (final DMSO is 1%). Inhibition (\%) was calculated using the following equation and IC_{50} values were determined graphically ($\mathrm{n}=4$):

$$
\text { Inhibition }(\%)=\frac{A-B}{A-C} \times 100
$$

$A-C: \mathrm{NO}_{2}{ }^{-}$concentration $(\mu \mathrm{M})[A: \operatorname{LPS}(+)$, sample $(-) ; B: \operatorname{LPS}(+)$, sample(+); $C: \operatorname{LPS}(-)$, sample (-)].

2.5.1.2 Inhibitory effects of compounds on LPS-induced TNF- α

 release from RAW264.7 cellsBriefly, the RAW264.7 cell line was cultured in RPMI medium supplemented with 0.1% sodium bicarbonate and 2 mM glutamine, penicillin $\mathrm{G}(100$ units $/ \mathrm{ml}$), streptomycin ($100 \mu \mathrm{~g} / \mathrm{ml}$) and 10% FCS. The cells were harvested with trypsin-EDTA and diluted to a suspension in a fresh medium. The cells were seeded in 96-well plates with 1.0×10^{5} cells/well and allowed to adhere for 1 h at $37^{\circ} \mathrm{C}$ in a humidified atmosphere containing $5 \% \mathrm{CO}_{2}$. After that the medium was replaced with a fresh medium containing $200 \mu \mathrm{~g} / \mathrm{ml}$ of LPS together with the test samples at various concentrations and was then incubated for 48 h . The supernatant was transferred into 96 well ELISA plate and then TNF- α concentrations were determined using commercial ELISA kit. The test samples were dissolved in DMSO, and the solution was added to RPMI. The inhibition on TNF- α production was calculated and IC_{50} values were determined graphically.

2.5.1.3 Statistical analysis

The results were expressed as mean \pm standard error means (S.E.M) of four determinations at each concentration for each sample. The IC_{50} values were calculated using the Microsoft Excel program. Statistical significance was calculated by one-way analysis of variance (ANOVA), followed by Dunnett's test.

CHAPTER 3

RESULTS AND DISCUSSION

3.1 Structural elucidation of compounds from the roots of C. mimosoides

The air-dried roots of C. mimosoides were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and acetone successively. The crude $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and acetone extracts showed potent NO inhibitory activity with IC_{50} values of 11.0 and $21.6 \mu \mathrm{~g} / \mathrm{ml}$, respectively. Further separation and purification led to the isolation of seven new compounds of four new diterpenes, named mimosol A-D (CM1-CM4), a dimer, named mimosol E (CM9) and two dibenzo[b,d]furans, named mimosol F, G (CM10, CM11). The known compounds were identified by analysis of their spectroscopic data and comparison with literature data to be taepeenin A (CM5), taepeenin D (CM6), nortaepeenin A (CM7) (Cheenpracha et al., 2005), taepeenin L (CM8) (Cheenpracha et al., 2006), (E)-7-hydroxy-3-(4-methoxybenzyl)chroman-4-one (CM12), (E)-7,8-dihydroxy-3-(4-methoxybenzyl)chroman-4-one (CM13), (E)-7-hydroxy-8-methoxy-3-(4-methoxyben zyl)chroman-4-one (CM14) (Chen and Yang, 2007), tetracosyl caffeate (CM15) (Tanaka et al., 1998), resveratorol (CM16) (Miyaichi et al., 2006), bergenin (CM17) (Wang et al., 2005) and (+)-pterocarpol (CM18) (Nasini and Piozzi, 1981). Their structures were determined using 1D and 2D NMR spectroscopic data. All carbons were assigned by ${ }^{13} \mathrm{C}$ NMR, HMQC and HMBC data.

3.1.1 Compound CM1

Compound CM1 was obtained as a white solid and had the molecular formula $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4}$ as determined by HREIMS. The IR spectrum exhibited absorptions for hydroxyl ($3429 \mathrm{~cm}^{-1}$) and carbonyl ester ($1718 \mathrm{~cm}^{-1}$) functional groups. The UV spectrum had absorption bands at $\lambda_{\max } 210$ and 235 nm . In addition, compound CM1 gave a red-pink colour on Ehrlich test indicating a furan chromophore (Kuroda et al., 2004). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Table 3, Figures 5 and 6) spectroscopic data of CM1 showed characteristic of a 2,3-furanocassane framework (Cheenpracha et al., 2005, 2006; McPherson et al., 1986; Patil et al., 1997; Pranithanchai et al., 2009; Ragasa et al., 2002; Roach et al., 2003; Yodsaoue et al., 2008). The presence of a 2,3disubstituted furan ring was deduced from the resonances at $\delta_{\mathrm{H}} 6.53$ and 7.35 (each d, $J=2.1 \mathrm{~Hz})$ and $\delta_{\mathrm{C}} 106.9(\mathrm{C}-15), 118.8(\mathrm{C}-13), 141.3(\mathrm{C}-16)$ and $151.7(\mathrm{C}-12)$. The ${ }^{13} \mathrm{C}$ NMR spectroscopic data displayed 21 carbons including those of an oxyquaternary carbon at $\delta 70.9$ (C-8), an exocyclic double bond at $\delta 103.0$ (C-17) and 142.5 (C-14), and an ester carbonyl carbon at $\delta 178.3$ (C-18). The ${ }^{1} \mathrm{H}$ NMR spectroscopic data displayed peaks for two tertiary methyl groups at $\delta 0.62$ (Me-20) and 1.10 (Me-19), and a OMe at $\delta 3.65$ (OMe-18). The signals of terminal olefinic methylene protons at $\delta 5.11$ and 5.14 (each s, $2 \mathrm{H}-17$) whose HMBC correlations with the carbons at $\delta 70.9$ (C-8), 118.8 (C-13), 142.5 (C-14) and 151.7 (C-12) together with that of the methine proton at $\delta 1.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}, \mathrm{H}-9)$ with the carbons at $\delta 13.8(\mathrm{C}-$ 20), 19.1 (C-11), 37.5 (C-7), 38.0 (C-10), 70.9 (C-8), 142.5 (C-14) and 151.7 (C-12), suggested the location of the exocyclic double bond at $\mathrm{C}-14$ and OH at $\mathrm{C}-8$, respectively. In addition, the methyl protons at $\delta 0.62$ (Me-20) showed NOESY crosspeaks with the methyl protons at $\delta 1.10(\mathrm{Me}-19)$ and $2.96\left(\mathrm{H}_{\mathrm{ax}}-11\right)$ which was in
agreement with the trans/anti/trans ring junction ($\mathrm{A} / \mathrm{B} / \mathrm{C}$) of a cassane framework, suggesting a β-orientation of $\mathrm{OH}-8$. Therefore, CM1 was determined to be 8β -hydroxy-14(17)-ene-18 α-methoxycarbonyl-18-norvouacapene, a new compound (Yodsaoue et al., 2010) and was named as mimosol A.

Selective HMBC correlations of CM1

Table $3{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM1

Position	$\delta_{\mathbf{H}}(\mathbf{m u l t} ., \boldsymbol{J}, \mathbf{H z})$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
1	$1.05(\mathrm{~m})$	39.0	CH_{2}	20
2	$1.82(\mathrm{~m})$			
	$1.14(\mathrm{~m})$	17.6	CH_{2}	3,4
3	$1.48(\mathrm{~m})$			
	$1.50(\mathrm{~m})$	36.5	CH_{2}	5,19
4	$1.75(\mathrm{~m})$			
5	-	47.3	C	-
6	$1.93(\mathrm{dd}, J=12.3,2.7)$	51.2	CH	$4,10,19,20$
7	$1.55(\mathrm{~m})$	22.8	CH_{2}	8
	$1.60(\mathrm{~m})$			
8	$1.62(\mathrm{dt}, J=12.9,3.6)$	37.5	CH_{2}	8,14
	$2.57(\mathrm{td}, J=12.9,3.0)$			

Table 3 (continued)

Position	$\delta_{\mathbf{H}}($ mult., $J, \mathrm{~Hz})$	$\delta_{\text {C }}$	DEPT	HMBC
9	1.90 (br d, $J=7.5$)	56.4	CH	7, 8, 10, 11, 12, 14, 20
10	-	38.0	C	-
11	2.69 (br d, $J=17.7)$	19.1	CH_{2}	8, 9, 10, 12, 13
	2.96 (dd, $J=17.7,7.5$)			
12	-	151.7	C	-
13	-	118.8	C	-
14	-	142.5	C	-
15	$6.53(\mathrm{~d}, ~ J=2.1)$	106.9	CH	12, 13
16	$7.35(\mathrm{~d}, ~ J=2.1)$	141.3	CH	12, 13, 15
17	5.11 (br s)	103.0	CH_{2}	8, 12, 13, 14
	5.14 (br s)			
18	-	178.3	C	-
19	1.10 (s)	16.2	CH_{3}	3, 4, 5, 18
20	0.62 (s)	13.8	CH_{3}	1, 5, 9, 10
18-OMe	3.65 (s)	51.2	CH_{3}	18

3.1.2 Compound CM2

Compound CM2 was assigned a molecular formula $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$ on the basis of a molecular ion at $m / z 288.2460$ by HREIMS. Its IR spectrum displayed a hydroxyl stretching at $3397 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectral data (Table 4, Figure 14) showed the signals of three tertiary methyl groups at $\delta_{\mathrm{H}} 0.83$ (Me-19), 0.83 (Me-20) and 0.86 (Me-18), and a Me doublet at $\delta_{\mathrm{H}} 0.95$ (d, $J=7.2 \mathrm{~Hz}, \mathrm{Me}-17$). An olefinic proton at $\delta 5.54(\mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{H}-15)$ and oxymethylene protons at $\delta 4.21(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 2 \mathrm{H}-16$) connecting to a carbon at $\delta_{\mathrm{C}} 58.5$ were displayed. An oxymethine proton at $\delta_{\mathrm{H}} 4.43\left(\mathrm{dd}, J=10.2,4.8 \mathrm{~Hz}, \mathrm{H}-12: \delta_{\mathrm{C}} 70.7\right)$ displayed J values consistent with axial orientation. The ${ }^{13} \mathrm{C}$ NMR spectrum (Table 4, Figure 15) and DEPT experiments displayed 20 carbons, two of these were sp^{2} carbons at $\delta 118.8$ and 152.0. From the HMBC experiments, the $\mathrm{Me}-17$ at $\delta 0.95$ showed long-range correlations to the carbons at $\delta 40.4(\mathrm{C}-8), 45.8(\mathrm{C}-14)$ and $152.0(\mathrm{C}-13)$. An olefinic proton at $\delta 5.54$ (H-15) also showed long-range correlations to the carbons at $\delta 45.8$ (C-14), 70.7 (C12) and 152.0 (C-13). An oxymethine proton at $\delta 4.43$ (H-12) gave cross-peaks with the carbons at $\delta 37.2$ (C-11), $58.5(\mathrm{C}-16), 118.8(\mathrm{C}-15)$ and $152.0(\mathrm{C}-13)$ and oxymethylene protons at $\delta 4.21(2 \mathrm{H}-16)$ with the carbons at $\delta 118.8(\mathrm{C}-15)$ and 152.0 (C-13). These results suggested that a hydroxyl group was located at $\mathrm{C}-12$ and the $=\mathrm{CHCH}_{2} \mathrm{OH}$ substitutent was at $\mathrm{C}-13$. From the NOESY cross-peaks, the oxymethine proton at $\delta 4.43$ (H-12) showed a cross-peak with the methyl protons at $\delta 0.95$ (Me17) confirming of their axial orientations. An olefinic proton at $\delta 5.54(\mathrm{H}-15)$ displayed a cross-peak with a methine proton at $\delta 2.27(\mathrm{H}-14)$, thus indicating Z configuration of the double bond. Therefore, CM2 was elucidated as $12 \beta, 16-$
dihydroxycass-13(15)(Z)-ene, a new compound (Yodsaoue et al., 2010) and was named as mimosol B.

Selective HMBC correlations of CM2

Table $4{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM2

Position	δ_{H} (mult., J, Hz)	$\delta_{\text {C }}$	DEPT	HMBC
1	0.93 (m)	39.6	CH_{2}	2, 3, 20
	1.70 (br d, $J=12.6)$			
2	1.38 (m)	18.9	CH_{2}	3, 4, 10
	1.56 (m)			
3	1.14 (dt, $J=12.9,3.9)$	42.1	CH_{2}	2, 5, 19
	1.43 (m)			
4	-	33.2	C	-
5	0.80 (m)	55.1	CH	1, 3, 9, 10, 18, 19, 20
6	1.27 (m)	21.6	CH_{2}	7
	1.58 (m)			
7	1.20 (m)	31.0	CH_{2}	6,7
	1.54 (m)			
8	1.53 (m)	40.4	CH	6
9	1.20 (m)	47.5	CH	6, 10, 11, 12
10	-	36.8	C	-

Table 4 (continued)

Position	$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{m u l t}, \boldsymbol{J}, \mathbf{H z})$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
11	$1.23(\mathrm{~m})$	37.2	CH_{2}	$8,9,10,12,13$
	$1.97(\mathrm{ddd}, J=15.6,8.1,4.8)$			
12	$4.43(\mathrm{dd}, J=10.2,4.8)$	70.7	CH	$11,13,15,16$
13	-	152.0	C	-
14	$2.27(\mathrm{dq}, J=7.2,4.5)$	45.8	CH	$8,9,12,13,15,17$
15	$5.54(\mathrm{t}, J=6.6)$	118.8	CH	$12,13,14$
16	$4.21(\mathrm{~d}, J=6.6)$	58.5	CH_{2}	13,15
17	$0.95(\mathrm{~d}, J=7.2)$	14.9	CH_{3}	$8,13,14$
18	$0.86(\mathrm{~s})$	33.6	CH_{3}	$3,4,5,19$
19	$0.83(\mathrm{~s})$	22.0	CH_{3}	$3,4,5,18$
20	$0.83(\mathrm{~s})$	14.2	CH_{3}	$1,5,9,10$

3.1.3 Compound CM3

The molecular formula of compound CM3 was found to be $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2}$ ($[\mathrm{M}]^{+}, m / z$ 306.2545), by HREIMS. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ (Table 5, Figures 20 and 21) NMR spectroscopic data of CM3 were comparable with those of CM2, except that a methyl singlet at $\delta_{\mathrm{H}} 0.86: \delta_{\mathrm{C}} 33.6(\mathrm{Me}-18)$ and an oxymethine proton at $\delta_{\mathrm{H}} 4.43(\mathrm{H}-12)$ in CM2 were replaced by oxymethylene protons $2 \mathrm{H}-18$ at $\delta_{\mathrm{H}} 3.02$ and 3.33 (each d, $J=$ $10.8 \mathrm{~Hz}: \delta_{\mathrm{C}} 72.1$) and methylene protons $2 \mathrm{H}-12$ at $\delta 1.80$ and 2.34 , respectively in CM3. The oxymethylene protons at $\delta 3.02$ and $3.33(2 \mathrm{H}-18)$ showed HMBC correlations with the carbons at $\delta 17.9$ (C-19), 35.4 (C-3), 37.6 (C-4) and 48.3 (C-5), confirming of their attachment at C-4. The relative stereochemistry of CM3 was assigned by NOESY experiment in which oxymethylene protons $2 \mathrm{H}-18(\delta 3.02,3.33)$ showed cross-peaks with $\delta 0.70(\mathrm{Me}-19), 1.08\left(\mathrm{H}_{\mathrm{ax}}-5\right), 1.20\left(\mathrm{H}_{\mathrm{eq}}-3\right)$ and $1.43\left(\mathrm{H}_{\mathrm{eq}}-6\right)$, indicating its equatorial orientation. An E-configuration of the double bond was suggested by a cross-peak of an olefinic proton at $\delta 5.29$ (br t, $J=6.9 \mathrm{~Hz}, \mathrm{H}-15$) with a methine proton at $\delta 2.12(\mathrm{~m}, \mathrm{H}-14)$. Therefore, compound CM3 was assigned as 16,18-dihydroxycass-13(15)(E)-ene, a new compound (Yodsaoue et al., 2010) and was named as mimosol C. Although CM3 was previously reported as a product of semi-synthesis (Leal et al., 2003), this work establishes the diterpene as a bona fide natural product.

Selective HMBC correlations of CM3

Table $5{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM3

Position	$\delta_{\mathrm{H}}(\mathrm{mult} ., J, \mathrm{~Hz})$	$\delta_{\text {C }}$	DEPT	HMBC
1	0.87 (m)	39.1	CH_{2}	2, 5, 10
	1.63 (m)			
2	1.45 (m)	18.2	CH_{2}	4, 10
	1.53 (m)			
3	1.20 (m)	35.4	CH_{2}	4, 5, 18
	1.33 (td, $J=12.9,4.2)$			
4	-	37.6	C	-
5	1.08 (m)	48.3	CH	6, 10, 18, 19, 20
6	1.22 (m)	21.4	CH_{2}	7
	1.43 (m)			
7	1.23 (m)	31.4	CH_{2}	6,9
	1.40 (m)			
8	1.49 (m)	40.5	CH	-
9	1.09 (m)	48.3	CH	7, 10, 11, 20
10	-	36.8	C	-
11	0.87 (m)	26.6	CH_{2}	$8,9,10,12,13$
	1.71 (m)			
12	1.80 (td, $J=13.5,4.2)$	23.6	CH_{2}	9, 11, 13, 14, 15
	2.34 (dt, $J=13.5,3.0)$			
13	-	149.8	C	-
14	2.12 (m)	44.3	CH	8, 9, 12, 13, 15, 17
15	5.29 (br t, $J=6.9$)	118.7	CH	12, 14, 16
16	4.04 ($\mathrm{d}, J=6.9)$	58.6	CH_{2}	13, 15
17	0.87 (d, $J=7.2)$	14.1	CH_{3}	8, 13, 14
18	3.02 (d, $J=10.8)$	72.1	CH_{2}	3, 4, 5, 19
	3.33 (d, $J=10.8)$			
19	0.70 (s)	17.9	CH_{3}	3, 5, 4, 18
20	0.76 (s)	14.7	CH_{3}	1, 5, 9, 10

3.1.4 Compound CM4

The empirical formula of compound CM4 was deduced as $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{4}$ from an exact mass measurement ($[\mathrm{M}]^{+} \mathrm{m} / \mathrm{z} 390.2780$) by HREIMS. The carbonyl ester functionality was shown in IR absorption at $1735 \mathrm{~cm}^{-1}$. The ${ }^{13} \mathrm{C}$ NMR (Table 6, Figure 23) and DEPT spectra exhibited peaks for 24 carbons; two of these were ester carbonyls at $\delta 171.1(\mathrm{C}-23)$ and $171.2(\mathrm{C}-21)$, an oxymethine at $\delta 78.4(\mathrm{C}-12)$ and an oxymethylene carbon at $\delta 65.2$ (C-16). The ${ }^{1}$ H NMR spectral data (Table 6, Figure 22) showed six singlet signals of four aliphatic methyl groups at $\delta 0.71$ (Me-20), 0.78 (Me-19), 0.84 (Me-18) and 1.10 ($\mathrm{Me}-17$) and two acetoxy methyl groups at $\delta 2.04$ (Me-22: $\delta_{\mathrm{C}} 21.2$) and 2.06 ($\mathrm{Me}-24: \delta_{\mathrm{C}} 21.1$). The presence of a cyclopropane ring was deduced from the ${ }^{1} \mathrm{H}$ NMR, COSY and HMQC spectra that exhibited two signals at δ_{H} 0.46 (dd, $J=5.1,1.2 \mathrm{~Hz}, \mathrm{H}-14: \delta_{\mathrm{C}} 34.0$) and 1.18 (m, H-15: $\delta_{\mathrm{C}} 25.5$). From the HMBC experiments, the oxymethine proton $\mathrm{H}-12\left(\delta_{\mathrm{H}} 5.09\right.$, dd, $J=13.2,6.3 \mathrm{~Hz}: \delta_{\mathrm{C}}$ 78.4) showed long-range correlations to the carbons at $\delta 19.3$ (C-17), 25.4 ($\mathrm{C}-11$), 25.5 (C-15) and 171.2 (C-21). The oxymethylene protons $2 \mathrm{H}-16$ at $\delta 3.86$ (dd, $J=$ $11.7,8.4 \mathrm{~Hz}$) and $4.28(\mathrm{dd}, J=11.7,6.9 \mathrm{~Hz})$ showed long-range correlations to the carbons at $\delta 24.3$ (C-13), 25.5 (C-15), $34.0(\mathrm{C}-14)$ and 171.1 (C-23). These data suggested that two OAc groups were attached at $\mathrm{C}-12$ and $\mathrm{C}-16$ whereas $\mathrm{C}-13, \mathrm{C}-14$ and $\mathrm{C}-15$ formed a cyclopropane ring. The observed HMBC correlations between a singlet methyl group at $\delta 1.10$ (Me-17) with the carbons at $\delta 24.3$ (C-13), 25.5 ($\mathrm{C}-15$), 34.0 (C-14) and 78.4 (C-12), confirmed its location at C-13. The large J value for $\mathrm{H}-$ $12(J=13.2 \mathrm{~Hz})$ indicated its axial orientation. In the NOESY spectrum, the oxymethine proton at $\delta 5.09(\mathrm{H}-12)$ correlated with the methyl protons at $\delta 1.10(\mathrm{Me}-$
17) and $0.64(\mathrm{H}-9)$ and a methine proton at $\delta 0.46(\mathrm{H}-14)$ displayed a cross-peak with the methyl protons at $\delta 1.10$ (Me-17) and oxymethylene protons at $\delta 3.86$ and 4.28 ($2 \mathrm{H}-16$) but no correlation with $\mathrm{H}-15$. These data supported α-orientation of $\mathrm{H}-12$, $\mathrm{H}-$ 14 , and $\mathrm{Me}-17$, hence suggesting a cis cyclopropyl ring with an α-acetoxymethyl side chain. Thus, CM4 was assigned as $12 \beta, 16 \alpha$-diacetoxy- $14 \beta, 15$-cyclopimarane, a new compound (Yodsaoue et al., 2010) and was named as mimosol D.

Selected and HMBC correlations for compound CM4

Selected NOESY cross-peaks for compound CM4

Table $6{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM4

Position	$\delta_{\text {H }}$ (mult., J, Hz)	$\delta_{\text {c }}$	DEPT	HMBC
1	0.85 (m)	38.6	CH_{2}	5,10
	1.62 (m)			
2	1.42 (m)	18.6	CH_{2}	1,3,4
	1.54 (m)			
3	1.14 (m)	42.1	CH_{2}	1, 4, 18, 19
	1.39 (m)			
4	-	33.2	C	-
5	0.86 (m)	55.0	CH	3, 4, 6, 18, 19
6	1.27 (m)	22.1	CH_{2}	5, 8, 10
	1.63 (m)			
7	1.19 (m)	35.9	CH_{2}	-
	1.92 (m)			
8	1.39 (m)	36.2	CH	-
9	0.64 (m)	53.1	CH	12, 11, 14, 20
10	-	36.8	C	-
11	0.62 (m)	25.4	CH_{2}	8, 9, 10, 12, 13
	1.80 (m)			
12	5.09 (dd, $J=13.2,6.3)$	78.4	CH	11, 15, 17, 21
13	-	24.3	C	-
14	0.46 (dd, $J=5.1,1.2)$	34.0	CH	7, 8, 9, 12, 15, 16, 17
15	1.18 (m)	25.5	CH	8, 12, 14, 17
16	3.86 (dd, $J=11.7,8.4)$	65.2	CH_{2}	13, 14, 15, 23
	4.28 (dd, $J=11.7,6.9)$			
17	1.10 (s)	19.3	CH_{3}	12, 13, 14, 15
18	0.84 (s)	33.4	CH_{3}	3, 4, 5, 19
19	0.78 (s)	21.6	CH_{3}	3, 4, 5, 18
20	0.71 (s)	14.3	CH_{3}	1, 5, 9, 10
21	-	171.2	C	-
22	2.04 (s)	21.2	CH_{3}	21
23	-	171.1	C	-
24	2.06 (s)	21.1	CH_{3}	23

3.1.5 Compound CM5

Compound CM5 was isolated as a white solid, mp $155-156{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{27}+$ 101.9° ($c 0.77$ in CHCl_{3}). The IR (1720 and $771 \mathrm{~cm}^{-1}$) and UV ($\lambda_{\text {max }} 253,281,292$ nm) absorption bands were characteristic of ester carbonyl and benzofuran moieties, respectively. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 7, Figures 24 and 25) of compound CM5 revealed that this compound had the same A and B rings as compound CM1. The difference was found in ring C which was aromatic in compound CM5. This was supported by the presence of one aromatic proton at $\delta 7.31$ (br s, $\mathrm{H}-11$) and the aromatic methyl at $\delta 2.33$ ($\mathrm{s}, \mathrm{Me}-17$) confirming the presence of trisubstituted benzofuran moiety in compound CM5. The observed HMBC correlations between an aromatic proton at $\delta 7.31(\mathrm{H}-11)$ with the carbons at $\delta 27.5$ (C-7), 37.8 (C-10), 125.4 (C-13), 127.5 (C-8), 147.2 (C-9) and 153.5 (C-12) and of an aromatic methyl at $\delta 2.33$ (s, Me-17) with the carbons at $\delta 105.0$ (C-15), 125.4 (C-13), 127.5 (C-8), 128.2 (C-14), 147.2 (C-9) and 153.5 (C-12), suggested the attachment of a methyl at C-14. Thus, compound CM5 was identified as taepeenin A (Cheenpracha et al., 2005).

Table $7{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM5

Position	δ_{H} (mult., J, Hz)	$\delta_{\text {c }}$	DEPT	HMBC
1	1.50 (m)	38.9	CH_{2}	2, 3, 5, 9, 10, 20
	2.37 (m)			
2	1.73 (m)	18.7	CH_{2}	1, 3, 10
	1.80 (m)			
3	1.66 (m)	36.6	CH_{2}	$1,2,4,5,18,19$
	1.78 (m)			
4	-	47.7	C	-
5	2.26 (dd, $J=12.6,2.1)$	44.4	CH	$1,3,4,7,9,10,18,19,20$
6	1.56 (m)	21.8	CH_{2}	5, 7, 10
	1.91 (m)			
7	2.82 (m)	27.5	CH_{2}	$5,6,8,9,13,14$
8	-	127.5	C	-
9	-	147.2	C	-
10	-	37.8	C	-
11	7.31 (br s)	104.3	CH	$7,8,9,10,12,13$
12	-	153.5	C	-
13	-	125.4	C	-
14	-	128.2	C	-
15	6.71 (dd, $J=2.4,0.9)$	105.0	CH	12, 13, 16
16	$7.51(\mathrm{~d}, J=2.4)$	144.2	CH	12, 13, 15
17	2.33 (s)	16.0	CH_{3}	$8,9,12,13,14,15$
18	-	179.2	C	-
19	1.30 (s)	16.6	CH_{3}	3, 4, 5, 18
20	1.26 (s)	25.6	CH_{3}	1, 5, 9, 10
19-OMe	3.67 (s)	52.0	OCH_{3}	18

Table 8 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra data between compounds CM5 (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{~Hz}$) and taepeenin $\mathrm{A}\left(\mathbf{R}\right.$, recorded in $\mathrm{CDCl}_{3}, 300$ $\mathrm{Hz})$

Position	CM5 $\delta_{\mathrm{H}}($ mult., $J, \mathrm{~Hz})$	$\begin{gathered} \mathrm{R} \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \text { CM5 } \\ \delta_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathbf{C}} \end{gathered}$
1	1.50 (m)	1.55 (m)	38.9	38.9
	2.37 (m)	2.38 (m)		
2	1.73 (m)	1.74 (m)	18.7	18.8
	1.80 (m)	1.81 (m)		
3	1.66 (m)	1.68 (m)	36.6	36.6
	1.78 (m)	1.80 (m)		
4	-	-	47.7	47.7
5	2.26 (dd, $J=12.6,2.1)$	2.27 (dd, $J=12.9,2.4)$	44.4	44.4
6	1.56 (m)	1.55 (m)	21.8	21.8
	1.91 (m)	1.95 (m)		
7	2.82 (m)	2.83 (m)	27.5	27.6
8	-	-	127.5	127.5
9	-	-	147.2	147.2
10	-	-	37.8	37.8
11	7.31 (br s)	7.32 (br s)	104.3	104.3
12	-	-	153.5	153.6
13	-	-	125.4	125.4
14	-	-	128.2	128.3
15	6.71 (dd, $J=2.4,0.9)$	6.72 (dd, $J=2.1,0.9)$	105.0	105.0
16	$7.51(\mathrm{~d}, ~ J=2.4)$	7.53 (d, $J=2.1$)	144.2	144.2
17	2.33 (s)	2.35 (s)	16.0	15.9
18	-	-	179.2	179.2
19	1.30 (s)	1.31 (s)	16.6	16.6
20	1.26 (s)	1.27 (s)	25.6	25.6
$19-\mathrm{OMe}$	3.67 (s)	3.70 (s)	52.0	52.0

3.1.6 Compound CM6

Compound CM6 was obtained as a white solid, mp $116-117{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{27}-$ 41.1° ($c 0.02$ in CHCl_{3}). The UV and IR spectrum showed absorption bands similar to those of CM5. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 9, Figures 26 and 27) of compound CM6 were closely related to those of compound CM5, except for the presence of an additional acetyl group ($\delta_{\mathrm{H}} 2.00$ and $\delta_{\mathrm{C}} 170.7,21.7$). The ${ }^{1} \mathrm{H}$ NMR spectral data exhibited a signal due to an oxymethine proton at $\delta 5.30(\mathrm{dt}, J=5.4,1.5$ Hz) for $\mathrm{H}-6$ which was connected to an oxymethine carbon at $\delta 70.7$ (C-6) in the HMQC spectrum. This proton signal showed HMBC correlations with the carbons at δ 34.8 (C-7), 38.0 (C-10), 46.2 (C-5), 48.0 (C-4), 123.8 (C-8), and 170.7 (OCOMe) confirming the location of the OAc group at C-6. The α-orientations of both protons at C-5 and C-6 were determined from the results of small coupling constants of protons H-5 ($\delta 2.50$, br s) and H-6 ($\delta 5.30, \mathrm{dt}, J=5.4,1.5 \mathrm{~Hz}$) and the observed crosspeaks between these protons and $7-\mathrm{H}_{\alpha}(\delta 3.12)$ from NOESY experiments. This result suggested that H-5 and H-6 should be α-axial and α-equatorial oriented, respectively. Thus, compound CM6 was determined as taepeenin D (Cheenpracha et al., 2005).

Table $9{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM6

Position	$\delta_{\mathrm{H}}($ mult., $J, \mathrm{~Hz})$	$\delta_{\text {C }}$	DEPT	HMBC
1	1.58 (m)	42.1	CH_{2}	2
	2.31 (m)			
2	1.76 (m)	19.0	CH_{2}	1
	1.92 (m)			
3	1.72 (m)	38.4	CH_{2}	1, 2, 4, 5, 18, 19
	1.80 (m)			
4	-	48.0	C	-
5	2.50 (br s)	46.2	CH	$1,3,4,7,9,10,18,19,20$
6	5.30 (dt, $J=5.4,1.5$)	70.7	CH	4, 5, 7, 8, 10, 21
7	2.96 (br d, $J=18.0)$	34.8	CH_{2}	5, 6, 8, 9, 14
	3.12 (dd, $J=18.0,5.4)$			
8	-	123.8	C	-
9	-	145.5	C	-
10	-	38.0	C	-
11	7.38 (br s)	105.0	CH	8, 9, 10, 12, 13, 14
12	-	153.8	C	-
13	-	125.8	C	-
14	-	128.6	C	-
15	6.73 (dd, $J=2.1,0.9)$	105.0	CH	12, 13
16	7.54 (d, $J=2.1$)	144.5	CH	12, 13, 15
17	2.33 (s)	16.0	CH_{3}	8, 9, 13, 14, 15
18	-	178.6	C	-
19	1.45 (s)	18.1	CH_{3}	3, 4, 5, 18
20	1.64 (s)	27.5	CH_{3}	1, 5, 9, 10
19-OMe	3.71 (s)	52.2	CH_{3}	18
21	-	170.7	C	-
22	2.00 (s)	21.7	CH_{3}	6, 21

Table 10 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra data between compounds CM6 (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{~Hz}$) and taepeenin $\mathrm{D}\left(\mathbf{R}\right.$, recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{~Hz}$)

Position	CM6 $\delta_{\mathrm{H}}($ mult., $J, \mathrm{~Hz})$	$\begin{gathered} \mathrm{R} \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \hline \text { CM6 } \\ \delta_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \delta_{\mathrm{C}} \end{gathered}$
1	1.58 (m)	1.58 (m)	42.1	42.1
	2.31 (m)	2.31 (m)		
2	1.76 (m)	1.76 (m)	19.0	19.0
	1.92 (m)	1.92 (m)		
3	1.72 (m)	1.67 (m)	38.4	38.4
	1.80 (m)	1.79 (m)		
4	-	-	48.0	48.0
5	2.50 (br s)	2.50 (br s)	46.2	46.1
6	5.30 (dt, $J=5.4,1.5$)	5.30 (dt, $J=5.7,1.5$)	70.7	70.7
7	2.96 (br d, $J=18.0)$	2.96 (br d, $J=18.3$)	34.8	34.8
	3.12 (dd, $J=18.0,5.4)$	3.12 (dd, $J=18.3,5.4)$		
8	-	-	123.8	123.8
9	-	-	145.5	145.5
10	-	-	38.0	38.0
11	7.38 (br s)	7.38 (br s)	105.0	105.0
12	-	-	153.8	153.8
13	-	-	125.8	125.8
14	-	-	128.6	128.7
15	6.73 (dd, $J=2.1,0.9)$	6.73 (dd, $J=2.4,0.9)$	105.0	105.0
16	7.54 (d, $J=2.1$)	7.54 (d, $J=2.4)$	144.5	144.5
17	2.33 (s)	2.33 (s)	16.0	16.1
18	-	-	178.6	178.6
19	1.45 (s)	1.45 (s)	18.1	18.1
20	1.64 (s)	1.64 (s)	27.5	27.6
19-OMe	3.71 (s)	3.71 (s)	52.2	52.3
21	-	-	170.7	170.7
22	2.00 (s)	2.00 (s)	21.7	21.7

3.1.7 Compound CM7

Compound CM7 was obtained as viscous oil, $[\alpha]_{\mathrm{D}}^{27}-3.90^{\circ}(c 0.58$ in CHCl_{3}). The IR ($1728 \mathrm{~cm}^{-1}$) spectrum displayed absorption band of carbonyl ester. The ${ }^{13} \mathrm{C}$ NMR (Table 11, Figure 29) and DEPT spectra exhibited 20 carbons, two of these were conjugated carbonyl (δ 195.8) and an ester carbonyl (δ 178.9). Excluding the signal due to the methoxy substituent, CM7 contained only 19 carbons in the main carbon framework, suggesting it to be a norditerpene. The NMR data (Table 11, Figure 28) of CM7 displayed similarities with CM1, except that the signals of an exocyclic double bond at $\delta_{\mathrm{H}} 5.14,5.11$ (s, 2H-17); $\delta_{\mathrm{C}} 103.0$ and 142.5 (C-14) was replaced by a carbonyl carbon at $\delta 195.8$ (C-14). An oxyquaternary carbon signal at δ 70.9 (C-8) of CM1 was replaced by the methine proton signal at $\delta_{\mathrm{H}} 2.31$ (td, $J=12.0$, $4.2 \mathrm{~Hz}, \mathrm{H}-8) ; \delta_{\mathrm{C}} 45.1$. The latter proton showed HMBC correlations with the carbons at $\delta 26.8(\mathrm{C}-7), 53.0(\mathrm{C}-9)$ and $195.8(\mathrm{C}-14)$. The methine proton $\mathrm{H}-9$ ($\delta_{\mathrm{H}} 1.88(\mathrm{td}, J=$ $12.0,5.4 \mathrm{~Hz}) ; \delta_{\mathrm{C}} 53.0$) showed HMBC correlations with carbons at $\delta 14.8(\mathrm{C}-20)$, 22.9 (C-11), 36.9 (C-10), 45.1 (C-8), 49.0 (C-5), and 195.8 (C-14). These data suggested the location of conjugated carbonyl at C-14. Thus on the basis of its spectroscopic data and comparison with previously reported data of nortaepeenin A (Cheenpracha et al., 2005), compound CM7 was assigned as nortaepeenin A.

Selective HMBC correlations of CM7

Table $11{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM7

Position	δ_{H} (mult., $J, \mathrm{~Hz}$)	$\delta_{\text {C }}$	DEPT	HMBC
1	1.15 (m)	37.9	CH_{2}	2, 3, 10, 20
	1.72 (m)			
2	1.62 (m)	17.9	CH_{2}	3, 4
	1.70 (m)			
3	1.61 (m)	36.6	CH_{2}	2, 5
4	-	47.4	C	-
5	1.78 (dd, $J=12.6,2.4)$	49.0	CH	$3,4,10,18,19,20$
6	1.29 (m)	23.5	CH_{2}	5
	1.49 (m)			
7	1.30 (m)	26.8	CH_{2}	8, 9
	2.47 (m)			
8	2.31 (td, $J=12.0,4.2$)	45.1	CH	7, 9, 14
9	1.88 (td, $J=12.0,5.4)$	53.0	CH	$5,8,10,11,14,20$
10	-	36.9	C	-
11	2.66 (dd, $J=17.1,12.0)$	22.9	CH_{2}	$8,9,10,12,13$
	2.89 (dd, $J=17.1,5.4)$			
12	-	166.4	C	-
13	-	119.9	C	-
14	-	195.8	C	-
15	6.73 (d, $J=1.8)$	106.7	CH	12, 13, 16
16	7.30 (d, $J=1.8)$	142.8	CH	12, 13, 15
17	-	-	-	-
18	-	178.9	C	-
19	1.21 (s)	16.8	CH_{3}	3, 4, 5, 18
20	1.01 (s)	14.8	CH_{3}	1, 5, 9, 10
21	3.66 (s)	52.0	CH_{3}	18

Table 12 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra data between compounds CM7 (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{~Hz}$) and nortaepeenin $\mathrm{A}\left(\mathbf{R}\right.$, recorded in CDCl_{3}, 300 Hz)

Position	$\begin{gathered} \text { CM7 } \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \text { CM7 } \\ \delta_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
1	1.15 (m)	1.14 (m)	37.9	37.9
	1.72 (m)	1.74 (m)		
2	1.62 (m)	1.69 (m)	17.9	17.9
	1.70 (m)			
3	1.61 (m)	1.62 (m)	36.6	36.7
4	-	-	47.4	47.3
5	1.78 (dd, $J=12.6,2.4)$	1.78 (dd, $J=12.3,2.4)$	49.0	49.0
6	1.29 (m)	1.29 (m)	23.5	23.5
	1.49 (m)	1.49 (m)		
7	1.30 (m)	1.31 (m)	26.8	26.8
	2.47 (m)	2.46 (m)		
8	2.31 (td, $J=12.0,4.2)$	2.31 (td, $J=12.0,4.2)$	45.1	45.0
9	1.88 (td, $J=12.0,5.4)$	1.88 (td, $J=12.0,5.1$)	53.0	52.9
10	-	-	36.9	36.9
11	2.66 (dd, $J=17.1,12.0)$	2.66 (dd, $J=17.1,12.0)$	22.9	22.8
	2.89 (dd, $J=17.1,5.4)$	2. $90(\mathrm{dd}, J=17.1,5.1)$		
12	-	-	166.4	166.3
13	-	-	119.9	119.8
14	-	-	195.8	195.7
15	6.73 (d, $J=1.8)$	6.63 (d, $J=1.8)$	106.7	106.5
16	7.30 (d, $J=1.8)$	7.30 (d, $J=1.8)$	142.8	142.8
17	-	-	-	-
18	-	-	178.9	178.9
19	1.21 (s)	1.21 (s)	16.8	16.8
20	1.01 (s)	1.01 (s)	14.8	14.8
21	3.66 (s)	3.65 (s)	52.0	52.0

3.1.8 Compound CM8

Compound CM8 was obtained as a white solid, mp 124-126 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{27}+$ 25.4° (c 0.67 in CHCl_{3}). The IR spectrum displayed the absorbance of hydroxyl (3359 cm^{-1}) group. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 13, Figures 30 and 31) of CM8 showed characteristics similar to those of CM2, except that the signal of an oxymethine proton at $\delta 4.43$ (dd, $J=10.2,4.8 \mathrm{~Hz}, \mathrm{H}-11$); $\delta_{\mathrm{C}} 70.7$ in CM2 was replaced by those of the methylene protons at $\delta 0.97$ and 1.75 (each m) $\delta_{\mathrm{C}} 26.6$. This finding was supported by HMBC spectrum, in which an olefinic proton of $\mathrm{H}-15$ at δ $5.37(\mathrm{t}, J=6.6 \mathrm{~Hz})$ was correlated with the carbons at $\delta 26.6(\mathrm{C}-12), 44.3(\mathrm{C}-14)$ and 58.6 (C-16). Thus, compound CM8 was determined as taepeenin L (Cheenpracha et al., 2005).

Selective HMBC correlations of CM8

Table $13{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM8

Position	$\delta_{\mathrm{H}}($ mult., $J, \mathrm{~Hz})$	$\delta_{\text {C }}$	DEPT	HMBC
1	0.94 (m)	39.6	CH_{2}	2, 5, 9, 10, 20
	1.70 (m)			
2	1.40 (m)	18.9	CH_{2}	1, 3, 4, 10
	1.56 (m)			
3	1.14 (m)	42.2	CH_{2}	1, 2, 4, 5, 18, 19
	1.43 (m)			
4	-	33.2	C	-
5	0.81 (m)	55.3	CH	$1,3,4,9,10,18,19,20$
6	1.25 (m)	21.7	CH_{2}	4, 5, 7, 8, 10
	1.58 (m)			
7	1.27 (m)	31.7	CH_{2}	$5,6,8,9,14$
	1.47 (m)			
8	1.52 (m)	40.6	CH	7, 9, 10, 13, 14, 17
9	1.11 (m)	48.4	CH	$1,5,7,8,10,12,20$
10	-	37.0	C	-
11	1.85 (qd, $J=13.5,4.2$)	23.7	CH_{2}	9, 12, 13, 15
	2.43 (br d, $J=13.5$)			
12	0.97 (m)	26.6	CH_{2}	$9,11,13,14,15$
	1.75 (m)			
13	-	149.9	C	-
14	2.19 (qn, $J=7.2)$	44.3	CH	9, 13, 14, 15
15	$5.37(\mathrm{t}, J=6.6)$	118.8	CH	11, 14, 16
16	4.14 (d, $J=6.6)$	58.6	CH_{2}	13, 15
17	0.95 (d, $J=7.2)$	14.4	CH_{3}	8, 13, 14
18	0.86 (s)	22.1	CH_{3}	3, 4, 5, 19
19	0.82 (s)	33.7	CH_{3}	3, 4, 5, 18
20	0.79 (s)	14.2	CH_{3}	1, 5, 9, 10

Table 14 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra data between compounds CM8 (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{~Hz}$) and taepeenin $\mathrm{L}\left(\mathbf{R}\right.$, recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{~Hz}$)

Position	$\begin{gathered} \text { CM8 } \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \hline \text { CM8 } \\ \delta_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \delta_{\mathrm{C}} \end{gathered}$
1	0.94 (m)	0.86-1.00 m)	39.6	39.7
	1.70 (m)	1.65-1.77 (m)		
2	1.40 (m)	1.36-1.41 (m)	18.9	18.9
	1.56 (m)	1.44-1.58 (m)		
3	1.14 (m)	1.09-1.20 (m)	42.2	42.2
	1.43 (m)	1.35-1.47 (m)		
4	-	-	33.2	33.2
5	0.81 (m)	0.78-0.88 (m)	55.3	55.8
6	1.25 (m)	1.20-1.35 (m)	21.7	21.7
	1.58 (m)	1.58-1.67 (m)		
7	1.27 (m)	1.46-1.54 (m)	31.7	31.7
	1.47 (m)			
8	1.52 (m)	1.50-1.57 (m)	40.6	40.7
9	1.11 (m)	1.08-1.19 (m)	48.4	48.4
10	-	-	37.0	37.0
11	1.85 (qd, $J=13.5,4.2$)	0.90-1.01 (m)	26.6	26.6
	2.43 (br d, $J=13.5$)	1.71-1.82 (m)		
12	0.97 (m)	1.84-1.94 (m)	23.7	23.7
	1.75 (m)	2.39-2.50 (m)		
13	-	-	149.9	151.0
14	2.19 (qn, $J=7.2)$	2.17-2.24 (m)	44.3	44.3
15	$5.37(\mathrm{t}, J=6.6)$	5.37 (td, $J=7.2,1.5)$	118.8	118.7
16	4.14 (d, $J=6.6)$	4.12 ($\mathrm{d}, ~ J=7.2$)	58.6	58.7
17	0.95 (d, $J=7.2)$	0.95 (d, $J=7.2)$	14.4	14.4
18	0.86 (s)	0.86 (s)	33.7	33.7
19	0.82 (s)	0.82 (s)	22.1	22.1
20	0.79 (s)	0.79 (s)	14.2	14.2

3.1.9 Compound CM9

Compound CM9 was isolated as a white solid. It showed [M] ${ }^{+}$at m / z $654.3948\left(\mathrm{C}_{42} \mathrm{H}_{54} \mathrm{O}_{6}\right)$ in the HREIMS spectrum. The UV spectrum ($\lambda_{\max } 258$, 283 and 293 nm) suggested the presence of a benzofuran chromophore (Lyder et al., 1998). The IR spectrum of CM9 displayed the absorbance of a carbonyl ester ($1720 \mathrm{~cm}^{-1}$) group. The ${ }^{13} \mathrm{C}$ NMR (Tables 15 and 16, Figure 33) and DEPT spectroscopic data displayed 42 carbons; twelve of these were sp^{2} carbons attributable to 4 methine and 8 quaternary carbons. The ${ }^{1} \mathrm{H}$ NMR data (Tables 15 and 16, Figure 32) showed two fragments, A and B, both being cassane-type diterpenes. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and HMBC data established the dimeric structure of compound CM9 that was closely related to taepeenin J previously isolated from C. crista (Cheenpracha et al., 2006). The differences were shown as the disappearance of two methyl singlets at $\delta_{\mathrm{H}} 0.95$ (Me-18) and 0.75 (Me-18') in taepeenin J and the appearance of two methyl ester at δ_{H} 3.66 (OMe-18) and 3.57 (OMe-18') in CM9, together with the presence of two ester carbonyl carbons at $\delta_{\mathrm{C}} 179.2$ ($\mathrm{C}-18$) and 179.1 (C-18'). The locations of two methyl ester groups at C-4 and C-4' were confirmed by their HMBC correlations: in fragment A the methyl ester protons at $\delta 3.66(\mathrm{OMe}-18)$ correlated with the carbonyl carbon at $\delta 179.2$ ($\mathrm{C}-18$) and a singlet methyl at $\delta 1.18$ (Me-19) correlated with the carbons at δ 36.5 (C-3), 47.3 (C-4), 49.1 (C-5) and the carbonyl carbon at $\delta 179.2$ (C-18) whereas in fragment B methyl ester protons at $\delta 3.57$ (OMe-18') correlated with the carbonyl carbon at $\delta 179.1$ ($\mathrm{C}-18^{\prime}$) and a singlet methyl at $\delta 1.29$ (Me-19') correlated with the carbons at $\delta 36.6$ (C-3'), 44.3 (C-5'), 47.7 (C-4') and the carbonyl carbon at $\delta 179.1$ (C18^{\prime}). The connectivity between the two fragments at $\mathrm{C}-14$ (fragment A) and $\mathrm{C}-16$ ' (fragment B) was supported by HMBC correlations. The methyl protons at $\delta 1.64$
(Me-17) exhibited the cross-peaks with the carbons at $\delta 40.1$ (C-14), 44.0 (C-8), 121.9 (C-13) and 162.2 (C-16') whereas an aromatic proton at $\delta 6.12(\mathrm{H}-15$ ') correlated with the carbon at $\delta 40.1$ (C-14). The NOESY cross-peaks of the aromatic proton at $\delta 6.12$ ($\mathrm{H}-15$ ') with the methyl protons at $\delta 1.64$ (Me-17) and 2.28 ($\mathrm{Me}-17{ }^{\prime}$) and of a methine proton at $\delta 1.90$ (H-9) with the methyl protons (Me-17) supported the β-equatorial orientation of fragment B at C-14. Thus, CM9 was deduced to be 14β-($8^{\prime}\left(14^{\prime}\right), 9^{\prime}\left(11^{\prime}\right)-$ diene-18' α-methoxycarbonyl-18'-norvouacapen-16'-yl)-18 α-methoxycarbonyl-18norvouacapene, a new compound (Yodsaoue et al., 2010) and was named as mimosol E.

Selective HMBC correlations of CM9

Selective NOESY cross-peaks of CM9

Table $15{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM9
(Fragment A)

Position	$\delta_{\mathbf{H}}($ mult., $J, \mathrm{~Hz})$	$\delta_{\text {c }}$	DEPT	HMBC
1	1.08-1.12 (m)	38.0	CH_{2}	20
	1.76-1.80 (m)			
2	1.50-1.62 (m)	17.9	CH_{2}	-
	1.72-1.82 (m)			
3	1.75-1.80 (m)	36.5	CH_{2}	5,18, 19
	1.82-1.90 (m)			
4	-	47.3	C	-
5	1.61 (m)	49.1	CH	1, 4, 6, 10, 18, 19, 20
6	1.28-1.31(m)	23.9	CH_{2}	4, 10
	1.45-1.51 (m)			
7	1.97-2.02 (m)	28.3	CH_{2}	-
	2.04-2.08 (m)			
8	1.65 (m)	44.0	CH	17
9	1.90 (m)	47.7	CH	5, 8, 20
10	-	37.4	C	-
11	2.49 (dd, $J=15.3,10.2)$	21.8	CH_{2}	8, 9, 10, 13
	2.79 (dd, $J=15.3,7.2)$			
12	-	150.1	C	-
13	-	121.9	C	-
14	-	40.1	C	-
15	6.08 (d, $J=1.8)$	108.5	CH	12, 13
16	7.23 (br s)	140.7	C	12, 13, 15
17	1.64 (s)	24.7	CH_{3}	14, 8, 13, 16'
18	-	179.2	C	-
19	1.18 (s)	17.0	CH_{3}	3, 4, 5, 18
20	0.94 (s)	14.5	CH_{3}	1, 5, 9, 10
18-OMe	3.66 (s)	51.9	CH_{3}	18

Table $16{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM9 (Fragment B)

Position	$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{J}, \mathrm{Hz})$	$\delta_{\text {c }}$	DEPT	HMBC
1^{\prime}	1.48-1.55 (m)	38.9	CH_{2}	20'
	2.20-2.35 (m)			
2^{\prime}	1.62-1.70 (m)	18.7	CH_{2}	-
	1.72-1.82 (m)			
3^{\prime}	1.44-1.58 (m)	36.6	CH_{2}	5', 18', 19'
	1.60-1.68 (m)			
4'	-	47.7	C	-
$5 '$	2.26 (m)	44.3	CH	4', 6', 7', 9', 10', 18', 19', 20'
6^{\prime}	1.50-1.60 (m)	21.9	CH_{2}	$4{ }^{\prime}$
	1.62-1.78 (m)			
71	2.80-2.97 (m)	27.5	CH_{2}	5'
	2.60-2.72 (m)			
8^{\prime}	-	127.4	C	-
$9{ }^{\prime}$	-	146.1	C	-
10^{\prime}	-	37.7	C	-
11'	7.23 (s)	104.3	CH	8', 10', 12', 13'
12^{\prime}	-	153.4	C	-
13'	-	126.5	C	-
14^{\prime}	-	127.1	C	-
15^{\prime}	6.12 (s)	102.4	CH	12', 14', 16'
16'	-	162.2	C	-
17^{\prime}	2.28 (s)	15.9	CH_{3}	8', 13', 14'
18^{\prime}	-	179.1	C	-
19^{\prime}	1.29 (s)	16.6	CH_{3}	3', 4', 5', 18'
20^{\prime}	1.28 (s)	25.5	CH_{3}	$1^{\prime}, 5^{\prime}, 99^{\prime}, 10$
18'-OMe	3.57 (s)	51.9	CH_{3}	18^{\prime}

3.1.10 Compound CM10

The molecular formula of CM10 was established as $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5}\left([\mathrm{M}]^{+}\right.$, m / z 300.1011), based on the HREIMS mass spectrum. The UV spectrum showed absorption maxima at $\lambda_{\max } 207,222,250,309$ and 318 nm . The IR spectrum displayed the absorbance of a hydroxyl stretching frequency $\left(3386 \mathrm{~cm}^{-1}\right.$). The ${ }^{13} \mathrm{C}$ NMR (Table 17 , Figure 37) and DEPT spectral data showed 17 carbons, suggesting twelve aromatic carbons identified as four protonated ($\delta 93.4,97.9,110.9,122.2$), and eight non-protonated, of which five oxygenated ($\delta 140.9,146.5,149.6,156.3,157.6$) and three non-oxygenated ($\delta 116.2,117.1,117.9$) carbons. Two low-field signals at δ 108.4 and 147.0 representing two carbons of a disubstituted double bonds were observed. These data allowed the formulation of a dibenzofuran ring which contained twelve aromatic carbons and an oxygen atom, whose structure was consistent with ten degrees of unsaturation calculated for this compound. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 17, Figure 36) displayed the presence of two sets of downfield resonances. One of them was shown at $\delta 7.14(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4)$ suggesting the presence of a $1,2,3,5,6-$ pentasubstituted benzene ring (ring A) and another as the proton resonances at $\delta 6.81$ $(1 \mathrm{H}, \mathrm{dd}, J=7.8,2.1 \mathrm{~Hz}, \mathrm{H}-8), 6.97(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}, \mathrm{H}-6)$ and $7.76(1 \mathrm{H}, \mathrm{d}, J=7.8$ $\mathrm{Hz}, \mathrm{H}-9$) indicating the presence of a $1,2,4$-trisubstituted benzene ring (ring B). The presence of a biphenyl linkage between $\mathrm{C}-9 \mathrm{a}$ and $\mathrm{C}-9 \mathrm{~b}$ (forming a furan skeleton) (Qu et al., 2007) was determined by the HMBC correlation, in which an aromatic proton H-9 at $\delta 7.76$ showed correlations with the carbons at $\delta 97.9$ (C-6), 110.9 (C-8), 116.2 (C-9b) and 157.6 (C-5a) whereas an aromatic proton H-4 ($\delta 7.14$) showed correlations with the carbons at $\delta 116.2$ (C-9b), 140.9 (C-2), 146.5 (C-3) and 149.6 (C-4a). In
addition, the methylene protons at $\delta 3.87\left(2 \mathrm{H}-1^{\prime}\right)$ showed HMBC correlations with the carbons at $\delta 65.3$ (C-4'), 108.4 (C-3'), 116.2 (C-9b), 117.9 (C-1), 140.9 (C-2) and 147.0 (C-2'), suggesting its location at C-1. A methoxyl group ($\delta 3.96$) was assigned at $\mathrm{C}-3$ due to its HMBC correlation to the carbons at $\delta 146.5$ (C-3). The signals of the terminal olefinic methylene protons at $\delta_{\mathrm{H}} 4.53$ and 4.99 (each m, $2 \mathrm{H}-3^{\prime}: \delta_{\mathrm{C}} 108.4$) exhibited a COSY cross-peak with the methylene protons at $\delta 3.87$ (br s, $2 \mathrm{H}-1^{\prime}: \delta_{\mathrm{C}}$ 29.6) and oxymethylene protons at $\delta 4.22$ (br s, $2 \mathrm{H}-4^{\prime}: \delta_{\mathrm{C}} 65.3$). Moreover, NOESY cross-peaks were observed between the methoxyl protons and the aromatic proton $\mathrm{H}-4$ ($\delta 7.14, \mathrm{~s}$) and between methylene protons $2 \mathrm{H}-1^{\prime}(\delta 3.87)$ and the aromatic proton $\mathrm{H}-9$ (δ 7.76). Therefore, CM10 was elucidated as 1-(2-(hydroxymethyl)allyl)-3-methoxydibenzo[b,d]furan-2,7-diol, a new compound (Yodsaoue et al., 2010) and was named as mimosol F .

Selective HMBC correlations of CM10

Table $17{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM10

Position	δ_{H} (mult., $J, \mathrm{~Hz}$)	$\delta_{\text {C }}$	DEPT	HMBC
1	-	117.9	C	-
2	-	140.9	C	-
3	-	146.5	C	-
4	7.14 (s)	93.4	CH	2, 3, 4a, 9b
4a	-	149.6	C	-
5a	-	157.6	C	-
6	$6.97(\mathrm{~d}, J=2.1)$	97.9	CH	5a, 7, 8, 9a
7	-	156.3	C	-
8	6.81 (dd, $J=7.8,2.1$)	110.9	CH	6, 9a
9	7.76 (d, $J=7.8)$	122.2	CH	$5 \mathrm{a}, 6,9 \mathrm{~b}$
9a	-	117.1	C	-
9 b	-	116.2	C	-
1^{\prime}	3.87 (br s)	29.6	CH_{2}	1, 2, 2', $3^{\prime}, 4^{\prime}, 9 \mathrm{~b}$
2^{\prime}	-	147.0	C	
3^{\prime}	4.53 (m)	108.4	CH_{2}	$1^{\prime}, 2^{\prime}, 4^{\prime}$
	4.99 (m)			
4^{\prime}	4.22 (br s)	65.3	CH_{2}	$1^{\prime}, 2^{\prime}, 3^{\prime}$
$3-\mathrm{OMe}$	3.96 (s)	55.9	CH_{3}	3
2-OH	8.71 (s)	-	-	1,2,3
7-OH	7.37 (s)	-	-	6, 7, 8

3.1.11 Compound CM11

Compound CM11 had a molecular formula $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}$, $\left([\mathrm{M}]^{+} \mathrm{m} / \mathrm{z}\right.$ 314.1118), based on HREIMS which was 14 mass units more than that of CM10, suggesting the addition of a Me group. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 18, Figures 43 and 44) of CM11 displayed characteristics similar to those of CM10, except for the presence of an additional methoxyl group at $\delta_{\mathrm{H}} 3.87$ (s) in CM11 whose HMBC correlation with the carbon at $\delta 158.7$ (C-7) and NOESY cross-peak with the protons at $\delta 6.88(\mathrm{dd}, J=7.8,2.4 \mathrm{~Hz}, \mathrm{H}-8)$ and $7.12(\mathrm{~d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-6)$ suggested the location of an OMe group at C-7. Thus, CM11 was deduced to be 1-(2-(hydroxymethyl)allyl)-3,7-dimethoxydibenzo[b,d]furan-2-ol, a new compound (Yodsaoue et al., 2010) and was named as mimosol G.

Selective HMBC correlations of CM11

Table $18{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM11

Position	δ_{H} (mult., J, Hz)	$\delta_{\text {C }}$	DEPT	HMBC
1	-	118.0	C	-
2	-	141.1	C	-
3	-	146.8	C	-
4	7.17 (s)	93.4	CH	1, 2, 3, 4a, 9b
4a	-	149.8	C	-
5a	-	157.5	C	-
6	7.12 (d, $J=2.4)$	96.2	CH	7, 8, 9a
7	-	158.7	C	-
8	6.88 (dd, $J=7.8,2.4)$	110.2	CH	6,7
9	7.83 (d, $J=7.8)$	122.1	CH	6, 8, 9a, 9b
9a	-	118.0	C	-
9b	-	116.0	C	-
1^{\prime}	3.88 (br s)	29.6	CH_{2}	1, 2, 2', $3^{\prime}, 4^{\prime}, 9 \mathrm{~b}$
2^{\prime}	-	147.0	C	
$3{ }^{\prime}$	4.52 (m)	108.4	CH_{2}	$1^{\prime}, 4^{\prime}$
	5.00 (sext, $J=1.8$)			
4^{\prime}	4.22 (br s)	65.3	CH_{2}	$1^{\prime}, 2^{\prime}, 3^{\prime}$
3-OMe	3.97 (s)	55.9	CH_{3}	3
7-OMe	3.87 (s)	55.1	CH_{3}	7
2-OH	7.42 (s)	-	-	1,2,3

3.1.12 Compound CM12

Compound CM12 was obtained as a yellow solid, mp: 178-180 ${ }^{\circ} \mathrm{C}$. The UV absorption bands at $\lambda_{\text {max }} 209,232,317$ and 357 nm supported the presence of conjugated-carbonyl chromophore in the structure. The IR spectrum showed absorption bands of hydroxyl group ($3367 \mathrm{~cm}^{-1}$), and $\mathrm{C}=\mathrm{O}$ stretching ($1700 \mathrm{~cm}^{-1}$). The ${ }^{13} \mathrm{C}$ NMR and DEPT spectral data (Table 19, Figure 46) indicated the presence of 18 carbons including 14 aromatic carbons, one carbonyl carbon, one aliphatic carbon and one methoxyl carbon. The ${ }^{1} \mathrm{H}$ NMR spectral data (Table 19, Figure 45) displayed the oxymethylene protons at $\delta 5.40(2 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz})$ and one olefinic proton at $\delta 7.71$ (br s) which was identified as β-unsaturated proton. The aromatic proton signals at δ $6.40(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 6.62(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz})$ and $7.83(\mathrm{~d}, J=8.7 \mathrm{~Hz})$ suggested the presence of a 1,2,4-trisubstituted benzene ring whereas the other proton signals at δ $7.05(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.40(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.7 \mathrm{~Hz})$ confirmed a 1,4 -disubstituted benzene ring.

The structure of CM12 was confirmed by HMBC correlations. The oxymethylene protons at $\delta 5.40(2 \mathrm{H}-2)$ showed correlations with the carbons at δ 129.3 (C-3), 135.3 (C-9), 163.0 (C-8a) and 179.7 (C-4) and an aromatic proton at δ 7.83 (H-5) showed correlation with the carbons at $\delta 102.6$ (C-8), 163.0 (C-8a), 164.3 (C-7) and 179.7 (C-4). The correlation of an olefinic proton at $\delta 7.71$ (H-9) with the carbons at $\delta 132.0$ (C-2', 6^{\prime}), 129.3 (C-3) and 179.7 (C-4) confirmed the location of the 1,4 -disubstituted benzene ring at $\mathrm{C}-9$. In addition, the ${ }^{1} \mathrm{H}$ NMR spectrum displayed the presence of a methoxyl group at $\delta 3.87$ which showed correlation with the carbon at $\delta 160.8$ (C-4') whose location was assigned at $\mathrm{C}-4$ ' of the 1,4 -disubstituted benzene
ring. Therefore, CM12 was identified as (E)-7-hydroxy-3-(4-methoxybenzyl-chroman-4-one) (Chen and Yang, 2007).

Selective HMBC correlations of CM12

Table $19{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM12

Position	$\delta_{\mathbf{H}}($ mult., $J, \mathbf{H z})$	$\delta_{\mathbf{C}}$	DEPT	HMBC
2	$5.40(\mathrm{~d}, J=1.8)$	67.8	CH_{2}	$3,4,9,8 \mathrm{a}$
3	-	129.3	C	-
4	-	179.7	C	-
4 a	-	115.2	C	-
5	$7.83(\mathrm{~d}, J=8.7)$	126.5	CH	$4,7,8,8 \mathrm{a}$
6	$6.62(\mathrm{dd}, J=8.7,2.1)$	110.9	CH	$4 \mathrm{a}, 7,8$
7	-	164.3	C	-
8	$6.40(\mathrm{~d}, J=2.1)$	102.6	CH	$4 \mathrm{a}, 6,7$
8 a	-	163.0	C	-
9	$7.71(\mathrm{br} \mathrm{s})$	135.3	CH	$3,4,2^{\prime}, 6^{\prime}$
1^{\prime}	-	127.0	C	-
2^{\prime}	$7.40(\mathrm{~d}, J=8.7)$	132.0	CH	$9,3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}$
3^{\prime}	$7.05(\mathrm{~d}, J=8.7)$	114.2	CH	$1^{\prime}, 4^{\prime}, 5^{\prime}$
4^{\prime}	-	160.8	C	-
5^{\prime}	$7.05(\mathrm{~d}, J=8.7)$	114.2	CH	$1^{\prime}, 3^{\prime}, 4^{\prime}$
6^{\prime}	$7.40(\mathrm{~d}, J=8.7)$	132.0	CH	$9,2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}$
$4^{\prime}-\mathrm{OMe}$	$3.87(\mathrm{~s})$	54.9	CH	4^{\prime}

Table 20 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra data between compounds CM12 (recorded in acetone- $d_{6}, 300 \mathrm{MHz}$) and (E)-7-hydroxy-3-(4-methoxybenzyl-chroman-4-one) (\mathbf{R}, recorded in DMSO- $d_{6}, 500 \mathrm{~Hz}$)

Position	CM12 $\delta_{\mathrm{H}}($ mult., $J, \mathrm{~Hz})$	R $\boldsymbol{\delta}_{\mathrm{H}}($ mult., $J, \mathrm{~Hz})$	CM12 δ_{C}	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
2	5.40 (d, $J=1.8)$	5.35 (d, $J=1.5$)	67.8	67.52
3	-	-	129.3	128.79
4	-	-	179.7	179.47
4a	-	-	115.2	114.23
5	7.83 (d, $J=8.7)$	7.72 ($\mathrm{d}, \mathrm{J}=8.0)$	126.5	129.37
6	6.62 (dd, $J=8.7,2.1)$	6.52 (dd, $J=8.5,2.0)$	110.9	111.09
7	-	-	164.3	164.57
8	$6.40(\mathrm{~d}, ~ J=2.1)$	$6.31(\mathrm{~d}, ~ J=2.0)$	102.6	102.39
8a	-	-	163.0	162.44
9	7.71 (br s)	7.62 (s)	135.3	135.19
1^{\prime}	-	-	127.0	126.48
2^{\prime}	7.40 (d, $J=8.7)$	7.39 (d, $J=8.5$)	132.0	132.24
3^{\prime}	7.05 (d, $J=8.7)$	7.03 (d, $J=8.5$)	114.2	114.28
4^{\prime}	-	-	160.8	160.24
5'	7.05 (d, $J=8.7)$	7.03 (d, $J=8.5$)	114.2	114.28
6^{\prime}	7.40 (d, $J=8.7)$	7.3 .9 (d, $J=8.5$)	132.0	132.24
4'-OMe	3.87 (s)	3.81 (s)	54.9	55.31

3.1.13 Compound CM13

Compound CM13 was isolated as a yellow solid, mp 191-192 ${ }^{\circ} \mathrm{C}$. The absorption bands of UV and IR spectrum were similar to compound CM12. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 21, Figures 47 and 48) of compound CM13 were comparable with those of compound CM12. The difference was shown as the disappearance of the signals of a 1,2,4-trisubstituted benzene ring in CM12 but the appearance of a 1,2,3,4-tetrasubstitutated benzene ring as signals of ortho-coupled aromatic protons at $\delta 6.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-6)$ and $7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-5)$. Thus, CM13 was identified as (E)-7,8-dihydroxy-3-(4-methoxybenzyl-chroman-4-one) (Chen and Yang, 2007).

Selective HMBC correlations of CM13

Table $21{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM13

Position	$\delta_{\mathbf{H}}($ mult., $J, \mathbf{H z})$	$\delta_{\mathbf{C}}$	DEPT	HMBC
2	$5.43(\mathrm{~d}, J=1.8)$	68.1	CH_{2}	$3,4,9,8 \mathrm{a}, 1^{\prime}$
3	-	129.6	C	-
4	-	181.1	C	-
4 a	-	115.8	C	-
5	$7.41(\mathrm{~d}, J=8.4)$	118.9	CH	$4,6,8,7$
6	$6.54(\mathrm{~d}, J=8.4)$	110.2	CH	$4 \mathrm{a}, 7,8$
7	-	151.6	C	-
8	-	132.6	C	-
8 a	-	150.1	C	-
9	$7.72(\mathrm{~s})$	135.5	CH	$3,4,1^{\prime}, 2^{\prime}, 6^{\prime}$
8^{\prime}	-	127.1	C	-
2^{\prime}	$7.41(\mathrm{~d}, J=9.0)$	132.0	CH	$9,1^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}$
3^{\prime}	$7.06(\mathrm{~d}, J=9.0)$	114.2	CH	$1^{\prime}, 4^{\prime}, 5^{\prime}$
4^{\prime}	-	160.8	C	-
5^{\prime}	$7.06(\mathrm{~d}, J=9.0)$	114.2	CH	$1^{\prime}, 3^{\prime}, 4^{\prime}$
6^{\prime}	$7.41(\mathrm{~d}, J=9.0)$	132.0	CH	$9,1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}$
$4^{\prime}-\mathrm{OMe}$	$3.88(\mathrm{~s})$	54.9	CH 3	4^{\prime}

Table 22 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra data between compounds CM13 (recorded in acetone- $d_{6}, 300 \mathrm{MHz}$) and (E)-7,8-dihydroxy-3-(4-methoxybenzylchroman-4-one) (R, recorded in DMSO- $d_{6}, 500 \mathrm{~Hz}$)

Position	$\begin{gathered} \text { CM13 } \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	CM13 δ_{C}	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
2	5.43 (d, $J=1.8)$	5.35 (d, $J=1.5$)	68.1	67.78
3	-	-	129.6	129.13
4	-	-	181.1	180.15
4a	-	-	115.8	115.08
5	7.41 (d, $J=8.4)$	7.25 (d, $J=9)$	118.9	118.35
6	$6.54(\mathrm{~d}, J=8.4)$	$6.55(\mathrm{~d}, J=9)$	110.2	110.43
7	-	-	151.6	152.34
8	-	-	132.6	132.69
8a	-	-	150.1	150.34
9	7.72 (s)	7.63 (s)	135.5	135.17
1^{\prime}	-	-	127.1	126.54
2^{\prime}	7.41 (d, $J=9.0)$	7.41 (d, $J=9.0)$	132.0	132.12
3^{\prime}	7.06 ($\mathrm{d}, ~ J=9.0)$	7.05 ($\mathrm{d}, ~ J=9.0)$	114.2	114.29
4^{\prime}	-	-	160.8	160.23
5^{\prime}	7.06 (d, $J=9.0)$	7.05 (d, $J=9.0)$	114.2	132.12
6^{\prime}	7.41 ($\mathrm{d}, ~ J=9.0)$	7.41 (d, $J=9.0)$	132.0	114.29
4'-OMe	3.88 (s)	3.81 (s)	54.9	55.32

3.1.14 Compound CM14

Compound CM14 was isolated as a yellow solid, mp 103-105 ${ }^{\circ} \mathrm{C}$. The absorption bands of UV and IR spectra were similar to CM13. The ${ }^{1} \mathrm{H}$ NMR spectral data (Table 23, Figure 49) of CM14 and CM13 showed structure similarity, except for appearance of a methoxyl signal at $\delta_{\mathrm{H}} 3.93$ (s) in CM14. In the NOESY spectrum, the methoxyl signal at $\delta_{\mathrm{H}} 3.93$ (8-OMe) did not showed a cross-peak with the aromatic proton at $\delta 6.70(\mathrm{~d}, J=9.0 \mathrm{~Hz}, \mathrm{H}-6)$, thus establishing a methoxyl group at $\mathrm{C}-8$. Therefore, CM14 was identified as (E)-7-hydroxy-8-methoxy-3-(4-methoxybenzyl-chroman-4-one) (Chen and Yang, 2007).

Selective HMBC correlation of CM14

Table $23{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM14

Position	$\delta_{\mathrm{H}}($ mult., $J, \mathrm{~Hz})$	$\delta_{\text {C }}$	DEPT	HMBC
2	5.43 (d, $J=1.8)$	68.3	CH_{2}	$3,4,8 \mathrm{a}, 9$
3	-	127.1	C	-
4	-	181.0	C	-
4 a	-	116.7	C	-
5	7.74 (d, $J=9.0$)	124.2	CH	4, 8, 7
6	6.70 (d, $J=9.0)$	109.8	CH	4a, 7, 8
7	-	155.0	C	-
8	-	134.3	C	-
8a	-	154.1	C	-
9	7.83 (s)	137.1	CH	$3,4,2^{\prime}, 6^{\prime}$
1^{\prime}	-	127.1	C	-
2^{\prime}	7.27 (d, $J=8.7)$	131.9	CH	9, $3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}$
3^{\prime}	$6.97(\mathrm{~d}, J=8.7)$	114.3	CH	$1^{\prime}, 2^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}$
4^{\prime}	-	160.7	C	-
5^{\prime}	6.97 ($\mathrm{d}, ~ J=8.7)$	114.3	CH	$1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$
6^{\prime}	$7.28(\mathrm{~d}, ~ J=8.7)$	131.6	CH	$4,9,2^{\prime}, 3^{\prime}, 5^{\prime}$
4'-OMe	3.87 (s)	55.4	CH_{3}	4^{\prime}
8 -OMe	3.93 (s)	61.3	CH_{3}	8

Table 24 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra data between compounds CM14 (recorded in acetone- $d_{6}, 300 \mathrm{MHz}$) and (E)-7-hydroxy-8-methoxy-3-(4-methoxybenzyl-chroman-4-one) (R, recorded in DMSO- $d_{6}, 500 \mathrm{~Hz}$)

Position	$\begin{gathered} \text { CM14 } \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \text { CM14 } \\ \delta_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
2	5.43 (d, $J=1.8)$	5.41 (s)	68.3	67.78
3	-	-	127.1	128.63
4	-	-	181.0	179.77
4 a	-	-	116.7	115.27
5	7.74 (d, $J=9.0$)	7.49 ($\mathrm{d}, ~ J=9.5$)	124.2	123.06
6	6.70 ($\mathrm{d}, \mathrm{J}=9.0$)	$6.61(\mathrm{~d}, J=9.5)$	109.8	111.04
7	-	-	155.0	156.94
8	-	-	134.3	135.03
8a	-	-	154.1	155.10
9	7.83 (s)	7.64 (s)	137.1	135.46
1^{\prime}	-	-	127.1	126.45
2^{\prime}	7.27 (d, $J=8.7)$	7.41 ($\mathrm{d}, \mathrm{J}=8.5$)	131.9	132.24
3^{\prime}	$6.97(\mathrm{~d}, ~ J=8.7)$	$7.04(\mathrm{~d}, ~ J=8.5)$	114.3	114.29
4^{\prime}	-	-	160.7	160.31
5^{\prime}	6.97 (d, $J=8.7)$	7.04 (d, $J=8.5$)	114.3	114.29
6^{\prime}	7.28 ($\mathrm{d}, \mathrm{J}=8.7$)	7.41 ($\mathrm{d}, ~ J=8.5$)	131.6	132.24
4^{\prime}-OMe	3.87 (s)	3.70 (s)	55.4	55.33
8 -OMe	3.93 (s)	3.81 (s)	61.3	60.28

3.1.15 Compound CM15

Compound CM15 was obtained as a white solid, mp $85-86^{\circ} \mathrm{C}$. The UV ($\lambda_{\max } 205,243,298$ and 330 nm) and IR (3367, $1700 \mathrm{~cm}^{-1}$) absorption bands supported the presence of conjugated carbonyl and hydroxyl group in the structure.

The ${ }^{1}$ H NMR spectral data (Table 25, Figure 51) displayed two olefinic protons at $\delta 6.28$ and 7.55 (each $1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}$) which were identified as transdouble bond at $\mathrm{H}-8$ and $\mathrm{H}-7$, respectively. The aromatic proton signals at $\delta 6.87$ (d, J $=8.4 \mathrm{~Hz}), 7.03(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz})$ and $7.16(\mathrm{~d}, J=1.8 \mathrm{~Hz})$ were assigned as a $1,2,4-$ trisubstitued benzene ring. In addition, the ${ }^{1} \mathrm{H}$ NMR spectrum displayed the presence of oxymethylene protons at $\delta 4.15(\mathrm{t}, J=6.6 \mathrm{~Hz})$, a methyl signal at $\delta 0.88(\mathrm{t}, J=6.6$ $\mathrm{Hz})$ and a long chain group at $\delta 1.29(\mathrm{~m}, 42 \mathrm{H})$. In the COSY experiment, oxymethylene protons at $\delta 4.15$ showed cross-peak with the methylene protons at δ $1.68(\mathrm{~m})$ and the methyl signal at $\delta 0.88$ showed cross-peak with the methylene protons at $\delta 1.29(\mathrm{~m})$. The EIMS yielded a quasi-molecular ion at $\mathrm{m} / \mathrm{z} 516$ consistent with the molecular formula $\mathrm{C}_{33} \mathrm{H}_{56} \mathrm{O}_{4}$, which showed a major fragment ion at $\mathrm{m} / \mathrm{z} 179$ indicating the caffeic acid fragment. Subtraction of molecular mass of these moieties (179 units) from M^{+}(516 units) gives us the remaining unaccounted 337 units, which suitably fits for a long saturated -($\left.\mathrm{CH}_{2}\right)_{23} \mathrm{CH}_{3}$.

The structure of CM15 was confirmed by HMBC correlations. The proton signal at $\delta 7.55$ (H-7) showed correlations with the carbons at $\delta 114.3$ (C-5), 114.8 (C-8), 126.8 (C-1), 126.8 (C-6) and 166.6 (C-9) and oxymethylene protons at δ $4.15(2 \mathrm{H}-11)$ showed correlations with the carbons at $\delta 28.5$ (C-12) and $166.6(\mathrm{C}-9)$, suggesting that the $1,2,4$-trisubstitued benzene ring was connected to $\mathrm{C}-7$. In addition H-7 showed a cross-peak with the proton at $\delta 7.16$ (H-5) in the NOESY experiment. Thus, CM15 was identified as tetracosyl caffeate (Tanaka et al., 1998).

Selective HMBC correlations of CM15

Table $25{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM15

Position	$\boldsymbol{\delta}_{\mathbf{H}}($ mult., $\boldsymbol{J}, \mathbf{H z})$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	$\mathbf{H M B C}$
1	$7.03(\mathrm{dd}, J=8.4,1.8)$	126.8	CH	$3,5,7$
2	$6.87(\mathrm{~d}, J=8.4)$	115.5	CH	$3,4,6$
3	-	147.8	C	-
4	-	145.4	C	-
5	$7.16(\mathrm{~d}, J=1.8)$	114.3	CH	$1,3,5,7$
6	-	126.8	C	-
7	$7.55(\mathrm{~d}, J=15.6)$	144.0	CH	$1,5,6,8,9$
8	$6.28(\mathrm{~d}, J=15.6)$	114.8	CH	$6,7,9$
9	-	166.6	C	-
10	-		-	-
11	$4.15(\mathrm{t}, J=6.6)$	63.8	CH_{2}	$9,12,13$
12	$1.68(\mathrm{~m})$	28.5	CH_{2}	11
$13-33$	$1.29(\mathrm{~m})$	$22.5-31.8$	CH_{2}	-
34	$0.88(\mathrm{t}, J=6.6)$	13.5	CH_{3}	-

Table 26 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data between compounds CM15 (recorded in acetone- $d_{6}, 300 \mathrm{MHz}$) and tetracosyl caffeate (\mathbf{R}, recorded in acetone- d_{6})

Position	CM15 $\delta_{\mathbf{H}}(\mathbf{m u l t}, \boldsymbol{J}, \mathbf{H z})$	\mathbf{R} $\delta_{\mathbf{H}}(\mathbf{m u l t}, \boldsymbol{J}, \mathbf{H z})$
1	$7.03(\mathrm{dd}, J=8.4,1.8)$	$7.03(\mathrm{dd}, J=8.0,1.0)$
2	$6.87(\mathrm{~d}, J=8.4)$	$6.86(\mathrm{~d}, J=8.0)$
3	-	-
4	-	-
5	$7.16(\mathrm{~d}, J=1.8)$	$7.15(\mathrm{~d}, J=1.0)$
6	-	-
7	$7.55(\mathrm{~d}, J=15.6)$	$7.55(\mathrm{~d}, J=16.0)$
8	$6.28(\mathrm{~d}, J=15.6)$	$6.27(\mathrm{~d}, J=16.0)$
9	-	-
10	-	-
11	$4.15(\mathrm{t}, J=6.6)$	$4.14(\mathrm{t}, J=7.0)$
12	$1.68(\mathrm{~m})$	$1.68(\mathrm{~m})$
$13-33$	$1.29(\mathrm{~m})$	$1.3(\mathrm{~m})$
34	$0.88(\mathrm{t}, J=6.6)$	$0.89(\mathrm{t}, J=6.6)$

3.1.16 Compound CM16

Compound CM16 was obtained as a white solid, mp $250-251{ }^{\circ} \mathrm{C}$. The UV absortion bands at $\lambda_{\text {max }} 216,305,318 \mathrm{~nm}$ supported the presence of a conjugated chromophore in the structure. The IR spectrum showed absorption bands of hydroxyl group ($3360 \mathrm{~cm}^{-1}$), and aromatic stretching ($1607 \mathrm{~cm}^{-1}$).

The ${ }^{13}$ C NMR and DEPT spectral data (Table 27, Figure 54) exhibited 14 carbons, including nine methines ($\delta 101.8,104.8$ (2C), 115.5 (2C), 126.0, 128.2 $(2 \mathrm{C}), 129.1)$ and five quaternary carbons ($\delta 129.9,140.0,157.3,158.7(2 \mathrm{C})$). The ${ }^{1} \mathrm{H}$ NMR spectral data (Table 27, Figure 53) displayed the presence of a 1,4-disubstituted benzene ring at $\delta 7.42,6.85$ (each $2 \mathrm{H}, \mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}$), and a $1,3,5-$ trisustituted benzene ring at $\delta 6.29(1 \mathrm{H}, \mathrm{t}, J=2.1 \mathrm{~Hz})$ and $6.56(2 \mathrm{H}, \mathrm{t}, J=2.1 \mathrm{~Hz})$. In addition, the proton signals at $\delta 6.90$ and 7.03 (each, $1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}$) were deduced as a trans double bond at $\mathrm{C}-\alpha$ and $\mathrm{C}-\beta$, respectively. The locations of a 1,4 -disubstituted and a 1,3,5-trisustituted benzene ring were confirmed by HMBC correlations of an olefinic proton at $\delta 7.03(\mathrm{H}-\alpha)$ with the carbons at $\delta 126.0(\mathrm{C}-\beta), 128.2(\mathrm{C}-2,6)$ and $140.0(\mathrm{C}-$ $\left.1^{\prime}\right)$, and the olefinic proton at $\delta 6.90(\mathrm{H}-\beta)$ with the carbons at $\delta 104.8$ (C-2', 6'), 129.1 (C- α), 129.9 (C-1) and 140.0 (C-1'). Thus, compound CM16 was identified as transresveratrol (Guiso et al., 2002).

Selective HMBC correlations of CM16

Table $27{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM16

Position	$\delta_{\mathbf{H}}(\mathbf{m u l t} ., \boldsymbol{J}, \mathbf{H z})$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	$\mathbf{H M B C}$
α	$7.03(\mathrm{~d}, J=16.5)$	129.1	CH	$2,6,1^{\prime}, \beta$
1	-	129.9	C	-
2	$7.42(\mathrm{dd}, J=8.4,1.8)$	128.2	CH	$3,4,5,6, \alpha$
3	$6.85(\mathrm{dd}, J=8.4,1.8)$	115.5	CH	$1,4,5$
4	-	157.3	C	-
5	$6.85(\mathrm{dd}, J=8.4,1.8)$	115.5	CH	$1,3,4$
6	$7.42(\mathrm{dd}, J=8.4,1.8)$	128.2	CH	$2,3,4,5, \alpha$
β	$6.90(\mathrm{~d}, J=16.5)$	126.0	CH	$\alpha, 1,1^{\prime}, 2^{\prime}, 6^{\prime}$
1^{\prime}	-	140.0	C	-
2^{\prime}	$6.56(\mathrm{t}, J=2.1)$	104.8	CH	$3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}$
3^{\prime}	-	158.7	C	-
4^{\prime}	$6.29(\mathrm{t}, J=2.1)$	101.8	CH	$2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$
5^{\prime}	-	158.7	C	-
6^{\prime}	$6.56(\mathrm{t}, J=2.1)$	104.8	CH	$2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}$

Table 28 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra data between compounds CM16 (recorded in acetone- $d_{6}, 300 \mathrm{MHz}$) and trans-resveratrol (\mathbf{R}, recorded in acetone- d_{6})

Position	CM16 $\delta_{\mathrm{H}}($ mult., $J, \mathrm{~Hz})$	R $\delta_{\mathrm{H}}($ mult., $J, \mathrm{~Hz})$	$\begin{gathered} \hline \text { CM16 } \\ \delta_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
α	7.03 (d, $J=16.5$)	6.98 (d, $J=16.2)$	129.1	128.9
1	-	-	129.9	129.8
2	7.42 (dd, $J=8.4,1.8)$	7.39 (d, $J=8.1)$	128.2	128.5
3	6.85 (dd, $J=8.4,1.8)$	$6.82(\mathrm{~d}, J=8.1)$	115.5	116.2
4	-	-	157.3	158.1
5	6.85 (dd, $J=8.4,1.8)$	$6.82(\mathrm{~d}, J=8.1)$	115.5	116.2
6	7.42 (dd, $J=8.4,1.8)$	7.39 (d, $J=8.1)$	128.2	128.5
β	6.90 ($\mathrm{d}, J=16.5$)	6.87 ($\mathrm{d}, J=16.2)$	126.0	126.6
1^{\prime}	-	-	140.0	140.6
2^{\prime}	$6.56(t, J=2.1)$	$6.52(\mathrm{t}, J=2.1)$	104.8	105.5
3^{\prime}	-	-	158.7	159.3
4^{\prime}	$6.29(\mathrm{t}, J=2.1)$	$6.24(\mathrm{t}, J=2.1)$	101.8	102.5
5^{\prime}	-	-	158.7	159.3
6^{\prime}	$6.56(\mathrm{t}, J=2.1)$	$6.52(\mathrm{t}, J=2.1)$	104.8	105.5

3.1.17 Compound CM17

Compound CM17 was isolated as a white solid, mp $154-156^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{27}-$ 53.1° (c 1.71 in $\mathrm{CH}_{3} \mathrm{OH}$). The UV spectrum displayed maximum absorption at $\lambda_{\max }$ 219, 275, 311 nm , suggesting the presence of conjugation in the molecule. The IR spectrum suggested hydroxyl ($3381 \mathrm{~cm}^{-1}$) and carbonyl ($1699 \mathrm{~cm}^{-1}$) functionalities. The ${ }^{13} \mathrm{C}$ and DEPT NMR spectral data (Table 29, Figure 56) indicated the presence of 14 carbons including six aromatic, five oxymetine, one oxymethylene, one methoxyl and one carbonyl carbons. The ${ }^{1}$ H NMR spectral data (Table 29, Figure 55) displayed the presence of characteristic signal of sugar moiety. The oxymetine proton at $\delta 4.95$ (d, $J=9.0 \mathrm{~Hz}, \mathrm{H}-1$), was inferred to β-configuration of sugar moiety based on the value of the coupling constant. Other proton signal of sugar moiety were resonances at $\delta 3.47$ (t, $J=9.0 \mathrm{~Hz}, \mathrm{H}-4), 3.69(\mathrm{~m}, \mathrm{H}-5), 3.74\left(\mathrm{dd}, J=9.0,6.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-6\right), 3.85(\mathrm{t}, J=$ $9.0 \mathrm{~Hz}, \mathrm{H}-3), 4.05\left(\mathrm{dd}, J=9.0,6.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-6\right)$ and $4.08(\mathrm{t}, J=9.0 \mathrm{~Hz}, \mathrm{H}-2)$ and the large vicinal coupling constants ($J_{\mathrm{ax}, \mathrm{ax}}=9.0 \mathrm{~Hz}$), confirming the β-C-glucoside ring . The proton signal displayed the presence of a one proton singlet at $\delta 7.09$ which was assigned as $\mathrm{H}-2^{\prime}$. From the HMBC experiments, the aromatic proton at $\delta 7.09\left(\mathrm{H}-2^{\prime}\right)$ showed correlations with the carbons at $\delta 72.8$ (C-1), 116.0 (C-6'), 118.0 (C-1'), 140.9 (C-4'), $150.9\left(\mathrm{C}-3^{\prime}\right)$ and $164.6(\mathrm{C}-7)$, the oxymethine proton at $\delta 4.08(\mathrm{H}-2)$ with the carbons at $\delta 72.8(\mathrm{C}-1), 74.2(\mathrm{C}-3), 116.0\left(\mathrm{C}-6^{\prime}\right)$ and $164.6(\mathrm{C}-7)$, and the oxymetine proton at $\delta 4.95(\mathrm{H}-1)$ with the carbons at $\delta 74.2(\mathrm{C}-3), 79.9(\mathrm{C}-2), 81.5(\mathrm{C}-5), 116.0$ (C-6'), 118.0 ($\left.\mathrm{C}-1^{\prime}\right), 140.9\left(\mathrm{C}-4^{\prime}\right)$ and $148.0\left(\mathrm{C}-5^{\prime}\right)$. These data suggested an aryl β - C -
glucoside and an aryl δ-lactone ring. Therefore, compound CM17 was identified as bergenin (Wang et al., 2005).

Selective HMBC correlations of CM17

Conformation of CM17

Table $29{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM17

Position	$\delta_{\mathbf{H}}(\mathbf{m u l t}, \boldsymbol{J}, \mathbf{H z})$	$\delta_{\mathbf{C}}$	DEPT	$\mathbf{H M B C}$
1	$4.95(\mathrm{~d}, J=9.0)$	72.8	CH	$2,3,5,1^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}$
2	$4.08(\mathrm{t}, J=9.0)$	79.9	CH	$1,3,7,6^{\prime}$
3	$3.85(\mathrm{t}, J=9.0)$	74.2	CH	$1,2,5$
4	$3.47(\mathrm{t}, J=9.0)$	70.4	CH	5,6
5	$3.69(\mathrm{~m})$	81.5	CH	4
6	$3.74(\mathrm{dd}, J=9.0,6.6)$	61.2	CH_{2}	4,5
	$4.05(\mathrm{dd}, J=9.0,6.6)$			
7	-	164.6	C	-
1^{\prime}	-	118.0	C	-
2^{\prime}	$7.09(\mathrm{~s})$	109.8	CH	$1,7,1^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$
3^{\prime}	-	150.9	C	-
4^{\prime}	-	140.9	C	-
5^{\prime}	-	148.0	C	-
6^{\prime}	-	116.0	C	-
$4^{\prime}-\mathrm{OMe}$	$3.91(\mathrm{~s})$	59.2	CH	4^{\prime}

Table 30 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra data between compounds CM17 (recorded in DMSO- $d_{6}, 300 \mathrm{~Hz}$) and bergenin (\mathbf{R}, recorded in DMSO- d_{6}, 500 Hz)

Position	CM17 $\delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz})$	$\begin{gathered} \mathrm{R} \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{CM17} \\ \delta_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
1	4.95 (d, $J=9.0)$	4.95 (d, $J=10.4)$	72.8	72.2
2	$4.08(\mathrm{t}, J=9.0)$	3.98 (t, $J=9.9)$	79.9	79.8
3	$3.85(\mathrm{t}, J=9.0)$	3.65 (m)	74.2	73.7
4	3.47 (t, $J=9.0$)	3.21 (m)	70.4	70.7
5	3.69 (m)	3.56 (t, $J=7.6$)	81.5	81.7
6	3.74 (dd, $J=9.0,6.6)$	3.44 (m)	61.2	61.1
	4.05 (dd, $J=9.0,6.6)$			
7	-	-	164.6	163.3
1^{\prime}	-	-	118.0	118.0
2^{\prime}	7.09 (s)	6.98 (s)	109.8	109.5
$3 \prime$	-	-	150.9	150.9
4^{\prime}	-	-	140.9	140.6
5^{\prime}	-	-	148.0	148.0
6^{\prime}	-	-	116.0	116.0
4'-OMe	3.91 (s)	3.77 (s)	59.2	59.8

3.1.18 Compound CM18

Compound CM18 was isolated as a white solid, mp 99-100 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{27}+$ 45.6° ($c 0.24$ in $\mathrm{CH}_{3} \mathrm{OH}$). The IR spectrum showed absorption band of hydroxyl group $\left(3365 \mathrm{~cm}^{-1}\right)$. The ${ }^{13} \mathrm{C}$ NMR and DEPT spectra (Table 31, Figure 58) exhibited 15 carbons, attributable to three methyl, six methylene, three methine and three quaternary carbons indicating a sesquiterpenoid skeleton. Two low-field signals at δ 106.0 and 149.1 representing two carbons of an exocyclic double bond and the signals at $\delta 66.9$ and 71.1 indicated the presence of two oxygenated carbons in the molecule. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 31, Figure 57) displayed the presence of three singlet signals at $\delta 0.70(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-14)$ and $1.16(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}-12$ and 13$)$, a set of methylene protons at $\delta 4.54$ and 4.78 (each dd, $J=3.3,1.8 \mathrm{~Hz}, 2 \mathrm{H}-15$) and an oxymethine proton at $\delta 3.78(\mathrm{~m}, \mathrm{H}-2)$. On the basis of HMBC experiment, the correlations of an olefinic protons at $\delta 4.54$ and $4.78(2 \mathrm{H}-15)$ with the carbons at $\delta 46.6(\mathrm{C}-3), 49.1(\mathrm{C}-5)$ and $149.1(\mathrm{C}-4)$ and of methyl protons at $\delta 0.70$ (Me-14) with the carbons at $\delta 34.8(\mathrm{C}-10)$, 40.9 (C-9), 49.1 (C-5) and 51.1 (C-1) confirmed the structure of CM18. The relative stereochemistry of CM18 was analyzed by NOESY correlations, the methyl protons at $\delta 0.70$ (Me-14) showed a cross-peak with the oxymethine proton at $\delta 3.78(\mathrm{~m}, \mathrm{H}-2)$.

The optical rotation of CM18 is dextrorotatory $\left([\alpha]_{\mathrm{D}}^{2^{7}}+45.6^{\circ}\right)$, the same as (+)-ptercarpol (lit. $[\alpha]_{\mathrm{D}}^{27}+30.6^{\circ}$) (Nasini and Piozzi, 1981) suggesting the same configuration at C-2, C-5, C-7 and C-10. Thus CM18 was assigned as (+)-ptercarpol (Nasini and Piozzi, 1981).

Selective HMBC correlation of CM18

Table $31{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CM18

Position	$\delta_{\mathrm{H}}($ mult., $J, \mathrm{~Hz})$	$\delta_{\text {C }}$	DEPT	HMBC
1	1.23 (m)	51.1	CH_{2}	3, 2, 5, 9, 10, 14
	1.55 (m)			
2	3.78 (m)	66.9	CH	-
3	1.94 (t, $J=11.7)$	46.6	CH_{2}	1, 2, 4, 5, 15
	2.59 (ddd, $J=11.7,4.8,1.8)$			
4	-	149.1	C	-
5	1.75 (m)	49.1	CH	3, 4, 7, 10, 14, 15
6	1.18 (m)	29.6	CH_{2}	5, 7, 8, 10
	1.72 (m)			
7	1.39 (m)	49.4	CH	8, 9, 11, 13, 14
8	1.32 (m)	21.8	CH_{2}	9, 10
	1.65 (m)			
$9 a x$eq	1.19 (m)	40.9	CH_{2}	$1,5,7,8,10,14$
	1.55 (dt, $J=11.7,3.3$)			
10	-	34.8	C	-
11	-	71.1	C	-
12	1.16 (s)	26.5	CH_{3}	7,11,13
13	1.16 (s)	26.9	CH_{3}	7,11,12
14	0.70 (s)	16.7	CH_{3}	1, 5, 9, 10
15	4.54 (dd, $J=3.3,1.8)$	106.0	CH_{2}	3, 4, 5
	4.78 (dd, $J=3.3,1.8)$			

Table 32 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds CM18 (recorded in acetone- $d_{6}, 300 \mathrm{~Hz}$) and (+)-ptercarpol (\mathbf{R}, recorded in CDCl_{3}, 400 Hz)

Position	$\begin{gathered} \text { CM18 } \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \text { CM18 } \\ \delta_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
1	1.23 (m)	51.1	51.03
	1.55 (m)		
2	3.78 (m)	66.9	67.89
3	$1.94(\mathrm{t}, J=11.7)$	46.6	46.55
	2.59 (ddd, $J=11.7,4.8,1.8)$		
4	-	149.1	148.21
5	1.75 (m)	49.1	49.41
6	1.18 (m)	29.6	40.88
	1.72 (m)		
7	1.39 (m)	49.4	49.23
8	1.32 (m)	21.8	24.69
	1.65 (m)		
9ax	1.19 (m)	40.9	22.00
	1.55 (dt, $J=11.7,3.3)$		
10	-	34.8	35.25
11	-	71.1	72.82
12	1.16 (s)	26.9	27.36
13	1.16 (s)	26.5	27.12
14	0.70 (s)	16.7	17.25
15	4.54 (dd, $J=3.3,1.8)$	106.0	107.97
	4.78 (dd, $J=3.3,1.8)$		

3.2 Anti-inflammatory of compounds CM1-CM18 from the roots of C. mimosoides

The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and acetone extracts exhibited potent inhibitory activity against LPS-induced NO production in RAW264.7 cell lines with IC_{50} values of 11.0 and $21.6 \mu \mathrm{~g} / \mathrm{ml}$, respectively. Therefore all isolated compounds were evaluated for their anti-NO activity whose results were shown in Table 33. Compound CM4 ($\mathrm{IC}_{50}=$ $3.0 \mu \mathrm{M})$ possessed the highest activity, followed by compounds CM13, CM12, CM14, CM8 and CM6 ($\mathrm{IC}_{50}=3.9,4.4,5.6,7.1$ and $8.2 \mu \mathrm{M}$, respectively), whereas other compounds exhibited moderate and mild activities. The inhibitory activities of all compounds were much stronger than that of NO synthase inhibitor (L-nitroarginine (L-NA), $\mathrm{IC}_{50}=61.8 \mu \mathrm{M}$) except compound $\mathbf{C M 1 7}$ showed weaker activity $\left(\mathrm{IC}_{50}=\right.$ $83.0 \mu \mathrm{M})$. Compounds CM4, CM12 and CM13 also showed higher inhibitory activity than caffeic acid phenethylester (CAPE) ($\left.\mathrm{IC}_{50}=5.6 \mu \mathrm{M}\right)$. Structure-activity relationships of these classes of diterpenes (CM1-CM9) for anti-inflammatory activity are suggested as follows: (i) the acetoxyl group on the molecule was necessary for increasing the activity: compound CM6 with the acetoxyl group was strongly active $\left(\mathrm{IC}_{50}=8.2 \mu \mathrm{M}\right.$), whereas compound $\mathbf{C M 5}$ was much less active $\left(\mathrm{IC}_{50}=56.8\right.$ $\mu \mathrm{M})$. (ii) One hydroxyl substituent gave higher activity than two hydroxyls as shown in compound CM8 $\left(\mathrm{IC}_{50}=7.1 \mu \mathrm{M}\right)$ vs. compounds CM2 and CM3 ($\mathrm{IC}_{50}=19.3$ and $15.4 \mu \mathrm{M})$, respectively. This result implied that a hydroxyl substitution at other positions besides C-16 decreased the activity. Compounds CM4, CM6, CM8 and CM12-CM14 were also tested for the inhibitory effect on LPS-induced TNF- α release in RAW264.7 cells (Table 34). The results revealed that CM4 and CM12 possessed the most potent activity against TNF- α release with IC_{50} values of 6.5 and $9.5 \mu \mathrm{M}$, respectively, whereas, compounds CM6, CM8, CM13, and CM14 exhibited moderate activity with IC_{50} values of $38.8,35.2,11.4$, and $14.6 \mu \mathrm{M}$, respectively. From the present study, compound CM4 was a new compound that showed strong inhibition on both NO and TNF- α releases.

Table 33 Inhibitory effects on NO production of compounds CM1-CM18 from C. mimosoides

No	\% Inhibition at various concentrations ($\mu \mathrm{M}$)						$\begin{gathered} \mathbf{I C}_{50} \\ (\mu \mathbf{M}) \end{gathered}$
	0	1	3	10	30	100	
CM1	0.0 ± 6.9	-	-	$36.7 \pm 3.3 * *$	68.4 ± 2.1 **	$99.8 \pm 2.3 * *$	15.9
CM2	0.0 ± 5.6	-	-	$35.3 \pm 2.8^{* *}$	$54.0 \pm 2.9^{* *}$	$101.9 \pm 2.3^{* *}$	19.3
CM3	0.0 ± 5.6	-	-	$32.8 \pm 2.3 * *$	$78.1 \pm 4.4^{* *}$	$99.4 \pm 3.2^{\text {b } * *}$	15.4
CM4	0.0 ± 5.6	19.4 ± 3.1	$49.3 \pm 2.5 * *$	$83.7 \pm 0.9 * *$	$89.3 \pm 3.1^{\text {b } * *}$	$100.2 \pm 2.5^{\text {b }} * *$	3.0
CM5	0.0 ± 9.6	-	-	5.1 ± 1.2	25.6 ± 2.4	$68.9 \pm 2.6^{* *}$	56.8
CM6	0.0 ± 9.6	-	$25.0 \pm 2.3^{*}$	60.4 ± 4.1 **	$75.8 \pm 2.5 * *$	$100.3 \pm 3.5{ }^{\text {b }}$ **	8.2
CM7	0.0 ± 6.9	-	-	$40.5 \pm 3.6 * *$	$75.0 \pm 2.1^{* *}$	$98.1 \pm 3.3^{* *}$	13.2
CM8	0.0 ± 6.9	-	$27.1 \pm 4.4 *$	$51.9 \pm 2.9 * *$	$98.0 \pm 3.5^{\text {b } * *}$	$100.0 \pm 1.9^{\text {b }}$ *	7.1
CM9	0.0 ± 4.2	-	-	23.3 ± 2.1 **	$60.9 \pm 2.0^{* *}$	$94.3 \pm 3.5 * *$	22.8
CM10	0.0 ± 4.4	-	-	31.2 ± 1.2	49.6 ± 3.7 **	$81.0 \pm 3.6 * *$	25.9
CM11	0.0 ± 4.4	-	-	4.8 ± 2.9	$28.5 \pm 2.5 *$	$67.0 \pm 4.4^{* *}$	57.2
CM12	0.0 ± 4.9	-	$39.5 \pm 2.4 *$	$71.0 \pm 3.8^{* *}$	$95.0 \pm 1.7^{* *}$	$99.4 \pm 3.4^{\text {b } * *}$	4.4
CM13	0.0 ± 4.9	-	$43.4 \pm 2.1 * *$	$72.1 \pm 2.0 * *$	$97.5 \pm 2.5 * *$	$100.5 \pm 2.4^{\text {b }}$ *	3.9
CM14	0.0 ± 4.4	-	$35.4 \pm 2.5^{*}$	$63.0 \pm 0.7 * *$	$85.8 \pm 1.5^{* *}$	$101.7 \pm 3.0^{* *}$	5.6
CM15	0.0 ± 4.9	-	-	$22.0 \pm 3.1 * *$	$68.5 \pm 2.2^{\text {b } * *}$	$99.7 \pm 2.1^{\text {b } * *}$	20.8
CM16	0.0 ± 4.2	-	-	28.4 ± 3.1	$60.2 \pm 1.5 * *$	$94.6 \pm 2.3^{* *}$	21.1
CM17	0.0 ± 4.2	-	-	2.4 ± 1.5	$22.3 \pm 2.6^{* *}$	$56.2 \pm 3.9 * *$	83.0
CM18	0.0 ± 3.5	-	-	15.4 ± 1.8	$42.8 \pm 2.6^{* *}$	$91.8 \pm 2.0^{* *}$	31.0
L-NA	0.0 ± 9.9		11.7 ± 4.6	20.2 ± 5.9	34.7 ± 1.8 *	$71.6 \pm 2.6 * *$	61.8
CAPE	0.0 ± 9.9		30.7 ± 3.2 *	$68.6 \pm 3.4 * *$	$98.7 \pm 1.2^{\text {b }} * *$	$98.9 \pm 2.1^{\text {b } * *}$	5.6

${ }^{\text {a }}$ Each value represents mean \pm S.E.M. of four determinations.
Statistical significance, *p<0.05, ** $p<0.01$
${ }^{\mathrm{b}}$ Cytotoxic effect was observed.

Table 34 Inhibition on TNF- α production of compounds CM4, CM6, CM8, and CM12-CM14 isolated from C. mimosoides

No	\% Inhibition at various concentrations ($\mu \mathrm{M}$)					$\begin{array}{r} \mathbf{I C}_{50} \\ (\mu \mathrm{M}) \end{array}$
	0	3	10	30	100	
CM4	0.0 ± 5.7	36.6 ± 0.7	$60.0 \pm 1.0^{* *}$	$71.2 \pm 0.9^{* *}$	$95.2 \pm 1.5^{\text {b }}$ **	6.5
CM6	0.0 ± 5.7	-	21.2 ± 1.4	$37.7 \pm 2.0^{*}$	$75.3 \pm 2.1 * *$	38.8
CM8	0.0 ± 5.7	-	$8.2 \pm 1.0^{* *}$	42.3 ± 1.0 **	$86.7 \pm 1.8 * *$	35.2
CM12	0.0 ± 5.6	-	$50.0 \pm 3.3 * *$	$72.1 \pm 2.4^{* *}$	$95.4 \pm 1.2^{\text {b } * *}$	9.5
CM13	0.0 ± 5.6	-	$48.5 \pm 2.5 * *$	$68.5 \pm 1.5 * *$	$99.7 \pm 0.9^{\text {b }} * *$	11.4
CM14	0.0 ± 5.7	-	$43.6 \pm 2.3 * *$	$62.1 \pm 2.0^{* *}$	$98.4 \pm 2.8^{\text {b } * *}$	14.6

${ }^{\text {a }}$ Each value represents mean \pm S.E.M. of four determinations.
${ }^{\mathrm{b}}$ Cytotoxic effect was observed.
Statistical significance, ${ }^{*} p<0.05, * * p<0.01$

3.3 Structural elucidation of compounds from the roots of C. pulcherrima

The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract from the roots of C. pulcherrima was subjected to vacuum liquid chromatography and column chromatography over silica gel to afford 15 new diterpenes (CP1-CP15) together with eleven known compounds (CP16CP26). The known compounds were identified as vouacapen-5 α-ol (CP16) (McPherson et al., 1986), isovouacapenol C (CP17) (Ragasa et al., 2002), 6 β -cinnamoyl- 7β-hydroxyvouacapen- 5α-ol (CP18) (McPherson et al., 1986), pulcherrin A (CP19) (Pranithanchai et al., 2009), pulcherrin B (CP20) (Pranithanchai et al., 2009), pulcherrimin C (CP21) (Patil et al., 1997), pulcherrimin A (CP22) (Patil et al., 1997), pulcherrimin E (CP23) (Roach et al., 2003), pulcherrin C (CP24) (Pranithanchai et al., 2009), pulcherrimin B (CP25) (Patil et al., 1997) and 8,9,11,14-didehydrovouacapen- 5α-ol (CP26) (McPherson et al., 1986) by comparison of their spectroscopic data with those reported in the literatures and comparison with the authentic samples. Compounds CP1-CP14 showed characteristic of the 2,3disubstituted furan by the Ehrlich reagent (Kuroda et al., 2004) and the UV absorptions (Cheenpracha et al., 2005). The IR spectrum of all new compounds showed the presence of as ester carbonyl (1700-1777 cm^{-1}) and hydroxyl (3549-3425 cm^{-1}) functionalities.

3.3.1 Compound CP1

Compound CP1 had the molecular formula $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{4}\left([\mathrm{M}]^{+} \mathrm{m} / \mathrm{z}\right.$ 360.2301) based on HREIMS. The presence of a 2,3-furanocassane framework was inferred from the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 35, Figures 61 and 62). The ${ }^{1} \mathrm{H}$ NMR spectrum showed four singlet signals of three aliphatic methyl groups at $\delta 0.89$ (Me-18), $1.00(\mathrm{Me}-19)$, and 1.04 (Me-20) and an acetoxy methyl group at $\delta 2.00$ $\left(\mathrm{OCOCH}_{3}\right)$ and a doublet signal of a secondary methyl group at $\delta 0.94(J=6.9 \mathrm{~Hz}$, Me-17). The signal of a 2,3 -disubstituted furan ring was evident from resonances at δ 6.12 and 7.16 (each d, $J=1.8 \mathrm{~Hz}, \mathrm{H}-15$ and $\mathrm{H}-16$, respectively). The ${ }^{13} \mathrm{C}$ NMR spectroscopic data displayed 22 carbons including those of an ester carbonyl carbon at $\delta 170.7\left(\mathrm{OCOCH}_{3}\right)$. An oxymethine proton was displayed at $\delta 5.22(\mathrm{td}, J=11.1,6.0$ $\mathrm{Hz}, \mathrm{H}-7 ; \delta_{\mathrm{C}} 72.3$) whose coupling constants suggested its axial orientation. This proton also showed HMBC correlations to the carbons at $\delta 27.6$ (C-14), 31.5 (C-6), $39.8(\mathrm{C}-8)$ and $170.7\left(\mathrm{OCOCH}_{3}\right)$ which suggested the location of the OAc group at C 7. In the NOESY spectrum, the correlations between the oxymethine proton at $\delta 5.22$ (H-7) and the protons at $\delta 0.94$ (Me-17), $2.01(\mathrm{H}-6 \alpha)$ and $2.46(\mathrm{H}-9)$ placed them on the same side of the molecule. An OH group was placed at C-5 ($\delta 77.9$) and assumed to be α-oriented by biogenetic pathway and comparison with the previously isolated furanoditerpenoids from this plant (McPherson et al., 1986, Patil et al., 1997, Ragasa et al., 2002, Promsawan et al., 2003, Pranithanchai et al., 2009, Che et al., 1986, Das et al., 2010, Ragasa et al., 2003). From these data, CP1 was deduced to be 7β -acetoxyvouacapen-5 α-ol, a new compound (Yodsaoue et al., 2011) and named as pulcherrin D.

Selective HMBC correlations of CP1

Table $35{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP1

Position	$\delta_{\mathbf{H}}(\mathbf{m u l t}, \boldsymbol{J}, \mathbf{H z})$	$\delta_{\mathbf{C}}$	DEPT	HMBC
1	$1.32(\mathrm{~m})$	32.3	CH_{2}	$3,10,20$
	$1.40(\mathrm{~m})$			
2	$1.51(\mathrm{~m})$	18.1	CH_{2}	4,10
3	$1.58(\mathrm{~m})$			
	$1.11(\mathrm{br} \mathrm{d}, J=8.4)$	35.8	CH_{2}	$1,4,5,18,19$
4	$1.57(\mathrm{~m})$			
5	-	38.5	C	-
6 eq	$2.01(\mathrm{dd}, J=12.9,6.0)$	31.5	CH	$4,5,7,8,10$
ax	$1.64(\mathrm{dd}, J=12.9,11.1)$			
7	$5.22(\mathrm{td}, J=11.1,6.0)$	72.3	CH	$6,8,14,11^{\prime}$
8	$1.87(\mathrm{td}, J=11.1,4.8)$	39.8	CH	$6,7,9,11,14,17$
9	$2.46(\mathrm{~m})$	36.8	CH	$1,8,10,11,12,14,20$
10	-	40.9	C	-
11	$2.32(\mathrm{~m})$	22.4	CH	$8,9,10,12,13$
12	$2.46(\mathrm{~m})$			
13	-	149.3	C	-

Table 35 (continued)

Position	$\delta_{\mathbf{H}}$ (mult., $\left.\boldsymbol{J}, \mathbf{H z}\right)$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
14	$2.75(\mathrm{qd}, J=6.9,4.8)$	27.6	CH	$8,9,12,13,15,17$
15	$6.12(\mathrm{~d}, J=1.8)$	109.6	CH	$12,13,16$
16	$7.16(\mathrm{~d}, J=1.8)$	140.5	CH	$12,13,15$
17	$0.94(\mathrm{~d}, J=6.9)$	17.1	CH_{3}	$8,13,14$
18	$0.89(\mathrm{~s})$	28.0	CH_{3}	$3,4,5,19$
19	$1.00(\mathrm{~s})$	24.7	CH_{3}	$3,4,5,18$
20	$1.04(\mathrm{~s})$	17.4	CH_{3}	$1,5,9,10$
1^{\prime}	-	170.7	C	-
2^{\prime}	$2.00(\mathrm{~s})$	21.3	CH_{3}	1^{\prime}

3.3.2 Compound CP2

Compound CP2 had the molecular formula $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5}\left([\mathrm{M}]^{+} \mathrm{m} / \mathrm{z}\right.$ 376.2250) inferred from HREIMS. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 36, Figures 68 and 69) of CP2 were closely related to those of CP1. The only difference was found as replacement of the methylene protons at $\delta 1.64$ and 2.01 (2H-6) in CP1 with an oxymethine proton at $\delta 4.15$ (d, $J=3.9 \mathrm{~Hz} ; \delta_{\mathrm{C}} 71.3$) in CP2. The HMBC correlations of the latter proton with the carbons at $\delta 35.0$ (C-8), 39.3 (C-4), 40.6 (C10), 74.8 (C-7) and 77.7 (C-5) suggested its location at C-6 whose α-orientation was suggested by its NOESY cross-peaks with Me-18 ($\delta 0.95$) and H-7 ($\delta 5.38$) and the small vicinal coupling constants ($J_{7 \mathrm{ax}, 6 \mathrm{eq}}=3.9 \mathrm{~Hz}$). Therefore, $\mathbf{C P 2}$ was 6β-hydroxy7β-acetoxyvouacapen- 5α-ol, a new compound (Yodsaoue et al., 2011) and named as pulcherrin E.

Table $36{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP2

Position	$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{J}, \mathrm{Hz})$	$\delta_{\text {C }}$	DEPT	HMBC
1	1.28 (m)	35.2	CH_{2}	2, 20
	1.44 (m)			
2	1.36 (m)	18.1	CH_{2}	10
	1.63 (m)			
3	1.08 (m)	37.5	CH_{2}	1, 5, 18, 19
	1.56 (m)			
4	-	39.3	C	-
5	-	77.7	C	-
6	4.15 (d, $J=3.9)$	71.3	CH	4, 5, 7, 8, 10
7	5.38 (dd, $J=11.4,3.9)$	74.8	CH	8, 9, 14, 1'
8	2.11 (m)	35.0	CH	7, 9, 11, 14, 17
9	2.42 (m)	37.2	CH	$8,10,11,12,14,20$
10	-	40.6	C	-
11	2.41 (m)	21.7	CH_{2}	8, 9, 10, 12, 13
	2.45 (m)			
12	-	149.4	C	-
13	-	121.6	C	-
14	2.72 (qd, $J=6.9,5.1)$	27.8	CH	8, 9, 12, 13, 15, 17
15	$6.12(\mathrm{~d}, J=2.1)$	109.5	CH	12, 13, 16
16	7.16 (d, $J=2.1)$	140.5	CH	12, 13, 15
17	0.92 (d, $J=6.9)$	17.3	CH_{3}	8, 13, 14
18	0.95 (s)	27.6	CH_{3}	3, 4, 5, 19
19	1.38 (s)	25.5	CH_{3}	3, 4, 5, 18
20	1.29 (s)	17.2	CH_{3}	1, 5, 9, 10
$1{ }^{1}$	-	170.1	C	-
2^{\prime}	2.08 (s)	21.2	CH_{3}	7, 1'

3.3.3 Compound CP3

Compound CP3 had the same molecular formula $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5}$ as $\mathbf{C P 2}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 37, Figures 70 and 71) of CP3 were closely related to those of $\mathbf{C P 2}$ which differed only in the chemical shifts of positions 6 and 7. The oxymethine proton H-6 of CP3 appeared at $\delta_{\mathrm{H}} 5.48$ ($\delta_{\mathrm{C}} 73.4$) more downfield than that of CP2 ($\delta_{\mathrm{H}} 4.15 ; \delta_{\mathrm{C}} 71.3$) as a result of the deshielding effect of the OAc group while $\mathrm{H}-7$ of $\mathbf{C P} 3$ resonanced at $\delta_{\mathrm{H}} 4.31$ ($\delta_{\mathrm{C}} 69.1$), higher field than that of $\mathbf{C P 2}$ ($\delta_{\mathrm{H}} 5.38 ; \delta_{\mathrm{C}} 74.8$). The HMBC correlations of an oxymethine proton at $\delta 5.48(\mathrm{H}-6)$ with the carbons at $\delta 37.7$ (C-8), 39.1 (C-4), 41.2 (C-10), 69.1 (C-7), 77.2 (C-5) and $171.4\left(\mathrm{O}_{\mathrm{COCH}}^{3}\right.$) and of an oxymethine proton at $\delta 4.31(\mathrm{H}-7)$ with the carbons at δ 27.3 (C-14), 37.7 (C-8) and 73.4 (C-6) confirmed the locations of the OAc group at C6 and OH at C-7, respectively. The NOESY cross-peaks of $\mathrm{H}-6 / \mathrm{H}-7 / \mathrm{H}-9$ and $\mathrm{H}-7 / \mathrm{H}-$ 6/H-17 confirmed the α-orientations of H-6 and H-7. Thus, CP3 was assigned to be 6β-acetoxy- 7β-hydroxyvouacapen- 5α-ol, a new compound (Yodsaoue et al., 2011) and was named as pulcherrin F .

Selective HMBC correlations of CP3

Table $37{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP3

Position	$\delta_{\mathrm{H}}($ mult., $J, \mathrm{~Hz})$	$\delta_{\text {c }}$	DEPT	HMBC
1	1.43 (m)	35.0	CH_{2}	3, 5, 10, 20
	1.50 (m)			
2	1.46 (m)	18.0	CH_{2}	4, 10
	1.69 (m)			
3	1.15 (m)	37.8	CH_{2}	4, 19
	1.65 (m)			
4	-	39.1	C	-
5	-	77.2	C	-
6	$5.48(\mathrm{~d}, J=4.2)$	73.4	CH	4, 5, 7, 8, 10, 1'
7	4.31 (dd, $J=10.8,4.2)$	69.1	CH	6, 8, 14
8	1.93 (ddd, $J=12.0,10.8,5.1)$	37.7	CH	7, 9, 11, 14, 17
9	2.36 (br dd, $J=12.0,8.7$)	37.1	CH	8, 10, 11, 20
10	-	41.2	C	-
11	2.47 (m)	21.6	CH_{2}	8, 9, 12, 13
	2.51 (m)			
12	-	149.2	C	-
13	-	121.9	C	-
14	3.02 (qd, $J=6.9,5.1)$	27.3	CH	8, 9, 12, 13, 17
15	$6.21(\mathrm{~d}, J=1.8)$	109.7	CH	12, 13, 16
16	7.23 (d, $J=1.8)$	140.5	CH	12, 13, 15
17	1.07 (d, $J=6.9)$	17.1	CH_{3}	8, 13, 14
18	1.04 (s)	27.7	CH_{3}	3, 4, 5, 19
19	1.21 (s)	25.3	CH_{3}	3, 4, 5, 18
20	1.34 (s)	17.0	CH_{3}	1, 5, 9, 10
$1{ }^{\prime}$	-	171.4	C	-
2^{\prime}	2.12 (s)	21.7	CH_{3}	1^{\prime}

3.3.4 Compound CP4

The molecular weight of compound $\mathbf{C P 4}, \mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{5}$, was assigned at $m / z 438.2410[M]^{+}$by HREIMS. The NMR spectra (Table 38, Figures 72 and 73) of CP4 displayed characteristic similar to those of CP2 except for the replacement of an acetoxy group at $\delta 2.08$ in $\mathbf{C P 2}$ with a benzoyloxy group at $\delta 7.40(\mathrm{br} \mathrm{t}, J=7.5 \mathrm{~Hz} ; \mathrm{H}-$ 4', H- 6'), 7.53 (tt, $J=7.5,1.2 \mathrm{~Hz} ; \mathrm{H}-5^{\prime}$) and 8.02 (br d, $J=7.5 \mathrm{~Hz} ; \mathrm{H}-3^{\prime}, \mathrm{H}-7^{\prime}$) in CP4. This evidence was confirmed by HMBC correlations of an oxymethine proton at δ 5.62 (dd, $J=10.8,3.9 \mathrm{~Hz} ; \mathrm{H}-7$) to the carbons at $\delta 27.7$ (C-14), 35.2 (C-8) and 165.6 (C-1'), and of H-6 ($\delta 4.31$) with the carbons at $\delta 35.2$ (C-8), 39.3 (C-4), 40.7 (C-10), 75.6 (C-7) and 77.8 (C-5). An oxymethine proton H-6 was deduced to be equatorially oriented by a small vicinal coupling constant $\left(J_{6 e q, 7 a x}=3.9 \mathrm{~Hz}\right)$, whereas H-7 was an axial proton by the large vicinal coupling constant ($J_{7 \mathrm{ax}, 8 \mathrm{ax}}=10.8 \mathrm{~Hz}$). It was further supported by NOESY cross-peaks of H-7 with Me-17, H-9 and H-6. Thus, CP4 was assigned to be 6β-hydroxy- 7β-benzoyloxyvouacapen- 5α-ol, a new compound (Yodsaoue et al., 2011) and was named as pulcherrin G. This compound was first isolated from natural product, however it was previously obtained from the partial synthesis (Roach et al., 2003).

Selective HMBC correlations of CP4

Table $38{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP4

Position	δ_{H} (mult., $J, \mathrm{~Hz}$)	$\delta_{\text {C }}$	DEPT	HMBC
1	1.34 (m)	35.2	CH_{2}	2, 10, 20
	1.50 (m)			
2	1.42 (m)	18.2	CH_{2}	1,4
	1.64 (m)			
3	1.10 (m)	37.5	CH_{2}	1, 4, 5, 19
	1.63 (m)			
4	-	39.3	C	-
5	-	77.8	C	-
6	$4.31(\mathrm{~d}, J=3.9)$	71.4	CH	4, 5, 7, 8, 10
7	5.62 (dd, $J=10.8,3.9)$	75.6	CH	$8,14,1$ '
8	2.33 (ddd, $J=12.0,10.8,4.8)$	35.2	CH	7, 9, 11, 14, 17
9	2.49 (m)	37.3	CH	1, 10, 11, 12, 20
10	-	40.7	C	-
11	2.48 (m)	21.8	CH_{2}	8, 9, 10, 12, 13
12	-	149.5	C	-
13	-	121.6	C	-
14	2.82 (qd, $J=6.9,4.8)$	27.7	CH	8, 9, 12, 13, 15, 17
15	6.10 (d, $J=1.8)$	109.5	CH	12, 13, 16
16	7.16 (d, $J=1.8)$	140.6	CH	12, 13, 15
17	0.94 (d, $J=6.9)$	17.4	CH_{3}	8, 13, 14
18	0.96 (s)	27.8	CH_{3}	3, 4, 5, 19
19	1.39 (s)	25.5	CH_{3}	3, 4, 5, 18
20	1.34 (s)	17.3	CH_{3}	1, 5, 9, 10
$1{ }^{1}$	-	165.6	C	-
2^{\prime}	-	130.0	C	-
3'/7'	8.02 (br d, $J=7.5$)	129.7	CH	1', 2', 5'
4'/6'	7.40 (br t, $J=7.5$)	128.6	CH	1', 2'
$5 '$	7.53 (tt, $J=7.5,1.2)$	133.3	CH	3', 7'

3.3.5 Compound CP5

Compound CP5 had the molecular formula $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{4}$ by HREIMS. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 39, Figures 74 and 75) were comparable to those of CP1 except that the signals of an acetoxy group in CP1 was replaced by those of a benzoyloxy group in CP5 shown as the resonances at $\delta 7.37$ (t, $J=7.2 \mathrm{~Hz} ; \mathrm{H}-4$ ', H$\left.6^{\prime}\right), 7.48$ (tt, $\left.J=7.2,1.5 \mathrm{~Hz} ; \mathrm{H}-5 '\right)$ and 7.98 (dt, $J=7.2,1.5 \mathrm{~Hz} ; \mathrm{H}-3^{\prime}, \mathrm{H}-7$ '). The correlations of an oxymethine proton at $\delta 5.29$ (H-3) with the carbons at $\delta 19.6$ (C-19), 23.1 (C-18), 23.8 (C-2), 43.5 (C-4) and 166.2 (C-1') in the HMBC spectrum placed the benzoyloxy group at $\mathrm{C}-3$. The relative stereochemistry of $\mathrm{H}-3$ was assigned to be axially oriented by the large and small vicinal coupling constants ($J_{3 \mathrm{ax}, 2 \mathrm{ax}}=11.4 \mathrm{~Hz}$, $\left.J_{3 a x, 2 e q}=4.8 \mathrm{~Hz}\right)$. In the NOESY spectrum, the benzoyloxy protons at $\delta 7.98\left(\mathrm{H}-3^{\prime}, \mathrm{H}-\right.$ ${ }^{7}$) displayed a cross-peak with the methyl protons at $\delta 1.17$ (Me-19), confirming the β-orientation of the benzoyloxy group. Thus, CP5 was assigned to be 3β -benzoyloxyvouacapen-5 5 -ol, a new compound (Yodsaoue et al., 2011) and was named as pulcherrin H.

Selective HMBC correlations of CP5

Table $39{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP5

Position	δ_{H} (mult., $J, \mathrm{~Hz}$)	$\delta_{\text {C }}$	DEPT	HMBC
1 eq	1.40 (td, $J=8.4,2.7)$	31.2	CH_{2}	2, 3, 5, 9, 10, 20
ax	1.74 (m)			
2	1.75 (m)	23.8	CH_{2}	1, 3, 4, 10
	1.84 (m)			
3	5.29 (dd, $J=11.4,4.8)$	77.8	CH	2, 4, 18, 19, 1'
4	-	43.5	C	-
5	-	78.6	C	-
6 ax	1.55 (br d, $J=12.0)$	26.1	CH_{2}	4, 5, 7, 8, 10
eq	1.85 (m)			
7	1.46 (m)	24.1	CH_{2}	$5,6,8,9,14$
	1.70 (m)			
8	1.74 (m)	34.3	CH	6, 7, 10, 14, 17
9	2.30 (m)	37.6	CH	$8,10,11,12,20$
10	-	41.0	C	-
11	2.32 (m)	22.4	CH_{2}	8, 9, 10, 12, 13
	2.43 (m)			
12	-	149.4	C	-
13	-	122.6	C	-
14	2.55 (qd, $J=6.9,3.9)$	31.3	CH	8, 9, 12, 13, 17
15	$6.11(\mathrm{~d}, J=1.5)$	109.5	CH	12, 13, 16
16	7.15 (d, $J=1.5$)	140.4	CH	12, 13, 15
17	0.95 (d, $J=6.9)$	17.5	CH_{3}	8, 13, 14
18	0.97 (s)	23.1	CH_{3}	3, 4, 5, 19
19	1.17 (s)	19.6	CH_{3}	3, 4, 5, 18
20	1.05 (s)	17.2	CH_{3}	1, 5, 9, 10
$1{ }^{\prime}$	-	166.2	C	-
2^{\prime}	-	131.0	C	-
$3^{\prime} / 7{ }^{\prime}$	7.98 (dt, $J=7.2,1.5)$	129.5	CH	1', 5'
4'/6'	7.37 ($\mathrm{t}, \mathrm{J}=7.2$)	128.3	CH	1', 2'
$5 '$	7.48 (tt, $J=7.2,1.5$)	132.7	CH	$3^{\prime}, 7{ }^{\prime}$

3.3.6 Compound CP6

Compound CP6 showed the molecular ion peak at $m / z 422.2459[\mathrm{M}]^{+}$ by HREIMS corresponding to a molecular formula of $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{4}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data (Table 40, Figures 76 and 77) were closely related to those of CP5 except for the arrangement of a benzoyloxy group whose location in CP6 was at C-6 whereas that of CP5 at C-3. The observed HMBC correlations of a proton at $\delta 5.47$ (H-6) with the carbons at $\delta 30.7$ (C-8), 31.6 (C-7), 39.0 (C-4), 41.3 (C-10), 76.4 (C-5), and the carbonyl carbon of a benzoyloxy group at $\delta 165.8$ ($\mathrm{C}-1$ ') supported the assignment. The small vicinal coupling constants $\left(J_{6 e q, 7 a x}=2.7 \mathrm{~Hz}\right.$ and $J_{6 e q, 7 e q}=2.7$ $\mathrm{Hz})$ suggested the relative stereochemistry of $\mathrm{H}-6$ to be equatorially oriented. In the NOESY spectrum, an oxymethine proton at $\delta 5.47$ (H-6) showed cross-peaks with the methyl protons at $\delta 0.93$ (Me-18) and the aromatic protons at $\delta 7.95$ (H-3', H-7') correlated with the methyl protons at $\delta 1.44$ (Me-20), confirming a β-orientation of a benzoyloxy group. Thus, CP6 was assigned to be 6β-benzoyloxyvouacapen- 5α-ol, a new compound (Yodsaoue et al., 2011) and was named as pulcherrin I.

Table $40{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP6

Position	$\delta_{\text {H }}($ mult., J, Hz)	$\delta_{\text {c }}$	DEPT	HMBC
1	1.38 (m)	34.9	CH_{2}	2, 3, 5, 9, 10
	1.56 (m)			
2	1.40 (m)	18.3	CH_{2}	1, 3, 4, 10
	1.64 (m)			
3	1.02 (br d, $J=8.4)$	38.1	CH_{2}	$1,2,4,5,18,19$
	1.64 (m)			
4	-	39.0	C	-
5	-	76.4	C	-
6	5.47 ($\mathrm{t}, \mathrm{J}=2.7)$	72.8	CH	4, 5, 7, 8, 10, 1'
7 ax	1.53 (ddd, $J=14.4,3.9,2.7)$	31.6	CH_{2}	6,8,9,5
eq	2.23 (td, $J=14.4,2.7)$			
8	1.98 (m)	30.7	CH	7, 9, 11, 14, 17
9	2.35 (m)	38.0	CH	$1,7,8,10,11,12,20$
10	-	41.3	C	-
11	2.34 (m)	21.9	CH_{2}	8, 9, 10, 12, 13
	2.43 (m)			
12	-	149.5	C	-
13	-	122.4	C	-
14	2.45 (m)	31.2	CH	7, 8, 9, 12, 13, 15, 17
15	6.06 (d, $J=1.8)$	109.5	CH	12, 13, 14, 16
16	7.11 (d, $J=1.8)$	140.4	CH	12, 13, 15
17	0.90 (d, $J=7.2)$	17.6	CH_{3}	8, 13, 14
18	0.93 (s)	27.8	CH_{3}	3, 4, 5, 19
19	1.13 (s)	26.0	CH_{3}	3, 4, 5, 18
20	1.44 (s)	17.2	CH_{3}	1, 5, 9, 10
$1{ }^{\prime}$	-	165.8	C	-
2^{\prime}	-	130.6	C	-
$3^{\prime} / 7{ }^{\prime}$	7.95 (br d, $J=7.2)$	129.7	CH	1', 5'
4'/6'	7.33 (br t, $J=7.2$)	128.6	CH	1', 5'
$5 '$	7.45 (br t, $J=7.2$)	133.1	CH	$3^{\prime}, 4,{ }^{\prime} \mathbf{6}^{\prime}, 7{ }^{\prime}$

3.3.7 Compound CP7

Compound CP7 showed the molecular formula $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{4}\left([\mathrm{M}]^{+} \mathrm{m} / \mathrm{z}\right.$ 448.2617) by HREIMS. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data (Table 41, Figures 78 and 79) were closely related to those of CP6 except for the replacement of a benzoyloxy group at $\delta 7.33$ (br t, $J=7.2 \mathrm{~Hz} ; \mathrm{H}-4 ', \mathrm{H}-6$ '), 7.45 (br t, $\left.J=7.2 \mathrm{~Hz} ; \mathrm{H}-5^{\prime}\right)$ and 7.95 (br d, $J=7.2 \mathrm{~Hz} ; \mathrm{H}-3^{\prime}, \mathrm{H}-7$ ') in CP6 with a trans-cinnamoyloxy moiety in CP7 at $\delta 6.33$ and 7.60 (each d, $J=15.9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ and $\mathrm{H}-3^{\prime}$, respectively) and 7.297.44 (m, H-5' to H-9'). The HMBC correlation of H-6 ($\delta 5.31$) to the carbonyl carbon of the cinnamoyloxy group at $\delta 166.0$ ($\mathrm{C}-1$ ') suggested the location of the transcinnamoyloxy side chain at C-6. Thus, CP7 was assigned to be 6β -cinnamoyloxyvouacapen- 5α-ol, a new compound (Yodsaoue et al., 2011) and was named as pulcherrin J.

Selective HMBC correlations of CP7

Table $41{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP7

Position	δ_{H} (mult., J, Hz)	$\delta_{\text {c }}$	DEPT	HMBC
1	1.35 (m)	34.8	CH_{2}	2, 3, 5, 9, 10, 20
	1.49 (m)			
2	1.39 (m)	18.2	CH_{2}	4
	1.65 (m)			
3	1.05 (br d, $J=9.3$)	38.1	CH_{2}	1,4, 5, 19
	1.65 (m)			
4	-	39.0	C	-
5	-	76.3	C	-
6	5.31 (dd, $J=3.0,2.4)$	72.3	CH	$1^{\prime}, 4,5,8,10$
7 ax	1.50 (dt, $J=13.8,2.4)$	31.5	CH_{2}	6, 8, 9, 14
eq	2.18 (td, $J=13.8,3.0)$			
8	1.98 (m)	30.6	CH	7, 9, 11, 14, 17
9	2.35 (m)	38.0	CH	$1,7,8,10,11,12,14,20$
10	-	41.4	C	-
11	2.36 (m)	21.8	CH_{2}	8, 9, 10, 12, 13
	2.44 (m)			
12	-	149.5	C	-
13	-	122.4	C	-
14	2.49 (m)	31.1	CH	8, 9, 12, 13, 15, 17
15	6.09 (d, $J=1.8)$	109.5	CH	12, 13, 16
16	7.14 (d, $J=1.8)$	140.4	CH	12, 13, 15
17	0.92 (d, $J=6.6)$	17.6	CH_{3}	8, 13, 14
18	0.94 (s)	27.7	CH_{3}	3, 4, 5, 19
19	1.17 (s)	25.9	CH_{3}	3, 4, 5, 18
20	1.37 (s)	16.9	CH_{3}	1, 5, 9, 10
$1{ }^{\prime}$	-	166.0	C	-
2^{\prime}	6.33 (d, $J=15.9)$	118.6	CH	1', 3', 4', 5', 9'
3'	7.60 (d, $J=15.9)$	145.2	CH	1', 2', 4', 5', 9'
4^{\prime}	-	134.3	C	-
5'/9'	7.44 (m)	128.6	CH	$3^{\prime}, 4^{\prime}, 7{ }^{\prime}$
6'/8'	7.29 (m)	129.7	CH	$4 '$
$7{ }^{\prime}$	7.29 (m)	130.4	CH	5', 9'

3.3.8 Compound CP8

Compound CP8 had the molecular formula $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{6}\left([\mathrm{M}]^{+} \mathrm{m} / \mathrm{z}\right.$ 452.2198), based on HREIMS. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 42, Figures 80 and 81) were related to those of CP6. The major differences were the replacement of the ${ }^{1} \mathrm{H}$ NMR signals of Me-19 at $\delta 1.13$ and the methylene protons at $\delta 1.53$ (ddd, J $=14.4,3.9,2.7 \mathrm{~Hz} ; \mathrm{H}_{\mathrm{eq}}-7$) and $2.23\left(\mathrm{td}, J=14.4,2.7 \mathrm{~Hz} ; \mathrm{H}_{\mathrm{ax}}-7\right.$) of CP6 with an aldehydic proton at $\delta 9.65(\mathrm{~d}, J=1.2 \mathrm{~Hz} ; \mathrm{H}-19)$ and an oxymethine proton at $\delta 4.33$ (dd, $J=11.1,4.2 \mathrm{~Hz} ; \mathrm{H}-7$), respectively in CP8. The HMBC correlations of an oxymethine proton at $\delta 4.33(\mathrm{H}-7)$ with the carbons at $\delta 27.2(\mathrm{C}-14), 37.7(\mathrm{C}-8)$, and 73.8 (C-6), of an aldehydic proton at $\delta 9.65$ (H-19) with the carbons at $\delta 29.1(\mathrm{C}-3)$, 55.8 (C-4), and 78.6 (C-5) and of the methyl protons at $\delta 1.10$ (Me-18) with the carbons at $\delta 29.1$ (C-3), 55.8 (C-4), 78.6 (C-5) and 202.3 (C-19) confirmed the attachments of an OH and an aldehyde groups at C-7 and C-4, respectively. In the NOESY spectrum, the aldehydic proton at $\delta 9.65$ (H-19) displayed a cross-peak with the methyl protons at $\delta 1.18$ (Me-20) indicating a β-orientation. The large and small coupling constants ($J_{7 \mathrm{ax}, 8 \mathrm{Bax}}=11.1 \mathrm{~Hz}, J_{7 \mathrm{ax}, 6 \mathrm{eq}}=4.2 \mathrm{~Hz}$) of H-7 and its NOESY crosspeaks with H-6, H-9 and Me-17 confirmed an α-axial orientation. Thus, CP8 was deduced to be 6β-benzoyloxy- 7β-hydroxy-19-formylvouacapen- 5α-ol, a new compound (Yodsaoue et al., 2011) and was named as pulcherrin K.

Selective HMBC correlations of CP8

Table $42{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP8

Position	$\delta_{\mathbf{H}}(\mathbf{m u l t}, \boldsymbol{J}, \mathbf{H z})$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
1	$1.47(\mathrm{~m})$	34.2	CH_{2}	$2,3,5,9,10,20$
	$1.53(\mathrm{~m})$			
2	$1.45(\mathrm{~m})$	17.8	CH_{2}	3,4
	$1.65(\mathrm{~m})$			
3	$1.40(\mathrm{~m})$	29.1	CH_{2}	$2,4,5,19$
	$1.90(\mathrm{~m})$			
4	-	55.8	C	-
5	-	78.6	C	-
6	$5.92(\mathrm{~d}, J=4.2)$	73.8	CH	$4,5,7,8,10,1{ }^{\prime}$
7	$4.33(\mathrm{dd}, J=11.1,4.2)$	69.0	CH	$6,8,14$
8	$1.99(\mathrm{td}, J=11.1,5.1)$	37.7	CH	$6,7,9,11,14,17$
9	$2.27(\mathrm{~m})$	36.7	CH	$8,10,11,20$
10	-	41.2	C	-
11	$2.48(\mathrm{~m})$	22.2	CH	$8,9,10,12,13$
12	$2.55(\mathrm{~m})$			

Table 42 (continued)

Position	$\delta_{\mathbf{H}}($ mult., $J, \mathbf{H z})$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
13	-	121.8	C	-
14	$2.96(\mathrm{qd}, J=6.9,5.1)$	27.2	CH	$8,9,12,13,15,17$
15	$6.12(\mathrm{~d}, J=1.8)$	109.6	CH	$12,13,16$
16	$7.17(\mathrm{~d}, J=1.8)$	140.7	CH	$12,13,15$
17	$0.97(\mathrm{~d}, J=6.9)$	17.0	CH_{3}	$8,13,14$
18	$1.10(\mathrm{~s})$	19.1	CH_{3}	$3,4,5,19$
19	$9.65(\mathrm{~d}, J=1.2)$	202.3	CH	$3,4,5$
20	$1.18(\mathrm{~s})$	17.0	CH_{3}	$1,5,9,10$
1^{\prime}	-	167.3	C	-
2^{\prime}	-	129.2	C	-
$3^{\prime} / 7^{\prime}$	$7.92(\mathrm{~d}, J=7.2)$	129.9	CH	$1^{\prime}, 5^{\prime}$
$4^{\prime} / 6^{\prime}$	$7.38(\mathrm{t}, J=7.2)$	128.8	CH	$1^{\prime}, 2^{\prime}$
5^{\prime}	$7.52(\mathrm{br} \mathrm{t}, J=7.2)$	133.8	CH	$3^{\prime}, 7^{\prime}$

3.3.9 Compound CP9

Compound CP9 was deduced as $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{5}$ from an exact mass measurement ([M] ${ }^{+} m / z 438.2405$) by HREIMS. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 43, Figures 82 and 83) of CP9 were comparable to those of CP6. The difference was shown as the replacement of a singlet methyl at $\delta 1.13$ (Me-19) in CP6 with an oxymethylene proton signals at $\delta 4.88$ and 5.01 (each d, $J=11.4 \mathrm{~Hz} ; 2 \mathrm{H}-19$) in CP9. In addition the oxymethine proton H-6 in CP9 appeared at $\delta 4.17$ ($\mathrm{t}, J=3.6$ Hz), more highfield than that of $\mathbf{C P 6}(\delta 5.47, \mathrm{t}, J=2.7 \mathrm{~Hz})$ indicating the OH group at C-6 instead of a benzoyloxy group as in CP6. The HMBC correlations of the oxymethylene proton signals at $\delta 4.88$ and $5.01(2 \mathrm{H}-19)$ with the carbons at $\delta 20.8(\mathrm{C}-$ 18), 31.8 (C-3), 44.0 (C-4), 76.7 (C-5), and 166.6 (C-1') suggested the attachment of a benzoyloxy group at C-19. In the NOESY spectrum, the cross-peaks of the oxymethylene protons at $\delta 4.88$ and $5.01(2 \mathrm{H}-19)$ with the methyl protons at $\delta 1.31$ (Me-20), and of an oxymethine proton at $\delta 4.17$ (H-6) with the methyl protons at δ 1.11 (Me-18) indicated an oxymethylene protons to be β-oriented and $\mathrm{H}-6$ as α oriented, respectively. Therefore, CP9 was assigned as 6β-hydroxy-19-benzoyloxyvouacapen- 5α-ol, a new compound (Yodsaoue et al., 2011) and was named as pulcherrin L.

Selective HMBC correlations of CP9

Table $43{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP9

Position	δ_{H} (mult., $J, \mathrm{~Hz}$)	$\delta_{\text {c }}$	DEPT	HMBC
1	1.34 (m)	34.6	CH_{2}	9,10,20
	1.42 (m)			
2	1.45 (m)	17.9	CH_{2}	3, 4, 10
	1.68 (m)			
3	1.48 (m)	31.8	CH_{2}	4, 19
	1.66 (m)			
4	-	44.0	C	-
5	-	76.7	C	-
6	4.17 ($\mathrm{t}, \mathrm{J}=3.6$)	71.0	CH	4, 5, 8, 10
7	1.41 (m)	35.4	CH_{2}	6, 8, 9, 14
	2.19 (dt, $J=13.5,3.6)$			
8	2.07 (m)	29.8	CH	7, 9, 14, 17
9	2.28 (m)	38.6	CH	$1,8,10,11,20$
10	-	41.1	C	-
11	2.42 (m)	21.9	CH_{2}	8, 9, 10, 12, 13
12	-	149.4	C	-

Table 43 (continued)

Position	$\delta_{\mathbf{H}}($ mult., $J, \mathbf{H z})$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	$\mathbf{H M B C}$
13	-	122.5	C	-
14	$2.54(\mathrm{qd}, J=7.2,5.4)$	31.2	CH	$8,9,12,13,17$
15	$6.12(\mathrm{~d}, J=1.8)$	109.5	CH	$12,13,16$
16	$7.16(\mathrm{~d}, J=1.8)$	140.4	CH	$12,13,15$
17	$0.94(\mathrm{~d}, J=7.2)$	17.7	CH_{3}	$8,13,14$
18	$1.11(\mathrm{~s})$	20.8	CH_{3}	$3,4,5,19$
19	$4.88(\mathrm{~d}, J=11.4)$	68.2	CH_{2}	$3,4,5,18,1^{\prime}$
	$5.01(\mathrm{~d}, J=11.4)$			
20	$1.31(\mathrm{~s})$	16.2	CH_{3}	$1,5,9,10$
1^{\prime}	-	166.6	C	-
2^{\prime}	-	130.5	C	-
$3^{\prime} / 7^{\prime}$	$7.97(\mathrm{brd}, J=7.5)$	129.5	CH	$1^{\prime}, 5{ }^{\prime}$
$4^{\prime} / 6^{\prime}$	$7.38(\mathrm{t}, J=7.5)$	128.5	CH	2^{\prime}
5^{\prime}	$7.55(\mathrm{br} \mathrm{t}, J=7.5)$	132.9	CH	$3^{\prime}, 7^{\prime}$

3.3.10 Compound CP10

Compound CP10 showed the molecular ion $[\mathrm{M}]^{+}$at $m / z 452.2196$ by HREIMS spectrum in agreement with the formula $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{6}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 44, Figures 84 and 85) of CP10 showed characteristics similar to those of CP6 except for the disappearance of a methyl singlet at $\delta_{\mathrm{H}} 1.13$ (Me-19; δ_{C} 26.0) and the appearance of a carboxyl carbon at $\delta_{\mathrm{C}} 181.9$ in CP10. This finding was supported by HMBC spectrum in which the methyl protons at $\delta 0.97$ (Me-18) were correlated with the carbons at $\delta 34.1$ (C-3), 48.4 (C-4), 76.5 (C-5) and 181.9 (C-19). The relative stereochemistry of CP10 was assigned by NOESY experiment, in which Me-18 ($\delta 0.97$) showed a cross-peak with $\delta 5.45$ (H-6) whereas the benzoyloxy protons H-3'/H-7' ($\delta 7.84$) with $\delta 1.32(\mathrm{Me}-20)$. Therefore, $\mathbf{C P 1 0}$ was assigned as 6β -benzoyloxy-19-carboxyvouacapen- 5α-ol, a new compound (Yodsaoue et al., 2011) and was named as pulcherrin M .

Selective HMBC correlations of CP10

Table $44{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP10

Position	$\delta_{\mathrm{H}}($ mult., J, Hz)	$\delta_{\text {C }}$	DEPT	HMBC
1	1.47 (m)	34.7	CH_{2}	3, 5, 10, 20
	1.73 (m)			
2	1.42 (m)	18.7	CH_{2}	4
	1.64 (m)			
3	1.38 (m)	34.1	CH_{2}	2, 4, 5, 18, 19
	1.75 (br d, $J=13.8)$			
4	-	48.4	C	-
5	-	76.5	C	-
6	5.45 ($\mathrm{t}, \mathrm{J}=2.7)$	70.7	CH	4, 5, 7, 8, 10, 1'
7	1.58 (dt, $J=14.1,2.7)$	30.8	CH_{2}	5, 6, 8, 9, 14
	2.14 (m)			
8	1.98 (m)	30.7	CH	7, 9, 14, 17
9	2.18 (m)	38.0	CH	7, 8, 10, 11, 14, 20
10	-	41.7	C	-
11	2.40 (m)	22.2	CH_{2}	8, 9, 10, 12, 13
	2.50 (m)			
12	-	149.3	C	-
13	-	122.2	C	-
14	2.47 (m)	31.0	CH	9, 12, 13, 15, 17
15	6.08 (d, $J=1.5$)	109.5	CH	12, 13, 16
16	7.13 (d, $J=1.5$)	140.5	CH	12, 13, 15
17	0.92 (d, $J=6.9)$	17.5	CH_{3}	8, 13, 14
18	0.97 (s)	24.2	CH_{3}	3, 4, 5, 19
19	-	181.9	C	-
20	1.32 (s)	17.6	CH_{3}	1, 5, 9, 10
$1{ }^{1}$	-	165.7	C	-
2^{\prime}	-	130.6	C	-
$3^{\prime} / 7{ }^{\prime}$	7.84 (br d, $J=7.2)$	129.5	CH	1', 5'
4'/6'	7.32 (t, $J=7.2)$	128.4	CH	1', 2'
5'	7.43 (tt, $J=7.2,1.2)$	132.8	CH	$3^{\prime}, 7{ }^{\prime}$

3.3.11 Compound CP11

The molecular weight of compound CP11, $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{8}$ ([M] ${ }^{+}$was assigned at $\mathrm{m} / \mathrm{z} 572.2411$) by HREIMS. The NMR spectroscopic data (Table 45, Figures 86 and 87) of CP11 displayed similarities with pulcherrin M (CP10) except for the presence of an additional monosubstituted benzene ring in the range δ 7.187.85 and an oxymethine proton at $\delta 5.28$ (dd, $J=12.0,4.5 \mathrm{~Hz} ; \mathrm{H}-3$) in CP11. The latter proton was attached to the oxymethine carbon at $\delta 77.7$ in the HMQC spectrum and showed HMBC correlations to the carbons at $\delta 19.9$ (C-18), 24.3 (C-2), 53.3 (C-4) 166.1 (C-1') and 177.4 (C-19), confirming the location of a benzoyloxy group at $\mathrm{C}-3$. The stereochemistry of H-3 as α-axial oriented was determined from the results of the large and small coupling constants $\left(J_{3 a x, 2 a x}=12.0 \mathrm{~Hz}, J_{3 \mathrm{ax}, 2 \mathrm{eq}}=4.5 \mathrm{~Hz}\right)$ and by the observed cross-peak with Me-18 ($\delta 1.22$) in the NOESY experiment. Thus, CP11 was $3 \beta, 6 \beta$-dibenzoyloxy-19-carboxyvouacapen- 5α-ol, a new compound (Yodsaoue et al., 2011) and was named as pulcherrin N .

Selective HMBC correlations of CP11

Table $45{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP11

Position	$\delta_{\mathrm{H}}(\mathrm{mult} ., J, \mathrm{~Hz})$	$\delta_{\text {C }}$	DEPT	HMBC
1	1.56 (m)	33.1	CH_{2}	3, 10, 20
	1.89 (m)			
2	1.83 (m)	24.3	CH_{2}	1, 3, 4, 10
	2.54 (m)			
3	5.28 (dd, $J=12.0,4.5$)	77.7	CH	2, 4, 18, 19, 1^{\prime}
4	-	53.3	C	-
5	-	78.5	C	-
6	5.57 (br s)	70.9	CH	$4,5,7,8,10,1{ }^{\prime \prime}$
7	1.67 (m)	30.4	CH_{2}	5
	2.18 (m)			
8	2.04 (br t, $J=11.4)$	30.5	CH	7, 10, 14
9	2.35 (td, $J=11.4,8.7)$	37.8	CH	$7,8,10,11,14,20$
10	-	41.8	C	-
11	2.51 (m)	22.2	CH_{2}	8, 9, 10, 12, 13
	2.56 (m)			
12	-	149.1	C	-
13	-	122.2	C	-
14	2.50 (m)	30.9	CH	8, 9, 12, 13, 17

Table 45 (continued)

Position	$\delta_{\mathbf{H}}($ mult.,, , Hz $)$	$\delta_{\mathbf{C}}$	DEPT	HMBC
15	$6.10(\mathrm{~d}, J=1.8)$	109.5	CH	$12,13,16$
16	$7.16(\mathrm{~d}, J=1.8)$	140.6	CH	$12,13,15$
17	$0.94(\mathrm{~d}, J=6.9)$	17.6	CH_{3}	$8,13,14$
18	$1.22(\mathrm{~s})$	19.9	CH_{3}	$3,4,5,19$
19	-	177.4	C	-
20	$1.55(\mathrm{~s})$	16.7	CH_{3}	$1,5,9,10$
1^{\prime}	-	166.1	C	-
2^{\prime}	-	130.1	C	-
$3^{\prime} / 7^{\prime}$	$7.85(\mathrm{~d}, J=7.5)$	129.6	CH	$1^{\prime}, 5^{\prime}$
$4^{\prime} / 6^{\prime}$	$7.27(\mathrm{t}, J=7.5)$	128.3	CH	2^{\prime}
5^{\prime}	$7.36(\mathrm{br} \mathrm{t}, J=7.5)$	133.2	CH	$3^{\prime}, 7^{\prime}$
$1^{\prime \prime}$	-	165.8	C	-
$2^{\prime \prime}$	-	130.2	C	-
$3^{\prime \prime} / 7^{\prime \prime}$	$7.85(\mathrm{~d}, J=7.5)$	129.4	CH	$1^{\prime \prime}, 5^{\prime \prime}$
$4^{\prime \prime} / 6^{\prime \prime}$	$7.18(\mathrm{t}, J=7.5)$	128.5	CH	$2^{\prime \prime}$
$5^{\prime \prime}$	$7.43(\mathrm{br} \mathrm{t}, J=7.5)$	133.1	CH	$3^{\prime \prime}, 7^{\prime \prime}$

3.3.12 Compound CP12

Compound CP12 with the molecular formula $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{9}$ by HERIMS showed comparable ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 46, Figures 88 and 89) with those of CP3 except for the appearance of the additional signals of an oxymethine proton at $\delta_{\mathrm{H}} 5.24\left(\mathrm{H}-3 ; \delta_{\mathrm{C}} 76.7\right)$ and a benzoyloxy group ($\delta_{\mathrm{H}} 7.37-7.95 ; \delta_{\mathrm{C}}$ 128.4, 129.5, 130.6, 133.0, 166.1) in CP12 whose location of the latter at C-3 was supported by the HMBC correlations of H-3 with the carbons at $\delta 19.2$ (C-19), 22.7 (C-18), 43.9 (C-4) and 166.1 ($\mathrm{C}-1{ }^{\prime}$). In addition the methyl doublet at $\delta_{\mathrm{H}} 1.07$ (Me-17; $\delta_{\mathrm{C}} 17.1$) in CP3 was replaced with a singlet signal of a methyl ester at $\mathrm{C}-17\left(\delta_{\mathrm{H}} 3.68 ; \delta_{\mathrm{C}} 52.2\right)$ and an ester carbonyl at $\delta_{\mathrm{C}} 175.9$ in CP12. The location of an $\mathrm{CO}_{2} \mathrm{Me}$ group was confirmed by HMBC spectrum, in which the methine proton $\mathrm{H}-14(\delta 3.38)$ showed the correlations with the ester carbonyl carbon at δ 175.9. The large vicinal coupling constant of H-3 $\left(J_{3 \mathrm{ax}, 2 \mathrm{ax}}=10.8 \mathrm{~Hz}\right)$ and H-14 $\left(J_{14 \mathrm{ax}, 8 \mathrm{ax}}=8.4 \mathrm{~Hz}\right)$ suggested the relative stereochemistry of $\mathrm{H}-3$ and $\mathrm{H}-14$ to be α-axially oriented. In the NOESY spectrum, the hydroxyl proton at C-5 ($\delta 2.01$) showed cross-peaks with H-3, H-6, H-7, H-9 and Me-18 whereas the methine proton $\mathrm{H}-14$ (δ 3.38) displayed cross-peaks with H-7 and $\mathrm{H}-9$ but not with $\mathrm{H}-8$ supporting a benzoyloxy and $\mathrm{CO}_{2} \mathrm{Me}$ group as β-oriented. Thus, CP12 was deduced to be 3β-benzoyloxy- 6β-acetoxy- 7β-hydroxy- 14β-methoxycarbo nylvouacapen- 5α-ol, a new compound (Yodsaoue et al., 2011) and was named as pulcherrin O .

Selective HMBC correlations of CP12

Table $46{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP12

Position	$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{m u l t}, \boldsymbol{J}, \mathbf{H z})$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
1	$1.45(\mathrm{~m})$	32.6	CH_{2}	$2,3,5,9,10,20$
	$1.78(\mathrm{~m})$			
2	$1.75(\mathrm{~m})$	23.9	CH_{2}	$3,4,10$
	$1.86(\mathrm{~m})$			
3	$5.24(\mathrm{dd}, J=10.8,5.7)$	76.7	CH	$4,18,19,1^{\prime}$
4	-	43.9	C	-
5	-	78.8	C	-
6	$5.42(\mathrm{~d}, J=4.2)$	73.4	CH	OCOMe $3,4,5,7,8,10$
7	$4.05(\mathrm{dd}, J=10.2,4.2)$	74.0	CH	-
8	$2.38(\mathrm{ddd}, J=10.5,9.9,8.1)$	37.6	CH	$6,7,9,10,17$
9	$2.30(\mathrm{~m})$	41.2	CH	$1,8,10,11,20$
10	-	41.1	C	-
11	$2.49(\mathrm{~m})$	21.5	CH	$8,9,10,12,13$
12	-	150.7	C	-
13	-	113.1	C	-
14	$3.38(\mathrm{~d}, J=8.1)$	45.6	CH	$7,8,12,13,17$
15	$6.13(\mathrm{~d}, J=1.8)$	108.8	CH	$12,13,16$

Table 46 (continued)

Position	$\delta_{\mathbf{H}}(\mathbf{m u l t} ., \boldsymbol{J}, \mathbf{H z})$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	$\mathbf{H M B C}$
16	$7.17(\mathrm{~d}, J=1.8)$	141.2	CH	$12,13,15$
17	-	175.9	C	-
18	$1.03(\mathrm{~s})$	22.7	CH_{3}	$3,4,5,19$
19	$1.26(\mathrm{~s})$	19.2	CH_{3}	$3,4,5,18$
20	$1.40(\mathrm{~s})$	16.5	CH_{3}	$1,5,9,10$
$17-\mathrm{OMe}^{2}$	$3.68(\mathrm{~s})$	52.2	CH_{3}	17
OCOCH_{3}		170.8	C	-
OCOCH_{3}	$2.10(\mathrm{~s})$	21.7	CH_{3}	OCOMe_{3}
1^{\prime}	-	166.1	C	-
2^{\prime}	-	130.6	C	-
$3^{\prime} / 7^{\prime}$	$7.95(\mathrm{br} \mathrm{d}, J=7.2)$	129.5	CH	$1^{\prime}, 5^{\prime}$
$4^{\prime} / 6^{\prime}$	$7.37(\mathrm{t}, J=7.2)$	128.4	CH	1^{\prime}
5^{\prime}	$7.92(\mathrm{tt}, J=7.2,2.1)$	133.0	CH	$2^{\prime}, 7^{\prime}$
$5-\mathrm{OH}$	$2.01(\mathrm{br} \mathrm{s})$	-	$5,6,10$	

3.3.13 Compound CP13

The molecular formula of compound CP13 was determined to be $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{11}\left([\mathrm{M}]^{+} m / z\right.$ 598.2423) by HREIMS. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 47, Figures 90 and 91) of CP13 were similar to those of CP12. The differences were shown as a replacement of a singlet at $\delta 1.26$ (Me-19) in CP12 with an oxymethylene protons at $\delta 4.63$ and 5.39 (each, d, $J=12.0 \mathrm{~Hz} ; 2 \mathrm{H}-19$) and an acetyl group ($\delta_{\mathrm{H}} 1.98$: $\delta_{\mathrm{C}} 21.0$ and $\delta_{\mathrm{C}} 171.6$) in $\mathbf{C P 1 3}$, whose position was supported by the HMBC correlations of oxymethylene protons at $\delta 4.63$ and $5.39(2 \mathrm{H}-19)$ with the carbons at $\delta 15.2(\mathrm{C}-18), 48.2(\mathrm{C}-4), 76.7(\mathrm{C}-3), 79.0(\mathrm{C}-5)$, and $171.6\left(\mathrm{OCOCH}_{3}\right)$. Furthermore the HMBC correlations of an oxymethine proton at $\delta 5.19(\mathrm{H}-7)$ with the carbons at $\delta 34.3(\mathrm{C}-8), 45.4(\mathrm{C}-14)$ and $170.7\left(\mathrm{OCOCH}_{3}\right)$ and of an oxymethine proton at $\delta 4.16(\mathrm{H}-6)$ with carbons at $\delta 34.3(\mathrm{C}-8), 40.9(\mathrm{C}-10), 78.2(\mathrm{C}-7)$, and 79.0 (C-5) implied the locations of an OAc group and an OH at C-7 and C-6, respectively. The relative stereochemistry of CP13 was analyzed by NOESY experiment, in which the oxymethylene protons $(2 \mathrm{H}-19)$ showed a cross-peak with the methyl protons at δ 1.35 (Me-20). Therefore, CP13 was 3β-benzoyloxy- 6β-hydroxy- $7 \beta, 19$-diacetoxy-14 β -methoxycarbonylvouacapen- 5α-ol, a new compound (Yodsaoue et al., 2011) and was named as pulcherrin P.

Selective HMBC correlations of CP13

Table $47{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP13

Position	$\delta_{\mathbf{H}}(\mathbf{m u l t}, \boldsymbol{J}, \mathbf{H z})$	$\delta_{\mathbf{C}}$	DEPT	$\mathbf{H M B C}$
1	$1.41(\mathrm{~m})$	32.3	CH_{2}	$3,10,20$
	$1.82(\mathrm{~m})$			
2	$1.80(\mathrm{~m})$	23.9	CH_{2}	3
3	$5.31(\mathrm{dd}, J=10.8,4.8)$	76.7	CH	$2,4,18,19,1^{\prime}$
4	-	48.2	C	-
5	-	79.0	C	$5,6,10$
6	$4.16(\mathrm{~d}, J=3.3)$	71.3	CH	$5,7,8,10$
7	$5.19(\mathrm{dd}, J=11.1,3.3)$	78.2	CH	$\mathrm{OCOMe}, 8,14$
8	$2.76(\mathrm{ddd}, J=11.1,9.0,8.4)$	34.3	CH	$7,9,14,17$
9	$2.32(\mathrm{ddd}, J=9.0,7.5,4.8)$	41.5	CH	$8,10,11,20$
10	-	40.9	C	-
11	$2.51(\mathrm{~m})$	21.4	CH	$8,9,12,13$
12	-	150.5	C	-
13	-	112.8	C	-
14	$3.29(\mathrm{~d}, J=8.4)$	45.4	CH	$7,8,12,13,17$
15	$6.07(\mathrm{~d}, J=1.8)$	108.3	CH	$12,13,16$

Table 47 (continued)

Position	$\delta_{\mathrm{H}}($ mult., $\boldsymbol{J}, \mathrm{Hz})$	$\delta_{\text {C }}$	DEPT	HMBC
16	7.17 (d, $J=1.8)$	144.4	CH	12, 13, 15
17	-	174.6	C	-
18	1.06 (s)	15.2	CH_{3}	3, 4, 5, 19
19	4.63 (d, $J=12.0)$	64.0	CH_{2}	$3,4,5,18,19-\mathrm{OCOMe}_{3}$
	5.39 (d, $J=12.0)$			
20	1.35 (s)	15.7	CH_{3}	1, 5, 9, 10
17-OMe	3.68 (s)	52.1	CH_{3}	17
OCOCH_{3}	-	170.7	C	-
$\mathrm{OCOCH}_{\underline{3}}$	2.00 (s)	21.0	CH_{3}	$7-\mathrm{OCOMe} 3$
$19-\mathrm{OCOCH}_{3}$	-	171.6	C	-
$19-\mathrm{OCOCH}_{3}$	1.98 (s)	21.0	CH_{3}	$19-\mathrm{OCOMe} 3$
$1{ }^{\prime}$	-	166.1	C	-
2^{\prime}	-	130.4	C	-
3'/7'	8.03 (br d, $J=7.8)$	129.7	CH	1', 5^{\prime}
4'/6'	7.38 ($\mathrm{t}, \mathrm{J}=7.8$)	128.3	CH	2^{\prime}
5 '	7.50 (br t, $J=7.8$)	133.0	CH	$3^{\prime}, 71$
5-OH	2.21 (s)	-	-	5, 6, 10

3.3.14 Compound CP14

Compound CP14 showed the molecular ion $[\mathrm{M}]^{+}$at $\mathrm{m} / \mathrm{z} 436.2250$ by HREIMS spectrum in agreement with the formula $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{5}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 14, Figures 92 and 93) of CP14 showed characteristics similar to those of CP5 except for the presence of a 1,2-disubstituted epoxide ring resonanced as two oxymethine protons at $\delta_{\mathrm{H}} 3.25$ and 3.01 (each d, $J=4.2 \mathrm{~Hz} ; \delta_{\mathrm{C}} 55.0,54.0$, respectively) instead of 2 sets of methylene protons as in CP5. The signal at $\delta_{\mathrm{H}} 3.25$ was deduced to be an oxymetine proton $\mathrm{H}-6$ from its HMBC correlations with the carbons at $\delta 39.1$ (C-10), 43.1 (C-4), 54.0 (C-7) and 77.2 (C-5), and the other proton as H-7 ($\delta_{\mathrm{H}} 3.01$) from its HMBC correlations with the carbons at $\delta 31.0$ (C-14), 35.3 (C-9), 35.6 (C-8) and 55.0 (C-6), whose data suggested an epoxide ring between C-6 and C-7. The relative stereochemistry of CP14 was determined on the basis of coupling constants and the results of NOESY experiments. The large J values for H-6 and H-7 ($J=4.2 \mathrm{~Hz}$) suggested a cis epoxide ring. From the NOESY correlations, an oxymethine proton at $\delta 3.25(\mathrm{H}-6)$ showed cross-peaks with the protons at $\delta 1.16$ (Me$18)$ and $3.01(\mathrm{H}-7)$, and an oxymethine proton at $\delta 3.01$ (H-7) with the methyl protons at $\delta 1.11$ (Me-17) indicating that this cis epoxide ring should be β-oriented. Thus, CP14 was assigned as 3β-benzoyloxy- $6 \beta, 7 \beta$-epoxyvouacapen- 5α-ol, a new compound (Yodsaoue et al., 2011) and was named as pulcherrin Q.

Selective HMBC correlations of CP14

Table $48{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP14

Position	$\delta_{\mathbf{H}}($ mult., $\boldsymbol{J}, \mathbf{H z})$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
1	$1.28(\mathrm{~m})$	31.7	CH_{2}	$2,3,5,10,20$
	$1.74(\mathrm{~m})$			
2	$1.75(\mathrm{~m})$	23.7	CH_{2}	$1,3,4,10$
3	$1.89(\mathrm{~m})$			
4	$5.23(\mathrm{dd}, J=11.7,4.5)$	76.9	CH	$4,18,19,1^{\prime}$
5	-	43.1	C	-
6	-	77.2	C	-
7	$3.25(\mathrm{~d}, J=4.2)$	55.0	CH	$4,5,7,10$
8	$3.01(\mathrm{~d}, J=4.2)$	54.0	CH	$6,8,9,14$
9	$2.24(\mathrm{~m})$	35.6	CH	$9,11,14$
10	-	35.3	CH	$7,8,10,11,12,20$
11	$2.28(\mathrm{~m})$	39.1	C	-
	$2.41(\mathrm{~m})$	23.6	CH	$8,9,12,13$
12	-			
13	-	149.8	C	-
14	$2.90(\mathrm{qd}, J=6.9,5.4)$	31.0	CH	$8,9,12,13,17$
15	$6.15(\mathrm{~d}, J=1.8)$	109.3	CH	$12,13,16$
16	$7.17(\mathrm{~d}, J=1.8)$	141.0	CH	$12,13,15$
17	$1.11(\mathrm{~d}, J=6.9)$	17.1	CH	$8,13,14$

Table 48 (continued)

Position	$\boldsymbol{\delta}_{\mathbf{H}}$ (mult., $\boldsymbol{J}, \mathbf{H z}$)	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
18	$1.16(\mathrm{~s})$	23.2	CH_{3}	$3,4,5,19$
19	$1.34(\mathrm{~s})$	19.6	CH_{3}	$3,4,5,18$
20	$1.24(\mathrm{~s})$	16.4	CH_{3}	$1,5,9,10$
1^{\prime}	-	166.2	C	-
2^{\prime}	-	130.8	C	-
$3^{\prime} / 7^{\prime}$	$8.00(\mathrm{br} \mathrm{d}, J=7.5)$	129.6	CH	$1^{\prime}, 5^{\prime}$
$4^{\prime} / 6^{\prime}$	$7.39(\mathrm{t}, J=7.5)$	128.4	CH	2^{\prime}
5^{\prime}	$7.51(\mathrm{tt}, J=7.5,1.5)$	132.9	CH	$3^{\prime}, 7^{\prime}$

3.3.15 Compound CP15

Compound CP15 had the molecular formula $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}\left([\mathrm{M}]^{+} \mathrm{m} / \mathrm{z}\right.$ 304.2405) based on HREIMS. The ${ }^{13} \mathrm{C}$ NMR (Table 49, Figure 95) and DEPT spectral data exhibited 20 carbons including a carbonyl at $\delta 211.8$ (C-12) and an oxymethylene carbon at $\delta 62.3$ (C-16). The ${ }^{1} \mathrm{H}$ NMR spectral data (Table 49, Figure 94) showed four aliphatic methyl groups at $\delta 0.71$ (Me-20), 0.73 (Me-19), 0.78 (Me-18) and 1.17 (Me17), and the oxymethylene protons at $\delta 3.47$ (dd, $J=11.7,8.1 \mathrm{~Hz} ; \mathrm{H}-16$) and 3.73 (dd, $J=11.7,5.7 \mathrm{~Hz} ; \mathrm{H}-16)$. The presence of a cyclopropane ring was deduced from the ${ }^{1} \mathrm{H}$ NMR, COSY and HMQC spectra that exhibited two signals at $\delta_{\mathrm{H}} 0.94$ (dd, $J=5.7$, $1.5 \mathrm{~Hz}, \mathrm{H}-14: \delta_{\mathrm{C}} 38.5$) and $1.41\left(\mathrm{~m}, \mathrm{H}-15: \delta_{\mathrm{C}} 37.3\right)$. The observed HMBC correlations of a singlet methyl group at $\delta 1.17$ (Me-17) with the carbons at $\delta 33.4(\mathrm{C}-13), 37.3$ (C$15), 38.5(\mathrm{C}-14)$ and $211.8(\mathrm{C}-12)$, and of the oxymethylene protons at $\delta 3.47$ and 3.73 $(2 \mathrm{H}-16)$ with the carbons at $\delta 33.4(\mathrm{C}-13), 37.3(\mathrm{C}-15)$ and $38.5(\mathrm{C}-14)$ supported the assignments. These data suggested a carbonyl group at $\mathrm{C}-12$ and an OH group at $\mathrm{C}-16$ whereas C-13, C-14 and C-15 formed a cyclopropane ring. The NOESY cross-peaks of the proton signal at $\delta 1.79\left(\mathrm{t}, J=14.1 \mathrm{~Hz} ; \mathrm{H}_{\mathrm{ax}}-11\right)$ with the protons at $\delta 0.71(\mathrm{Me}-$ 20), $1.41(\mathrm{H}-15)$ and $1.60(\mathrm{H}-8)$, of a methine proton at $\delta 0.94(\mathrm{H}-14)$ with the methyl protons at $\delta 1.17$ (Me-17), 1.04 (H-9) and oxymethylene protons at $\delta 3.47$ and 3.73 ($2 \mathrm{H}-16$) but no correlation with $\mathrm{H}-15$ supported the α-orientation of $\mathrm{H}-14$, Me-17 and $2 \mathrm{H}-16$ hence suggesting a cis cyclopropyl ring with an α-hydroxy methyl side chain. The stereochemistry of compound CP15 was implied by biogenetic pathway from the pimarane skeleton (Yodsaoue et al., 2010). Therefore, CP15 was assigned as 13,14,15-cyclopropa-12-oxo-16-hydroxypimarane, a new compound (Yodsaoue et al., 2011) and was named as pulcherrin R.

Selective HMBC correlations of CP15

Table $49{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP15

Position	δ_{H} (mult., $J, \mathrm{~Hz}$)	$\delta_{\text {C }}$	DEPT	HMBC
1	0.80 (m)	38.1	CH_{2}	2, 3, 5, 20
	1.47 (m)			
2	1.37 (m)	18.6	CH_{2}	1, 3, 4, 10
	1.48 (m)			
3	0.99 (m)	42.0	CH_{2}	1, 2, 4, 5, 18, 19
	1.32 (m)			
4	-	33.2	C	-
5	0.80 (dd, $J=10.8,2.7)$	54.6	CH	7, 9, 10, 18, 19
6	1.20 (m)	22.0	CH_{2}	5, 7, 10
	1.59 (m)			
7	1.19 (m)	35.2	CH_{2}	$5,6,8,9,14$
	1.98 (m)			
8	1.60 (m)	36.9	CH	$7,10,11,14,15$
9	$1.04(\mathrm{td}, J=14.1,2.1)$	56.9	CH	1,7, 8, 10, 11, 20
10	-	37.3	C	-
11 eq	$1.79(\mathrm{t}, J=14.1)$	36.4	CH_{2}	8, 9, 12, 13
ax	2.13 (dd, $J=14.1,2.1)$			

Table 49 (continued)

Position	$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{m u l t}, \boldsymbol{J}, \mathbf{H z})$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	$\mathbf{H M B C}$
12	-	211.8	C	-
13	-	33.4	C	-
14	$0.94(\mathrm{dd}, J=5.7,1.5)$	38.5	CH	$7,9,12,13,15,16,17$
15	$1.41(\mathrm{~m})$	37.3	CH	$12,13,15,16$
16	$3.47(\mathrm{dd}, J=11.7,8.1)$	62.3	CH_{2}	$13,14,15$
	$3.73(\mathrm{dd}, J=11.7,5.7)$			
17	$1.17(\mathrm{~s})$	14.1	CH_{3}	$12,13,14,15$
18	$0.78(\mathrm{~s})$	33.4	CH_{3}	$3,4,5,19$
19	$0.73(\mathrm{~s})$	21.5	CH_{3}	$3,4,5,18$
20	$0.71(\mathrm{~s})$	14.1	CH_{3}	$1,5,9,10$

3.3.16 Compound CP16

Compound CP16 was isolated as a white solid, mp 98-100 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{27}+$ 80.9° ($c 0.26$ in CHCl_{3}). The IR spectrum displayed the absorbance of hydroxyl (3574 cm^{-1}) group.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 50, Figures 96 and 97) of CP16 showed characteristics similar to those of CP1, except that the signal of an oxymethine proton at $\delta 5.22(\mathrm{td}, J=11.1,6.0 \mathrm{~Hz}, \mathrm{H}-7) ; \delta_{\mathrm{C}} 72.3 \mathrm{in} \mathbf{C P 1}$ was replaced by those of the methylene protons at $\delta 1.35$ and 1.77 (each m); $\delta_{\mathrm{C}} 22.3$. Moreover, CP16 did not show the signal of an acetoxy methyl group at $\delta_{\mathrm{H}} 2.00$ (s, 7-OAc); δ_{C} 21.3 and 170.7. This finding was supported by HMBC spectrum, in which a methine proton H-9 at $\delta 2.30(\mathrm{~m})$ was correlated with the carbons at $\delta 17.1$ (C-20), 22.3 (C-7), 24.4 (C-11), 32.5(C-1), 34.5 (C-8), 41.2 (C-10) and 149.8 (C-12). The X-ray structure of CP16 established its stereochemistry. Thus, compound CP16 was determined as vouacapen- 5α-ol (McPherson et al., 1986).

Selective HMBC correlations of CP16

X-ray structure of CP16

Table $50{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP16

Position	$\delta_{\mathbf{H}}($ mult., $\boldsymbol{J}, \mathrm{Hz})$	$\delta_{\text {C }}$	DEPT	HMBC
1	1.27 (m)	32.5	CH_{2}	2, 3, 5, 10, 20
	1.37 (m)			
2	1.38 (m)	18.2	CH_{2}	1, 3, 4, 10
	1.58 (m)			
3	1.10 (m)	36.4	CH_{2}	1, 2, 4, 5, 18, 19
	1.60 (m)			
4	-	38.4	C	-
5	-	76.9	C	-
6	1.50 (m)	25.7	CH_{2}	5, 7, 8, 10
	1.73 (m)			
7	1.35 (m)	22.3	CH_{2}	$5,6,8,9,14$
	1.77 (m)			
8	1.75 (m)	34.5	CH	7,14
9	2.30 (m)	37.6	CH	$1,7,8,10,11,12,20$
10	-	41.2	C	-
11	2.24 (m)	24.4	CH_{2}	8, 9, 10, 12, 13
	2.40 (m)			
12	-	149.8	C	-
13	-	122.6	C	-
14	$2.50(\mathrm{qd}, J=6.9,4.5)$	31.5	CH	8, 9, 12, 13, 15, 17
15	6.10 ($\mathrm{d}, \mathrm{J}=1.8$)	109.6	CH	12, 13, 16
16	7.13 (d, $J=1.8$)	140.3	CH	12, 13, 15
17	$0.94(\mathrm{~d}, J=6.9)$	17.5	CH_{3}	8, 13, 14
18	0.87 (s)	28.0	CH_{3}	3, 4, 5, 19
19	1.00 (s)	24.8	CH_{3}	3, 4, 5, 18
20	0.98 (s)	17.1	CH_{3}	1, 5, 9, 10

Table 51 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds CP16 (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and vouacapen- 5α-ol (\mathbf{R}, recorded in $\mathrm{CDCl}_{3}, 360 \mathrm{MHz}$)

Position	$\begin{gathered} \text { CP16 } \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \text { CP16 } \\ \delta_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
1	1.27 (m)	1.18 (br s, $J=14)$	32.5	32.5
	1.37 (m)			
2	1.38 (m)		18.2	18.2
	1.58 (m)			
3	1.10 (m)		36.4	36.4
	1.60 (m)			
4	-	1.15-1.85 (m)	38.4	38.4
5	-		76.9	76.8
6	1.50 (m)		25.7	25.7
	1.73 (m)			
7	1.35 (m)		22.3	22.3
	1.77 (m)			
8	1.75 (m)		34.5	34.5
9	2.30 (m)	2.44 (br dd, $J=10,12)$	37.6	37.6
10	-	-	41.2	41.2
11	2.24 (m)	2.35 (m)	24.4	24.8
	2.40 (m)			
12	-	-	149.8	149.8
13	-	-	122.6	122.6
14	2.50 (qd, $J=6.9,4.5)$	2.58 (qd, $J=7,4)$	31.5	31.5
15	6.10 ($\mathrm{d}, J=1.8$)	$6.18(\mathrm{~d}, J=2)$	109.6	109.6
16	7.13 (d, $J=1.8)$	7.23 (d, $J=2$)	140.3	140.3
17	$0.94(\mathrm{~d}, J=6.9)$	1.01 (d, $J=7$)	17.5	17.5
18	0.87 (s)	1.05 (s)	28.0	28.1
19	1.00 (s)	1.07 (s)	24.8	24.8
20	0.98 (s)	0.94 (s)	17.1	17.1

3.3.17 Compound CP17

Compound CP17 was obtained as a white solid, mp $116-118{ }^{\circ} \mathrm{C}$ $[\alpha]_{\mathrm{D}}^{25}+60.0^{\circ}$ (c $\left.0.28, \mathrm{CHCl}_{3}\right)$. The absorption bands of UV and IR spectrum were similar to CP6. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 52, Figures 98 and 99) of compound CP17 were comparable with those of compound CP6. The only difference was found as replacement of the methylene protons at $\delta 1.53$ and 2.23 (2H-7) in CP6 with an oxymethine proton at $\delta 4.45(\mathrm{dd}, J=11.1,3.9 \mathrm{~Hz}) ; \delta_{\mathrm{C}} 68.9$ in $\mathbf{C P 1 7}$. The HMBC correlations of the latter proton with the carbons at $\delta 27.4$ (C-14), 37.9 (C-8) and 74.4 (C-6) suggested its location at C-7 whose α-orientation was suggested by the X-ray structure of CP17 and the large vicinal coupling constants ($J_{7 \mathrm{ax}, 8 \mathrm{ax}}=11.1 \mathrm{~Hz}$). Therefore, CP17 was determined as isovouacapenol C (Ragasa et al., 2002).

Selective HMBC correlations of CP17

X-ray structure of CP17

Table $52{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP17

Position	δ_{H} (mult., J, Hz)	$\delta_{\text {C }}$	DEPT	HMBC
1	1.45 (m)	34.9	CH_{2}	5, 10, 20
	1.65 (m)			
2	1.75 (m)	18.3	CH_{2}	-
	1.82 (m)			
3	1.15 (m)	37.8	CH_{2}	1, 5, 19
	1.78 (m)			
4	-	39.3	C	-
5	-	77.8	C	-
6	5.91 (d, $J=3.9)$	74.4	CH	4, 5, 7, 8, 10, 1'
7	4.45 (dd, $J=11.1,3.9)$	68.9	CH	6, 8, 14
8	2.07 (td, $J=11.1,5.1)$	37.9	CH	7, 9, 11, 14, 17
9	2.53 (m)	37.1	CH	8, 10, 11, 12, 20
10	-	41.0	C	-
11	2.50 (m)	21.9	CH_{2}	8, 9, 12, 13
	2.61 (m)			
12	-	149.4	C	-
13	-	122.1	C	-
14	3.07 (qd, $J=6.6,5.1)$	27.4	CH	8, 9, 12, 13, 15, 17
15	$6.24(\mathrm{~d}, J=1.5)$	109.8	CH	12, 13, 16
16	7.28 ($\mathrm{d}, J=1.5$)	140.5	CH	12, 13, 15
17	1.06 (d, $J=6.6)$	17.2	CH_{3}	8, 13, 14
18	1.18 (s)	27.9	CH_{3}	3, 4, 5, 19
19	1.20 (s)	25.6	CH_{3}	3, 4, 5, 18
20	1.56 (s)	17.6	CH_{3}	1, 5, 9, 10
$1{ }^{1}$	-	167.5	C	-
2^{\prime}	-	130.1	C	-
3'/7'	8.10 (d, $J=7.2)$	130.0	CH	$1^{\prime}, 2^{\prime}, 5^{\prime}$
4'/6'	7.45 ($\mathrm{t}, J=7.2$)	128.6	CH	1', 2'
5'	7.57 (t, $J=7.2)$	133.3	CH	$3^{\prime}, 71$
5-OH	2.44 (br s)	-	-	5, 6, 10

Table 53 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds CP17 (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and isovouacapenol $\mathrm{C}(\mathbf{R}$, recorded in $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)

Position	$\begin{gathered} \text { CP17 } \\ \delta_{\mathrm{H}}(\text { mult. }, J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{H}}(\text { mult. }, J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \text { CP17 } \\ \delta_{\mathrm{C}} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
1	1.45 (m)	1.49 (m)	34.9	35.1
	1.65 (m)	1.54 (m)		
2	1.75 (m)	1.56 (m)	18.3	18.1
	1.82 (m)	1.70 (m)		
3	1.15 (m)	1.18 (m)	37.8	37.8
	1.78 (m)	1.67 (m)		
4	-	-	39.3	39.3
5	-	-	77.8	77.9
6	5.91 (d, $J=3.9)$	5.81 (d, $J=4.1)$	74.4	74.0
7	4.45 (dd, $J=11.1,3.9)$	4.41 (dd, $J=11.0,4.1$)	68.9	69.3
8	2.07 (td, $J=11.1,5.1)$	2.02 (m)	37.9	38.1
9	2.53 (m)	2.43 (m)	37.1	37.2
10	-	-	41.0	41.0
11	2.50 (m)	2.57 (m)	21.9	21.8
	2.61 (m)			
12	-	-	149.4	149.2
13	-	-	122.1	122.0
14	3.07 (qd, $J=6.6,5.1)$	3.04 (m)	27.4	27.3
15	$6.24(\mathrm{~d}, J=1.5)$	6.20 (d, $J=1.9)$	109.8	109.7
16	7.28 ($\mathrm{d}, J=1.5$)	7.24 (d, $J=1.9)$	140.5	140.5
17	1.06 (d, $J=6.6)$	1.09 (d, $J=6.8)$	17.2	17.1
18	1.18 (s)	1.54 (s)	27.9	17.6
19	1.20 (s)	1.18 (s)	25.6	25.5
20	1.56 (s)	1.12 (s)	17.6	27.3
$1{ }^{\prime}$	-	-	167.5	167.2
2^{\prime}	-	-	130.1	130.0
$3^{\prime} / 7{ }^{\prime}$	8.10 (d, $J=7.2)$	8.05	130.0	129.9
4'/6'	$7.45(\mathrm{t}, J=7.2)$	7.45	128.6	128.6
5'	$7.57(\mathrm{t}, J=7.2)$	7.57	133.3	133.2

3.3.18 Compound CP18

Compound CP18 was isolated as a white solid; mp 220-222 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}+59.9^{\circ}\left(c \quad 0.13, \mathrm{CHCl}_{3}\right)$. The absorption band for UV and IR spectrum were identical to CP7. The NMR spectroscopic data of CP18 displayed similarities with CP7. The ${ }^{13} \mathrm{C}$ NMR spectrum (Table 54, Figure 101) exhibited a couple of oxymethine carbons at $\delta 68.9$ and 73.8 , these being assigned to $\mathrm{C}-7$ and $\mathrm{C}-6$, respectively. The ${ }^{1} \mathrm{H}$ NMR (Table 54, Figure 100) signal of $\mathrm{H}-7$ was observed at δ 4.41 (dd, $J=11.1,3.9 \mathrm{~Hz}$), whose HMBC spectrum showed correlations to the carbons at $\delta 27.8(\mathrm{C}-14), 37.8(\mathrm{C}-8)$ and 73.8 (C-6). The relative stereochemistry of CP18 was determined on the basis of coupling constants and the results of NOESY experiments. The large J values for H-7 and H-8 ($J=11.1 \mathrm{~Hz}$) indicated that H-7 should be an axial proton. In addition, the oxymethine proton at $\delta 4.41(\mathrm{H}-7)$ showed a cross-peak with the protons at $\delta 1.10$ (Me-17) and 2.48 (H-9 α) in the NOESY experiment confirming the α-orientation of H-7. Thus, CP18 was characterized as 6β -cinnamoyl- 7β-hydroxyvouacapen- 5α-ol (McPherson et al., 1986).

Selective HMBC correlations of CP18

Table $54{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP18

Position	$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{m u l t}, \boldsymbol{J}, \mathbf{H z})$	$\boldsymbol{\delta}_{\mathbf{C}}$	$\mathbf{D E P T}$	$\mathbf{H M B C}$
1	$1.43(\mathrm{~m})$	34.9	CH_{2}	5
2	$1.63(\mathrm{~m})$			
	$1.65(\mathrm{~m})$	18.2	CH_{2}	10
3	$1.73(\mathrm{~m})$			
	$1.12(\mathrm{~m})$	37.8	CH_{2}	$4,5,19$
4	$1.73(\mathrm{~m})$			
5	-	39.3	C	-
6	-	77.7	C	-
7	$5.71(\mathrm{~d}, J=3.9)$	73.8	CH	$1{ }^{\prime}, 4,5,7,8,10$
8	$4.41(\mathrm{dd}, J=11.1,3.9)$	68.9	CH	$6,8,14$
9	$2.02(\mathrm{dt}, J=11.1,5.1)$	37.8	CH	$7,9,14,17$
10	$2.48(\mathrm{~m})$	37.1	CH	$10,11,12,20$
11	-	41.1	C	-
12	$2.53(\mathrm{~m})$	21.8	CH	$9,10,12,13$
13	-	149.4	C	-

Table 54 (continued)

Position	$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{m u l t} ., \boldsymbol{J}, \mathbf{H z})$	$\boldsymbol{\delta}_{\mathbf{C}}$	$\mathbf{D E P T}$	$\mathbf{H M B C}$
14	$3.08(\mathrm{qd}, J=6.6,5.1)$	27.8	CH	$8,9,12,13,15,17$
15	$6.21(\mathrm{~d}, J=1.8)$	109.8	CH	$12,13,16$
16	$7.25(\mathrm{~d}, J=1.8)$	140.4	CH	$12,13,15$
17	$1.10(\mathrm{~d}, J=6.6)$	17.3	CH_{3}	$8,13,14$
18	$1.11(\mathrm{~s})$	27.9	CH_{3}	$3,4,5,19$
19	$1.21(\mathrm{~s})$	25.6	CH_{3}	$3,4,5,18$
20	$1.45(\mathrm{~s})$	17.3	CH_{3}	$1,5,9,10$
1^{\prime}	-	167.5	C	-
2^{\prime}	$6.47(\mathrm{~d}, J=15.9)$	118.2	CH	$1^{\prime}, 3^{\prime}, 4^{\prime}$
3^{\prime}	$7.72(\mathrm{~d}, J=15.9)$	145.8	CH	$1^{\prime}, 2^{\prime}, 4^{\prime}, 5^{\prime}, 9^{\prime}$
4^{\prime}	-	134.2	C	-
$5^{\prime} / 9^{\prime}$	$7.50(\mathrm{~m})$	128.3	CH	$3^{\prime}, 4^{\prime}, 7^{\prime}$
$6^{\prime} / 8^{\prime}$	$7.37(\mathrm{~m})$	128.9	CH	$5^{\prime}, 4^{\prime}$
7^{\prime}	$7.37(\mathrm{~m})$	130.6	CH	$5^{\prime}, 9^{\prime}$

Table 55 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds CP18 (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and 6β-cinnamoyl- 7β-hydroxyvouacapen5α-ol (\mathbf{R}, recorded in $\mathrm{CDCl}_{3}, 360 \mathrm{MHz}$)

Position	$\begin{gathered} \text { CP18 } \\ \delta_{\mathrm{H}}(\text { mult. }, J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \delta_{\mathrm{H}}(\text { mult. }, J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \text { CP18 } \\ \delta_{\mathrm{C}} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
1	1.43 (m)	1.17 (br d, $J=12)$	34.9	35.0
	1.63 (m)	1.68 (br d)		
2	1.65 (m)	1.54 (br d)	18.2	18.1
	1.73 (m)	1.65 (br d)		
3	1.12 (m)	1.54 (br d)	37.8	37.8
	1.73 (m)	1.76 (br d)		
4	-	-	39.3	39.3
5	-	1.80 (OH)	77.7	76.8
6	5.71 (d, $J=3.9)$	5.65 (d, $J=4)$	73.8	73.6
7	4.41 (dd, $J=11.1,3.9)$	4.38 (dd, $J=11,3.5)$	68.9	69.2
8	2.02 (dt, $J=11.1,5.1)$	1.98 (ddd, $J=12,11,5)$	37.8	37.9
9	2.48 (m)	2.45 (dt, $J=12,9)$	37.1	37.2
10	-	-	41.1	41.1
11	2.53 (m)	2.54 (br d, $J=9$)	21.8	21.8
12	-	-	149.4	149.2
13	-	-	122.0	120.0
14	3.08 (qd, $J=6.6,5.1)$	3.05 (qd, $J=7,6)$	27.8	27.3
15	6.21 (d, $J=1.8)$	6.20 (d, $J=2$)	109.8	109.7
16	7.25 (d, $J=1.8)$	7.23 (d, $J=2$)	140.4	140.5
17	1.10 (d, $J=6.6)$	1.07 (d, $J=7$)	17.3	17.3
18	1.11 (s)	1.21 (s)	27.9	27.7
19	1.21 (s)	1.45 (s)	25.6	25.5
20	1.45 (s)	1.09 (s)	17.3	17.1
$1{ }^{\prime}$	-	-	167.5	167.4
2^{\prime}	6.47 (d, $J=15.9)$	6.44 (d, $J=16)$	118.2	118.0
3^{\prime}	7.72 (d, $J=15.9)$	7.72 (d, $J=16)$	145.8	145.9
4^{\prime}	-	-	134.2	134.2
5'9'	7.50 (m)	7.53 (m)	128.3	128.9
6'/8'	7.37 (m)	7.38 (m)	128.9	128.2
$7{ }^{\prime}$	7.37 (m)	7.38 (m)	130.6	130.5

3.3.19 Compound CP19

Compound CP19 was purified as viscous oil; $[\alpha]_{\mathrm{D}}^{25}+41.5^{\circ}$ (c 0.08 in CHCl_{3}). The absorption band for UV and IR spectra were identical to $\mathbf{C P 1 8}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 56, Figures 102 and 103) of CP19 were closely related to those of CP18, and differed only in the chemical shifts of positions 6 and 7. The oxymethine proton H-6 of CP19 appeared at $\delta_{\mathrm{H}} 4.24$, higher field than that of CP18 ($\delta_{\mathrm{H}} 5.71$) while $\mathrm{H}-7$ of $\mathbf{C P 1 9}$ resonanced at $\delta_{\mathrm{H}} 5.50$ more downfield than that of $\mathbf{C P 1 8}$ $\left(\delta_{\mathrm{H}} 4.41\right)$ as a result of the deshielding effect of the cinnamoyloxy group. The HMBC correlations of an oxymethine proton at $\delta 4.24(\mathrm{H}-6)$ with the carbons at $\delta 35.2(\mathrm{C}-8)$, 39.3 (C-4), 40.7 (C-10), $75.0(\mathrm{C}-7)$ and 77.8 (C-5) and of an oxymethine proton at δ 5.50 (H-7) with the carbons at $\delta 27.6$ (C-14), 35.2 (C-8), 37.2 (C-9) and 166.1 (C-1') confirmed the locations of the OH at $\mathrm{C}-6$ and the cinnamoyloxy group at $\mathrm{C}-7$. Thus, CP19 was assigned to be pulcherrin A (Pranithanchai et al., 2009).

Selective HMBC correlations of CP19

Table $56{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP19

Position	δ_{H} (mult.,, , Hz)	$\delta_{\text {c }}$	DEPT	HMBC
1	1.31 (m)	35.2	CH_{2}	5, 10, 20
	1.47 (m)			
2	1.40 (m)	18.2	CH_{2}	1
	1.65 (m)			
3	1.07 (m)	37.5	CH_{2}	1, 4, 5, 19
	1.60 (m)			
4	-	39.3	C	-
5	-	77.8	C	-
6	4.24 (d, $J=3.9)$	71.4	CH	4, 5, 7, 8, 10
7	5.50 (dd, $J=11.4,3.9)$	75.0	CH	1', 8, 9, 14
8	2.23 (td, $J=11.4,5.1)$	35.2	CH	7, 9, 11, 14, 17
9	2.39 (td, $J=11.4,4.5)$	37.2	CH	$1,8,10,11,12,14,20$
10	-	40.7	C	-
11	2.45 (m)	21.8	CH_{2}	9, 8, 12, 13
12	-	149.5	C	-
13	-	121.6	C	-
14	2.78 (qd, $J=7.2,5.1$)	27.6	CH	8, 9, 12, 13, 15, 17
15	6.11 (d, $J=1.2)$	109.5	CH	12, 13, 16
16	7.15 (d, $J=1.2)$	140.5	CH	12, 13, 15
17	0.94 (d, $J=7.2)$	17.4	CH_{3}	8, 13, 14
18	0.96 (s)	27.8	CH_{3}	3, 4, 5, 19
19	1.39 (s)	25.5	CH_{3}	3, 4, 5, 18
20	1.31 (s)	17.3	CH_{3}	1, 5, 9, 10
$1{ }^{\prime}$	-	166.1	C	-
2^{\prime}	6.42 (d, $J=16.2)$	117.7	CH	$1^{\prime}, 3^{\prime}, 4^{\prime}$
3'	7.68 ($\mathrm{d}, \mathrm{J}=16.2$)	145.6	CH	$1^{\prime}, 2^{\prime}, 4^{\prime}, 5^{\prime}, 9^{\prime}$
$4 '$	-	134.2	C	-
5'/9'	7.47 (m)	128.2	CH	$3^{\prime}, 4^{\prime}, 7{ }^{\prime}$
6'/8'	7.33 (m)	129.0	CH	$4^{\prime}, 8^{\prime}$
$7{ }^{\prime}$	7.34 (m)	130.6	CH	$5^{\prime}, 9^{\prime}$

Table 57 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds CP19 (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and pulcherrin $\mathrm{A}\left(\mathbf{R}\right.$, recorded in CDCl_{3}, 300 MHz)

Position	$\begin{gathered} \text { CP19 } \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \text { CP19 } \\ \delta_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
1	1.31 (m)	1.43 (m)	35.2	35.2
	1.47 (m)	1.54 (m)		
2	1.40 (m)	1.50 (m)	18.2	18.2
	1.65 (m)	1.67 (m)		
3	1.07 (m)	1.17 (m)	37.5	37.6
	1.60 (m)	1.67 (m)		
4	-	-	39.3	39.2
5	-	-	77.8	77.8
6	4.24 (d, $J=3.9)$	4.32 (dd, $J=3.6,2.1)$	71.4	71.5
7	5.50 (dd, $J=11.4,3.9)$	5.58 (dd, $J=11.1,3.6)$	75.0	75.0
8	2.23 (td, $J=11.4,5.1)$	2.31 (td, $J=11.1,4.8)$	35.2	35.2
9	2.39 (td, $J=11.4,4.5)$	2.49 (m)	37.2	37.3
10	-	-	40.7	40.7
11	2.45 (m)	2.53 (m)	21.8	21.8
12	-	-	149.5	149.5
13	-	-	121.6	121.7
14	2.78 (qd, $J=7.2,5.1$)	2.86 (qd, $J=6.9,4.8)$	27.6	27.6
15	6.11 (d, $J=1.2)$	6.19 (d, $J=1.8)$	109.5	109.5
16	7.15 (d, $J=1.2)$	7.23 (d, $J=1.8)$	140.5	140.5
17	0.94 (d, $J=7.2)$	1.02 (d, $J=6.9)$	17.4	17.2
18	0.96 (s)	1.47 (s)	27.8	27.8
19	1.39 (s)	1.04 (s)	25.5	25.5
20	1.31 (s)	1.39 (s)	17.3	17.4
$1{ }^{\prime}$	-	-	166.1	166.0
2^{\prime}	6.42 (d, $J=16.2)$	$6.51(\mathrm{~d}, J=15.9)$	117.7	117.8
3^{\prime}	7.68 (d, $J=16.2)$	7.75 (d, $J=15.9)$	145.6	145.6
$4 '$	-	-	134.2	134.2
5'9'	7.47 (m)	7.55 (m)	128.2	128.2
6'/8'	7.33 (m)	7.41 (m)	129.0	129.0
$7{ }^{\prime}$	7.34 (m)	7.41 (m)	130.6	130.5

3.3.20 Compound CP20

Compound CP20 was isolated as a white solid; mp $161-163{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}+71.5^{\circ}\left(c 0.21\right.$ in CHCl_{3}). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 58, Figures 104 and 105) of CP20 were comparable with those of CP5. The only difference was found as replacement of the methylene protons at $\delta 1.46$ and 1.72 (2H-7) in CP5 with an oxymethine proton at $\delta 4.10(\mathrm{td}, J=11.4,5.1 \mathrm{~Hz}) ; \delta_{\mathrm{C}} 66.7 \mathrm{in} \mathrm{CP20}$. The HMBC correlations of the latter proton with the carbons at $\delta 27.3$ (C-14), 35.5 (C-6) and 42.7 (C-8) suggested its location at $\mathrm{C}-7$ whose α-orientation was suggested by its NOESY cross-peak with Me-17 ($\delta 1.06$) and the large vicinal coupling constants $\left(J_{7 \mathrm{ax}, 8 \mathrm{ax}}=11.4\right.$ Hz). Therefore, CP20 was pulcherrin B (Pranithanchai et al., 2009).

Selective HMBC correlations of CP20

Table $58{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP20

Position	δ_{H} (mult., J, Hz)	$\delta_{\text {c }}$	DEPT	HMBC
1	1.50 (m)	30.8	CH_{2}	2, 3, 5, 10, 20
	1.85 (m)			
2	1.84 (m)	23.8	CH_{2}	1, 3, 4, 10
	1.89 (m)			
3	5.39 (dd, $J=11.1,5.4)$	77.7	CH	1', 2, 4, 18, 19
4	-	43.4	C	-
5	-	79.0	C	-
6	1.87 (m)	35.5	CH_{2}	4, 5, 7, 8, 10
	2.13 (dd, $J=11.4,5.1)$			
7	4.10 (td, $J=11.4,5.1)$	66.7	CH	6, 8, 14
8	1.71 (td, $J=11.4,5.1)$	42.7	CH	6, 7, 9, 11, 14, 17
9	2.55 (m)	36.6	CH	$1,8,10,11,14,20$
10	-	40.8	C	-
11	2.40 (m)	22.3	CH_{2}	8, 9, 10, 12, 13
	2.53 (m)			
12	-	149.2	C	-
13	-	122.4	C	-
14	3.14 (qd, $J=7.2,5.1$)	27.3	CH	8, 9, 12, 13, 15, 17
15	6.25 (br s)	109.7	CH	12, 13, 16
16	7.30 (br s)	140.4	CH	12, 13, 15
17	1.06 (d, $J=7.2$)	16.7	CH_{3}	8, 13, 14
18	1.10 (s)	22.9	CH_{3}	3, 4, 5, 19
19	1.26 (s)	19.3	CH_{3}	3, 4, 5, 18
20	1.17 (s)	16.8	CH_{3}	1, 5, 9, 10
1 '	-	165.7	C	-
2^{\prime}	-	131.2	C	-
3'77'	8.05 (d, $J=8.1$)	129.3	CH	$1^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}$
4'/6'	$7.52(\mathrm{t}, J=8.1)$	128.5	CH	1', 2', 3', 7'
$5{ }^{\prime}$	$7.64(\mathrm{t}, J=8.1)$	132.9	CH	$3^{\prime}, 7{ }^{\prime}$
5-OH	3.68 (s)	-	-	5, 6, 10

Table 59 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds CP20 (recorded in acetone- $d_{6}, 300 \mathrm{MHz}$) and pulcherrin $\mathrm{B}\left(\mathbf{R}\right.$, recorded in CDCl_{3}, 300 MHz)

Position	$\begin{gathered} \text { CP20 } \\ \delta_{\mathrm{H}}(\text { mult. }, J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \delta_{\mathrm{H}}(\text { mult. }, \boldsymbol{J}, \mathrm{Hz}) \end{gathered}$	$\begin{gathered} \text { CP20 } \\ \delta_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
1	1.50 (m)	1.51 (m)	30.8	31.0
	1.85 (m)	1.77 (m)		
2	1.84 (m)	1.80 (m)	23.8	23.8
	1.89 (m)	1.92 (m)		
3	5.39 (dd, $J=11.1,5.4)$	5.30 (dd, $J=11.5,5.0)$	77.7	77.3
4	-	-	43.4	43.5
5	-	-	79.0	79.9
6	1.87 (m)	1.86 (dd, $J=13.0,11.0)$	35.5	35.9
	2.13 (dd, $J=11.4,5.1)$	2.05 (dd, $J=13.0,5.5)$		
7	4.10 (td, $J=11.4,5.1)$	4.12 (dt, $J=11.0,5.5$)	66.7	68.1
8	1.71 (td, $J=11.4,5.1)$	1.74 (td, $J=11.0,7.0$)	42.7	42.8
9	2.55 (m)	2.46 (m)	36.6	36.7
10	-	-	40.8	40.9
11	2.40 (m)	2.43 (m)	22.3	22.5
	2.53 (m)	2.53 (dd, $J=13.5,5.0)$		
12	-	-	149.2	149.1
13	-	-	122.4	121.9
14	3.14 (qd, $J=7.2,5.1)$	3.09 (quint, $J=7.0$)	27.3	27.4
15	6.25 (br s)	$6.22(\mathrm{~d}, J=2.0)$	109.7	109.7
16	7.30 (br s)	7.25 ($\mathrm{d}, J=2.0$)	140.4	140.7
17	1.06 (d, $J=7.2$)	1.10 (d, $J=7.0)$	16.7	17.1
18	1.10 (s)	1.08 (s)	22.9	23.1
19	1.26 (s)	1.26 (s)	19.3	19.7
20	1.17 (s)	1.18 (s)	16.8	17.5
$1{ }^{\prime}$	-	-	165.7	166.2
2^{\prime}	-	-	131.2	130.8
$3^{\prime} / 7{ }^{\prime}$	8.05 (d, $J=8.1)$	8.04 (dd, $J=7.5,1.0)$	129.3	129.5
4'/6'	$7.52(\mathrm{t}, J=8.1)$	7.45 (t, $J=7.5$)	128.5	128.4
$5 '$	$7.64(\mathrm{t}, J=8.1)$	7.57 (tt, $J=7.5,1.0)$	132.9	140.7

3.3.21 Compound CP21

Compound CP21 was isolated as a white solid; mp $140-142{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}+72.2^{\circ}$ (c 1.84 in CHCl_{3}). The ${ }^{1} \mathrm{H}$ NMR spectroscopic data (Table 60, Figure 106) of CP21 displayed similarities with CP10, except for the presence of an additional monosubstituted benzene ring in the range δ 7.28-7.78 and an oxymethine proton at $\delta 5.75$ (dd, $J=11.1,3.6 \mathrm{~Hz} ; \mathrm{H}-7$). The latter proton was attached to the oxymethine carbon at $\delta 72.5$ in the HMQC spectrum and showed HMBC correlations with the carbons at $\delta 27.4$ (C-14), 35.7 (C-8), 69.0 (C-6) and 166.3 (C-1"), confirming the location of a benzoate group at C-7. The stereochemistry of $\mathrm{H}-7$ as α-axial orientation was determined by the results of the large coupling constants ($J_{7 \mathrm{ax}, 8 \mathrm{ax}}=$ 11.1 Hz) and by the observed cross-peak with $\mathrm{Me}-17$ ($\delta 0.99$) in the NOESY experiments. Thus, CP21 was pulcherrimin C (Patil et al., 1997).

Selective HMBC correlations of CP21

Table $60{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP21

Position	$\delta_{\mathrm{H}}($ mult., $\boldsymbol{J}, \mathrm{Hz})$	$\delta_{\text {C }}$	DEPT	HMBC
1	1.50 (m)	34.6	CH_{2}	5, 9, 10, 20
	1.73 (m)			
2	1.45 (m)	18.7	CH_{2}	10
	1.93 (m)			
3	1.55 (m)	33.5	CH_{2}	1, 5, 18, 19
	1.78 (m)			
4	-	49.0	C	-
5	-	77.8	C	-
6	6.05 ($\mathrm{d}, \mathrm{J}=3.6$)	69.0	CH	1', 4, 5, 7, 8, 10
7	5.75 (dd, $J=11.1,3.6)$	72.5	CH	1", 6, 8, 14
8	2.43 (td, $J=11.1,5.1)$	35.7	CH	7, 9, 17
9	2.53 (m)	37.3	CH	8, 10, 11, 12, 20
10	-	41.6	C	-
11	2.56 (m)	22.2	CH_{2}	8, 9, 10, 13, 12
	2.65 (m)			
12	-	149.1	C	-
13	-	121.3	C	-
14	2.85 (qd, $J=6.9,5.1)$	27.4	CH	8, 9, 12, 13, 15, 17
15	6.13 ($\mathrm{d}, J=1.8)$	109.5	CH	12, 13, 16
16	7.23 (d, $J=1.8)$	140.8	CH	12, 13, 15
17	0.99 (d, $J=6.9)$	17.1	CH_{3}	8, 13, 14
18	1.13 (s)	24.2	CH_{3}	3, 4, 5,19
19	-	181.2	C	-
20	1.36 (s)	17.8	CH_{3}	1, 5, 9,1 0
$1{ }^{1}$	-	165.7	C	-
2^{\prime}	-	130.5	C	-
$3^{\prime} / 7^{\prime}$	7.76 (br d, $J=7.5$)	129.6	CH	1', 5'
4'/6'	$7.35(\mathrm{t}, J=7.5)$	128.3	CH	1', 2'

Table 60 (continued)

Position	$\delta_{\mathbf{H}}($ mult., $J, \mathbf{H z})$	$\delta_{\mathbf{C}}$	DEPT	HMBC
5^{\prime}	$7.49($ br t,$J=7.5)$	132.6	CH	$3^{\prime}, 7^{\prime}$
$1^{\prime \prime}$	-	166.3	C	-
$2^{\prime \prime}$	-	129.9	C	-
$3^{\prime \prime} / 7^{\prime \prime}$	$7.78(\mathrm{br} \mathrm{d}, J=7.5)$	129.5	CH	$1^{\prime \prime}, 5^{\prime \prime}$
$4^{\prime \prime} / 6^{\prime \prime}$	$7.28(\mathrm{t}, J=7.5)$	128.2	CH	$1^{\prime \prime}, 2^{\prime \prime}$
$5^{\prime \prime}$	$7.49(\mathrm{br} \mathrm{t}, J=7.5)$	132.9	CH	$3^{\prime \prime}, 7{ }^{\prime \prime}$

Table 61 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds CP21 (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and pulcherrimin $\mathrm{C}\left(\mathbf{R}\right.$, recorded in CDCl_{3}, 400 MHz)

Position	CP21 $\delta_{\mathrm{H}}($ mult., $J, \mathrm{~Hz})$	R $\delta_{\mathrm{H}}($ mult., $J, \mathrm{~Hz})$	$\begin{gathered} \mathrm{CP21} \\ \delta_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
1	1.50 (m)	1.53 (m)	34.6	34.6
	1.73 (m)	1.70 (m)		
2	1.45 (m)	1.44 (m)	18.7	18.7
	1.93 (m)	1.93 (m)		
3	1.55 (m)	1.55 (m)	33.5	33.4
	1.78 (m)	1.76 (m)		
4	-	-	49.0	49.0
5	-	-	77.8	77.8
6	6.05 (d, $J=3.6)$	6.05 (d, $J=3.7)$	69.0	68.9
7	5.75 (dd, $J=11.1,3.6)$	5.76 (dd, $J=11.1,3.7)$	72.5	72.4
8	2.43 (td, $J=11.1,5.1)$	2.44 (ddd, $J=12.0,11.1,5.0)$	35.7	35.6
9	2.53 (m)	2.52 (m)	37.3	37.3
10	-	-	41.6	41.5
11	2.56 (m)	2.63 (m)	22.2	22.2
	2.65 (m)	2.67 (m)		

Table 61 (continued)

Position	$\begin{gathered} \mathrm{CP21} \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	R $\delta_{\mathrm{H}}($ mult., $J, \mathrm{~Hz})$	$\begin{gathered} \mathbf{C P 2 1} \\ \delta_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
12	-	-	149.1	149.1
13	-	-	121.3	121.4
14	2.85 (qd, $J=6.9,5.1)$	2.86 (qd, $J=7.0,5.0)$	27.4	27.4
15	6.13 (d, $J=1.8)$	6.14 (d, $J=1.8)$	109.5	109.5
16	7.23 (d, $J=1.8)$	7.24 (d, $J=1.8)$	140.8	140.8
17	0.99 (d, $J=6.9)$	1.00 (d, $J=7.0)$	17.1	17.1
18	1.13 (s)	1.35 (s)	24.2	17.8
19	-	-	181.2	181.6
20	1.36 (s)	1.12 (s)	17.8	24.2
$1 '$	-	-	165.7	165.6
2^{\prime}	-	-	130.5	130.5
$3^{\prime} / 7^{\prime}$	7.76 (br d, $J=7.5$)	7.76 (dd, $J=8.4,1.3)$	129.6	129.5
4'/6'	7.35 (t, $J=7.5$)	7.36 (dd, $J=8.4,8.4)$	128.3	128.3
$5 '$	7.49 (br t, $J=7.5$)	$7.50(\mathrm{tm}, J=8.4)$	132.6	132.6
$1 "$	-	-	166.3	166.2
$2 "$	-	-	129.9	129.9
3"/7"	7.78 (br d, $J=7.5$)	7.78 (dd, $J=8.4,1.3)$	129.5	129.6
4"/6"	7.28 (t, $J=7.5$)	7.28 (dd, $J=8.4,8.4)$	128.2	128.1
$5{ }^{\prime \prime}$	7.49 (br t, $J=7.5$)	$7.48(\mathrm{tm}, J=8.4)$	132.9	132.9

3.3.22 Compound CP22

Compound CP22 was obtained as a white solid, mp: 193-195 ${ }^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}^{25}+78.1^{\circ}\left(c \quad 0.03, \mathrm{CHCl}_{3}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 62, Figures 108 and 109) resembled those of CP21, except that the signal of the methylene protons of CP21 at $\delta_{\mathrm{H}} 1.55$ and 1.78 ($\delta_{\mathrm{C}} 33.5, \mathrm{C}-3$) was replaced by the oxymethine proton at $\delta_{\mathrm{H}} 3.32$ ($\delta_{\mathrm{C}} 69.3$). This finding was supported by HMBC spectrum that showed correlations to the carbons at $\delta 20.2$ (C-18), 33.4 (C-1) 37.0 (C-9) 54.7 (C-4) and 178.1 (C-19). The stereochemistry of $\mathrm{H}-3$ as α-axial orientation was determined by the results of the large coupling constants $\left(J_{3 \mathrm{ax}, 2 \mathrm{ax}}=11.7 \mathrm{~Hz}\right)$ and by the observed cross-peak with Me-18 ($\delta 1.24$) in the NOESY experiment. Thus CP22 was characterized as pulcherrimin A (Patil et al., 1997).

Selective HMBC correlations of CP22

Table $62{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP22

Position	$\delta_{\mathrm{H}}($ mult., J, Hz)	$\delta_{\text {c }}$	DEPT	HMBC
1	1.45 (m)	33.4	CH_{2}	5,10
	1.71 (br t, $J=10.2$)			
2	1.49 (m)	27.6	CH_{2}	-
	2.20 (m)			
3	3.32 (dd, $J=11.7,4.5)$	74.7	CH	1, 4, 9, 18, 19
4	-	54.7	C	-
5	-	79.4	C	-
6	6.03 (d, $J=3.6)$	69.3	CH	1', 4, 5, 7, 8, 10
7	5.64 (dd, $J=11.1,3.6)$	72.4	CH	$1^{\prime \prime}, 6,8,14$
8	2.33 (td, $J=11.1,4.8)$	35.4	CH	6, 9, 17
9	2.48 (m)	37.0	CH	$7,8,10,11,12,20$
10	-	41.4	C	-
11	2.45 (m)	22.3	CH_{2}	8, 9, 10, 12, 13
	2.55 (m)			
12	-	149.0	C	-
13	-	121.3	C	-
14	2.78 (qd, $J=6.9,4.8)$	27.3	CH	8, 9, 12, 13, 15, 17
15	6.06 (d, $J=1.8)$	109.4	CH	12, 13, 16
16	7.16 (d, $J=1.8)$	140.8	CH	12, 13, 15
17	0.91 (d, $J=6.9)$	17.1	CH_{3}	8, 13, 14
18	1.24 (s)	20.2	CH_{3}	3, 4, 5, 19
19	-	178.1	C	-
20	1.34 (s)	17.6	CH_{3}	1, 5, 9, 10
$1{ }^{\prime}$	-	166.1	C	-
2^{\prime}	-	129.8	C	-
$3^{\prime} / 7{ }^{\prime}$	7.61 (br d, $J=7.2$)	129.5	CH	1', 5'
$4^{\prime} / 6^{\prime}$	7.24 (t, $J=7.2)$	128.2	CH	2'
$5{ }^{\prime}$	7.40 (br t, $J=7.2)$	132.9	CH	3', 7'
$1 "$	-	166.4	C	-
$2 "$	-	130.2	C	-
3"/7"	7.76 (br d, $J=7.2)$	129.7	CH	1", 5"
4"/6"	7.23 (t, $J=7.2)$	128.4	CH	2"
5"	7.44 (br t, $J=7.2$)	133.1	CH	3", 7"

Table 63 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds CP22 (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and pulcherrimins A (\mathbf{R}, recorded in CDCl_{3}, 400 MHz)

Position	$\begin{gathered} \text { CP22 } \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \text { CP22 } \\ \delta_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
1	1.45 (m)	1.52 (ddd, $J=12.6,3.3,3.3)$	33.4	33.4
	1.71 (br t, $J=10.2$)	1.80 (ddd, $J=12.6,11.4,3.3)$		
2	1.49 (m)	1.58 (m)	27.6	27.5
	2.20 (m)	2.14 (ddd, $J=12.6,11.4,3.3)$		
3	3.32 (dd, $J=11.7,4.5$)	3.42 (dd, $J=12.2,4.7)$	74.7	74.6
4	-	-	54.7	54.6
5	-	-	79.4	79.2
6	6.03 (d, $J=3.6)$	6.12 (d, $J=3.8)$	69.3	69.3
7	5.64 (dd, $J=11.1,3.6)$	5.72 (dd, $J=11.4,3.8)$	72.4	72.5
8	2.33 (td, $J=11.1,4.8)$	2.42 (ddd, $J=11.8,11.4,5.0)$	35.4	35.4
9	2.48 (m)	2.57 (m)	37.0	36.9
10	-	-	41.4	41.3
11	2.45 (m)	2.57 (m)	22.3	22.3
	2.55 (m)	2.63 (m)		
12	-	-	149.0	149.0
13	-	-	121.3	121.3
14	2.78 (qd, $J=6.9,4.8)$	2.86 (qd, $J=7.0,5.0)$	27.3	27.3
15	6.06 (d, $J=1.8)$	6.13 (d, $J=1.8)$	109.4	109.4
16	7.16 (d, $J=1.8)$	7.23 (d, $J=1.8)$	140.8	140.7
17	0.91 (d, $J=6.9)$	1.00 (d, $J=7.0)$	17.1	17.0
18	1.24 (s)	1.44 (s)	20.2	17.7
19	-	-	178.1	177.9
20	1.34 (s)	1.34 (s)	17.6	20.2
$1{ }^{\prime}$	-	-	166.1	166.3
2^{\prime}	-	-	129.8	129.8

Table 63 (continued)

Position	$\begin{gathered} \mathrm{CP22} \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathbf{C P 2 2} \\ \delta_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
3'/7'	7.61 (br d, $J=7.2$)	7.70 (dd, $J=8.4,1.3)$	129.5	129.5
4'/6'	7.24 (t, $J=7.2$)	7.31 (dd, $J=8.4,8.4)$	128.2	128.4
$5 '$	7.40 (br t, $J=7.2$)	7.49 (tm, $J=8.4)$	132.9	132.9
$1{ }^{\prime \prime}$	-	-	166.4	166.5
$2 "$	-	-	130.2	130.1
3"/7"	7.76 (br d, $J=7.2)$	7.85 (dd, $J=8.4,1.3)$	129.7	129.7
4"/6"	7.23 (t, $J=7.2)$	7.35 (dd, $J=8.4,8.4)$	128.4	128.2
$5{ }^{\prime \prime}$	7.44 (br t, $J=7.2$)	$7.53(\mathrm{tm}, J=8.4)$	133.1	133.1

3.3.23 Compound CP23

Compound CP23 was purified as a white solid mp 220-221 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}+58.5^{\circ}\left(c 0.11, \mathrm{CHCl}_{3}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 64, Figures 110 and 111) of CP23 displayed characteristics similar to those of CP11, except for the presence of an additional acetoxy methyl group at $\delta_{\mathrm{H}} 1.76$ (s) and an oxymethine proton at $\delta_{\mathrm{H}} 5.45\left(\mathrm{td}, J=11.7,5.1 ; \delta_{\mathrm{C}} 70.8\right)$ in CP23. The HMBC correlation of an oxymethine proton at $\delta 5.45(\mathrm{H}-7)$ with the carbons at $\delta 27.2(\mathrm{C}-14), 35.6(\mathrm{C}-8), 69.1$ (C-6) and $170.1\left(\mathrm{OCOCH}_{3}\right)$ and of the acetoxy methyl proton at $\delta 1.76$ with the carbon at $\delta 170.1\left(\mathrm{OCOCH}_{3}\right)$ confirmed the location of OAc group at $\mathrm{C}-7$. The stereochemistry of H-7 as α-axial orientation was determined by the results of the large coupling constants ($J_{7 \mathrm{ax}, 8 \mathrm{ax}}=11.7 \mathrm{~Hz}$) and by the observed cross-peaks with Me17 ($\delta 0.85$) and $\mathrm{H}-9(\delta 2.53)$ in the NOESY experiments. Thus, CP23 was pulcherrimin E (Roach et al., 2003).

Selective HMBC correlations of CP23

Table $64{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP23

Position	$\delta_{\mathrm{H}}(\mathrm{mult} ., J, \mathrm{~Hz})$	$\delta_{\text {c }}$	DEPT	HMBC
1	1.57 (m)	33.0	CH_{2}	2, 3, 9, 10, 20
	1.96 (m)			
2	1.77 (m)	24.4	CH_{2}	1, 3, 4, 10
	2.71 (m)			
3	5.30 (dd, $J=12.3,4.8)$	77.5	CH	2, 4, 18, 19, 1^{\prime}
4	-	53.6	C	-
5	-	79.1	C	-
6	5.96 (d, $J=3.9)$	69.1	CH	$1^{\prime \prime}, 4,5,7,8,10$
7	5.45 (td, $J=11.7,5.1)$	70.8	CH	1"', 6, 8, 14
8	2.12 (m)	35.6	CH	7, 9, 11, 14, 17
9	2.53 (m)	36.8	CH	1, 8, 10, 11, 12, 14, 20
10	-	41.5	C	-
11	2.51 (m)	22.0	CH_{2}	8, 9, 10, 12, 13
12	-	149.9	C	-
13	-	121.4	C	-
14	2.68 (m)	27.2	CH	8, 9, 12, 13, 15, 17
15	6.11 (d, $J=1.8)$	109.5	CH	12, 13, 16
16	7.18 (d, $J=1.8)$	140.8	CH	12, 13, 15
17	0.85 (d, $J=7.2$)	16.6	CH_{3}	8, 13, 14
18	1.39 (s)	20.1	CH_{3}	3, 4, 5, 19
19	-	174.2	C	-
20	1.62 (s)	16.9	CH_{3}	1, 5, 9, 10
$1{ }^{\prime}$	-	165.5	C	-
2^{\prime}	-	130.8	C	-
3'/7'	7.83 (br d, $J=7.2$)	129.3	CH	1', 5'
4'/6'	7.36 (t, $J=7.2$)	128.5	CH	2^{\prime}
5'	7.46 (br t, $J=7.2$)	133.0	CH	3', 7'
1"	-	166.0	C	-
2"	-	130.6	C	-
3"/7"	7.88 (br d, $J=7.2)$	129.6	CH	1", 5"

Table 64 (continued)

Position	$\delta_{\mathbf{H}}($ mult., $\boldsymbol{J}, \mathbf{H z})$	$\delta_{\mathbf{C}}$	DEPT	HMBC
$4 " / 6^{\prime \prime}$	$7.32(\mathrm{t}, J=7.2)$	128.5	CH	$2 "$
$5^{\prime \prime}$	$7.49(\mathrm{t}, J=7.2)$	132.8	CH	$3^{\prime \prime}, 7^{\prime \prime}$
$1^{\prime \prime \prime}$	-	170.1	C	-
$2^{\prime \prime \prime}$	$1.76(\mathrm{~s})$	20.1	CH_{3}	$1^{\prime \prime \prime}$
$5-\mathrm{OH}$	$5.06(\mathrm{~s})$	-	-	$5,6,10$

Table 65 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds CP23 (recorded in acetone- $d_{6}, 300 \mathrm{MHz}$) and Pulcherrimin E (R, recorded in $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)

Position	CP23 $\delta_{\mathrm{H}}($ mult., $J, \mathrm{~Hz})$	R $\delta_{\mathrm{H}}($ mult., $J, \mathrm{~Hz})$	$\begin{gathered} \mathrm{CP23} \\ \delta_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
1	1.57 (m)	1.68 (dd, $J=13.2,3.8)$	33.0	32.9
	1.96 (m)	2.02 (dd, $J=13.2,3.8)$		
2	1.77 (m)	1.93 (m)	24.4	24.3
	2.71 (m)	2.61 (m)		
3	5.30 (dd, $J=12.3,4.8)$	5.33 (dd, $J=12.2,4.9)$	77.5	77.0
4	-	-	53.6	53.4
5	-	-	79.1	79.4
6	5.96 (d, $J=3.9)$	5.95 (d, $J=4.0)$	69.1	69.0
7	5.45 (td, $J=11.7,5.1)$	5.50 (dd, $J=11.7,4.0)$	70.8	71.0
8	2.12 (m)	2.29 (dt, $J=11.7,5.0)$	35.6	35.2
9	2.53 (m)	2.58 (m)	36.8	36.9
10	-	-	41.5	41.6
11	2.51 (m)	2.62 (m)	22.0	22.2
		2.66 (m)		
12	-	-	149.9	148.7
13	-	-	121.4	121.4
14	2.68 (m)	2.83 (dq, $J=7.0,5.0)$	27.2	27.3
15	$6.11(\mathrm{~d}, ~ J=1.8)$	6.18 ($\mathrm{d}, \mathrm{J}=1.9$)	109.5	109.5

Table 65 (continued)

Position	$\mathrm{CP23}$ $\delta_{\mathrm{H}}($ mult., $J, \mathrm{~Hz})$	R $\delta_{\mathrm{H}}($ mult., $J, \mathrm{~Hz})$	$\begin{gathered} \mathbf{C P 2 3} \\ \delta_{\mathrm{C}} \end{gathered}$	\mathbf{R}
16	7.18 (d, $J=1.8)$	7.27 (d, $J=1.9)$	140.8	140.9
17	0.85 (d, $J=7.2$)	0.99 (d, $J=7.0)$	16.6	17.1
18	1.39 (s)	1.62 (s)	20.1	17.2
19	-	-	174.2	176.4
20	1.62 (s)	1.28 (s)	16.9	19.9
$1 '$	-	-	165.5	162.1
2^{\prime}	-	-	130.8	130.0
$3^{\prime} / 7{ }^{\prime}$	7.83 (br d, $J=7.2$)	7.96 (dd, $J=8.5,1.1)$	129.3	129.6
4'/6'	7.36 (t, $J=7.2$)	7.39 (dd, $J=8.5,8.5$)	128.5	128.5
$5 '$	7.46 (br t, $J=7.2$)	7.56 ($\mathrm{tm}, ~ J=8.5)$	133.0	133.2
1"	-	-	166.0	162.1
2"	-	-	130.6	130.2
3"/7"	7.88 (br d, $J=7.2)$	7.91 (dd, $J=8.4,1.3)$	129.6	129.4
4"/6"	$7.32(\mathrm{t}, J=7.2)$	7.24 (dd, $J=8.4,8.4)$	128.5	128.6
5"	7.49 ($\mathrm{t}, J=7.2$)	7.46 (tm, $J=8.4)$	132.8	133.1
1"'	-	-	170.1	171.2
2"'	1.76 (s)	1.95 (s)	20.1	20.9

3.3.24 Compound CP24

Compound CP24 was isolated as viscous oil; $[\alpha]_{\mathrm{D}}^{25}+73.9^{\circ}$ (c 0.07, CHCl_{3}). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 66, Figures 112 and 113) were closely related to those of CP13. The differences were shown as a replacement of an oxymethylene protons at $\delta 4.63$ and 5.39 (each, d, $J=12.0 \mathrm{~Hz} ; 2 \mathrm{H}-19$) and an acetyl group (δ_{H} 1.98: $\delta_{\mathrm{C}} 21.0$ and $\delta_{\mathrm{C}} 171.6$) in $\mathbf{C P 1 3}$ with a methyl singlet at $\delta 1.58(\mathrm{Me}-$ 19), whose HMBC spectrum showed correlations with the carbons at $\delta 22.5$ (C-18), 44.2 (C-4), 77.3 (C-3) and 78.6 (C-5), confirming its location at C-4. Thus, CP24 was assigned to be pulcherrin C (Pranithanchai et al., 2009).

Selective HMBC correlations of CP24

Table $66{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP24

Position	$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{J}, \mathrm{Hz})$	$\delta_{\text {C }}$	DEPT	HMBC
1	1.43 (m)	32.6	CH_{2}	3, 5, 10, 20
	1.86 (m)			
2	1.40 (m)	23.8	CH_{2}	1, 3, 4, 10
	1.88 (m)			
3	5.31 (dd, $J=11.1,3.6)$	77.3	CH	2, 4, 18, 19, 1'
4	-	44.2	C	-
5	-	78.6	C	-
6	4.15 (d, $J=3.3)$	71.6	CH	4, 5, 7, 8, 10
7	5.25 (dd, $J=11.1,3.3)$	79.2	CH	1", 8, 14
8	2.76 (td, $J=11.1,8.4)$	34.2	CH	7, 9, 11, 14, 17
9	2.40 (m)	41.3	CH	$8,10,11,12,20$
10	-	40.9	C	-
11	2.51 (m)	21.3	CH_{2}	8, 9, 12, 13
12	-	150.9	C	-
13	-	112.6	C	-
14	3.35 (d, $J=8.4)$	45.2	CH	7, 8, 12, 13, 17
15	$6.11(\mathrm{~d}, J=1.8)$	108.2	CH	12, 13, 16
16	$7.21(\mathrm{~d}, J=1.8)$	141.3	CH	12, 13, 15
17	-	175.2	C	-
18	1.06 (s)	22.5	CH_{3}	3, 4, 5, 19
19	1.58 (s)	19.6	CH_{3}	3, 4, 5, 18
20	1.48 (s)	16.5	CH_{3}	1, 5, 9, 10
$1{ }^{\prime}$	-	166.4	C	-
2^{\prime}	-	130.8	C	-
3'/7'	8.03 (br d, $J=7.5$)	129.5	CH	1', 5'
3'/6'	7.43 ($\mathrm{t}, J=7.5$)	128.3	CH	2^{\prime}
5'	7.52 (br t, $J=7.5$)	132.8	CH	$3^{\prime}, 71$
1"	-	171.0	C	-
2"	2.04 (s)	20.9	CH_{3}	1"
17-OMe	3.74 (s)	52.1	CH_{3}	17
5-OH	2.93 (s)	-	-	5,10

Table 67 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds CP24 (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and pulcherrin $\mathrm{C}\left(\mathbf{R}\right.$, recorded in CDCl_{3}, 300 MHz)

Position	$\begin{gathered} \mathrm{CP} 24 \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{CP24} \\ \delta_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
1	1.43 (m)	1.46 (m)	32.6	32.7
	1.86 (m)	1.89 (m)		
2	1.40 (m)	1.84 (m)	23.8	23.9
	1.88 (m)	1.94 (m)		
3	5.31 (dd, $J=11.1,3.6)$	5.31 (dd, $J=9.0,6.0)$	77.3	78.8
4	-	-	44.2	44.2
5	-	-	78.6	77.0
6	4.15 (d, $J=3.3)$	4.15 (d, $J=3.3)$	71.6	72.3
7	5.25 (dd, $J=11.1,3.3)$	5.33 (dd, $J=11.4,3.3)$	79.2	78.8
8	2.76 (td, $J=11.1,8.4)$	2.76 (td, $J=11.4,8.7)$	34.2	34.3
9	2.40 (m)	2.41 (m)	41.3	41.3
10	-	-	40.9	40.9
11	2.51 (m)	2.56 (br d, $J=8.1$)	21.3	21.3
12	-	-	150.9	150.8
13	-	-	112.6	112.7
14	3.35 (d, $J=8.4)$	3.38 (d, $J=8.7)$	45.2	45.1
15	6.11 ($\mathrm{d}, J=1.8$)	6.13 (d, $J=1.5)$	108.2	108.3
16	7.21 (d, $J=1.8)$	7.24 (d, $J=1.5)$	141.3	141.4
17	-	-	175.2	174.9
18	1.06 (s)	1.08 (s)	22.5	22.6
19	1.58 (s)	1.61 (s)	19.6	19.6
20	1.48 (s)	1.50 (s)	16.5	16.6
$1{ }^{\prime}$	-	-	166.4	166.2
2^{\prime}	-	-	130.8	130.8
$3^{\prime} / 7{ }^{\prime}$	8.03 (br d, $J=7.5$)	8.05 (d, $J=7.5)$	129.5	129.6
$3^{\prime} / 6^{\prime}$	7.43 (t, $J=7.5$)	$7.24(\mathrm{t}, J=7.5)$	128.3	128.4
5 '	7.52 (br t, $J=7.5$)	$7.57(\mathrm{t}, J=7.5)$	132.8	132.9
$1 "$	-	-	171.0	170.2
2"	2.04 (s)	2.06 (s)	20.9	21.0
17-OMe	3.74 (s)	3.75 (s)	52.1	52.1

3.3.25 Compound CP25

Compound CP25 was isolated as viscous oil; $[\alpha]_{\mathrm{D}}^{25}+177.1^{\circ}(c 0.11$ in CHCl_{3}). The ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{C P 2 5}$ (Table 68, Figure 114) were similar to those of CP21, except that compound $\mathbf{C P 2 5}$ showed the presence of additional olefinic protons at $\delta 5.76$ (br dd, $J=10.5,6.0 \mathrm{~Hz}, \mathrm{H}-2$) and $5.16(\mathrm{dd}, J=10.5,1.5 \mathrm{~Hz}, \mathrm{H}-3)$ instead of two methylene groups at C-2 ($\delta_{\mathrm{H}} 1.45,1.93$) and C-3 ($\delta_{\mathrm{H}} 1.55,1.78$) in CP21. This finding was supported by HMBC spectrum of CP25, in which the methyl protons at δ 1.03 (Me-18) were correlated with the carbons at $\delta 50.6$ (C-4), 77.2 (C-5), 129.4 (C-3) and $179.3(\mathrm{C}-19)$, the olefinic proton at $\delta 5.76(\mathrm{H}-2)$ with the carbons at $\delta 36.6(\mathrm{C}-1)$, $40.8(\mathrm{C}-10)$ and $50.6(\mathrm{C}-4)$ and the olefinic proton at $\delta 5.16(\mathrm{H}-3)$ with the carbons at $\delta 36.6$ (C-1), 50.6 (C-4) and 77.2 (C-5). From these data, compound CP25 was identified as pulcherrimin B (Patil et al., 1997).

Selective HMBC correlations of CP25

Table $68{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP25

Position	δ_{H} (mult., J J, Hz)	$\delta_{\text {C }}$	DEPT	HMBC
1	2.01 (dd, $J=17.4,6.0)$	36.6	CH_{2}	2, 3, 5, 10, 20
	2.27 (br d, $J=17.4)$			
2	5.76 (br dd, $J=10.5,6.0$)	123.4	CH	1, 4, 10
3	5.16 (dd, $J=10.5,1.5$)	129.4	CH	1,4, 5
4	-	50.6	C	-
5	-	77.2	C	-
6	$5.94(\mathrm{~d}, ~ J=3.0)$	69.5	CH	$1^{\prime}, 4,5,7,8,10$
7	5.70 (dd, $J=11.1,3.0)$	72.2	CH	$1{ }^{\prime \prime}, 6,8,14$
8	2.38 (td, $J=11.1,4.8)$	35.5	CH	7, 9, 14, 17
9	2.51 (td, $J=11.1,6.6)$	37.2	CH	$8,10,11,12,20$
10	-	40.8	C	-
11	2.64 (m)	22.2	CH_{2}	8, 9, 12, 13
12	-	148.8	C	-
13	-	121.3	C	-
14	2.85 (qd, $J=6.6,4.8)$	27.4	CH	8, 9, 12, 13, 17
15	$6.11(\mathrm{~d}, J=1.8)$	109.4	CH	12, 13, 16
16	$7.21(\mathrm{~d}, J=1.8)$	140.8	CH	12, 13, 15
17	0.96 (d, $J=6.6)$	17.0	CH_{3}	8, 13, 14
18	1.03 (s)	22.6	CH_{3}	3, 4, 5, 19
19	-	179.3	C	-
20	1.53 (s)	16.9	CH_{3}	1, 5, 9, 10
$1{ }^{\prime}$	-	165.1	C	-
2^{\prime}	-	130.3	C	-
3'/7'	7.71 (br d, $J=8.1)$	129.7	CH	1', 5'
4'/6'	$7.37(\mathrm{t}, ~ J=8.1)$	128.4	CH	$1^{\prime}, 2^{\prime}$
$5 '$	7.53 (br t, $J=8.1$)	132.9	CH	$3^{\prime}, 7{ }^{\prime}$
$1{ }^{\prime \prime}$	-	166.2	C	-

Table 68 (continued)

Position	$\boldsymbol{\delta}_{\mathbf{H}}($ mult., $\boldsymbol{J}, \mathbf{H z})$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	$\mathbf{H M B C}$
$2^{\prime \prime}$	-	130.1	C	-
$3^{\prime \prime} / 7^{\prime \prime}$	$7.83(\mathrm{br} \mathrm{d}, J=7.8)$	129.7	CH	$1^{\prime \prime}, 5^{\prime \prime}$
$4^{\prime \prime} / 6^{\prime \prime}$	$7.34(\mathrm{t}, J=7.8)$	128.1	CH	$1^{\prime \prime}, 2^{\prime \prime}$
$5^{\prime \prime}$	$7.53(\mathrm{br} \mathrm{t}, J=7.8)$	132.8	CH	$3^{\prime \prime}, 7^{\prime \prime}$

Table 69 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds CP25 (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and pulcherrimin $\mathrm{B}\left(\mathbf{R}\right.$, recorded in CDCl_{3}, 400 MHz)

Position	$\begin{gathered} \mathrm{CP25} \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{CP25} \\ \delta_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
1	2.01 (dd, $J=17.4,6.0)$	2.07 (dd, $J=17.2,5.8)$	36.6	36.8
	2.27 (br d, $J=17.4)$	2.27 (dm, $J=17.2)$		
2	5.76 (br dd, $J=10.5,6.0)$	5.78 (dm, $J=10.7)$	123.4	123.5
3	5.16 (dd, $J=10.5,1.5)$	$5.22(\mathrm{dm}, J=10.7)$	129.4	129.3
4	-	-	50.6	50.5
5	-	-	77.2	77.6
6	$5.94(\mathrm{~d}, J=3.0)$	5.97 (d, $J=3.4)$	69.5	69.5
7	5.70 (dd, $J=11.1,3.0)$	5.75 (dd, $J=11.3,3.4)$	72.2	72.0
8	2.38 (td, $J=11.1,4.8)$	2.41 (dd, $J=11.3,11.2,5.0)$	35.5	35.4
9	2.51 (td, $J=11.1,6.6)$	2.53 (td, $J=11.4,11.2,6.5)$	37.2	37.3
10	-	-	40.8	40.8
11	2.64 (m)	2.67 (m)	22.2	22.2
12	-	-	148.8	148.7
13	-	-	121.3	121.3
14	2.85 (qd, $J=6.6,4.8)$	2.88 (qd, $J=7.0,5.0)$	27.4	27.4
15	6.11 (d, $J=1.8)$	6.12 ($\mathrm{d}, \mathrm{J}=1.8$)	109.4	109.4
16	7.21 (d, $J=1.8)$	7.22 (d, $J=1.8)$	140.8	140.8

Table 69 (continued)

Position	$\begin{gathered} \mathrm{CP25} \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{CP} 25 \\ \delta_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
17	0.96 (d, $J=6.6)$	0.98 (d, $J=7.0$)	17.0	17.1
18	1.03 (s)	1.56 (s)	22.6	16.9
19	-	-	179.3	177.8
20	1.53 (s)	1.26 (s)	16.9	22.7
$1{ }^{\prime}$	-	-	165.1	165.0
2^{\prime}	-	-	130.3	130.2
$3^{\prime} / 7{ }^{\prime}$	7.71 (br d, $J=8.1)$	7.72 (dd, $J=8.4,1.3)$	129.7	129.6
4'/6'	7.37 (t, $J=8.1)$	7.35 (dd, $J=8.4,8.4)$	128.4	128.5
$5 '$	7.53 (br t, $J=8.1)$	$7.55(\mathrm{tm}, J=8.4)$	132.9	132.8
$1 "$	-	-	166.2	165.7
$2 "$	-	-	130.1	130.1
3"/7"	7.83 (br d, $J=7.8)$	7.85 (dd, $J=8.4,1.3)$	129.7	129.7
4"/6"	7.34 (t, $J=7.8$)	7.35 (dd, $J=8.4,8.4)$	128.1	128.1
5"	7.53 (br t, $J=7.8$)	$7.55(\mathrm{tm}, J=8.4)$	132.8	132.9

3.3.26 Compound CP26

Compound CP26 was obtained as viscous oil; $[\alpha]_{\mathrm{D}}^{25}+60.5^{\circ}$ (c 0.18 in CHCl_{3}). The IR ($3402 \mathrm{~cm}^{-1}$) and UV ($\lambda_{\max } 253,281,292 \mathrm{~nm}$) absorption bands were characteristic of hydroxyl and benzofuran moieties, respectively. Its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 70, Figures 116 and 117) revealed that CP26 had the same A and B rings as CP16. The difference was found in ring C, which was aromatic in CP26. This was supported in the ${ }^{1} \mathrm{H}$ NMR spectrum by the appearance of one aromatic proton at $\delta 7.25$ (s, H-11) and one aromatic methyl group at $\delta 2.30$ (Me-17) in CP26 and the disappearance of methylene protons at $\delta 2.24$ and 2.40 (each, m, H-11) and two methine protons at $\delta 1.75(\mathrm{~m}, \mathrm{H}-8)$ and $2.30(\mathrm{~m}, \mathrm{H}-9)$ in CP16. The HMBC spectrum showed correlations between an aromatic proton at $\delta 7.25(\mathrm{~s}, \mathrm{H}-11)$ with the carbons at $\delta 43.8$ (C-10), 125.6 (C-13), 126.9 (C-8), 144.7 (C-9) and 153.9 (C-12) and of the methyl protons at $\delta 2.30$ (Me-17) with the carbons at $\delta 125.6$ (C-13), 126.9 (C8) and 128.4 (C-14). From these data, compound CP26 was identified as $8,9,11,14-$ didehydrovouacapen- 5α-ol (McPherson et al., 1986).

Selective HMBC correlations of CP26

Table $70{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of compound CP26

Position	$\delta_{\mathbf{H}}($ mult., $\boldsymbol{J}, \mathrm{Hz})$	$\delta_{\text {C }}$	DEPT	HMBC
1	1.98 (m)	33.1	CH_{2}	2, 3, 5, 9, 10
2	1.62 (m)	18.9	CH_{2}	1,3,4
	1.76 (m)			
3	1.15 (m)	36.3	CH_{2}	1, 2, 4, 5, 18, 19
	1.78 (m)			
4	-	38.0	C	-
5	-	75.9	C	-
6	1.96 (m)	23.9	CH_{2}	4, 5, 7, 8, 10
	2.17 (m)			
7	2.82 (dd, $J=9.0,5.4)$	22.9	CH_{2}	$5,6,8,9,13,14$
8	-	126.9	C	-
9	-	144.7	C	-
10	-	43.8	C	-
11	7.25 (br s)	105.1	CH	8, 9, 10, 12, 13
12	-	153.9	C	-
13	-	125.6	C	-
14	-	128.4	C	-
15	6.66 (d, $J=2.1)$	105.0	CH	12, 13, 16
16	7.46 (d, $J=2.1)$	144.2	CH	12, 13, 15
17	2.30 (s)	15.9	CH_{3}	8, 13, 14
18	0.98 (s)	27.8	CH_{3}	3, 4, 5, 19
19	1.08 (s)	24.9	CH_{3}	3, 4, 5, 18
20	1.27 (s)	29.3	CH_{3}	1, 5, 9, 10

Table 71 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data between compounds CP26 (recorded in $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and $8,9,11,14$-didehydrovouacapen- 5α-ol (\mathbf{R}, recorded in $\mathrm{CDCl}_{3}, 360 \mathrm{MHz}$)

Position	$\begin{gathered} \text { CP26 } \\ \delta_{\mathrm{H}}(\text { mult., } J, \mathrm{~Hz}) \end{gathered}$	R $\delta_{\mathrm{H}}($ mult., $J, \mathrm{~Hz})$	$\begin{gathered} \mathrm{CP} 26 \\ \delta_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \delta_{\mathrm{C}} \end{gathered}$
1	1.98 (m)	$\begin{aligned} & 1.24(\mathrm{br} \mathrm{~d}, J=13) \\ & 1.98(\mathrm{~m}) \end{aligned}$	33.1	33.0
2	1.62 (m)	1.70 (m)	18.9	18.9
	1.76 (m)	1.83 (m)		
3	1.15 (m)	1.83 (m)	36.3	36.2
	1.78 (m)	2.04 (m)		
4	-	-	38.0	37.9
5	-	-	75.9	75.8
6	1.96 (m)	2.05 (m)	23.9	24.8
	2.17 (m)	2.22 (ddd, $J=14,9,9)$		
7	2.82 (dd, $J=9.0,5.4)$	2.89 (dd, $J=9,5.5$)	22.9	23.8
8	-	-	126.9	125.4
9	-	-	144.7	144.5
10	-	-	43.8	43.7
11	7.25 (br s)	7.32 (s)	105.1	104.8
12	-	-	153.9	153.7
13	-	-	125.6	128.3
14	-	-	128.4	126.8
15	6.66 (d, $J=2.1)$	6.73 (d, $J=2$)	105.0	105.0
16	7.46 (d, $J=2.1$)	7.53 (d, $J=2$)	144.2	144.1
17	2.30 (s)	2.38 (s)	15.9	27.7
18	0.98 (s)	1.05 (s)	27.8	29.3
19	1.08 (s)	1.15 (s)	24.9	24.8
20	1.27 (s)	1.34 (s)	29.3	15.8
5-OH	-	1.42	-	-

3.4 Anti-inflammatory of compounds CP1-CP26 from the roots of C. pulcherrima

The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract from the roots of C. pulcherrima showed an inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cell line with an IC_{50} value of $6.1 \mu \mathrm{~g} / \mathrm{ml}$. Further separation and purification led to the isolation of 26 diterpenes (CP1-CP26) whose antiinflammatory activities indicated that compound CP14 was the most potent inhibitor of NO production (Table 72) with an IC_{50} value of $2.9 \mu \mathrm{M}$ and compounds CP8, CP9, CP11-CP15, and CP17-CP26 significantly reduced LPS-stimulated NO production with the IC_{50} values in the range of $3.4-12.5 \mu \mathrm{M}$ better than that of the positive control, indomethacin ($\mathrm{IC}_{50}=14.5 \mu \mathrm{M}$), whereas other compounds exhibited weak activity. Compounds $\mathbf{C P 1 8}\left(\mathrm{IC}_{50}=5.3 \mu \mathrm{M}\right)$ and $\mathbf{C P 1 7}\left(\mathrm{IC}_{50}=8.2 \mu \mathrm{M}\right)$ showed much better activity than $\mathbf{C P} 3\left(\mathrm{IC}_{50}=59.7 \mu \mathrm{M}\right)$ suggesting that the cinnamoyloxy and benzoyloxy groups at C-6 may increase the activity more than the acetoxy group. The substitution of a benzoyloxy group at C-3 (CP11 and $\mathbf{C P 2 3}$, IC $_{50}=4.2$ and $\left.6.0 \mu \mathrm{M}\right)$ and C-7 $\left(\mathbf{C P 2 1}\right.$ and $\mathbf{C P 2 2}, \mathrm{IC}_{50}=6.0$ and $\left.5.2 \mu \mathrm{M}\right)$ demonstrated significantly increase in NO inhibitory activity compared to that of $\mathbf{C P 1 0}\left(\mathrm{IC}_{50}=26.7 \mu \mathrm{M}\right)$. The oxidation at C-19 of CP10 $\left(\mathrm{IC}_{50}=26.7 \mu \mathrm{M}\right)$ resulted in two-fold increase in activity against NO production compared to that of $\mathbf{C P 6}\left(\mathrm{IC}_{50}=47.5 \mu \mathrm{M}\right)$. The oxidation at $\mathrm{C}-17$ and the substitution of a benzoyloxy group at C-3 of CP12 ($\mathrm{IC}_{50} 4.2 \mu \mathrm{M}$) and CP24 ($\mathrm{IC}_{50} 6.5$ $\mu \mathrm{M})$ displayed significantly increase in the activity compared to that of $\mathbf{C P 2}$ ($\mathrm{IC}_{50} 46.1$ $\mu \mathrm{M})$ and CP3 ($\left.\mathrm{IC}_{50} 59.7 \mu \mathrm{M}\right)$.

Table 72 Inhibitory effects on NO production ${ }^{\text {a }}$ of compounds CP1-CP26

No	\% Inhibition at various concentrations ($\mu \mathrm{M}$)						
	0	1	3	10	30	100	
CP1	0.0 ± 2.0	-	-	13.7 ± 1.6	$32.1 \pm 2.0^{* *}$	$70.8 \pm 2.2^{* *}$	48.5
CP2	0.0 ± 2.0	-	-	9.9 ± 3.4	$37.3 \pm 3.1^{* *}$	$71.2 \pm 1.9 * *$	46.1
CP3	0.0 ± 2.0	-	-	-0.5 ± 3.6	$24.1 \pm 3.1^{* *}$	$67.9 \pm 4.1^{* *}$	59.7
CP4	0.0 ± 8.6	-	-	$36.8 \pm 1.1^{* *}$	$39.0 \pm 1.9 * *$	$79.4 \pm 1.2^{* *}$	43.2
CP5	0.0 ± 2.3	-	-	$25.2 \pm 1.7 * *$	$44.2 \pm 2.4^{* *}$	$45.1 \pm 2.2^{\text {b } * *}$	>100
CP6	0.0 ± 2.3	-	-	8.3 ± 1.5	$33.0 \pm 1.3^{* *}$	$72.8 \pm 1.4^{\text {b } * *}$	47.5
CP7	0.0 ± 2.3	-	-	17.5 ± 2.4	$47.6 \pm 2.9^{* *}$	$71.8 \pm 2.0^{\text {b } * *}$	37.4
CP8	0.0 ± 4.8	-	-	$53.2 \pm 3.1^{* *}$	$67.0 \pm 2.1^{* *}$	$104.3 \pm 1.8^{\mathrm{b} * *}$	10.2
CP9	0.0 ± 4.8	-	-	$57.9 \pm 2.6^{* *}$	$82.4 \pm 1.9^{* *}$	$104.3 \pm 2.0^{\mathrm{b} * *}$	6.4
CP10	0.0 ± 2.0	-	-	15.6 ± 2.1	$69.8 \pm 2.0^{* *}$	$76.4 \pm 2.0^{\text {b ** }}$	26.7
CP11	0.0 ± 4.8	27.3 ± 2.1	34.8 ± 2.0 *	$71.0 \pm 3.8^{* *}$	$95.0 \pm 1.7 * *$	$99.4 \pm 3.4^{\text {b } * *}$	4.2
CP12	0.0 ± 8.2	-	$38.3 \pm 2.6^{*}$	$78.0 \pm 4.2^{* *}$	$97.8 \pm 4.9^{\text {b** }}$	$105.4 \pm 1.9^{\text {b } * *}$	4.2
CP13	0.0 ± 8.2	-	$42.6 \pm 1.8^{* *}$	$77.4 \pm 3.3^{* *}$	101.1 ± 5.0 **	$104.8 \pm 4.8^{\text {b } * *}$	3.4
CP14	0.0 ± 8.2	-	$49.7 \pm 2.4^{* *}$	$81.2 \pm 4.1^{* *}$	$103.8 \pm 4.7^{* *}$	$104.9 \pm 5.4^{\mathrm{b} * *}$	2.9
CP15	0.0 ± 8.2	-	32.8 ± 2.1 *	$67.7 \pm 4.6^{* *}$	$98.4 \pm 3.8^{* *}$	$100.5 \pm 4.6^{\text {b } * *}$	5.4
CP16	0.0 ± 2.3	-	-	9.7 ± 2.0	$35.9 \pm 2.7 * *$	$67.5 \pm 0.9^{\text {b }} * *$	50.7
CP17	0.0 ± 8.6	-	29.6 ± 1.8	$55.6 \pm 1.3^{* *}$	$71.7 \pm 4.2 * *$	$104.5 \pm 1.6^{\text {b } * *}$	8.2
CP18	0.0 ± 8.6	-	$38.5 \pm 2.1^{*}$	$60.1 \pm 0.4^{* *}$	$88.3 \pm 0.9^{* *}$	$104.0 \pm 0.9^{\text {b }} * *$	5.3
CP19	0.0 ± 8.6	-	-	$46.2 \pm 1.9^{* *}$	$68.6 \pm 3.1^{* *}$	$105.4 \pm 1.0^{\text {b } * *}$	12.5
CP20	0.0 ± 4.8	-	-	$52.4 \pm 2.3^{* *}$	$76.8 \pm 2.5^{* *}$	$97.9 \pm 5.0^{\mathrm{b} * *}$	8.4
CP21	0.0 ± 9.3	-2.3 ± 2.8	2.3 ± 2.0	$100.0 \pm 1.5^{\text {b } * *}$	$102.0 \pm 5.2^{\text {b } * *}$	$108.7 \pm 1.8^{\mathrm{b} * *}$	6.0
CP22	0.0 ± 9.3	-	$36.2 \pm 2.2 *$	$64.7 \pm 0.5^{* *}$	$100.0 \pm 2.0^{* *}$	$106.0 \pm 5.2^{\text {b } * *}$	5.2
CP23	0.0 ± 9.3	2.3 ± 3.2	13.0 ± 1.3	$102.2 \pm 4.2^{\text {b }} * *$	$103.8 \pm 5.0^{\mathrm{b} * *}$	$108.7 \pm 1.5^{\text {b } * *}$	5.6
CP24	0.0 ± 9.3	-	28.2 ± 2.5	$56.5 \pm 4.3^{* *}$	$103.3 \pm 2.7^{* *}$	$109.2 \pm 2.9^{\text {b } * *}$	6.5
CP25	0.0 ± 8.2	-	$39.5 \pm 2.2 *$	$71.5 \pm 3.3^{* *}$	$105.4 \pm 2.2^{* *}$	$105.9 \pm 3.1^{\text {b } * *}$	4.4
CP26	0.0 ± 8.2	-	$35.4 \pm 2.4 *$	$58.1 \pm 3.7 * *$	$71.0 \pm 2.7^{* *}$	$100.0 \pm 3.2 * *$	7.0
Indomethacin	0.0 ± 4.2	-	15.5 ± 1.7	$36.4 \pm 2.3^{* *}$	$60.9 \pm 3.7^{* *}$	$104.5 \pm 1.7 * *$	14.5

${ }^{\text {a }}$ Each value represents mean \pm S.E.M. of four determinations. Statistical significance, ${ }^{*} p<0.05, * * p<0.01$
${ }^{\mathrm{b}}$ Cytotoxic effect was observed.

3.5 Proposed biogenesis of cassane and cyclopimarane diterpenes

The tricyclic diterpene structures of cassane and cyclopimarane diterpenes could be derived from common pimar-15-en-8-yl carbocation intermediate generated by cyclization of (+)-copalyl diphosphate (Devon and Scott, 1972; Ravn et al., 2002) as shown in Scheme 6. The $14 \rightarrow 8$ hydride shift of pimar-15-en-8-yl carbocation to form a pimar-15-en-14-yl carbocation followed by $13 \rightarrow 14$ methyl shift (pathway a) results in cass-15-en-13-yl carbocation which will give rise to a cassane-type diterpenes with the trans/anti/trans ring junction (A/B/C). On the other hand the addition of water to C-16 double bond of a homoallylic cation (pimar-15-en14 -yl carbocation) concomitant with ring closure (pathway b) results in 14,15-cyclopimaran-16-ol, a precursor of CM4 and CP15.

Scheme 6 Plausible biosynthesis pathway of cassane and cyclopimarane diterpenes

CHAPTER 4

CONCLUSION

The bioassay guided separation of the crude $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and acetone extracts of C. mimosoides led to the isolation of seven new compounds together with eleven known compounds. The new compounds were identified as four diterpenes, named mimosol A-D (CM1-CM4), a dimer, named mimosol E (CM9) and two dibenzo[b,d]furans, named mimosol F, G (CM10, CM11). The known compounds were identified by analysis of their spectroscopic data and comparison with literature data to be taepeenin A (CM5), taepeenin D (CM6), nortaepeenin A (CM7), taepeenin L (CM8), (E)-7-hydroxy-3-(4-methoxybenzyl)chroman-4-one (CM12), (E)-7,8-dihydroxy-3-(4-methoxybenzyl)-chroman-4-one (CM13), (E)-7-hydroxy-8-methoxy-3-(4-methoxybenzyl)chroman-4-one (CM14), tetracosyl caffeate (CM15), resveratrol (CM16), bergenin (CM17) and (+)-pterocarpol (CM18).

The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract from C. pulcherrima was purified to afford 15 new diterpenes, named pulcherrin D-R (CP1-CP15) together with eleven known compounds (CP16-CP26). The known compounds were identified as vouacapen-5 ol (CP16), isovouacapenol C (CP17), 6β-cinnamoyl- 7β-hydroxyvouacapen- 5α-ol (CP18), pulcherrin $\mathrm{A}(\mathbf{C P 1 9)}$, pulcherrin $\mathrm{B}(\mathbf{C P 2 0})$, pulcherrimin $\mathrm{C}(\mathbf{C P 2 1) ,}$ pulcherrimins A (CP22), pulcherrimin E (CP23), pulcherrin C (CP24), pulcherrimin B (CP25) and 8,9,11,14-didehydrovouacapen-5 α-ol (CP26). Moreover, the structures of compounds CP16 and CP17 were also confirmed by X-ray diffraction analysis.

The anti-inflmmatory activity of all compounds were evaluated for inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 cell line. Compounds from C. mimosoides CM4, CM13, CM12, CM14, CM8 and CM6 possessed high activity with IC_{50} values of 3.0, 3.9, 4.4, 5.6, 7.1, and $8.2 \mu \mathrm{M}$, respectively. Compounds from C. pulcherrima CP8, CP9, CP11-CP15 and CP18-CP26 with IC_{50} of 10.2, 6.4, 4.2, 4.2, 3.4, 2.9, 5.4, 5.3, 8.2, $6.0,5.2,5.6,4.4$ and $7.0 \mu \mathrm{M}$, respectively, whereas other compounds exhibited moderate and mild activities. In addition, compounds CM4, CM6, CM8, and CM12-

CM14 were also tested for the inhibitory effect on LPS-induced tumor necrosis factoralpha (TNF- α) release in RAW264.7 cells. The results indicated that CM4 possessed potent inhibitory activity for both tests with IC_{50} values of 3.0 and $6.5 \mu \mathrm{M}$, respectively.

REFERENCES

Awale, S., Linn, T.Z., Tezuka, Y., Kalauni, S.K., Banskota, A.H., Attamimi, F., Ueda, J.-Y. and Kadota, S. 2006. Constituents of Caesalpinia crista from Indonesia. Chem. Pharm. Bull. 54, 213-218.

Chanwitheesuk, A., Teerawutgulrag, A. and Rakariyatham, N. 2005. Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chem. 92, 491-497.

Chanwitheesuk, A., Teerawutgulrag, A., Kilburn, J.D. and Rakariyatham, N. 2007. Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chem. 100, 1044-1048.

Che, C.-T., McPherson, D.D., Cordell, G.A. and Fong, H.H.S. 1986. Pulcherralpin, a new diterpene ester from Caesalpinia pulcherrima. J. Nat. Prod. 49, 561-569.

Cheenpracha, S., Srisuwan, R., Karalai, C., Ponglimanont, C., Chantrapromma, S., Chantrapromma, K., Fun, H.-K., Anjum, S. and Rahman, A.-U. 2005. New diterpenoids from stems and roots of Caesalpinia crista. Tetrahedron. 61, 8656-8662.

Cheenpracha, S., Karalai, C., Ponglimanont, C., Chantrapromma, K. and Laphookhieo, S. 2006. Cassane-type diterpenes from the seeds of Caesalpinia crista. Helv. Chim. Acta. 89, 1062-1066.

Cheenpracha, S. 2007. Chemical constituents from Boesenbergia pandurata, Caesalpinia crista and Suregada multiflora and search for novel terpenes in Erythropodium caribaeorum and study for carotenoids from a coral-derived. Doctor of Philosophy Thesis in Organic Chemistry, Prince of Songkla University, Songkhla, Thailand.

Chen, P. and Yang, J.-S. 2007. Flavonol galactoside caffeiate ester and homoisoflavones from Caesalpinia millettii HOOK. et ARN. Chem. Pharm. Bull. 55, 655-657.

Das, B., Thirupathi, P., Ravikanth, B., Aravind Kumar, R., Sarma, A.V.S. and Basha, S.J. 2009. Isolation, synthesis, and bioactivity of homoisoflavonoids from Caesalpinia pulcherrima. Chem. Pharm. Bull. 57, 1139-1141.

Das, B., Srinivas, Y., Sudhakar, C., Mahender, I., Laxminarayana, K., Reddy, P.R., Raju, T., Jakka, N.M. and Rao, J.V. 2010. New diterpenoids from Caesalpinia Species and their cytotoxic activity. Bioorg. Med. Chem. Lett. 20, 2847-2850.

Devon, T.K., Scott, A.I., 1972. Handbook of naturally occurring compounds, vol. II. Terpenes, Academic Press, New York and London, p. 186.

Dickson, R.A., Houghton, P.J. and Hylands, P.J. 2007. Antibacterial and antioxidant cassane diterpenoids from Caesalpinia benthamiana. Phytochemistry 68, 1436-144.

Fu, L.-C., Huang, X.-A., Lai, Z.-Y., Hu, Y.-J., Liu, H.-J. and Cai, X.-L. 2008. A new 3-benzylchroman derivative from sappan lignum (Caesalpinia sappan). Molecules. 13, 1923-1930.

Guiso, M., Marra, C. and Farina, A. 2002. A new efficient resveratrol synthesis. Tetrahedron Lett. 43, 597-598.

Jiang, R.W., Ma, S.C., He, Z.D., Huang, X.S., But, P.P., Wang, H., Chan, S.P., Ooi, V.E., Xu, H.X. and Mak, T.C. 2002a. Molecular structures and antiviral activities of naturally occurring and modified cassane furanoditerpenoids and friedelane triterpenoids from Caesalpinia minax. Bioorg. Med. Chem. 10, 2161-2170.

Jiang, R.W., But, P.P.H., Ma, S.C., Ye, W.C. Chan,S.P.,and Mak, T.C.W. 2002b. Structure and antiviral properties of macrocaesalmin, a novel cassane furanoditerpenoid lactone from the seeds of Caesalpinia minax Hance. Tetrahedron Lett. 43, 2415-2418.

Kalauni, S.K., Awale, S., Tezuka, Y., Banskota, A.H., Linn, T.Z., Aaih, P.B.S., Syafruddin, A. and Kadota, D. 2006. Antimalarial activity of cassane- and norcassane-type diterpenes from Caesalpinia crista and their structure-activity relationship. Biol. Pharm. Bull. 29, 1050-1052.

Kuroda, C., Ueshino, T. and Nagano, H. 2004. Ehrlich's reaction of furanoeremophilanes. Bull. Chem. Soc. Jpn. 77, 1737-1740.

Leal, R.S., Lima, M.A.S. and Silveira, E.R. 2003. Cassane diterpenes from Plathymenia reticulata. J. Braz. Chem. Soc. 14, 120-125.

Linn, T.Z., Awale, S., Tezuka, Y., Banskota, A.H., Kalauni, S.K., Attamimi, F., Ueda, J.Y., Asih, P.B., Syafruddin, D., Tanaka, K. and Kadota, S. 2005. Cassane- and norcassane-type diterpenes from Caesalpinia crista of Indonesia and their antimalarial activity against the growth of Plasmodium falciparum. J. Nat. Prod. 68, 706-710.

Lyder, D.L., Peter, S.R., Tinto, W.F., Bissada, S.M., McLean, S. and Reynolds, W. F. 1998. Minor cassane diterpenoids of Caesalpinia bonduc. J. Nat. Prod. 61, 1462-1465.

McPherson, D.D., Che, C.-T., Cordell, G.A., Soejarto, D.D., Pezzuto, J.M. and Fong, H.H.S. 1986. Diterpenoids from Caesalpinia pulcherrima. Phytochemistry 25, 167-170.

Miyaichi, Y., Nunomura, N., Kawata, Y., Kizu, H., Tomimori, T., Watanabe, T., Takano, A. and Malla, K.J. 2006. Studies on Nepalese crude drugs. XXVIII. Chemical constituents of Bhote Khair, the underground parts of Eskemukerjea megacarpum HARA, Chem. Pharm. Bull. 54, 136-138.

Moon, H.I., Chung, I.M., Seo, S.H. and Kang, E.Y. 2010. Protective effects of 3'-deoxy-4-O-methylepisappanol from Caesalpinia sappan against glutamateinduced neurotoxicity in primary cultured rat cortical cells. Phytother Res. 24, 463-465.

Nasini, G. and Piozzi, F. 1981. Pterocarpol and triterpenes from Daemonorops draco. Phytochemistry 20, 514-516.

Nozaki, H., Hayashi, K., Kido, M., Kakumoto, K., Ikeda, S., Matsuura, N., Tani, H., Takaoka, D., Iinuma, M., Akao, Y. and Pauferrol, A. 2007. A novel chalcone trimer with a cyclobutane ring from Caesalpinia ferrea mart
exhibiting DNA topoisomerase II inhibition and apoptosis-inducing activity. Tetrahedron Lett. 48, 8290-8292.

Patil, A.D., Freyer, A.J., Webb, R.L., Zuber, G., Reichwein, R., Bean, M.F., Faucette, L. and Johnson, R.K. 1997. Pulcherrimins A-D, novel diterpene dibenzoates from Caesalpinia pulcherrima with selective activity against DNA repairdeficient yeast mutants. Tetrahedron 53, 1583-1592.

Pranithanchai, W., Karalai, C., Ponglimanont, C., Subhadhirasakul, S. and Chantrapromma, K. 2009. Cassane diterpenoids from the stem of Caesalpinia pulcherrima. Phytochemistry 70, 300-304.

Promsawan, N., Kittakoop, P., Boonphong, S. and Nongkunsarn, P. 2003. Antitubercular cassane furanoditerpenoids from the roots of Caesalpinia pulcherrima. Planta Med. 69, 776-777.

Pudhom, K., Sommit, D., Suwankitti, N. and Petsom, A. 2007. Cassane furanoditerpenoids from the seed kernels of Caesalpinia bonduc from Thailand. J. Nat. Prod. 70, 1542-1544.

Qu, J., Xie, C., Guo, H., Yu, W. and Lou, H. 2007. Antifungal dibenzofuran bis(bibenzyl)s from the liverwort Asterella angusta. Phytochemistry 68, 17671774.

Ragasa, C.Y., Hofileña, J.G. and Rideout, J.A. 2002. New furanoid diterpenes from Caesalpinia pulcherrima. J. Nat. Prod. 65, 1107-1110.

Ragasa, C.Y., Ganzon, J., Hofileña, J., Tamboong, B. and Rideout, J.A. 2003. A new furanoid diterpene from Caesalpinia pulcherrima. Chem. Pharm. Bull. 51, 1208-1210.

Ravn, M.M., Peters, R.J., Coates, R.M., Croteau, R., 2002. Mechanism of abietadiene synthase catalysis: stereochemistry and stabilization of the cryptic pimarenyl carbocation intermediates J. Am. Chem. Soc. 124, 6998-7006.

Roach, J.S., McLean, S., Reynolds, W.F. and Tinto, W.F. 2003. Cassane diterpenoids of Caesalpinia pulcherrima. J. Nat. Prod. 66, 1378-1381.

Sgariglia, M.A., Soberón, J.R., Sampietro, D.A., Quiroga, E.N. and Vattuone, M.A. 2011. Isolation of antibacterial components from infusion of Caesalpinia paraguariensis bark. A bio-guided phytochemical study. Food Chem 126, 395-404.

Shu, S.-H., Deng, A.-J., Li, Z.-H. and Qin, H.-L. 2011. Two novel biphenyl dimers from the heartwood of Caesalpinia sappan. Fitoterapia. 82, 762-776.

Smitinand, T. and Larson, K. 2001. Flora of Thailand. ASRCT Press, Bangkok, 94.
Tanaka, T., Ohyama, M., Iinuma, M., Shirataki, Y., Komatsu, M. and Burandt, C.L. 1998. Isoflavonoids from Sophora secundiflora, S. arizonica and S. gypsophila. Phytochemistry 48, 1187-1193.

Torres-Mendoza, D., Ureña González, L.D., Ortega-Barría, E., Coley, P.D., Kursar, T.A., Capson, T.L., McPhail, K., Cubilla-Rios, L. 2004. Novel cassane and cleistanthane diterpenes from Myrospermum frutescens: absolute stereochemistry of the cassane diterpene series. J. Nat. Prod. 67. 1711-1715.

Udenigwe, C.C., Ata, A. and Samarasekera, R. 2007. Glutathione S-transferase inhibiting chemical constituents of Caesalpinia bonduc. Chem. Pharm. Bull. 55, 442-445.

Wang, D., Zhu, H.-T., Zhang, Y.-J. and Yang, C.-R. 2005. A carbon-carbon-coupled dimeric bergenin derivative biotransformed by Pleurotus ostreatus. Bioorg. Med. Chem. Lett. 15, 4073-4075.

Washiyama, M., Sasaki, Y., Hosokawa, T. and Nagumo, S. 2009. Anti-inflammatory constituents of Sappan Lignum. Biol. Pharm. Bull. 32, 941-944.

Wu, Z., Wang, Y., Huang, J., Sun, B. and Wu, L. 2007. A new cassane diterpene from Caesalpinia bonduc (fabaceae). Asian Journal of Traditional Medicines 2, 135-139.

Yadav, P.P., Arora, A., Bid, H.K., Konwar, R.R. and Kanojiya, S. 2007. New cassane butenolide hemiketal diterpenes from the marine creeper Caesalpinia bonduc and their antiproliferative activity. Tetrahedron Lett. 48, 7194-7198.

Yadav, P.P., Maurya, R., Sarkar, J., Arora, A., Kanojiya, S., Sinha, S., Srivastava, M.N. and Raghubir, R. 2009. Cassane diterpenes from Caesalpinia bonduc. Phytochemistry 70, 256-261.

Yang, Z.-Y., Yin, Y.-H. and Hu, L.-H. 2009. Five new cassane-type diterpenes from Caesalpinia crista. Helv. Chim. Acta. 92, 121-126,

Yin, Y., Ma, L. and Hu, L.-H. 2008. Cassane-type diterpenoids from the seeds of Caesalpinia magnifoliolata, Helv. Chim. Acta. 91, 972-977.
Yodsaoue, O., Cheenpracha, S., Karalai, C., Ponglimanont, C., Chantrapromma, S., Fun, H.-K. and Kanjana-Opas, A. 2008. Phanginin A-K, diterpenoids from the seeds of Caesalpinia sappan Linn. Phytochemistry 69, 1242-1249.

Yodsaoue, O., Karalai, C., Ponglimanont, C., Tewtrakul, S. and Chantrapromma, S. 2010. Potential anti-inflammatory diterpenoids from the roots of Caesalpinia mimosoides Lamk. Phytochemistry 71, 1756-1764.

Yodsaoue, O., Karalai, C., Ponglimanont, C., Tewtrakul, S. and Chantrapromma, S. 2011. Pulcherrins D-R, potential anti-inflammatory diterpenoids from the roots of Caesalpinia pulcherrima. Tetrahedron 67, 6838-6846.

Zhao, H., Bai, H., Wang, Y., Li, W. and Koike, K. 2008. A new homoisoflavan from Caesalpinia sappan. J. Nat. Med., 62, 325-327.

APPENDIX

Figure 3 UV (MeOH) spectrum of compound CM1

Figure 4 IR (neat) spectrum of compound CM1

Figure $5 \quad{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound CM1

Figure $6{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone $-d_{6}$) spectrum of compound CM1

Figure 7 DEPT $135^{\circ}\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound CM1

Figure 8 DEPT 90 ${ }^{\circ}$ (acetone- d_{6}) spectrum of compound CM1

Figure 9 2D COSY (acetone- d_{6}) spectrum of compound CM1

Figure 10 2D HMQC (acetone- d_{6}) spectrum of compound CM1

Figure 11 2D HMBC (acetone- d_{6}) spectrum of compound CM1

Figure 12 UV (MeOH) spectrum of compound CM2

Figure 13 IR (neat) spectrum of compound CM2

Figure $14{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM2

Figure $15{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C M} 2$

Figure 16 DEPT $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM2

Figure 17 2D COSY $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM2

Figure 18 2D HMQC (CDCl_{3}) spectrum of compound CM2

Figure 19 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C M} 2$

Figure $20{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C M} 3$

Figure $21 \quad{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM3

Figure $22{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C M 4}$

Figure $23 \quad{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM4

Figure $24{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM5

Figure $25{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM5

Figure $26{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM6

Figure $27{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM6

Figure $28{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM7

Figure $29{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM7

Figure $30{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM8

Figure $31{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM8

Figure $32{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C M 9}$

Figure $33{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM9

Figure 34 UV (MeOH) spectrum of compound CM10

Figure 35 IR (neat) spectrum of compound CM10

Figure $36{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone $-d_{6}$) spectrum of compound CM10

Figure $37{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound CM10

Figure 38 DEPT 135° (acetone- d_{6}) spectrum of compound CM10

Figure 39 DEPT 90° (acetone- d_{6}) spectrum of compound CM10

Figure 40 2D COSY (acetone- d_{6}) spectrum of compound CM10

Figure 41 2D HMQC (acetone- d_{6}) spectrum of compound CM10

Figure 42 2D HMBC (acetone- d_{6}) spectrum of compound CM10

Figure $43 \quad{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound CM11

Figure $44{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound CM11

Figure $45 \quad{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone $-d_{6}$) spectrum of compound CM12

Figure $46{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound CM12

Figure $47{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone $-d_{6}$) spectrum of compound CM13

Figure $48{ }^{13} \mathrm{C}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound CM13

Figure $49{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C M 1 4}$

Figure $50{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CM14

Figure $51{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound CM15

Figure $52{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound CM15

Figure $53{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound CM16

Figure $54{ }^{13} \mathrm{C}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound CM16

Figure $55{ }^{1} \mathrm{H}$ NMR (300 MHz) ($\mathrm{CD}_{3} \mathrm{OD}$) spectrum of compound CM17

Figure $56{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of compound CM17

Figure $57{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound CM18

Figure $58{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound CM18

Figure 59 UV $\left(\mathrm{CHCl}_{3}\right)$ spectrum of compound CP1

Figure 60 IR (neat) spectrum of compound CP1

Figure $61{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP1

Figure $62{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1}$

Figure 63 DEPT $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP1

Figure 64 DEPT $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1}$

Figure 65 2D COSY $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP1

Figure 66 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP1

Figure 67 2D HMBC (CDCl_{3}) spectrum of compound CP1

Figure $68{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2}$

Figure $69{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2}$

Figure $70{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 3}$

Figure $71{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 3}$

Figure $72{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 4}$

Figure $73{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 4}$

Figure $74{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP5

Figure $75{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 5}$

Figure $76{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 6}$

Figure $77{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 6}$

Figure $78{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP7

Figure $79{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 7}$

Figure $80{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 8}$

Figure $81{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP8

Figure $82{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 9}$

Figure $83{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP9

Figure $84{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 0}$

Figure $85{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 0}$

Figure $86{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 1}$

Figure $87{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 1}$

Figure $88{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 2}$

Figure $89{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 2}$

Figure $90{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1} 3$

Figure $91{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP13

Figure $92{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 4}$

Figure $93{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP14

Figure $94{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 5}$

Figure $95{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP15

Figure $96{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP16

Figure $97{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP16

Figure $98{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 7}$

Figure $99{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP17

Figure $100{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 8}$

Figure $101{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 8}$

Figure $102{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 1 9}$

Figure $103{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP19

Figure $104{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound CP20

Figure $105{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound CP20

Figure $106{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2 1}$

Figure $107{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2 1}$

Figure $108{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2 2}$

Figure $109{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2 2}$

Figure $110{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound CP23

Figure $111{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound $\mathbf{C P 2 3}$

Figure $112{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CP24

Figure $113{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2 4}$

Figure $114{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2 5}$

Figure $115{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2 5}$

Figure $116{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2 6}$

Figure $117{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C P 2 6}$

VITAE

Name	Miss Orapun Yodsaoue
Student ID	5110230011

Educational Attainment

Degree	Name of Institution	Year of Graduation
Bachelor of Science	Prince of Songkla University,	2005
(Chemistry)	Hat-Yai, Songkhla, Thailand	
Master of Science	Prince of Songkla University,	2007
(Organic Chemistry)	Hat-Yai, Songkhla, Thailand	

Scholarship Awards during Enrolment

Scholarship was awarded by the Office of the Higher Education Commission, Thailand for supporting by grant fund under the program Strategic Scholarships for Frontier Research Network for the Joint Ph.D. Program Thai Doctoral degree and the Prince of Songkla University.

Lists of Publication and Proceeding

Publications

Yodsaoue, O., Karalai, C., Ponglimanont, C., Tewtrakul, S. and Chantrapromma, S. 2010. Potential anti-inflammatory diterpenoids from the roots of Caesalpinia mimosoides Lamk. Phytochemistry71, 1756-1764.

Yodsaoue, O., Karalai, C., Ponglimanont, C., Tewtrakul, S. and Chantrapromma, S. 2011. Pulcherrins D-R, potential anti-inflammatory diterpenoids from the roots of Caesalpinia pulcherrima. Tetrahedron 67, 6838-6846.

Fun, H.-K., Yodsaoue, O., Karalai, C. and Chantrapromma, S. 2010. Absolute configuration of isovouacapenol C. Acta Cryst. E66, o2059-o2060.

Fun, H.-K., Yodsaoue, O., Chantrapromma, S. and Karalai, C. 2010. Absolute configuration of vouacapen-5 β-ol. Acta Cryst. E66, o2166-o2167

Proceeding: International conferences

Yodsaoue, O., Karalai, C., Ponglimanont, C. and Tewtrakul, S. Anti-inflammatory constituents from the roots of Caesalpinia mimosoides.: PERCH-CIC Congress VI. Jomtein Palm Beach, Pattaya, Chonburi, Thailand. 3-6 May 2008. (Poster)

Yodsaoue, O., Karalai, C., Ponglimanont, C., Tewtrakul, S. and Chantrapromma, S. Anti-inflammatory constituents from the roots of Caesalpinia mimosoides.: Commission on Higher Education Congress III: University Staff Development Consortium CHE-USDC Congress III. A-One The Royal Cruise Hotel, Pattaya, Chonburi, Thailand. 9-11 August 2010. (Poster)

