DISEASE OF INTERMEDIATE WHEATGRASS

Kathryn Turner

Damage

- Lower grain/biomass yield
- Lower grazing quality
 - Karn et al. 1983
- Produce toxic compounds in grain

Diseases of intermediate wheatgrass

Host resistance: *Thinopyrum* genes used in wheat improvement

- Th. ponticum: Sr24,Sr25,Sr26, Sr43 and leaf rust Lr24
- Th. intermedium: Sr44, eyespot, BYDV
- Thinopyrum elongatum:Lr19
- Th. junceum: powdery mildew

Control strategies in perennial systems

- Genetic resistance
- Maintaining host and interspecific diversity (competition)
 - Planting in mixtures
 - Polyculture
 - Biocontrol
- Removing pest/residue (disturbance)
 - Burning
 - Stripe rust in KY bluegrass
 - · Grazing, mowing
 - Rogueing (Sisterton 2013)
- Limiting spread
 - Row spacing
 - Cleaning or reducing use of equipment

Disease survey Salina, 2018

viral, below-ground disease evaluation

Most diseases are minor

Fusarium head blight

- Caused by Fusarium graminearum, etc.
- Toxin accumulation (DON, etc.)
- Management
 - Resistant lines
 - Stubble
 - Triazole fungicides (wheat) 6→4ppm at optimal timing
 - Swathing (lodging)
 - Harvest
 - Store grain <22% moisture

Genomic selection

Ergot

- Caused by Claviceps purpurea
- Ergotism gangrene, hallucinations
- Breeding
 - Uniform maturity, avoidance
- Management
 - Seed
 - Mow borders during flowering
 - Burn
 - Swathing

Bacterial leaf streak

- Caused by Xanthomonas translucens
- Leaf streaking, glume blotch
- Management
 - Genetic resistance, uninfected seed (soil)
 - No pesticides effective
 - Treat seed at 72C?
 - Tillage, rotation help some
 - Spread by rain splash
 - Enters plant from injury

Long term disease accumulation trial

N - Narrow row Kernza

W - Wide row Kernza

AK - Alfalfa/Kernza

B - Burn treatment Kernza

- Replant every 3 years
- Maintain 1 non-inoculated rep
- Interest in integrating studies in polyculture

Disease management questions

- Fusarium head blight
 - DON in resistant populations
 - Lodging, harvest
- Kernza
 - Row spacing
 - Planting time
 - Burning
 - Polyculture
- Economic thresholds for fungicide application

Spot blotch

- Caused by Bipolaris sorokiniana
- Leaf blotch, seedling blight, root rot
- Management (wheat)
 - Seedlings
 - Plant later to avoid 68-77F
 - Shallow
 - Rotate for ≥ 2 years
 - Fungicides available

Host defenses

- Constitutive (cell walls, waxy cuticles, bark)
- Induced (recognition of pathogen → response)
 - Toxic chemicals
 - Pathogen-degrading enzymes
 - Cell suicide

Reducing disease in intermediate wheatgrass

• Genomic selection accuracies: .7-.9 for Fusarium head blight severity and incidence, low heritability

Diseases of intermediate wheatgrass

- Bipolaris sorokiniana (telomorph: Cochliobolus sativus) causes spot blotch and root rot
- Pyrenophora tritici-repentis causes tan spot
- Fusarium graminearum causes head blight and has potential to cause root rot
- Leptosphaeria nodorum (anamorph Septoria nodorum) causes septoria nodorum blotch
- Phaeosphaeria nodorum causes Stagonospora glume blotch
- Cephalosporium gramineum causes cephalosporium stripe
- Pyrenophora terens causes net blotch
- Gaeumannomyces graminis causes take all
- Oculimacula yallundae and O. acuformis cause eye spot