The Genus Licea (Myxomycetes) in Taiwan

Chin-Hui Liu ${ }^{1 *}$ and Jong-How Chang ${ }^{2}$
${ }^{1}$ Institute of Plant Science, National Taiwan University, Taipei, Taiwan 106, R.O.C.
${ }^{2}$ Division of Plant Protection, Taiwan Forest Research Institute, Taipei, Taiwan, 100, R.O.C.

(Received August 20, 2010; Accepted September 23, 2010)

Abstract

Nine species of the genus Licea have been reported from Taiwan. In this paper, four additional records; L. bryophila Nann.-Bremek., L. erecta var. erectoides (Nann.-Bremek. \& Y. Yamam.) Y. Yamam., L. parasitica (Zukal) G.W. Martin, and L. scyphoides T.E. Brooks \& H.W. Keller, and an unknown species are described and illustrated. A key to the Licea species of Taiwan is also provided.

Key words: Licea, Myxomycetes, Taiwan.

INTRODUCTION

The genus Licea Schrad. (Liceaceae, Liceales) is characterized by the absence of capillitium and pseudocapillitium in the sporangia. The spores are often paler on one side, and smooth or minutely warted (Martin and Alexopoulos, 1969). Previously, nine species of Licea were recorded in Taiwan (Nakazawa, 1929; Shi, 1981; Chiang and Liu, 1991; Chung and Liu, 1996a, b; Chung et al., 1998; Liu et al., 2002b). In this paper, we report four new records; L. bryophila, L. erecta var. erectoides, L. parasitica, and L. scyphoides, and an unknown species. Most specimens were harvested from corticolous habitats by moistchamber cultures. Fruiting bodies and their microscopic structures were examined by light and scanning electron microscopy as described previously (Liu et al., 2002a).

TAXONOMY

Key to species of Licea from Taiwan.

1. Fructification sessile, sometimes with base
restricted but not stalked............................ 2

Fructification stalked, or at least some sporangia with distinct stalks 9
2. Dehiscence typically by a preformed, orbicular lid3
Dehiscence not by a lid 4
3. Lid metallic, glossy, and transparent, bearing knobs or tubules on inner surface, spores $<11 \mu \mathrm{~m}$ in diameter and minutely echinulate ..L. kleistobolus
Lid not as above, spores $>11 \mu \mathrm{~m}$ in diam., smooth.
.L. parasitica
4. Fructification plasmodiocarpous, reticulate
.L. retiformis
Fructification not plasmodiocarpous 5
5. Dehiscence by a distinct longitudinal fissure; sporangia elongate, laterally compressed, or plasmodiocarpous, up to 2.0 mm long
L. biforis

Dehiscence irregular, by a circumscissile fissure, or along preformed ridges, peridium divided by ridges into angular platelets; sporangia not laterally compressed .6
6. Spores small, 7~9 $\mu \mathrm{m}$ in diameter 7

Spores larger, $>10 \mu \mathrm{~m}$ in diameter 8
7. Peridium one-layered, smooth on the inside, sporangia reddish brown \qquad L. kellerii

Peridium two-layered, inner peridium cartilaginous, sporangia almost black when mature \qquad .L. pescadorensis
8. Dehiscence along preformed ridges, peridial platelets less than 6 per sporangium, with prominent pegs, minute warts, or elongate protuberances at margins of inner surface, spores minutely warted.
..L. minima
Dehiscence by a circumscissile fissure or irregular, with cup-like remains after dehi-

[^0]scence, spores minutely warted .L. bryophila
9. Sporangia laterally compressed, dehiscence by a longitudinal fissure along length of sporangium .Licea sp .
Dehiscence not by a longitudinal fissure, sporangia not as above 10
10. Dehiscence by a lid (operculate), sporangia urn-shaped or globose 11
Dehiscence not by a lid, sporangia globose to ovate

12
11. Sporangia urn-shaped, usually operculate, $0.1 \sim 0.2 \mathrm{~mm}$ in diameter; spores (7~) 8~12 $\mu \mathrm{m}$ in diameter
L. operculata

Sporangia globose, $0.07 \sim 0.1 \mathrm{~mm}$ in diam.; spores $10 \sim 11 \mu \mathrm{~m}$ in diameter... L. bulbosa
12. Dehiscence by a circumscissile fissure, basal portion persisting as a cup; spores minutely roughened; sporangia globose; up to 0.35 mm in total height
.L. scyphoides
Dehiscence irregular or by a vertical slit; spores nearly smooth; up to 1.5 mm in total height 13
13. Dehiscence by a vertical slit, sporangia globose; iridescent on upper part, lower part opaque with refuse matter
L. capitata

Dehiscence irregular; sporangia ovate to oblong ovate; dark brown and opaque throughout, bearing a network of thickened ridges but not divided into platelets \qquad .L. erecta var. erectoides
Licea biforis Morgan, J. Cincinnati Soc. Nat. Hist. 15: 131. 1893.
= Licea sinuosa Nann.-Bremek., Acta Bot. Neerl. 14: 143. 1965.
$=$ Pleiomorpha biforis (Morgan) Dhillon, Sydowia 32: 81. 1979.
$=$ Licea biforis var. sinuosa (Nann.-Bremek.) Y. Yamam., Hikobia 11: 528. 1994.

Description and illustration: H. Shi, in Bull. Hsin-Chu Teacher's Coll. 7: 2-3. 1981.

Specimens examined: Taipei City: main campus of National Taiwan Univ., on bark, BY37M29, Apr. 28, 1989 (moist-chamber culture: Apr. 3~28, 1989). Pingtung Co.: Nanjenshan forest, on bark, CHL B1575, Jan. 26, 1999 (moistchamber culture: Dec. 16, 1998~Jan. 26, 1999).

The distinct outer feature of this species is
its brown plasmodiocarpous fructification with a prominent dehiscent fissure along the long axis of the sporangium. The specimen from Yangmingshan (Shi, 1981) appears to have much larger plasmodiocarps with smaller spores. In our specimens, the sporangia are $0.2 \sim 0.75 \times$ $0.075 \sim 0.18 \mathrm{~mm}$ and spores are $10 \sim 12 \mu \mathrm{~m}$ in diam. for the globose form, or proportionately longer for the oval form.

Licea bryophila Nann.-Bremek., Proc. Kon. Ned. Akad. Wetensch. C. 79: 382. 1978.
(Figs. 1A, 2A-F)
Fructification sporangiate or aethaliod, scattered, sessile, on a somewhat narrow base in the globose form or on a broad base in the nearly hemispheric type, irregular in size, 0.07~0.18 mm in diam., globose or subglobose, 0.12~0.23 $\times 0.25 \sim 0.37 \mathrm{~mm}$ in the somewhat elongated form, dingy brown to blackish. Hypothallus concolorous with the sporangium. Peridium membranous, translucent, often enveloped by gelatinous refuse matter, exposed when the slimy outer coating slipped away, minutely papillate or warted, dehiscence circumscissile or irregular, leaving the lower part of the sporangium as a cup. Spores dark brown in mass, medium or pale brown by transmitted light, globose, 13~17 $\mu \mathrm{m}$ in diam., roughened in high dry lens, minutely spinulate under oil lens, with a pale area on one side, by SEM the warts or spinules dense and low, connected at base. Plasmodium not observed.

Specimen examined: Taipei City: main campus of National Taiwan Univ., on bare bark of Carica papaya, BY31M06, Mar. 23, 1989 (moistchamber culture: Mar. 9~23, 1989).

Distribution: Europe (Britain, France, Switzerland), Taiwan.

This species is quite close to L. kayokare Y. Yamam. (Yamamoto, 2000) in the outer appearance of the sporangium (size, form, color and dehiscent manner) and in the spores (densely and minutely spinulose or verruculose). However, L. bryophila has smaller spores ($14 \sim 15 \mu \mathrm{~m}$) (Mitchell and Nannenga-Bremekamp, 1976) than those of L. kayokare (15~21 $\mu \mathrm{m}$ in diam.). The peridium of L. kayokare is single-layered, almost without gelatinous refuse matter (Yamamoto, 2000), but L. bryophila has a double-layered peridium with a gelatinous outer layer. We identified our specimen as L. bryophila based on the characteristics of the spores and the peridium. Licea bulbosa Nann.-Bremek. \& Y. Yamam.,

Proc. Kon. Ned. Akad. Wetensch. C. 90: 324.1987. $=$ Licea tropica Chao H. Chung and C.H. Liu, Proc. Nat. Sci. Counc., ROC. B. 20: 140. 1996. (Figs. 1B-G)

Specimens examined: Taipei City: Yangmingshan National Park, Hsiaoyoukeng, on fallen twigs and leaves of Miscanthus floridulus, CHL B2343, Oct. 2, 2001 (moist-chamber culture: Aug. 26~Oct. 2, 2001). Taipei Co.: Shih-ting, Wenshan Botanical Gardens of National Taiwan Univ., on fallen twigs and leaves, CHL B2161, July 25, 2000 (moist-chamber culture: July 10~25, 2000).

Relevant characters were examined. The height of the fruiting body and the diameter of the sporangium were noted as the main differences of L. tropica and L. bulbosa by Chung and Liu (1996a). But when examining our subsequent moist-chamber cultures (as listed above) with the same characteristics as those of L. tropica and the isotype of L. bulbosa in Wrigley de Basanta and Lado (2005), the smaller sizes of the fruiting bodies and the sporangia as those of L. bulbosa were also found.

Licea capitata Ing \& McHugh, in Ing, Trans. Br. Myc. Soc. 78: 439. 1982.

Description and illustration: Y.C. Chiang and C.H. Liu, in Taiwania 36: 252, 258. 1991.

It was classified as a lidless form of Licea operculata with no differences in microscopic characters (Ing, 1999), then was treated as a synonym to L. floriformis var. aureospora M.T.M. Willemse \& Nann.-Bremek. based on the similar characteristics of spores, stalks, and peridium (Wrigley de Basanta and Lado, 2005). Similarities of this species with L. operculata were noted (Chiang and Liu, 1991), but the way of sporangial dehiscence, that by a vertical slit instead of by a lid is apparently different from that of the latter. We therefore recognize L. capitata as a distinct species.

Licea erecta var. erectoides (Nann.-Bremek. \& Y. Yamam.) Y. Yamam., Myxomycete Biota Japan 130. 1998.
(Figs. 1H-J)
$=$ Licea erectoides Nann.-Bremek. \& Y. Yamam., Proc. Kon. Ned. Akad. Wetensch., C. 86: 209. 1983.

Fructification sporangiate, scattered. Sporangia stalked, dark brown to blackish, ovate to oblong ovate, $0.17 \sim 0.33 \mathrm{~mm}$ in diam. Stalk
long, up to 0.75 mm long. Peridium dark brown, opaque, marked by ridges in longitudinal and irregular but anastomosing arrangement, with blunt outgrowth on upper part of sporangium, dehiscence along ridges. Spores ochraceous in mass, pale by transmitted light, globose, $9 \sim 11 \mu \mathrm{~m}$ in diam., smooth under high dry lens.

Specimen examined: Taipei City: main campus of National Taiwan Univ., on bark of Liquidambar formosana, CHL B2350, May 26, 1988.

Distribution: Asia (China, Japan, Taiwan), Costa Rica, Cuba.

The long-stalked and dark brown sporangium with more or less longitudinal and anastomosing ridges is distinct but similar to L. erecta K.S. Thind \& Dhillon. The much smaller spore size of this taxon is, however, different from the type species L. erecta which has spores in 14~15 $\mu \mathrm{m}$ in diam. (Martin and Alexopoulos, 1969). Spores in both the type species and the var. erectoides are similar in color and surface markings.

Licea kellerii Nann.-Bremek. \& Y. Yamam., Proc. Kon. Ned. Akad. Wetensch. C. 86: 211. 1983.

Description and illustration: C.H. Chung et al., in J. Taiwan Mus. 51: 51-53. 1998.

Specimen examined: Taitung Co.: Orchid Island, Mt. Tasen, on dead twigs, CHL B824, June 23, 1988 (moist-chamber culture: May 23~June 23, 1988).

Licea kleistobolus G.W. Martin, Mycologia 34: 702. 1942.
= Kleistobolus pusillus C. Lippert, Verh. Zool. Bot. Ges. Wein 44: 70. 1894.
$=$ Orcadella pusilla (C. Lippert) Hagelst., Mycologia 34: 258. 1942.
Description and illustration: Y.C. Chiang and C.H. Liu, in Taiwania 36: 253, 259. 1991.

Specimens examined: Taipei City: main campus of National Taiwan Univ., on bark, CHL B832, Mar. 28, 1989 (moist-chamber culture: Mar. 9~28, 1989); Yangmingshan National Park, Arhtzuping, on bark, BY420M82, Nov. 30, 1989 (moist-chamber culture: Oct. 29~Nov. 30, 1989). Taichung Co.: Heping, Wuling Farm, on bark, CHL B1169, Oct. 13, 1994 (moist-chamber culture: Sept. 26~Oct. 13, 1994).

Licea minima Fr., Syst. Mycol. 3: 199. 1829. (Figs. 2G-L)
$=$ Phelonites minima (Fr.) Fr., Summa Veg.

Scand. 459. 1849.
$=$ Tubulina minima (Fr.) Massee, Monogr. Myxogastr. 36. 1892.
Description and illustration: H. Shi, in Bull. Hsinchu Teacher's Coll. 7: 2-3. 1981.

Specimens examined: Nantou Co.: Hsitou, on bark, CHL B921, Nov. 15, 1991 (moist-chamber
culture: Oct. 18~Nov. 15, 1991). Pingtung Co.: Nanjenshan forest, on bark, CHL B1371, Dec. 15, 1997 (moist-chamber culture: Sept. 22~Dec. 15, 1997).

At first glance our specimens are close to Licea pusilla, but differ in the sizes of both the sporangia ($0.10 \sim 0.22 \mathrm{~mm}$ in our specimens)

Fig. 1. A. Fruiting body of Licea bryophila. B-G. Licea bulbosa. B-C. Fruiting bodies. D. SEM of dehiscent sporangium. E. Surface markings of spore, by SEM. F. Part of the sporangial lid, showing the spinules on the inner edge. G. Spores. H-J. Licea erecta var. erectoides. H and J. Fruiting bodies. I. Dehiscent fruiting body, showing a distinct longitudinal fissure on the sporangium. Scale bar: A, $H, I=150 \mu \mathrm{~m}, \mathrm{~B}, \mathrm{C}, \mathrm{J}=250 \mu \mathrm{~m}, \mathrm{D}=20 \mu \mathrm{~m}, \mathrm{E}=1 \mu \mathrm{~m}, \mathrm{~F}=3 \mu \mathrm{~m}, \mathrm{G}=4 \mu \mathrm{~m}$.
and the spores (12~13 $\mu \mathrm{m}$ in our specimens) which are much larger in L. pusilla (Martin and Alexopoulos, 1969; Lado and Pando, 1997).

Licea operculata (Wingate) G.W. Martin, Mycologia 34: 702. 1942.
= Orcadella operculata Wingate, Proc. Acad.

Nat.Sci. Philadelphia 41: 280. 1889. $=$ Orcadella operculata var. sessile G. Lister, Monogr. Mycetozoa, 3rd ed. 186. 1925.
(Figs. 2M-O)
Fructification sporangiate, scattered, dark brown or blackish throughout, $0.35 \sim 0.71 \mathrm{~mm}$ in total height. Sporangia stalked, urn-shaped or

Fig. 2. A-F. Licea bryophila. A. Top view of sporangium. B. A dehiscent sporangium with the lid attached. C. Upper half of a dehiscent sporangium, showing the membranous peridium (arrow) and the refuse matter on it. D. Dehiscent sporangium, showing the bottom half. E. Marginal view of spores. F. Surface markings of one spore, by SEM. G-L. Licea minima. G. Fruiting bodies. H. Sporangium, by SEM. I. Surface and marginal views of spores. J. Surface markings of one spore, by SEM. K. Margin of a lobe of the peridium. L. Dehiscent sporangium, by SEM. M-O. Licea operculata. M-N. Fruiting bodies. O. Spores. Scale bar: A, D $=23 \mu \mathrm{~m}, \mathrm{~B}=18 \mu \mathrm{~m}, \mathrm{C}=9 \mu \mathrm{~m}, \mathrm{E}=8 \mu \mathrm{~m}, \mathrm{~F}=1 \mu \mathrm{~m}, \mathrm{G}=400 \mu \mathrm{~m}, \mathrm{H}=42$ $\mu \mathrm{m}, \mathrm{I}, \mathrm{O}=6 \mu \mathrm{~m}, \mathrm{~J}=2 \mu \mathrm{~m}, \mathrm{~K}=3.6 \mu \mathrm{~m}, \mathrm{~L}=87 \mu \mathrm{~m}, \mathrm{M}, \mathrm{N}=200 \mu \mathrm{~m}$.
rounded, ochraceous when moist, dark smoky brown when dry, $0.1 \sim 0.2 \mathrm{~mm}$ in diam.; with a membranous lid in metallic brown color. Stalk long, stout (ca. $82 \mu \mathrm{~m}$ thick at base), tapering upwards, dark (smoky brown), furrowed (ca. $0.47 \sim 0.55 \mathrm{~mm}$ long). Spores pale yellowish in mass, very pale or colorless by transmitted light, globose, (7.5~) 8~12 $\mu \mathrm{m}$ in diam., smooth.

Specimens examined: Nantou Co.: Meifeng, Highlands Experimental Farm, National Taiwan Univ., on bark of Cryptomeria japonica, CHL B1042b, July 17, 1992 (moist-chamber culture: July 4~17, 1992). Hualien Co.: Chinan National Forest Recreation Area, on bark of Pinus elliottii, CHL B1094, Oct. 4, 1992 (moist-chamber culture: Sept. 12~Oct. 4, 1992). Pingtung Co.: Nanjenshan forest, on bark, CHL B1813, May. 18, 1999 (moist-chamber culture: Apr. 29~May. 18, 1999).

Distribution: Cosmopolitan.
This species is common in Taiwan. It was reported in a list by Nakazawa (1929), but no specimens were deposited in Taiwan.

Licea parasitica (Zukal) G.W. Martin, Mycologia 34: 702. 1942.
= Cylichnium operculatum Wallr., Fl. Crypt. Germ. 2: 268. 1833.
$=$ Hymenobolus parasiticus Zukal, Oesterr. Bot. Zeits. 43: 73. 1893.
= Hymenobolina parasitica (Zukal) Zukal, Oesterr. Bot. Zeits. 43: 133. 1893.
= Orcadella parasitica (Zukal) Hagelst., Mycologia 34: 258. 1942.
$=$ Orcadella singularis (E. Jahn) R. Sant., Svensk Bot. Tidskr. 42: 46. 1948.
(Fig. 3)
Fructification sporangiate, scattered or gregarious. Sporangia sessile, globose, subglobose or urn-shaped, $0.08 \sim 0.30 \mathrm{~mm}$ in diam., when moist greenish and gelatinous, or grayish, or blackish depending on substrata. Peridium membranous, pale yellow, translucent, covered by debris matter except at circumcissile line close to upper part, dehiscence operculate, echinulate or warted on under surface. Spores brown in mass, globose, subglobose, pale and thinner on one side, 11~15 (~ 17) $\mu \mathrm{m}$ in diam., smooth. Plasmodium not observed.

Specimens examined: Taipei Co.: Sansia Town, Hsiungkung, on bark, CHL B948, Feb. 30, 1991 (moist-chamber culture: Dec. 19, 1991~Feb. 30, 1992). Nantou Co.: Meifeng, Highlands Experimental Farm, National Taiwan Univ., on
bark of Cryptomeria japonica, CHL B1042a, July 14, 1992 (moist-chamber culture: July 1~14, 1992); CHL B1050b, July 27, 1992 (moistchamber culture: July 4~27, 1992); Hsitou, on bark of C. japonica, CHL B932a, Nov. 18, 1991 (moist-chamber culture: Oct. 18~Nov. 18, 1991). Pingtung Co.: Nanjenshan forest, on bark of Syzygium samarangense, Y.F. Chen 38, Aug. 18, 1995 (moist-chamber culture: Aug. 8~18, 1995).

Distribution: Cosmopolitan.
The sessile, globose or urn-shaped sporangium with an orbicular lid close to the upper part is distinct of this species. The dehiscent line of the lid and the echinulate under surface markings of the peridium (under SEM) are quite prominent.

Licea pescadorensis Chao H. Chung and C.H. Liu, Taiwania 41: 259. 1996.

Description and illustration: C.H. Chung and C.H. Liu, in Taiwania 41: 259-262. 1996 b.

Specimen examined: Penghu Co.: Makung, Wukan south 1 km , open dry farmland, on cow dung, C.H. Chung M924, July 8, 1995 (moistchamber culture: June 17~July 8, 1995).

Licea retiformis Nawawi, Trans. Br. Myc. Soc. 60: 153. 1973.

Description and illustration: C.H. Liu et al., in Taiwania 47: 180-182. 2002b.

Specimen examined: Taipei Co.: Shih-ting, Wenshan Botanical Garden of National Taiwan Univ., on bark of Persea thunbergii, Yang9911B3B2, Jan. 24, 1999 (moist-chamber culture: Dec. 28, 1998~Jan. 24, 1999).

Licea scyphoides T.E. Brooks \& H.W. Keller, Mycologia 69: 679. 1977.
(Fig. 4)
= Licea tanzanica Ukkola, Haerk. \& Gilert, in Ukkola, Haerk \& Saarimaeki, Karstenia 36: 57. 1996.

Fructification sporangiate, scattered, $0.11 \sim 0.30(\sim 0.35) \mathrm{mm}$ in total height. Sporangia stipitate, globose but slightly depressed, 0.07~0.20 (~ 0.25) mm in diam., grayish brown and opaque above, golden brown and glossy below. Peridium membranous, minutely papillose on under surface, dehiscing by an equatorial circumscissile fissure. Stalk stout, black. Spores golden brown or russet in mass, brownish by transmitted light, smooth by margins under oil lens, with a paler area to one side, minutely papillose by SEM, globose, (6.0~) 7.0~12.5 $\mu \mathrm{m}$ in
diam. Plasmodium not observed.
Specimens examined: Taipei City: main campus of National Taiwan Univ., on bark of Koelreuteria formosana, CHL B830, Mar. 27, 1989 (moist-chamber culture: Mar. 9~27, 1989); Peitou District, Zhongzheng Senior High School,
on bark of Albizzia julibrissin, CHL B843, May 2, 1991 (moist-chamber culture: Apr. 26~May 2, 1991). Hsinchu City: National Ch'inghua Univ., on bark, BY26M4, Mar. 27, 1989 (moist-chamber culture: Mar. 21~27, 1989). Nantou Co.: SunMoon Lake, on bark, CHL B849, Dec. 27, 1983

Fig. 3. Licea parasitica. A-B. Fruiting bodies. C. An opened sporangium exposing the ochraceous spore mass. D. Spores and margin of the peridium. E. Smooth spores, by SEM. F. Sporangium, by SEM. G. Margins of opening mouth of a sporangium. H. Spores. Scale bar: $\mathrm{A}=200 \mu \mathrm{~m}, \mathrm{~B}, \mathrm{C}=150 \mu \mathrm{~m}, \mathrm{D}=10 \mu \mathrm{~m}, \mathrm{E}=2.3 \mu \mathrm{~m}, \mathrm{~F}=40 \mu \mathrm{~m}, \mathrm{G}=1.5 \mu \mathrm{~m}, \mathrm{H}=4$ $\mu \mathrm{m}$.

Fig. 4. Licea scyphoides. A. Fruiting body. B. Dehiscent sporangium. C. Under surface of the peridium and the part of spores. D. Sporangium, by SEM. E. Surface markings of one spore, by SEM. F. Spores. Scale bar: A $=150 \mu \mathrm{~m}, \mathrm{~B}=75$ $\mu \mathrm{m}, \mathrm{C}, \mathrm{F}=3 \mu \mathrm{~m}, \mathrm{D}=28 \mu \mathrm{~m}, \mathrm{E}=1.6 \mu \mathrm{~m}$.
(moist-chamber culture: Dec. 10~27, 1983); Huisun Forest Station, on bark of Lagerstroemia subcostata, CHL B849, May 11, 1991 (moistchamber culture: May 1~11, 1991). Pingtung Co.: Nanjenshan forest, on bark, CHL B1598, Mar. 3, 1999 (moist-chamber culture: Feb. 4~Mar. 3, 1999).

Distribution: Africa (Tanzania), Asia (China, Japan, Taiwan), Europe (Spain, Wales), North America, South America (Mexico, Peru).

Among the stipitate forms of Licea, this species is distinct in the way of the peridial dehiscence by an equatorial and circumscissile fissure.

Licea sp.

(Fig. 5)
Fructification sporangiate, scattered.

Sporangium broadly stalked, horizontally elongate, arcuate, or peach-like in few, 0.11~0.21 mm in diam., up to 0.48 mm long. Stalk stout, dark grayish brown, covered by detritus matters. Peridium translucent, appearing smooth, with scattered granular matter on outer surface, dehiscence by a longitudinal fissure dividing peridium into two equal parts; ochraceous, with dark bands of detritus matters around fissure and around junction of sporangium and stalk. Spores pale yellowish in mass, nearly hyaline in transmitted light, smooth under high dry lens, prominently and densely warted by SEM, globose, $11 \sim 12.5 \mu \mathrm{~m}$ in diam.

Specimen examined: Hsinchu City: Kuanwu, on bark of Cryptomeria japonica, BY1251M312, May 4, 1992 (moist-chamber culture: Apr.

Fig. 5. Licea sp. A-D. Fruiting bodies. E. Surface markings of one spore, by SEM. Scale bar: A, C $=125 \mu \mathrm{~m}, \mathrm{~B}, \mathrm{D}=50 \mu \mathrm{~m}, \mathrm{E}=0.6 \mu \mathrm{~m}$.

13~May 4, 1992).

The distinctive characteristic of this specimen is the broadly stipitate sporangia which are elongate horizontally and mostly arcuate, a character not found in any known stipitate species of Licea (Wrigley de Basanta and Lado, 2005). This specimen closely resembles L. biforis in outer appearance of the sporangium, however, in L. biforis the sporangium is sessile and never stipitate as in our specimen.

REFERENCES

Chiang, Y.C. and C.H. Liu. 1991. Corticolous Myxomycetes of Taiwan: On the bark of Pinus trees from central and northern Taiwan.

Taiwania 36: 248-264.
Chung, C.H. and C.H. Liu. 1996a. A new foliicolous species of Licea (Myxomycetes). Proc. Natl. Sci. Counc. ROC Part B: Life Sci. 20: 140-143.
Chung, C.H. and C.H. Liu. 1996b. More fimicolous Myxomycetes from Taiwan. Taiwania 41: 259-264.
Chung, C.H., D.S. Wei, and C.H. Liu. 1998. Some Myxomycetes from Orchid Island, Taiwan. J. Taiwan Mus. 51: 49-53.
Ing, B. 1999. The Myxomycete of Britain and Ireland. Richmond Publication; Slough, UK, 374 pp .
Lado, C. and F. Pando. 1997. Myxomycetes, I. Ceratiomyxales, Echinosteliales, Liceales, Trichiales. Flora Mycol. Iberica 2: 1-323.

Liu，C．H．，F．H．Yang，and J．H．Chang．2002a． Myxomycetes of Taiwan XIV．Three new records of Trichiales．Taiwania 47：97－105．
Liu，C．H．，J．H．Chang，Y．F．Chen，and F．H．Yang． 2002b．Myxomycetes of Taiwan XV．Three new records．Taiwania 47：179－185．
Martin，G．W．and C．J．Alexopoulos．1969．The Myxomycetes．Univ．of Iowa Press；Iowa City， Iowa， 477 pp ．
Mitchell，D．W．and N．E．Nannenga－Bremekamp． 1976．Myxomycetes collected in France and preserved in our private collections．Proc．

Kon．Ned．Akad．Wetensch．C 79：381－392．
Nakazawa，R．1929．A list of Formosan Mycetozoa．Trans．Nat．Hist．Soc．Formosa 19：16－30．
Shi，H．1981．Myxomyetes in Yangmingshan area， I．Bull．Hsin－Chu Teacher＇s Coll．7：392－410．
Wrigley de Basanta，D．and C．Lado．2005．A taxonomic evaluation of the stipitate Licea species．Fung．Divers．20：261－314．
Yamamoto，Y．2000．A new species of Licea （Myxomycetes）from Japan．Stapfia 73：75－76．

台變站菌：無絲坫菌属

劉錦惠1 張仲豪 ${ }^{2}$

1國立台灣大學生命科學院植物科學研究所
${ }^{2}$ 林業試驗所森林保護組

無絲黏菌屬在台灣已紀錄有九種，本篇共報導 3 個新記錄種與 1 個新記錄變種，分別爲親蘚無絲黏菌（Licea bryophila），直立無絲黏菌立狀變種（L．erecta var．erectoides），寄生型無絲黏菌（L．parasitica）與杯狀無絲黏菌（L．scyphoides）；另外一種Licea sp。疑爲世界新種，並提供台灣所有紀錄的無絲黏菌屬種類的檢索表。

關鍵詞：無絲黏菌屬；眞黏菌綱；臺灣。

[^0]: *Corresponding author. E-mail: huil4951@ntu.edu.tw

