REPORT OF PROGRESS 2007-08

Science Division March 2009

Balga at Kingston external control (main photo), the forest red-tailed black cockatoo (above right) and collecting coarse woody debris data (right).

Birds

Reptiles

Fungi

Invertebrates

Lichens

ns

Mammals

Flora

Produced by the Department of Environment and Conservation, Kensington, Western Australia, March 2009

Copyright:	© Department of Environment and Conservation 2009
Compiled and edited by:	Richard Robinson and Verna Tunsell Science Division Department of Environment and Conservation Manjimup Western Australia

This report highlights preliminary results for FORESTCHECK monitoring, determined by basic analysis and field observation, for the year 2007-08. This and previous FORESTCHECK Annual Reports should not be quoted or used as final results for the FORESTCHECK program. Publications based on detailed analyses using comprehensive statistical methods are published on a 5-year basis. All FORESTCHECK publications and reports are available on the DEC NatureBase web site at <u>www.naturebase.net</u>

Department of Environment and Conservation

Our environment, our future

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
INTRODUCTION	3
FOREST STRUCTURE AND REGENERATION STOCKING	16
COARSE WOODY DEBRIS, TWIGS AND LITTER	24
MACROFUNGI	32
CRYPTOGAMS	52
VASCULAR PLANTS	64
INVERTEBRATES	75
BIRDS	122
MAMMALS AND HERPETOFAUNA	128
DATA MANAGEMENT AND STORAGE	139

EXECUTIVE SUMMARY

FORESTCHECK is a unique monitoring program, which is unparalleled for its integration and the range of ecological attributes and biodiversity monitored. Fieldwork on the FORESTCHECK monitoring program was suspended in 2006-07 to allow a comprehensive analysis and write-up of the first five years of data to be undertaken. The results from five years of data collected from 2001-2006 will be submitted in 2009 to a peer reviewed journal for publication.

This document reports the results of FORESTCHECK monitoring on ten grids in the Donnelly District in 2007-08. The Donnelly grids were previously monitored in 2001-02. This report, and previous reports, can be viewed on and downloaded from the Department of Environment and Conservation NatureBase website at <u>www.naturebase.net</u>.

The monitoring grids at Donnelly are located within a variety of vegetation complexes in the jarrah south forest ecosystem. The external reference grids are situated in uncut forest located in state forest and national park. Coupe buffer grids are situated in uncut state forest included in the temporary area exclusion system (TEAS). The remaining shelterwood and gap release grids are in forest that was harvested during the period of 1991 to 1996.

The results in this report represent observations from preliminary analysis only. However, some interesting points which have emerged from the 2007-08 results and from comparisons with data from the same grids in 2001-02 are:

- Stand growth at Donnelly reflected treatments, with harvested grids having higher basal area increments than external controls and coupe buffers, and gap release grids having the highest overall increment of 1.0-1.5 m² ha⁻¹ year⁻¹.
- Litter loads increased since the initial measurement in 2001 and reflected time since fire.
- Assessment of coarse woody debris was expanded to include decay stage, and logs ≥ 20 cm diameter were tagged to allow more precise measurement of change over time.
- Significant additions to the macrofungal flora and invertebrate fauna records were achieved in 2007-08. Species accumulation continues to rise steadily for both groups with no signs of slowing.
- Helena gum moth was very abundant on the Donnelly grids in 2007-08.
- The second phase of monitoring has increased knowledge on the disturbance ecology and successional trends for a number of lichens.
- Comparison of vascular plant data collected in 2001 and 2007 shows no difference in the plant community structure and composition.
- The density of diurnal birds was similar in each treatment with an overall density of 13.3 birds per hectare. Nocturnal birds were not monitored in 2007-08.
- Woylie numbers decreased by 62% in 2007-08 compared to captures recorded in 2001-02. This is consistent with regional declines in woylie populations.

• Brush tail possum numbers increased from 3% of total mammal captures in 2001-02 to be 11% in 2007-08. This coincides with the expansion of Western Shield baiting to the eastern side of the South Western Hwy.

The commitment and professionalism of the FORESTCHECK team is to be commended, and I look forward to reviewing the next round of results from the Wellington District in 2008-09.

Kullero.

Dr Neil Burrows Director, Science Division March 2009.

INTRODUCTION

Scope

This report has been compiled from chapters prepared by scientists and technical staff involved in the FORESTCHECK monitoring program. It represents a summary of monitoring activities completed in jarrah forest in the Donnelly District during the 2007-08 financial year.

FORESTCHECK is an integrated monitoring system that has been developed to provide information to forest managers in the southwest of Western Australia about changes and trends in key elements of forest biodiversity associated with a variety of forest management activities. Although the initial focus of FORESTCHECK will be on timber harvesting and silvicultural treatments in jarrah (*Eucalyptus marginata*) forest, the intention is to extend the scale of monitoring over time to include other forest ecosystems, fire (prescribed and wildfire), mining, the effects of forest disturbance for utility corridors (e.g. roads, power transmission lines), and the impacts of recreation uses. (Note, however, that the Forest Products Commission will only fund the part of FORESTCHECK that is specific to its activities).

FORESTCHECK was developed to meet a range of compliance conditions placed on the Forest Management Plan 1994-2003 through Ministerial Conditions and the Codd Report of 1999¹ and is included as an operational program in the current Forest Management Plan 2004-2013². Integrated monitoring is a fundamental component of Ecologically Sustainable Forest Management (ESFM), and is necessary for reporting against the Montreal Process criteria and indicators for ESFM. In addition, monitoring forms the basis for adaptive management and adaptive management is recognized as an appropriate strategy for managing under conditions of uncertainty and change.

The Science Division of the Department of Environment and Conservation has primary responsibility for the implementation of FORESTCHECK. The development of the program took place over 2 yrs and included input from scientists and managers within the Department of Environment and Conservation, and from a number of external scientific agencies. The background to this process is described in the FORESTCHECK Concept Plan, and details of methods are provided in the FORESTCHECK Operations Plan. Annual Progress Reports, the Concept Plan and Operations Plan may be viewed on the Department's NatureBase website at www.naturebase.net

¹ Codd, M. 1999. Forest management Plans 1994-2003: Mid-Term EPA Report on Compliance

² Conservation Commission of Western Australia.2004. Forest management plan 2004-2013.

Conservation Commission of Western Australia. 144p + maps.

Monitoring strategy

Between 1995 and 2004 timber harvesting in jarrah forests was undertaken according to Silvicultural Guideline 1/95, which recognizes three silvicultural objectives:

- (1) Thinning to promote growth on retained trees,
- (2) Release of regeneration by gap creation, where existing advance growth is encouraged to develop unimpeded by the removal of competing overstorey,
- (3) Regeneration establishment by shelterwood, where seedlings are encouraged to establish and develop into the lignotuberous ground coppice stage. This is achieved by reducing the competition from the overstorey, but retaining sufficient overstorey to provide a seed source and maintain other forest values until the ground coppice is developed and capable of responding to release.

Silvicultural guidelines were revised in conjunction with the preparation of the Forest Management Plan (2004-2013) and are now available as SFM Guideline No. 1(CALM 2004³).

Gap creation and shelterwood treatments are being given priority in the initial stages of FORESTCHECK as these are the most widespread operations and involve the greatest extent of disturbance to the forest. Thinning will also be monitored where the structure of the forest dictates that this treatment is appropriate on a significant scale.

FORESTCHECK sites have been established at a number of locations throughout the jarrah forest, stratified according to recognized ecological gradients of rainfall, evapotranspiration and soil fertility. Forest ecosystem mapping (Mattiske and Havel 1998⁴, 2000⁵) provides a systematic basis for stratification of sampling. Allocation of sites also takes account of scheduled future harvesting within the jarrah forest, with priority given to those ecosystems likely to be subject to harvesting on an extensive scale in the next decade.

Each FORESTCHECK site consists of up to four sampling grids. Grids have been established in forest subject to the following treatments:

- (1) gap release,
- (2) shelterwood (or selective cut),
- (3) coupe buffer or internal reference forest i.e. temporary exclusion areas (TEAS) between adjacent gaps or shelterwood forest,

³ CALM 2004. Silvicultural practice in the jarrah forest. Dept. CALM, SFM guideline No. 1.

⁴ Mattiske, E.M. and Havel, J.J. 1998. Regional Forest Agreement Vegetation Complexes, Collie, Western Australia [cartographic material – scale 1:250,000]. WA Department of Conservation and Land Management.

⁵ Mattiske, E.M. and Havel, J.J 2000. Vegetation Mapping in the South West of Western Australia. CALM, Perth.

(4) external reference or control forest i.e. not recently harvested, or has had minimal harvesting, and will not be subject to harvesting in the foreseeable future.

At each location, grids are closely matched in terms of site characteristics (climate, geomorphology, soils, topography, altitude, aspect), pre-harvest forest structure and vegetation attributes in order that differences between grids reflect the effects of harvesting, rather than inherent site differences. Not all treatment types are always present in the one locality and occasionally, external reference forest has been located some distance from their harvested counterparts. Also, it may not always be possible to find gap release and shelterwood treatments together, because underlying relationships between rainfall, soil fertility and jarrah lignotuber development influence the broad pattern of silvicultural treatment across the jarrah forest, as have previous silvicultural activities.

Methodology

Monitoring of biodiversity is based on a sampling grid (see Fig. 1). The main grid is 200 m x 100 m, with a central area of 100 m x 100 m. Four 30 m x 30 m vegetation sample plots are located external to and adjacent each corner of the central area.

A range of ecosystem attributes are monitored on each grid including:

- 1. Forest structure and regeneration stocking
- 2. Foliar and soil nutrients
- 3. Soil disturbance
- 4. Coarse woody debris and leaf litter
- 5. Macrofungi
- 6. Cryptogams
- 7. Vascular flora
- 8. Invertebrate fauna
- 9. Vertebrate fauna (birds, herpetofauna, and mammals)

Sampling methodologies for each set of ecosystem attributes are described in the FORESTCHECK Operations Plan, together with examples of protocols for data collection and storage.

Monitoring at Donnelly 2007-08

Ten FORESTCHECK monitoring grids were established in the Donnelly District in 2001 (Table 1). Four grids are situated in Kingsotn block (FC1, FC2, FC3 & FC4), one in Yornup (FC5), two in Thornton (FC6 & FC7), two in Carter (FC8 & FC9) and one in Easter (FC10) (Figs 2-5). They were initially monitored in spring 2001 and autumn 2002 and a second round of monitoring was conducted in 2007-08. The grids are located within several Mattiske and Havel (1998) vegetation complexes. External reference grids and coupe buffers (TEAS) are situated in uncut forest. The Kingston (FC1) and Easter

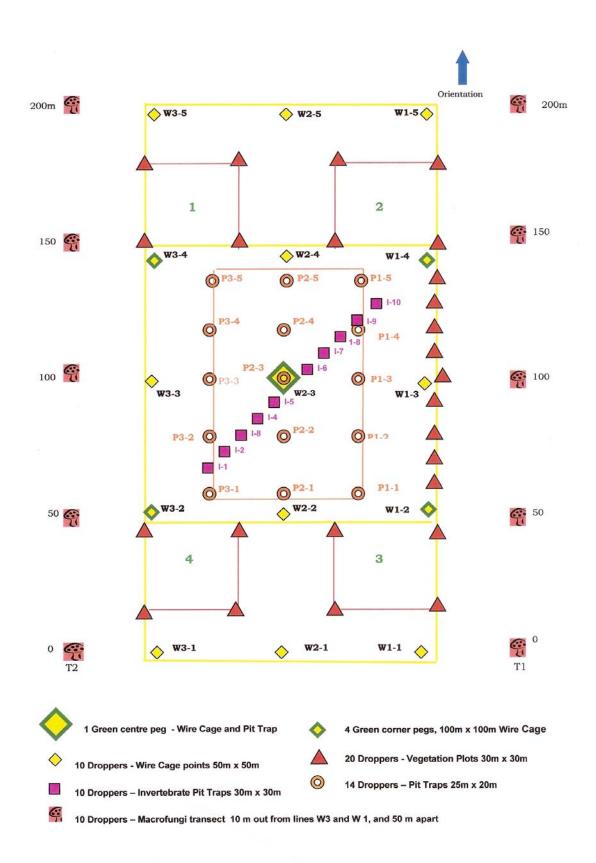


Figure 1. FORESTCHECK grid layout

(FC10) external reference grids are situated in national park, but the Yornup external reference (FC5) is in State forest. The range of time since the last fire was 4-21 years, and the only grid that has been burnt since the initial monitoring in 2001-02 is the Yornup external reference which was prescribe burnt in spring 2003. The remaining grids are in forest that was harvested during the period of 1991 to 1996 (Table 1).

	Forest block _	Burnt		Logged		Site	Site description
Grid		Year ¹	Years since	Current cutting cycle	Years since	Туре	
External con	trol						
FC1	Kingston	1986 Au	21	Uncut		Corbalup 2	Depressions- humid & subhumid
FC5	Yornup	2003 Sp*	4	Uncut		Mattaband 1	
FC10	Easter	1999 Sp	18	Uncut		Bevan 1	Uplands - perhumid
Coupe buffer	•						
FC4	Kingston	1996 Sp	11	Uncut		Corbalup 2	Depressions- humid & subhumid
FC7	Thornton	1996 Sp	11	Uncut		Corbalup 1	Depressions – perhumid & humid
FC9	Carter	1999 Sp	8	Uncut		Collis1/ Yanmar 2	Lowlands – perhumid & humid, valley floor humid
Shelterwood							
FC3	Kingston	1995 Sp	12	1996	11	Corbalup 2	Depressions- humid & subhumid
Gap release							
FC3	Kingston	1995 Sp	12	1996	11	Corbalup 2	Depressions- humid & subhumid
FC6	Thornton	1992 Sp	15	1991	16	Corbalup 1	Depressions – perhumid & humid
FC8	Carter	1999 Sp	8	1995	12	Collis 1	Lowlands – perhumid & humid

 Table 1. Forest block location, and management history of each FORESTCHECK grid at Donnelly in 2007.

¹ Au & Sp refer to the silvicultural burn being carried out in autumn or spring.

* Yornup FC5 was the only grid burnt since the initial monitoring in 2001 (previously burnt in 1996 Sp.)

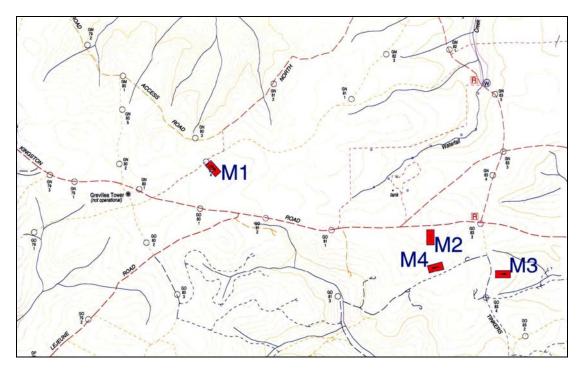


Figure 2. Location of FC1, FC2, FC3 and FC4 in Kingston forest block.

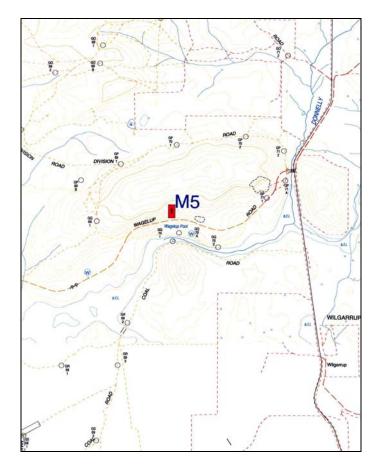


Figure 3. Location of FC5 in Yornup forest block.

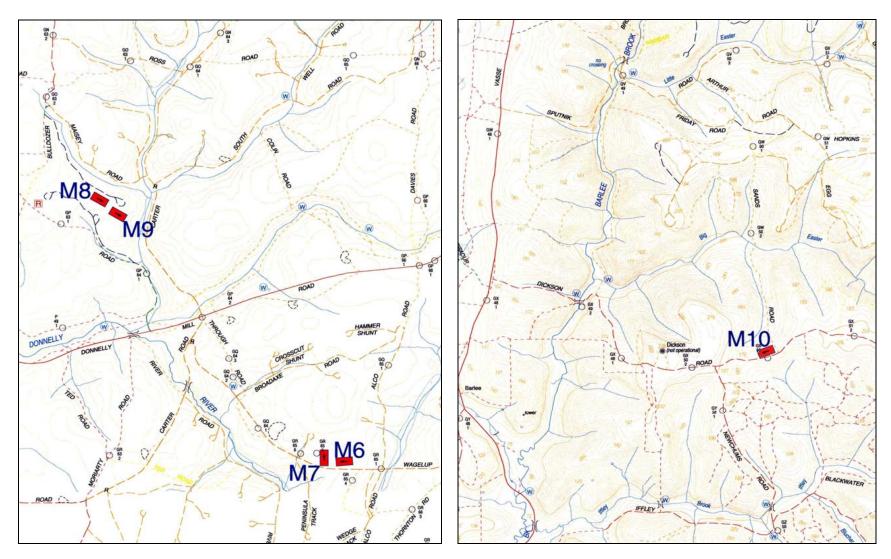


Figure 4. Location of FC6, FC7, FC8 and FC9 in Thornton and Carter forest block.

Figure 5. Location of FC10 in Easter forest block.

Reference photographs of each grid were initially taken in 2001 and presented in the FORESTCHECK Report of Progress 2002-2002 (available at <u>www.naturebase.net</u>). In 2007, reference photos were again taken for each monitoring grid and are presented in Figs. 5-14. All photos were taken from peg W2-1 looking towards the centre peg (W2-3) (see Fig. 1), and allow changes in vegetation structure and condition to be observed in each subsequent photograph (compare to photos in 2001-02 report, but note that in 2001 photos were not taken from a standard reference point on each grid).

Figure 5. FC1 Kingston external reference.

Figure 6. FC2 Kingston gap release.

Figure 7. FC3 Kingston shelterwood.

Figure 8. FC4 Kingston coupe buffer (TEAS).

Figure 9. FC5 Yornup external reference.

Figure 10. F6 Thornton gap release.

Figure 11. FC7 Thornton coupe buffer (TEAS).

Figure 12. FC8 Carter gap release.

Figure 13. FC10 Easter external reference.

Figure 14. FC9 Carter coupe buffer (TEAS).

The budget and expenditure for the 2007-08 FORESTCHECK program is detailed in Table 2. Funding for the program is provided by the Sustainable Forest Management Division of DEC via a works agreement with the Forest Products Commission for \$225,000.

Task/Activity	OIC	Total Operating
OPERATIONAL		
Grid maintenance	McCaw	18 000
Forest structure and regeneration	McCaw	6 000
Soil and foliar nutrients	McCaw	5 000
Soils disturbance	Whitford	Nil
Macrofungi / Litter & CWD	Robinson	15 000
Vascular flora	Ward	10 000
Cryptogams	Cranfield	10 000
Invertebrates	Farr	15 000
Birds (diurnal)	Liddelow	3 000
Fauna (grid trapping)	Liddelow	10 000
OTHER		
Administration and overheads	McCaw	51 550
Data base management	McCaw	52 473
Data analysis and publications	McCaw	16 241
Directorate		12 736
SUB TOTAL		225 000
SALARY		191 000
TOTAL		416 000

Table 2. Budget for maintenance and monitoring of FORESTCHECK sites at Donnelly for 2007-08

2008-09 Activities

In 2008-09 monitoring will be undertaken in the Wellington District. Nine FORESTCHECK grids (FC11 to FC19) were established in Wellington in 2002, and initially monitored in 2002-03. The grids are located north-east of Collie between the 900 mm and 1000 mm annual isohyets in State forest and the Lane Poole Reserve.

FOREST STRUCTURE AND REGENERATION STOCKING

Lachlan McCaw, Grant Phelan and Lydia Guja

Introduction

The adequacy of regeneration following harvesting and silvicultural treatment is one of the core indicators of Ecologically Sustainable Forest Management (ESFM). The current framework of regional level indicators provides for assessment of the area and per cent of harvested area of native forest effectively regenerated (Indicator 2.1.g). This is recognised as a Category A indicator (Commonwealth of Australia 1998) that can be reported upon immediately.

Regeneration outcomes have for a number of years been assessed as a matter of routine on at least a portion of the area of forest subject to harvesting. For uneven-aged stands, there is a need to consider existing stand structure and whether there is sufficient sapling and advance growth present for re-establishment following harvesting. Under the current silvicultural guidelines for jarrah-marri forest, the decision as to whether the stand should be cut to gap release or shelterwood is determined by the density of existing lignotuberous advance growth (CALM 2004).

Forest managers also require information about growth rate and species composition so that future stand conditions can be projected over time. These attributes can affect the potential of forest stands to produce wood and other products, and to achieve ecological outcomes.

A total of 48 FORESTCHECK monitoring grids were established between 2001-02 and 2005-06 across the geographic range of the jarrah forest. The distribution of grids stratified according to DEC administrative boundaries and forest ecosystems mapped for the Regional Forest Agreement (Mattiske and Havel 2000) and is as follows:

- Donnelly District (jarrah south), 10 grids;
- Wellington District (jarrah north west central), 9 grids;
- Perth Hills District (jarrah north west north), 8 grids;
- Wellington District (jarrah north east), 10 grids; and
- Blackwood District (jarrah Blackwood), 11 grids.

Ten monitoring grids established in Donnelly District in 2002 were re-assessed in 2008 with the objective of describing changes in stand structure, species composition and developmental stage of tree species present over the previous six years.

Monitoring

Sampling techniques were the same as in May 2002, except that cut stumps were not remeasured and triangular tessellation assessment of regeneration stocking was not repeated. All trees taller than 2 m were measured in transects 100 m long by 4 m wide located between marker pegs 1-2 to 1-4 and 3-2 to 3-4. To improve the reliability of long term measurements of tree growth, mortality and tree fall all stems ≥ 20 cm diameter at breast height were identified with a numbered tag. The height and species of regeneration was assessed at four locations on each grid to indicate the rate of regrowth.

Canopy cover was recorded in spring 2007 as part of the vegetation cover assessment during vascular plant surveys. Intercepts with foliage above 2 m in height were recorded at 240 points around the perimeter of the four 30 m x 30 m vegetation quadrats using a vertical periscope fitted with a fine crosshair. Canopy intercepts were recorded as presence/absence.

Data management

Stem diameter measurements from 2008 were entered into the FORESTCHECK stand database and used to calculate current basal area and basal area increment for the period 2002-2008. A small number of errors in the 2002 data were detected and corrected. These resulted from:

- incorrect recording of species for one large tree on grid FC4 during the 2002 assessment;
- inclusion of additional jarrah trees on FC5, FC9 and FC10 in 2008 assessment which had not been measured in 2002.

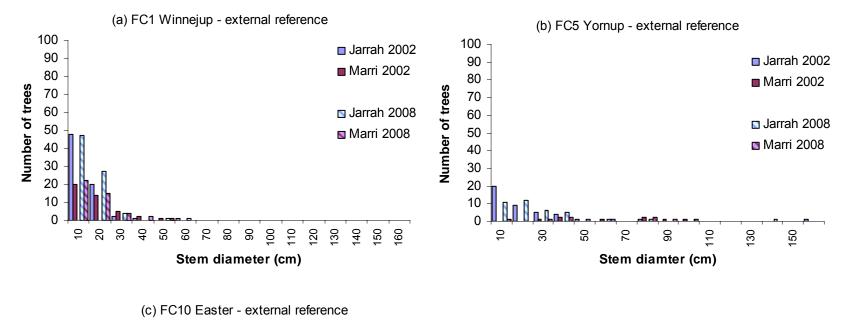
In these three plots the basal areas in 2002 were adjusted to account for the additional trees recorded in 2008 but these additional trees were not allocated any increment for the period 2002-2008.

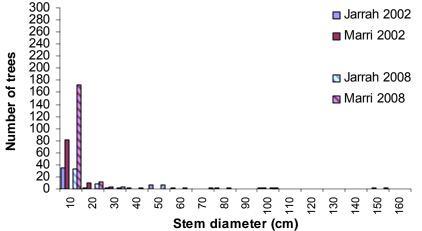
Permanent tagging of trees >20 cm diameter will minimize potential for errors of this kind during subsequent measurements.

Preliminary results

Stand structure and species composition

Basal area and basal area increment of jarrah and marri are summarised in Table 1 and stem diameter distribution by 10 cm classes is presented for each grid in Figures 1, 2 & 3.


External reference and coupe buffer grids exhibited modest basal area increments (0.09- $0.56 \text{ m}^2 \text{ ha}^{-1} \text{ year}^{-1}$). Grid FC10 experienced strong growth of saplings following a low intensity prescribed fire in 1999 (Fig. 1 & 2).


Grid FC3 which was cut to shelterwood had an increment of 0.39 m² ha⁻¹ year⁻¹ comprised predominantly of jarrah, although marri was more numerous than jarrah in the sapling size class (Fig. 2).

Grids cut to gap release had increments in the range $1.0-1.5 \text{ m}^2 \text{ ha}^{-1} \text{ year}^{-1}$ with jarrah contributing more than half of the increment. The stand structure of gap release grids changed as a result of saplings growing into the 10-20 cm diameter size classes, and there was some mortality of smaller saplings (Fig. 3).

Treatment	Grid	Basal area 2008 (m² ha ⁻¹)		Basal area increment (m ² ha ⁻¹)		Mean annual increment (m² ha ⁻¹ year ⁻¹)	
		jarrah	marri	total	jarrah	marri	
External	FC1	13.30	10.95	24.25	2.16	1.21	0.56
control	FC5	39.30	33.01	73.20	1.47	0.29	0.29
	FC10	33.13	39.26	72.39	-0.10	1.68	0.26
Coupe buffer	FC4	50.74	27.56	78.30	1.95	-1.44	0.09
	FC7	11.96	23.79	35.75	1.97	0.13	0.35
	FC9	32.55	13.44	45.99	1.48	1.04	0.42
Shelterwood	FC3	12.00	8.40	20.40	2.24	0.12	0.39
Gap release	FC2	20.73	20.55	41.28	5.29	1.02	1.05
	FC6	10.05	16.43	26.48	5.01	4.13	1.52
	FC8	14.09	5.36	19.45	5.35	3.76	1.52

Table 1. Basal area in 2008 and basal area increment of live eucalypts >2 m tall over the period 2002-2008 for ten FORESTCHECK grids in Donnelly District.

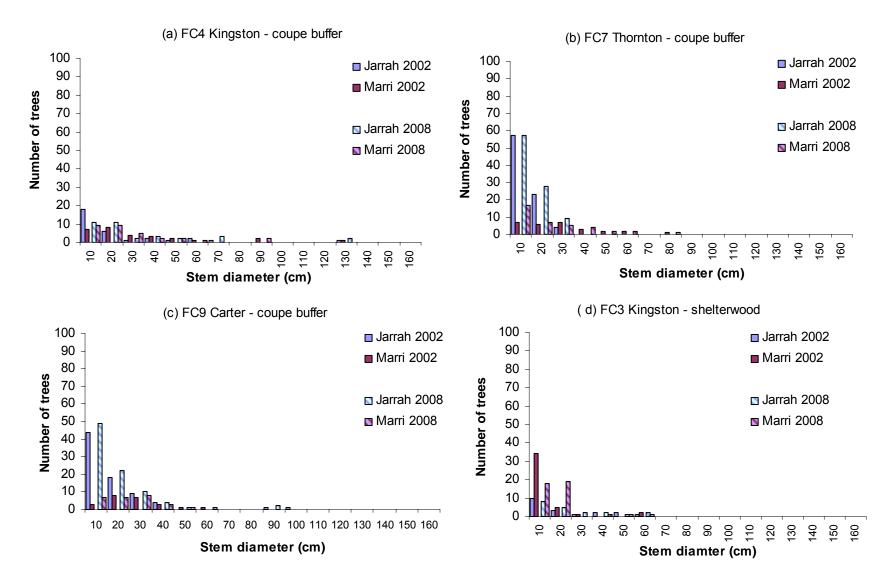


Figure 1. Stem diameter distribution by 10 cm classes for each external control grid in classes 0-9 cm, 10-19 cm etc.

Figure 2. Stem diameter distribution by 10 cm classes for each coupe buiffer and shelterwood grid in classes 0-9 cm, 10-19 cm etc.

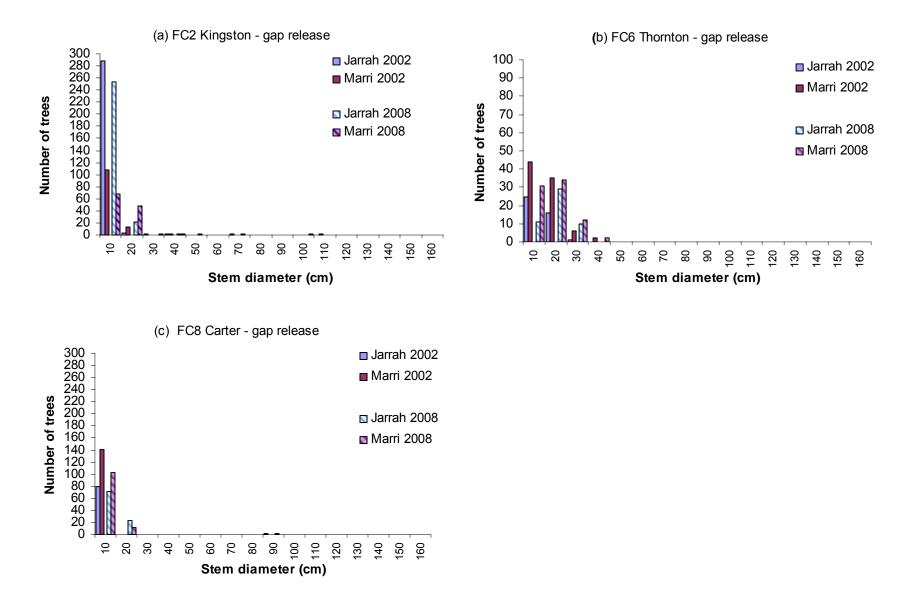
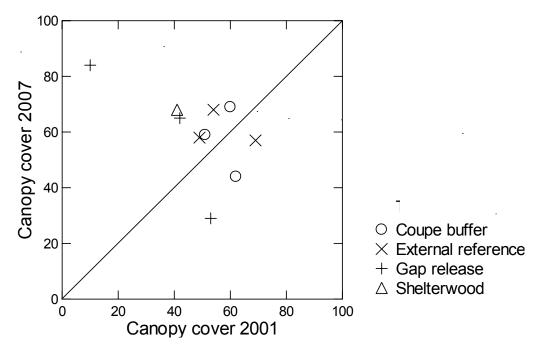



Figure 3. Stem diameter distribution by 10 cm classes for each gap release grid in classes 0-9 cm, 10-19 cm etc.

Measured canopy cover increased most markedly in the Carter gap release grid (FC8) which only had a very low cover in 2001 following post-harvest burning in 1999 (Fig. 4). Cover also increased, but to a lesser extent, in the Kingston shelterwood grid (FC3), external reference grids at Winnejup (FC1) and Yornup (FC5), coupe buffer grids at Kingston (FC4) and Carter (FC9), and the gap release grid at Thornton (FC6). Measured cover decreased between 2001 and 2007 at the Easter external reference (FC10), Thornton coupe buffer (FC7), and Kingston gap release (FC2) grids.

Figure 4. Scatter plot of canopy cover measurements made on each grid in 2001 and 2007. The line indicates 1:1 agreement between measurements in different years.

Discussion

Basal area increments for external reference and coupe buffer grids are consistent with or slightly greater than the mean value of $0.19 \text{ m}^2 \text{ ha}^{-1} \text{ year}^{-1}$ reported for high quality jarrah forest by Abbott and Loneragan (1983) based on analysis of data from 47 plots in the forest between Collie and Mundaring. Stand growth in the shelterwood and gap release harvested grids was above to very much above this mean value and reflected recruitment of a vigorous cohort of saplings.

For some grids the crown cover measurements made in 2007 varied considerably from measurements made in 2001. In the case of the Carter gap release grid (FC8) this is readily explained by re-establishment of a sapling canopy following regeneration. Some variation may also have resulted from changes in the vertical arrangement of foliage caused by height growth and differentiation of the canopy, particularly in the Kingston gap release grid (FC2) which had become noticeably more open by 2007 as the sapling cohort increased in height and became separated from the understorey shrub layer. More sophisticated techniques such as leaf area index (LAI) assessment from remote sensing and vertical photography may have to be employed if precise quantification of canopy condition is required to monitor the impacts of frost, drought or insect defoliation.

References

Abbott, I. and Loneragan, O.W. 1983. Growth rate of jarrah (*Eucalyptus marginata*) in relation to site quality in cut-over forest, Western Australia. Australian Forestry 46, 91-102.

CALM 2004. Silvicultural practice in the jarrah forest. Dept. CALM, SFM Guideline No. 1.

Commonwealth of Australia 1998. A framework of regional (sub-national) level criteria and indicators of sustainable forest management in Australia. Department of primary Industries and Energy, Canberra, ACT.

Mattiske, E.M. and Havel, J.J 2000. Vegetation Mapping in the South West of Western Australia. CALM, Perth.

COARSE WOODY DEBRIS, SMALL WOOD AND TWIGS, AND LITTER

Kim Whitford and Richard Robinson

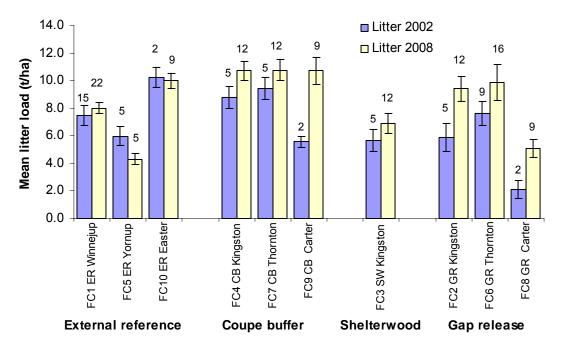
Introduction

Wood and leaf debris on the forest floor provides habitat for many fungi, small reptiles, mammals and invertebrates. The litter layer also affects soil moisture and in conjunction with micro-organisms influences soil structure. Consequently coarse woody debris (CWD), small wood and twigs (SWT) and litter are important structural and biological components of forest ecosystems. Disturbance such as logging and burning influence the volumes and types of debris that occur in forests. The aims of this component of the FORESTCHECK monitoring program are to:

- Measure and record the amount of litter, small wood and twigs and coarse woody debris on the ground in the various managed jarrah forest treatments (i.e. gap release and shelterwood) and in uncut forest.
- Analyse trends within and between the treatments over time.
- Provide data for analysis of distribution patterns of other organisms such as invertebrates, small mammals, fungi and cryptogams.

The 2007-08 CWD assessment was used to collect additional data on 22 of the existing 48 monitoring grids. The additional field work and data collection:

- Increased the length of the two transects used for CWD assessment on each grid from 100 m to 200 m to improve the precision of the estimate of CWD debris.
- Provided data on the decay status of the CWD as this had not previously been collected and is known to greatly influence the habitat value and combustibility of CWD.
- Provided additional assessments of log attributes related to the combustibility of individual CWD pieces.
- Provided assessments of attributes related to the rates of decay of individual CWD pieces.
- Provided assessments of attributes related to the habitat quality of individual CWD pieces.
- Recorded the location of each piece of CWD and tagged each piece with a diameter greater than 20 cm at the point that it was intersected by the transect. This will facilitate the identification and remeasurement of CWD after fires.


These additional assessments and the revised procedure now used to assess CWD are detailed in Whitford *et al.* (2008).

Field and Laboratory Monitoring

For these assessments, SWT is defined as woody material that is 1 cm to 2.5 cm in diameter, CWD is defined as material that is larger than 2.5 cm in diameter and litter is dead leaves and other dead fine vegetative material less than 1 cm in diameter. Assessment of CWD, SWT and litter in 2007-08 was carried out from May 8 to December 18, 2008. The litter and SWT samples were oven dried, weighed in grams and then converted to tonnes ha⁻¹. The volume of CWD was determined using the line intersect method (Van Wagner 1968) and calculated to cubic metres per hectare.

Results and Discussion Litter weights

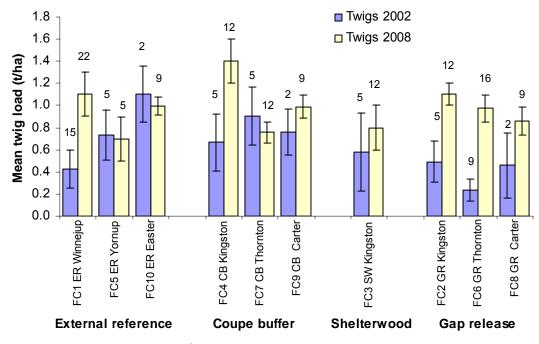
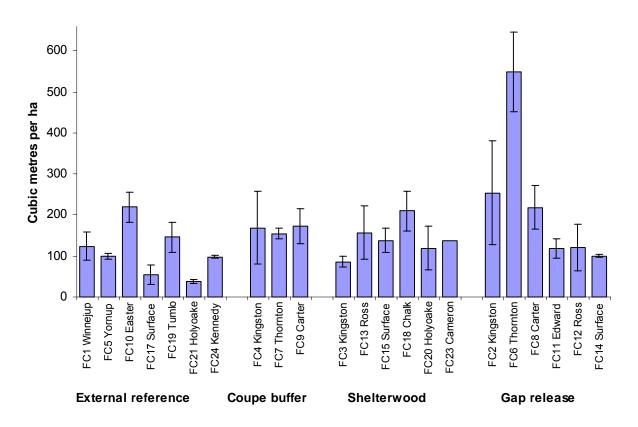

Litter weights on the treatment grids generally reflected the time since the last burn (Fig. 1), but will also be influenced by stand structure and density. All grids except The Yornup (FC5) and Easter (FC10) references had an increase in loading. The Easter external reference recorded a lighter litter load in 2008 than in 2002, despite it being burnt only 2 years previously in 2002. The Yornup external reference had low loading, but both measurements coincided with only 5 years since fire. The heaviest litter loads were measured on the coup buffer grids and the Easter external reference. Within the gap release treatment, the Carter grid (FC8) had a lighter litter load than both the Kingston (FC2) and Thornton grids (FC6) but has had 5 years less time for litter to accumulate.

Figure 1: Mean litter loads (t $ha^{-1} \pm se$) calculated at each FORESTCHECK grid at Donnelly in 2008. Numbers above columns indicate years since burnt.

Small wood and twigs

The amount of SWT carried on all sites was light (Fig. 2) compared to that of the litter (Fig. 1). The increase in loading since 2002 was variable, ranging from gains of 0.7 tha⁻¹ on the Winnejup external reference (FC1), the Kingston coupe buffer (FC4) and the Thornton gap release (FC6), to losses of 0.1 tha⁻¹ on the Thornton coupe buffer (FC7) and the Easter external reference (FC10). Generally the loads reflected time since fire, but the Kingston external reference (FC1) carried a low load considering it was 22 years without fire. The Yornup external reference (FC5) was burnt following the 2002 measurement, resulting in two measurements 5-years post-fire and this was reflected in the twig loads being the same in both 2002 and 2008, 0.7 tha⁻¹.


Figure 2: The average weights (t ha⁻¹) of small wood and twigs measured at each FORESTCHECK grid at Donnelly in 2008. The numbers above the columns indicate years since burnt.

Coarse woody debris

Using the revised procedure (Whitford *et al.* 2008), 22 FORESTCHECK grids were reassessed for CWD volume and condition. The CWD volumes determined for these grids are given in Table 1. CWD volume was highly variable across these 22 grids and no consistent trends were obvious across the treatment groupings (Fig. 3), though volumes on external reference treatments were relatively low compared to more recently harvested treatments. CWD can persist on the forest floor for periods up to 100 years; consequently the volume of CWD on a site will be affected by the long term fire and logging history, as well as the stand density and structure on the site. These factors will affect CWD volume as much, or more so than the most recent harvesting treatment. Accordingly we expect variability between sites could hide any effects of the most recent harvesting treatments.

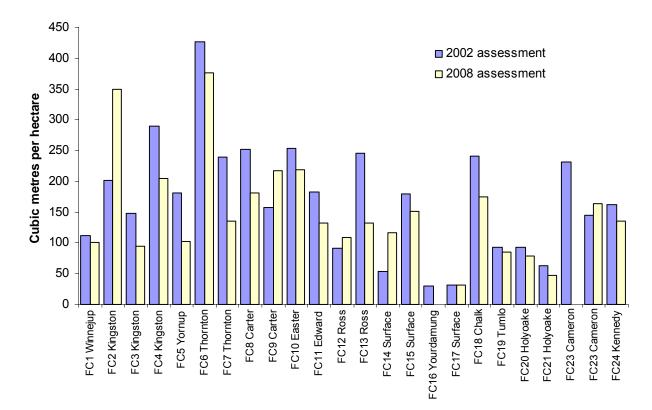

Grid	Location	Treatment	Year of grid establishment	Year of most recent harvest	Mean CWD volume $(m^3 ha^{-1} \pm se)$
FC1	Winnejup	External reference	2001	Uncut	124 ± 35
FC5	Yornup	External reference	2001	Uncut	121 = 55 99 ± 7
FC10	Easter	External reference	2001	Uncut	219 ± 37
FC4	Kingston	Coupe buffer	2001	1975	168 ± 89
FC7	Thornton	Coupe buffer	2001	1945	154 ± 13
FC9	Carter	Coupe buffer	2001	1945	172 ± 42
FC3	Kingston	Shelterwood	2001	1996	86 ± 13
FC2	Kingston	Gap release	2001	1996	254 ± 127
FC6	Thornton	Gap release	2001	1991	549 ± 98
FC8	Carter	Gap release	2001	1995	218 ± 53
FC17	Surface	External reference	2002	Uncut	55 ± 24
FC19	Tumlo	External reference	2002	Uncut	146 ± 37
FC13	Ross	Shelterwood	2002	1992	157 ± 65
FC15	Surface	Shelterwood	2002	1997	138 ± 30
FC18	Chalk	Shelterwood	2002	1992	210 ± 49
FC11	Edward	Gap release	2002	1994	118 ± 23
FC12	Ross	Gap release	2002	1992	120 ± 57
FC14	Surface	Gap release	2002	1997	100 ± 3
FC21	Holyoake	External reference	2003	Uncut	38 ± 5
FC24	Kennedy	External reference	2003	1935	98 ± 4
FC20	Holyoake	Shelterwood	2003	1995	119 ± 53
FC23	Cameron	Shelterwood	2003	1989	137 ± 0

Table 1. The 22 FORESTCHECK grids reassessed in 2008 for coarse wood debris (CWD) volume and condition.

Figure 3: The volume ($m^3 ha^{-1} \pm se$) of coarse woody debris measured at 22 FORESTCHECK grids in 2008 using two 200 m transects on each site.

Figure 4 shows results from the original assessment of CWD on Donnellyy grids in 2002, Wellington grids in 2003 athe the southern grids from Perth Hills in 2004 and the most recent assessment in 2008 using the Van Wagner (1968) procedure along the same two 100 m transects used in the original assessments. Of the 22 grids that were remeasured, one grid was unchanged, 17 grids showed a decrease in the CWD volume and five showed and increase in the volume of CWD. Large changes were calculated for some grids. The significance of these changes has not been tested. Some of these changes may relate to the line intersect sampling method that was used. Though an efficient method of estimating CWD volumes, the value derived from this sampling method can be strongly influenced by a single large tree which may fall across the transect line, substantially increasing the estimated volume of CWD. Closer investigation of the causes and significance of these changes and the effects of transect length is required.

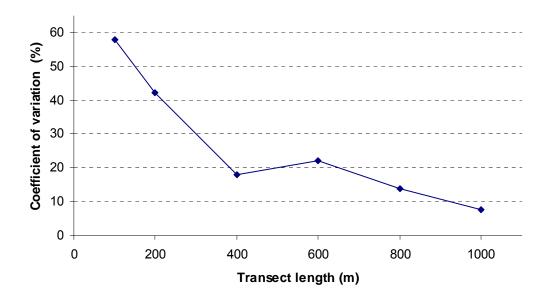


Figure 4: The volumes $(m^3 ha^{-1})$ of coarse woody debris measured at 24 FORESTCHECK sites in the first assessment and in the second assessment in 2008. Both values are derived from the same two 100 m transects used on each site. Grids 16 and 22 were not reassessed in 2008.

The increase in the transect length introduced for this reassessment of CWD was intended to increase the precision of the estimates of CWD. The two 200m transects were chosen as they achieved a substantial increase in the sampling intensity over sampling in previous years, were relatively long compared to similar surveys in other Australian eucalypt forests (Woldendorp et al. 2004) and could be achieved at reasonable cost within a single day at the majority of FORESTCHECK locations. To consider the utility of this transect length for examining changes in CWD volume over time and differences between treatments and grids we created a synthetic transect for resampling by combining all of the data collected on eleven grids which carried similar volumes of CWD (mean 129 m^3 ha⁻¹). We then resampled this synthetic transect at 100, 200, 400, 600, 800 and 1000 metre lengths and examined the coefficient of variation (CV) from this resampling. The results from this exercise (Fig. 4) show the sharp decline in the coefficient of variation as transect length increases from 100 m to 400 m. Transect length in excess of 400 m will consist of data from more than one FORESTCHECK grid; consequently the CV calculated for transects longer than 400 m in Figure 4 will be over estimated (we estimate by approximately 6 to 12%).

This exercise indicates that the current transect lengths (two 200 m transects) are probably insufficient to detect differences between individual FORESTCHECK grids unless these differences are large. However these transects, which when repeated, cover exactly the same path and include tagging of individual logs, should be adequate to detect changes over time on individual sites. The utility of this transect

length for detecting differences between treatments will be further examined before the remaining grids are surveyed in the coming year.

Figure 4: The coefficient of variation for estimates of CWD ($m^3 ha^{-1}$) determined from resampling a synthetic transect compiled from twenty-one 200 m transects collected on eleven sites with a mean coarse woody debris volume of 129 $m^3 ha^{-1}$.

Conclusions

- Litter and twig loads generally increased from 2002-08 and the trend between grids reflected time since fire.
- CWD volumes were varied greatly across the 22 grids that were reassessed in 2008, ranging from 38 to 549 m³ ha⁻¹. The mean across these 22 grids was 153 m³ ha⁻¹. Thornton gap release carried the greatest volume of CWD.
- No consistent trends were obvious across the harvest treatment though grids with little or no history of harvesting generally carried lower volumes of CWD. The size distribution and the decay state of this CWD needs to be considered to identify any effects of timber harvesting.
- Of the 22 grids that were remeasured in 2008, one was unchanged, 17 grids showed a decrease in the CWD volume and five showed an increase in the volume of CWD. The significance of these changes has not been tested.
- Site factors appear to have a major effect on CWD volumes and our sampling may be insufficient to test differences from recent treatments due to the large effect of site factors and long term site treatment history.
- The adequacy of the length of the CWD transects will be further examined before the remaining grids are surveyed in the coming year.
- Analysis of the size class distribution, the decay state and the rate of decay and combustion of the CWD will be undertaken once data collection is completed for all 48 grids.

Acknowledgements

We thank Lydia Guja, Grant Phelan and Lachie McCaw for their contribution to the development of the revised CWD assessment procedure and Julie Fielder and Laura Henningson for their assistance in the field.

References

Van Wagner, C.E. 1968. The line intersect method in forest fuel sampling. Forest Science 17: 20-26

Whitford, K., Guja, L. and Phelan, G. 2008. FORESTCHECK coarse woody debris assessment procedure. Internal report. Department of Conservation and Land Management. 22pp.

Woldendorp, G., Keenan R. J., Barry, S., Spencer, R. D. 2004. Analysis of sampling methods for coarse woody debris. Forest Ecology and Management 198: 133-148.

MACROFUNGI

Richard Robinson, Julie Fielder, Katie Syme

Introduction

Fungi are considered one of the most important forest organisms in terms of both biodiversity and forest function. Soil, litter and wood inhabiting fungi play major roles in decomposition and nutrient cycling. Mycorrhizal fungi enhance nutrient uptake of plants and may enhance plant resistance to some pathogens. In addition, underground truffle-like fungi are an important food source for small mammals, especially following disturbance such as fire.

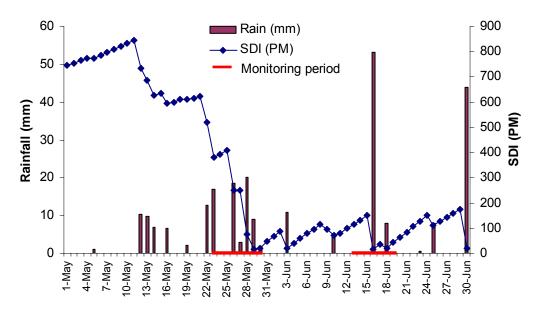
Recent research on fungi in Western Australia's southern forests has shown that fungal communities respond to fire and forest management activities. Knowledge on fungal diversity and the ecological roles that fungi play is of vital importance to forest managers making decisions on sustainable forest management.

The objective of this component of the FORESTCHECK program is to:

- Monitor and record the species of macrofungi in the various treatments of managed jarrah forest (shelterwood, selective cut and gap release) and in uncut forest.
- Analyse trends in species composition, richness and abundance and substrate utilization over time.
- To generate detailed descriptions of unknown or unnamed species.

Field Survey

Ten FORESTCHECK grids, including six reference grids (3 external reference and 3 coup buffer), one shelterwood and three gap release treatments, were installed in the jarrah south forest ecosystem in the Donnelly District in 2001. These plots were initially monitored for macrofungi in autumn 2002, and subsequently at yearly intervals from 2003 to 2006. Only the initial monitoring for 2002 was included in the 5-year analysis of FORESTCHECK data undertaken in 2006-07.


In 2007-08, a second round of FORESTCHECK monitoring was conducted on the Donnelly grids. Macrofungal monitoring was undertaken from 23-30 May and again from 13-19 June 2008. Consistent rain events throughout May (Fig. 1) resulted in the soil dryness index, which indicates the amount of rain needed to bring the soil back to field capacity, fell to almost zero during the first survey and returned to almost zero following a 53 mm rain event during the second survey (Fig. 1). Thus providing good conditions for macrofungal fruiting.

On each occasion, all ten grids were monitored. All macrofungal species and their abundance were recorded along 2×200 m transects on each grid. All new or previously unrecorded taxa were photographed *in situ* and vouchers collected.

Laboratory - voucher specimen examination and processing

In the laboratory, voucher specimens were kept in a refrigerator at 5°C. Processing of each voucher was completed on the day of collection or the next day. Detailed

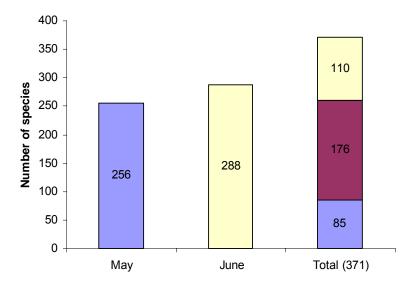
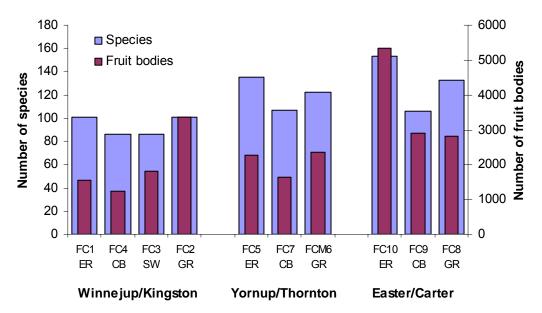

descriptions of the macroscopic characters of the fresh specimens were compiled for each voucher collection that represented a putative new species or represented noticeable variation in species concepts already determined. All collections were then air dried at 35° C. At the completion of the field surveys, dried specimens were examined microscopically and detailed measurements of basidia, spore and hyphal structure were undertaken to aid in verifying the identity of a number of species and to confirm a number of unnamed species. A species list has been compiled. In total, 214 voucher collections, representing 156 species, were made. A total of 113 taxa were determined to be new records for FORESTCHECK. Voucher specimens are currently being entered onto the PERTH (WA Herbarium) database and are housed in the Tony Annells Herbarium at the Manjimup Research Centre.

Figure 1. Daily soil dryness index (SDI = mm rain x 10 needed to bring soil to field capacity) for Donnelly District during May and June 2008. Each FORESTCHECK macrofungi monitoring period is indicated by the red sections on the x-axis.


Preliminary Results and Discussion

A total of 371 species of fungi and 25,236 fruit bodies were recorded on the Donnelly monitoring grids (Appendix 1). Of these, 113 species (30.5%) were recorded for the first time in FORESTCHECK. In the May survey, 256 species were recorded and in the June survey 288 were recorded. One hundred and seventy six species were recorded in both surveys, with 85 and 110 restricted to the May and June surveys respectively (Fig. 2).

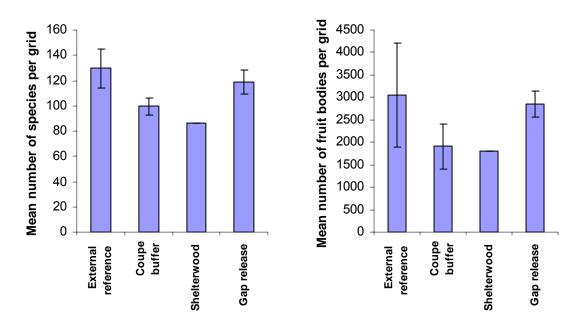


Figure 2. The total number of species recorded in May and June surveys on the Donnelly FORESTCHECK monitoring grids in 2008.

Overall the Yornup and Easter external reference grids (FC10 & FC5) were the most species rich, followed by the Thornton and Carter gap release grids (FC8 & FC6) (Fig. 3). Although the mean number of species and the mean abundance per grid were both lower in coupe buffer and shelterwood treatments the difference was not large (Fig. 4). The total species richness in the shelterwood treatment, however, was less than one-half of that recorded for other treatments but is likely due to there being only one shelterwood grid in the Donnelly region.

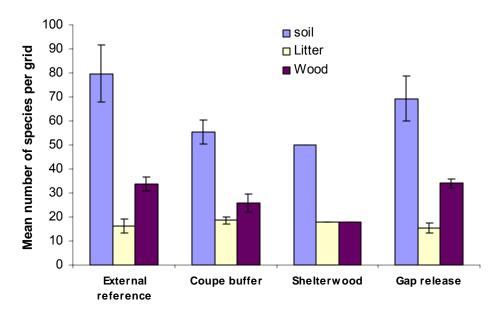
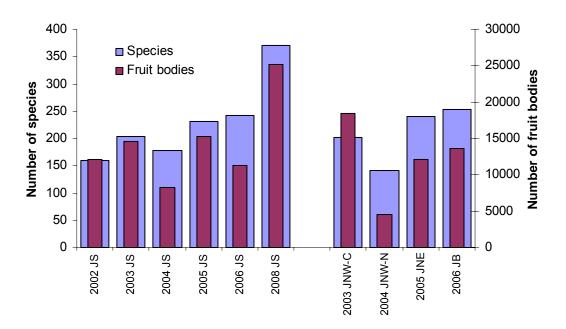


Figure 3. The total number of species recorded on each FORESTCHECK monitoring grid at Donnelly in 2008 (ER = external reference, CB = coupe buffer, SW = shelterwood, GR = gap release).

Figure 4. The mean number of species (*left*) and the mean number of fruit bodies (*right*) recorded in each treatment on Donnelly FORESTCHECK grids in 2008.

The three major habitats for fungi are soil, litter and wood. In each treatment the majority of species were recorded fruiting on soil (Fig. 5). For both soil and wood, similar and higher mean values were recorded in the external reference and gap release treatments. Litter was the least species rich substrate with no difference between treatments. Although the Kingston shelterwood grid had only about one-half and one-fourth respectively of the amount of coarse woody debris measured in external reference and gap release treatments, the amount of coarse woody debris in the coupe buffer treatment was higher than that measured in the external reference treatment (see Table 1 in chapter on Coarse Woody Debris and Litter). The reason for the low number of species in the coupe buffer treatments requires further investigation.


Figure 5. The mean number of species per grid recorded fruiting on soil, litter and wood on the Donnelly FORESTCHECK grids in 2008.

Comparison with previous monitoring at Donnelly and other regions The Donnelly sites were established in 2002. In the initial FORESTCHECK monitoring at Donnelly (2002) the grids were only visited once. From 2003 onwards, FORESTCHECK monitoring for macrofungi has included two surveys per grid, about 2-3 weeks apart.

In addition, the Donnelly grids were also surveyed once each year from 2002-2006. Here the annual results from monitoring at Donnelly are compared and the results from 2008 are compared to those from 2002 and the 2003-06 results from other regions (Wellington 2003, Perth Hills 2004, Wellington East 2005 and Balckwood plateau 2006) where FORESTCHECK grids are established.

Species richness and abundance

From 2003 to 2006, the total number of species recorded at the Donnelly grids ranged from 160 in 2002 to 242 in 2006. In 2008, this increased markedly to 371 (Fig. 6). The increase is likely attributed to two surveys being conducted in 2008, against only one each year from 2002-06. However, both surveys in 2008 resulted in a higher number of species being recorded than in previous years (256 in May and 288 in June). The 2008 monitoring at Donnelly resulted in the highest number of species and abundance recorded for any year of FORESTCHECK monitoring, an increase of 118 species over the Blackwood grids in 2006 and 6847 individual fruit bodies more than recorded at Wellington in 2003. The total number of species of macrofungi recorded in FORESTCHECK from 2002-08 is 563. The southern jarrah in the Donnelly district appears to have a very rich and diverse mycoflora, as single surveys at Donnelly result in equal or greater species richness than two surveys in other jarrah forest regions.

Figure 6. The number of species of macrofungi and fruit bodies recorded in Forestcheck monitoring from 2002-08

Species accumulation at Donnelly

The number of species recorded at Donnelly has steadily increased from 160 in 2002 to be 518 in 2008 (Fig. 7).

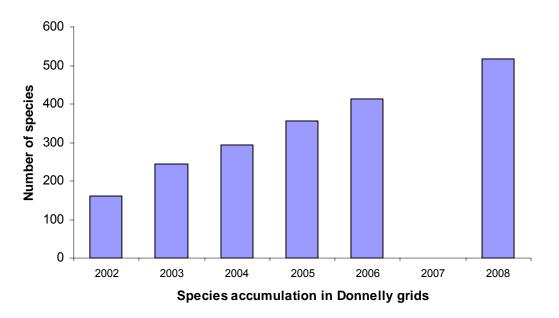
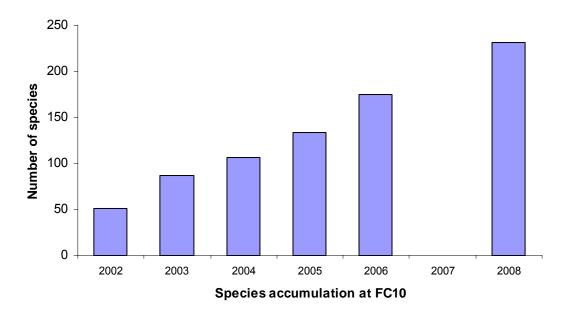



Figure 7. Species accumulation for macrofungi recorded on Donnelly FORESTCHECK grids 2002-2008.

At the individual grid level, species accumulation on the external reference grid at Easter block (FC10) is also still rising steadily (Fig. 8). FC10 is in mature forest that has never been logged and has not been burnt since 1999. A total of 231 species have

been recorded on this grid alone and it demonstrates clearly the need for regular monitoring over many years, even on sites that are relatively stable in their development, in order to identify the majority of macrofungi present on large sites, within local areas or across regions.

Figure 8. Species accumulation for macrofungi recorded on the Easter external reference grid (FC10) from 2002-2008.

Conclusions

The main observations made following monitoring of macrofungi in the southern jarrah at Donnelly were:

- A total of 563 species of macrofungi have so far been recorded in FORESTCHECK.
- 371 species were recorded at Donnelly in 2008. Of these 113 species were recorded for the first time in FORESTCHECK.
- The majority of macrofungi recorded in 2008 fruited on soil.
- Species richness and fruit body abundance was similar in external reference and gap release treatments.
- Species richness and abundance was exceptionally high on the external reference grid in Easter block, with 231 species recorded.
- Species accumulation is still steadily rising on the Donnelly grids after 6 years of monitoring.

Acknowledgements

We wish to express our appreciation to Verna Tunsell for her assistance with data input and entering voucher specimen details into the Perth Herbarium database and to Francesco (Paco) Tovar and Roy Whittkuhn for assistance with field surveys.

APPENDIX 1. List of macrofungi recorded in Forestcheck 2002-08, and the species and abundance recorded on the Donnelly monitoring grids in 2008. The species in the shaded cells are those additional species recorded in Donnelly from 2003-06.

		Life		Treatments ³				
Sp #	Species	Mode ¹	Substrate ²	ER	СВ	SW	GR	TOTAL
550	Agaric 'blue grey'	S?	S					
642	Agaric 'khaki-yellow, moist'	S	W	8	6			14
0	Agaric unidentified			3			3	6
240	Agaricus sp. "small with red brown fibrils"	S	S	2	1			3
38	Agaricus sp. "small"	S	S					
71	Agaricus sp. "small, flat- red stain"	S	S					
33	Agaricus sp. "yellow stainer"	S	S	2	1			3
39	Agaricus sp."large cap, purplish scales"	S	S	1	6		5	12
120	Aleuria rhenana	S	S	14	5	4	62	85
126	Aleurina ferruginea	S	S/Moss	1		16	14	31
536	Aleurodiscus sp. 'apricot on B. grandis cone'	S	Fruits					
206	Amanita ananiceps	М	S	3	1			4
395	Amanita basirubra	М	S					
186	Amanita brunneibulbosa "grey-brown"	М	S	1	1	5		7
283	Amanita eucalypti	М	S					
448	Amanita flaviphylla	М	S		1			1
269	Amanita ochrophylloides	М	S					
114	Amanita sp. "apricot-pink margin"	М	S					
518	Amanita sp. "beige with saccate base"	М	S					
520	Amanita sp. "creamy yellow, sticky cap"	М	S					
493	Amanita sp. "grey brown robust"	М	S					
497	Amanita sp. "grey brown with orange yellow veil"	М	S					
496	Amanita sp. "grey veil"	М	S					
360	Amanita sp. "large grey-white, robust"	М	S					
526	Amanita sp. "small creamy white, membranous ring"	М	S					
320	Amanita sp. "small robust, yellow-buff, bulbous base	М	S					
368	Amanita sp. "white with mealy stem"	М	S					
371	Amanita sp. "white with saccate volva"	М	S					
45	Amanita sp. "white, deeply rooted"	М	S			1		1
525	Amanita sp. "white, grey scales, silvery stem"	M	s					
28	Amanita sp. "white, stout"	M	s					
519	Amanita sp. "yellow brown, long stem, constricted bulb"	M	S					
588	<i>Amanita</i> sp. 'sellow orown, long stein, constructed outp	M	S		1	2		3
218	Amanita sp. "powdery - long tapering base"	M	S		1	2		5
531	Amanita sp. unidentified	M	S		3	1		4
196	Amanita umbrinella	M	S		1	1	11	12
6	Amanita xanthocephala	M	S	15	7	18	33	73
35	Amanita xanthocephala forma macalpiniana	M	S	15	/	1	55	1
55 577	Amanina xannocephala forma macaphilana Amanitra sp. 'grey brown with white warts'	M	S	1		1		1
338	Anthracobia muelleri	S	S	1				1
338	Anthracobia muelleri "small yellow"	S	S					
	-	S	З Т		1			1
509 313	Anthracophyllum archeri Antrodiella citrea	S S	I W/T	2	1 5	1		1 8
180	Aniroaleua curea Armillaria luteobubalina	S P/S	W/1 W	2 110	5 11	1	113	° 234
657	Arminaria inteodudatina Ascocoryne sarcoides	P/S S	W	110	2		113	234
057 275	-	s ?	w S/L		2			2
275 188	Auriscalpium sp. "fleshy funnel" Austroboletus laccunosa	? S		2	n			4
			S	2	2		2	-
200	Austroboletus occidentale	S M	S		1	1	3	4
291	Austropaxillus sp."orange-brown"	M	S			1		1
392	Banksiamyces toomansis "quercifolia"	S	Fruits					

		Life		Treatments ³				
Sp #	Species	Mode ¹	Substrate ²	ER	СВ	SW	GR	TOTAI
392	Banksiamyces toomansis "sphaerocarpa"	S	Fruits					
436	Beauvaria bassiana	Р	Insect	8				8
653	<i>Bjerkandera</i> sp.	S	W	60	50		2	112
93	Boletellus ananiceps	S	S	12				12
103	Boletellus obscurecoccineus	S	S	2	4		5	11
740	Boletellussp. 'brown obscurecoccineus'	S	S		1			1
225	Boletus sp. "creamy pale yellow	М	S					
29	Boletus sp. "dull maroon"	М	S					
345	Boletus sp. "light yellow"	М	S				1	1
350	Boletus sp. "pink maroon cap, yellow/red stem"	М	S					
49	Boletus sp. "red pores and stem" Boletus sp. "red-brown/golden yellow - intense blue	М	S					
253	stain"	М	S		3			3
628	Boletus sp. "slippery dark brown - stains pinkish brown"	М	S					
95	Boletus sp. "small yellow/cream pores" Boletus sp. "viscid brown cap, yellow marshmallow	М	S					
358	pores"	М	S					
99	Boletus sp. "yellow-red, stains blue"	М	S	1				1
695	Boletus sp.	М	S					
607	Boletus sp. 'yellow brown, stains blue'	М	S					
216	Boletus sp."brown/yellow pores which stain blue"	М	S					
210	Boletus sp."maroon/orange pores"	М	S					
195	Boletus sp."mustard brown-brown stain"	М	S					
193	Boletus sp."purple brown"	М	S					
284	Boletus sp."under Allocasuarina"	М	S					
208	Boletus sp."yellow-brown, cracked/white pores" Botryobasidium sp. "creamy-grey crust on charcoal and	М	S					
503	leaves" Botryobasidium sp. "creamy-orange mycelium under well	S	L/W		1		2	3
504	rotted litter"	S	L/W					
304	Byssomerulius corium.	S	W/T	2(2	1	500	1.4.40	1
9	Calocera guepinioides	S	W	262	420	520	1442	2644
465	Calostoma fuscum	S	S				200	200
187	Campanella gragaria	S	W	7			200	200
463	Cantharellus concinnus	M	S	7			0	7
265	Cheilymenia sp. "eyelash on roo poo"	C	Dung		1.5	100	8	8
243	<i>Cheilymenia</i> sp. "orange disks on marri nuts"	S	FruitsS	2	15	109	4	128
364	Chlorociboria aeruginascens ssp. australis	S	W	2	37	3	10	42
319	<i>Clavaria (Clavulinopsis)</i> sp. "grey-brown with black tips"	M?	S	0	6		12	18
693 (20	Clavaria alboglobispora	S	S	9			1	9
620	Clavaria sp. "yellow orange forks"	S	S	0			1	1
694	Clavicorona piperata	S	W	8				8
561	<i>Clavilinopsis</i> sp. 'simple white clubs'	S	S				1	
665	Clavulicium sp. yellow glue	S	T	27			1	1
81	Clavulina cf. cinerea "grey-brown"	S M2	S	27	66	A	42	135
344	Clavulina sp. "cream, fluffy tips"	M?	S	5	15	4	18	42
140	Clavulina sp. "pink-buff coral"	S	S	2	5	1	5	11
458	Clavulina sp. "pinkish brown, red-brown tips"	S	S	3	7	95	43	148
700	Clavulina sp. 'fuzzy creamy white'	S	S	9			30	39
562	Clavulina sp. 'grey brown forks'	S M2	S	~				-
362	<i>Clavulinopsis</i> "grey brown, black tips"	M?	S	5	~		1	5
316	Clavulinopsis amoena	M?	S	87	6		1	94 12
739	Clavulinopsis miniata	S	S		12			12
472	Clavulinopsis sp. "coral pink"	S	S	22	2		1	
261	<i>Clavulinopsis</i> sp. "cream"	S	S	23	2		1	26
143	Clitocybe aff. clitocyboides "buff funnel"	S	S		1	11	16	28

		Life			Treat	ments ³		
Sp #	Species	Mode ¹	Substrate ²	ER	СВ	SW	GR	TOTAL
197	Clitocybe semi oculta	S	W	51	3		1	55
197	Clitocybe semi-occulta "large"	S	W				7	7
23	<i>Clitocybe</i> sp.	S	S					
370	Clitocybe sp. "creamy beige"	S	S/L					
46	Clitocybe sp. "creamy white"	S	S					
324	Clitocybe sp. "grey robust"	S	S				1	1
170	Clitocybe/Clitocybula sp. "yellow brown-moist"	S	S/L					
181	Collybia aff. butracea	S	S					
633	Collybia dryophila	S	S					
489	Collybia sp. "large brown, tan gills"	S	S					
151	Collybia sp. "large"	S	S					
15	Coltricia oblectans	S	S	17	24	76	48	165
532	Coltriciella dependens	S	W					
32	Coprinus sp.	S	S/L					
128	Coprinus sp. "basal hairs"	S	S	1			8	9
224	Coprinus sp. "micacus"	S	S					
662	Coprinus sp. 'mealy scaled cap (on burnt soil)'	S	S					
460	Cordyceps sp. "brown club"	Р	Insect					
467	Cordyceps sp. "orange-brown club"	Р	Insect					
655	Corticioid 'white tuberculate'	S	W		1			1
303	Cortinaius sp."stubby domes"	М	S					
511	Cortinarius sp. "multi red"	М	S					
473	Cortinarius (Dermocybe) sp. "orange"	S?	S					
146	Cortinarius (Myxacium) sp. "orange-brown viscid cap"	М	S	4	4		1	9
702	Cortinarius (Myxacium) sp. 'khaki'	М	S				5	5
125	Cortinarius (Phlegmacium) sp. "purple-grey"	М	S					
158	Cortinarius aff. micro archerii	М	S	1			6	7
314	Cortinarius archerii	М	S					
207	Cortinarius australiensis	М	S	2	3			5
173	Cortinarius basirubescens " brown large"	М	S					
173	Cortinarius basirubescens (red cap)	М	S	1			1	2
173	Cortinarius basirubescens(brown cap)	М	S					
115	Cortinarius fibrillosus	М	S	8	9		1	18
7	Cortinarius radicatus	М	S			2		2
293	Cortinarius rotundisporus	М	S					
357	Cortinarius sinapicolor	М	S	4				4
234	Cortinarius sp.	М	S					
485	Cortinarius sp.	М	S					
421	Cortinarius sp. "brown cap, lilac white stem"	М	S				6	6
355	Cortinarius sp. "brown with lavender margin and stem"	М	S				2	2
73	Cortinarius sp. "brown with purplish tints"	М	S				5	5
466	Cortinarius sp. "brown with white margin"	М	S					
68	Cortinarius sp. "brown" ?(34)	М	S					
346	Cortinarius sp. "brown, grey-lavender gills"	М	S					
232	Cortinarius sp. "cf sinapicolor"	М	S					
500 382	<i>Cortinarius</i> sp. "chestnut large" <i>Cortinarius</i> sp. "chestnut with yellow margin and yellow flesh"	M M	S S					
382 154	Cortinarius sp. "chestnut"	M M	S S	9	8		2	19
453	<i>Cortinarius</i> sp. "cleannu" <i>Cortinarius</i> sp. "decurrent gills, deep stem with double ring"	M	s s	7	0		2	19
334	Cortinarius sp. "fawn brown"	М	S					
252	Cortinarius sp. "glutinous cap/rooting stem"	М	S	16				16
348	Cortinarius sp. "golden tan, long stem"	М	S				7	7
374	Cortinarius sp. "golden-tan"	М	S					

		Life		Treatments ³				
Sp #	Species	Mode ¹	Substrate ²	ER	СВ	SW	GR	TOTA
257	Cortinarius sp. "honey-brown"	М	S		2			2
369	Cortinarius sp. "large red-brown"	М	S					
379	Cortinarius sp. "lilac-brown with yellow gills"	М	S					
404	Cortinarius sp. "orange cap, white floccose stem"	М	S					
251	Cortinarius sp. "orange-brown 2"	М	S	1				1
98	Cortinarius sp. "pointy cap"	S	S	33	21		1	55
515	Cortinarius sp. "red brown cap, slender lavender stem"	М	S					
626	Cortinarius sp. "red-brown pointy cap"	М	S					
121	Cortinarius sp. "slender brown"	М	S					
131	Cortinarius sp. "slender lilac"	М	S					
432	Cortinarius sp. "tan cap with chocolate gills"	М	S					
171	Cortinarius sp. "vinaceus lilac"	М	S		2		3	5
96	<i>Cortinarius</i> sp. "viscid - pink" <i>Cortinarius</i> sp. "yellow with brown fibrils and orange	М	S	1	3		5	9
375	ring"	М	S				_	
237	Cortinarius sp. "yellow with orange brown fibrils"	М	S	14	14		5	33
492 354	<i>Cortinarius</i> sp. "yellow with yellow stem" <i>Cortinarius</i> sp. "yellow-brown cap, lavender gills and stem"	M M	S S					
231	Cortinarius sp. "yellow-brown/tan margin"	M	S					
255	Cortinarius sp. "yellow-orown tan margin	M	S					
233 597		M	S S		1			1
611	Cortinarius sp. 'chestnut with banded stem'				1			1
	Cortinarius sp. 'dry, purple grey'	M	S	7	5			12
689 584	<i>Cortinarius</i> sp. <i>Cortinarius</i> sp. 'hygrophanous orange-brown cap, membranous ring'	M M	S S	7	5			12
596	Cortinarius sp. 'pink brown, apressed fibrillose cap'	M	S	2				2
627	<i>Cortinarius</i> sp. 'purple brown with glutinous stem"	M	s	2				2
670	<i>Cortinarius</i> sp. 'small fibrilose in moss'	M	S	27	4		79	110
609	Cortinarius sp. 'small purple umbonate'	M	s	21	7		1)	110
608	Cortinarius sp. sticky creamy beige'	M	S				3	3
605	Cortinarius sp. 'viscid orange cap, yellow stem'	M	S				5	5
738	Cortinarius sp. 'wrinkled witches hat'	M	S		3			3
279	Cortinarius sp. "brown fibrillose"	M	S		5			5
	Cortinarius sp. "brown umbonate"							
244 299		M M	S S					
	<i>Cortinarius</i> sp. "chocolate brown with mustard gills"			10	2	10	21	<i></i>
201	Cortinarius sp."cream with orange gills"	M	S	19	2	15	21	57
282	Cortinarius sp."honey-brown dome /long stem"	M	S	1	4			~
212	Cortinarius sp."orange brown"	M	S	1	4			5
230	Cortinarius sp."orange viscid"	M	S	1	30	1	2	30
223	Cortinarius sp."orange"	M	S	1	8	1	2	12
205	Cortinarius sp."orange/yellow flesh/yellow gills"	M	S	-		1	1.4	1
267	Cortinarius sp."snowy chestnut"	M	S	7	4		14	25
270	Cortinarius sp."viscid, yellow-red-brown, white stem"	М	S	1	7			8
273	Cortinarius sp." white with deep rooting stem"	M	S					
199	Cortinarius sp."yellow orange"	М	S			-		
184	Cortinarius spp. (unidentified)	М	S	23	16	7	27	73
171	Cortinarius vinaceolamellatus	M	S					
290	Cortinarius violaceous	M	S		~		_	
16	Cotylidia undulata	S	S/Moss	1	9		2	12
469	Crepidotus sp. "chestnut with fringed margin"	S	W					
619	Crepidotus sp. "ginger with white margin and gills"	S	W	1	200		1	202
118	Crepidotus sp. "large creamy-tan"	S	W	67	18	11	210	306
323	Crepidotus sp. "rusty brown suede"	S	W	8				8
61	Crepidotus sp. "small brown"	S	W/Bark					

		Life		Treatments ³				
Sp #	Species	Mode ¹	Substrate ²	ER	СВ	SW	GR	TOTAL
83	Crepidotus sp. "small creamy tan"	S	Bark/W				15	15
21	Crepidotus sp. "small white"	S	W		6		265	271
686	Crepidotus sp. "white gelatinised"	S	T/W		25		42	67
241	Crepidotus variabilis	S	T/W	1915	1072	20	162	3169
148	Crucibulum laeve	S	T/L	5	1	48	1	55
684	Crust "creamy tuberculate crust"	S	Т				1	1
679	Crust fungi "creamy gelatinised, toothed'	S	Т			2		2
678	Crust fungus "khaki crust"	S	Т			9	3	12
296	Cyathus sp."on roo poo"	С	Dung					
307	Cyathus sp.	S	L	24	14	30		68
138	Daldina concentrica (D. childiea?)	S	W					
110	Dermocybe aff. sanguinea	М	S				2	2
147	Dermocybe austroveneta	М	S	3				3
340	Dermocybe clelandii "mini"	М	S	3				3
57	Dermocybe clelandii "olive brown"	М	S					
57	Dermocybe clelandii (white mycelium)	М	S	1	3		7	11
172	Dermocybe clelandii (yellow mycelium - glutinous cap)	М	S	2	1		9	12
172	Dermocybe clelandii (yellow mycelium)	М	S	2		1		3
328	<i>Dermocybe</i> sp. "small olive"	М	S				2	2
486	Dermocybe sp. "yellow stipe, yellow mycelium"	М	S					
124	Dermocybe sp. "yellow-olive"	М	S				1	1
168	Dermocybe sp. "jarrah"	М	S	2	1		1	4
40	Dermocybe sp."chestnut"	М	S					
310	Dermocybe splendida	М	S					
617	Dermocybe/Cortinarius sp. "red brown, scurfy cap"	S?	L	2				2
622	Discomycete "creamy white discs on soil"	S	S					
294	Discomycete "small yellow on Banksia grandis leaf"	S	L	48	477		10	535
508	Discomycete "tiny cream disks on leaves"	S	L	293	40		523	856
625	Discomycete "tiny white cups - on marri nut"	S	Fruits					
462	Discomycete "tiny white on marri nut"	S	Fruit					
681	Discomycete "yellow stalked on marri nuts"	S	Fruits		39	25	10	74
123	Discomycete "yellow stalked"	S	S	102	78	1	289	470
729	Discomycete 'light brown'	S	S				9	9
644	Discomycete 'tiny bright yellow on nuts and twigs'	S	Т	20	18			38
31	Entoloma (Leptonia) moongum "blue-black"	S	S	2	2		1	5
78	Entoloma (Leptonia) sp. "grey/decurrent gills"	S	S					
409	Entoloma aff. incana	S	S	1				1
741	Entoloma sp. 'orange green, scaly cap'	S	S	7			4	11
222	Entoloma sp. "black with grey-white gills	S	S				3	3
410	Entoloma sp. "blue-black, marginate gills"	S	S ~	1				1
347	<i>Entoloma</i> sp. "brown striate cap"	S	S ~	1	1			2
227 530	<i>Entoloma</i> sp. "brown-black with tan gills" <i>Entoloma</i> sp. "brown-black, marginate gills, bluish-grey stem"	S S	S S	5				5
330 471	Entoloma sp. "buff with dimple"	S	S S	5				5
30	Entoloma sp. "creamy white"	S	S S	16	1		2	19
30 167	Entoloma sp. "creamy white Entoloma sp. "dark grey/blue gill edge"	S S	S S	10	1		2	19
25	Entoloma sp. "dark grey/blue gill edge Entoloma sp. "grey-brown/blue stem"	S S	S S				2	2
25 77		S S	S S				1	1
235	Entoloma sp. "grey-brown/brown stem" Entoloma sp. "grey-brown/grey stem"	S S	S S	4		2	1	1 19
235 97	Entoloma sp. "grey-orown/grey stem" Entoloma sp. "pure white"	3 ?	S S	4		2	13	3
	Entoloma sp. "pure white" Entoloma sp. "tall, grey-brown"	? S	S S	3 4			1	5
135	Entoloma sp. "tall, grey-brown" Entoloma sp. "very large brown-grey"		S S	4			1	3
514	Entoloma on "yony large brown are-"	S						

		Life			Treat	nents ³		
Sp #	Species	Mode ¹	Substrate ²	ER	СВ	SW	GR	TOTAI
699	Entoloma sp. 'fawn scurfy cap'	S	S				3	3
641	Entoloma sp.	S	S				2	2
583	Entoloma sp. 'khaki brown cap, white stem'	S	S					
555	Entoloma sp. 'small olive brown'	S	S	1			8	9
606	Entoloma sp. 'tall velvet grey brown cap'	S	S	7	1		1	9
589	Entoloma sp. 'tall grey conical'	S	S					
198	Entoloma sp."brown black/tan/blue"	S	S	2			3	5
194	Entoloma sp."brown"	S	S					
272	Entoloma sp."grey-brown with dimple"	S	S	11	2		4	17
278	Entoloma sp."suede grey-brown with dimple"	S	S					
274	Entoloma viridomarginatum	S	S					
159	Exidia glandulosus	S	W		4		17	21
41	Fistulina spiculifera	S	W	6			9	15
91	Fistulinella mollis	S	W		1			1
19	Formitopsis lilacino-gilva	S	W	16	2	11	9	38
11	Galerina spp. "hanging gills" and "conic"	S	S/L	97	89	42	162	390
111	Galerina sp. "large"	S	S	15	3	5	1	24
58	Galerina sp. "small cap, eccentric stipe - on wood"	S	W	65	147	14	324	550
42	Galerina sp. "small on bark"	S	Bark					
630	Galerina sp. "tiny tan"	S	Bark					
228	Geastrum sp.	S	S/L		2			2
691	Grandinia barba-jovis	S	W	7	6		14	27
174	Gymnopilus "red/yellow/red"	S	W	3	2		4	9
8	Gymnopilus allantopus	S	W	70	112	17	168	367
690	Gymnopilus ferruginosus	S	S	16	9			25
365	Gymnopilus junionus	S	W					
43	Gymnopilus sp.	S	W					
105	Gymnopilus sp. "chestnut scales, forked gills"	S	W					
517	Gymnopilus sp. "red cap, yellow gills, yellow stem"	S	W					
26	Gymnopilus sp. "reddish cap, orange gills"	S	W				1	1
85	Gymnopilus sp. "slender"	S	W	114	105	88	315	622
663	Gymnopilus sp. 'big gym'	S	W	3				3
591	Gymnopilus sp. 'purple maroon'	S	W					
217	Gyroporus aff. cyanescens "intense blue stain"	М	S					
292	Gyroporus sp."beige-yellow, blue stain" - see sp 217?	М	S					
433	Hebeloma aff. westraliensis	S	S	1	12		1	14
600	Hebeloma aminophylum	S	S					
498	Hebeloma sp. "small"	S	S					
56	Heterotextus peziziformis	S	W/T	110	110	18	108	346
422	Hohenbuehelia aff. atracaerulea "grey brown"	S	W	38			50	88
339	Hohenbuehelia carbonaria - on ground	S	S					
343	Hohenbuehelia sp. "soft brown"	S	W					
480	Hydnellum sp. "orange tipped spines"	S	L	5				5
704	Hydnellum sp. 'rubber'	S	S	48				48
87	Hydnellum sp."red brown"	S	L/S	99	27		36	162
698	Hydnoid "mouldy marshmallow"	S	S				4	4
300	Hydnoplicata convoluta	М	S					
297	Hydnum repandum	S?	S	27				27
380	Hydnum sp. "chestnut"	S?	S	1				1
476	Hygrocybe aff. astatogala	S	S	1				1
381	Hygrocybe cantharellus	М	S					
317	Hygrocybe conica	S	S				1	1
445	Hygrocybe polychroma	М	S					
613	<i>Hygrocybe</i> sp. 'dry, orange brown'	М	S				4	4

		Life		Treatments ³				
Sp #	Species	Mode ¹	Substrate ²	ER	СВ	SW	GR	TOTAI
631	Hygrocybe sp. "yellow with orange stem"	М	S	1				1
122	Hygrocybe sp. "yellow-orange"	S	Moss	9	6		8	23
734	Hygrocybe sp. 'chrome yellow - large'	М	S	1				1
599	Hygrocybe sp. 'olive yellow'	М	S					
732	Hygrocybe sp. 'pallid with orange stem'	М	S	4				4
616	Hygrocybe sp. 'viscid, red, purple stem'	М	S					
564	Hygrocybe sp. yellow red'	М	S	1	2		8	11
281	<i>Hygrocybe</i> sp."pallid yellow"	S	S	4				4
416	Hymenochaete sp.	S	W	15		1	1	17
680	Hymenochaete sp. "chocolate brown"	S	Т			4		4
100	Hypholoma australe	S	W	107	34		20	161
59	Hypholoma brunneum	S	W	70	100		9	179
595	Hypholoma sp.	S	S, L	3			7	10
419	Hypocrea gelatinosum	S	W/T	24			10	34
108	Hypomyces chrysospermus	Р	Bolete	4	3		3	10
640	Hypomyces sp - on Lactarius sp (L. clarkeae)	Р	Fungi	3	1	1	1	6
697	Hypomyces sp on Ramaria sp.	Р	Fungus	3	1			4
726	Hypomyces sp. 'creamy pimples' on Coltricia	Р	Fungus			14		14
730	Hypomyces sp. on Crepidotus	Р	Fungus	58				58
268	Hypomyces sp."brown/yellow-orange"	М	S		2		10	12
581	Hysterangium inflatum 'olive-brown gleba'	М	S					
592	Hysterangium sp. 'olive gleba'	М	S	1				1
516	Ileodictyon gracile	S	S					
1	Inocybe australiensis	М	S	89	29	3	165	286
203	Inocybe geophylla	М	S					
487	Inocybe sp. "brown fibrillose, yellow gills"	М	S	1			10	11
378	Inocybe sp. "chocolate umbonate"	М	S					
137	Inocybe sp. "creamy-brown"	М	S					
48	Inocybe sp. "grey"	М	S	2			25	27
484	Inocybe sp. "large firillose, umbonate, yellow-tan gills"	М	S	3		4		7
444	Inocybe sp. "large orange-brown scaly cap"	М	S					
65	Inocybe sp. "large scaly cap"	М	S	2			5	7
398	Inocybe sp. "large scaly umbonate cap"	М	S	11	3	6	6	26
226	Inocybe sp. "orange brown"	М	S			1		1
113	Inocybe sp. "radially fibrillose, pink stem"	М	S	1	8		2	11
20	Inocybe sp. "scaly cap"	М	S	5		2	34	41
169	Inocybe sp. "shaggy stem"	М	S					
162	Inocybe sp. "small light brown, fibrillose"	М	S	15				15
53	Inocybe sp. "tan skirt"	М	S	36	90	16	27	169
286	Inocybe sp."umbonate, shaggy"	М	S				3	3
204	Inonotus sp.	S	W					
719	Isaria sp. 'Yellow clubs'	Р	Insects	8				8
74	Laccaria aff. masonii	М	S	347	27	18	421	813
36	Laccaria lateritia	М	S	37	15		83	135
384	Laccocephalum basilapiloides	S	W					
383	Laccocephalum tumulosum	S	W					
221	Lactarius clarkeae	М	S	2				2
142	Lactarius eucalypti	М	S	10	11		2	23
245	Lactarius sp. "cream yellow"	М	S	5				5
215	Lactarius sp."cream custard"	М	S					
478	Laetiporus potentosus	S	W	2				2
737	Lanzia lanaripes	S	W				25	25
335	Lentinellus sp. "brown cap, saw-toothed gills"	S	W	21	4			25
457	Lentinellus sp. "brown fan, white saw-gills"	S	W				5	5

		Life			Treat	ments ³		
Sp #	Species	Mode ¹	Substrate ²	ER	СВ	SW	GR	TOTAI
468	Lentinellus sp. "brown lobed, hirsute, brown gills"	S	W					
271	Lepiota aff. haemorrhagica "red stainer"	S	S					
185	Lepiota cristata	S	S	5	6		5	16
82	Lepiota sp. "cream-grey"	S	S					
264	Lepiota sp. "cream-grey"	S	S	1			1	2
475	<i>Lepiota</i> sp. "creamy brown scaly cap, bifurcate gills"	S	S					
246	Lepiota sp. "purple-grey"	S	S					
735	Lepiota sp. 'amber drops'	S	W		1		1	2
603	Lepiota sp. 'creamy pink'	S	S					
728	Lepiota sp. 'red-brown'	S	S		3			3
166	Lepiota sp."creamy-brown"	S	S	4	6	6	7	23
76	Lepiota sp."orange with brick red scales/white gills"	S	S				2	2
117	<i>Lepista</i> sp.	M?	S					
214	Leucopaxillus lilacinus	М	S			1		1
127	Lichenomphalia aff. umbellifera	S	S/Algae			2	81	83
112	Lichenomphalia chromacea	S	S/Algae	9	7		2	18
24	Lycoperdon sp.	S	S	2		2	11	15
329	Lyophyllum sp. "viscid buff, long stem"	M?	S					
731	Macowanites luteiroseus?	М	S	4				4
610	Macowanites sp.	М	S					
190	Macrolepiota clelandii	S	S	1				1
318	Marasmellis sp."small white, on twigs & leaves"	S	L/T		1			1
191	Marasmiellis sp. "white umbrella"	S	T/W					
239	Marasmiellus sp. "on zamia"	S	Т					
318	Marasmiellus sp. 'jarrah coppice'	S	Bark					
55	Marasmius crinisequi	S	L	367	189	137	344	1037
183	Marasmius elegans	S	S	45	2			47
618	Marasmius sp.	S	Т					
443	Marasmius sp. "small tan"	S	S				1	1
341	Marasmius sp. "tiny red on twigs"	S	L/T	36			1	37
309	Marasmius sp.	S	S/L	36				36
75	Marasmius sp."large brown, on Zamia stems"	S	Т					
529	Melanoleuca sp. "grey-brown/white/white"	S	S					
612	Melanophyllum echinatum	S	S					
22	Melanotus hepatocrous (Crepidotus subhaustellaris)	S	W	37	32	2	119	190
373	Merulius sp "creamy yellow, on jarrah stick'	S	W					
643	Merulius sp. 'on leaves'	S	L		3			3
55b	Micromphale sp. "garlic"	S	L					
262	Multiclavula sp. "tiny white candles"	S	S				1	1
44	Mycena aff. atrata	S	W	5			16	21
372	Mycena aff. fumosa	S	W					
134	Mycena albidocapillaris (aff. subcapillaris)	S	L	14	1	1	5	21
80	Mycena carmeliana	S	W	141	69	12	196	418
312	Mycena fuherii "pink,bleach"	S	S/L					
327	Mycena maldea	S	L				3	3
50	Mycena mijoii	S	L	229	317	49	70	665
66	Mycena pura	S	S/L	9		1	19	29
144	Mycena sanguinolenta	S	S	2	2		2	6
491	Mycena sp. "brown pointy cap"	S	L					
521	<i>Mycena</i> sp. "brown pura"	S	L		1			1
523	Mycena sp. "brown striate with dark umbo"	S	L					
456	Mycena sp. "brown-grey, viscid conic"	S	L					
51	<i>Mycena</i> sp. "buff umbrella"	S	L/T	430	49	25	44	548
285	Mycena sp. "light brown striate/white stems, on wood"	S	W				5	5

		Life		Treatments ³				
Sp #	Species	Mode ¹	Substrate ²	ER	СВ	SW	GR	TOTA
18	Mycena sp. "light brown-olive"	S	S					
376	Mycena sp. "small brown with decurrent gills"	S	W				1	1
326	Mycena sp. "small buff on wood - bleach"	S	W					
352	Mycena sp. "small creamy yellow-white"	S	L/Bark					
165	Mycena sp. "small grey - bleach"	S	S/L	31	34	12	7	84
502	Mycena sp. "striate cap, decurrent gills, on burnt ground"	S	S					
477	Mycena sp. Adonidae "tiny rosy pink"	S	S		1			1
386	Mycena sp. "tiny white sticky cap"	S	L	40				40
88	Mycena sp. "tiny white with decurrent gills"	S	S	14	9		109	132
64	Mycena sp. "tiny white, on twigs"	S	Т	14	9		6	29
574	Mycena sp. 'dry grey, creamy white gills'	S	S					
701	Mycena sp. 'dusty purple conic'	S	S				2	2
590	Mycena sp. 'grey brown with creamy brown margin'	S	S	1				1
650	Mycena sp. 'maroon'	S	S				2	2
658	Mycena sp. 'orange striate cap, dimpled'	S	W	8				8
565	Mycena sp. 'red gills'	S	L					
308	Mycena sp. "grey-brown,/no bleach"	S	S	5	5	1		11
302	<i>Mycena</i> sp. "nipple umbrellas"	S	W					
295	<i>Mycena</i> sp. "small buff"	S	L	9		2	5	16
182	Mycena spp. (unidentified)	S		24		1	6	31
163	Mycena subgallericulata	S	W	271	196	6	315	788
238	Mycena yuulongicola	S	W	41	99		49	189
27	Mycena yuulongicola "long stem"	S	W					
336	<i>Mycena/Tephrocybe</i> sp. "dk brown on burnt ground"	S	S					
510	Mycoacia subceracea	S	T/W					
703	Nectria aff. cinnabarina	P	Fruits				1	1
164	Nidula niveotomentosa	S	L/T					-
413	<i>Nidularia</i> aff. <i>farcta</i> "white dots on roo poo"	C	Dung					
441	Nothocastorium sp.	M	S					
535	Nothojafnea thaxterii	S	s					
461	Omphalina sp.	S	S		1		17	18
557	Omphalina sp. 'napthalene'	5	5	31	9		1	41
213	Omphalotus nidiformis	S	W	51	9		1	41
	· ·		vv					
130	Orange parasite on white resupinate polypore (sp.116)	P	T (
558	Paecilomyces tenuipes 'fluffy antlers'	P	Insect	10	1		2	16
104	Panellus ligulatus	S	W	12	1		3	16
311	Panus fasciatus Davilu e en "lechest evith helberg here"	S	W		2		17	19
356	Paxillus sp. "robust with bulbous base"	М	S					
522	Paxillus sp. "yellow" (P. infundibuliformis?)	М	S					•
179	Paxillus macnabii	M	S	16	3		9	28
332	Peziza "praetervisa"	S	S					
442	Peziza (Sepultaria) sp. "hollow spheres"	M/S?	S					
524	Peziza aff. thozetii	S	S	1				1
501	Peziza sp. "black, flat"	S	S					
455	Peziza sp. "brown"	S	S					
527	Peziza sp. "dark brown, smooth"	S	S					
499	Peziza sp. "dark brown-burgandy, tan underside"	S	S					
256	Peziza sp. "white cup"	?						
330	Peziza tenacella	S	S					
488	Phaeocollybia ratticauda	S	W/S					
598	Phaeocollybia tasmanica - see sp. 488	S	S		2			2
136	Phellinus gilvus	S	W	16	1		23	40
37	Phellinus sp. "yellow rim"	S	W				10	10
70	Phellodon aff. niger	S	L/S	29	26			55

		Life		Treatments ³				
Sp #	Species	Mode ¹	Substrate ²	ER	СВ	SW	GR	TOTAL
621	Phellodon sp. "black, silver/brown grey spines"	S	L	80				80
435	Phellodon sp. "brown"	Μ	S	13				13
634	Phellodon sp. "flimsy, silver grey"	S	S					
479	Phellodon sp. "niger brown"	S	L	300	141		30	471
447	Phellodon sp. "silver-blue"	S	S					
84	Phellodon sp. 'niger slender' (sp. 70b)	S	L/S	2	3			5
563	Phellodon sp. olive brown spines'	S	S/L	30	82			112
101	Phlebia rufa	S	W/Bark		1		4	5
614	Phlebia sp. 'orange'	S	W		5			5
160	Pholiota communis	S	S			1		1
160	Pholiota highlandensis	S	S	24	9	2	7	42
119	Pholiota multicingulata	S	W	22	9	13	77	121
156	Pholiota sp. "light brown - red scales on stem"	S	S					
506	Pholiota sp. "water soaked gills"	S	S	4				4
481	Phylloporus sp.	М	S					
363	Piptoporus australiensis	S	W		1			1
403	Pisolithus aff. arhizus "black-yellow"	М	S					
353	Pisolithus sp. 'small, stalked"	М	S					
401	Pisolothus mamoratus	М	S					
192	Plectania sp. "black"	S	L		6			6
133	Pluteus attromarginata	S	W	1			1	2
248	Pluteus cervinus	S	W					
47	Pluteus lutescens "orange"	S	W	2	1		4	7
47	Pluteus lutescens "yellow-green"	S	W	14	3		3	20
4	Pluteus sp. "brown velvet"	S	S					
157	Podoserpula pusio	S/M?	L/S		3			3
277	Polypore "beige"	S	W	1				1
393	Polypore "bracket on B. grandis cone"	S	L					
13	Polypore "brown with white margin"	S	W					
3	Polypore "long white shelf"	S	W		9			9
333	Polypore "on dead waterbush"	S	W					
585	Polypore ' resupinate, white floccose'	S	W		7		18	25
474	Polypore "soft pored bracket"	S	W					
361	Polypore "white resulpinate on twig"	S	W/T					
116	Polypore "white resupinate"	S	T/W		8			8
639	Polypore 'thick white resupinate on twigs'	S	W		5		1	6
494	Polyporus sp. "brown stalked"	S	W					
145	Poronia ericii	С	Dung		22			22
236	Postia (Tyromyces) peliculosa	S	W	7	1			8
155	Protubera canescens	M?	S	5				5
727	Psathyrella sp.	S	S		4	6		10
17	Psathyrella sp.	S	S/L					
229	Psathyrella sp.	S	L	1	2	3		6
250	Psathyrella sp.	S	L					
337	Psathyrella sp.	S	S					
414	Psathyrella sp. "brown cap, white fibrillose stem"	S	L		5			5
359	Psathyrella sp. "brown with white skirt"	S	S					
705	Psathyrella sp. "delicate brown bells"	М	S	34				34
682	Psathyrella sp. "grey, delicate fibrillose"	S	S			8		8
177	Psilocybe coprophila	С	Dung	4	1		11	16
349	Psilocybe musci	S?	S					
331	Pulvinula archerii	S	S					
280	Pulvinula sp.	S	S					
129	Pulvinula sp. (P. tetraspora?)	S	S					

		Life			Treatments ³			
Sp #	Species	Mode ¹	Substrate ²	ER	СВ	SW	GR	TOTAL
176	Pycnoporus coccineus	S	W	1				1
366	Pyronema sp.	S	S					
351	Ramaria / Clavulina "creamy white"	М	S	6				6
72	Ramaria australiana "purple-pink with pink tips"	М	S	19	7	4	6	36
52	Ramaria capitata	М	S	5		2		7
377	Ramaria lorithamnus	S	S	28	6		17	51
102	Ramaria ochroceosalmonicolor	М	S	81	12	5	65	163
242	Ramaria sp. "cream/flat"	М	S	7				7
624	Ramaria sp. "golden orange"	S	S					
247	Ramaria sp. "lemon yellow"	М	S	1				1
86	Ramaria sp. "orange-red, yellow stem"	М	S	2				2
490	Ramaria sp. "tan, Allocasuarina litter"	S	S					
254	Ramaria vesatilis "purple"	М	S	5	7			12
534	Ramariopsis pulchella	S	S				1	1
79	Resupinatus cineroscens	S	T/Bark	100	19		72	191
452	Rhizopogon sp.	М	S					
397	Rhodocybe ? sp. "grey agaric"	S	S				1	1
209	Rickenella fibula	S	Moss	139	27	3	7	176
69	Russula adusta	М	S	12	7		11	30
552	Russula aff. albonigra	М	S				3	3
90	Russula aff. cyanoxantha	М	S	39	1			40
89	Russula clelandii group	М	S	121	16	1	22	160
202	Russula flocktoniae	М	S	28				28
92	Russula neerimea	М	S	72	30		18	120
178	Russula persanguinea	М	Ŵ	12	3		2	17
107	Russula sp. "grey-white"	М	S	2	2		2	6
692	Russula sp. "grey-white"	M	s	- 1	-		-	1
10a	Russula sp. "small white-white-white"	M	s		11			11
10b	Russula sp. "tiny, white-white"	M	s	3	7			10
10c	Russula sp. "white/white/white"	M	s	52	22		16	90
559	Russula sp. 'peaches and cream'	M	s	52	1		10	1
276	Russula sp. "purple-mottled"	M	S					1
342	Ryvardinia campyla	S	W	2				2
263	Sarcodon sp. "brown"	S	S	8			5	13
322	Scleroderma sp. (Truffle) "black gleba"	M	S	0			5	15
315	Scleroderma sp. (Hulle) black globa Scleroderma sp. 'yellow/yellow mycelium'	M	S					
150	Scutellina aff. margaritacea	S	W/T					
150	Scutenna all. margaritacea Simocybe sp."olive"	S S	W/1 W	9				9
12 306	Simocyde sp. onve Sphaerobolus stellatus	S S	w L	7			20	9 20
132	Sphaerobolus stellatus Steccherinum sp. "creamy yellow crust"	S S	L W				20	20
132 539	Steccherinum sp. "creamy yellow crust" Steccherinum sp. 'Fairy castle crust'	S S	W W					
	Steccherinum sp. "Faily cashe clust Steccherinum sp."tiered white shelves"			05			1	86
94 (2	*	S	W	85	125	1.5	1	
62 140	Stereum hirsutum	S	W	343	125	15	47	530
149 5	Stereum illudens brown hymenium Stereum sp. "grey-brown white hirsute, purple fertile layer"	S S	W W	6 3			144	150 3
325	Stereum sp. "purple margin - algae"	S	W	5				5
748	Streum illudens grey hymenium	S	W	6				6
67	Stropharia semiglobata	C	Dung	8	4		6	18
451	Stropharia semiglobala Stropharia sp. "shaggy stem, on roo poo"	c	Dung	0	4		0	10
507	Tapinella curtisii	s	W					
307 14	Tephrocybe sp.	S	w S					
14 513	<i>Tephrocybe</i> sp. "dark grey-brown convex"	S S	S S					
	<i>rephrocype</i> sp. uark grev-prown convex"	3	3					

		Life		Treatments ³				
Sp #	Species	Mode ¹	Substrate ²	ER	СВ	SW	GR	TOTAL
233	Tephrocybe sp. "grey/dimple"	S	S					
153	Tephrocybe sp. "small dark grey-brown"	S	S			2		2
512	Tephrocybe sp. "small grey-brown"	S	S					
587	Tephrocybe sp. 'dark brown with grey brown gills'	S	S	4				4
301	Tephrocybe sp."dark grey with dimple"	S	S		2		4	6
266	Thelephora sp. "white with orange margin"	М	S/Host	1	1		16	18
549	Thelephora sp. 'small rosette'	S/M	S					
615	Thelephore 'creamy grey maze'	S	W		9		1	10
593	Thelephore 'pinkish beige skin'	S	W	9				9
623	Thelephore "creamy pimpled, orange margin and stem"	S	Charcoal					
582	Thelephore 'white parchment'	S	Т				2	2
454	Thelephore "creamy jagged-ridged crust"	S	S	3	7		34	44
632	Thelephore "purple splash"	S	W					
586	Thelephore 'brown feathers'	M?	S					
683	Thelephore 'thin creamy maze'	S	W	8	1		5	14
482	<i>Torrendia</i> sp.	М	S					
688	Trametes sp. "beige"	S	W	6				6
669	Trametes velutina	S	W	10	10		25	45
63	Trametes versicolor (brown or grey)	S	W	117	84	40	13	254
287	Tremella globispora	S	W	9			52	61
685	Tremella globispora "translucent white" 31	S	W	2			30	32
60	Tremella mesentericia	S	W	3				3
289	Tremella sp."tiny yellow knobs"	S	W	28	25	12	25	90
288	Tremella sp."yellow buttons"	S	W	2				2
109	Trichaptum byssogenum."purple splash"	S	W	1				1
533	Trichoglossum hirsutum	S	S	-				-
161	Tricholoma aff. virgatum	м М	S					
54	Tricholoma eucalypticum	M	S	27	3	3	3	36
483	Tricholoma sp	S	S	27	5	5	5	50
211	Tricholoma sp.	M	S				1	1
594	Tricholoma sp.	M	S	8			1	8
446	Tricholoma sp. "orange with ring"	S	S	3				3
495	Tricholoma sp. "orange with white stem"	S	S	5				5
495 736			S	8				8
733	<i>Tricholoma</i> sp. 'creamy tan' <i>Tricholoma</i> sp. 'olive green'	M						
		M	S	1				1
560	Tricholoma sp. 'tan gills, ring'	M	S	8				8
464	Truffle "pale yellow"	M	S					
321	Truffle "pink gleba"	M	S					
258	Truffle "sticky"	M	S				-	-
687	Truffle <i>Cystangium</i> sp.	M	S				5	5
696	Truffle FC1289	M	S				11	11
723	Truffle <i>Stephanospora</i> sp. 2	M	S				6	6
189	Tubaria rufofulva	S	W	2			82	84
602	Tubifera fuliginosa 'strawberry myxo'	S	W					
305	Tylopilus sp."yellow"	М	S	3	9			12
505	Tyromyces caesius	S	W					
567	Unknown 'fluffy salmon buttons' (on <i>Podocarpus</i> fruits)	S	Fruits					
725	Unknown 'orange pustules-fluffy' on Macrozamia seed	P/S?	Fruits			100		100
667	Unknown 'rusty nuts'	S	L		1			1
651	Unknown 'white mycelium on bark and litter'	S	W					
440	White mycelium on roo poo	С	Dung			1		1
2	Xerula australis	S	S		1		1	2
175	Xylaria hypoxylon	S	W	54	2	7	9	72
459	Xylaria sp. "black and white spears"	S	W/S					

		Life		Treatments ³				
Sp #	Species	Mode ¹	Substrate ²	ER	СВ	SW	GR	TOTAL
528	Yellow discs on Emu poo	С	Dung					
629	Zelleromyces sp. "yellow, olive gleba"	М	S					
601	Zelleromyces sp. 'orange'	М	S					
640	Number of species Number of fruit bodies			248 9164	195 5739	86 1797	218 8536	371 25236

Additional species recorded at Donnelly 2003-2006
 ¹ S = saprotrophic, M = mycorrhizal, P = parasitic, C = coprophilous
 ² S = soil, L = litter, T = twigs, W = wood
 ³ E.C. = external reference, S.W. = shelterwood, S.C. = selective cut, G.R. = gap release

CRYPTOGAMS

Ray Cranfield, Richard Robinson and Verna Tunsell

Introduction

Lichen, moss and liverwort are collectively known as cryptogams. Some species of lichens are important indicators of ecosystem health, being sensitive to changes and disturbance in the environment in which they grow. Many colonise primary substrates such as rocks and bare organic matter and are active in the initial breakdown of these materials. Mosses also play an important role in the stabilization of bare soil. Lichens, mosses and liverworts are a major component of the biodiversity of forest ecosystems, and most species in Western Australia have poorly known distributions and many are yet to be named.

The object of this component of FORESTCHECK is to:

- Record species richness and abundance in each FORESTCHECK grid and treatment
- Record species habitat and substrate preference, and
- Monitor the effect of disturbance on cryptogam communities

Following the first five years of monitoring, the survey methods for cryptogams was reviewed and modified. The revised methods are described below. Previously the survey method relied on collecting specimens and identifying them in the laboratory. A monitoring list of 35 cryptogams was collated for the purpose of simplifying the survey effort and testing as indicator species. The new methods were devised to minimise repetitive collection and removal of material from the grids.

The initial objectives of monitoring cryptogams remain, but additional objectives are:

- To monitor the availability and usage of suitable substrates
- To monitor the availability and usage of strata levels
- To record the general abundance of lichen, moss and liverwort flora
- To record the presence of 35 monitoring (or indicator) species
- To determine the relationship of cryptogam presence with litter cover
- To determine successional trends in communities
- To determine trends within cryptogam life-forms

Monitoring

The Donnelly FORESTCHECK cryptogam flora was surveyed on all ten monitoring grids from 22-25 September 2008. Previous survey was conducted by a collecting foray around the outer perimeter of each monitoring grid. In 2008, the method was modified to include 20 1x1 m plots, 10 m apart along a 200 m transect. Alternate plots were situated 2m to the left or right of the transect line. The transect included two adjoining sides of the central 100 x 100 m area, running from W1-2 to W1-4 then from W1-4 to W3-4 (see Fig. 1 in Introduction).

In each 1x1 m plot the following data was recorded:

• The number of lichen, moss and liverwort individuals

- The presence of any of the selected "monitoring" species
- The presence (or absence) of each cryptogam life form
- The presence and use (colonisation) of cryptogam substrates
- The level within the strata that cryptogams occurred

Previous years monitoring indicated that the presence of a litter layer impacted on the presence and abundance of species, therefore litter coverage was scored for each plot. A recording form has been developed along with an illustrated monitoring species booklet to facilitate the collection of relevant data.

Voucher Specimen Processing

Vouchers were extensively collected in 2001. In 2008, specimen vouchering was restricted to a small number of samples that represented material needed for positive identification and new species records. All specimens collected in 2008 have been identified or phrase named for ease of re-determination. Advances in identification, and re-examination of previously collected specimens has resulted in name changes previously used for a number of species. These have recently been updated on the database. All new collections have been prepared for database entry and label generation prior to submitting these vouchers to the PERTH Herbarium.

Preliminary Results and Discussion

Although the 2008 survey at Donnelly was conducted much later in the year than previous FORESTCHECK surveys, the cryptogam flora was well represented. This is due partly to the durable nature of cryptogams and their continued presence over extended periods independent of rain. Although fragile when desiccated, and easily damaged, several lichen species appear only to vegetatively reproduce and probably rely on some fragmentation for dispersal. Some moss species can be spread through fragmentation but mostly, like liverworts, are dependent on spore spread.

The use of the new recording sheet and booklet has shown that possibly a further four to six species need to be included in the field guide. These prospective species have been noted and appear to be more widespread than previously thought but are part of the FORESTCHECK unknown genera, an attempt to identify them is underway and expert assistance is being sort.

Substrate availability and usage

Survey results indicated that on most grids all substrates needed for the establishment and maintenance of cryptogams were available, but not always fully utilised (Fig. 1). On the external reference grids, wood, soil and organic material were the most utilised habitats with stone and charcoal secondarily favoured. On coupe buffer and shelterwood grids wood and soil were the preferred habitat with bark and charcoal second. On gap release grids wood and charcoal were the most utilised substrates followed by soil. It appears that the time since treatment has an influence on the condition of substrates and their consequent colonisation by cryptogams.

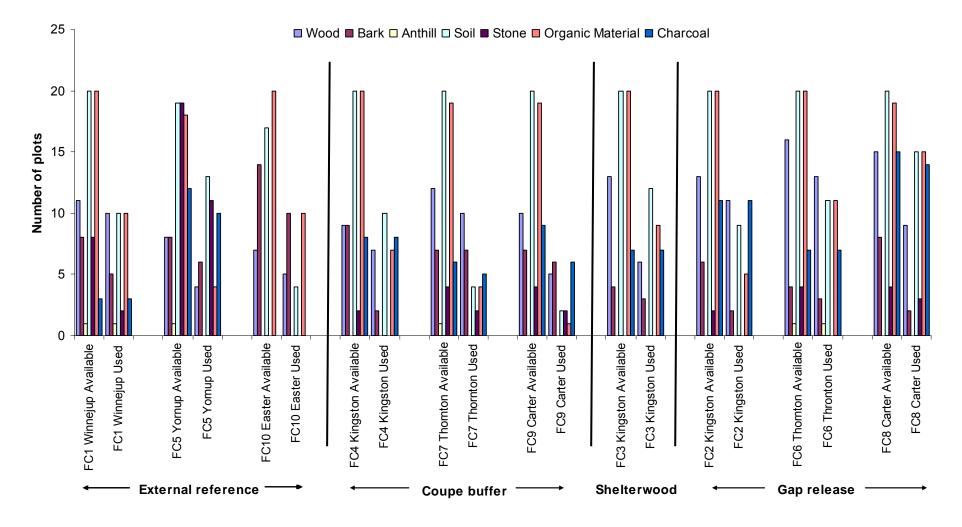
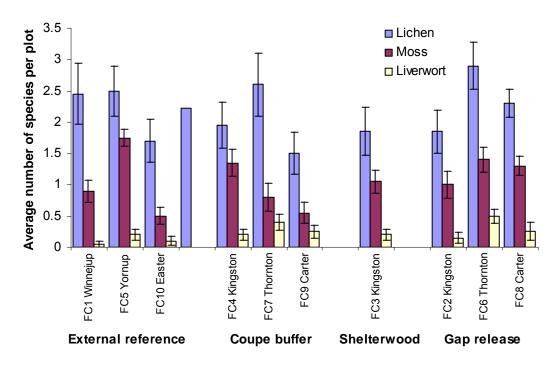



Figure 1. The number of plots with substrates available for colonization and their utilization by cryptogams on each Donnelly FORESTCHECK grid in 2008.

Lichen, moss and liverwort abundance

On all grids, lichens were the most numerous followed by mosses. Liverworts were always in low numbers or absent (Fig. 2). This was also the case for the overall mean number of individuals per grid in each treatment (Fig. 3). The average number of lichens, mosses and liverworts varied between grids (Fig. 2) but was similar in each treatment (Fig. 3).

Figure 2. The average number of lichen, moss and liverwort species recorded in 1x1 m plots on each Donnelly FORESTCHECK grid in 2008.

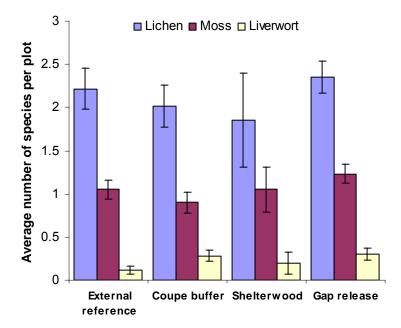
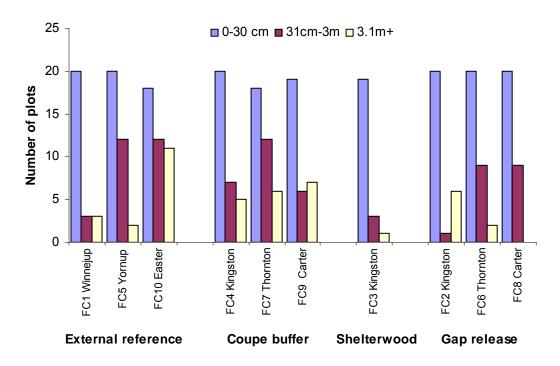



Figure 3. The average number of lichen, moss and liverwort species per plot in each treatment recorded at Donnelly in 2008.

Strata layers and cryptogam colonisation

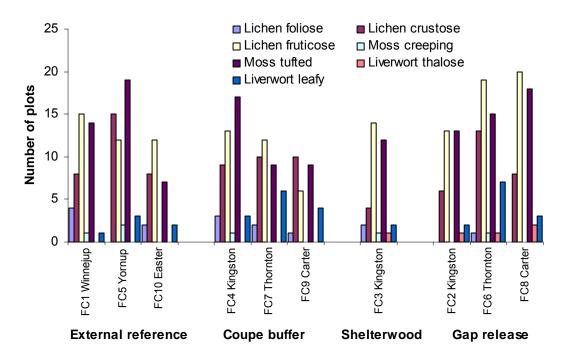

The presence of cryptogams at different levels in the strata depends on the availability of suitable substrates at each level. Of the three strata layers investigated, the ground layer (0-30 cm) was the most utilised strata in every plot (Fig. 4). Colonisation of the shrub layer (31cm-3m) was variable within and between treatments and appears to be affected by canopy cover and time since fire (age and structure of shrubs). The epiphytic tree layer (over 3.1 m) is difficult to examine and surveys depend on recording material which has fallen from tree crowns, and as such the results may not reflect the true extent of tree crown colonisation.

Figure 4: Number of plots with different strata levels occupied by cryptogams on each Donnelly FORESTCHECK grid in 2008.

Life forms and population structure

To simplify the identification of cryptogams, they can be artificially grouped according to their morphology. Lichens can be foliose, crustose or fruiticose, mosses are creeping or tufted and liverworts are thalose or leafy. These groups are referred to as life forms, as species in each of these groups have similar life strategies. Tufted mosses and fruticose lichens were the most common, being recorded in the largest number of plots on each grid (Fig. 5). Although crustose lichens colonise the most abundant and stable substrates, such as soil, rock and wood surfaces, they occurred in a lower number of plots than expected on most grids. Leafy liverworts were recorded in more plots than thalose liverworts but both occurred in few plots on most grids.

Figure 5. The number of 1x1 m plots in which each cryptogam life form was recorded on each Donnelly FORESTCHECK grid in 2008.

Monitoring species recorded on grids and in treatments

Following the analysis of the first five years of monitoring, a specific cryptogam monitoring (or indicator) species list was developed (Table 1). Species were selected on the basis of the substrates and strata layers they occupied and on their perceived resilience and response to environment and physical changes. Currently thirty five taxa have been selected. Their presence and abundance is recorded on each 1x1 m plot on each FORESTCHECK monitoring grid.

Only three lichens, *Cladia rigida*, *Thysanothecium scutellatatum* and *Usnea inermis*, were recorded on all grids. *Xanthoparmelia isidiiigera*, a species more common in the drier northern jarrah forest, was the only species not recorded on any grids. *Flavoparmelia haysonii*, was only found on the Yornup external control grid (FC5) and was reasonably abundant (Fig. 6).

Three species of moss were recorded on 8 grids, but no individual moss species were common to all grids. *Dicranoloma diaphanoneum*, which colonises old rotting logs in shaded habitats, was recorded on the Kingston, Carter and Thornton coupe buffers (FC4, FC7 & FC9 respectively) and the Kingston shelterwood (FC3) and Carter gap release (FC6) but was not recorded on external reference grids (Fig. 7).

Liverworts are more common in the wetter southern regions of the jarrah forest. *Cephaloziella exiliflora* was the most common species, recorded on every grid except the Yornup external control (FC5). *C. exiliflora* colonises bark, generally in the lower shrub layer. In contrast, *Fossombronia intestinalis*, which colonises soil in damp drainage areas, was only recorded on the Yornup external grid (Fig. 8).

Monitoring #	g # Species name		Life form ²
1	Cladia aggregata	L	Fru.
2	Cladia schizopora	L	Fru.
3	Cladonia cervicornis var. verticellata	L	Fru.
4	Cladonia krempelhuberi	L	Fru.
5	Cladonia rigida	L	Fru.
6	Cladonia sulcata	L	Fru.
7	Calicium glaucellum	L	Cru.
8	Diploschistes strictus	L	Cru.
9	Flavoparmelia haysonii	L	Fol.
10	Hypocenomyce foveata (brown domes)	L	Cru.
11	Hypocenomyce scalaris	L	Cru.
12	Hypogymnia subphysodes var. subphysodes	L	Fol.
13	Menegazzia platytrema	L	Fol.
14	Opegrapha sp.	L	Cru.
15	Ochrolechia sp. (G. Kantavilis 306/92)	L	Cru.
16	Pannoparmelia wilsonii	L	Fol.
17	Paraporpidia glauca	L	Cru.
18	Parmotrema reticulatum	L	Fol.
19	Ramboldia stuartii	L	Cru.
20	Tephromela atra	L	Cru.
21	Thysanothecium hookeri	L	Fru.
22	Thysanothecium scutellatum	L	Fru.
23	Usnea inermis	L	Fru.
24	Usnea sp. (leuco)	L	Fru.
25	Xanthoparmelia isidiigera	L	Fol.
26	Xanthoparmelia notata	L	Fol.
27	Cephaloziella exiliflora	Н	Lea.
28	Chiloscyphus semiteres	Н	Lea.
29	Fossombronia intestinalis (leafy)	Н	Tha.
30	Frullania probosciphora	Н	Lea.
31	Barbula calycina	В	Tuf.
32	Campylopus introflexus	В	Tuf.
33	Dicranoloma diaphanoneum	В	Tuf.
34	Funaria hygrometrica	В	Tuf.
35	Sematophyllum subhumile var. contiguum	В	Cre.

Table 1. Monitoring Species (35) with code number, species type and life form

¹ L = lichen, B = bryophyte (moss) and H = Heptophyte (liverwort) ² FRU = fruticose, CRU = crustose, Fol = foliose, LEA = leafy, THA = thaline, TUF = tufted, CRE = creeping,

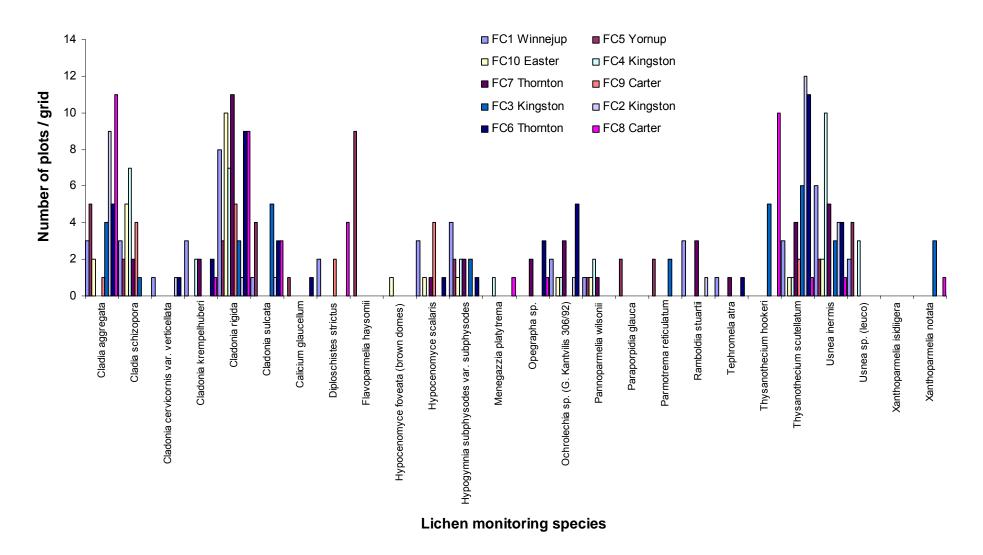
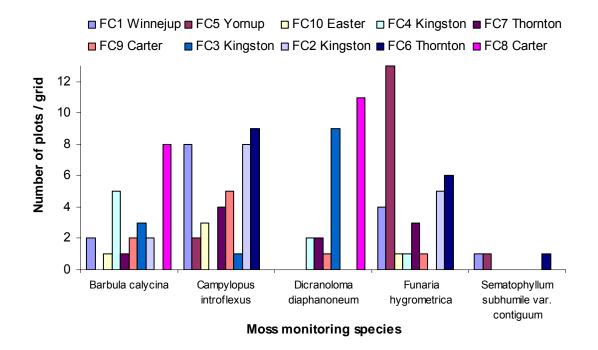
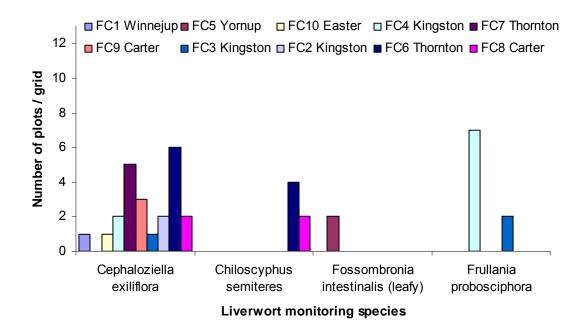




Figure 6. Total number of plots containing lichen monitoring species on each Donnelly FORESTCHECK grid in 2008.

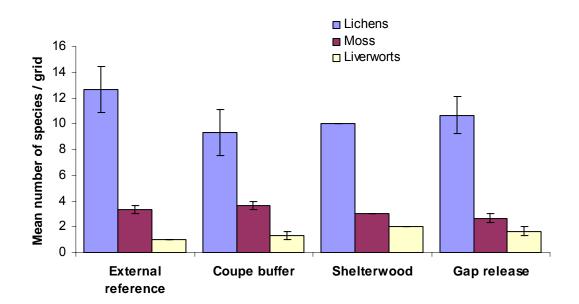
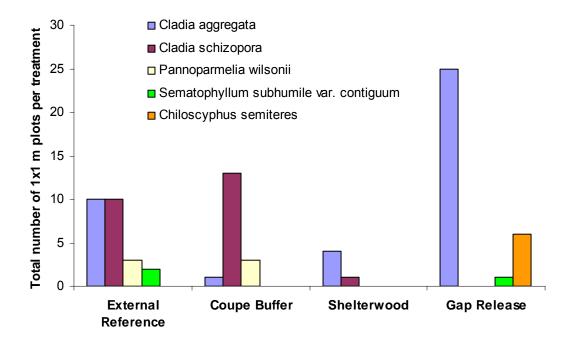
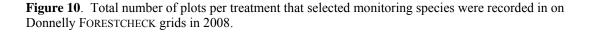


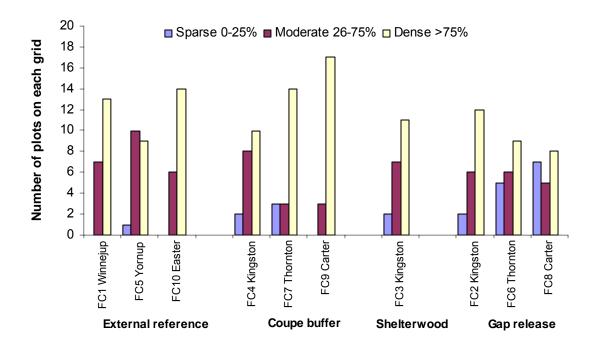
Figure 7. Total number of plots containing moss monitoring species on each Donnelly FORESTCHECK grid in 2008.




Figure 8. Total number of plots containing liverwort monitoring species on each Donnelly FORESTCHECK grid in 2008.

To test the dependability of using monitoring species to pick up trends or differences between treatments, the mean number of monitoring species per grid was determined for each treatment and graphed (Fig. 9). Species richness does not show any major differences between treatments. However species composition needs to be further investigated as some species show definite preferences for specific treatments (associated with the disturbance and stage of recovery) (Fig. 10).

Figure 9. Mean number of cryptogam monitoring species per grid in each treatment on Donnelly FORESTCHECK grids in 2008.



Because of the large area of jarrah forest and the variety of ecosystem types represented by the five established FORESTCHECK locations (Donnelly, Wellington,

Perth Hills, Wellington East and Blackwood) several monitoring species do not naturally occur in all localities. The suitability of the list of monitoring species will be further tested as the other FORESTCHECK locations are monitored over the next four years.

Litter cover on individual 1x1 m plots

In previous years it was noted that litter cover appeared to affect several cryptogam species by retarding their growth, so in 2008 a visual estimate of litter cover was determined for each 1 x 1 m plot on each grid (Fig. 11). Overall, and on each grid, the majority of plots had a dense (>75% cover) of litter (Fig. 12). Both moss and liverwort species were excluded or dramatically reduced in numbers on plots with dense litter cover. Lichens growing on soil or stones may rapidly decline when covered by litter. However, in areas where litter is temporary or able to be moved by wind and not become trapped, cryptogams may be able to withstand short periods of covering without total exclusion occurring.

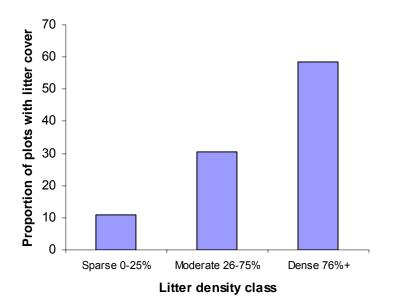


Figure 11. The number of 1x1 m plots with sparse, moderate and dense litter cover on each Donnelly FORESTCHECK grid in 2008.

Conclusions

The revised survey methods for 2007-08 will allow a selected number of monitoring species to be analysed to pick up changes and trends within and between treatments. This will be tested in ore detail in subsequent years. The use of small plots on permanent 200 m transects standardises data collection and allows for valid data comparison between grids and locations. However, to detect changes in overall

community structure, additional surveys using a fixed transect (200 m) will be undertaken on each grid to provide a complete species list for each grid and for each location.

Figure 12. The overall proportion of 1x1 m plots with sparse, moderate and dense litter cover on Donnelly FORESTCHECK grids in 2008.

Changes due to time since treatment in vegetation structure and availability of substrates are apparent on some grids. Impacts of fire on cryptogam substrates may alter both individual species and community dynamics. Some trends observed in 2008 are:

- There appears to be a succession trend where *Funaria hygrometrica* (fire moss) is being replaced in gap release sites by *Barbula calycina* and or *Didymondon torquatus*.
- On charred bark *Hypocenomyce scalaris* acts as a primary coloniser and is replaced by either *Hypogymnia subphysodes* or *Pannoparmelia wilsonii*, usually within the shrub layer.
- *Cephaloziella exiliflora* is a common liverwort on non-charred decayed wood but also appears to quickly colonise the surface of charred wood following prescribed fire.

General observations on other (monitoring) species are:

- *Opegraphia* sp. (black rays) appears to indicate an early to moderate stage of wood decay (it is not present on wood in an advanced stage of decay).
- *Cladonia rigida* is a common species with a high preference for decaying wood and
- *Cladia aggregata* is also common, mainly on the ground, but can suffer from litter covering.

VASCULAR PLANTS

Bruce Ward and Ray Cranfield

Introduction

When timber is harvested in native forests, disturbance might include soil movement, mixing and compaction in addition to the removal of overstorey and damage to understorey vegetation. This disturbance may impact more severely and cause a loss in diversity either through a decrease in species richness or a shift in species abundance. Understorey plants are key organisms for monitoring impacts of commercial timber harvesting in jarrah (*Eucalyptus marginata*) forest. FORESTCHECK utilises data on species richness and abundance to determine impacts across silvicultural harvesting treatments.

One of the strengths of this monitoring is that it was applied at an operational scale under standard industry conditions which means that the results are representative of the forest management practices. The vegetation complexes of the southwest jarrah forest are considered to be relatively stable and resilient to natural disturbances such as fire. In most circumstances, and in time, the species that were present before the disturbance are generally present after the event, although abundances may change. When analysing species richness data from harvest treatment sites it is important to also consider time since fire as observed differences may be due to succession following fire rather than a direct impact of timber harvesting.

The specific aim of monitoring vascular plants on FORESTCHECK monitoring grids is to:

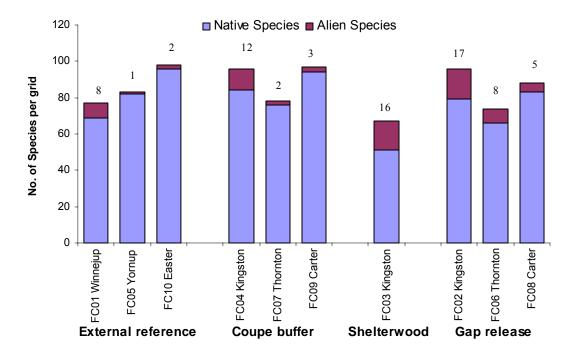
- Determine species richness and abundance in the various silvicultural treatments of managed jarrah forest (shelterwood, selective cut and gap release) and in uncut reference forest
- Compare species richness, abundance and composition recorded within and between silvicultural treatment grids to those in uncut reference grids, and
- Compare results from Donnelly in 2001 with those from 2007.

Monitoring

Flora surveys on the Donnelly FORESTCHECK grids were undertaken in the spring of 2007, coinciding with the peak flowering time for most plants. Species richness and understorey vegetation structure was determined, by recording each species, estimating its area of cover, and measuring its position in the understorey strata in four 1000 m² plots in each grid (40 in total). Species density was measured by recording species occurrence and abundance in 20 1m² plots in each grid (200 in total). Vegetation structure is determined from levy contact data at various height categories in the understorey (Levy and Madden 1933). The area around each grid was used to search and voucher flowering plant specimens to aid in or confirm their identification.

The recent 5-year analysis of FORESTCHECK monitoring revealed that 1000 m^2 plot locations picked up heterogeneous variation within the grids and that 1 m^2 plots were compromised by edge effects. The analysis also showed that there were insufficient

numbers of small (1 m^2) plots to pick up the entire plant population and many more would be required. To overcome the shortcoming of plot arrangement, two additional 1000 m² plots were added so that a diagonal line of plots were aligned across the survey area. This increased the area of each monitoring grid sampled from 20% to 30%. In future, the 20 1x1 m plots previously used for sampling are to be discontinued in favour of the increased number of larger plots.


A full list of species recorded in each treatment is shown in Appendix 1.

Preliminary Results and Discussion Species richness:

A total of 210 species were recorded from the 1000 m^2 plots and 155 species from the 1 m^2 plots (see Table 1 for comparison of species numbers). The area around each grid was used to search for flowering voucher plant specimens and since about 60% of the species had already been collected in the first round of monitoring, only 12 species were added to the voucher collection for this ecosystem type. Missing species vouchers for these grids will be collected on subsequent visits.

Species richness within treatments shows some variation with the shelterwood treatment having the lowest number of species. This may be the result of the shelterwood silvicultural treatment using deliberate scarification of the seed bed to promote the development of jarrah lignotubers and that only one shelterwood grid was established at Donnelly. In the 2001 assessment the Kingston gap release (FC 2) treatment had the lowest number of species and in the intervening years the species richness on this grid has recovered (Fig. 1). Additionally, the opening up of the canopy and removal of the shrubs has allowed the development of more (16) weed species than the external reference grids (Fig 1). The harvested grids generally have higher numbers of weed species and those close to farmland the highest (e.g. Kingston and Winnejup grids). A comparison of the two forest locations reveal a marked difference in the level of weed species infestation with Kingston grids being 0.5 to 1.5km from farmland while Thornton/Carter grids were considerably further away. Those grids <1.5km had a mean of 15% weed infestation while those much > 1.5km having a mean of 4%. A review of vectors responsible for the spread of weed species needs careful consideration and mechanisms to ameliorate this problem implemented.

Overall, there has not been any serious collapse in species richness and natural site differences may account for the variation between grids.

Figure 1: A comparison of species richness for all grids measured in the Jarrah South site in 2007 and the figures above the bars refer to the numbers of weed species.

A comparison of species richness between the 2001 and 2007 measurements for Donnelly showed that there was very little difference (3%) between the surveys (Table 1). The slightly higher number of species recorded in 2007 may be the result of adding two additional 1000 m^2 plots but it probably falls within the normal range of sampling error. Alternatively, seasonal variability and time of survey can have an effect on the numbers of species detected. For example a difference of a week or two in time of measurement can affect how many annuals are present. Some may have already finished their life cycle prior to measurement which affects the total count.

A more detailed analysis of species composition may reveal if there has been any shift in the community structure and will be the subject of further investigation.

Table 1. A comparison of plant species richness between the 2001 and 2007 surveys of the Donnelly FORESTCHECK grids at two scales of measurement ($1000 \text{ m}^2 \text{ plots}$ and $1 \text{ m}^2 \text{ plots}$)

Location	30 x 30	1 x 1 m	Percent	Number	
	m Plots	Plots	difference	of	
	Species	Species	in specie	Weed	
	Numbers	Numbers	numbers	Species	
Donnelly 2002	203	158	22	24	
Donnelly 2007	210	155	26	20	

There was a high number of unique species across the various silvicultural treatments (Table 2) which is most likely due to the wide geographic spread of grids. A non

linear MDS was previously performed on the 2001 data and showed that treatment grids within forest blocks (Kingston and Thornton/Carter) generally had similar species assemblages but reference grids were randomly spread (Fig. 2) which is likely to be the reason why reference grids had the highest number of unique species (Table 2). This shows that species composition is dissimilar across the grids with climatic, topographic and edaphic factors driving species composition.

	External reference	Coupe buffer	Shelterwood	Gap release
Number of unique species	34	16	8	19
3.5				
Kingston	M2		M10	
25-			Carter/Thornto	Nn
M4		/6 • MB		511
20 -			M9	
1.5 -	M 1	M7		
1.0 -				
		м5		
.5 1.0	1.5	2.0 2.5	3.0	3.5

Table 2. The number of plant species unique to each silvicultural treatment in plots on Donnelly FORESTCHECK grids in 2007).

Figure 2. A non linear MDS plot of species data showing that grids from the same forest blocks have clustered roughly together and external reference grids are widely scattered (derived from the 2001 survey data).

Species Abundance

There appears to be no apparent pattern in species abundance and neither time since fire nor silvicultural treatment appear to be having an influence. It is more likely that other site factors such as light, soil moisture, soil nutrients and soil depth may be responsible for explaining these patterns in understorey plant abundance (Fig. 3).

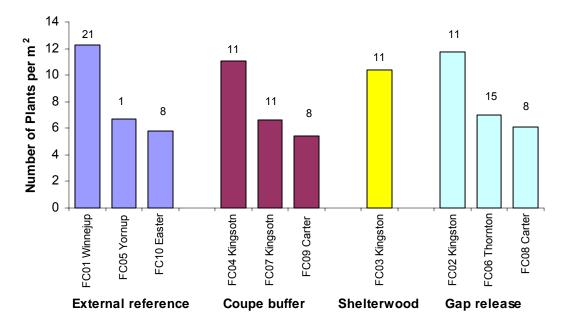
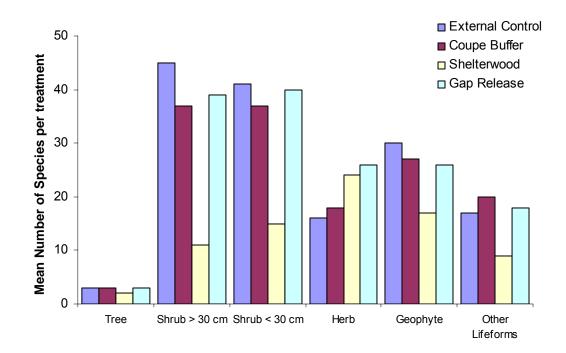



Figure 3. Mean abundance of plants per m^2 measured in $1000m^2$ plots for each grid. The numbers above the bars show age since last burn.

Life-forms

Plant numbers in the various life-form categories were compared between treatments and were lowest in the shelterwood treatment but highest in the external control treatment (Fig. 4). This suggests that the shelterwood silvicultural treatment has had an impact on many of the life-form categories. However, some caution needs to be applied as there is only one shelterwood grid while all other treatments have at least three grids spread over a wide geographical range. The tree category had the least number of species (Fig. 4) but trees are the dominant plants. Depending on their stage of development, trees have the capacity to limit resources to other plant species. For example, the 2001 survey showed that the Kingston gap release (FC2) had the lowest species richness but a dense cover of marri and jarrah regeneration. In 2007, the regeneration had thinned considerably and the grid had developed a more typical species assemblage.

Figure 4: The number of individual plants within each life-form category for each silvicultural and external control treatment on Donnelly FORESTCEHCK grids.

Conclusions

The main observations made following monitoring of vascular plants and measurement of plant structure and density at the Donnelly FORESTCHECK location:

- Harvesting treatments appeared not to have caused any major collapse in species richness and abundance. Variations within treatments can be attributed to other site factors such as site quality, light, soil moisture and soil nutrients.
- Low plant numbers for some life-form categories in the shelterwood treatment suggest silvicultural methods associated with this treatment may be impacting on plant species. Although some caution in interpretation needs to be applied as there was only one grid in this treatment while others had at least three grids spread over a wide geographical range.
- The comparison of data between the two measurements (2001 and 2007), show no difference in the plant community structure and composition.
- Consideration of weed invasion to harvested sites needs careful planning and consideration to mitigate against this problem.
- Further comparisons at the Family level may reveal trends not seen by comparisons of species richness or life-form.

References

Levy, E.B and Madden, E.A (1933). The point method of pasture analysis. New Zealand Journal of Agriculture **46**: 267-279.

APPENDIX 1. The list of vascular plants recorded in each treatment on Donnelly FORESTCHECK grids in 2007-08, indicated by their presence in 30 x 30 m and/or 1 x 1 m plots.

			Exter refere		Coupe	buffer	Shelter	wood	Gap re	lease
Species Code	Species Name	Life form ¹	30 x 30	1 x 1	30 x 30	1 x 1	30 x 30	1 x 1	30 x 30	1 x 1
ACAALA	Acacia alata	S	•		•	•			•	•
ACABRO	Acacia browniana	S			•	•			•	•
ACADIV	Acacia divergens	S			٠				٠	
ACAECH	Acaena echinata	DS	•		•	•	•		•	
ACAEXT	Acacia extensa	S	•	•	•				•	
ACAMYR	Acacia myrifolia	S					•			
ACAPRE	Acacia preissiana	DS	•	•	•					
ACAPUL	Acacia pulchella	S	•		•	•	•		•	•
ACAURO	Acacia urophylla	S			•					
ADEOBO	Adenanthos obovatus	S	•							
AGRSCA	Agrostocrinum scabrum	GP			•					
AIRCUP	Aira cupaniana	GR	•	•	•	•	•	•	•	•
AMPAMP	Amphipogon amphipogonoides	DS	•		•	•			•	
AMPERI	Amperea ericoides	DS	•		•	•	•	•	•	•
ANAARV	Anagalis arvensis	H	-		•	·	•	•	•	•
ANDCAE	Andersonia caerulea	DS	•				•			
ASTPAL	Andersonia ederated Astroloma pallidum	DS	•							
AUSCAE	Austrodanthonia caespitosa	GR	•	•	•	•	•	•	•	•
BANDAL	-	S	•	•	•	•	•	•	•	•
BANGRA	Banksia dallanneyi Banksia grandia	З Т							•	
	Banksia grandis Banksia littoralis	-	•	•	•	•			•	•
BANLIT		S			•				•	
BILFLO	Billardiera floribunda	S		•						
BILFUS	Billardiera fuscifomis	S					•		•	•
BILVAR	Billardiera variifolia	V	•	•	•				•	
BORMEG	Boronia megastigma	S			•					
BORSPA	Boronia spathulata	S	•							
BOSAQULAI	Bossiaea aquifolium subsp. laidlawiana	S	•	•	•	•			•	•
BOSLIN	Bossiaea linophylla	S	•		•				•	
BOSORN	Bossiaea ornata	S	•	•	•	٠			•	•
BRIMIN	Briza minor	GR					•	•	•	
BURCON	Burchardia congesta	GP	٠	•	٠	•			٠	٠
CAEMIC	Caesia micrantha	GP			•	•				
CALFLA	Caladenia flava	GP	•	•	•	٠	•		•	•
CALLAN	Callistachys lanceolata	S					•			
CALLES	Calytrix leschenaultii	S	•	•						
CALREP	Caladenia reptans	GP	•	•	•	•	•	•	•	
CALSP.	Caladenia sp.	GP			•		•			
CARTEN	Carduus tenuiflorus	н					•	•	٠	
CASRAC	Cassytha racemosa	Р	•		•				•	•
CENERY	Centaurium erythraea	Н	•		•	•	•	•	•	•
CERGLO	Ceratium glomeratum	н					•			
CHACOR	Chamaescilla corymbosa	GP	•	•	•	•	•	•	•	•
CHOENO	Chorizandra enodis	Z			•					
CHONAN	Chorezima nanum	DS	•		•		•		•	•
CLEPUB	Clematis pubescens	V	•	•	•	•	•	•	•	•
COMCAL	Comesperma calymega	DS	•	-	•	-	-	-	•	•
COMCON	Comesperma confertum	S	-		•				-	-
CONACU	Conostylis aculeata	DS			•	•				
CONBON	Conyza bonariensis	H			•	-	•	•	•	
CONCAP	Conospermum capitatum	S	•		-		-	-	-	
CORCAL	Corymbia calophylla	T	•		-	-	-	-	•	-
CORCAL	Corymbia calophylia Corybas recurvus	GP	•		•	•	•	•	•	•
			•							
CRAVAR	Craspedia variabilis	GP	•	•	•	٠	•	•	•	•
CREFOE	Crepis foetida	Н			•	•	•		•	

			Exte refere		Coupe	buffer	Shelter	wood	Gap re	lease
Species Code	Species Name	Life form ¹	30 x 30	1 x 1	30 x 30	1 x 1	30 x 30	1 x 1	30 x 30	1 x 1
CYASER	Cyanicula sericea	GP	•						•	
CYRHUE	Cyrtostylis huegelii	GP	•	•	•	•	•	•	•	•
DAMLIN	Dampiera linearis	DS	•		•				•	
DAUGLO	Daucus glochidiatus	Н	•	٠	٠	•	•	•	٠	٠
DAVCOR	Daviesia cordata	S	•						٠	
DAVPRE	Daviesia preissii	S	•		٠					
DESFAS	Desmocladus fasciculatus	Z	•	•	•	•			•	•
DESFLE	Desmocladus flexuosus	Z	•			•				
DIAREV	Dianella revoluta	Н					•		٠	
DISBRA	Disa bracteata	GP			٠				•	
DROERY	Drosera erythrorhiza	GP	•	•						
DROLEU	Drosera leucoblasta	GP							•	
DROMEN	Drosera menziesii	GP	•	•	•	•	•	•	•	•
DROPAL	Drosera pallida	GP	•	•	•	•	•		•	•
DROSP.	Drosera sp.	GP				•				
DROSTO	Drosera stolonifera	GP			•	•	•		•	•
EUCCOL	Euchiton collinus	Н	•	•	•	•	•	•	•	•
EUCMAR	Eucalyptus marginata	Т	•	•	•	•	•	•	•	٠
GALMUR	Galium murale	Н		•	•	•	•	•	•	٠
GASBIL	Gastrolobium bilobum	S					•			
GENSP.	Genus sp.									•
GENSP.	Genus sp.							•		
GERSOL	Geranium solanderi	DS			•	•	•	•	•	•
GLIAUR	Glischrocaryon aureum	S			•					
GOMMAR	Gompholobium marginatum	DS							•	
GOMOVA	Gompholobium ovatum	DS	•		•	•			•	•
GOMPRE	Gompholobium preissii	DS	•	•						
GRECEN	Grevillea centristigma	S							•	
HAESIM	Haemodorum simplex	GP			•					
HAKAMP	Hakea amplexicaulis	S	•	•	•	•			•	
HAKLIS	Hakea lissocarpha	S	•		•	•			•	
HARCOM	Hardenbergia comptoniana	V	•	•	•	•	•	•	•	٠
HIBAMP	Hibbertia amplexicaulis	S	•	•	•	•	•	•	•	•
HIBCOM	Hibbertia commutata	S	•	•	•	•	•	•	•	•
HIBCUN	Hibbertia cuneformis	S			•				•	
HIBRAC	Hibbertia racemosa	S			•				•	
HIBSP.	Hibbertia sp.	S			·	•			•	
HIBSP.	Hibbertia sp.	S			•	•			·	
НОМНОМ	Homalosciadium homalocarpum	н	•		·					
HOVCHO	Hovea chorizemifolia	DS	•		•	•			•	•
HOVELL	Hovea elliptica	S	•	•	•	•			•	
HOVEEL	Hovea trisperma	S	•	•	•	•			•	•
HYACOT	Hyalosperma cotula	H			•	•	•		•	
HYADEM	Hyalosperma demissum	Н			•	•	•		•	•
HYBDEB	Hybanthus debilissimus	DS							•	•
HYDCAL	Hydrocotyle callicarpa	H	•			•	-	•	-	-
HYDDIA		Н	•	•		•	•	•	•	•
HYPANG	Hydrocotyle diantha Hypocalymma angustifolia	н S	•	•						
HYPEXS		Z	•		•					
HYPGLA	Hypolaena exsulca Hypochaeris glabra	Z H	•	•	•	•	-	•	•	-
HYPOCC	Hypochaeris glabra	н DS	•	•	•	•	•	•	•	•
ISOCUN	Hypoxis occidentalis Isotropis cunefolia	DS S	-	•	•	•			-	
ISOCUN		S H	•	•	•	•	-	-	•	-
	Isotoma hypocrateriformis		-		•		•	•	•	•
JOHLUP	Johnsonia lupulina Konnodia aposinaa	GP	•		-				•	-
KENCOC	Kennedia coccinea Kennedia prostrato	V V	•		•				•	•
KENPRO	Kennedia prostrata		_	_	_	-	_	_	_	•
LAGHUE	Lagenophora huegelii	GP	•	•	•	•	•	•	•	•

			Exter refere		Coupe	buffer	Shelter	wood	Gap re	lease
Species Code	Species Name	Life form ¹	30 x 30	1 x 1	30 x 30	1 x 1	30 x 30	1 x 1	30 x 30	1 x 1
LAXSQU	Laxmannia squarrosa	DS	•							
LECBIL	Lechenaultia biloba	S							•	
LEPCUN	Leptomeria cunninghamii	S	•							
LEPLEP	Lepidosperma leptostachyum	Z			•				•	•
LEPMEN	Leptoceras menziesii	GP	•							
LEUAUS	Leucopogon australis	S	•		•				•	•
LEUCAP	Leucopogon capitellatus	S	•	•	•	•	•	•	•	•
LEUPRO	Leucopogon propinquus	S	•	•	•	•	•	•	•	•
LEUPUL	Leucopogon pulchellus	S	•	•						
LEUVER	Leucopogon verticillatus	S	•	•	•	•			•	٠
LEVPUS	Levenhookia pusilla	н	•	•	•	•	•	•	•	•
LINLIN	Lindsaea linearis	F	•		•	•			•	•
LOGSER	Logania serpyllifolia	DS	•	•						
LOGVAG	Logania vaginalis	S	•							
LOMCAE	Lomandra caespitosa	DS	•	•	•	•	•		•	٠
LOMDRU	Lomandra drummondii	DS	•	•	•	•			•	•
LOMHER	Lomandra hermaphrodita	DS	•	-	•	•			•	•
LOMINT	Lomandra integra	DS	•	•	•	•			•	•
LOMNIG	Lomandra nigricans	DS	•	•	•	•			•	•
LOMPUR	Lomandra purpurea	DS	•	•	·	•			•	•
LOMSER	Lomandra sericea	DS	•	•	•	•			•	•
LOMSON	Lomandra sonderi	DS	•	•	•	•				•
LOMSP.	Lomandra sp.	DS	•	•					•	
LOMSP.	Lomandra sp.	DS	•	•						
LOTSUB	Lotus subbiflorus	H	•		•		•	•	•	•
LUPLUT		Н	•		•		•	•	•	•
LUZMER	Lupinus luteus Luzula meridionalis	R	•		•	•	•	•	•	•
MACRIE	Macrozamia riedlei	CY	•	•	•	•	•	•	•	•
MEDPOL		H	•	•	•	•	•	•	•	•
MICSTI	Medicago polymorpha Micrantha stipoides	GR							•	
MILTEN	Millotia tenuifolia	GR H							•	•
MYOTET	Myoporum tetrandrum	S	•	•	•	•	•	•	•	•
OPEHIS		S					•			
	Opercularia hispidula Orthrosanthus laxus	GP	•	•	•	•	•	•	•	•
ORTLAX		GP GP			•					
OXACOR	Oxalis corniculata		•	•	•	•	•	•	•	•
PARLAT	Parentucellia latifolia	Н			•	•	•	•		
PARLOP	Paraserianthes lophantha	S					•			
PATBAB	Patersonia babianoides	GP	•	•	•	•			•	
PATOCC	Patersonia occidentalis	DS			•				•	•
PATPYG	Patersonia pygmaea	GP		•						
PATUMB	Patersonia umbrosa	DS	•	•	•	•			•	•
PATUMBXAN	Patersonia umbrosa var. xanthina	DS	•		•	•			•	
PELLIT	Pelargonium littorale	DS			•	•	•		•	٠
PENPEL	Pentapeltis peltigera	DS	•	•	•	•			•	
PENSIL	Pentapeltis silvatica	S	•	٠	•	•			•	•
PERLON	Persoonia longifolia	S	•	٠	•	٠	•	•	•	•
PHYCAL	Phyllanthus calycinus	DS	•		•	٠	•		•	•
PIMROS	Pimelea rosea	S	•							
PLATEN	Platysace tenuissima	DS	•	•	•	•			•	•
PODDRO	Podocarpus drouynianus	S	•		•	•			•	•
PORMIC	Poranthera microphylla	DS	•	•					•	•
PSELUT	Pseudognaphalium luteoalbum	Н	•		•		•	•	•	•
PTEESC	Pteridium esculentum	F	•	•	•	•	•	•	•	•
PTEPYR	Pterostylis pyramidalis	GP	•	•	•	•	•	•	•	•
PTEREC	Pterostylis recurva	GP			•				•	
PTEVIT	Pterostylis vittatus	GP	•		•	•				٠
PTIMAN	Ptilotus manglesii	DS								

			Exter		Coupe	buffer	Shelter	wood	Gap re	lease
Species Code	Species Name	Life form ¹	30 x 30	1 x 1	30 x 30	1 x 1	30 x 30	1 x 1	30 x 30	1 x 1
PULRET	Pultenaea reticulata	S							•	
PYRNIG	Pyrorchis nigricans	GP	•	•						
RANCOL	Ranunculus colonorum	GP	•		•	•	•	•	•	
RHOCIT	Rhodanthe citrina	Н				٠			•	•
SCASTR	Scaevola striata	DS	•	•	•	•	•		٠	•
SENHIS	Senecio hispidulus	DS	•		•		•		•	•
SENLAU	Senecio lautus	S							•	
SENQUA	Senecio quadridentatus	S						٠	•	
SENSP.	Senecio sp.	S			•					
SONASP	Sonchus asper	Н	•				•		•	
SONOLE	Sonchus oleraceus	Н							•	٠
SOWLAX	Sowerbaea laxiflora	GP	٠	•	•	•	٠	•	•	٠
SPHCAP	Sphaerolobium capitatum	DS	٠							
SPHCAP	Sphenotoma capitatum	DS	٠							
SPHMED	Sphaerolobium medium	S	٠		•				•	
SPHSP.	Sphaerolobium sp.	S	٠							
SPHSP.	Sphenotoma sp.	DS							•	٠
SPHSP.	Sphenotoma sp.	DS							•	
STAMON	Stackhousia monogyna	S	•	•			•		•	
STYADN	Stylidium adnatum	DS			•					
STYAMO	Stylidium amoenum	DS	•	•	•	•			•	٠
STYBUL	Stylidium bulbiferum	GP	•							
STYCAL	Stylidium calcaratum	Н	•		•				•	٠
STYCIL	Stylidium cilatum	DS	•	•						
STYLUT	Stylidium luteum	DS	•	•						
STYRHY	Stylidium rhynchocarpum	DS	•		٠	٠	•		٠	
STYSCA	Stylidium scandens			•						
STYSP.	Stylidium sp.	DS	•							
STYTEN	Styphelia tenuiflora	S	•	•						
TAXPAR	Taxandria parviceps ms	S	•	•	•				•	
TETAFF	Tetratheca affinis	S	•	•	•	•			•	
TETCAP	Tetraria capillaris	Z	•	•	•	•			٠	•
TETLAE	Tetrarrhena laevis	GR	٠	•	•	•	•	٠	•	٠
THECRI	Thelymitra crinita	GP			•					
THESP.	Thelymitra sp.	GP				•			•	
THESP.	Thelymitra sp.	GP		•						
THESP.	Thelymitra sp.	GP						٠		
THESP.	Thelymitra sp.	GP			٠					
THESP.	Thelymitra sp.	GP	٠							
THESP.	Thelymitra sp.	GP					•		•	
THOFOL	Thomasia foliosa	S							•	
THYMAN	Thysanotus manglesianus	GP	•	•	٠	٠	•	٠	•	•
THYMUL	Thysanotus multiflorus	GP	•	•	•	•	•		•	
THYSP.	Thysanotus sp.	GP		•						
THYTEN	Thysanotus tenellus	Н	•	•			•		•	
TRAPIL	Trachymene pilosa	Н	•	•	•	•	•	•	•	•
TREDIF	Tremandra diffusa	S	•	•	•	•			•	•
TRESTE	Tremandra stelligera	DS	•	•	•	•			•	•
TRICAM	Trifolium campestre	H			•	•	•	•	•	
TRIELA	Tricoryne elatior					•				•
TRIHUM	Tricoryne humilis	DS							•	
TRISPA	Trichocline spathulata	GP	•	•				•	•	
TRYFLO	Trymalium floribundum	S	•	•	•				•	•
TRYLED	Trymalium ledifolium	S	•							
VELTRI	Velleia trinervis	DS	•	•					•	•
VERCAL	Veronica calycina	DS	•	•	•	•	•	•	•	•
WAHGRA	Wahlenbergia gracilenta	Н	•		•		•	•	•	•

			External reference		Coupe buffer		Shelterwood		Gap release	
Species Code	Species Name	Life form ¹	30 x 30	1 x 1	30 x 30	1 x 1	30 x 30	1 x 1	30 x 30	1 x 1
WURSIN	Wurmbea sinora	GP	•		•				•	
XANATK	Xanthosia atkinsoniana	S	•	•						
XANCAN	Xanthosia candida	DS	•	•	•			•	•	•
XANGRA	Xanthorrhoea gracilis	Х	•		•	•			•	•
XANHUE	Xanthosia huegelii	DS	•	•	•	•			•	
XANPRE	Xanthorrhoea preissii	Х	•	•	•					
		Total	147	90	141	98	77	53	152	97

 1 Cy = cycad, DS = dwarf shrub (1-30 cm), F = Fern, GP = geophyte, GR = grass, H = herb, P = parasite, R = rush, S = shrub (> 31 cm), T = tree, V = vine, X = Xanthorrhoea/Kingia, Z = sedge, U = unknown.

INVERTEBRATES

Janet Farr, Allan Wills, and Paul Van Heurck

Introduction

Invertebrates, including class Insecta, comprise over 95% of the planet's biodiversity and therefore represent a crucial component in any ecosystem. Invertebrates play a major role in decomposition, nutrient recycling, plant pollination and provide an important food source for vertebrates. In addition a wide range of species are already known to be exclusive to the southwest forests of Western Australia, and some of these are Gondwanan relics. Despite this, current knowledge of the invertebrate taxa present in the jarrah forest is limited.

The objectives of this component of FORESTCHECK monitoring are

- To monitor and record the species of invertebrates in the various treatments of managed jarrah and uncut forest.
- Analyse trends in species composition, richness and abundance
- To monitor the presence of Gondwanan relic and affinity invertebrate species with respect to the above treatments
- To monitor the presence of known insect pest species.

Field survey and laboratory procedure

Sampling at Donnelly was carried out in November (spring) 2007 and April (autumn) 2008 using the protocol formerly established at Donnelly in 2001. To briefly summarise: active capture samples, involving sweeping, beating, and habitat searches of coarse woody debris (CWD) and litter were conducted once at each site for a total time of one person hour per capture/habitat method. Light traps were run for three nights simultaneously at each site achieving one trap night per week for three weeks (there were light trap failures on 18/3/2008 at grids FC7 and FC9 but light trapping was successfully repeated for those grids on 19/3/2008); pit fall traps were opened for 10 days simultaneously at each site. Captures were bagged and labelled according to site and other capture details in the field, then transported in an insulated container back to a base camp were they were stored in a portable freezer. At the conclusion of a sampling period, specimens were then transported to the laboratory in Manjimup where they were sorted and compared to the extensive collection of voucher specimens held there. Morphospecies were assigned and vouchers for each morphospecies were erected as necessary and labelled according to site, date of capture and capture method and preserved as either pinned or alcohol specimens as a reference collection. To constrain sample processing times only macro-invertebrates were recorded, that is, invertebrates with a body length 10 mm or greater and Lepidoptera with a wing length of 12 mm or greater. Highly distinctive or relictual morphospecies, smaller than these sizes, were also recorded. Samples waiting to be processed were stored either frozen or in 70% ethanol.

Sampling was conducted at all 10 Donnelly sample grids. Sorting, specimen identification and cataloguing has also been completed. This report details sampling results for 2007-08 and also includes a brief comparison with the initial Donnelly results for 2001-02. Note however, this is a preliminary report and results are from data as it exists for February 2009. Morphospecies assignment may have changed following data refinement from progressive taxonomic evaluation and will continue to

be influenced by minor adjustments in the future as morphospecies assignment is further refined.

Preliminary results

Following the 2007-08 monitoring, the number of morphospecies recorded for FORESTCHECK increased to 1776. The total number of individual specimens captured was 13,581, comprising 787 morphospecies, this compares with 572 (adjusted from original data for synonymy) morphospecies captured in 2001 (general abundance over all sampling methods was not available for 2001 due to no abundance records for pit falls). A total of 312 new morphospecies were recorded for the Donnelly grids that were not recorded in 2001-02, and 133 of these were new records for FORESTCHECK (although this figure will reduce following our annual morpho-species revision where synonomy is examined). Figure 1 shows the cumulative captures for the successive sampling locations. The graph's slope is consistent between successive sampling periods and shows no current trend of reduction indicating that, at this point, there is neither a sampling plateau nor an approach to one. Following this trend we can predict that the second round of sampling in Wellington will have 245 new species and therefore 2021 total morpho-species count for 2008-09.

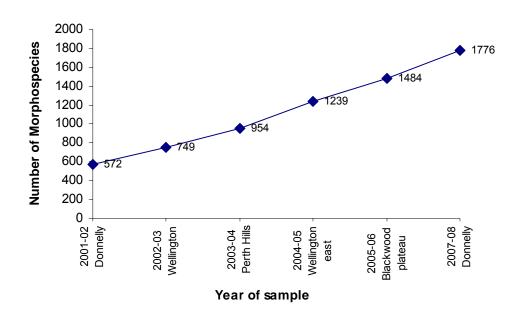


Figure 1. Cumulative morphospecies for 2001 (Donnelly) to 2007 (Donnelly)

Total morphospecies capture for past sampling districts and periods are shown in Table 1. Donnelly appears the most diverse site followed by Blackwood and Wellington East. The greatest abundance of invertebrates was sampled from Wellington East, followed by the most recent Donnelly sample (Table 1). Unlike prior reports, Gondwanan affinity and relictual species are not included as assignment of these categories is under review.

District	Sample period	Number of Morphospecies	Number of individuals
Donnelly	2001 - 02	572	
Wellington	2002 - 03	373	3080
Perth Hills	2003 - 04	428	4883
Wellington East	2004 - 05	624	28265
Blackwood	2005 - 06	728	6959
Donnelly	2007 - 08	787	13581

 Table 1. Morphospecies comparisons between sample regions.

The numbers of morphospecies for orders where 10 or more morphospecies have been assigned are compared for Donnelly 2007-08 and 2001-02 in Figure 2. The increase capture rates in Donnelly 2007-08 are reflected in the number of species captured per taxa such that capture rates for some ordinal taxa have more than doubled. Examples of strong increases include the araneomorph spiders, Coleoptera (beetles), wasps (Hymenoptera), isopods, Lepidoptera (moths and butterflies) and lace-wings (Neuroptera). It might be argued that differences may be due to operator effort/skill since 33% of the team has changed since the initial Donnelly sample. In addition operator skill may also have increased with successive sampling years. To examine this more closely, comparison with trapping captures will be made later in this report.

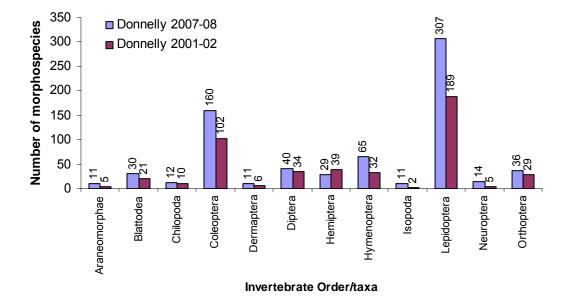
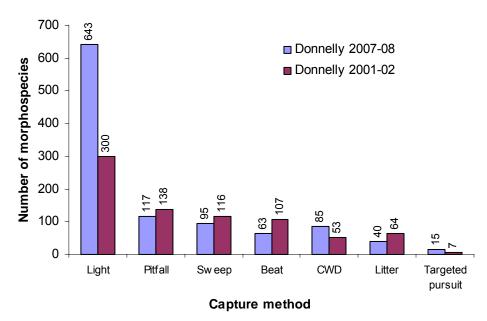


Figure 2: Comparison of Donnelly 2007-08 and 2001-02 morphospecies numbers for invertebrate orders where ten or greater morphospecies have been assigned.


Comparing capture methods

Light trapping resulted in the most abundant and diverse captures (Table 2) with an autumn capture of 319 morphospecies comprising 3012 individuals; and a spring capture of 324 morphospecies comprising 9107 individuals. In general, diversity and abundance is highest in spring with the exception of the hand sampling techniques of beating and litter searches where diversity was similar for both seasons. Litter searches result in low diversity and abundances; however this is still a valid search technique as it can capture species not otherwise encountered with other methods. Targeted pursuit is used as an additional capture technique to catch species which are distinctive and not necessarily part of a particular operator's method or within their specified search protocol; in addition this technique is employed when habitat for a specific hand sampling method (e.g. litter or CWD) is scarce and thus maintains consistent operator sampling effort within each sample grid. Although this method can inform on important taxa it is not useful in a general concept of seasonal differences but has been included in Table 2 to explain total abundance for spring and autumn.

Table 2: Number of morphospecies and specimen abundance for Donnelly in 2007-08 for each capture method (CWD = coarse woody debris, TP = Targeted pursuit).

Capture		ber of ospecies	Abundance		
Method	Spring	Autumn	Spring	Autumn	
Light	324	319	9107	3012	
Pit fall	86	30	802	113	
Sweep	55	40	127	60	
Beat	32	31	77	47	
CWD	56	29	104	61	
Litter	23	17	29	20	
ТР	7	8	10	10	
Total			10256	3323	

Comparisons of capture technique for the two Donnelly samples, expressed as number of morphospecies combined for both seasons (abundance data shows the same results), showed that most of the increase in diversity between the two sample periods is from light trap captures (Fig. 3). The additional species are mainly mobile Lepidopterans, Coleopterans and Hymenopterans (refer to Fig. 2). For pit fall traps (mainly ground dwelling insects) the two sample periods are similar in species diversity (Donnelly 2001-02 is slightly higher but this difference is unlikely to be significant). The hand capture methods of sweeping and litter searching also show the same trend, similar diversity, if not slightly higher for Donnelly 2001-02. The operators were consistent for hand sweeping and litter searching. For hand beating, operators were different in the two sample periods. But, although differences are more defined between the two periods (i.e. 63 species for Donnelly 2007-08 compared with 107 species for Donnelly 2001-02) the trend is consistent with the other hand sampling techniques. For CWD however, the trend is reversed with higher diversity in the Donnelly 2007-08 sample. In Donnelly 2001-02 we operated a three person team and therefore CWD was sampled by three different people simultaneously for 20 mins each (total effective sample time of 60 min) after all other sampling had been completed, whereas in 2007-08 there was one dedicated person allocated to CWD searches. The higher diversity for the 2007-08 sample may therefore indicate that only 20 mins may be an ineffective time for an individual operator to mentally and physically engage in the CWD capture technique.

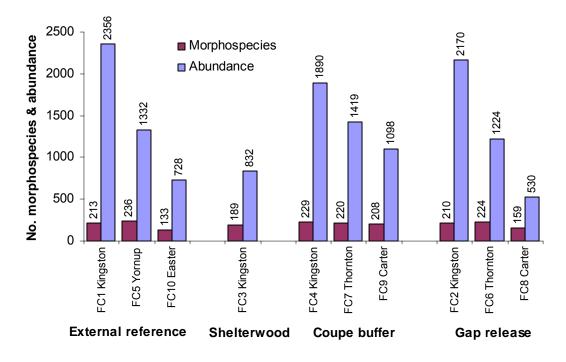
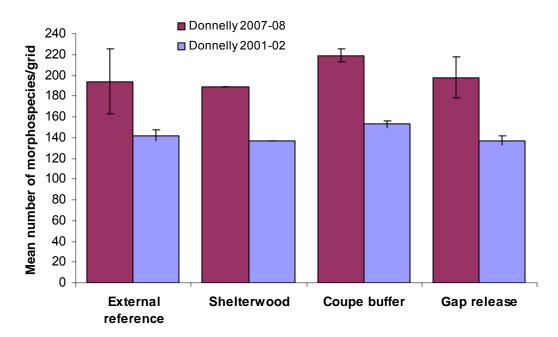


Figure 3: Comparison of the number of morpho-species (total over both seasons) for Donnelly 2007-08 and Donnelly 2001-02 in respect to capture method.

In addition the gap release sites have had five years to develop an understorey which may account for some of the increased diversity. In respect to the lower diversity in beating samples, this may reflect more advanced understorey and possibly a drop in understorey nutrition, but this needs a closer investigation of both the invertebrate data and site characteristics data.


Comparing sample grids and silvicultural treatments

Donnelly grid comparisons for silvicultural treatments expressed as the total morphospecies and abundance for all capture methods and summed for spring and autumn seasons is shown in Figure 4. The Yornup external reference grid (FC5) had the greatest number of species (236) followed closely by the Kingston coupe buffer (FC4), and the Thornton gap release (FC6) grids. Abundance was highest at the Kingston external reference grid followed by the Kingston gap release grid (FC2). The lowest diversity and abundance was at the Easter external reference grid (FC10) and the Carter gap release (FC8).

Figure 4: Comparison of individual Donnelly treatment grids for total morphospecies and number of individuals (abundance), for all capture methods, combining both seasons.

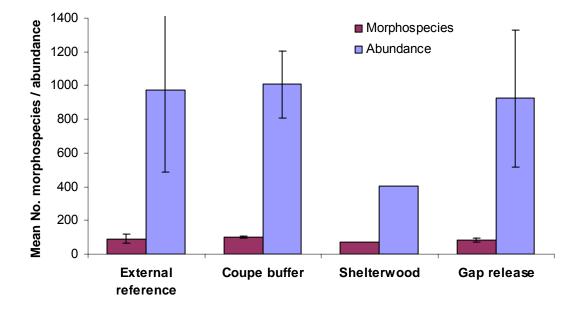
Comparison of means between treatments (Fig. 5) indicates few distinct patterns. For both Donnelly sample periods, the coupe buffer grids are most diverse but the difference is small and unlikely to be significant.

Figure 5: Comparison of means (n=3 for all treatments except shelterwood where n=1, \pm SE) for number of morphospecies recorded at Donnelly 2007-08 and 2001-02 in respect to silvicultural treatment.

For the purpose of consistency and reference with past reports a summary of diversity and abundance (number of individuals captured at each grid) for capture methods, season and site are shown in Table 3. There were very little differences between treatments for pit fall traps (spring & autumn) except both spring and autumn abundance in the Easter external reference (FC10) was much higher (335, 37 respectively) although diversity was similar to other control grids. This indicates ground dwelling invertebrates were more mobile on this grid. The consistency of this data between seasons indicates there is a significant feature on this site influencing ground invertebrate behaviour that may be worth investigating more fully. The main species contributing to the high abundance was amphipod 1303. Interestingly the abundance for active captures and light traps is the lowest for the controls at this grid (26, 173 respectively) and light trap diversity the lowest at this grid compared with all Donnelly 2007 grids. Nothing outstanding however is apparent in the Donnelly 2001 equivalent data but unfortunately abundance levels for pit falls were not recorded.

Figure 6 shows comparisons for silvicultural treatments for spring light trap captures in the two Donnelly samples. Although there is no apparent difference between grid treatments and there is a difference of an order of magnitude for the abundance data. Trends in the data match for both sample periods such that abundance is highest in the external references and lowest for the shelterwood grid. In autumn however these trends are not apparent (Fig. 7) although abundance in the shelterwood grid is consistently amongst the higher range for both samples.

Species differences between localities


Table 5 shows the most frequent species captured for Donnelly 2007-08, Wellington (2002-03) and Donnelly 2001-02. Isopod sp. 544 was the most common species collected in Donnelly 2007-08, but this species did not feature in the top 10 for the other sample regions. Isopod sp. 544 had initially been recorded in Donnelly 2001-02 at the Kingston external reference grid (FC1) as part of species complex 539 and as a consequence was a singleton species. Thus to consider the frequency of this species it needs to be considered in conjunction with 539 (also a singleton species in Donnelly 2001-02). The Tipulid fly sp. 16 was the second most frequent capture at Donnelly in 2007-08 and consistently features as a high frequency capture in other regions. In Wellington, two top ten species (235 and 163) were not collected from the Donnelly 2007-08 sample although were collected previously in 2001-02. Only one of the top ten species from the Wellington grids was part of the top ten species from Donnelly 2007-08, the ant Camponotus sp. 423 (Donnelly 2007-08 rank 7). Camponotus sp. sp. 423 is a common species in all FORESTCHECK grids. For Donnelly 2001-02, the Orthopteran sp. 235 again was a frequent capture, but not caught in 2007-08. Three species in the top ten Donnelly 2001-02 sample were present in the top ten 2007-08 sample, namely the Arctiid moth sp. 6. The Noctuid Proteuxoa sp. sp. 39 and *Camponotus sp.* sp. 423. Top ten species frequency rankings for other FORESTCHECK regions can be found in the FORESTCHECK 2005-06 report for Blackwood.

Of the 787 morphospecies found at Donnelly in 2007-08 only 284 were common to the Donnelly 2001-02 sample. In other words 64% of the current Donnelly sample consisted of species not previously sampled in the Donnelly grids. Conversely 289 species from the initial Donnelly sample were not present in the current sample.

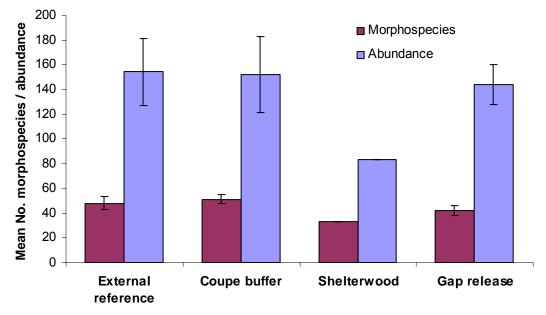
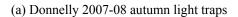
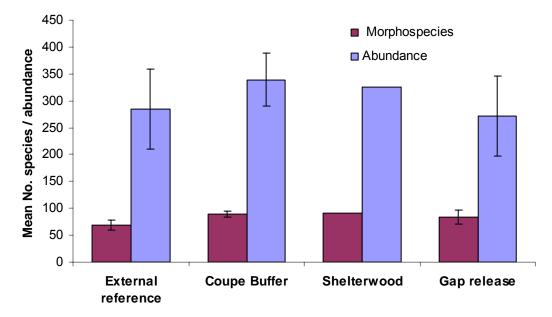

Treatment/	Site No	Location	Season	Activ	ve	Ligh	ıt	Pit fa	ll	All Capture	e methods
Sample year				Abundance	Species	Abundance	Species	Abundance	Species	Abundance	Species
2007-08											
External reference	ce FC1	Kingston	Sp	38	25	1843	107	63	20	1944	141
External referen	ce FC5	Yornup	Sp	44	29	899	129	40	15	983	164
External referen	ce FC10	Easter	Sp	26	23	173	37	335	21	534	73
Gap release	FC2	Kingston	Sp	38	28	1687	87	19	11	1744	122
Gap release	FC6	Thornton	Sp	45	22	791	101	77	19	913	133
Gap release	FC8	Carter	Sp	32	21	290	62	47	22	369	103
Shelterwood	FC3	Kingston	Sp	29	23	404	70	29	14	462	102
Coupe buffer	FC4	Kingston	Sp	33	27	1373	109	33	16	1439	146
Coupe buffer	FC7	Thornton	Sp	28	21	950	106	66	15	1044	132
Coupe buffer	FC9	Carter	Sp	34	27	697	89	93	27	824	138
2001-02											
External reference	ce FC1	Kingston	Au	21	18	384	80	7	5	412	102
External referen	ce FC5	Yornup	Au	14	13	330	76	5	5	350	94
External referen	ce FC10	Easter	Au	17	15	140	51	37	5	194	71
Gap release	FC2	Kingston	Au	23	21	398	98	5	5	426	124
Gap release	FC6	Thornton	Au	27	21	277	95	7	4	311	119
Gap release	FC8	Carter	Au	14	9	139	59	8	6	161	74
Shelterwood	FC3	Kingston	Au	31	22	326	92	13	4	370	115
Coupe buffer	FC4	Kingston	Au	20	17	419	93	12	7	451	116
Coupe buffer	FC7	Thornton	Au	14	12	352	98	9	4	376	113
Coupe buffer	FC9	Carter	Au	17	15	247	78	10	5	274	97

Table 3. Diversity (number of morphospecies) and abundance for active (beat, sweep, coarse woody debris, litter), light and pit fall trap capture techniques in spring (Sp) and autumn (Au) for Donnelly 2007-08 individual grids.


(a) Donnelly 2007-08 spring light traps



(b) Donnelly 2001-02 spring light traps

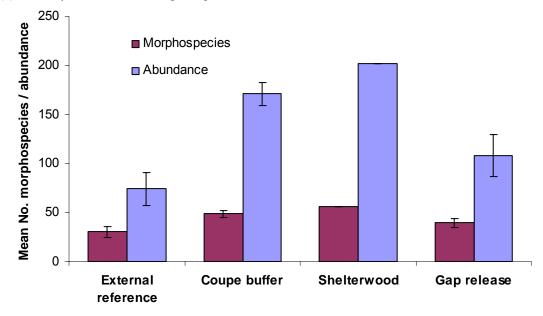


Figure 6: Mean diversity(number of morphospecies, \pm SE, n = 3) for spring light trap captures against treatment grids for (a) Donnelly 2007-08 and (b) Donnelly 2001-02 (note: Shelterwood n=1, and different scale on y-axis in each graph).

(b) Donnelly 2001-02 autumn light traps

Figure 7. Mean diversity (number of morphospecies, \pm SE, n = 3,) autumn light trap captures against treatment grids for (a) Donnelly 2007-08 and (b) Donnelly 2001-02 (Note: shelterwood n=1, and different scale on y-axis in each graph).

Table 5. Ten most frequent species captured for Donnelly 2007-08, Wellington 2002-3, and Donnelly 2001-02 Capture frequency is the number of times a specimen is collected over all sample site and is not to be confused with abundance levels which refer to the total number of specimens collected. Capture frequency ranks relate to Donnelly 2007-08 samples, eg. a rank of 7 for a Wellington 2002-03 specimen means this species was the 7th most frequent species at Donnelly 2007-08, rank 33 indicates 3 specimens only were sampled from Donnelly 2007-08; a rank >35 indicates a single specimen only found in Donnelly 2007-08; a rank = 0 indicates no specimen captured in Donnelly 2007-08.

Location	Species ID number	Capture frequency	Donnelly 2007- 08 capture frequency rank	Order	Family	Genus
Donnelly						
2007-08	544	63	1	Isopoda		
	16	47	2	Diptera	Tipulidae	
	316	44	3	Lepidoptera	Tipulluu	
	526	44	3	Orthoptera	Stenopelmatidae	Osandrus
	14	41	4	Coleoptera	Hydrophilidae	e senter us
	6	38	5	Lepidoptera	Arctiidae	
	1303	36	6	Amphipoda		
	423	35	7	Hymenoptera	Formicidae	Camponotus
	63	34	8	Lepidoptera		- T ono m
	333	33	9	Lepidoptera	Pyralidae	
	48	33	9	Lepidoptera	,	
	39	30	10	Lepidoptera	Noctuidae	Proteuxoa
Wellington						
2002-03	436	84	33	Lepidoptera	Geometridae	
	52	72	26	Hymenoptera	Apidae	Apis
	145	52	13	Trichoptera	-	-
	4	27	29	Lepidoptera	Notodontidae	Destolmia
	235	25	0	Orthoptera	Acrididae	
	258	22	33	Dermaptera		
	163	22	0	Hemiptera	Reduviidae Thaumetopoeida	
	10	20	16	Lepidoptera	e	Ochrogaster
	423	19	7	Hymenoptera	Formicidae	Campanotus
	1	19	32	Lepidoptera	Carthaeidae	Carthaea
Donnelly 2001-02	50	6.4	24	TT ·	4 1	<u>, .</u>
AUVI VA	52	64 54	26	Hymenoptera	Apidae	Apis
	6	54	5	Lepidoptera	Arctiidae	
	235	45 28	0	Orthoptera	Acrididae	A1 .* 1
	373	28	24	Lepidoptera	Hepialidae	<i>Abantiades</i>
	39	27 26	10	Lepidoptera	Noctuidae	Proteuxoa
	145	26 26	13	Trichoptera	No of a de -	A
	18	26 26	24	Lepidoptera	Noctuidae	Agrotis
	45	26 26	34	Lepidoptera	Zygaenidae	Pollanisus
	376	26	11	Lepidoptera	г.	C
	423	24	7	Hymenoptera	Formicidae	Campanotus
	16	23	2	Diptera	Tipulidae	

Pest presence

Jarrah leaf miner (JLM) was present on all grids except FC10 (Table 6). Gumleaf skeletonizer (GLS) was present at FC10 where, egg rafts and leaf damage was seen. Leaf skeletonising was also observed at grid FC7 but leaf damage alone is not recorded as a positive sighting for GLS. Bullseye borer (BEB) was present at all grids and abundant in FC1 and FC4. Comparing the previous assessment in 2001, incidence of GLS and BEB has increased, whereas JLM has decreased.

Table 6: Pest presence and abundance assessment at each grid (JLM = jarrah leaf miner; GLS = gumleaf skeletonizer; BEB = bullseye borer; 0 = absent, 1 = present, 2 = abundant).

Silvicultural Treatment	Site No.	Location	JLM	GLS	BEB
External reference	FC1	Kingston	1	0	2
External reference	FC5	Yornup	1	0	1
External reference	FC10	Easter	0	1	1
Gap release	FC2	Kingston	1	0	1
Gap release	FC6	Thornton	1	0	1
Gap release	FC8	Carter	1	0	1
Shelterwood	FC3	Kingston	1	0	1
Coupe buffer	FC4	Kingston	1	0	2
Coupe buffer	FC7	Thornton	1	0	1
Coupe buffer	FC9	Carter	1	0	1

Helena gum moth

One immediately apparent feature of the 2007-08 sample was the abundance of *Opodiphthera helena* (Helena gum moth, Table 7 & Fig. 8). Although this is a large distinctive species (Fig. 9), prior to 2007-08 few adults were collected in or around light traps, but in 2007-08 this species was the 3rd most abundant species captured in the Donnelly grids and the 16th most frequent species. Mature larvae of this species, although cryptically coloured are large and consume a large amount of eucalypt foliage before pupating (Fig. 10). Normal experience is that few larvae succeed to pupation due to a very high parasite load in the natural population, particularly for late instar larvae. Thus for a capture of 633 adults, compared to just four in 2001-02, larval impact in the canopy must be significant. The highest numbers were from the Thornton gap release (FC6) and coupe buffer (FC7) grids, although the external reference site at Easter (FC10) also had high numbers (Table 8). Nonetheless all sites with the exception of FC2 and FC3 in Kingston had abundances much greater than total annual abundances summed for all other FORESTCHECK regional samples.

Year	Sampling District	Abundance
2001-02	Donnelly	4
2002-03	2	1
2003-04	Dwellingup	0
2004-05	Wellington East	6
2005-06	Blackwood	0
2007-08	Donnelly	633

Table 7. Helena gum-moth abundance (numbers summed over sites for each respective sample year)from FORESTCHECK sites using light traps from 2001-2007.

Table 8. Helena gum moth abundance captures from light traps stratified on site for spring 2007.

Grid No.	Treatment	Location	Abundance
FC1	External reference	Kingston	27
FC2	Gap release	Kingston	4
FC3	Shelterwood	Kingston	5
FC4	Coupe buffer	Kingston	32
FC5	External reference	Yornup	21
FC6	Gap release	Thornton	158
FC7	Coupe buffer	Thornton	264
FC8	Gap release	Carter	23
FC9	Coupe buffer	Carter	22
FC10	External reference	Easter	77

Figure 8. A high abundance of adult *Opodiphthera helena* at a 2008 Donnelly spring light trap.

Figure 9. Adult Opodiphthera helena

Figure 10. Late instar larvae of *Opodiphthera helena*. White spots show parasite eggs.

Conclusions

In 2007-08 the Donnelly FORESTCHECK grids were re-sampled using the same sampling methods as for 2001-02.

- The total number of invertebrate morphospecies recorded for FORESTCHECK is now 1776.
- In 2007-08, 64% of invertebrate species recorded were not captured in 2001-02. The higher diversity in 2007-08 was mainly attributed to light trap captures as other sampling techniques showed comparable, if not lower diversity with exception of CWD searches.
- Hand sampling techniques show a consistency in capture rate patterns across the two sample periods although the hand sampling technique for CWD has resulted in improved sampling effectiveness.
- In 2007-08, a significant increase in Amphipods, Isopods and Helena gum moth abundance was recorded. There was also evidence of increased GLS presence.

Acknowledgements

We thank Asako Wills for assistance in the field and laboratory, John Austin for assistance sorting specimens in the laboratory and Ian Jones for assistance with data enrty.

Appendix 1. Invertebrate morpho-species list current for February 2009. Taxon 3 refers to either a sub order, sub family or tribe etc. as may clarify specimen identity; Msp ID # = morphospecies identification number; Abun = species abundance summed for all grids from 2001-08. [Note: due to data anomalies not all of the 1776 morpho-species current for February 2009 are listed in this table. These anomalies will be rectified at a later date.]

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun
Amphipoda					1303	359
Amphipoda					261	9
Araneomorphae					472	1
Araneomorphae	Araneidae		Eriophora		1680	1
Araneomorphae	Araneidae		Eriophora		2038	1
Araneomorphae	Araneidae		Gasteracantha	minax ?	1213	8
Araneomorphae	Araneidae		Nephila	edulis	1551	2
Araneomorphae	Araneidae		Phonographa	graeffei	1471	2
Araneomorphae	Araneidae		Eriophora		285	1
Araneomorphae	Corinnidae		Supunna	albopunctata	536	2
Araneomorphae	Ctenidae				2073	5
Araneomorphae	Ctenidae ?				1980	1
Araneomorphae	Ctenidae ?				553	5
Araneomorphae	Deinopidae				2964	1
Araneomorphae	Deinopidae		Deinopis ?		1544	1
Araneomorphae	Gnaphosidae		*		941	1
Araneomorphae	Gnaphosidae				975	1
Araneomorphae	Gnaphosidae				560	2
Araneomorphae	Gnaphosidae		Rebilus		938	18
Araneomorphae	Gnaphosidae		Rebilus		1427	6
Araneomorphae	Gnaphosidae		Rebilus		620	4
Araneomorphae	Lycosidae				1373	1
Araneomorphae	Lycosidae				1558	1
Araneomorphae	Lycosidae				1581	1
Araneomorphae	Lycosidae				1588	25
Araneomorphae	Lycosidae				1589	4
Araneomorphae	Lycosidae				1593	1
Araneomorphae	Lycosidae				1595	1
Araneomorphae	Lycosidae				2106	1
Araneomorphae	Lycosidae				3001	1
Araneomorphae	Lycosidae				554	1
Araneomorphae	Lycosidae				741	1
Araneomorphae	Miturgidae				740	1
Araneomorphae	Miturgidae				933	12
Araneomorphae	Miturgidae				1428	2
Araneomorphae	Miturgidae				1448	- 1
Araneomorphae	Miturgidae				1449	6
Araneomorphae	Miturgidae				1476	2
Araneomorphae	Miturgidae				1477	5
Araneomorphae	Miturgidae				1564	1
Araneomorphae	Miturgidae				1574	1
Araneomorphae	Miturgidae				1579	1
Araneomorphae	Miturgidae				1579	3
Araneomorphae	Miturgidae				1380	1
Araneomorphae	Miturgidae				597	3
Araneomorphae	Miturgidae				271	1
Araneomorphae	Miturgidae				812	5
Araneomorphae	Sparassidae				812 1044	2

Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae	Sparassidae Sparassidae Sparassidae Sparassidae Sparassidae Sparassidae Starassidae Stiphidiidae Stiphidiidae Stiphidiidae Stiphidiidae		Olios		1432 1446 1986 2055 2976 286	1 1 1 1 1 3
Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae	Sparassidae Sparassidae Sparassidae Sparassidae Stiphidiidae Stiphidiidae Stiphidiidae Stiphidiidae		Olios		1986 2055 2976 286	1 1 1
Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae	Sparassidae Sparassidae Sparassidae Stiphididae Stiphidiidae Stiphidiidae Stiphidiidae		Olios		2055 2976 286	1 1
Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae	Sparassidae Sparassidae Sparassidae Stiphidiidae Stiphidiidae Stiphidiidae Stiphidiidae		Olios		2976 286	1
Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae	Sparassidae Sparassidae Stiphididae Stiphidiidae Stiphidiidae Stiphidiidae		Olios		286	
Araneomorphae Araneomorphae Araneomorphae Araneomorphae Araneomorphae	Sparassidae Stiphididae Stiphidiidae Stiphidiidae Stiphidiidae		Olios			3
Araneomorphae Araneomorphae Araneomorphae Araneomorphae	Stiphididae Stiphidiidae Stiphidiidae Stiphidiidae		Olios		020	-
Araneomorphae Araneomorphae Araneomorphae	Stiphidiidae Stiphidiidae Stiphidiidae				939	2
Araneomorphae Araneomorphae	Stiphidiidae Stiphidiidae				2686	4
Araneomorphae	Stiphidiidae				1403	1
-	-				1570	8
A 1	Stiphidiidae				2083	2
Araneomorphae					2692	3
Araneomorphae	Stiphidiidae		Baiami		732	13
Araneomorphae	Stiphidiidae		Baiami	volucripes	735	5
Araneomorphae	Stiphidiidae		Baiami ?	volucripes	725	2
Araneomorphae	Zodariidae			1	972	1
Araneomorphae	Zodariidae				1007	5
Araneomorphae	Zodariidae				1015	1
Araneomorphae	Zodariidae		Storena		468	11
Araneomorphae	Zoridae		Siorena		932	2
Araneomorphae	Zoridae				1584	1
Blattodea	Zondae				2662	1
Blattodea						1
					2667	
Blattodea					2669	2
Blattodea					2672	1
Blattodea					2673	1
Blattodea					2684	1
Blattodea					2685	1
Blattodea					2699	1
Blattodea					2701	1
Blattodea					2949	2
Blattodea					2970	2
Blattodea					2978	1
Blattodea					2979	1
Blattodea					509	1
Blattodea	Blaberidae				1101	13
Blattodea	Blaberidae				1115	3
Blattodea	Blaberidae				148	88
Blattodea	Blaberidae				410	26
Blattodea	Blaberidae				479	1
Blattodea	Blaberidae	Diplopterinae	Calolampra		147	54
Blattodea	Blaberidae	Epilamprinae	Laxta		27	246
Blattodea	Blaberidae	Epilamprinae	Laxta		119	15
Blattodea	Blaberidae	Epilamprinae	Laxta		1462	1
Blattodea	Blattelidae	- <u>r</u>			926	1
Blattodea	Blattelidae				1118	2
Blattodea	Blattelidae				2017	2
Blattodea	Blattelidae				190	2 6
Blattodea	Blattellidae	Parcoblattini	Notoreantorea			
			Neotemnopteryx		120	16
Blattodea	Blattellidae	Parcoblattini	Neotemnopteryx		591 780	2
Blattodea Blattodea	Blattellidae Blattidae	Parcoblattini	Neotemnopteryx		780 878	5 4

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun.
Blattodea	Blattidae				891	4
Blattodea	Blattidae				936	3
Blattodea	Blattidae				961	1
Blattodea	Blattidae				967	1
Blattodea	Blattidae				1434	1
Blattodea	Blattidae				1460	2
Blattodea	Blattidae				1559	2
Blattodea	Blattidae				1573	1
Blattodea	Blattidae				1587	2
Blattodea	Blattidae				1780	1
Blattodea	Blattidae				1933	14
Blattodea	Blattidae				1974	2
Blattodea	Blattidae				1991	1
Blattodea	Blattidae				2037	2
Blattodea	Blattidae				2098	1
Blattodea	Blattidae				490	3
Blattodea	Blattidae				508	1
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		121	5
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		122	4
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		254	2
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		282	1
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		483	3
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		547	1
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		781	1
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		874	3
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		899	9
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		905	4
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		968	9
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		971	6
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		1016	1
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		1010	1
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		1474	4
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		1888	2
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		1888	2
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		2008	1
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		2008	
Blattodea	Blattidae	Polyzosteriinae				2
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria Platyzosteria		2015 2033	2 1
		•	Platyzosteria Platyzosteria			
Blattodea Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		219	4
	Blattidae	Polyzosteriinae	Platyzosteria		266	4
Blattodea	Blattidae	Polyzosteriinae	Platyzosteria		507	17
Blattodea	Blattidae	Polyzosteriinae	Polyzosteria		292	1
Blattodea	Blattidae	Polyzosteriinae	Polyzosteria		592	4
Blattodea	Blattidae	Polyzosteriinae	Polyzosteria		2003	1
Blattodea	Blattidae	Polyzosteriinae	Polyzosteria		2007	1
Blattodea	Blattidae	Polyzosteriinae	Polyzosteria		269	1
Chilopoda					2969	1
Chilopoda	a				2981	1
Chilopoda	Geophilidae				1531	6
Chilopoda	Geophilidae				226	7
Chilopoda	Geophilidae				227	11
Chilopoda	Lithobiidae				1429	2

Lithobiidae Lithobiidae Lithobiidae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae ? Scolopendridae ?	Otostigminae Otostigminae	Ethmostigmus ?		1563 228 229 586 1882 1883 2050 225 267 277 623	8 38 6 2 6 1 1 28 3 2 2
Lithobiidae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae ?	-	-		229 586 1882 1883 2050 225 267 277	6 2 6 1 1 28 3 2
Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae ?	-	-		586 1882 1883 2050 225 267 277	2 6 1 1 28 3 2
Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae ?	-	-		1882 1883 2050 225 267 277	6 1 1 28 3 2
Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae ?	-	-		1883 2050 225 267 277	1 1 28 3 2
Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae ?	-	-		2050 225 267 277	1 28 3 2
Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae ?	-	-		225 267 277	28 3 2
Scolopendridae Scolopendridae Scolopendridae Scolopendridae Scolopendridae ? Scolopendridae ?	-	-		267 277	3 2
Scolopendridae Scolopendridae Scolopendridae Scolopendridae ? Scolopendridae ?	-	-		277	2
Scolopendridae Scolopendridae Scolopendridae Scolopendridae ? Scolopendridae ?	-	-			
Scolopendridae Scolopendridae Scolopendridae ? Scolopendridae ?	-	-		623	2
Scolopendridae Scolopendridae ? Scolopendridae ?	-	-			2
Scolopendridae ? Scolopendridae ?	Otostigminae			223	90
Scolopendridae ?		Ethmostigmus ?		224	11
-				875	1
Scolopendridae ?				877	1
				1583	3
Scolopendridae ?				716	2
Scolopendridae ?				815	1
				116	1
				158	2
				194	3
Belidae				100	4
Belidae		Araiobelus		201	5
Belidae		Rhinotia		168	2
Bostrichidae				1943	4
Buprestidae				173	1
-				215	1
-	Agrilinae	Cisseis		1437	3
-	-			1464	1
-	-	Castiarina		1890	1
-	-	Cvria	vittata	299	1
-	-	Melobasis			1
-	-	Melobasis	gloriosa ?		1
-			0		2
-	-				1
-))			8
					2
	Chauliognathinae	Chauliognathus ?			20
	•	-			1
	Dysmorphoeennae	110101011111111			6
					20
					3
					2
					1
					1
					9
					13
					8
					о 4
					4
	Agoninga	Notacomu			3 2
		÷			2 5
	Scolopendridae ? Belidae Belidae Belidae	Scolopendridae ? Belidae Belidae Belidae Burestidae Buprestinae Buprestinae Bu	Scolopendridae ?BelidaeBelidaeBelidaeBelidaeBelidaeBostrichidaeBuprestidaeCantharidaeCarabidae	Scolopendridae ?BelidaeAraiobelusBelidaeAraiobelusBelidaeAraiobelusBelidaeRhinotiaBostrichidaeRhinotiaBuprestidaeCisseisBuprestidaeAgrilinae ?BuprestidaeBuprestidaeBuprestidaeBuprestinaeBuprestidaeBuprestinaeBuprestidaeBuprestinaeBuprestidaeBuprestinaeBuprestidaeBuprestinaeBuprestidaeBuprestinaeBuprestidaeBuprestinaeBuprestidaeBuprestinaeBuprestidaeBuprestinaeBuprestidaeBuprestinaeBuprestidaePolycestinaeBuprestidaePolycestinaeCantharidaecrocataCantharidaeChauliognathinaeCarabidaeJymorphocerinaeCarabidaeICara	Scolopendridae ?815116116158194Belidae100BelidaeAraiobelus201BelidaeRhinotia168BostrichidaeRhinotia168Bostrichidae1731943BuprestidaeAgrilinae215BuprestidaeAgrilinae?1437BuprestidaeBuprestinaeCassis1437BuprestidaeBuprestinaeCastiarina1890BuprestidaeBuprestinaeMelobasisgloriosa ?1433BuprestidaeBuprestinaeMelobasis1433BuprestidaeBuprestinaeMelobasis1435BuprestidaeBuprestinaeMelobasis1435BuprestidaeBuprestinaeMelobasis1435BuprestidaeBuprestinaeMelobasis159CantharidaeEromasitx198159CantharidaeChauliognathinaeChauliognathinas ?198CarabidaeDysnorphocerinaeHeteromasitx198CarabidaeEromasitx198198CarabidaeEromasitx1981939CarabidaeEromasitx1911939CarabidaeEromasitx1939CarabidaeEromasitx1939CarabidaeEromasitx1939CarabidaeEromasitx1939CarabidaeEromasitx1939CarabidaeEromasitx1939CarabidaeEromasita1939Carabidae <td< td=""></td<>

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun.
Coleoptera	Carabidae	Broscinae	Promecoderus		253	14
Coleoptera	Carabidae	Carabinae			439	11
Coleoptera	Carabidae	Carabinae	Calosoma	schayeri	1058	2
Coleoptera	Carabidae	Carabinae	Carenum ?		280	5
Coleoptera	Carabidae	Esydrinae			1442	3
Coleoptera	Carabidae	Esydrinae			265	4
Coleoptera	Carabidae	Harpalinae	Cenogmus ?		264	20
Coleoptera	Carabidae	Harpalinae	Lecanomerus		2695	1
Coleoptera	Carabidae	Lebiinae	Agonocheila		1059	6
Coleoptera	Carabidae	Lebiinae	Agonocheila		1522	2
Coleoptera	Carabidae	Lebiinae	Philophloeus	eucalypti	956	26
Coleoptera	Carabidae	Licininae	Dicrochile ?		914	1
Coleoptera	Carabidae	Pterostichinae	Notonomus ?		746	18
Coleoptera	Carabidae	Pterostichinae	Platycoelus		2127	12
Coleoptera	Carabidae	Pterostichinae	Pseudoceneus		528	9
Coleoptera	Carabidae	Scaritinae	Neocarenum		2085	1
Coleoptera	Carabidae	Scaritinae	Scaraphites ?		2081	5
Coleoptera	Cerambycidae		x		2942	1
Coleoptera	Cerambycidae	Cerambycinae			2725	3
Coleoptera	Cerambycidae	Cerambycinae	Aphanosperma		1418	1
Coleoptera	Cerambycidae	Cerambycinae	Aposites ?		1917	7
Coleoptera	Cerambycidae	Cerambycinae	Aposites ?		2960	1
Coleoptera	Cerambycidae	Cerambycinae	Coptocercus	rubripes	654	5
Coleoptera	Cerambycidae	Cerambycinae	Coptocercus ?	ruoripes	2941	1
Coleoptera	Cerambycidae	Cerambycinae	Phoracantha		1067	1
Coleoptera	Cerambycidae	Cerambycinae	Scolecobrotus		1007	6
Coleoptera	Cerambycidae	Cerambycinae	Scolecobrotus	westwoodi ?	1041	2
Coleoptera	Cerambycidae	Cerambycinae	Stenoderus	suturalis	673	3
Coleoptera	Cerambycidae	Cerambycinae	Uracanthus	suuraus	1033	7
Coleoptera	Cerambycidae	Cerambycinae	Uracanthus	triangularis	351	3
Coleoptera	Cerambycidae	Lamiinae	Ancita	mangularis	476	3
-	Cerambycidae	Prioninae	Sceleocantha		1082	3
Coleoptera	•	FIIOIIIIac	sceleocanina		2992	1
Coleoptera	Chrysomelidae	Channalina	Channel and a			
Coleoptera	Chrysomelidae	Chrysomelinae	<i>Chrysophtharta</i>		112	4
Coleoptera	Chrysomelidae	Chrysomelinae	Chrysophtharta		463	7
Coleoptera	Chrysomelidae	Chrysomelinae	Chrysophtharta		465	1
Coleoptera	Chrysomelidae	Chrysomelinae	Chrysophtharta		665	3
Coleoptera	Chrysomelidae	Chrysomelinae	Chrysophtharta		677	8
Coleoptera	Chrysomelidae	Chrysomelinae	Chrysophtharta		786	5
Coleoptera	Chrysomelidae	Chrysomelinae	Chrysophtharta		800	1
Coleoptera	Chrysomelidae	Chrysomelinae	Chrysophtharta		805	1
Coleoptera	Chrysomelidae	Chrysomelinae	Chrysophtharta		808	1
Coleoptera	Chrysomelidae	Chrysomelinae	Chrysophtharta		1329	1
Coleoptera	Chrysomelidae	Chrysomelinae	Chrysophtharta		1540	1
Coleoptera	Chrysomelidae	Chrysomelinae	Chrysophtharta		175	1
Coleoptera	Chrysomelidae	Chrysomelinae	Chrysophtharta?		248	1
Coleoptera	Chrysomelidae	Chrysomelinae	Chrysophtharta?		471	2
Coleoptera	Chrysomelidae	Chrysomelinae	Paropsis		307	1
Coleoptera	Chrysomelidae	Chrysomelinae	Paropsis		667	13
Coleoptera	Chrysomelidae	Chrysomelinae	Paropsis		913	4
Coleoptera	Chrysomelidae	Chrysomelinae	Paropsis		1554	2
Coleoptera	Chrysomelidae	Chrysomelinae	Paropsis		1825	1

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abu
Coleoptera	Chrysomelidae	Chrysomelinae	Paropsis		1827	1
Coleoptera	Chrysomelidae	Chrysomelinae	Paropsis		2034	1
Coleoptera	Chrysomelidae	Chrysomelinae	Paropsisterna		308	2
Coleoptera	Chrysomelidae	Chrysomelinae	Paropsisterna		803	7
Coleoptera	Chrysomelidae	Chrysomelinae	Paropsisterna		804	18
Coleoptera	Chrysomelidae	Chrysomelinae	Paropsisterna		1092	2
Coleoptera	Chrysomelidae	Chrysomelinae	Trachymela		1444	1
Coleoptera	Chrysomelidae	Chrysomelinae	Trachymela		2651	2
Coleoptera	Chrysomelidae	Cryptocephalinae	Aprocera		807	1
Coleoptera	Chrysomelidae	Eumolpinae	Eboo?		182	1
Coleoptera	Chrysomelidae	Eumolpinae	Edusella?		56	1
Coleoptera	Chrysomelidae	Eumolpinae	Edusella?		101	4
Coleoptera	Chrysomelidae	Eumolpinae	Edusella?		115	1
Coleoptera	Chrysomelidae	Eumolpinae	Edusella?		155	4
Coleoptera	Cleridae	Clerinae	Eunatalis	spinicornis	1103	2
Coleoptera	Coccinellidae			1	2595	1
Coleoptera	Coccinellidae	Chilocorinae	Parapriasus		912	1
Coleoptera	Coccinellidae	Coccinellinae	Coccinella	repanda	193	13
Coleoptera	Curculionidae				843	2
Coleoptera	Curculionidae				852	8
Coleoptera	Curculionidae				911	1
Coleoptera	Curculionidae				1110	2
Coleoptera	Curculionidae				1438	1
-	Curculionidae				1438	
Coleoptera	Curculionidae				1505 2967	1
Coleoptera						1
Coleoptera	Curculionidae				2973	1
Coleoptera	Curculionidae				368	2
Coleoptera	Curculionidae				102	1
Coleoptera	Curculionidae				114	1
Coleoptera	Curculionidae				156	1
Coleoptera	Curculionidae				169	1
Coleoptera	Curculionidae				199	1
Coleoptera	Curculionidae				214	1
Coleoptera	Curculionidae				244	14
Coleoptera	Curculionidae				514	2
Coleoptera	Curculionidae	Adelognatha	Catasarcus		2051	1
Coleoptera	Curculionidae	Adelognatha	Catasarcus		2698	5
Coleoptera	Curculionidae	Adelognatha	Psapharus	inconspicuus	1183	1
Coleoptera	Curculionidae	Amycterinae			2696	2
Coleoptera	Curculionidae	Amycterinae			2975	2
Coleoptera	Curculionidae	Amycterinae			744	5
Coleoptera	Curculionidae	Amycterinae	Acantholophus		496	5
Coleoptera	Curculionidae	Amycterinae	Acantholophus		869	10
Coleoptera	Curculionidae	Amycterinae	Acantholophus		970	2
Coleoptera	Curculionidae	Amycterinae	Acantholophus		1215	1
Coleoptera	Curculionidae	Amycterinae	Acantholophus		1409	1
Coleoptera	Curculionidae	Amycterinae	Acantholophus		1486	2
Coleoptera	Curculionidae	Amycterinae	Acantholophus		1523	3
Coleoptera	Curculionidae	Amycterinae	Acantholophus		1775	2
Coleoptera	Curculionidae	Amycterinae	Acantholophus		2091	5
Coleoptera	Curculionidae	Amycterinae	Acantholophus		3000	1
Coleoptera	Curculionidae	Amycterinae	Aedriodes		1596	1

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun.
Coleoptera	Curculionidae	Amycterinae	Aedriodes		1597	1
Coleoptera	Curculionidae	Amycterinae	Aedriodes	fastigiatus	1014	4
Coleoptera	Curculionidae	Amycterinae	Cucullothorax	horridus	1571	1
Coleoptera	Curculionidae	Amycterinae	Hyborrhinus ?		934	3
Coleoptera	Curculionidae	Amycterinae	Parahyborrhynchus	convexiuculus	2090	1
Coleoptera	Curculionidae	Amycterinae	Sclerorinus ?		1789	1
Coleoptera	Curculionidae	Amycterinae	Talaurinus		910	1
Coleoptera	Curculionidae	Amycterinae	Talaurinus		1461	7
Coleoptera	Curculionidae	Amycterinae	Talaurinus		817	2
Coleoptera	Curculionidae	Amycterinae	Talaurinus	roei ?	906	3
Coleoptera	Curculionidae	Aterpinae	Aades		2418	2
Coleoptera	Curculionidae	Aterpinae	Pelororhinus		1182	9
Coleoptera	Curculionidae	Aterpinae	Pelororhinus	stellio	349	2
Coleoptera	Curculionidae	Aterpinae	Pelororhinus	sulcirostris	1050	3
Coleoptera	Curculionidae	Aterpinae	Rhinaria	aberrans ?	103	2
Coleoptera	Curculionidae	Aterpinae	Rhinaria ?		209	16
Coleoptera	Curculionidae	Entiminae	Aesolithna		210	10
Coleoptera	Curculionidae	Entiminae	Leptopius		1225	6
Coleoptera	Curculionidae	Entiminae	Leptopius		2678	1
Coleoptera	Curculionidae	Entiminae	Mandalotus ?		2088	3
Coleoptera	Curculionidae	Entiminae	Polyphrades	aesalon ?	113	34
Coleoptera	Curculionidae	Gonipterinae	Gonipterus		488	2
Coleoptera	Curculionidae	Gonipterinae	Oxyops		160	1
Coleoptera	Curculionidae	Gonipterinae	Oxyops		462	1
Coleoptera	Curculionidae	Gonipterinae	Oxyops	fasciata	161	192
Coleoptera	Curculionidae	Gonipterinae	Oxyops	pictipennis	98	47
Coleoptera	Curculionidae	Molytinae	Melanotranes	roei	290	44
Coleoptera	Curculionidae	Molytinae	Tranes	vigorsii	291	33
Coleoptera	Curculionidae	Rhadinosominae	Rhadinosomus	lacordaire	157	45
Coleoptera	Dermestidae	Dermestini	Dermestes		865	2
Coleoptera	Dytiscidae				2624	1
Coleoptera	Dytiscidae				13	61
Coleoptera	Dytiscidae	Colymbetinae	Rhantus		13	17
Coleoptera	Dytiscidae	Colymbetinae	Rhantus		447	3
Coleoptera	Dytiscidae	Colymbetinae	Rhantus		2143	1
Coleoptera	Dytiscidae	Colymbetinae	Rhantus		2870	2
Coleoptera	Dytiscidae	Dytiscinae	Eretes		774	1
Coleoptera	Dytiscidae	Lancetinae	Lancetes		651	161
Coleoptera	Dytiscidae	Lancetinae	Lancetes		850	69
Coleoptera	Elateridae	Luiteennue	Lunceres		989	2
Coleoptera	Elateridae				1083	62
Coleoptera	Elateridae				1817	17
Coleoptera	Elateridae				1914	3
Coleoptera	Elateridae				2442	7
Coleoptera	Elateridae				15	4
Coleoptera	Elateridae				220	4
Coleoptera	Elateridae				621	2
-	Elateridae				621	2 4
Coleoptera	Elateridae	Agrumnings	Characture ?			4
Coleoptera	Elateridae	Agrypninae	Chrostyus ? Conoderus		1121	
Coleoptera		Agrypninae			595	2
Coleoptera	Elateridae	Agrypninae	Conoderus		909	10
Coleoptera	Elateridae	Agrypninae	Conoderus		1062	13

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun
Coleoptera	Elateridae	Agrypninae	Conoderus		1109	20
Coleoptera	Elateridae	Agrypninae	Conoderus		1818	28
Coleoptera	Elateridae	Agrypninae	Conoderus		1819	9
Coleoptera	Elateridae	Agrypninae	Conoderus		2711	1
Coleoptera	Elateridae	Agrypninae	Conoderus		26	184
Coleoptera	Elateridae	Agrypninae	Conoderus		135	80
Coleoptera	Elateridae	Agrypninae	Conoderus		444	178
Coleoptera	Elateridae	Agrypninae	Drasterius ?		1120	15
Coleoptera	Elateridae	Agrypninae	Pseudaeolus		997	17
Coleoptera	Elateridae	Agrypninae	Pseudotetralobus		2674	1
Coleoptera	Geotrupidae				2625	2
Coleoptera	Geotrupidae	Bolboceratidae	Blackbolbus		831	2
Coleoptera	Gyrinidae		Macrogyrus		440	9
Coleoptera	Histeridae				959	1
Coleoptera	Hydrophilidae				14	25424
Coleoptera	Hydrophilidae	Hydrophilinae	Hydrophilus	triangulans	1123	2
Coleoptera	Lucanidae	J I		Ŭ	3005	1
Coleoptera	Lucanidae	Syndesinae	Syndesus		437	8
Coleoptera	Lucanidae	Syndesinae	Syndesus		1640	1
Coleoptera	Lucanidae	Syndesinae	Syndesus		1932	3
Coleoptera	Lucanidae	Syndesinae	Syndesus ?		1629	2
Coleoptera	Lycidae	Syndesinae	Syndesus .		1994	4
Coleoptera	Lycidae	Metriorrhynchinae	Metriorrhynchus		99	18
Coleoptera	Lycidae	Metriorrhynchinae	Metriorrhynchus		208	9
-	-	-	÷		208 802	
Coleoptera	Lycidae	Metriorrhynchinae	Metriorrhynchus Metriorrhynchus			1
Coleoptera	Lycidae	Metriorrhynchinae	Metriorrhynchus Metriorrhynchus		1992	
Coleoptera	Lycidae	Metriorrhynchinae	Metriorrhynchus		2000	3
Coleoptera	Lycidae	Metriorrhynchinae	Metriorrhynchus		2643	1
Coleoptera	Lycidae	Metriorrhynchinae	Metriorrhynchus		2644	1
Coleoptera	Oedemeridae	Odemerinae	Copidita		1958	1
Coleoptera	Oedemeridae	Odemerinae	Copidita		1962	1
Coleoptera	Phycosecidae	Phycosecis			191	2
Coleoptera	Rhipiphoridae	Ptilophorinae			2052	1
Coleoptera	Scarabaeidae				1836	1
Coleoptera	Scarabaeidae				1838	2
Coleoptera	Scarabaeidae				2068	1
Coleoptera	Scarabaeidae				2076	2
Coleoptera	Scarabaeidae				2180	3
Coleoptera	Scarabaeidae				2872	1
Coleoptera	Scarabaeidae				2945	9
Coleoptera	Scarabaeidae				2995	1
Coleoptera	Scarabaeidae		Metanastes		1945	4
Coleoptera	Scarabaeidae	Dynastinae	Cryptodus		189	28
Coleoptera	Scarabaeidae	Dynastinae	Cryptodus		1160	7
Coleoptera	Scarabaeidae	Dynastinae	Semanopterus		824	10
Coleoptera	Scarabaeidae	Dynastinae	Semanopterus		1021	1
Coleoptera	Scarabaeidae	Dynastinae	Semanopterus		1846	3
Coleoptera	Scarabaeidae	Dynastinae	Trissodon		1562	1
Coleoptera	Scarabaeidae	Dynastinae	Trissodon		2084	1
Coleoptera	Scarabaeidae	Melolonthinae			347	65
Coleoptera	Scarabaeidae	Melolonthinae			1843	7
Coleoptera	Scarabaeidae	Melolonthinae			1847	30

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun.
Coleoptera	Scarabaeidae	Melolonthinae			1853	50
Coleoptera	Scarabaeidae	Melolonthinae			1863	1
Coleoptera	Scarabaeidae	Melolonthinae			1904	15
Coleoptera	Scarabaeidae	Melolonthinae			1905	4
Coleoptera	Scarabaeidae	Melolonthinae			1911	1
Coleoptera	Scarabaeidae	Melolonthinae			1915	8
Coleoptera	Scarabaeidae	Melolonthinae			1922	151
Coleoptera	Scarabaeidae	Melolonthinae			1925	1
Coleoptera	Scarabaeidae	Melolonthinae			1926	1
Coleoptera	Scarabaeidae	Melolonthinae			1948	1
Coleoptera	Scarabaeidae	Melolonthinae			2652	14
Coleoptera	Scarabaeidae	Melolonthinae	Automolus ?		212	1
Coleoptera	Scarabaeidae	Melolonthinae	Colpochila		1823	1
Coleoptera	Scarabaeidae	Melolonthinae	Colpochila		1866	2
Coleoptera	Scarabaeidae	Melolonthinae	Colpochila		2006	2
Coleoptera	Scarabaeidae	Melolonthinae	Colpochila	antennalis	846	63
Coleoptera	Scarabaeidae	Melolonthinae	Colpochila	bogaria ?	1063	1
Coleoptera	Scarabaeidae	Melolonthinae	Colpochila	major	353	9
Coleoptera	Scarabaeidae	Melolonthinae	Colymbomorpha	vittata	55	21
Coleoptera	Scarabaeidae	Melolonthinae	Diphucephala		1889	1
Coleoptera	Scarabaeidae	Melolonthinae	Diphucephala		1985	1
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		28	50
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		29	2
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		70	31
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		94	68
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		154	2
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		134	1
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		171	1
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		289	42
-	Scarabaeidae	Melolonthinae	•		347	42 21
Coleoptera		Melolonthinae	Heteronyx			
Coleoptera	Scarabaeidae		Heteronyx		363	133
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		418	1
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		951	32
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		991	1
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		1073	3
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		1116	4
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		1133	34
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		1192	48
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		1566	3
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		1660	1
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		1820	8
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		1822	4
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		1856	11
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		1863	10
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		1923	82
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		2727	1
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		347	56
Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		359	17
Coleoptera	Scarabaeidae	Melolonthinae	Liparetrus	jenkinsi	162	2
Coleoptera	Scarabaeidae	Melolonthinae	Maechidius		287	19
Coleoptera	Scarabaeidae	Melolonthinae	Maechidius		826	2
Coleoptera	Scarabaeidae	Melolonthinae	Maechidus		287	12

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abur
Coleoptera	Scarabaeidae	Melolonthinae	Maechidus		1136	2
Coleoptera	Scarabaeidae	Melolonthinae	Maechidus ?		1388	2
Coleoptera	Scarabaeidae	Melolonthinae	Maechidus?		1189	3
Coleoptera	Scarabaeidae	Melolonthinae	Maechidus?		1871	18
Coleoptera	Scarabaeidae	Melolonthinae	Maechidus?		2738	1
Coleoptera	Scarabaeidae	Melolonthinae	Scitalini		1813	4
Coleoptera	Scarabaeidae	Scarabaeinae	Onthophagus		1824	1
Coleoptera	Scarabaeidae	Scarabaeinae	Onthophagus		511	1
Coleoptera	Scarabaeidae	Scarabaeinae	Onthophagus	ferox	17	34
Coleoptera	Silphidae	Silphinae	Ptomaphila		1656	3
Coleoptera	Silphidae	Silphinae	Ptomaphila	lacrymosa	924	6
Coleoptera	Staphylinidae				2094	2
Coleoptera	Staphylinidae				2666	2
Coleoptera	Staphylinidae				628	15
Coleoptera	Tenebrionidae	Alleculinae	Homotrysis		2153	6
Coleoptera	Tenebrionidae	Alleculinae	Metistete		340	29
Coleoptera	Tenebrionidae	Alleculinae	Metistete		839	18
Coleoptera	Tenebrionidae	Alleculinae	Metistete		995	1
Coleoptera	Tenebrionidae	Alleculinae	Metistete		1104	7
Coleoptera	Tenebrionidae	Alleculinae	Tanychilus		340	1
Coleoptera	Tenebrionidae	Alleculinae	Tanychilus		348	2
Coleoptera	Tenebrionidae	Amarygmini	Chalcopteroides		930	18
Coleoptera	Tenebrionidae	Heleini	Helea		1012	7
Coleoptera	Tenebrionidae	Heleini	Helea		1392	6
Coleoptera	Tenebrionidae	Heleini	Helea	perforata?	1389	5
Coleoptera	Tenebrionidae	Lagriinae	Adelium	penjerana	904	7
Coleoptera	Tenebrionidae	Lagriinae	Adelium		1246	1
Coleoptera	Tenebrionidae	Lagriinae	Adelium		1536	1
Coleoptera	Tenebrionidae	Lagriinae	Adelium		2681	1
Coleoptera	Tenebrionidae	Lagriinae	Adelium		288	1
Coleoptera	Tenebrionidae	Lagriinae	Metriolagria		192	53
Coleoptera	Tenebrionidae	Stenochiinae	Oectosis		711	1
Coleoptera	Tenebrionidae	Titaenini	Titaena		2708	1
Coleoptera	Trogidae	1 Itaciiiii	Tuuenu		1949	1
-	Trogidae				2706	1
Coleoptera	-		0		825	1
Coleoptera	Trogidae Trogidae		Omorgus		823 848	2
Coleoptera	Trogidae		Omorgus			1
Coleoptera Coleoptera	•		Omorgus		935	
	Trogidae		Omorgus		1086	1
Coleoptera	Trogidae		Omorgus		1097	5
Dermaptera					1538	8
Dermaptera					1790	1
Dermaptera					484	11
Dermaptera					491	3
Dermaptera					492	10
Dermaptera					734	1
Dermaptera	Anisolabididae				1433	1
Dermaptera	Anisolabididae				123	9
Dermaptera	Anisolabididae				258	46
Dermaptera	Anisolabididae				263	1
Dermaptera	Anisolabididae	Anisolabidinae			257	19
Dermaptera	Anisolabididae	Anisolabidinae			484	14

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun
Dermaptera	Anisolabididae	Isolabelli			682	1
Dermaptera	Labiduridae	Labidurinae			999	11
Dermaptera	Labiduridae	Labidurinae			1112	2
Dermaptera	Labiduridae	Labidurinae			1390	2
Dermaptera	Labiduridae ?				2991	2
Dermaptera	Labidurinae	Labidurinae			1919	2
Dermaptera	Spongiphoridae	Nesogastriinae	Nesogaster?		1113	8
Dermaptera	Spongiphoridae	Nesogastriinae	Nesogaster?		1951	4
Diplopoda	Craspedosomatida				2070	1
Diplopoda	Julida				876	2
Diplopoda	Julida				966	3
Diplopoda	Julida				1526	1
Diplopoda	Julida				1546	2
Diplopoda	Julida				259	14
Diplopoda	Julida				260	10
Diplopoda	Julida				717	8
Diplopoda	Siphonophorida				2074	2
Diptera	1 1				3002	1
Diptera	Acroceridae				1472	1
Diptera	Anthomyiidae				127	2
Diptera	Asilidae				1232	1
Diptera	Asilidae				1424	4
Diptera	Asilidae				1478	1
Diptera	Asilidae				1529	1
Diptera	Asilidae				1842	3
	Asilidae				1842	1
Diptera	Asilidae					1 14
Diptera					2647	
Diptera	Asilidae				2648	5
Diptera	Asilidae				2650	2
Diptera	Asilidae				2709	1
Diptera	Asilidae				564	3
Diptera	Asilidae				165	2
Diptera	Asilidae				204	3
Diptera	Asilidae				217	6
Diptera	Asilidae				312	14
Diptera	Asilidae				313	44
Diptera	Asilidae				541	2
Diptera	Asilidae				810	1
Diptera	Athericidae?				2670	1
Diptera	Bombylidae				1988	1
Diptera	Bombyliidae				683	10
Diptera	Bombyliidae				907	7
Diptera	Bombyliidae				1053	2
Diptera	Bombyliidae				1542	1
Diptera	Bombyliidae				2063	1
Diptera	Bombyliidae				2996	1
Diptera	Bombyliidae				245	1
Diptera	Bombyliidae				506	1
Diptera	Bombyliidae				719	1
Diptera	Calliphoridae				929	3
Diptera	Calliphoridae				1398	1
Diptera	Calliphoridae				1561	2

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun.
Diptera	Calliphoridae				1634	1
Diptera	Calliphoridae				2080	1
Diptera	Calliphoridae	Calliphorinae	Calliphora		53	11
Diptera	Calliphoridae	Calliphorinae	Calliphora		480	2
Diptera	Calliphoridae ?	poor specimen			1419	3
Diptera	Conopidae				1987	1
Diptera	Lauxaniidae				1725	1
Diptera	Lauxaniidae				2014	1
Diptera	Lauxaniidae				125	4
Diptera	Lauxaniidae				179	5
Diptera	Muscidae				1961	1
Diptera	Muscidae				205	1
Diptera	Muscidae				68	16
Diptera	Pyrgotidae				1850	3
Diptera	Pyrgotidae				1940	1
Diptera	Pyrgotidae				2638	1
Diptera	Pyrgotidae				2736	1
Diptera	Pyrgotidae				88	4
Diptera	Sarcophagidae				128	4
Diptera	Sarcophagidae				579	3
	Sarcophagidae ?				575	1
Diptera						1
Diptera	Stratiomyidae				2044	
Diptera	Syrphidae				54	50
Diptera	Syrphidae				130	11
Diptera	Syrphidae				143	3
Diptera	Syrphidae				569	1
Diptera	Syrphidae				572	2
Diptera	Syrphidae				1203	1
Diptera	Syrphidae				1421	36
Diptera	Syrphidae				1422	5
Diptera	Syrphidae				1425	2
Diptera	Syrphidae				1983	1
Diptera	Syrphidae				2128	3
Diptera	Syrphidae				129	9
Diptera	Syrphidae				206	16
Diptera	Tabanidae				473	34
Diptera	Tabanidae				884	1
Diptera	Tabanidae				901	2
Diptera	Tabanidae				1297	3
Diptera	Tabanidae				1440	1
Diptera	Tabanidae				1548	6
Diptera	Tabanidae				1630	3
Diptera	Tabanidae				1950	1
Diptera	Tabanidae				2922	2
Diptera	Tabanidae				2983	1
Diptera	Tabanidae				126	31
Diptera	Tabanidae				178	15
Diptera	Tabanidae				466	10
Diptera	Tabanidae				400	15
Diptera	Tabanidae				407	56
	Tachinidae					
Diptera					1151	2
Diptera	Tachinidae				2048	1

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun.
Diptera	Tachinidae				2058	2
Diptera	Tachinidae				2075	3
Diptera	Tachinidae				51	1
Diptera	Tachinidae				498	3
Diptera	Tachinidae				136	1
Diptera	Tachinidae				464	1
Diptera	Tachinidae				675	2
Diptera	Therevidae				2646	7
Diptera	Therevidae				142	3
Diptera	Therevidae				532	6
Diptera	Tipulidae				16	2499
Diptera	Tipulidae				792	2
Diptera	Tipulidae	Limoniinae			2649	2
Gastropoda					969	5
Gastropoda					1431	6
Gastropoda					1527	6
Gastropoda					1565	1
Gastropoda					1590	1
Hemiptera	Alydidae				1683	2
Hemiptera	Alydidae				2020	4
Hemiptera	Alydidae				2021	3
Hemiptera	Cicadellidae				1072	1
Hemiptera	Cicadellidae				1239	2
Hemiptera	Cicadellidae				1934	2
Hemiptera	Cicadellidae				2036	1
Hemiptera	Cicadellidae				107	17
Hemiptera	Cicadellidae				166	1
Hemiptera	Cicadellidae				170	2
Hemiptera	Cicadellidae				170	5
Hemiptera	Cicadellidae				187	2
Hemiptera	Cicadellidae				200	2
Hemiptera	Cicadellidae				239	1
-	Cicadellidae				787	4
Hemiptera Hemiptera	Cicadellidae ?				241	5
Hemiptera	Cicadidae				241 916	2
Hemiptera	Cicadidae				1851	1
-	Cicadidae				1831	
Hemiptera	Cicadidae					1
Hemiptera	Cicadidae				2078	1
Hemiptera		T 1			2087	1
Hemiptera	Cicadidae	Tibicininae	Cicadetta		49	5
Hemiptera	Coccoidea	a .		,	164	1
Hemiptera	Coreidae	Coreinae	Amorbus	bispinus	700	20
Hemiptera	Dictyopharidae				1524	3
Hemiptera	Eurymelidae	Eurymelinae	Pogonoscopus		503	7
Hemiptera	Flatidae				1415	7
Hemiptera	Fulgoridae				1090	3
Hemiptera	Fulgoridae				764	1
Hemiptera	Gelastocoridae	Nerthrinae	Nerthra		1567	9
Hemiptera	Gelastocoridae	Nerthrinae	Nerthra		2689	5
Hemiptera	Gelastocoridae	Nerthrinae	Nerthra		2694	1
Hemiptera	Hyocephalidae		Hyocephalus	auprugnus	482	10
Hemiptera	Lygaeidae				1445	2

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun.
Hemiptera	Lygaeidae				213	1
Hemiptera	Lygaeidae ?				885	1
Hemiptera	Membracidae				108	4
Hemiptera	Membracidae				109	1
Hemiptera	Membracidae				110	4
Hemiptera	Membracidae				301	2
Hemiptera	Membracidae				302	1
Hemiptera	Miridae				188	1
Hemiptera	Nabidae				964	1
Hemiptera	Pentatomidae				221	31
Hemiptera	Pentatomidae				838	3
Hemiptera	Pentatomidae				960	5
Hemiptera	Pentatomidae				962	15
Hemiptera	Pentatomidae				963	1
Hemiptera	Pentatomidae				1049	3
Hemiptera	Pentatomidae				1195	2
Hemiptera	Pentatomidae				1227	2
Hemiptera	Pentatomidae				1302	4
Hemiptera	Pentatomidae				1466	1
Hemiptera	Pentatomidae				1697	2
Hemiptera	Pentatomidae				1993	1
Hemiptera	Pentatomidae				1995	1
Hemiptera	Pentatomidae				2476	2
Hemiptera	Pentatomidae				2998	1
Hemiptera	Pentatomidae				678	4
Hemiptera	Pentatomidae				105	10
Hemiptera	Pentatomidae				105	10
Hemiptera	Pentatomidae				153	9
Hemiptera	Pentatomidae				135	1
Hemiptera	Pentatomidae				240	1
Hemiptera	Pentatomidae				240 251	28
	Pentatomidae					
Hemiptera					475	4
Hemiptera	Pentatomidae				513	2
Hemiptera	Pentatomidae				599	1
Hemiptera	Pentatomidae				670	2
Hemiptera	Pentatomidae	- ·			680	5
Hemiptera	Pentatomidae	Pentatominae	Platycoris	brunneus	2066	2
Hemiptera	Pentotomidae				669	7
Hemiptera	Reduvidae				2930	3
Hemiptera	Reduviidae				270	2
Hemiptera	Reduviidae				863	3
Hemiptera	Reduviidae				886	6
Hemiptera	Reduviidae				1024	1
Hemiptera	Reduviidae				1122	1
Hemiptera	Reduviidae				1647	2
Hemiptera	Reduviidae				1954	1
Hemiptera	Reduviidae				2049	1
Hemiptera	Reduviidae				2089	1
Hemiptera	Reduviidae				150	35
Hemiptera	Reduviidae				163	20
Hemiptera	Reduviidae				196	4
Hemiptera	Reduviidae				284	2

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun.
Hemiptera	Reduviidae				311	11
Hemiptera	Reduviidae				512	1
Hemiptera	Reduviidae				714	11
Hemiptera	Reduviidae	Emesinae			433	9
Hemiptera	Reduviidae	Emesinae			1102	3
Hemiptera	Reduviidae	Emesinae			2016	2
Hemiptera	Reduviidae	Emesinae			2065	1
Hemiptera	Reduviidae	Emesinae			2079	1
Hemiptera	Reduviidae	Emesinae			489	10
Hemiptera	Reduviidae	Saicinae			2677	1
Hymenoptera					504	3
Hymenoptera	Anthophoridae				2018	1
Hymenoptera	Anthophoridae				186	4
Hymenoptera	Anthophoridae				203	46
Hymenoptera	Anthrophoridae				2984	1
Hymenoptera	Apidae		Apis	melifera	52	54
Hymenoptera	Braconidae		•		1258	1
Hymenoptera	Braconidae				1467	1
Hymenoptera	Braconidae				1525	1
Hymenoptera	Braconidae				1528	1
Hymenoptera	Braconidae				2057	1
Hymenoptera	Braconidae				2927	1
Hymenoptera	Braconidae				184	1
Hymenoptera	Braconidae				493	1
Hymenoptera	Chrysididae	Chrysidinae ?			1552	1
Hymenoptera	Colletidae	enirystantae :			1932	2
Hymenoptera	Colletidae				2028	1
Hymenoptera	Colletidae				2020	1
Hymenoptera	Colletidae				2980	1
Hymenoptera	Colletidae				2989	2
Hymenoptera	Colletidae				696	1
Hymenoptera	Colletidae	Euryglossinae			2056	1
	Colletidae	Euryglossinae			2050 2665	3
Hymenoptera	Colletidae ?	Eurygiossinae			2003	12
Hymenoptera	Evaniidae					
Hymenoptera	Evaniidae				1553	1
Hymenoptera					2069	1
Hymenoptera	Evaniidae				2103	1
Hymenoptera	Evaniidae				243	1
Hymenoptera	Evaniidae				500	1
Hymenoptera	Formicidae				888	9
Hymenoptera	Formicidae				889	1
Hymenoptera	Formicidae				952	1
Hymenoptera	Formicidae				1006	1
Hymenoptera	Formicidae				1011	2
Hymenoptera	Formicidae				1495	2
Hymenoptera	Formicidae				1496	1
Hymenoptera	Formicidae				1497	14
Hymenoptera	Formicidae				1507	3
Hymenoptera	Formicidae				1537	1
Hymenoptera	Formicidae				2951	1
Hymenoptera	Formicidae				510	1
Hymenoptera	Formicidae	Cerapachyinae			1569	1

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun.
Hymenoptera	Formicidae	Dolichoderinae	Iridomyrmex		535	19
Hymenoptera	Formicidae	Formicinae			1912	2
Hymenoptera	Formicidae	Formicinae	Camponotus		275	3
Hymenoptera	Formicidae	Formicinae	Camponotus		423	259
Hymenoptera	Formicidae	Formicinae	Camponotus		1585	9
Hymenoptera	Formicidae	Formicinae	Camponotus		1594	1
Hymenoptera	Formicidae	Formicinae	Camponotus		1602	2
Hymenoptera	Formicidae	Formicinae	Camponotus		1661	4
Hymenoptera	Formicidae	Formicinae	Polyrhachis ?		1969	1
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		222	9
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		252	11
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		279	5
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		281	8
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		343	19
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		486	4
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		487	9
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		552	1
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		945	2
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		974	4
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		998	20
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		1280	1
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		1391	1
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		1457	1
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		1473	3
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		1534	1
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		1535	1
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		1577	1
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		1668	2
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		1686	1
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		1718	1
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		1795	4
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		1879	1
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		1880	1
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		1886	1
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		1918	2
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		2011	2
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		2046	6
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		2514	1
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		2691	1
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		2702	1
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		2746	11
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		408	27
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		409	13
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		664	1
Hymenoptera	Formicidae	Myrmeciinae	Myrmecia	callima	477	12
Hymenoptera	Formicidae	Myrmecinae		Carrina	2952	49
Hymenoptera	Formicidae	Myrmecinae	Myrmecia		2932	120
Hymenoptera	Formicidae	Ponerinae	myrnicut		2920	2
Hymenoptera	Formicidae	Ponerinae	Pachycondyla		737	11
Hymenoptera	Formicidae	Ponerinae	Rhytidoponera		543	34
Hymenoptera	Formicidae	Ponerinae	Rhytidoponera		1575	1
		1 Unel Illae	πηγιασροπεία		13/3	1

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun.
Hymenoptera	Gasteruptiidae				2972	1
Hymenoptera	Halictidae				2982	1
Hymenoptera	Ichneumonidae				1037	7
Hymenoptera	Ichneumonidae				1038	14
Hymenoptera	Ichneumonidae				1055	19
Hymenoptera	Ichneumonidae				1077	1
Hymenoptera	Ichneumonidae				1079	8
Hymenoptera	Ichneumonidae				1089	1
Hymenoptera	Ichneumonidae				1105	14
Hymenoptera	Ichneumonidae				1146	2
Hymenoptera	Ichneumonidae				1153	2
Hymenoptera	Ichneumonidae				1164	1
Hymenoptera	Ichneumonidae				1165	1
Hymenoptera	Ichneumonidae				1436	1
Hymenoptera	Ichneumonidae				1637	6
Hymenoptera	Ichneumonidae				1771	2
Hymenoptera	Ichneumonidae				1947	1
Hymenoptera	Ichneumonidae				1953	1
Hymenoptera	Ichneumonidae				1970	1
Hymenoptera	Ichneumonidae				2004	1
Hymenoptera	Ichneumonidae				2099	1
Hymenoptera	Ichneumonidae				2152	1
Hymenoptera	Ichneumonidae				2626	8
Hymenoptera	Ichneumonidae				2660	1
Hymenoptera	Ichneumonidae				2863	1
Hymenoptera	Ichneumonidae				2864	1
Hymenoptera	Ichneumonidae				2966	1
Hymenoptera	Ichneumonidae				2997	1
Hymenoptera	Ichneumonidae				515	1
Hymenoptera	Ichneumonidae	Ophioninae	Ophion		87	46
Hymenoptera	Megachilidae	Opinoninae	Ophion		893	1
Hymenoptera	Megachilidae				183	6
Hymenoptera	Mutillidae				2093	1
Hymenoptera	Mutillidae				2095	1
Hymenoptera	Mutillidae				2090	2
Hymenoptera	Mutillidae				2100	1
Hymenoptera	Mutillidae				580	3
Hymenoptera	Pergidae				2680	2
Hymenoptera	Pergidae				2000	1
	Pergidae					
Hymenoptera	Pergidae	Densines	D		195	1
Hymenoptera	•	Perginae	Perga		1550	1
Hymenoptera	Pompilidae				1002	2
Hymenoptera	Pompilidae				1017	1
Hymenoptera	Pompilidae				1591	1
Hymenoptera	Pompilidae				1598	1
Hymenoptera	Pompilidae				1601	1
Hymenoptera	Pompilidae				1788	1
Hymenoptera	Pompilidae				2102	1
Hymenoptera	Pompilidae				2105	1
Hymenoptera	Pompilidae				584	1
Hymenoptera	Pompilidae				611	1
Hymenoptera	Pompilidae				813	1

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun.
Hymenoptera	Pompilidae	Pepsinae	Chirodamini ?		1781	1
Hymenoptera	Pompillidae				2661	1
Hymenoptera	Scoliidae	Scoliinae			1859	1
Hymenoptera	Scoliidae	Scoliinae			2030	1
Hymenoptera	Sphecidae				1212	1
Hymenoptera	Sphecidae				1344	1
Hymenoptera	Sphecidae				505	6
Hymenoptera	Tiphiidae				1071	2
Hymenoptera	Tiphiidae				1458	10
Hymenoptera	Tiphiidae				1479	1
Hymenoptera	Tiphiidae				1848	1
Hymenoptera	Tiphiidae				1891	1
Hymenoptera	Tiphiidae				1892	2
Hymenoptera	Tiphiidae				1893	1
Hymenoptera	Tiphiidae				1894	1
Hymenoptera	Tiphiidae				1971	1
Hymenoptera	Tiphiidae				1972	1
Hymenoptera	Tiphiidae				2012	1
Hymenoptera	Tiphiidae				2024	1
Hymenoptera	Tiphiidae				2026	1
Hymenoptera	Tiphiidae				2060	2
Hymenoptera	Tiphiidae				2062	1
Hymenoptera	Tiphiidae				2990	1
Hymenoptera	Tiphiidae				2994	1
Hymenoptera	Tiphiidae				295	2
Hymenoptera	Tiphiidae				699	3
Hymenoptera	Tiphiidae				796	2
Hymenoptera	Tiphiidae				806	2 6
Hymenoptera	Tiphiidae	Thyninnae			2023	1
Hymenoptera	Tiphiidae	Thyninnae			2025	2
Hymenoptera	Tiphiidae	Thyninnae			2023	11
Hymenoptera	Tiphiidae	Thyninnae			2508	2
	Tiphiidae	Thyninnae			2668	1
Hymenoptera Hymenoptera	Tiphiidae	Thyninnae			2867	5
Hymenoptera	Tiphiidae	Thynninae			1325	1
	Tiphiidae	Thynninae			1525	
Hymenoptera	-					1
Hymenoptera	Tiphiidae	Thynninae			1861	1
Hymenoptera	Tiphiidae	Thynninae			1982	5
Hymenoptera	Tiphiidae	Thynninae			481	1
Hymenoptera	Tiphiidae	Thynninae			494	2
Hymenoptera	Tiphiidae	Thynninae			516	1
Hymenoptera	Tiphiidae	Thynninae			801	7
Hymenoptera	Tiphiidae ?				3003	1
Hymenoptera	Vespidae				894	1
Hymenoptera	Vespidae	Polistinae	Polistes		2029	2
Isopoda					267	1
Isopoda					544	187
Isopoda					549	25
Isopoda					1305	5
Isopoda					1430	8
Isopoda					1586	7
Isopoda					2053	2

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun.
Isopoda					2416	2
Isopoda					2675	1
Isopoda					2676	15
Isopoda					2968	1
Isopoda		collective			519	6
Isopoda					262	7
Isopoda					539	5
Isopoda					544	1
Lepidoptera					63	597
Lepidoptera					316	242
Lepidoptera					344	1
Lepidoptera					366	61
Lepidoptera					559	1
Lepidoptera					583	1
Lepidoptera					797	50
Lepidoptera					828	1
Lepidoptera					829	1
Lepidoptera					840	3
Lepidoptera					849	1
Lepidoptera					866	1
Lepidoptera					900	4
Lepidoptera					921	7
Lepidoptera					944	1
Lepidoptera					950	1
Lepidoptera					954	4
Lepidoptera					983	9
Lepidoptera					984	1
Lepidoptera					985	2
Lepidoptera					1019	1
Lepidoptera					1019	119
Lepidoptera					1031	1
Lepidoptera					1032	252
Lepidoptera					1047	1
					1000	
Lepidoptera					1070	1
Lepidoptera						4
Lepidoptera					1078	1
Lepidoptera					1081	7
Lepidoptera					1085	13
Lepidoptera					1095	1
Lepidoptera					1129	1
Lepidoptera					1140	2
Lepidoptera					1149	2
Lepidoptera					1161	1
Lepidoptera					1169	5
Lepidoptera					1488	8
Lepidoptera					1490	46
Lepidoptera					1492	4
Lepidoptera					1493	4
Lepidoptera					1499	1
Lepidoptera					1504	2
Lepidoptera					1506	1
Lepidoptera					1510	1

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun.
Lepidoptera					1513	25
Lepidoptera					1519	3
Lepidoptera					1628	105
Lepidoptera					1655	1
Lepidoptera					1659	1
Lepidoptera					1829	1
Lepidoptera					1854	7
Lepidoptera					1860	1
Lepidoptera					1862	2
Lepidoptera					1865	6
Lepidoptera					1870	3
Lepidoptera					1874	1
Lepidoptera					1875	1
Lepidoptera					1896	1
Lepidoptera					1900	1
Lepidoptera					1907	4
Lepidoptera					1910	2
Lepidoptera					1913	1
Lepidoptera					1924	15
Lepidoptera					1921	4
Lepidoptera					1937	1
Lepidoptera					1942	1
Lepidoptera					1952	1
Lepidoptera					1965	1
Lepidoptera					1900	1
Lepidoptera					2022	2
Lepidoptera					2022	1
					2109	
Lepidoptera					2113	1
Lepidoptera						2
Lepidoptera					2185	2
Lepidoptera					2446	3
Lepidoptera					2628	1
Lepidoptera					2631	1
Lepidoptera					2637	4
Lepidoptera					2645	1
Lepidoptera					2654	2
Lepidoptera					2657	2
Lepidoptera					2713	1
Lepidoptera					2717	1
Lepidoptera					2888	2
Lepidoptera					2909	1
Lepidoptera					2914	1
Lepidoptera					2915	1
Lepidoptera					2917	1
Lepidoptera					2923	1
Lepidoptera					2924	1
Lepidoptera					2928	1
Lepidoptera					2929	5
Lepidoptera					2932	20
Lepidoptera					2933	2
Lepidoptera					2934	1
Lepidoptera					2938	5

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun
Lepidoptera					2948	4
Lepidoptera					2949	1
Lepidoptera					2950	1
Lepidoptera					2958	2
Lepidoptera					2962	1
Lepidoptera					2963	4
Lepidoptera					2965	1
Lepidoptera			the dart		322	184
Lepidoptera					48	743
Lepidoptera					76	65
Lepidoptera					197	1
Lepidoptera					238	1
Lepidoptera					315	1
Lepidoptera					367	7
Lepidoptera					376	314
Lepidoptera					399	1
Lepidoptera					411	150
Lepidoptera					420	45
Lepidoptera					428	5
Lepidoptera					430	59
Lepidoptera					456	1
Lepidoptera					459	13
Lepidoptera					657	8
Lepidoptera					760	10
Lepidoptera	Aganaidae				946	1
Lepidoptera	Anthelidae				1627	20
Lepidoptera	Anthelidae	Anthelinae	Anthela		352	5
Lepidoptera	Anthelidae	Anthelinae ?	Anthela ?		332	21
Lepidoptera	Anthelidae	Anthelinae ?	Anthela ?		457	21
Lepidoptera	Arctiidae	Anthennae ?	Anineia ?		6	470
	Arctiidae				8 25	470
Lepidoptera Lepidoptera	Arctiidae	Arctiinae			23	
			N		1091	1
Lepidoptera	Arctiidae	Arctiinae	Nyctemera	amica		2
Lepidoptera	Arctiidae	Arctiinae	Spilosoma		445	53
Lepidoptera	Arctiidae	Arctiinae	Spilosoma		2111	1
Lepidoptera	Arctiidae	Arctiinae	Utetheisa	pulchelloides	987	5
Lepidoptera	Bombycidae				749	61
Lepidoptera	Carposinidae				917	2
Lepidoptera	Carthaeidae		Carthaea	saturnioides	1	95
Lepidoptera	Cossidae				2959	1
Lepidoptera	Cossidae		Culama	australis ?	2957	1
Lepidoptera	Depressariidae				324	23
Lepidoptera	Depressariidae		Thalamarchella	alveola	141	165
Lepidoptera	Gelechioidea	Gelechiidae ?			658	49
Lepidoptera	Geometridae				77	46
Lepidoptera	Geometridae				323	4
Lepidoptera	Geometridae				358	4
Lepidoptera	Geometridae				652	1
Lepidoptera	Geometridae				821	24
Lepidoptera	Geometridae				827	2
Lepidoptera	Geometridae				836	1
Lepidoptera	Geometridae				855	35

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun.
Lepidoptera	Geometridae				856	1
Lepidoptera	Geometridae				861	57
Lepidoptera	Geometridae				915	1
Lepidoptera	Geometridae				919	138
Lepidoptera	Geometridae				923	7
Lepidoptera	Geometridae				925	5
Lepidoptera	Geometridae				942	1
Lepidoptera	Geometridae				977	2
Lepidoptera	Geometridae				978	6
Lepidoptera	Geometridae				986	2
Lepidoptera	Geometridae				1003	1
Lepidoptera	Geometridae				1028	2
Lepidoptera	Geometridae				1034	32
Lepidoptera	Geometridae				1036	2
Lepidoptera	Geometridae				1098	1
Lepidoptera	Geometridae				1106	3
Lepidoptera	Geometridae				1128	3
Lepidoptera	Geometridae				1132	1
Lepidoptera	Geometridae				1137	1
Lepidoptera	Geometridae				1155	1
Lepidoptera	Geometridae				1503	30
Lepidoptera	Geometridae				1509	1
Lepidoptera	Geometridae				1514	1
Lepidoptera	Geometridae				1515	1
Lepidoptera	Geometridae				1516	4
Lepidoptera	Geometridae				1517	2
Lepidoptera	Geometridae				1625	1
Lepidoptera	Geometridae				1828	2
Lepidoptera	Geometridae				1831	10
Lepidoptera	Geometridae				1835	1
Lepidoptera	Geometridae				1857	1
Lepidoptera	Geometridae				1876	1
Lepidoptera	Geometridae				1908	4
Lepidoptera	Geometridae				1955	1
Lepidoptera	Geometridae				1955	1
Lepidoptera	Geometridae				1964	3
Lepidoptera	Geometridae				2123	6
Lepidoptera	Geometridae				2123	1
	Geometridae				2633	2
Lepidoptera	Geometridae					
Lepidoptera	Geometridae				2634	1
Lepidoptera	Geometridae				2639	3
Lepidoptera					2640	1
Lepidoptera	Geometridae				2653	1
Lepidoptera	Geometridae				2705	1
Lepidoptera	Geometridae				2925	3
Lepidoptera	Geometridae				2926	1
Lepidoptera	Geometridae				2931	1
Lepidoptera	Geometridae				2937	1
Lepidoptera	Geometridae				2956	2
Lepidoptera	Geometridae		Poecilasthena		2630	7
Lepidoptera	Geometridae				417	38
Lepidoptera	Geometridae				20	24

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun.
Lepidoptera	Geometridae				24	62
Lepidoptera	Geometridae				41	15
Lepidoptera	Geometridae				47	68
Lepidoptera	Geometridae				50	50
Lepidoptera	Geometridae				61	21
Lepidoptera	Geometridae				66	89
Lepidoptera	Geometridae				67	648
Lepidoptera	Geometridae				82	12
Lepidoptera	Geometridae				85	1
Lepidoptera	Geometridae				86	15
Lepidoptera	Geometridae				95	46
Lepidoptera	Geometridae				96	6
Lepidoptera	Geometridae				97	1
Lepidoptera	Geometridae				317	29
Lepidoptera	Geometridae				318	1
Lepidoptera	Geometridae				326	538
Lepidoptera	Geometridae				338	1
Lepidoptera	Geometridae				339	21
Lepidoptera	Geometridae				350	6
Lepidoptera	Geometridae				362	3
Lepidoptera	Geometridae				369	3
Lepidoptera	Geometridae				375	12
Lepidoptera	Geometridae				382	28
Lepidoptera	Geometridae				387	2
Lepidoptera	Geometridae				389	8
Lepidoptera	Geometridae				392	72
Lepidoptera	Geometridae				395	6
Lepidoptera	Geometridae				402	1
Lepidoptera	Geometridae				403	20
Lepidoptera	Geometridae				407	51
Lepidoptera	Geometridae				422	50
Lepidoptera	Geometridae				424	311
Lepidoptera	Geometridae				425	42
Lepidoptera	Geometridae				431	4
Lepidoptera	Geometridae				434	2
Lepidoptera	Geometridae				436	413
Lepidoptera	Geometridae				438	8
Lepidoptera	Geometridae				442	1
Lepidoptera	Geometridae				451	4
Lepidoptera	Geometridae				517	3
Lepidoptera	Geometridae				638	33
	Geometridae					
Lepidoptera	Geometridae				639 646	1 12
Lepidoptera Lepidoptera	Geometridae				655	12
Lepidoptera	Geometridae					1 144
Lepidoptera Lepidoptera	Geometridae				691 694	144 2
Lepidoptera	Geometridae					2230
Lepidoptera Lepidoptera					754 756	
Lepidoptera Lepidoptera	Geometridae				756	1
Lepidoptera	Geometridae				757	46
Lepidoptera	Geometridae				758	173
Lepidoptera	Geometridae	. .			776	22
Lepidoptera	Geometridae	Ennominae			83	20

Lepidoptera						
Lepidopieia	Geometridae	Ennominae	Ciampa	arietaria	1518	14
Lepidoptera	Geometridae	Ennominae	Ectropis ?		23	97
Lepidoptera	Geometridae	Ennominae	Ectropis ?		46	2
Lepidoptera	Geometridae	Ennominae	Pholodes		384	50
Lepidoptera	Geometridae	Ennominae	Plesanemma		2116	1
Lepidoptera	Geometridae	Ennominae	Stibaroma	melanotoxa	858	112
Lepidoptera	Geometridae	Ennominae	Stibaroma	melanotoxa	920	1
Lepidoptera	Geometridae	Ennominae	Thalaina	clara	450	3
Lepidoptera	Geometridae	Geometrinae	Chlorocoma		22	174
Lepidoptera	Geometridae	Geometrinae	Chlorocoma	dicloraria	19	60
Lepidoptera	Geometridae	Geometrinae	Crypsiphona	ocultaria	330	38
Lepidoptera	Geometridae	Geometrinae	Eucyclodes	buprestaria	357	10
Lepidoptera	Geometridae	Geometrinae	Euloxia		1179	8
Lepidoptera	Geometridae	Geometrinae	Heliomystis		663	6
Lepidoptera	Geometridae	Geometrinae	Hypobapta		955	9
Lepidoptera	Geometridae	Geometrinae	Hypobapta	barnardi	835	9
Lepidoptera	Geometridae	Geometrinae	Prasinocyma ?		393	6
Lepidoptera	Geometridae	Larentiina	Xanthorhoe		455	14
Lepidoptera	Geometridae	Larentiinae			1029	6
Lepidoptera	Geometridae	Larentiinae	Xanthorhoe		42	211
Lepidoptera	Geometridae	Oenochrominae			2171	1
Lepidoptera	Geometridae	Oenochrominae			2754	1
Lepidoptera	Geometridae	Oenochrominae			72	36
Lepidoptera	Geometridae	Oenochrominae			355	3
Lepidoptera	Geometridae	Oenochrominae	Arcina	fulgorigera	631	43
Lepidoptera	Geometridae	Oenochrominae	Arhodia	5 6 6	2	133
Lepidoptera	Geometridae	Oenochrominae	Arhodia		79	12
Lepidoptera	Geometridae	Oenochrominae	Arhodia		320	80
Lepidoptera	Geometridae	Oenochrominae	Dichromodes	personalis	321	13
Lepidoptera	Geometridae	Oenochrominae	Hypographa ?	Γ	1521	1
Lepidoptera	Geometridae	Oenochrominae	Lissomma	serpentaria	832	5
Lepidoptera	Geometridae	Oenochrominae	Oenochroma		31	61
Lepidoptera	Geometridae	Oenochrominae	Oenochroma		976	1
Lepidoptera	Geometridae	Oenochrominae	Oenochroma	cerasiplaga	59	5
Lepidoptera	Geometridae	Oenochrominae	Oenochroma	vinaria	1045	6
Lepidoptera	Geometridae	Oenochrominae	Phallaria	ophiusaria	377	62
Lepidoptera	Geometridae ?	Ochochionniae	1 /////////	ophilisaria	625	1
Lepidoptera	Geometridae ?				830	2
Lepidoptera	Geometridae ?				862	7
Lepidoptera	Geometridae ?				896	, 9
Lepidoptera	Geometridae ?				918	6
Lepidoptera	Geometridae ?				1022	17
Lepidoptera	Geometridae ?				1022	2
Lepidoptera	Geometridae ?				1099	1
	Geometridae ?				1494	8
Lepidoptera Lepidoptera	Geometridae ?				1494	8 1
Lepidoptera	Geometridae ?				2635	1
Lepidoptera	Geometridae ?				2033	6
Lepidoptera	Geometridae ?				2703	0 1
	Geometridae ?				406	3
Lepidoptera Lepidoptera	Geometridae ?				406	3 29
Lepidoptera	Geometridae ?				421 441	29 25

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun.
Lepidoptera	Geometridae ?				641	13
Lepidoptera	Geometridae ?				652	57
Lepidoptera	Geometridae ?				753	40
Lepidoptera	Hepialidae		Abantiades		958	6
Lepidoptera	Hepialidae		Abantiades		761	21
Lepidoptera	Hepialidae		Abantiades	hydrographis	372	7
Lepidoptera	Hepialidae		Abantiades	ocellatus	373	66
Lepidoptera	Lasiocampidae				1657	6
Lepidoptera	Lasiocampidae				1832	38
Lepidoptera	Lasiocampidae				90	11
Lepidoptera	Lasiocampidae				380	13
Lepidoptera	Lasiocampidae				693	1
Lepidoptera	Lasiocampidae				755	21
Lepidoptera	Lasiocampidae	Lasiocampinae	Entometa		426	29
Lepidoptera	Lasiocampidae	Lasiocampinae	Entometa	fervens	91	11
Lepidoptera	Limacodidae		Doratifera		895	1
Lepidoptera	Limacodidae		Doratifera		1625	15
Lepidoptera	Limacodidae		Doratifera	quadriguttata	551	6
Lepidoptera	Limacodidae		Doratifera		81	39
Lepidoptera	Limacodidae		Doratifera		332	11
Lepidoptera	Limacodidae		Doratifera		398	32
Lepidoptera	Lycaenidae				296	1
Lepidoptera	Lycaenidae				2067	1
Lepidoptera	Lycaenidae	Polyommatinae	Neolucia	agricola	296	5
Lepidoptera	Lycaenidae	Polyommatinae	Zizina	labradus	1341	1
Lepidoptera	Lymantriidae	2	Teia	athlophora	2961	1
Lepidoptera	Lymantriidae		Teia	athlophora	34	62
Lepidoptera	Noctuidae				241	18
Lepidoptera	Noctuidae				345	15
Lepidoptera	Noctuidae				413	11
Lepidoptera	Noctuidae				556	1
Lepidoptera	Noctuidae				563	4
Lepidoptera	Noctuidae				626	2
Lepidoptera	Noctuidae				656	3
Lepidoptera	Noctuidae				833	6
Lepidoptera	Noctuidae				847	1
Lepidoptera	Noctuidae				853	5
Lepidoptera	Noctuidae				859	2
Lepidoptera	Noctuidae				996	31
Lepidoptera	Noctuidae				1046	12
Lepidoptera	Noctuidae				1040	12
Lepidoptera	Noctuidae				1139	22
Lepidoptera	Noctuidae				1501	1
	Noctuidae				1501	3
Lepidoptera						5 1
Lepidoptera Lepidoptera	Noctuidae Noctuidae				1511 1658	1
Lepidoptera	Noctuidae				1858	1
Lepidoptera	Noctuidae				1872	1
Lepidoptera	Noctuidae				1899	44
Lepidoptera	Noctuidae				1944	50
Lepidoptera	Noctuidae				1956	2
Lepidoptera	Noctuidae				2117	2

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun.
Lepidoptera	Noctuidae				2122	1
Lepidoptera	Noctuidae				2441	26
Lepidoptera	Noctuidae				2627	14
Lepidoptera	Noctuidae				2641	1
Lepidoptera	Noctuidae				2704	1
Lepidoptera	Noctuidae				2944	5
Lepidoptera	Noctuidae				2953	5
Lepidoptera	Noctuidae				336	7
Lepidoptera	Noctuidae				25	88
Lepidoptera	Noctuidae				33	35
Lepidoptera	Noctuidae				38	133
Lepidoptera	Noctuidae				75	66
Lepidoptera	Noctuidae				133	5
Lepidoptera	Noctuidae				137	94
Lepidoptera	Noctuidae				138	1
Lepidoptera	Noctuidae				139	2
Lepidoptera	Noctuidae				140	84
Lepidoptera	Noctuidae				344	10
Lepidoptera	Noctuidae				364	3
Lepidoptera	Noctuidae				383	22
Lepidoptera	Noctuidae				386	160
Lepidoptera	Noctuidae				391	48
Lepidoptera	Noctuidae				394	21
Lepidoptera	Noctuidae				405	16
Lepidoptera	Noctuidae				412	8
Lepidoptera	Noctuidae				419	24
Lepidoptera	Noctuidae				435	3
Lepidoptera	Noctuidae				443	4
Lepidoptera	Noctuidae				446	4
Lepidoptera	Noctuidae				449	6
Lepidoptera	Noctuidae				454	23
Lepidoptera	Noctuidae				640	7
Lepidoptera	Noctuidae				642	6
Lepidoptera	Noctuidae				648	6
Lepidoptera	Noctuidae				649	8
Lepidoptera	Noctuidae				694	1
Lepidoptera	Noctuidae				750	93
Lepidoptera	Noctuidae				765	2
Lepidoptera	Noctuidae				705	59
Lepidoptera	Noctuidae				771	3
Lepidoptera	Noctuidae				799	4
Lepidoptera	Noctuidae	Acronictinae	Peripyra	sanguinipucta	379	32
Lepidoptera	Noctuidae	Agaristinae	Periscepta	polysticta	185	52 7
Lepidoptera	Noctuidae	Amphipyrinae	Геньсери	potysticia	523	30
Lepidoptera	Noctuidae	Amphipyrinae			1020	4
Lepidoptera	Noctuidae	Amphipyrinae			1020	- 11
	Noctuidae				1512	1
Lepidoptera Lepidoptera	Noctuidae	Amphipyrinae Amphipyrinae			1898	2
	Noctuidae				1898	2 30
Lepidoptera Lepidoptera	Noctuidae	Amphipyrinae			414	30 90
Lepidoptera Lepidoptera	Noctuidae	Amphipyrinae				
Lepidoptera		Amphipyrinae			452	6
Lepidoptera	Noctuidae	Amphipyrinae	Proteuxoa	pissonephra	39	1099

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun.
Lepidoptera	Noctuidae	Amphipyrinae	Proteuxoa?		2752	3
Lepidoptera	Noctuidae	Catocalinae	Dasypodia	selenophora	30	5
Lepidoptera	Noctuidae	Catocalinae	Lyncestis	melanoschista	415	38
Lepidoptera	Noctuidae	Catocalinae	Ophiusa		1054	1
Lepidoptera	Noctuidae	Catocalinae	Pantydia		5	82
Lepidoptera	Noctuidae	Catocalinae	Pantydia		329	53
Lepidoptera	Noctuidae	Catocalinae	Pantydia		388	172
Lepidoptera	Noctuidae	Hadeninae	Persectania	ewingii	40	160
Lepidoptera	Noctuidae	Hypeninae	Sandava	scitisigna	43	85
Lepidoptera	Noctuidae	Noctuinae	Agrotis		844	2
Lepidoptera	Noctuidae	Noctuinae	Agrotis	munda	18	894
Lepidoptera	Noctuidae	Nolinae	Uraba	lugens	686	1
Lepidoptera	Noctuidae	Plusiinae	Chrysodeixis		2114	1
Lepidoptera	Noctuidae	Plusiinae	Chrysodeixis	argentifera	659	4
Lepidoptera	Noctuidae	Plusiinae	Chrysodeixis	eriosoma	346	1
Lepidoptera	Noctuidae	unknown battered noctuid			1927	10
Lepidoptera	Noctuidae	unknown battered noctuid			1928	8
Lepidoptera	Noctuidae	battered noctuid			1929	5
Lepidoptera	Noctuidae	battered noctuid			1930	5
Lepidoptera	Noctuidae ?				1094	1
Lepidoptera	Noctuidae ?				2939	1
Lepidoptera	Noctuidae ?				766	13
Lepidoptera	Notodontidae		Destolmia		4	67
Lepidoptera	Notodontidae		Destolmia		1839	1
Lepidoptera	Notodontidae				80	35
Lepidoptera	Notodontidae				374	322
Lepidoptera	Notodontidae		Danima	banksiae	57	20
Lepidoptera	Notodontidae		Hylaeora	dilucida	370	38
Lepidoptera	Notodontidae		Sorama	bicolor	58	28
Lepidoptera	Nymphalidae	Nymphalinae	Vanessa	kershawi	1201	3
Lepidoptera	Nymphalidae	Nymphalinae	Vanessa	kershawi	1202	1
Lepidoptera	Nymphalidae	Satyrinae	Geitoneura	klugii	306	2
Lepidoptera	Nymphalidae	Satyrinae	Heteronympha	merope dub	298	5
Lepidoptera	Oecophoridae			1 - 1	1833	525
Lepidoptera	Oecophoridae				1840	86
Lepidoptera	Oecophoridae				1895	8
Lepidoptera	Oecophoridae				1903	33
Lepidoptera	Oecophoridae				2623	2
Lepidoptera	Oecophoridae				2940	1
Lepidoptera	Oecophoridae				64	22
Lepidoptera	Oecophoridae				65	15
Lepidoptera	Oecophoridae				104	6
Lepidoptera	Oecophoridae				396	49
Lepidoptera	Oecophoridae	Oecophorinae	Euchaetis		2642	1
Lepidoptera	Oecophoridae	Oecophorinae	Philobota	xanthastis	111	1
Lepidoptera	Oecophoridae	Oecophorinae	Wingia	mathustis	1654	1
Lepidoptera	Oecophoridae	Oecophorinae	Wingia	aurata	331	4
Lepidoptera	Oecophoridae	Oecophorinae	Wingia	lambertella	2632	4
Lepidoptera	Oecophoridae	Oecophorinae	wingia Zonopetala	clerota	325	2
	Oecophoridae ?	Occopitorinae	zonopeiaia	cieroia	325 1626	2 9
Lepidoptera Lepidoptera	-					
Lepidoptera	Oecophoridae ?				236	6
Lepidoptera	Oecophoridae?				62	75

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun.
Lepidoptera	Oenosandridae		Discophlebia	lucasii	518	2
Lepidoptera	Psychidae	Taleporiinae	Iphierga		1454	2
Lepidoptera	Pyralidae				333	261
Lepidoptera	Pyralidae				337	1
Lepidoptera	Pyralidae				948	4
Lepidoptera	Pyralidae				953	2
Lepidoptera	Pyralidae				982	1
Lepidoptera	Pyralidae				1051	894
Lepidoptera	Pyralidae				1134	6
Lepidoptera	Pyralidae				1135	3
Lepidoptera	Pyralidae				1181	1
Lepidoptera	Pyralidae				1489	85
Lepidoptera	Pyralidae				1491	56
Lepidoptera	Pyralidae				1834	15
Lepidoptera	Pyralidae				1837	8
Lepidoptera	Pyralidae				1864	3
Lepidoptera	Pyralidae				2115	76
Lepidoptera	Pyralidae				2440	7
Lepidoptera	Pyralidae				2462	2
Lepidoptera	Pyralidae				2946	2
Lepidoptera	Pyralidae				342	67
Lepidoptera	Pyralidae				356	48
Lepidoptera	Pyralidae				365	8
Lepidoptera	Pyralidae				397	101
Lepidoptera	Pyralidae				401	5
Lepidoptera	Pyralidae	Crambinae	Hednota	hoplitella	979	2
Lepidoptera	Pyralidae	Crambinae	Hednota	recurvella	922	8
Lepidoptera	Pyralidae	Epipaschiinae			460	37
Lepidoptera	Pyralidae	Epipaschiinae			1126	30
Lepidoptera	Pyralidae	Epipaschiinae ?			73	77
Lepidoptera	Pyralidae	Epipaschiinae ?			1025	1
Lepidoptera	Pyralidae	Pyraustinae	Uresiphita	ornithopteralis	84	159
Lepidoptera	Pyralidae ?	-)	<i>r</i>	·······	837	24
Lepidoptera	Pyralidae ?				928	2
Lepidoptera	Pyralidae ?				947	62
Lepidoptera	Pyralidae ?				957	37
Lepidoptera	Pyralidae ?				1166	1
Lepidoptera	Pyralidae ?				1170	1
Lepidoptera	Pyralidae ?				1633	1
Lepidoptera	Pyralidae ?				12	55
Lepidoptera	Pyralidae ?				661	33
Lepidoptera	Pyralidae?				2110	2
Lepidoptera	Saturniidae		Opodiphthera	helena	328	647
Lepidoptera	Thaumetopoeidae		Spoupminera	neienu	328	32
Lepidoptera	Thaumetopoeidae				32 71	52 4
Lepidoptera	Thaumetopoeidae				1068	4
Lepidoptera	Thaumetopoeidae		Ochrogaster		1008	4 312
	Thaumetopoeidae		Ochrogaster Ochrogaster		2655	
Lepidoptera	-		-			1
Lepidoptera Lepidoptera	Thaumetopoeidae		Tanystola		1158 60	1
	Thaumetopoeidae				00	13
Lepidoptera	Thaumetopoeidae				692	13

Thaumetopoeidae Thaumetopoeidae Thaumetopoeidae ? Thaumetopoeidae ? Tineidae		Ochrogaster Oenosandra	boisduvalii	7	208
Thaumetopoeidae ? Thaumetopoeidae ?		Oenosandra	hoisdunali		
Thaumetopoeidae ?			voisauvalli	404	7
-				864	53
Tineidae				1084	2
Thieldue		Moerarchis	clathrella	319	75
Tortricidae				943	6
Tortricidae				92	28
Tortricidae?				2716	4
UNIDENTIFIABLE		unidentifiable	unidentifiable	1172	448
Zygaenidae		Pollanisus		78	123
Zygaenidae		Pollanisus	cupreus	45	72
Amorphoscelidae				1959	1
Amorphoscelidae				2444	1
Amorphoscelidae				2723	3
Amorphoscelidae	Paraoxypilinae			132	95
Amorphoscelidae	Paraoxypilinae	Paraoxypilus	tasmaniensis?	739	3
Mantidae				1459	5
Mantidae				1541	4
Mantidae				2107	1
Mantidae				309	4
Mantidae				674	1
Mantidae				718	5
Mantidae				784	3
Mantidae		Hierodula		767	4
Mantidae	Mantinae			981	1
Mantidae	Mantinae			1001	1
Bittacidae				1453	3
Bittacidae				1456	1
Bittacidae				1463	1
Bittacidae		Harpobittacus		908	7
Bittacidae		-		250	24
		-	poultoni		10
-	Chauliodinae	1	1		2
					1
					1
•					4
					3
					2
					6
					5
					1
					3
		Chenistonia			1
					12
		Chemstonia			4
					2
					2
					1
		Chanistonia			29
		Chenisionia			29 1
					75 3
	UNIDENTIFIABLE Zygaenidae Zygaenidae Amorphoscelidae Amorphoscelidae Amorphoscelidae Amorphoscelidae Amorphoscelidae Mantidae Mantidae Mantidae Mantidae Mantidae Mantidae Mantidae Mantidae Bittacidae Bittacidae Bittacidae	UNIDENTIFIABLEZygaenidaeZygaenidaeZygaenidaeAmorphoscelidaeAmorphoscelidaeAmorphoscelidaeAmorphoscelidaeParaoxypilinaeMantidaeMantinaeMantidaeMantinaeMantidaeMantinaeMantidaeMantidaeMantidaeMantinaeMantidaeMantinaeMantidaeMantinaeMantidaeMantinaeMantidaeMantinaeMantidaeMantidaeMantidaeMantidaeMantidaeMantidaeMantidaeMantidaeMantidaeMantidaeMantidaeMantidaeMantidaeMantidaeMantidaeMantidae	UNIDENTIFIABLEunidentifiableZygaenidaePollanisusZygaenidaePollanisusAmorphoscelidaeParaoxypilinaeAmorphoscelidaeParaoxypilinaeAmorphoscelidaeParaoxypilinaeAmorphoscelidaeParaoxypilinaeAmorphoscelidaeParaoxypilinaeMantidaeParaoxypilinaeMantidaeParaoxypilinaeMantidaeParaoxypilinaeMantidaeParaoxypilinaeMantidaeParaoxypilinaeMantidaeParaoxypilinaeMantidaeParaoxypilinaeMantidaeParaoxypilinaeMantidaeParaoxypilinaeMantidaeParaoxypilinaeMantidaeParaoxypilinaeMantidaeParaoxypilinaeMantidaeParaoxypilinaeMantidaeParaoxypilinaeMantidaeParaoxypilinaeMantidaeParaoxypilinaeMantidaeMantinaeMantidaeMantinaeMantidaeParaoypilinaeBittacidaeParaoypilinacusBittacidaeParaoypilinacusBittacidaeParaoypilinacusBittacidaeParaoypilinacusBittacidaeParaoypilinacusBittacidaeParaoypilinacusBittacidaeParaoypilinacusBittacidaeParaoypilinacusBittacidaeParaoypilinacusParaoypilinaeParaoypilinacusParaoypilinaeParaoypilinacusParaoypilinaeParaoypilinaeParaoypilinaeParaoypilinae <td< td=""><td>UNIDENTIFIABLEunidentifiableenidentifiableZygaenidaePollanisuscupreusAmorphoscelidaePollanisuscupreusAmorphoscelidaeParaoxypilinaesasmaniensis ?AmorphoscelidaeParaoxypilinaesasmaniensis ?AmorphoscelidaeParaoxypilinaesasmaniensis ?AmorphoscelidaeParaoxypilinaesasmaniensis ?MantidaeFaraoxypilinaesasmaniensis ?MantidaeFaraoxypilinaesastromeropeBittacidaeFaraoxypilinaesastromeropeBittacidaeSastromeropesastromerope</td><td>UNIDENTIFIABLEunidentifiableunidentifiable1172ZygaenidaePollanisus78ZygaenidaePollanisuscupreus48Amorphoscelidae2444AmorphoscelidaeParaoxypilinae2444AmorphoscelidaeParaoxypilinaeParaoxypilina132AmorphoscelidaeParaoxypilinaeParaoxypilina1459MantidaeParaoxypilinaeParaoxypilina2107Mantidae909309309Mantidae78309Mantidae78309Mantidae7878Mantidae7878Mantidae7878Mantidae9081453Mantidae10011453Bittacidae14531456Bittacidae14751453Bittacidae14751453Bittacidae14751453Bittacidae14771453Bittacidae14791453Bittacidae14791453Bittacidae14791453Bittacidae14791453Bittacidae14771453Bittacidae14791453Bittacidae14791453Bittacidae14791453Bittacidae14791453Bittacidae14791453Bittacidae14791453Bittacidae14791453Bittacidae14711453Bittacidae14711453<t< td=""></t<></td></td<>	UNIDENTIFIABLEunidentifiableenidentifiableZygaenidaePollanisuscupreusAmorphoscelidaePollanisuscupreusAmorphoscelidaeParaoxypilinaesasmaniensis ?AmorphoscelidaeParaoxypilinaesasmaniensis ?AmorphoscelidaeParaoxypilinaesasmaniensis ?AmorphoscelidaeParaoxypilinaesasmaniensis ?MantidaeFaraoxypilinaesasmaniensis ?MantidaeFaraoxypilinaesastromeropeBittacidaeFaraoxypilinaesastromeropeBittacidaeSastromeropesastromerope	UNIDENTIFIABLEunidentifiableunidentifiable1172ZygaenidaePollanisus78ZygaenidaePollanisuscupreus48Amorphoscelidae2444AmorphoscelidaeParaoxypilinae2444AmorphoscelidaeParaoxypilinaeParaoxypilina132AmorphoscelidaeParaoxypilinaeParaoxypilina1459MantidaeParaoxypilinaeParaoxypilina2107Mantidae909309309Mantidae78309Mantidae78309Mantidae7878Mantidae7878Mantidae7878Mantidae9081453Mantidae10011453Bittacidae14531456Bittacidae14751453Bittacidae14751453Bittacidae14751453Bittacidae14771453Bittacidae14791453Bittacidae14791453Bittacidae14791453Bittacidae14791453Bittacidae14771453Bittacidae14791453Bittacidae14791453Bittacidae14791453Bittacidae14791453Bittacidae14791453Bittacidae14791453Bittacidae14791453Bittacidae14711453Bittacidae14711453 <t< td=""></t<>

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun
Neuroptera	Chrysopidae				2054	3
Neuroptera	Chrysopidae				2710	21
Neuroptera	Chrysopidae				2715	1
Neuroptera	Chrysopidae		Chrysopa		822	81
Neuroptera	Chrysopidae		Chrysopa		361	15
Neuroptera	Hemerobiidae				131	15
Neuroptera	Hemerobiidae				360	75
Neuroptera	Mantispidae				1315	1
Neuroptera	Mantispidae				1921	2
Neuroptera	Mantispidae				2010	1
Neuroptera	Mantispidae				2215	1
Neuroptera	Mantispidae				2935	1
Neuroptera	Mantispidae				687	1
Neuroptera	Myrmeleontidae				1906	10
Neuroptera	Myrmeleontidae				1946	1
Neuroptera	Myrmeleontidae				2742	2
Neuroptera	Myrmeleontidae				305	2
Neuroptera	Myrmeleontidae				400	88
Neuroptera	Osmylidae				1920	2
Neuroptera	Osmylidae				1920	2 60
-	Osmynuae					1
Odonata	7				2987	
Odonata	Zygoptera				1005	1
Odonata	Zygoptera				1758	1
Odonata	Zygoptera	x			1996	1
Odonata	Zygoptera	Lestoidea			1004	1
Odonata	Zygoptera	Lestoidea			237	2
Oligochaeta					2663	1
Oligochaeta					2971	2
Oligochaeta	Megascloecidae				2671	1
Oligochaeta	Megascolecidae				1475	8
Oligochaeta	Megascolecidae				1482	1
Oligochaeta	Megascolecidae				1484	1
Oligochaeta	Megascolecidae				1556	5
Oligochaeta	Megascolecidae				2072	3
Oligochaeta	Megascolecidae				2077	2
Oligochaeta	Megascolecidae				2082	1
Oligochaeta	Megascolecidae				2679	1
Oligochaeta	Megascolecidae				2690	1
Oligochaeta	Megascolecidae				2697	4
Oligochaeta	Megascolecidae				2700	3
Oligochaeta	Megascolecidae	collective			520	1
Onychophora					937	1
Onychophora					1481	1
Onychophora					2999	3
Opilionida					1447	1
Orthoptera	Acrididae				1210	4
Orthoptera	Acrididae				1372	1
Orthoptera	Acrididae				1452	2
Orthoptera	Acrididae				1465	2
Orthoptera	Acrididae				1498	1
Orthoptera	Acrididae				1533	1
Orthoptera	Acrididae				1555	1

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun.
Orthoptera	Acrididae				1549	1
Orthoptera	Acrididae				1599	1
Orthoptera	Acrididae				1666	2
Orthoptera	Acrididae				1677	3
Orthoptera	Acrididae				1976	8
Orthoptera	Acrididae				2009	1
Orthoptera	Acrididae				2031	2
Orthoptera	Acrididae				2032	1
Orthoptera	Acrididae				2045	1
Orthoptera	Acrididae				2061	4
Orthoptera	Acrididae				2086	1
Orthoptera	Acrididae				2131	1
Orthoptera	Acrididae				2133	1
Orthoptera	Acrididae				2921	1
Orthoptera	Acrididae				2954	1
Orthoptera	Acrididae				2985	1
Orthoptera	Acrididae				3004	1
Orthoptera	Acrididae				174	18
Orthoptera	Acrididae				294	1
Orthoptera	Acrididae				501	5
Orthoptera	Acrididae				738	1
Orthoptera	Acrididae				782	4
Orthoptera	Acrididae	Catantopinae	Adreppus		868	11
Drthoptera	Acrididae	Catantopinae	Adreppus		1323	1
Drthoptera	Acrididae	Catantopinae	Cedarinia		726	2
Drthoptera	Acrididae	Catantopinae	Cedarinia Cedarinia		890	2 5
-	Acrididae	-	Cedarinia		890	8
Orthoptera	Acrididae	Catantopinae	Cedarinia Cedarinia		1572	8 1
Orthoptera	Acrididae	Catantopinae				
Orthoptera		Catantopinae	Coryphistes		231	28
Orthoptera	Acrididae	Catantopinae	Ecphantus		1010	1
Orthoptera	Acrididae	Catantopinae	Ecphantus	sp nova	713	1
Orthoptera	Acrididae	Catantopinae	Goniaea		232	10
Orthoptera	Acrididae	Catantopinae	Goniaea		233	18
Orthoptera	Acrididae	Catantopinae	Goniaea		255	8
Orthoptera	Acrididae	Catantopinae	Goniaea		871	6
Orthoptera	Acrididae	Catantopinae	Goniaea		872	41
Orthoptera	Acrididae	Catantopinae	Goniaea		1441	2
Orthoptera	Acrididae	Catantopinae	Goniaea		1470	6
Orthoptera	Acrididae	Catantopinae	Goniaea		1547	3
Orthoptera	Acrididae	Catantopinae	Goniaea		1984	3
Orthoptera	Acrididae	Catantopinae	Goniaea		2019	1
Orthoptera	Acrididae	Catantopinae	Goniaea		2664	1
Orthoptera	Acrididae	Catantopinae	Goniaea		2682	1
Orthoptera	Acrididae	Catantopinae	Goniaea		235	16
Orthoptera	Acrididae	Catantopinae	Goniaea		272	8
Orthoptera	Acrididae	Catantopinae	Goniaea		304	7
Orthoptera	Acrididae	Catantopinae	Goniaea ?		273	2
Orthoptera	Acrididae	Catantopinae	Phaulacridium		293	5
Orthoptera	Acrididae	Catantopini	Goniaeoidea		2977	1
Orthoptera	Eumastacidae				1345	2
Orthoptera	Eumastacidae				1469	1
Orthoptera	Gryllacrididae ?	super f Gryllacridoidea			1935	1

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abun
Orthoptera	Gryllidae				834	5
Orthoptera	Gryllidae				857	43
Orthoptera	Gryllidae				994	1
Orthoptera	Gryllidae				1349	1
Orthoptera	Gryllidae				1508	1
Orthoptera	Gryllidae				1604	1
Orthoptera	Gryllidae				1981	1
Orthoptera	Gryllidae		Teleogryllus	commodus	1916	13
Orthoptera	Gryllidae				180	13
Orthoptera	Gryllidae				216	1
Orthoptera	Gryllidae				608	21
Orthoptera	Gryllidae				609	2
Orthoptera	Gryllidae				618	6
Orthoptera	Gryllidae				809	1
Orthoptera	Gryllidae	Brachytrupinae	Apterogryllus		811	3
Orthoptera	Gryllotalpidae		Gryllotalpa		1936	1
Orthoptera	Gryllotalpidae		Gryllotalpa		2092	1
Orthoptera	Pyrgomorphidae				883	2
Orthoptera	Stenopelmatidae				524	3
Orthoptera	Stenopelmatidae				931	1
Orthoptera	Stenopelmatidae				1008	6
Orthoptera	Stenopelmatidae				1557	3
Orthoptera	Stenopelmatidae				1582	1
Orthoptera	Stenopelmatidae	Henicinae	Onosandrus		526	203
Orthoptera	Stenopelmatidae ?	Tiemeinae	Onosunarus		2097	1
Orthoptera	Tetigoniidae				2097	2
	Tettigoniidae				106	6
Orthoptera	-					
Orthoptera	Tettigoniidae				578	1
Orthoptera	Tettigoniidae				873	3
Orthoptera	Tettigoniidae				881	6
Orthoptera	Tettigoniidae				882	5
Orthoptera	Tettigoniidae				902	1
Orthoptera	Tettigoniidae				903	3
Orthoptera	Tettigoniidae				980	3
Orthoptera	Tettigoniidae				988	4
Orthoptera	Tettigoniidae				1013	1
Orthoptera	Tettigoniidae				1026	21
Orthoptera	Tettigoniidae				1043	2
Orthoptera	Tettigoniidae				1224	1
Orthoptera	Tettigoniidae				1342	1
Orthoptera	Tettigoniidae				1420	1
Orthoptera	Tettigoniidae				1426	1
Orthoptera	Tettigoniidae				1485	4
Orthoptera	Tettigoniidae				1487	1
Orthoptera	Tettigoniidae				1539	1
Orthoptera	Tettigoniidae				1675	1
Orthoptera	Tettigoniidae				1931	1
Orthoptera	Tettigoniidae				2041	1
Orthoptera	Tettigoniidae				2130	4
Orthoptera	Tettigoniidae				2659	1
Orthoptera	Tettigoniidae				2936	1
Orthoptera	Tettigoniidae				2988	1

Order	Family	Taxon 3	Genus	Species	Msp ID #	Abu
Orthoptera	Tettigoniidae				118	1
Orthoptera	Tettigoniidae				149	2
Orthoptera	Tettigoniidae				167	5
Orthoptera	Tettigoniidae				202	1
Orthoptera	Tettigoniidae				218	1
Orthoptera	Tettigoniidae				246	1
Orthoptera	Tettigoniidae				268	2
Orthoptera	Tettigoniidae				276	1
Orthoptera	Tettigoniidae				278	1
Orthoptera	Tettigoniidae				310	1
Orthoptera	Tettigoniidae				314	1
Orthoptera	Tettigoniidae				688	3
Orthoptera	Tettigoniidae				715	1
Orthoptera	Tettigoniidae				791	2
Orthoptera	Tettigoniidae	Phaneropterinae	Caedicia		485	6
Orthoptera	Tettigoniidae	Phasmatidinae			1997	2
Orthoptera	Tettigoniidae	Phasmodinae			1039	2
Orthoptera	Tettigoniidae	Phasmodinae			1052	2
Orthoptera	Tettigoniidae	Phasmodinae			1080	1
Phasmatodea	Phasmatidae				973	2
Phasmatodea	Phasmatidae				1520	1
Phasmatodea	Phasmatidae				1968	2
Phasmatodea	Phasmatidae				2005	1
Phasmatodea	Phasmatidae				2043	1
Phasmatodea	Phasmatidae				303	6
Phasmatodea	Phasmatidae				458	5
Phasmatodea	Phasmatidae				785	5
Platyhelminthes	Tricladida				1385	1
Platyhelminthes	Tricladida				1404	6
Platyhelminthes	Tricladida				1568	2
Platyhelminthes	Tricladida				521	2
Scorpionida	Thefactua				879	3
-					879	3 47
Scorpionida Scorpionida					880 965	47
Scorpionida					905 1451	9
Scorpionida Scorpionida					1592 1600	1
Scorpionida						
-					2683	1
Scorpionida Scorpionida					2693 469	11
-						29
Scorpionida					568	7
Frichoptera					1042	39
Frichoptera					1849	28
Frichoptera					1852	57
Frichoptera					2447	2
Frichoptera					2448	12
Frichoptera					2903	39
Frichoptera					69	1
Frichoptera					144	103
Frichoptera					145	225
Frichoptera					146	60
Trichoptera					151	5

DIURNAL BIRDS

G.L.Liddelow and Verna Tunsell

Introduction

Donnelly FORESTCHECK grids were monitored for diurnal birds in the spring of 2007. The object of recording birds in FORESTCHECK is to monitor the impacts of logging and associated burning on bird species composition and abundance. This is achieved by:

- Recording species richness and abundance within each treatment (external reference, coupe buffer, shelterwood and gap release)
- Comparing species richness and abundance between each treatment
- Analyzing trends within species between treatments

Monitoring

Science Division personnel were able to undertake all the diurnal bird census work in 2007 and did not have to engage any outside assistance. Both sight and sound are used to identify the birds and the census technique (area search) is stated in the FORESTCHECK Operating Plan. However, due to unavailability of personnel, nocturnal bird surveys were not conducted in 2007.

There are ten FORESTCHECK grids in the Donnelly region which include three external references, three coupe buffers, one shelterwood and three gap release treatments.

Preliminary Results and Discussion

A total of 35 species of birds, comprising of 667 individuals, were recorded across all ten grids (Table 1). There were 25 species and 205 individuals in the external reference treatment, 27 species and 184 individuals in coupe buffers, 19 species and 74 individuals in the single shelterwood and 29 species and 204 individuals in the gap release treatment grids.

Nineteen of the 35 species recorded during this survey had 10 or more individuals. These included the forest red-tailed black cockatoo (*Calyptorhynchus banksii naso*), three 'broad-tailed' parrots in the western rosella (*Platycercus icterotis*), red-capped (*Platycercus spuruius*) and twenty-eight Parrot (*Barnardius zonarius semitorquatus*), one upper canopy bird in the striated pardalote (*Pardalotus striatus*), one insectivorous arboreal bird in the black-faced cuckoo-shrike (*Coracina novaehollandiae*), the splendid (*Malurus splendens*) and red-winged (*M. elegans*) fairy wrens, the western white-naped honeyeater(*Melithreptus chloropsis*), six excellent songsters in the grey fantail (*Rhipidura fuliginosa*), scarlet robin (*Petroica multicolor*), white-breasted robin (*Eopsaltria georgiana*), western yellow robin (*E. griseogularis*), golden whistler (*Pachycephala pectoralis*) and the grey shrike-thrush (*Colluricincla harmonica*) and four small, mainly ground-dwelling or foliage-foraging, insectivorous birds in the western gerygone (*Gerygone fusca*), western thornbill (*Acanthiza inornata*), broad-tailed thornbill (*A. apicalis*) and the white-browed scrubwren (*Sericornis frontalis*).

Table 1. Bird species and number of individuals recorded in each treatment in the Donnelly FORESTCHECK grids in 2007 (RAOU = Royal Australian Ornithology Union number).

RAOU	Scientific name	Common name	Total	External reference	Coupe buffer	Shelter- wood	Gap release
1	Dromaius novaehollandiae	Emu	1				1
34	Phaps chalcoptera	Common Bronzewing	1	1			
35	Phaps elegans	Brush Bronzewing	2		1		1
	Calyptorhynchus banksii	Forest Red-tailed Black					
264	naso	Cockatoo	19	9		3	7
289	Platycercus icterotis	Western Rosella	21	6	7	1	7
290	Platycercus spurius	Red-capped Parrot	17	6	7	1	3
	Barnardius zonarius						
294	semitorquatus	Twenty-eight Parrot	21	6	7	1	7
322	Dacelo novaeguineae	Laughing Kookaburra	7		5	1	1
338	Cacomantis flabelliformis	Fan-tailed Cuckoo	3	1	2		
342	Chrysococcyx basalis	Horsefield's Bronze-cuckoo	2		2		
361	Rhipidura fuliginosa	Grey Fantail	11	3	3	2	3
380	Petroica multicolor	Scarlet Robin	19	10	5	1	3
387	Eopsaltria georgiana	White-breasted Robin	13	7	5		1
	Eopsaltria australis						
394	griseogularis	Western Yellow Robin	18	9	4	4	1
398	Pachycephala pectoralis	Golden Whistler	44	14	7	8	15
408	Colluricincla harmonica	Grey Shrike-thrush	22	8	6	2	6
424	Coracina novaehollandiae	Black-faced Cuckoo shrike	10	3	3	3	1
430	Lalage tricolor	White-winged Triller	1	1	•	-	-
463	Gerygone fusca	Western Gerygone	56	22	15	7	12
472	Acanthiza inornata	Western Thornbill	23	7	2	8	6
		Broad-tailed (Inland)			_	÷	-
476	Acanthiza apicalis	Thornbill	135	27	46	18	44
486	Acanthiza chrysorrhoa	Yellow-rumped Thornbill	2	_,		2	
488	Sericornis frontalis	White-browed Scrubwren	42	11	12	_	19
532	Malurus splendens	Splendid Fairy-wren	29	12	3	2	12
538	Malurus elegans	Red-winged Fairy-wren	13		6	_	7
556	Climacteris rufa	Rufous Treecreeper	6	3	1	1	1
565	Pardalotus punctatus	Spotted Pardalote	1	5	1		1
574	Zosterops lateralis lateralis	Silvereye	6				6
271	Losterops talerans talerans	Western White-naped	Ū				Ū
578	Melithreptus chloropsis	Honeyeater	39	13	7	5	14
270	Acanthorhynchus	Tioneyeater	07	19	,	Ũ	
592	superciliosus	Western Spinebill	6	2	1		3
638	Anthochaera carunculata	Red Wattlebird	6	3	3		5
697	Sterpera versicolor	Grey Currawong	5	5	4		1
710	Anthochaera lunulata	Western Little Wattlebird	2		т		2
930	Corvus coronoides	Australian Raven	4	1	1		2
976	Pardalotus striatus	Striated Pardalote	60	20	19	4	17
		Total Individuals	667	205	184	74	204
		Birds/ha	13.3	13.7	12.3	14.8	13.6
		Total Species	35	25	27	19	29

The density of birds was similar in each treatment, with the external reference having 13.6 birds ha⁻¹, coupe buffers had 12.2 ha⁻¹, the shelterwood 14.8 ha⁻¹ and the gap release 13.6 ha⁻¹. Over all the treatments the density of birds was 13.3 birds ha⁻¹. The Kingston Bird Study which has been following the effects of logging in the southern forest since 1996 has bird densities in all treatments varying from 10.4 - 13.4 ha⁻¹.

In 2001 the Donnelly FORESTCHECK grids had 10.7 birds ha⁻¹; in 2002 the Wellington grids had 15.4 ha⁻¹, in 2003 the Perth Hills grids had 9.7 ha⁻¹, in 2004 the Wellington East grids had 9.7 ha⁻¹ and in 2005 Blackwood grids had 8.9 birds ha⁻¹.

Eight species of birds were recorded as occurring in only one treatment (either external reference, coupe buffer, shelterwood or gap release) (Table 1). However, none of these would be expected to be restricted to that treatment. Of these eight species, four had only one individual, three had two individuals and one had six individuals.

The most commonly recorded bird was the broad-tailed (inland) thornbill with 135 records. Even though this species enjoys the re-growth following regeneration it was observed in all treatments with the coupe buffer and gap release being the most productive (46 and 44 records). This was followed by the upper canopy, insectivorous striated pardalote with 60 records, of which 20 came from the external reference grids, 19 from coupe buffers, 17 from gap release grids and only 4 from the single shelterwood grid. The western gerygone had 56 records, the golden whistler 44 and the white-browed scrubwren with 42 records (Fig 1). Surprisingly, the white-browed scrubwren was not recorded in the shelterwood grid.

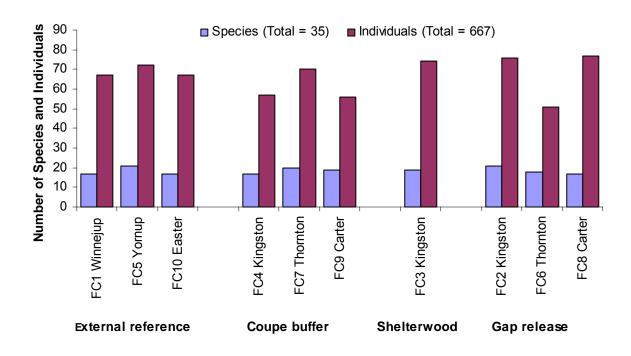


Figure 1. The number of bird species and individuals recorded in each Donnelly FORESTCHECK grid.

Other species of interest included the forest red-tailed cockatoo which was not recorded in the coupe buffer treatment and the scarlet robin which was most frequent in the external reference treatment.

There were six more species and 133 more individuals recorded at Donnelly in 2007 than in 2001. The density of birds per hectare has increased from 10.7 in 2001 to 13.3 in 2007. There were six species in 2001 that were not recorded in 2007 and 12 species in 2007 not recorded in 2001 (Table 2).

Are forest red-tailed black cockatoos on the increase in the south west forests? None were recorded during the 2001 survey and 19 individuals were recorded in 2007. Western yellow robins and splendid fairy-wrens were also recorded in all treatments in 2007, but were not seen or heard in 2001. It is perhaps understandable that they were not recorded in the shelterwood and gap treatments in 2001 as the re-growth may have been too dense for them, but it is surprising that they were not recorded in the external reference and coupe buffers.

It is not unusual that purple-crowned lorikeets were not recorded in 2007 as they are usually associated with over-storey species flowering and this did not occur during the 2007 survey.

Table 2. Comparison between the 2001 and 2007 surveys for birds at Donnelly FORESTCHECK grids (RAOU = Royal Australian Ornithology Union number) ER = external reference, CB = coupe buffer, SW = shelterwood, GR = gap release).

				2001					2007		
RAOU	Common name	Total	ER	СВ	SW	GR	Total	ER	СВ	SW	GR
1	Emu	1				1	1				1
34	Common Bronzewing	8			1	7	1	1			
35	Brush Bronzewing						2		1		1
259	Purple-crowned Lorikeet	14	5			9					
264	Forest Red-tailed Black Cockatoo						19	9		3	7
266	Baudins Cockatoo	2	1	1							
289	Western Rosella	5		1	3	1	21	6	7	1	7
290	Red-capped Parrot	8	5	2		1	17	6	7	1	3
294	Twenty-eight Parrot	7	1	6			21	6	7	1	7
322	Laughing Kookaburra	2	2				7		5	1	1
338	Fan-tailed Cuckoo	8	1	5		2	3	1	2		
342	Horsefield's Bronze-cuckoo						2		2		
344	Shining Bronze-Cuckoo	4		4							
359	Tree Martin	26		15		11					
361	Grey Fantail	37	14	14	4	5	11	3	3	2	3
380	Scarlet Robin	5	4			1	19	10	5	1	3
387	White-breasted Robin	3	3				13	7	5		1
394	Western Yellow Robin						18	9	4	4	1
398	Golden Whistler	43	15	15	7	6	44	14	7	8	15
408	Grey Shrike-thrush	6	3	3			22	8	6	2	6
424	Black-faced Cuckoo shrike	7	3	1		3	10	3	3	3	1
430	White-winged Triller						1	1			
463	Western Gerygone	58	24	24	5	5	56	22	15	7	12
472	Western Thornbill	30	6	16	4	4	23	7	2	8	6
476	Broad-tailed (Inland) Thornbill	85	17	28	9	31	135	27	46	18	44
486	Yellow-rumped Thornbill						2			2	
488	White-browed Scrubwren	36	7	7	2	16	42	11	12		19
532	Splendid Fairy-wren						29	12	3	2	12
538	Red-winged Fairy-wren	32	5	8	4	15	13		6		7
549	Varied Sitella	7		1	6						
556	Rufous Treecreeper	6	4	2			6	3	1	1	1
565	Spotted Pardalote						1				1
574	Silvereye	11	4	2	2	3	6				6
578	Western White-naped Honeyeater	23	13	7	3		39	13	7	5	14
592	Western Spinebill						6	2	1		3
597	Brown Honeyeater	2	2								
638	Red Wattlebird						6	3	3		
697	Grey Currawong						5		4		1
710	Western Little Wattlebird						2				2
930	Australian Raven	2		2			4	1	1		2
976	Striated Pardalote	56	25	16	6	9	60	20	19	4	17
	Total Individuals	534	164	180	56	130	667	205	184	74	204
	Density - Birds/ha	10.7	10.9	12.0	11.2	8.7	13.3	13.7	12.3	14.8	13.6
	Total Species	29	22	22	13	18	35	25	27	19	29

Conclusions

Bird species composition and abundances change continuously as the understorey density and fuel ages vary. These changes occur in harvested areas as the vegetation structure changes over time through crown separation in regrowth trees and understorey shrubs, and in uncut forest as structural and successional changes occur in the understorey with time since fire. Changes in population also occur with variation in flowering cycles in plant species. Observations in 2007 related to these changes are:

- Purple crowned lorikeets and tree martins were not recorded in 2007 likely related to lack of overstorey flowering
- Red-winged fairy wrens lower in number in 2007 likely related to opening up of understorey with time since fire
- "Broad-tailed' parrots all increased in numbers in 2007, especially noticeable in the gap release treatment

Is the forest red-tailed black cockatoo population increasing? Results from the 2008 FORESTCHECK census at Donnelly and opportunistic observations reported to DEC suggest it is.

FORESTCHECK MAMMALS AND HERPETOFAUNA

G.L.Liddelow and Verna Tunsell

Introduction

The object of recording mammals and herpetofauna in FORESTCHECK is to monitor the impacts of logging and associated burning on species status and abundance. This is achieved by:

- Trapping and recording the suite of medium and small sized mammals, reptiles and amphibians on each FORESTCHECK grid
- Recording the presence of small mammals in nest boxes placed within each grid
- Comparing species richness, abundance, sex ratios and trap percentages between grids and treatments at each location and between FORESTCHECK locations
- Recording the presence of the larger mammals along set transects that cover all treatments of the FORESTCHECK location on a landscape basis
- Recording the presence of nocturnal mammals by spotlighting along set transects that cover all the treatments of the FORESTCHECK location
- Recording feral animal species and abundance using sand pads placed at regular intervals along pre-determined tracks and roads within each FORESTCHECK location.

Monitoring

In the 2007-08 monitoring period, due to constraints on personnel surveys along road transects for large mammals, spotlighting for nocturnal mammals and the use of sand pads to record feral animals were not carried out.

Trapping was carried out on all ten grids for one week in spring 2007 and autumn 2008 and the program went according to plan with no interruption to any activities due to inclement weather. The week of trapping in spring 2007 was cool.

Voucher Specimens

No specimens were lodged with the Western Australian Museum from this trapping session.

Preliminary Results

A total of 368 individuals were trapped (Table 1) with 161 individuals trapped in spring and 207 captures in autumn.

One hundred and three mammals, 45 reptiles, 12 amphibians and 1 bird were trapped in spring and 183 mammals, 22 reptiles and 2 amphibian trapped in autumn (Tables 1 & 2, Figs 1 & 2). Both trapping sessions recorded low numbers of reptile and amphibian captures. These results may be attributed to the cool temperatures that were experienced

during the trapping period. There were 72 brushtail possums (*Trichosurus vulpecula*) and 19 woylies (*Bettongia penicillata*) trapped in spring and 138 brushtails and 29 Woylies trapped in autumn.

The highest total numbers of captures occurred in the shelterwood (96), followed by the external reference (92) and then the coupe buffers and gap release (90) (Table 1).

		ernal erence	Coup	e buffer	Shelt	erwood	Gap	release
Species	Spring	Autumn	Spring	Autumn	Spring	Autumn	Spring	Autumn
MAMMALS								
Bettongia penicillata	1	2	2	4	13	19	3	4
Cercartetus concinnus	1							
Dasyurus geoffroii			1					
Phascogale tapoatafa tapoatafa	1							
Rattus fuscipes		1						
Rattus rattus	1	8					1	
Sminthopsis sp.	1			2		3	6	2
Trichosurus vulpecula	17	35	18	44	20	25	17	34
REPTILES								
Ctenotus labillardieri				1				1
Egernia kingii					2		1	2
Egernia napoleonis	1	1	1		2	1	1	2
Hemiergis peroni	4		4	1	3		3	2
Lerista distinguenda	3	1	2	4	4		1	
Menetia greyii		3		1			1	
Morethia obscura	1						3	1
Parasuta gouldi						1		
Tiliqua rugosa	4						2	
Varanus rosenbergi	2							
AMPHIBIANS								
Crinia georgiana	2		1	1	1		2	
Heleioporus eyrei			2		2			
Limnodynastes dorsalis				1				
Metacrinia nichollsi	2							
BIRDS								
Eopsaltria georgiana							1	
Total (368)	41	51	31	59	47	49	42	48

 Table I: The number of animals captured in spring and autumn on the Donnelly FORESTCHECK grids.

Table 2. Co	mparison o	f trapping	results by	forest block.
-------------	------------	------------	------------	---------------

		King	ston		Yornu	up/Tho	rnton	Ca	rter/E	aster	
Species	External Reference	Coupe Buffer	Shelterwood	Gap Release	External Reference	Coupe Buffer	Gap Release	Coupe Buffer	Gap Release	External Reference	TOTAL
MAMMALS											
Bettongia penicillata	3	6	32	7							48
Cercartetus concinnus					1						1
Dasyurus geoffroii		1									1
Phascogale tapoatafa tapoatafa					1						1
Rattus fuscipes										1	1
Rattus rattus							1			9	10
Sminthopsis sp.			3	7	1	2			1		14
Trichosurus vulpecula	47	48	45	48	4	12	3	2		1	210
REPTILES											
Ctenotus labillardieri				1		1					2
Egernia kingii			2	3							5
Egernia napoleonis			3	1	1	1	1		1	1	9
Hemiergis peroni	2	1	3	2	2	4	1		2		17
Lerista distinguenda	4	3	4	1		2		1			15
Menetia greyii					3	1	1				5
Morethia obscura				1	1		3				5
Parasuta gouldi			1								1
Tiliqua rugosa	3			2	1						6
Varanus rosenbergi	1									1	2
AMPHIBIANS											
Crinia georgiana			1		1	1	2	1		1	7
Heleioporus eyrei		2	2								4
Limnodynastes dorsalis						1					1
Metacrinia nichollsi										2	2
BIRDS											
Eopsaltria georgiana									1		1
Total	60	61	96	73	16	25	12	4	5	16	368

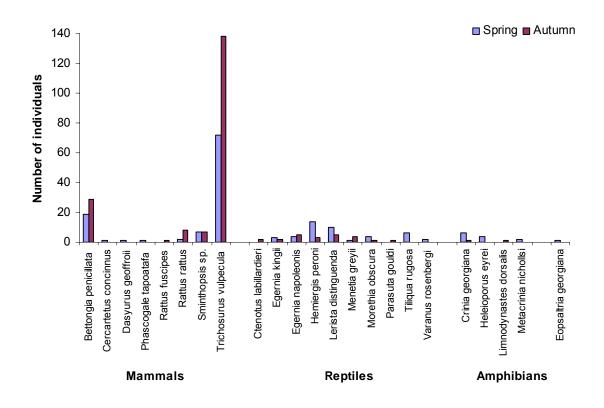
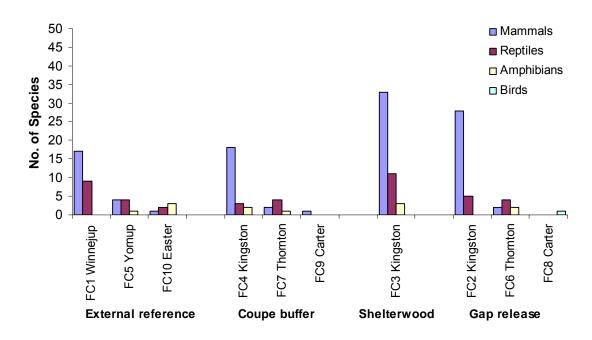
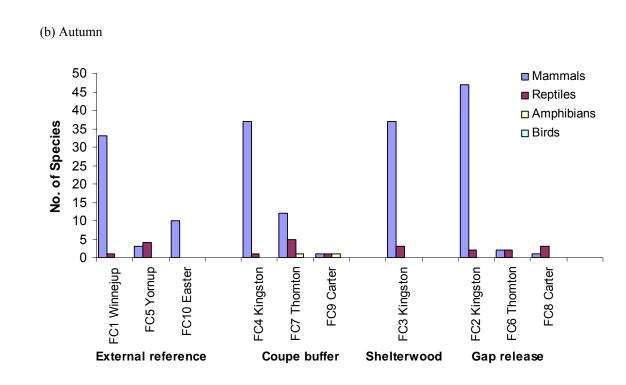
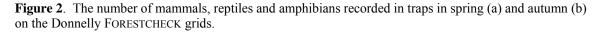
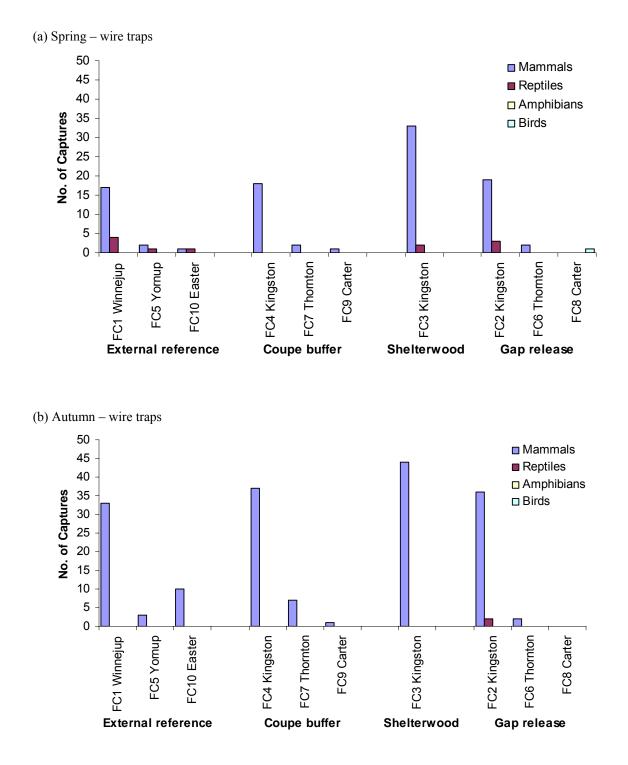





Figure 1. The number of animals captured in spring and autumn on Donnelly FORESTCHECK grids.



Wire cage traps were very successful and resulted in 285 of the 368 or 77% of all captures being in this trap type (Table 3, Fig. 3). Brushtail possums accounted for 57% or 210 of all captures in the wire cage traps and almost 3 out of 4 animals captured were this species. Despite the decline that has occurred in the woylie population in the southern forests, they were the second most abundant animal with a total of 48 captures, 19 in spring and 29 in autumn.

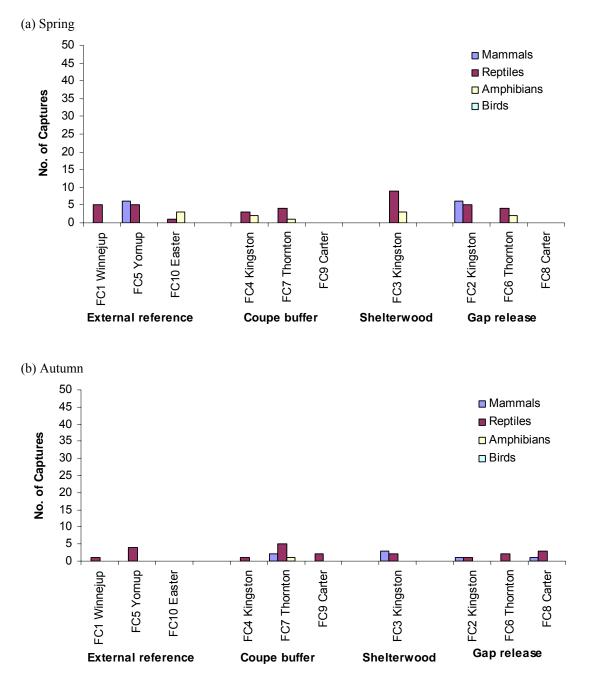

	Exter refere		Coupe b	ouffer	Shelter	wood	Gap release	
Species	Wire	Pit	Wire	Pit	Wire	Pit	Wire	Pit
MAMMALS								
Bettongia penicillata	3		6		32		7	
Cercartetus concinnus		1						
Dasyurus geoffroii			1					
Phascogale tapoatafa tapoatafa	1							
Rattus fuscipes	1							
Rattus rattus	9						1	
Sminthopsis sp.		1		2		3		8
Trichosurus vulpecula	52		62		45		51	
REPTILES								
Ctenotus labillardieri				1				1
Egernia kingii					2		3	
Egernia napoleonis		2		1		3		3
Hemiergis peroni		4		5		3		5
Lerista distinguenda		4		6		4		1
Menetia greyii		3		1				1
Morethia obscura		1						4
Parasuta gouldi						1		
Tiliqua rugosa	4						2	
Varanus rosenbergi	2							
AMPHIBIANS								
Crinia georgiana		2		2		1		2
Heleioporus eyrei				2		2		
Limnodynastes dorsalis				1				
Metacrinia nichollsi		2						
BIRDS								
Eopsaltria georgiana							1	
Total (368)	72	20	69	21	79	17	65	25

Table 3. The species and abundance of mammals, reptiles and amphibians recorded by trap type on the Donnelly Forestcheck sites in 2007-2008.

Figure 3. The number of individual mammals, reptiles and amphibians recorded in wire traps in the spring (a) and autumn (b) on the Donnelly FORESTCHECK grids.

Pit fall trapping was relatively successful for recording small mammal, reptile and amphibian species of the area. As stated earlier the cool conditions were not ideal for this type of trapping and only a total of 83 captures were recorded. There were 54 in spring and 29 in autumn (Table 2, Fig. 4). All treatments had similar numbers of captures with the gap release treatment had the highest numbers (25) followed by coupe buffer (21), external reference (20) and shelterwood (17). All reptiles apart from the bobtail (*Tiliqua rugosa*), the southern heath monitor (*Varanus rosenbergi*) and the king skink (*Egernia kingii*) were caught in pit traps.

Figure 4. The number of individual mammals, reptiles and amphibians recorded in pit fall traps in the spring (a) and autumn (b) on the Donnelly FORESTCHECK sites.

There were only 15 small mammals captured, including one pygmy possum (*Cercartetus concinnus*) (external reference) and 14 dunnarts (*Sminthopsis* sp.) of which 11 were recorded in the logged areas (three in the shelterwood and 8 in the gap release treatments).

Reptile captures were 54 (34 in spring, 20 in autumn) made up of 6 species of skink and one snake. The two commonest skinks were *Hemiergis peroni* (17) and *Lerista distinguenda* (15). 12 reptile captures were in the external reference sites, 11 from shelterwood sites, 14 from the coupe buffers and 15 from gap release (Table 2, Fig. 3).

Winnejup and Kingston FORESTCHECK grids are situated east of the South Western Highway and Yornup, Thornton, Carter and Easter grids are west of the highway. The difference in trapping results was quite dramatic. Seventy nine percent of all captures in 2007-08 came from the four eastern grids based in the Kingston area and the remaining 21% from the six grids west of the highway (Table 4). All the woylies, 10 of 14 dunnarts and 188 of 210 (89%) brushtail possums come from the Kingston area grids.

When trapping was carried out with wire cages in autumn 2002 all 47 woylies and 103 of 109 (97%) of brushtail possums were in Kingston area grids.

The Kingston area has always been included in the Western Shield feral baiting program and the area to the west of the highway was not included until 2001. In 2007-08 woylies were still not recorded west of the highway but brushtail possums on the west increased from 3% to 11% of total captures.

Table 4 shows the difference in trapping results from the two sample sessions at Donnelly FORESTCHECK grids. Unfortunately at the beginning of FORESTCHECK we did not include the use of wire cage traps in the spring on 2001, these were introduced into the program in autumn 2002. Since 2002 the woylie population has suffered a major decline in the upper Warren catchment, and the 2007-08 trapping results mirror the decline showing a fall of almost 62% in captures. At the same time brushtail possums have increased by nearly 27%. There were more reptiles trapped in 2001-02 than 2007-08 but this would be because of the cool conditions experienced during this latest trapping period.

		2001-02		2007-08			
Species	Spring	Autumn	Total	Spring	Autumn	Tota	
MAMMALS							
Bettongia penicillata		47	47	19	29	48	
Cercartetus concinnus	1		1	1		1	
Dasyurus geoffroii				1		1	
Isoodon obesulus		1	1				
Mus musculus	1	8	9				
Phascogale tapoatafa tapoatafa				1		1	
Rattus fuscipes		1	1		1	1	
Rattus rattus				2	8	10	
Sminthopsis sp.	4	5	9	7	7	14	
Trichosurus vulpecula		109	109	72	138	210	
REPTILES							
Acritoscincus trilineatum	10		10				
Aprasia pulchella	1		1				
Christinus marmoratus	4		4				
Ctenotus labillardieri	1	1	2		2	2	
Egernia kingii				3	2	5	
Egernia napoleonis	3		3	5	4	9	
Glaphyromorphus gracilipes		1	1				
Hemiergis peroni	25	1	26	14	3	17	
Lerista distinguenda	8	1	9	10	5	15	
Menetia greyii	1	1	2	1	4	5	
Morethia obscura	25	2	27	4	1	5	
Parasuta gouldi					1	1	
Tiliqua rugosa				6		6	
Varanus rosenbergi				2		2	
AMPHIBIANS							
Crinia georgiana	7	6	13	6	1	7	
Crinia glauerti		1	1				
Heleioporus eyrei	1	5	6	4		4	
Limnodynastes dorsalis		8	8		1	1	
Litoria adelaidensis	1		1				
Litoria moorei		1	1				
Metacrinia nichollsi				2		2	
Pseudophryne guentheri	1		1				
BIRDS							
Eopsaltria georgiana				1		1	
Total	94	199	293	161	207	368	

 Table 4. Comparison between 2001-02 and 2007-08 trapping results at Donnelly grids.

Conclusions

- Woylies were again captured only on the eastern side of the South Western Highway (Kingston and Winnejup grids) in 2007-08 and their numbers were reduced by 62% when compared to the 2001-02 results. This is consistent with results from Warrup in the Woylie Decline Project (A. Wayne, pers. comm.).
- Numbers of brushtail possums west of the South Western Highway (Yornup, Thornton, Carter and Easter) increased from 3% of total captures in 2001-02 to be 11% in 2007-08, which coincides with the initiation of Western Shield baiting in 2001.
- Captures of reptiles and amphibians were reduced in 2007-08 due to cool weather during both the spring and autumn trapping periods.

Acknowledgements

I would like to thank Donnelly District Nature Conservation employees, Manjimup Science Division staff, Jamie Flett and Michael Voigt for their assistance with the trapping program.

DATA MANAGEMENT AND STORAGE

Verna Tunsell and Amanda Mellican

Introduction

The group is responsible for entering and storing the collected data for dirurnal and nocturnal birds, mammals and herpetofauna, vascular plants, macrofungi and cryptogams into electronic format, databasing collected voucher specimens (Flora, Cryptogams and Fungi) and storing the electronic data for invertebrates.

Data entry

An excel program applying Visual Basic was developed for each of the survey sheets. There are two parts in the program: Data entry and Data correction. The aim is to save time and to reduce typing errors during the data entry process.

As an example, in the Trapping Field Data Sheet, there are 12 fields for the data entry (Location, Treatment, Personnel, Date, Trap point, Species, Weight, Tag #1, Tag #2, Sex, Breeding Condition and Comments). Places of location, names of treatment, names of personnel and gender are known and they are created as drop-down lists. As for the species, common species name was pre-listed in the program. Date as in Day, Month and Year (from 2001 to 2010) was also created as drop down lists. Thus, location, treatment and personnel are only entered once for all the records for a particular data sheet. If there was nothing to comment on, then the program will automatically record in the Comments section as "No comment". If any one of the fields is missing or left as blank, an error message is given and the data would not be inserted into data file until all the fields are selected or filled. Species code, scientific name and common name are also automatically record into the data file depending upon the selected common species. Record number is automatically written into the data file.

To date, all the survey sheets for Donnelly have been completed. A Metadata form, as shown in Appendix A, is also completed.

Data validation

Entered data for all the groups is validated. The validation date is recorded in the metadata form. Then a DESCRIPTIONS file (which indicates the lists of an individual field, and codes and descriptions of an individual field), and the validated DATA file is sent to the leader of the individual group.

Data storage

All the individual sampling data will be saved and backed up as individual files on the network drive. The data are saved and secured since the network drive is backed up daily. The final version of the validated data is printed and kept in a filing cabinet and will be archived in the Forest Science library at the completion of the project.

Voucher specimens

The 13 vascular plant, 214 fungi and 6 cryptogam specimens collected during the period, have been identified (as far as possible) and processed. The vascular plants have been lodged at the WA Herbarium (PERTH). The fungi and cryptogam collections are yet to be lodged at PERTH. The fungi are housed at the Tony Annels Herbarium in Manjimup to enable work on descriptions and identification to be completed. Lichens are housed at PERTH, except for a working (reference) set which is held at Manjimup. The low number of vouchers collected for the vascular flora is the result of only collecting species not yet vouchered on the Donnelly FORESTCHECK grids. The cryptogam collections are for photographic material and redetermination of unknown species. The fungi collections are new species and some for redetermination of previously collected species.

Each specimen is allocated its own unique barcode so that each specimen is readily located by electronic means or by physical means as required.

Vascular plant specimens are pressed and dried, then mounted, with specialised herbarium tape, on card, and placed in separate folders.

Cryptogams are dried (friable specimens are stabilised with emulsion), placed on a card with adhesive to keep the specimen together (mosses are washed prior to drying to remove debris). The specimens are then secured in cardboard boxes to prevent damage.

Fungi specimens are also dried, wrapped in greaseproof paper inside zip-lock bags, then put into boxes to prevent damage. Very large specimens remain unboxed.

Each voucher specimen is data based on the Max system and submitted electronically to the WA Herbarium for incorporation into the herbarium database. Max was developed by Simon Woodman and Paul Gioia (DEC, Kensington) and is used as the primary means of submitting specimen information to the WA Herbarium. While there are many facets to Max, the sections used for FORESTCHECK are the collecting book and reporting facilities.

Appendix \mathbf{A} – Example of Metadata Form

Group Name \rightarrow

Leader \rightarrow

Contact Officer \rightarrow

No	File Name	File Size (KB)	File Type	Date (completed)	Name of Data Entry Person	Validated Date

WESTERN AUSTRALIAN HERBARIUM, PERTH Flora of Western Australia

Cassytha racemosa forma pilosa (Benth.) J.Z.Weber

Lauraceae

Identified by:

Parastitic perennial climber frequent. Hill to plain; gravelly brown sandy clay. Forest with associated vegetation of Corymbia calophylla and Eucalyptus marginata.

Loc.: Forestcheck monitoring site 5, N side of Wagelup Road 1.4 km W of railway line, Yornup Forest block

Lat.: 34°6'24.0" S Long.: 116°8'33.0" E (WGS84)

Coll.: R.J. Cranfield 23238 Date: /09/2008

Voucher: Forestcheck Monitoring Program

WESTERN AUSTRALIAN HERBARIUM, PERTH Flora of Western Australia

Lomandra nigricans T.Macfarlane

Dasypogonaceae

Identified by:

Height to 20 cm, width to 15 cm; flowers white. frequent. Hill to plain; gravelly brown sandy clay. Forest with associated vegetation of Corymbia calophylla and Eucalyptus marginata. Percentage of population flowering: 10

Loc.: Forestcheck monitoring site 5, N side of Wagelup Road 1.4 km W of railway line, Yornup Forest block

Lat.: 34°6'24.0" S Long.: 116°8'33.0" E (WGS84)

Coll.: R.J. Cranfield 23239 Date: /09/2008

Voucher: Forestcheck Monitoring Program

WESTERN AUSTRALIAN HERBARIUM, PERTH Flora of Western Australia

Leucopogon capitellatus DC.

Epacridaceae

Identified by:

Shrub, height to 30 cm, width to 40 cm; growth phase is active with flower buds, vegetative buds and flowers, white frequent. Hill to plain; gravelly brown sandy clay. Forest with associated vegetation of Corymbia calophylla and Eucalyptus marginata. Percentage of population flowering: 30

Loc.: Forestcheck monitoring site 5, N side of Wagelup Road 1.4 km W of railway line, Yornup Forest block

Lat.: 34°6'24.0" S Long.: 116°8'33.0" E (WGS84)

Coll.: R.J. Cranfield 23240 Date: /09/2008

Voucher: Forestcheck Monitoring Program

WESTERN AUSTRALIAN HERBARIUM, PERTH Flora of Western Australia

Leucopogon pulchellus Sond.

Epacridaceae

Identified by:

Erect compact perennial shrub, height to 40 cm, width to 40 cm; flower buds white and pink frequent. Hill to plain; gravelly brown sandy clay. Forest with associated vegetation of Corymbia calophylla and Eucalyptus marginata. Percentage of population flowering: 30

Loc.: Forestcheck monitoring site 5, N side of Wagelup Road 1.4 km W of railway line, Yornup Forest block

Lat.: 34°6'24.0" S Long.: 116°8'33.0" E (WGS84)

Coll.: R.J. Cranfield 23241 Date: /09/2008

Voucher: Forestcheck Monitoring Program

Appendix C: Example of report generated in Max V3.

,

27/02/2009		For	restcheck Donnelly 2007-2008			1
COLLECTOR	NO SHEET_NO	GENUS	SPECIES	INFRA_	RANK INFRA_NAME	
23250	6666795	Caladenia	arrecta			
23240	6666728	Leucopogon	capitellatus			
23243	6666752	Senecio	hispidulus			
23244	6666760	Senecio	hispidulus			
23249	6666787	Luzula	meridionalis			
23239	6666701	Lomandra	nigricans			
23241	6666736	Leucopogon	pulchellus			
23245	6666779	Senecio	quadridentatus			
23238	6666698	Cassytha	racemosa	forma	pilosa	
23133	6667031	Cassytha	racemosa			
23251	6666809	Caladenia	reptans			
23242	6666744	Brachythecium	sp. FC5 (R.J. Cranfield 2324.			
23133	6667023	Billardiera	variifolia			