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ABSTRACT 
 

 Septoria leaf spot and stem canker, caused by the fungal pathogen Mycosphaerella 

populorum Thompson (Anamomorph = Septoria musiva Peck). An efficient greenhouse disease 

resistance screening is essential for the development of resistant clones. Fourteen clones of 

hybrid poplar were inoculated with spore suspension. A regression model with parameters 

(lesion number and proportion necrotic area) is consistently and accurately predicted field 

resistance categories of the most resistant and susceptible clones. In second experiments, the 

infection biology of S. musiva was examined at several time points by scanning electron 

microscopy (6 h, 12 h, 24 h, 72 h, 1-week and 3-week) and histological analysis (3-week, 5-week 

and 7-week). Results indicated that there are differences occur following penetration between the 

resistant and susceptible. Those differences provide the first clues elucidating resistance 

mechanism in hybrid poplar stems. The results from this thesis will be used to improve resistance 

to Septoria canker in breeding programs. 
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LITERATURE REVIEW 

Populus genus 

 The genus name of Populus was thought to be derived from the expression arbor populi 

“the people’s tree” due to the frequent planting of poplar trees in public places and their common 

use in many parts of Europe (Collingwood et al. 1964, Rupp 1990). All poplar trees are members 

of the Salicaceae (the willow family) which consists of two genera, Populus and Salix (Heilman 

et al. 1995, Eckenwalder 1996). The genus Populus comprises approximately 29 species divided 

among six taxonomic sections: Populus (formerly section Leuce), to which P. grandidentata 

Mich. and P. tremuloides Mich. belongs; Tacamahaca, to which P. balsamifera L. and P. 

trichocarpa Torr. & A. Gray belongs; Aigeriros, to which P. deltoides Marsh. and P. nigra L. 

belongs; Leucoides, to which P. heterophylla L. belongs; Turanga, to which P. euphratica Oliv. 

belongs; and Abaso, to which P. mexicana Wesm. belongs (Little 1971, Peterson and Peterson 

1992, Eckenwalder 1996, Dickmann 2001). In North America, the common names of this genus 

include cottonwood, trembling aspen, quaking aspen, popple, and balm-of-gilead (Peterson and 

Peterson 1992). 

The life history of Populus is unique. Trees in this genus are able to reproduce both sexually 

and asexually. Populus species are dioecious, meaning the female and male catkins are produced 

on separate trees. When fully developed catkins are 10 to 15 cm long, the female catkins are 

seated in cup-shaped disks with 2 to 4 stigmas (Eckenwalder 1996). The longer male catkins 

comprise a group of 4 to 60 stamens inserted on a similar disk (Eckenwalder 1996). Poplar trees 

flower when they are between five to ten years of age (Eckenwalder 1996). Flowering occurs in 

the early spring, from February to May, and wind pollination occurs shortly thereafter (Cooper 

1990). Seed development takes approximately two months and seed dispersal occurs from May 
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to June (DeBell 1990, Zasada et al. 1990). Populus seeds contain no endosperm, as a result, 

germination and establishment must occur shortly after seed dispersal. The mode of asexual 

reproduction is varied and depends on species (Wilcox et al. 1967, Ying and Bagley 1977, 

Zasada and Phipps 1990). For example, species in the sections, Aigeiros, Tacamahaca, and 

Leucoides can grow from cuttings (Eckenwolder 1996) whereas white poplar (Populus alba L.) 

commonly reproduces by root sprouting (Welsh et al. 1987). These attributes allow a large 

number of genetically identical and phenotypically desirable individuals to be produced with 

relative ease, making species of Populus a common choice for high yield short rotation 

plantation forestry (Rood et al. 1994).  

The anatomy of Populus stems and branches is similar to other hardwood species, and can 

be subdivided into bark and woody tissue (Raven et al. 1981) (Fig. 1.1). The term "bark" refers 

to all tissues external to the vascular cambium, including inner bark and outer bark (Srivastava 

1964, Esau 1965, Dickison 2000). The outer bark is the dead tissue on the surface of the stem, 

commonly called “rhytidome” (Esau 1965). The living inner bark includes periderm, cortex and 

phloem derived from the primary vascular cambium (Dickinson 2000). Periderm is a protective 

tissue of secondary origin which replaces the epidermis in stems (Srivastava 1964, Esau 1965, 

Fahn 1967). Periderm consists of phellem, phellogen, and phelloderm (Esau 1965). Phellogen 

cells are meristimatic producing phellem towards the outside and phelloderm towards the inside 

(Raven et al. 1981). These cells are characteristically thin-walled, with protoplasts, having an 

irregular shape, and may contain starch and chloroplasts (Raven et al. 1981). Within the 

periderm are lenticels, which are used for gas exchange, new lenticels are formed within the 

cracks of the phellem layers as the bark develops (Esau 1965, Raven et al. 1981).  
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Between the bark and the wood is a thin layer of living cells known as the vascular 

cambium which produces phloem cells towards the outside and xylem cells towards the inside 

(Raven et al. 1981). The phloem is the living tissue responsible for transporting nutrients and is 

the innermost layer of bark (Raven et al. 1981). Xylem can be subdivided into sapwood and 

heartwood (Raven et al. 1981, Dickison 2000). Sapwood is comprised of living cells, which are 

similar to a pipe, transporting water from the roots to the shoots through. Interior to the sapwood 

is heartwood, which is made up of dead cells and forms the central support structure of a tree 

(Esau 1964, Raven et al. 1981).    

Hybrid poplar 

Hybridization, as with many wind pollinated tree species, is extremely common in the 

genus Populus, resulting in many naturally occurring hybrids throughout North America (Stettler 

et al. 1996). These hybrids may be inter-sectional such as Populus × jackii Sarg, a natural hybrid 

between P. balsamifera females and P. deltoides males, which occurs wherever the range of the 

two species overlap. Hybrids may also be intra-sectional, for example, Populus × smithii B. 

Boivin, a natural hybrid between P. tremuloides and P. grandidentata. Moreover, a large number 

of hybrid poplar genotypes (clones) have also been produced by artificial hybridization. Both 

natural and artificial hybrids exhibit a phenomenon known as hybrid vigor, whereby, the progeny 

of intra- and inter-specific hybridization exhibit growth rates superior to that of either parent 

(Mohrdiek 1983, Stettler et al. 1996). Growth rates of hybrid poplar range from 1.2 m to 1.8 m 

per year under favorable conditions, with total yields ranging from 20 to 43 Mg/ha of biomass 

per year (Sannigrahi et al. 2010). 

To date, hybrid poplar breeding has focused on the hybridization of a few select species 

in the sections Aeigeros and Tachamahaca (Riemenschneider et al. 2001, Sannigrahi et al. 
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2010). The objective of these breeding programs is to develop cultivars of Populus exhibiting 

hybrid vigor while taking advantage of its clonal nature to produce large numbers of genetically 

identical individuals. In 2012, a report by the International Poplar Commission (2012) estimated 

that there were over 83.6 million ha of poplar plantations world-wide (FAO 2012). In the United 

States, over 50,000 ha are planted in the Pacific Northwest, 15,000 ha in the North Central 

region, and 25,000 ha planted in the Mississippi river valley (Stanturf et al. 2003, Revels et al. 

2009). These plantations are used to supply a variety of industries including pulp and paper, 

electricity production, manufactured wood products, and biofuel (Stoffle 1998, Balatinecz and 

Kretschmann 2001, Brown 2003, Zalesny et al. 2008). The U. S. Department of Energy has 

increasingly shown interest in hybrid poplar as a feedstock for bioenergy (Stoffle 1998). Brown 

(2003) reported that the higher heating value (HHV) of hybrid poplar (19.38 MJ/kg), when it 

undergoes complete combustion is comparable to other biofuels including corn stoves (17.65 

MJ/kg), wheat straws (17.51 MJ/kg), and switch grass (18.64 MJ/kg). However, widespread 

adoption of hybrid poplars in many regions of North America has been limited by its well 

documented susceptibility to a variety of pests and pathogens (Ostry et al. 1985). 

Diseases of hybrid poplars in North America 

To date, there are four major diseases affecting Populus in North America: Leaf rust 

caused by Melampsora spp., stem and leaf spot caused by Septoria musiva Peck, leaf and shoot 

blight caused by Venturia spp., and leaf spot caused by Marssonina spp. (Hiratsuka 1987, 

Peterson and Peterson 1992, Newcombe et al. 2001). In the north central region of United States, 

Septoria canker is considered the most serious disease of hybrid poplar plantations due to the 

lack of effective disease management, the widespread distribution of pathogen, and susceptibility 

of many important commercial clones to this disease (Waterman 1954, Long et al. 1986, 
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Newcombe et al. 2001). For example, Ostry and McNabb (1983) estimated there was a 66% loss 

of biomass in susceptible trees compared to non-infected controls, due to Septoria canker 

infection in Michigan. The range of this pathogen has expanded west of the Rocky Mountains in 

Canada and into South America (Sivanesan 1990, Callan et al. 2007). This disease is becoming 

increasingly important as the pathogen has expanded to other poplar production regions.  

Septoria musiva 

Septoria canker and leaf spot is caused by the fungal pathogen: Mycosphaerella 

populorum Thompson (Anamomorph = Septoria musiva Peck) (Bier 1939, Thompson 1941, 

Waterman 1954, Newcombe et al. 2001). The imperfect stage of this fungus produces pycnidia 

(21.5 - 56 µm × 4 µm) and conidia (17.2 - 54 µm × 3 - 4 µm) (Thompson 1941, Waterman 

1954). Pycnidia are produced below the epidermis of the leaf and are globose to depressed 

globose with ostioles (Waterman 1954). Conidia are cylindrical and straight to curved, with one 

to four septations and released from ostioles in pink masses of spore tendrils (Bier 1939, 

Thompson 1941). The sexual stage produces pseudothecia (48 - 80 µm × 48 - 96 µm) and 

ascospores (16 - 28 µm × 4.5 - 6 µm). Pseudothecia are dark brown, globose, with several 

cylindric-clavate asci (46 - 65µm × 10 - 16 µm) and eight hyaline ascospores (Thompson 1941, 

Niyo et al. 1986). Colonies of S. musiva grown on V-8 juice agar are olive-green to gray, 

occasionally with white margins, producing pinkish pycnidia under high humidity (Spielman et 

al. 1986, Stanosz and Stanosz 2002).  

There are two characteristic symptoms caused by this pathogen (Fig. 1.2): leaf spots and 

stem canker, both can adversely impact tree growth and survival (Waterman 1954, Long et al. 

1986, Spielman et al. 1986). Severe foliar infection can result in premature defoliation reducing 

photosynthesis and predisposing trees to subsequent insect attack and pathogen invasion (Bier 
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1939, Waterman 1954, Ostry et al 1985, Newcombe 1996). Typically leaf spots are irregular in 

shape, dark brown to black, becoming whitish in color with yellow margins (Bier 1939, 

Waterman 1954). Cankers begin as lesions with a dark water soaked appearance, eventually 

becoming longitudinally and concentrically ellipsoid. The black fruiting bodies, pycnidia, are 

occasionally formed in the center of stem lesions (Thomason 1941, Waterman 1954). Stem and 

branch cankers weaken the affected tree increasing the likelihood of wind breakage (Ostry 1987). 

The life cycle of S. musiva is similar to other Dothideomycete fungi (Ostry 1987 Luley 

and McNabb 1989). The pathogen overwinters on leaf debris, producing pseudothecia releasing 

ascospores, as the primary inoculum in the spring (Bier 1939, Ostry 1987). Ascospore 

dissemination by wind, begins in early April in the mid-west, and can continue until mid-summer 

resulting in new leaf and stem infections (Thompson 1941, Ostry 1987, Luley and McNabb 

1989). These infections produce pycnidia and conidia, the secondary inoculum, which are 

dispersed by rain splash (from May to mid-October). Under ideal conditions, multiple cycles of 

infection, spore release and re-infection will occur during a single growing season (Ostry 1987). 

Both ascospore and conidia can cause leaf spot and stem canker. Ascospore and conidia produce 

germ tube to penetrate host leaves through stomata (Niyo et al. 1986, Luley and McNabb 1989). 

No information is available on the mode of infection resulting in Septoria stem and branch 

cankers (Ostry and McNabb 1985).  

Disease etiology 

Plant pathologists have developed methods for pathogen identification, detection and 

characterization, aimed at developing appropriated disease management strategies. New and 

improved techniques (microscopy, electrophoresis, histology, protein and nucleic acid 

characterization, as well as genetics) are constantly being adopted to study the etiology of plant 
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pathogens. Among these techniques, scanning electron microscopy (SEM) is often employed to 

observe the early stages of pathogen infection (Smith and Oatley 1955, Mims 1991, McMullan 

1995). Cleary et al. (2013) found the ascospores of Hymenoscyphus pseudoalbidus Gray 

developed germ tubes, followed by appressoria formation and direct penetration of epidermal 

cells on common ash (Fraxinus excelsior Linn.) leaves and petioles. Hsieh et al. (2001) observed 

the infection process of Botrytis elliptica (Berk.) Cooke on lily (Lilium spp.) leaves by collecting 

different time points and observing whether B. elliptica penetrated the host via appressoria 

formation or through stomata. However, SEM observations of cells and tissues are limited to the 

surface of the infected plant. In order to examine host parasite interactions following infection, a 

histological examination needs to be conducted. For example, Hsieh et al. (2001) conducted the 

histological observations using of fluorescent microscopy to visualize sub-epidermal hyphae 

after successful penetration (Hsieh et al. 2001). Similar techniques have been used to elucidate 

host parasite interactions in many pathosystems. 

In woody plants anatomical and histo-chemical changes to bark tissue following 

wounding and subsequent pathogen penetration have been well characterized (Biggs et al. 1983a, 

1983b and 1984, Biggs 1984 and 1986, Hebard et al. 1984, Enebak et al. 1997). These changes 

in most cases involve the development of new periderm, called necrophylactic periderm (NP), to 

protect living host cells in the tissue surrounding the wound (Bloch 1952, Esau 1965). Biggs 

(1992) modified a model, which was originally proposed by Mullick (1977), describing tree 

responses to wounding leading to NP formation (Mullick 1977, Biggs 1992). He outlined three 

scenarios of nonspecific host response following injury (Biggs 1992). In the first scenario, a 

superficial injury or penetration of the bark disrupts the phellogen resulting in the nearby 

phellem and/or cortex cells becoming amorphous followed by subsequent lignification and 
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suberization. Biggs (1986 and 1992) called these areas ligno-suberized boundary zones stating 

that they were a prerequisite to the formation of NP (Hudler 1984, Biggs et al. 1984, Biggs 1986 

and 1992). The second scenario, describes a wound that affects the vascular cambium, but is 

external to the xylem (Mullick 1977, Hudler 1984, Biggs 1986 and 1992). In this scenario a 

complete NP develops and the vascular cambium may regenerate a new layer of phellogen below 

the NP (Mullick 1977, Hudler 1984, Biggs 1986 and 1992). In the third scenario, the penetration 

goes beyond the vascular cambium into the xylem and the regeneration of phellogen does not 

occur (Mullick 1977, Hudler 1984, Biggs 1986 and 1992). The vascular cambium also becomes 

non-functional following occlusion of the adjacent xylem vessels (Shigo 1979, Hudler 1984). 

The three scenarios described above are generalized and are initiated by the disruption of 

phellogen. This disruption can be caused by mechanical damage, insect injury or pathogen 

invasion (Bloch 1953, Mullick 1977, Biggs 1984, 1986 and 1992). Biggs et al. (1984) suggested 

that a pathogen may be able to alter hosts response to phellogen disruption breaching either the 

ligno-suberized boundary zone or NP (Biggs et al. 1984 and 1986).   

Several histo-pathological studies of canker diseases of trees have been conducted in 

order to examine host resistance responses. The chestnut blight pathogen, Cryphonectria 

parasitica (Murrill) Barr., infects stem wounds, accumulating mycelium in the necrotic tissue 

prior to lesion expansion (Brambe 1936, Hebard et al. 1984). This mycelium turns into a “fan-

shape”, and the “mycelial fan” penetrates living cells. The advancing margin of this mycelial fan 

develops just beneath the natural periderm (Brambe 1936, Hebard et al. 1984). The plant cells in 

advance of the fungus appear dead prior to colonization and NP layers (wound periderm in 

paper) form beneath the deepest point of the colonized wound and necrotic tissue (Hebard et al. 

1984). Hypoxylon canker of aspen also requires a wound in order for infection to occur (Bier 
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1940, Rogers and Berbee 1964). Interestingly, the presence of this pathogen has been 

demonstrated to delay wound closure in both resistant and susceptible ramets of quaking aspen 

(Populus tremuloides Michx.). Enebak et al. (1997) also indicated there was no significant 

difference between resistant and susceptible clones in terms of NP formation. Canker pathogens 

are typically associated with wounds and as a result the majority of studies examining their 

infection biology have relied on wounding in order to incite disease.  

In contrast to these pathogens, very little is known about how S. musiva infects woody 

tissue and incites stem canker development. Weiland and Stanosz (2007), in the only study 

examining etiology of Septoria canker, demonstrated that the development of a thick and 

continuous NP layer was correlated with S. musiva resistance. Although an NP layer developed 

on both the resistant and susceptible clones they inoculated, it appeared to be repeatedly 

circumvented by the pathogen in the susceptible clone. In contrast there was no apparent disease 

development beyond the NP layer in the resistant clone, eight weeks following inoculation. As 

with the studies described above host response to inoculation is confounded with host response 

to wounding. As a result, it is difficult to determine the role of NP development in disease 

resistance to canker pathogens. 

Disease management 

There are four methods which have been tested for the management of Septoria leaf spot 

and stem canker. Cultural control including sanitation of infected leaf debris prior to leaf 

emergence in the spring and pruning of cankered branches can reduce the inoculum level in 

plantations (Filer et al. 1971, Ostry et al. 1989). However, the ability of the pathogen to disperse 

over long distances limits the effectiveness of this strategy (Filer et al. 1971, Ostry et al. 1989). 

Chemical control of Septoria leaf spot and stem canker has also been tested. Benomyl applied 
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monthly (three times per growing season) or on a bimonthly schedule (five times per growing 

season) beginning at leaf flush can reduce the incidence of Septoria canker (Ostry 1987). 

However, the costs of these treatments are prohibitive over the length of a rotation (~15 years). 

Biological control, by using Phaeotheca dimorphospora DesRoch. & Ouell. and Streptomyces 

strains have also been tested in the greenhouse (Yang et al. 1994, Gyenis et al. 2003). Although 

they both reduced the severity of leaf spot disease, treatments needed to be applied weekly to be 

effective. As a result, planting resistant clones appears to be the best means of managing these 

diseases (Ostry 1987, Mottet et al. 1991, Newcombe and Ostry 2001). 

In order to select disease resistant clones long term field trials have typically been 

conducted. These field trials last the length of a hybrid poplar rotation. For example, Schreiner 

(1972) based his selections on the results of a 15-year clonal test (Schreiner 1972). These trials 

are typically conducted at several sites using many different clones. Hansen et al. (1994) 

reported the field performance of 40 to 80 clones at 41 sites scattered in the Midwest selecting 

clones with lower disease severities across sites (Hansen et al. 1994). In another study 

Abrahamson et al. (1990) recommended superior clones based on tree growth, estimated from 

diameter at breast height and tree height, in combination with canker severity. They tested a total 

of 54 hybrid poplar clones (Abrahamson et al. 1990). Although these studies provide valuable 

information on the adaptation of different clones to specific environments disease escape is 

frequently a problem when attempting to determine relative levels of disease resistance 

(Abrahamson et al. 1990).  

To avoid the issue of disease escape described above many breeding programs have 

adopted a screening assay involving artificial inoculation of young trees under field or 

greenhouse conditions, in order to evaluate disease resistance (Filer et al. 1971, Cooper and Filer 
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1976, Zalasky 1978, Long et al. 1986, Ostry and McNabb 1985, Spielman 1986, Krupinsky 

1989, Newcombe 1998, Weiland et al. 2003 and 2005, LeBoldus et al. 2010). These assays have 

typically involved some form of stem wounding to incite disease. Although the wounding 

procedure may circumvent some resistance mechanisms this procedure has been shown to 

accurately predict disease resistance, under field conditions, of the most resistant and susceptible 

clones (Weiland et al. 2003 and 2005). These studies used a similar inoculation procedure where 

stems of juvenile hybrid poplar clones had a leaf removed, a plug of sporulating mycelium 

placed on the wound which was then wrapped in parafilm (Filer et al. 1971, Cooper and Filer 

1976, Zalasky 1978, Long et al. 1985, Ostry and McNabb 1985, Spielman 1986, Krupinsky 

1989, Newcombe 1998, Weiland et al. 2003 and 2007, LeBoldus et al. 2010).  

Recently, an inoculation protocol that does not rely on stem wounding to incite disease 

has been developed (LeBoldus et al. 2010). This protocol uses a conidial suspension to induce 

stem canker development and has three advantages over the wounding protocol: (i) relatively fast 

(resistance can be measured 3 weeks after inoculation); (ii) multiple isolates can be used 

simultaneously; and (iii) resistance mechanisms to the early stages of infection are not 

circumvented. Although this non-wounding inoculation procedure has produced results 

correlated with clonal response to wound inoculation (LeBoldus et al. 2010) the relationship of 

results from the non-wound inoculation and long term field performance are still unknown.  

Study rationale and objectives 

Due to the necessity for disease resistant clones in order to manage Septoria leaf spot and 

stem canker the majority of the research has focused on the selection of resistant clones (Feau et 

al. 2010). This has resulted in the development of a widely used resistance screening protocol 

which relies on artificial wounding. The recent development of the non-wound inoculation 
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protocol by LeBoldus et al. (2010) may represent a significant improvement in the disease 

resistance screening process if responses are predictive of long term field performance 

(LeBoldus et al. 2010). Furthermore, this new assay will allow us to determine the mode of 

infection of S. musiva into host tissue and examine the role of NP in disease resistance when 

wounding is not used to incite disease. 

The overall objective of this study was to develop a better understanding of the hybrid 

poplar-S. musiva pathosystem. The specific objectives were (i) test the predictive ability of this 

inoculation protocol for prediction of long-term canker damage categories; (ii) determine which 

disease severity parameters are best for prediction; (iii) describe the mode(s) of infection of S. 

musiva into nonwounded hybrid poplar stems; (iv) compare histological responses of resistant 

and susceptible clones following infection; and (v) determine when, in the infection process, 

differences in resistance to S. musiva occur. 
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Figure 1.1. Anatomy of hybrid poplar clone DN74 (Poplus deltoides Marsh × Poplus nigra L.) 
under fluorescent microscope. COX = Cortex; L = Lenticel; P = Periderm; Ph = Phloem; PF = 
Phloem fiber; VC = Vascular cambium; X = Xylem. Scale bars = 200 µm. 
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Figure 1.2. Typical symptoms caused by 
whitish center and black margin; and (
tissue and with dark brown margin. 
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Typical symptoms caused by Septoria musiva on juvenile tissue. (A): leaf spot with 
whitish center and black margin; and (B) stem canker with fruiting bodies embedded in whitish 
tissue and with dark brown margin. 
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CHAPTER 1. A NON-WOUND GREENHOUSE SCREENING PROTOCOL 

FOR PREDICTION OF FIELD RESISTANCE OF HYBRID POPLAR TO 

SEPTORIA CANKER 

Abstract 

Populus species and their hybrids are short-rotation woody crops which supply 

fiber to a diversity of industries in North America. The potential of hybrid poplars has 

been limited by the fungal pathogen Septoria musiva, the cause of leaf spot and stem 

canker of Populus species. An inoculation protocol that does not rely on stem wounding 

to achieve infection was recently developed to screen poplar clones for resistance to 

Septoria canker. Young ramets of 14 clones of hybrid poplar that were previously 

assigned to long term canker damage categories (Low, Intermediate and High) were 

inoculated with a conidial suspension of three isolates of S. musiva under greenhouse 

conditions. Three weeks post-inoculation lesion number, lesions cm-1 stem length, area of 

stem that was necrotic, and proportion of stem area that was necrotic were measured. 

Logistic regression with lesion number and proportion necrotic area correctly predicted 

long term disease impact categories for 11/14 clones tested, including the most resistant 

(NM6) and the most susceptible (NC11505) clone demonstrating that this screening 

protocol is a promising method for prediction of long term disease impact of the most 

resistant clones. 

Introduction 

Populus species and their hybrids are an important forest resource in North 

America (Bier 1939). Trees in this genus are ideal for short rotation woody cropping 

(SRWC) systems due to their ease of propagation, phenotypic uniformity, and high 
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growth rates (Dickmann 2001, LeBoldus et al. 2009, Stettler et al. 1996). Plantations of 

Populus are currently being used for pulp and paper, value-added forest products, and are 

a potential biofuel feedstock (Hansen et al. 1994, Eckenwalder 1996, Stettler et al. 1996, 

Stoffle 1998, Balatinecz and Kretschmann 2001, Mercker 2007, McNeil Technologies 

Inc. 2009, Sannigrahi et al. 2010). However, the growth and yield of Populus species and 

their hybrids grown in SRWC systems are often impacted by several important diseases 

(Waterman 1954, Long et al. 1986, LeBoldus et al. 2009). In the north-central and 

eastern regions of North America the leaf spot and canker diseases caused by 

Mycosphaerella populorum Thompson (Anamorph = Septoria musiva Peck) have had the 

greatest impact (Bier 1939, Thompson 1941, Waterman 1954, Newcombe and Ostry 

2001). The recent expansion of this pathogen into poplar producing regions such as the 

Fraser Valley in British Columbia, Canada (Callan et al. 2007) and South America 

(Sivanesan 1990) further highlight the importance of this pathogen.  

Septoria leaf spot can impact growth and yield by reducing the leaf area available 

for photosynthesis, and may cause premature defoliation of highly susceptible genotypes 

(clones) (Bier 1939, Thompson 1941, Waterman 1954, Newcombe and Ostry 2001). 

Cankers may kill distal portions of branches and stems. Stem cankers are defects that 

reduce economic value, increase the risk of breakage, and may result in plantation failure 

by killing highly susceptible clones (Bier 1939, Waterman 1954, Ostry and McNabb 

1985, Newcombe and Ostry 2001). The importance of Septoria canker has resulted in 

several studies evaluating the effectiveness of different management strategies. These 

studies indicated that cultural, biological, or chemical controls are either too expensive or 

have limited efficacy (Ostry et al. 1989, Yang et al. 1994, Gyenis et al. 2003). Therefore, 
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the selection and deployment of disease resistant clones is the most effective way to 

manage this disease (Ostry et al. 1989).  

Early observations by Bier (1939) and Waterman (1954) indicated a relationship 

between response of clones to inoculation and Septoria canker damage in the field (Bier 

1939, Waterman 1954). More recently, Weiland et al. (2003) inoculated young stems of 

poplar clones by placing mycelial plugs on wounds produced by removing a leaf. Clones 

had been categorized according to previously observed Septoria canker damage severity 

(Weiland et al. 2003). Results were predictive of long-term damage categories in both 

field (24 of 27 clones) and potted trees in the greenhouse (14 of 15 clones) experiments. 

Although the feasibility and potential benefit of screening juvenile poplar clones 

was demonstrated, the procedures of Weiland et al. (2003) have possible disadvantages 

(Weiland et al. 2003). Numbers of clones and replicates are limited by available space, 

and responses to inoculation were evaluated after many weeks or months. Inoculum plugs 

bore a single pathogen isolate. Inoculation of wounds circumvents potential resistance 

mechanisms. LeBoldus et al. (2010) described an inoculation protocol in which very 

young, non-wounded ramets were inoculated with a conidial suspension in a greenhouse 

(LeBoldus et al. 2010). This allowed multiple isolates to be used simultaneously, and 

produced results correlated with clonal responses to wound inoculation in a relatively 

short period of time (LeBoldus et al. 2010). However, the ability of this protocol to 

predict long-term field performance of resistant and susceptible clones was not tested.  

The current study was conducted using 14 clones of hybrid poplar assigned to 

long-term canker damage categories (Table 2.1) by Weiland et al. (2003 and 2005), based 
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on multiple observations of these clones across regions (Hansen et al. 1983, Ostry and 

McNabb 1985, Long et al. 1986, Ostry 1987, Ostry et al. 1989, Strobl and Fraser 1989, 

Abrahamson et al. 1990, Hansen et al. 1994, Lo et al. 1995, Netzer et al. 2002). Clones 

were not wounded and were inoculated with a multiple-isolate conidial suspension. The 

goal was to improve and increase the practicality of greenhouse screening of hybrid 

poplar clones for resistance to Septoria canker. The specific objectives were to: (i) test 

the predictive ability of this inoculation protocol for prediction of long-term canker 

damage categories; and (ii) determine which disease severity parameters are best used for 

prediction. 

Materials and methods 

Host plant propagation  

Fourteen hybrid poplar clones categorized according to previously observed 

Septoria canker damage categories (Weiland 2003 and 2005), were propagated from 

dormant branches collected in February 2012 at the University of Wisconsin-Madison 

Arlington Agricultural Research Station (Arlington, WI; Table 2.2). Cuttings 10-cm-long 

were soaked in distilled water for 48 h at room temperature (21°C) and then planted in 

SC10 Super cone-tainers (Stuewe & Sons® Deepots D40 cell; Stuewe & Sons Inc., 

Tangent, OR) containing SunGro® growing medium (SunGro® Professional Mix #8; 

SunGro Horticulture ® Ltd., Agawam, MA) amended with 12 g of nutricote slow release 

fertilizer (15-9-12) (N-P-K) (7.0% NH3-N, 8.0% NO3-N, 9.0% P2O5, 12.0% K2O, 1.0% 

Mg, 2.3% S, 0.02% B, 0.05% Cu, 0.45% Fe, 0.23% chelated Fe, 0.06% Mn, 0.02% Mo, 

0.05% Zn; Scotts® Osmocote Plus; Scotts Company Ltd., Marysville, OH). A 500 ppm 

solution of 20-20-20 liquid fertilizer (3.94% NH3-N, 6.05% NO3-N, 10.01% CO(NH2)2, 
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20.0% P2O5, 20.0% K2O, 0.05% Mg, 0.0068% B, 0.0036% Cu, 0.05% Chelated Fe, 

0.25% Mn, 0.0009% Mo, 0.0025% Zn; Scotts® Peters Professional; Scotts Company 

Ltd., Marysville, OH) was subsequently provided weekly. When trees reached a height of 

30 cm, they were transplanted into pots (22 cm deep × 22.5 cm diameter; Stuewe & 

Sons® Treepot CP59R:  Stuewe & Sons Inc., Tangent, OR) and fertilized as described 

above. Trees were grown in a greenhouse with an 18 h photoperiod supplemented with 

600W high pressure sodium lamps and a 20°C/16°C (day/night) temperature regime. 

Pathogen propagation and inoculation  

Septoria musiva isolates, MN7, MN11, and MN23 were isolated from individual 

branch cankers collected from three different Populus trees (Populus maximowiczii A. 

Henry, Populus trichocarpa Torr. & A. Gary × Populus deltoides Marsh, and P. deltoides 

× P. trichocarpa) located in different plantings near Garfield, MN in 2012. The cankers 

were soaked in 5% bleach (NaClO 6%; Homelife ® Bleach Regular Scent; KIK Custom 

Products Inc., Houston, TX) for 2 minutes and rinsed twice with sterile distilled water. 

Bark was removed to expose the margin between healthy and necrotic tissue. From this 

area a 4-mm-long sliver of necrotic tissue was removed and placed on V-8 juice agar (137 

ml V-8 juice, Campbell Soup Company, Camden, NJ; 1.5 g CaCO3, ReagentPlus®, 

Research Organics Inc., Cleveland, OH; 15.2 g agar Difco, Franklin Lakes, NJ and 625 

ml de-ionized water) in Petri plates. Subsequently, Petri plates were sealed with Parafilm 

and incubated at room temperature in constant light 30-cm below Gro-Lux full spectrum 

fluorescent bulbs (Sylvania; Osram Gmbh, Munich, Germany). After approximately 1 

week, transfers were made to a second V-8 juice agar plate. Identity of pure cultures was 
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confirmed on the basis of conidial morphology (Sicanesan 1990). Isolates were stored at -

80°C in vials containing 1 ml of a 50% glycerol solution. 

Inoculum of each of the three isolates was produced from vials removed from 

cold storage. Each vial was poured onto a Petri plate containing V-8 juice agar and placed 

under light, as described above, for 5 d. Then four 5-mm-diameter sporulating masses of 

mycelium were aseptically transferred to each of 13 new plates of V-8 juice agar for each 

isolate. These plates were then placed under light as described above to induce 

sporulation. Conidia were harvested after 14 days by flooding each plate with 5 ml of 

sterile distilled water, rubbing the surface with a sterile loop, and removing the resulting 

spore suspension with a micropipette. The spore suspension for all 13 plates of each 

isolate was combined and the concentration adjusted to 1 × 106 conidia ml-1. Equivalent 

volumes of each of the three conidial suspensions (MN7, MN11 and MN23) were then 

combined to conduct bulk inoculations. Inoculum for both trials was prepared in an 

identical manner.  

Approximately 2 weeks after transplanting, stem height was measured and then 

trees were inoculated. Trees were removed from the greenhouse and each stem was 

sprayed with the conidial suspension and placed in separate black plastic bags at 21°C. 

After 48 h, plants were removed from the bags and returned to the greenhouse (LeBoldus 

et al. 2010). Twenty-one days after inoculation disease severity was evaluated. Lesion 

number (Lesion#) was a count of the number of necrotic lesions per stem. Lesions cm-1 

was calculated by dividing canker number by the height of the tree at the time of 

inoculation. The necrotic area (NA) was determined by tracing lesions onto 

transparencies, digitizing the transparencies, and using Assess 2.0 software (APS, St. 
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Paul, MN) to measure the necrotic area in cm2. The proportion necrotic area (PNA) was 

calculated by first estimating the stem surface area with the following formula: surface 

area = height × circumference. The NA was then divided by the surface area to determine 

PNA.    

Experimental design 

The experimental design was a randomized complete block design with six blocks 

among 14 clones. Each clone occurred once per block. Five blocks were inoculated with 

the conidial suspension and one block was a mock inoculated control (5 inoculated + 1 

control block). A second trial was conducted with 10 blocks (8 inoculated + 2 control 

blocks) using the same methods. In both trials controls were used to confirm the absence 

of symptom development and subsequently discarded and not used in any statistical 

analysis. 

Statistical analysis  

Data from the inoculation trials were analyzed using SAS 9.2 (SAS Institute, 

Cary, NC) and significance was assessed at α = 0.05. Initially, data from both trials was 

combined. The MIXED procedure in SAS (Littell et al. 2006) with clone and trial as 

fixed effects and block as a random effect was used to test for: equality of variances 

between trials, a significant interaction between clone and trial, and significant 

differences among main effects. Subsequently, data from each trial was analyzed 

separately and analyses of each of the four disease severity parameters (Lesion#, Lesions 

cm-1, NA and PNA) were conducted independently. The MIXED procedure in SAS 

(Littel et al. 2006) was used to calculate the mean for each clone-disease severity 

parameter combination. The models used for mean estimation had clone as a fixed effect, 
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block as a random effect, and the repeated statement was used to model heterogeneous 

variances among clones. The means were then averaged across the two trials and used in 

the subsequent multinomial logistic regression analysis.  

Fifteen separate models (Table 2.3) were compared in a two stage process: (i) fit 

of the model; and (ii) predictive power of the fitted model. In the first stage, models were 

compared using the deviance statistic. This statistic is used to compare a reduced model 

to the saturated model. It is assumed that the saturated model perfectly fits the data and 

that the reduced model will fit the data to a greater or lesser extent depending on the 

parameters included in that model. The larger the P-value of the deviance statistic the 

closer the reduced model is to the saturated model and the better the corresponding fit. In 

the second stage, the predictive power of the models were compared using the proportion 

of accurately predicted clones, percent concordance (% CC), percent discordance (% 

DC), Gamma, Tau-a, Somer’s D, and the c statistic. Percent concordance and percent 

discordance represent how the predicted values are associated with the observed values 

(Allison 2012). The c statistic, Tau-α, Gamma, and Somer’s D are statistics used to assess 

the predictive power of the model. For all four statistics the larger the value the higher the 

predictive power of the model.   

Results 

Necrotic lesions were first observed 2 to 3 weeks following inoculation. Latent 

period varied among clones and was shorter for more susceptible clones. Lesions were 

similar in appearance to incipient Septoria cankers observed in the field, and first 

appeared as small, elliptical areas of water-soaked cells on the surface of stems. These 

water-soaked areas became necrotic and coalesced to girdle the stem of susceptible 
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clones. Occasionally, the lesions bore pycnidia in light tan centers surrounded by black 

margins. The majority of lesions developed on the lower third of inoculated trees in 

association with lenticels and stipules. On highly susceptible clones; however, cankers 

also developed apparently due to direct penetration (i.e., at sites other than lenticels or 

stipules) on stems. Approximately 2 weeks after inoculation, swelling developed along 

the margin of necrotic and healthy tissue preventing further canker expansion on stems of 

resistant clones. No symptoms developed on control trees. Controls were not included in 

any further analysis. 

The variances of the two trials were statistically similar and there was no 

significant clone by trial interaction across the four parameters. However, there were 

significant differences between trial 1 and 2 for Lesion# (P < 0.001), Lesions cm-1 (P < 

0.001), and NA (P = 0.002), but not PNA (P = 0.114). As a result each trial was analyzed 

separately and the means of each clone-disease severity parameter combination were 

estimated (Table 2.2). The analysis indicated that there were significant differences 

among clones across all four parameters in both trials (PLesion# < 0.001; PLesions/cm < 0.001; 

PNA < 0.001; and PPNA < 0.001). Overall, NM6 was the most resistant clone and NC11505 

was the most susceptible clone regardless of the disease severity parameter (Table 2.2). 

The average number of lesions per clone ranged from 1.6 for NM6 to 39.6 for NC11505; 

the mean number of lesions cm-1 ranged from 0.1 for NM6 to 1.5 for NC11505; the mean 

NA ranged from 0.6 cm2 for NM6 to 40.8 cm2 for NC11505; and the PNA ranged from 

0.01 for NM6 to 0.14 for NC11505 (Table 2.2). In order to develop a model to predict 

long term disease severity categories based on the non-wound inoculation protocol means 

for each clone-disease severity parameter combination were averaged across both trials.  
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Across the 15 tested models, four low damage category clones (DN74, DN34, 

MWH5 and NM6) and five high damage category clones (NC11432, NC11505, NC5271, 

NE308 and NE351) were correctly predicted to be resistant and susceptible, respectively 

(Table 2.4). The model with Lesion# and PNA as explanatory variables had the best fit, 

relative to the saturated model (P = 0.63; Table 2.3). Somer’s D (0.78), Gamma (0.78), 

Tau-a (0.54), and the c-statistic (0.89) indicated that this model had the highest predictive 

power relative to all but one of the other models. Only the full model (Lesion# + Lesion-1 

cm + NA + PNA) had greater predictive ability (Table 2.3). However, the proportion of 

accurately predicted clones, for the model with Lesion# + PNA (11/14) was greater than 

the full model (10/14).  

Discussion 

Inoculation of poplars with conidia of S. musiva has produced varying results in 

previous studies. Lesions that developed in the current study were similar in appearance 

to those observed on inoculated P. balsamifera trees by Zalasky (1978) and LeBoldus et 

al. (2010). Bier (1939) used similar methods to induce stem lesion development at the 

base of leaves and surrounding lenticels of non-wounded hybrid poplar clones. Krupinsky 

(1989) reported that a small number of cankers developed on young succulent tissue of 

the most susceptible clones. In contrast, cuttings of NE338 (NC11505 in this study), a 

highly susceptible clone, did not develop stem lesions after inoculation with a conidial 

suspension by Long et al. (1986). A consistent difference, based on the above authors’ 

descriptions, between three of the studies in which stem lesions developed (Zalasky 1978, 

Krupinsky 1989, LeBoldus et al. 2010) and the one that they did not (Long et al. 1989) 

was the age of the trees. Long et al. (1989) inoculated 25-week-old trees whereas Zalasky 
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(1978), LeBoldus et al. (2010), and Krupinsky (1989) all inoculated trees ≤ 12 weeks of 

age. Bier (1939) did not report the age of the trees at the time of inoculation. One 

possible explanation for the lack of canker development on older trees is the period of 

time, lasting several weeks, where trees lose their epidermis and develop periderm and 

phloem fibers (Esau 1969). During this period of development the bark (epidermis) is 

relatively thin and may be more easily penetrated by S. musiva (Zalasky 1978). As the 

tree ages the thickening periderm might prevent infection without prior wounding. 

To this author’s knowledge, this study and that of LeBoldus et al. (2010) are the 

only studies where statistically significant differences in susceptibility among clones 

were detected for trees inoculated by conidial suspension (Table 2.2). Neither Bier (1939) 

nor Krupinsky (1989) reported differences in severity on inoculated trees. Although, 

Zalasky (1978) indicated that differences in response to inoculation were not apparent 

among inoculated seedlings, he was unable to make statistical comparisons due to a lack 

of replication. In this study not only were significant differences among clones apparent 

and consistent across the two trials, but the results were also predictive of long term field 

performance.  

An examination of the predictive models tested in this study indicates that a 

measure of both lesion severity and lesion number result in the greatest number of 

accurately predicted clones. The combination of Lesion# and PNA (Table 2.3) allows the 

model to take both the number of lesions and the size of those lesions into consideration 

when predicting long term damage categories. For example, a model with PNA only 

would place clones with an equal number of small lesions and a single large lesion in the 

same category. However, the clone with a large number of small lesions may be resistant 
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and survive whereas the clones with a single large lesion likely would not. These results 

are consistent with Weiland et al. (2003) who found that the parameters of canker 

incidence and girdle had the greatest predictive ability in both the greenhouse and field 

studies in which seedlings were wound-inoculated. 

There are several possible explanations for the lack of complete predictive ability 

of this study with the previously assigned damage categories. In field studies, clones 

NC5271, NC5260, and NE222 displayed a range of disease severities across regions 

(Hansen et al. 1983, Lo et al. 1995, Weiland et al. 2003 and 2005) potentially 

contributing to uncertainty as to whether their previously assigned canker damage 

category accurately reflected resistance or susceptibility to Septoria canker. This may 

have been exacerbated by the different Septoria canker rating methods used by various 

researchers. For example, Lo et al. (1995) used canker number to place clones into four 

classes; whereas, Hansen et al. (1983), used a different method to evaluate Septoria 

canker in the mid-west. As a result clones were placed in different categories based on 

these different rating systems, perhaps explaining placement in the Intermediate category 

by Weiland et al. (2003). 

A second possibility for lack of correct prediction of the damage category may be 

related to the relative disease tolerance of specific clones. For example, clone A and 

clone B may exhibit similar disease severities following experimental inoculation. 

However, clone A may not show a corresponding reduction in growth, yield, or survival, 

whereas clone B does. This may be reflected in the assay’s low predictive ability for 

clones in the intermediate damage category. These clones may have similar levels of 

disease severity 3-weeks following inoculation; however, field performance may differ 
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resulting in the final placement of some clones in the intermediate or low damage 

category, based on their field performance, and others assigned to the high damage 

category. A third possibility may be the presence of specificity in the pathogen 

population. Several authors (Krupinsky 1989, Ward and Ostry 2005, LeBoldus et al. 

2010) detected a small but significant clone × isolate interaction in their inoculation 

assays. This may explain the discrepancy between the predictions of the wound 

inoculation protocol and the non-wound inoculation protocol both of which used different 

isolates. However, further exploration of the significance and magnitude of this effect 

needs to be conducted.  

There are two main advantages of the conidial inoculation of non-wounded 

seedlings. Due to the time and space requirements of screening multiple clones with the 

wound-inoculation assay several authors (Lo et al. 1995, Ward and Ostry 2005, Weiland 

et al. 2003 and 2005, LeBoldus et al. 2010) have suggested that a single highly virulent 

isolate could be used to select the most resistant clones for field testing. However, Feau et 

al. (2005) found evidence of sexual reproduction in the pathogen population suggesting 

that S. musiva virulence may shift in response to the deployment of resistant clones. The 

ability of the pathogen to reproduce sexually and the potential presence of a clone × 

isolate interaction, described above (Kruspinsky 1989, Ward and Ostry 2005, LeBoldus 

et al. 2010), suggests that using multiple isolates to screen for resistance is more likely to 

select the most durable resistance under field conditions. 

The second advantage is the cost savings associated with conducting a 

preliminary greenhouse screening. Disease resistance evaluation under field conditions 

requires thousands of trees, at replicated field sites, measured over several years (Table 
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2.1). Plantation establishment costs are proportional to the number of planted cuttings, 

routine maintenance, pest control, irrigation, and fertilization costs (Hansen et al. 1983). 

Savings can be achieved by reducing the overall number of clones tested by eliminating 

the most susceptible clones prior to field testing. The non-wound greenhouse screening 

protocol, described above, would facilitate this process. 

The consistency in predictive ability of results obtained by inoculation of wounds 

by Weiland et al. (2003) and from conidial inoculation in this study may provide clues as 

to the type of resistance mechanism being evaluated. In both cases, it is likely that post 

penetration resistance among clones is being compared. If this is the case then both 

inoculation assays are likely to provide similar predictions of long term field 

performance. The results from this study and the correlation between wound and non-

wound inoculations reported by LeBoldus et al. (2010) support this hypothesis. 

Furthermore, the reliability of the conidial inoculation protocol presents an opportunity, 

initially proposed by Newcombe and Ostry (2001), to elucidate the genetic mechanism of 

Septoria canker resistance. Newcombe and Ostry (2001), in a field study conducted in 

Minnesota and Iowa, evaluated Septoria canker resistance in a three generation pedigree 

of P. deltoides × P. trichocarpa. and found evidence supporting the recessive inheritance 

of Septoria canker resistance. However, due to disease escape and variation in pathogen 

virulence they could not conclude that resistance was conferred by a single gene. As a 

result they suggested that further testing of the hypothesis be conducted in a greenhouse. 

A greenhouse assay, similar to that described above, would ensure that trees were 

inoculated with a single spore isolate of known virulence, at a specific concentration, and 
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set volume of inoculum eliminating the sources of variability, disease escape and 

variation in pathogen virulence, described in the study by Newcombe and Ostry (2003).   

Continued evaluation of clones selected for scale up based on field observations 

or responses to inoculations are warranted. For example, clone NM6 was placed in the 

low canker damage category by Weiland et al. (2003) based on previous reports and 

response to inoculation in the current study (Abrahamson et al. 1990, Hansen et al. 1994, 

Lo et al. 1995, Netzer et al. 2002). There has been a report of high incidence and severity 

of canker disease damage to that clone in the field in Wisconsin (Waterman 1954); 

however, and commercial plantings of NM6 have been severely impacted in Minnesota 

(personal communication, Jared LeBoldus). The reasons for these discrepancies are 

unclear. The role of environmental conditions in disease development may offer a 

potential explanation. For example, Maxwell et al. (1997) reported an effect of water 

stress on Septoria canker disease severity of clone NM6 (Maxwell et al. 1997). Similar 

effects of water stress on disease severity and response to wounding have been reported 

in other systems (Mullick 1977, Biggs et al. 1983, Long et al. 1986). The role of 

environmental conditions in disease development needs to be clarified in order to better 

understand this phenomenon; however, this was beyond the scope of this study. 

Conidial inoculation of non-wounded seedlings can be integrated into hybrid 

poplar breeding programs to accurately predict the long term disease impact categories of 

the most resistant and susceptible clones. Compared to other methods, this procedure is 

faster, less resource intensive, allows combinations of isolates to be used simultaneously, 

and does not circumvent potential resistance mechanisms by wounding. This procedure is 

currently being used by the hybrid poplar breeding program at the University of 
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Minnesota-Duluth to screen D × N hybrids prior to deployment in the field (LeBoldus et 

al. unpublished data).   
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Table 2.1.  Summary of seven field studies, including number of field sites, number of 
clones, observation period and tree age. 

 

Reference 
Number of 
field sites  

Numbers 
of clone 

Observation 
period Tree age 

Schreiner (1972) 2  40 1970 to 1971 15- to 20-year-old 

Hansen et al. (1983) 3   34 1976 to 1981 ---- 

Hansen et al. (1994) 30  40 - 80 1991 to 1992 5- to 6-year-old 

Abrahamson et al. (1990) 1  54 1986 to 1987 3-year-old 

Lo et al. (1995) 1  54 1993 9-year-old 

Netzer et al. (2002) 16  95 1987 to 1992 7- to 12-year-old 

Ostry and McNabb 
(1985) 

3  34 1976 to 1982 5-year-old 
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Table 2.2. Parentage, assigned damage categories (High, Intermediate, Low), mean and standard deviation of disease severity 
parameters (Lesion#, Lesion cm-1, NA and PNA)a of 14 hybrid poplar clones. The clones were inoculated in the greenhouse with 
spraying conidial suspension of three different isolates (MN7, MN11 and MN23) mixture of Septoria musiva. 

 

Clone Parb Assigned 
damage cat.c 

Lesion# Lesion cm-1 NA (cm2) PNA 

Meand (SD)e Mean (SD) Mean (SD) Mean (SD) 
NM6 4 × 3 L 1.6 (3.0) 0.1 (0.1) 0.6 (1.0) 0.00 (0.00) 
DN74 2 × 4 L 3.8 (3.4) 0.2 (0.2) 1.2 (0.8) 0.00 (0.00) 
DN34 2 × 4 L 7.1 (11.6) 0.2 (0.3) 2.1 (1.8) 0.01 (0.01) 
DN164 2 × 4 L 7.8 (10.2) 0.4 (0.4) 2.3 (1.2) 0.01 (0.01) 
DN177 2 × 4 L 17.8 (13.0) 0.5 (0.3) 8.8 (5.5) 0.02 (0.01) 
NC5260 9 × 1 I 4.6 (5.5) 0.4 (0.3) 1.7 (0.6) 0.01 (0.00) 
NE222 2 × 5 I 9.2 (7.2) 0.3 (0.2) 6.2 (5.9) 0.02 (0.01) 
NC5271 7 × 5 I 13.3 (10.6) 0.5 (0.2) 10.2 (7.8) 0.04 (0.03) 
MWH13 2 × 3 H 7.0 (8.8) 0.3 (0.2) 4.1 (4.5) 0.01 (0.02) 
MWH5 2 × 3 H 3.6 (3.4) 0.3 (0.1) 1.6 (1.1) 0.02 (0.00) 
NE308 7 × 6 H 14.0 (7.8) 0.5 (0.2) 7.8 (3.4) 0.03 (0.02) 
NC11432 2 × 8 H 23.4 (11.7) 0.8 (0.2) 15.0 (8.6) 0.05 (0.04) 
NE351 2 × 5 H 24.5 (14.0) 0.6 (0.1) 14.7 (10.3) 0.05 (0.04) 
NC11505 3 × 8 H 39.6 (8.8) 1.4 (0.2) 40.8 (24.4) 0.14 (0.07) 
a Lesion# = Lesion number, Lesion/cm = 

������ ��	
��

���
�� ��	�
, NA = Necrotic area and Proportion necrotic area (PNA) 

=
�������� ���� ��	��

���
�� �������������� ��	��
. 

b Par. = Parentage. Numbers refer to Populus spp. and hybrids as follows: 1 = balsamifera, 2 = deltoides, 3 = maximowiczii, 4 = nigra, 
5 = nigra var. caudina, 6 = nigra var incrassate, 7 = nigra var. plantierensis, 8 = trichocarpa and 9 = tristis.  

c Cat. = Disease damage categories of Weiland et al. (L = Low, I = Intermediate, H = High) (Weiland et al. 2003 and 2005). 

d Mean was calculated from 13 individuals of each clone. 

d SD = Standard deviation,  calculated from 13 individuals of each clone. 
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Table 2.3. Goodness-of-fit (deviance) and predictive ability (overall proportion, percent concordant, percent disconcordant, Somer’s 
D, Gamma, Tau-a and c-statistic) results from logistic regression analysis of data from 14 hybrid poplar clones. The clones were 
inoculated in the greenhouse with spraying conidial suspension of three different isolates (MN7, MN11 and MN23) mixture of 
Septoria musiva.   

 

Model Dev. 
P > χ2a 

Overall 
Proportionb 

% CCc % DCd SDe Gammaf Tau-ag ch   

Lesion# + Lesion cm-1 + NA + 
PNA 

0.54 10/14 90.5 9.5 0.81 0.81 0.56 0.91 

Lesion# + NA + PNA 0.58 10/14 88.9 11.1 0.78 0.78 0.54 0.89 

Lesion# + Lesion cm-1 + NA 0.49 9/14 85.7 14.3 0.71 0.71 0.50 0.86 
Lesion cm-1 + NA + PNA 0.55 9/14 84.1 15.9 0.68 0.68 0.47 0.84 

Lesion# + Lesion cm-1 + PNA 0.60 11/14 88.9 11.1 0.78 0.78 0.54 0.89 

Lesion# + NA 0.52 9/14 84.1 15.9 0.68 0.68 0.47 0.84 

Lesion cm-1 + NA 0.49 8/14 77.8 22.2 0.56 0.56 0.39 0.78 

NA + PNA 0.61 10/14 82.5 17.5 0.65 0.65 0.45 0.83 

Lesion cm-1 + PNA 0.53 9/14 77.8 22.2 0.56 0.56 0.39 0.78 

Lesion# + PNA 0.63 11/14 88.9 11.1 0.78 0.78 0.54 0.89 

Lesion# + Lesion cm-1 0.41 8/14 71.4 28.6 0.43 0.43 0.30 0.71 

Lesion# 0.45 8/14 71.4 28.6 0.43 0.43 0.30 0.71 

Lesion# cm-1 0.46 7/14 69.8 28.6 0.42 0.42 0.29 0.71 

NA 0.52 8/14 71.4 28.6 0.43 0.49 0.30 0.71 

PNA 0.59 8/14 79.4 20.6 0.59 0.59 0.41 0.80 
a P-value of the deviance of goodness-of-fit test. b The proportion of clones which are accurately predicted in greenhouse experiment.  

c %CC = Percent concordant. d %DC = Percent discordant. e SD = Somer’s D. Somer’s D = 
�� ���

�������
. f Gamma = 

�� ���

�����
.   

g Tau-a = 
�� ���

�
. N = Total number of pairs. h C = c-statistics.  c = 0.5 × (1 + SD).
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Table 2.4. The best linear unbiased estimates (MEANs) of final model (Lesion# + PNA) of 14 
hybrid poplar clones. This model is used to predict the probability of placement in the low (L), 
intermediate (I), or high (H) categories contrasted with the assigned damage category (L, I, H). 
Fourteen clones were inoculated with conidial suspension of three different isolates (MN7, 
MN11 and MN23) mixture of Septoria musiva. 

 

Clone 
Assigned 
damage cat.a 

Predicted 
damage cat.b 

Prob. of placement in cat. (%)c 

L I H 

NM6 L L 49 33 18 
DN74 L L 57 29 14 
DN34 L L 71 21 8 
DN164 L L 73 20 7 
DN177 L L 74 19 7 
NC5260 I L 57 29 14 
NE222 I I 35 36 29 
NC5271 I H 2 7 90 
MWH13 H H 26 36 38 
MWH5 H L 47 33 19 
NE308 H H 13 28 59 
NC11432 H H 6 17 77 
NE351 H H 2 6 92 
NC11505 H H 0 0 100 
a Assigned damage categories of Weiland et al. (2003) (L = low, I = intermediate, H = high)  

b Predicted damage categories were based on probability of placement (L = low, I = intermediate, 
H = high) given response to conidial suspension inoculation.   

c Probability of placement in categories (%) (L = low, I = intermediate, H = high)    
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CHAPTER 2. INFECTION BIOLOGY AND HOST RESPONSE OF HYBRID 

POPLAR STEMS INOCULATED WITH SEPTORIA MUSIVA 

Abstract 

Trees in the genus Populus and their interspecific hybrids are used across North America 

in shelter belts, fiber production, and as a potential source of biofuel. Plantations of these species 

are severely impacted by a fungal pathogen, Mycosphaerella populorum (Anamorph = Septoria 

musiva), the cause of leaf spot and stem canker. The majority of the research has focused on the 

development of disease resistant clones. An inoculation protocol that does not rely on stem 

wounding to achieve infection was recently developed. Using this protocol two experiments 

were conducted to examine the infection biology and disease etiology. In the first experiment, 

non-wounded stems of one resistant clone (NM6) and one susceptible clone (NC11505) were 

inoculated and examined by scanning electron microscope at six different times (6 h, 12 h, 24 h, 

72 h, 1 week, and 3 weeks) post inoculation. The images indicate that the pathogen appears to 

enter host tissue through small openings and lenticels and that there are no significant differences 

in the penetration rate between resistant and susceptible clones at 12 h post inoculation. In a 

second experiment, a histological comparison of stem cankers for resistant clone DN74 and 

susceptible clone NC11505 were conducted at three time points (3 weeks, 5 weeks and 7 weeks) 

post inoculation.  Distinct differences in disease etiology were apparent between the resistant and 

susceptible clones. The results from these two experiments support the hypothesis that resistance 

responses to stem infection may be occurring post penetration. 

Introduction 

Mycosphearella populorum Thompson (Anamorph = Septoria musiva Peck) causes  

Septoria leaf spot and stem canker diseases of poplar species and their hybrids in eastern and 
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central North America (Waterman 1954, Cellen et al. 2007).  Severe leaf spot disease can result 

in premature defoliation, and stem and branch infections can lead to stem defects, breakage, and 

mortality (Bier 1939, Waterman 1954, Ostry et al 1985, Newcombe 1996). In many cases, severe 

outbreaks of stem canker limit the commercial viability of poplar plantations (Bier 1939, 

Newcombe 1996). Resistant genotypes (clones) are typically considered the most effective way 

to manage this disease (Ostry and McNabb 1985, Newcombe and Ostry 2001). The identification 

of these clones has been conducted by wound inoculations in both the greenhouse (Filer et al. 

1971, Weiland et al. 2003 and 2005, LeBoldus et al. 2010) and field (Zalasky 1978, Long et al. 

1985, Ostry and McNabb 1985, Spielman 1986, Krupinsky 1989, Newcombe 1998, Weiland et 

al. 2003 and 2005). Evaluation of disease severity in naturally infected field plantings has also 

been used to evaluate disease resistance (Hansen et al. 1983, Ostry and McNabb 1985, Long et 

al. 1986, Ostry 1987, Ostry et al. 1989, Strobl and Fraser 1989, Abrahamson et al. 1990, Hansen 

et al. 1994, Lo et al. 1995, Netzer et al. 2002). Although these procedures have successfully 

identified resistant clones, very little information is available regarding the mode of infection of 

the pathogen into woody tissue and subsequent disease development (Ostry and McNabb 1985).  

A review of the literature indicates that S. musiva is typically considered to be a pathogen 

associated with wounds largely why the wound inoculation assay was developed as a screening 

tool (Ward and Ostry 2005, Weiland et al. 2003 and 2005, LeBoldus et al. 2009, LeBoldus et al. 

2010). However, some authors have also indicated that the pathogen may be able to penetrate 

host tissue through natural openings including lenticels, stipule scars, and petioles (Bier 1939, 

Waterman 1954, Zalasky 1978, Long et al. 1986). For example, Bier (1939) reported necrotic 

lesion development surrounding lenticels, petioles and stipule scars of non-wounded hybrid 

poplars. Similar findings were reported in other studies (Zalasky 1978, Long et al. 1986, 
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Krupinsky 1989). It has also been noted that on the most susceptible clones lesions seemed to 

develop without any association with natural openings (Zalasky 1978). The recent development 

of a consistent non-wound inoculation protocol permits the investigation of the infection biology 

of S. musiva (LeBoldus et al. 2010). 

In similar studies examining the infection process, scanning electron microscopy (SEM) 

has been used to visualize the mode of infection of a fungal pathogen (Smith and Oatley 1955, 

Mims 1991, McMullan 1995). For example, Pegg et al. (2009) studied the mode of penetration 

of shoot blight on eucalyptus leaves by Quambalaria spp., Graca et al. (2009) verified the 

pattern of infection of Cylindrocladium pteridis into eucalyptus leaves and Roderick and Thomas 

(1997) examined the factors influencing the infection of three rust fungi on ryegrass. These 

studies provided valuable information on the infection biology and disease progress in the early 

stages of the host–parasite interaction. However, SEM is limited to an examination of tissue 

surfaces leaving many aspects of the interaction uncharacterized.  

In order to examine anatomical changes to host tissue following infection a histological 

analysis is typically conducted (Biggs et al. 1983a, 1983b and 1984, Biggs 1984 and 1986b, 

Hebard et al. 1984, Enebak et al. 1997). In the hybrid poplar-Septoria pathosystem, Weiland and 

Stanosz (2007) wound inoculated the susceptible clone NC11505 (Populus maximowiczii A. 

Henry × Populus trichocarpa Torr. & A. Gary) and the resistant clone DN34 (Populus deltoides 

Marsh × Populus nigra L.). DN34 exhibited minimal necrosis with the development of 

continuous necrophylatic periderm (NP) in close proximity to the inoculation point, apparently 

limiting pathogen development. In contrast, the susceptible clone NC11505 developed extensive 

necrosis with several successive layers of thin NP, which were located further away from the 

point of infection and were often disrupted by phloem fibers (Weiland and Stanosz 2007). The 
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disruption of NP was absent in the resistant clone and the authors hypothesized that the pathogen 

was able to circumvent the NP by passing through these phloem fibers (Weiland and Stanosz 

2007). The results are similar to other pathosystems where histological comparisons of resistant 

and susceptible trees inoculated by wounding were conducted (Soo 1977, Biggs et al. 1983b, 

Hebard et al. 1984, Biggs 1984 and 1986, Enebak et al. 1997).  

The formation of NP is considered to be, by most authors, a non-specific host response 

resulting from disruption of the phellogen by mechanical injury, insect damage, or pathogen 

invasion (Mullick 1977, Soo 1977, Biggs et al. 1984, Biggs 1986a). Although some minor 

differences in the anatomy of NP formation have been described when wounds alone and 

wounds inoculated with fungal pathogens have been compared, it can be difficult to differentiate 

host response to mechanical injury from host response to pathogen invasion (Biggs 1986a). On 

the one hand, the comparative study of wounded and non-wounded inoculation protocol 

demonstrated that a potential resistance mechanism might occur post-penetration. As a result 

using non-wounded Populus trees inoculated with a conidial suspension could detail the host 

response in the absence of wounding. In this study, the author will compare resistant: DN74 (P. 

deltoides × P. nigra) & NM6 (P. maximowiczii × P. nigra) and susceptible (NC11505) clones to: 

(i) describe the mode(s) of infection of S. musiva into non-wounded hybrid poplar stems; (ii) 

compare histological responses of resistant and susceptible clones following infection without 

wounding; and (iii) determine when, in the infection process, differences in resistance to S. 

musiva occur. 
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Materials and methods 

Part I. Infection biology 

Host plant propagation  

Dormant branches of the susceptible clone NC11505 and resistant clones NM6 and DN74 

were collected in February, 2012 at the University of Wisconsin-Madison Arlington Agricultural 

Experiment Station (Arlington, WI) and cut into 10-cm lengths. Cuttings were initially soaked in 

distilled water at room temperature (21℃) for 48 hours, and then planted in SC10 Super cone-

tainers (Stuewe & Sons® Deepots D40 cell; Stuewe & Sons Inc., Tangent, OR) containing 

SunGro® growing medium (SunGro® Professional Mix #8; SunGro Horticulture® Ltd., 

Agawam, MA) amended with 12 g of nutricote slow release fertilizer (15-9-12) (N-P-K) (7.0% 

NH3-N, 8.0% NO3-N, 9.0% P2O5, 12.0% K2O, 1.0% Mg, 2.3% S, 0.02% B, 0.05% Cu, 0.45% 

Fe, 0.23% chelated Fe, 0.06% Mn, 0.02% Mo, 0.05% Zn; Scotts® Osmocote Plus; Scotts 

Company Ltd., Marysville, OH). This was supplemented on a weekly basis with a 500 ppm 

solution of liquid fertilizer (20-20-20) (N-P-K) (3.94% NH3-N, 6.05% NO3-N, 10.01% 

CO(NH2)2, 20.0% P2O5, 20.0% K2O, 0.05% Mg, 0.0068% B, 0.0036% Cu, 0.05% Chelated Fe, 

0.25% Mn, 0.0009% Mo, 0.0025% Zn; Scotts® Peters Professional; Scotts Company Ltd., 

Marysville, OH).  Planted cuttings were placed on a greenhouse bench with an 18-hour 

photoperiod, supplemented with 600W high pressure sodium lamps, and a 20°C/16°C 

(day/night) temperature regime. Trees were transplanted into plastic pots (22 cm deep × 22.5 cm 

diameter; Stuewe & Sons® Treepot CP59R:  Stuewe & Sons Inc., Tangent, OR) when they 

reached a height of 30 cm. 
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Pathogen propagation and inoculation  

Septoria musiva was isolated from branch cankers, collected from hybrid poplars located 

near Garfield, MN. The cankers were soaked in a 5% bleach solution (NaClO 6%; Homelife® 

Bleach Regular Scent; KIK Custom Products Inc., Houston, TX) for 2 minutes and then rinsed 

twice with sterile distilled water. Bark was carefully removed from the canker margin and a 4-

mm long sliver of tissue were placed on V-8 juice agar (137 ml V-8 juice, Campbell Soup 

Company, Camden, NJ; 1.5 g CaCO3, ReagentPlus®, Research Organics Inc., Cleveland, OH; 

15.2 g agar Difco, Franklin Lakes, NJ and 625 ml de-ionized water). Petri plates were sealed 

with Parafilm and incubated at room temperature (21℃) 30-cm below continuous light (Gro-Lux 

full spectrum fluorescent bulbs: Sylvania; Osram Gmbh, Munich, Germany). After one week, 

colonies resembling S. musiva were transferred onto a second V-8 juice agar plate and identified 

based on conidial morphology (Sivanesan 1990). Pure S. musiva cultures were stored at -80°C in 

vials containing 1 ml of 50% glycerol solution. 

Each isolate (MN7, MN11, and MN23) was recovered from cold storage by pouring 1 ml 

glycerol solution onto one Petri plate containing V-8 juice agar. Three plates of each isolate were 

grown on the light bench described above. Five days later sporulating colonies were aseptically 

transferred onto 13 new V-8 juice agar plates and incubated on the light bench until sporulation 

occurred. Conidia were harvested by flooding the plates with 5 ml of sterile distilled water and 

lightly rubbing the surface of the plate with a sterile loop. For each isolate conidial suspensions 

harvested from each plate were combined and the concentration was adjusted to 1 × 106 conidia 

ml-1. Equal volumes of each isolate were combined and the bulked spore suspension was used for 

inoculations. Four weeks after transplanting, the stems of each tree were inoculated, using a 

spray bottle and the spore suspension as described by LeBoldus et al. (2010). Twelve trees of the 
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susceptible clone NC11505 and Twelve trees of the resistant clone NM6 were inoculated. Two 

control trees from each clone were inoculated in an identical manner except that sterile distilled 

water was used rather than a spore suspension.  

The spore germination rates of 4 time points (6 h, 12 h, 24 h and 72 h) were estimated by 

spraying inoculum onto 3 water agar (WA) plates (10 g agar Difco, Franklin Lakes, NJ and 500 

ml de-ionized water) kept in the dark for 48 h.  

Experimental design 

The experimental design was a completely randomized design. At each of six time points 

(6 h, 12 h, 24 h, 72 h, 1 week, and 3 weeks) post inoculation (PI) two trees of each clone were 

harvested, with one exception. Only a single stem from each clone was harvested at 1 week PI. 

In addition, a single non-inoculated control tree of each clone was harvested at 3 weeks PI. Two 

cankers were randomly selected from the lower 15 cm of each stem. Cankers were sampled such 

that a 5 cm segment of stem, centered on the canker, was collected. In addition four 5-cm 

segments, from the lower 15 cm of the tree and the top 15 cm were harvested from each of the 

controls. All samples were fixed in a 2.5% solution of glutaraldehyde in 0.2 M sodium phosphate 

buffer (pH 7.4; Tousimis Research Corporation, Rockville, MD) and stored at 4°C for three 

days. A total of 4 cankers per time point and 8 control segments were examined for each clone.  

Scanning electron microscopy 

The fixed stems were split longitudinally, so that both surfaces could be observed, and 

then dehydrated in an ethanol series from 30% to 100%. The split samples were critical-point 

dried using an Autosamdri 810 critical point drier (Tousimis Research Corporation, Rockville, 

MD) with liquid carbon dioxide as the transitional fluid. Longitudinal sections were attached to 

aluminum mounts with silver paint (SPI Supplies, West Chester, PA) and sputter coated with 
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gold/palladium (Balzers SCD 030, Balzers Union Ltd., Liechtenstein). Images were obtained 

using a JEOL JSM-6490LV SEM (JEOL Ltd., Japan) operating at an accelerating voltage of 15 

kV. Comparisons between penetration rates on the resistant and susceptible clones were 

conducted on images at 12 h PI. A total of 100 spores were counted in 2 to 3 fields of view, this 

was repeated 3 times and a t-test was used to compare penetration rates between the two clones 

(α = 0.05).  

Part II. Host response to non-wound inoculations 

Host plant propagation, pathogen propagation, and inoculation 

Plants were propagated in a similar manner to that described above, with the following 

exception: DN74 rather than NM6 was used as the resistant clone. Inoculum production and 

inoculation were also conducted as described above.   

Experimental design  

The experimental design was a completely randomized design. A total of 6 stem 

segments, approximately 5 cm in length and centered on cankers, were collected from each clone 

at each of the following time points: 3 weeks, 5 weeks and 7 weeks PI. Six stem segments from a 

mock inoculated control of each clone were also harvested at 7 weeks PI. In total 48 segments 

(36 inoculated and 12 controls) were fixed in 10 ml of formalin-acetic acid-ethyl alcohol (FAA, 

10:5:50) for one week at 21℃.  

Histology  

Fixed stem canker segments were dehydrated in an automated tissue processor (Leica 

Microsystems Inc., Buffalo Grove, IL) following the manufacturer’s instructions. The samples 

were then embedded with Paraffin Plus (Fisher Scientific Co., Houston, TX) using a Leica 
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embedding machine (Leica Microsystems Inc., Buffalo Grove, IL). Longitudinal and transverse 

sections of the cankers were then made using a rotary microtome (Leica Microsystems Inc., 

Buffalo Grove, IL) set to a thickness of 20 µm. Three segments were sectioned transversely 

through the top, middle, and bottom of each canker and the other three were sectioned 

longitudinally through the center of each canker. Several sections were made at each location. 

All sections were placed on microscope slides (Fisher Scientific Co., Houston, TX), de-waxed in 

Histo-Clear (Fisher Scientific Co., Houston, TX), stained using a Safranin O-Fast green protocol 

(Gram and Jorgensen 1953) and mounted using Permount (Sigma-Aldrich Co., St. Louis, MO). 

Sections were examined by fluorescence and bright field microscopy using a Zeiss Axio Imager 

M2 microscope. Blue auto-fluorescence viewed with ultraviolet light (Excitation filter G 365, 

Beam Splitter FT 395, Emission filter BP 445/50) and green auto-fluorescence viewed with blue-

green light (Excitation filter BP 450-490, Beam Splitter FT 510, Emission filter BP 515-565) 

were used to visualize host responses. 

Results 

In both experiments necrotic lesions were first observed 2 and 3 weeks following 

inoculations, on the susceptible and resistant clones respectively. Initially, lesions appeared as 

areas of water soaked cells on the surface of the stem. The majority of the lesions developed on 

the lower 15-cm of inoculated trees and were rarely observed on the top 15-cm section. Disease 

etiology differed between resistant and susceptible clones. Water soaked areas on the two 

resistant clones (DN74 and NM6) developed swollen margins. Seven weeks PI any necrosis that 

developed on resistant clones was completely contained by these swollen margins. In the case of 

the susceptible clone NC11505, the water soaked areas became necrotic with a dark brown to 

black appearance. Three weeks PI necrotic lesions developed tan centers with pycnidia oozing 
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pinkish spore tendrils. At 7 weeks PI necrotic lesions had coalesced completely girdling the stem 

of the susceptible clones. No symptoms developed on control trees in either experiment. 

Part I. Infection biology 

Conidia had 2- to 4-septations and ranged in size from 28 - 54 × 3.5 - 4 µm. The average 

germination rates of the conidia at the four time points (6 h, 12 h, 24 h and 72 h) increased from 

10% to 98.3%. No spores were visible on the surface of the control trees and no symptoms had 

developed by the end of the experiment (Fig. 3.1A and 3.1B). An examination of the upper (15-

cm) and lower (15-cm) revealed the lack of lenticels or small openings on the upper 15-cm. This 

observation was consistent across both the resistant (NM6) and susceptible (NC11505) clones 

(Fig. 3.1C and 3.1D). At 6 h PI, spores had adhered to the stem surface and had begun to 

germinate on both clones (Fig. 3.2A and 3.2B). At 12 h PI, Germ tubes appeared to have entered 

host tissue through either lenticels or small openings on both resistant and susceptible clones. 

However, infection structures were not visible (Fig. 3.2C and 3.2D). The majority of the germ 

tubes had entered host tissue at 24 h PI, but the germ tubes did not grow towards the nearest 

opening but appeared to meander across the surface of the inoculated stem entering openings at 

random (Fig. 3.3A and 3.3B). The images at 72 h PI, 1 week PI and 3 weeks PI were similar for 

both the resistant and susceptible clones (Fig. 3.3C and 3.3D).  

A t-test comparing the mean number of germ tubes appearing to have penetrated host 

tissue indicated no significant difference (P = 0.41) between the resistant clone (NM6) 35.75% 

and susceptible (NC11505) clone 42.75% (Table 3.1).  
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Part II. Host response to non-wound inoculations 

Histology of control plants 

The anatomy of DN74 and NC11505 controls resembled the descriptions of NC11505 

and DN34 made by Weiland and Stanosz (2007). The transverse sections can be subdivided into 

three layers (periderm, cortex, and xylem) containing primary phloem fibers, phloem, vascular 

cambium and xylem vessels. The epidermis was typically 1 to 2 cell layers thick and appeared 

blue-green under fluorescence microscopy (Fig. 3.4). Lenticels were visible throughout the 

periderm. Cortex was located adjacent to periderm beyond phloem tissue. Sometimes, phloem 

fibers with thick cell walls were located within the cortex and appeared bright blue under 

fluorescent microscopy. Disease did not develop on control plants and no hyphae were visible 

(Fig. 3.4).   

Histology 3 weeks post-inoculation 

Susceptible clone NC11505. Symptomatology was similar to that described previously 

for the susceptible clone. Transverse sections through the midpoint of each cankers revealed light 

brown necrosis of the vascular cambium. Both fluorescent and bright field images of transverse 

sections indicated the presence of an impervious tissue (IT) layer (Fig. 3.5A and 3.5B), which 

was chromophilic and amorphous under blue UV fluorescence. Hyphae were clearly visible in 

the cortex 3 weeks PI (Fig. 3.7A). No evidence of NP formation was observed.  

Resistant clone DN74. Disease development was similar to that described for NM6. 

Swelling developed along the margin of necrotic tissue. Fungal invasion appeared to be restricted 

to lenticels and adjacent cortex by the rapid formation of NP visible in transverse sections (Fig. 

3.6A and 3.6B). Hyphae were not observed in the cortex of the resistant clone.    
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Histology 5 weeks post-inoculation 

Susceptible clone NC11505. After 5 weeks, necrotic lesions had enlarged longitudinally 

and multiple cankers had coalesced. Without magnification, transverse sections of cankers at 5 

weeks PI were observed to have yellowish to brown staining of the xylem tissue and pycnidia 

were observed forming at the stem surface. Several cankers had developed NP at an oblique 

angle from the periderm to the xylem by this time (Fig. 3.5C and 3.5D). The NP appeared 

discontinuous under fluorescent light and was interrupted at several locations by phloem fibers 

(Fig. 3.5C). Hyphae were present in the periderm and cortex adjacent to the vascular cambium 

(Fig. 3.7B). 

Resistant clone DN74. The swollen margins of the canker were larger and appeared to 

have completely contained the small necrotic area. The NP layer was close to the epidermis 

restricting necrosis from the vascular cambium (Fig. 3.6C and 3.6D). Under fluorescent light the 

NP layer was visible in the cortex and had become thicker than at 3 weeks PI (Fig. 3.6C). 

Histology 7 weeks post-inoculation 

Susceptible clone NC11505. Coalesced cankers had girdled the stem at multiple 

locations. The NP layer was rarely invisible at this time point fluorescing weekly under UV light 

(Fig. 3.5E). The majority of the periderm and cortex had collapsed (Fig. 3.5F) and hyphae were 

visible throughout the periderm, cortex and xylem (Fig. 3.7C).  

Resistant clone DN74. The majority of cankers examined at 7 weeks PI were similar to 

those at 5 weeks PI. The necrotic area was contained by the NP and no further disease 

development had occurred. However, in several cankers (four out of six segments) necrosis had 

developed from the periderm all the way to the vascular cambium and xylem. In these cases two 
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successive layers of NP were evident (Fig. 3.6E and 3.6F). The first appearing to be incomplete, 

extending into the cortex, and the second complete, extending from the periderm to the xylem 

(Fig. 3.6E and 3.6F). Xylem cells in close proximity to the NPs were occluded and the vascular 

cambium appeared to be regenerating xylem tissue (Fig. 3.6F). No hyphae were visible in 

longitudinal sections of the xylem. 

Discussion 

Septoria musiva, a necrotrophic pathogen, is frequently reported in the literature to cause 

cankers in association with wounded stems and branches (Waterman 1954). However, several 

studies inoculating non-wounded stems of Populus spp. with S. musiva have also incited disease 

(Bier 1939, Zalasky 1978, Long et al. 1986, Krupinsky 1989, LeBoldus et al. 2010). In these 

studies cankers have typically developed at stipule scars (Zalasky 1978), lenticels (Bier 1939, 

Long et al. 1986, Krupinsky 1989), the base of leaves (Zalasky 1978), and on petioles (Bier 

1939, Zalasky 1978). Disease development following inoculation is similar across all studies. 

Initially, small water soaked lesions appeared on stems of inoculated trees 2 to 3 weeks PI, and 

these water soaked areas rapidly became necrotic. On susceptible clones, necrotic lesions 

coalesced with no visible macroscopic host response eventually girdling the tree. On resistant 

clones, the margins of the necrotic lesions become swollen as the tree recovers from the 

infection. Disease progress was similar in this study to what has been previously reported in 

terms of both the location of canker development and the responses of the resistant (DN74 and 

NM6) and susceptible (NC11505) clones.  

Disease development was similar between resistant and susceptible clone in early stage of 

infection. For example, at 12 h PI there was no significant difference between the resistant and 

susceptible clones in terms of the number of spores that had found a lenticel or small opening 
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(Fig. 3.2 and 3.3) to enter. Furthermore, there was no evidence of direct penetration or the 

formation of infection structures on either the resistant or susceptible clones. In both the resistant 

and susceptible clone, the mode of infection appears to be limited to lenticels and wounds. A 

similar mode of infection has been reported for Quambalaria spp. causing leaf and shoot blight 

of Eucalyptus spp. (Pegg et al. 2009). This pathogen was able to enter host tissue via stomata and 

small wounds and did not produce any infection structures (Pegg et al. 2009). A second 

similarity between S. musiva and Quambalaria spp. is the haphazard pattern of growth exhibited 

by the germ tubes (Pegg et al. 2009). In many cases the germ tube would grow over a nearby 

infection court (stomata/ lenticel/ wound) and penetrate a similar infection court further away. 

This pattern of growth may be related to a chemotrophic rather than thigmotrophic mechanism of 

attraction. For example, Peterson (1969) reported that Dothistroma pini Hulbary germ tubes were 

attracted to particular stomata by an emitted chemical stimulus that was not common to all 

stomata. A similar phenomenon was hypothesized by Patton and Spear (1978) in the infection of 

Scotch pine by Scirrhia acicula (Dearn.) Siggers. 

In this inoculation experiment, and others conducted by our research group, the majority 

of cankers appear to develop on the lower 15 cm of the inoculated trees (Bier 1939, Waterman 

1954, Zalasky 1978, Krupinsky 1989). There are two possible explanations for this phenomenon. 

The first possibility may be due to the developmental stage of the host. The youngest tissue at the 

top of the tree is covered by a thin epidermis and lacks lenticels and other natural openings 

limiting entry of S. musiva into host tissue (Fig. 3.1). As the periderm and lenticels begin to form 

the epidermis initially stretches and then splits open, resulting in the formation of crevices and 

lenticels providing potential infection courts for the pathogen (Fig. 3.2 and 3.3). A second 

possible explanation for this phenomenon is the movement of spores along with dripping water 
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following inoculation. Although the tree may be uniformly sprayed at the time of inoculation it is 

possible that water dripping down from the top of the tree may carry spores with it, resulting in 

infections on the lower portion of the stem.  

In the previous chapter Qin et al. (2013) hypothesized that the correlation in the 

predictive ability of the wound compared to the spray inoculation protocol suggests that 

resistance may occur post penetration. The lack of differences described above, in terms of 

penetration frequency at 12 h PI, support this hypothesis. Once the fungus has gained access to 

the interior of the stem colonization of host tissue appears to occur in the developing periderm 

(phelloderm, phellogen, and phellem) and cortex below the epidermis. At this point, differences 

in host response are observed between resistant and susceptible clones. Host response to 

pathogen invasion is typically characterized by the development of a layer of impermeable tissue 

(IT) followed by the development of NP. In the resistant clones, the rapid development of NP in 

close proximity to the epidermis occurred within 3 weeks PI. This is similar to what was reported 

by Weiland and Stanosz (2007) for resistant clone DN34. In their experiment a full layer of NP 

had developed in response to both wounding and wounding with inoculation within 7 weeks PI 

with no further pathogen development observed (Weiland and Stanosz 2007).  

The similarity in host responses of the resistant clones can be contrasted with the 

response of the susceptible clone NC11505 in the two studies. Weiland and Stanosz (2007) 

reported the development of a continuous NP layer in the wounded control and multiple 

successive NP layers in the wounding with inoculation treatments 7 weeks PI. The development 

of multiple successive NP layers indicates that the pathogen may be able to circumvent the 

defense response of the host, triggering the formation of a new NP layer. In the susceptible 

clones, the NP layer did not begin to develop until 5 weeks PI and was discontinuous and only 
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one cell layer thick (Fig. 3.5C). At 7 weeks PI, there was limited evidence of NP development in 

any of the sectioned cankers (Fig. 3.5E). In this study, symptom development was more severe 

than in the descriptions provided by Weiland and Stanosz (2007). Although there were 

differences in the age of the inoculated trees and the environment, the lack of wounding in our 

inoculation study coupled with the failure of the susceptible clones to generate a full NP layer by 

7 weeks PI suggests that the wounding conducted by Weiland and Stanosz (2007) may have been 

the trigger for NP development. In the absence of wounding, NC11505 is unable to produce a 

complete NP layer suggesting that the production of NP may be a determining factor in 

resistance against fungal pathogens (Biggs et al. 1983b and 1984, Biggs 1984). 

Forest pathologists usually consider the development of NP as part of a restorative 

process which serves to reestablish the integrity of the trees vascular system and the secondary 

meristem responsible for lateral growth (Zalasky 1964). Mullick (1977) stated that the 

development of NP was initiated whenever the phellogen is rendered non-functional. The reason 

for this loss of function was irrelevant and could be due to pathogen invasion, mechanical 

wounding, or insect damage. However, the results above suggest that the pathogen may be 

interfering in some way with this restorative process in NC11505. There are several possible 

explanations for this phenomenon. Firstly, there is potential for clonal differences in pathogen 

recognition and subsequent resistance. For example, DN74 may have a biochemical or molecular 

resistance mechanism that prevents pathogen development allowing the NP to form.  NC11505 

lacks this resistance mechanism allowing the pathogen to continue to grow at a faster rate than 

NP can develop. A second possibility may be related to the number of necrotic lesions that 

developed on the susceptible host. In this study the large number of cankers which developed on 

the susceptible clone may have compromised the host’s ability to produce NP, in comparing to 
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the study of Weiland and Stanosz (2007), where a single canker developed on each stem. This 

may have also occurred with the resistant clone where in some cases there was evidence of 

successive NP development following inoculation (Fig. 3.6). A third possibility may be related to 

the host - pathogen interaction. Biggs et al. (1986b) reported in the peach-Leucostoma system 

that the fungus is able to alter the location and structure of the NP layer. The production of a host 

selective toxin may be a potential mechanism by which the pathogen is able to achieve this.   

To this author’s knowledge the majority of studies examining canker development in 

woody tissue have relied on wounding in order to incite disease (Biggs et al. 1983a, 1983b and 

1984, Biggs 1984 and 1986b, Hebard et al. 1984, Enebak et al. 1997). The results from this 

study indicate that wounding may be artificially triggering the development of NP. The lack of 

significant difference in the early stages of infection between the resistant and susceptible hosts 

support the idea proposed by Qin et al. (2013) that differences in resistance occur post 

penetration. These post infection differences are characterized by the lack of NP formation in the 

susceptible clone compared to the rapid development of NP in the resistant clone. These 

differences highlight the importance of using the non-wounded inoculation protocol for 

dissecting host parasite interactions in the S. musiva – hybrid poplar interaction. 
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Table 3.1. Means of  the penetration rate of mixed isolates (MN7, MN11, and MN23) of 
Septoria musiva into lenticels and small openings on hybrid poplar clones NC11505 (Populus 
maximowiczii × Populus trichocarpa) and NM6 (Populus maximowiczii × Populus nigra). 
Average were determined by counting 100 spores from 2 to 3 field of view under scanning 
electron microscope. (α = 0.05) 

  

 Percentage of entering (%) 
Clone Mean  Range Std. deviation  
NC11505 42.75 a  35 - 55 8.80 
NM6 35.75 a 28 - 45 8.10 
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Figure 3.1. Scanning electron microscope images of non-wound and mock inoculated hybrid 
poplar clone NC11505 (Populus maximowiczii × Populus trichocarpa) and NM6 (Populus 
maximowiczii × Populus nigra). A, lower 15-cm-section of clone NC11505, lenticels and small 
openings randomly appeare on the surface. B, lower 15-cm-section of NM6 stem, lenticels and 
small openings appear on stem surface. C, top 15-cm-section of NC11505, without lenticels and 
small openings. D, top 15-cm-section of NM6, without lenticels and small openings.    
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Figure 3.2. Scanning electron microscope images of non-wounded inoculate hybrid poplar clone 
NC11505 (Populus maximowiczii × Populus trichocarpa) and NM6 (Populus maximowiczii × 
Populus nigra) at 6 h PI and 12 h PI. Inoculations were conducted by spraying a mixed conidial 
suspension (MN7, MN11 and MN23) of Septoria musiva and harvesting stem sections at two 
time points (6 h PI and 12 h PI). A, Spore on clone NC11505 surface near trichome at 6 h PI, 
without a visible germ tube. B, Spore on clone NM6 surface near trichome at 6 h PI with germ 
tube visible. C, Germ tube entering a lenticel in clone NC11505 at 12 h PI. D, Germ tube 
entering crevice small opening on the surface of clone NM6 at 12 h PI. 
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Figure 3.3. Scanning electron microscope images of non-wounded stems of hybrid poplar clone 
NC11505 (Populus maximowiczii × Populus trichocarpa) and NM6 (Populus maximowiczii × 
Populus nigra) at 24 h PI and 72 h PI. Stem sections were harvested at two time points (24 h PI 
and 72 h PI). A, S. musiva hyphae on clone NC11505 stem surface and  entering lenticels and 
small openings at 24 h PI. B, S. musiva hyphae entering small openings on NM6 at 24 h PI. C, 
hyphae entering lenticels on clone NC11505 at 72 h PI. D, extensive hyphal development on 
clone NM6 at 72 h PI.  
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Figure 3.4. Fluorescenct micrographs of transverse section of non-wounded and mock 
inocualted hybrid poplar clones NC11505 (Populus maximowiczii × Populus trichocarpa) and 
DN74 (Populus deltoides × Populus nigra). A, anatomy of cross-section of clone NC11505 with 
lenticels, periderm, cortex, phloem fiber and xylem visisble. B, anatomy of cross-section  of 
clone DN74 showing lenticel, periderm, cortex, phloem fiber and xylem. COX = Cortex, L = 
Lenticel, P = Periderm, PF = Phloem fiber, X = Xylem. Scale bars = 100 µm. 
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Figure 3.5. Fluorescent and bright field 
poplar clone NC11505 (Populus 
harvested at three time points (3 weeks PI, 5 weeks PI and 7 weeks PI). 
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micrograph of inoculated stem of clone NC11505 at 3 weeks PI, showing impervious tissue (IT). 
B, Bright field micrograph of inoculated stem of clone DN74 at 3 weeks PI showing necrotic 
area without necrophylactic periderm (NP) present. C, Fluorescent micrograph of clone 
NC11505 at 5 weeks PI, showing incomplete NP extending to the vascular cambium (VC). D, 
Bright field micrograph of clone DN74 at 5 weeks PI, showing NP development at an oblique 
angle from periderm to phloem fiber (PF). E, Fluorescent micrograph of clone NC11505 at 7 
weeks PI, showing dead bark tissue and  no NP layer. F, Bright field micrograph of clone 
NC11505 at 7 weeks PI, bark tissue is depressed and necrotic. COX = Cortex, IT = Impervious 
tissue, NP = Necrophylatic peridem, P = Periderm, PF = Phloem fiber, VC = Vascular cambium, 
X = Xylem. Scale bars = 200 µm. 

  



 

 

 

Figure 3.6. Fluorescent and bright field 
poplar clone DN74 (Populus deltoides
conidial suspension (MN7, MN11 and MN23) of 
three time points (3 weeks PI, 5 weeks PI and 7 weeks PI). 
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and bright field micrographs of transverse sections of inoculated hybrid 
deltoides × Populus nigra). Inoculations conducted

suspension (MN7, MN11 and MN23) of Septoria musiva. Stem harvested 
three time points (3 weeks PI, 5 weeks PI and 7 weeks PI). A, Fluorescent micrograph 
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DN74 at 3 weeks PI, showing a complete NP layer below lenticels. B, Bright field micrograph of 
clone DN74 at 3 weeks PI, showing necrotic area restricted to lenticel. C, Fluorescent 
micrograph of clone DN74 at 5 weeks PI, showing thickened NP layer within cortex tissue. D, 
Bright field micrograph of clone DN74 at 5 weeks PI, showing NP layer forming below necrotic 
area. E, Fluorescent micrograph of clone DN74 at 7 weeks PI, showing 2 layers of NP extending 
to the vascular cambium (VC). F, Bright field micrograph of clone DN74 at 7 weeks PI, the NP 
layer acting as a barrier between healthy and necrotic tissue. COX = Cortex, L = Lenticel, NP = 
Necrophylatic peridem, P = Periderm, PF = Phloem fiber, VC = Vascular cambium, X = Xylem. 
Scale bars = 200 µm. 

  



 

 

 

Figure 3.7. Bright field micrographs of 
poplar clone NC11505 (Populus 
with a mixed conidial suspension (MN7, MN11 and MN23) of 
harvested at three time points (3 weeks PI, 5 weeks PI and 7 weeks PI)
hyphae. A, Hyphae of S. musiva 
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section at 3 weeks PI. B, Cross-section of clone NC11505 showing hyphae extending to the 
vascular cambium at 5 weeks PI. C, Longitudinal section of clone NC11505 showing hyphae in 
xylem vessels at 7 weeks PI. Scale bars=200 µm. 
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