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Differential colonization by ecto-, arbuscular and ericoid mycorrhizal fungi in forested 

wetland plants. 

by Amanda Marie Griffin 

 

Abstract  

The roots of most land plants are colonized by mycorrhizal fungi under normal soil 

conditions, yet the influence of soil moisture on different types of mycorrhizal symbioses 

is poorly understood. In wet soils, colonization of woody plants by ectomycorrhizal 

(ECM) fungi tends to be poor, and colonization of herbaceous plants by arbuscular 

mycorrhizal (AM) is highly variable. However, little information is available on the 

influence of soil moisture on the colonization of ericaceous roots by ericoid mycorrhizal 

(ErM) fungi. Colonization was assessed microscopically in the ECM plant Pinus strobus, 

two AM plants (Cornus canadensis and Lysimachia borealis) and two ErM plants 

(Kalmia angustifolia and Gaultheria hispidula) along two upland to wetland gradients in 

Southwestern Nova Scotia. For the ErM plants, fungal ITS sequencing was used to assess 

community structure. The data indicate that ErM colonization increases with soil moisture 

in forested wetlands and is associated with distinctive fungal communities.  
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CHAPTER ONE 

Literature Review 

Introduction 

Mycorrhizae are important plant root-fungal symbioses that are active in the 

majority of ecosystems on earth but are not well understood in some specialized habitats 

(Read 1991). Wetland soils, which are often anaerobic and limited in nutrient availability, 

have traditionally been thought of as incapable of hosting mycorrhizal fungi (Bauer et al. 

2003). As this idea is challenged by new evidence, more research is required to uncover 

the patterns of colonization that wetland mycorrhizae follow. Of the three most common 

mycorrhizal types, ectomycorrhizae are often negatively impacted by increased soil 

moisture (Jurgensen et al. 1996), while arbuscular mycorrhizae are affected, but less so 

(Brundrett and Ashwath 2013). Ericoid mycorrhizae, however, have gone nearly 

unexplored in wetland habitats, despite the fact that the ericaceous plants, whose roots 

form ericoid mycorrhizae, are common in wetlands (Read 1996; Cairney and Meharg 

2003).  

 

In addition to the impacts of soil moisture, other factors in wetlands may be 

important in determining colonization patterns including season (Bohrer, Friese and 

Amon 2004), pH (Wetzel and van der Valk 1996), nutrient availability (Clawson, 

Lockaby and Rummer 2001), plant community (Cornwell, Bedford and Chapin 2001), 

location on hummocks (Cantelmo and Ehrenfield 1999), and aerenchyma formation in 

plants (Cooke and Lefor 1998). Inconsistency of methods of mycorrhizal quantification 

only complicates the task of understanding wetland mycorrhizal colonization (Biermann 
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and Linderman 1981). Work must be done to compare all three major mycorrhizal types 

under consistent conditions and with standardized methodologies.  

 

Mycorrhizae 

Relationships with fungi are ubiquitous among plants (Saikkonen et al. 1998). 

Most plants form mycorrhizal symbioses with fungi that grow on and within their roots. 

Mycorrhizae are non-pathogenic and are beneficial or even essential for plant survival 

(Smith 1980). Mycorrhizal relationships allow plants better access to water and plant 

available nutrients in soil, while the fungi gain access to carbon in the form of 

photosynthesized sugars from the plant (Read 1991). Mycorrhizal hyphae take on the 

function of root hairs in plants by increasing the surface area for water and nutrient 

absorption (Beck-Nielsen and Vindbæk Madsen 2001; Bacheler 2014). Mycorrhizae can 

improve plant growth (Janos 1980), increase uptake of phosphorus and nitrogen in 

nutrient limited environments (Read 1996; Silvani et al. 2013), reduce toxic heavy metal 

uptake (Bradley, Burt and Read 1982; Read 1983; Juniper and Abbott 1993), and protect 

plants from pathogens and disease (Sikes 2010), among other functions (Gianinazzi et al. 

2010). Enzymes produced by mycorrhizal fungi can help plants access organically bound 

nutrients that would be otherwise unavailable (Martino et al. 2018). Plant community 

structure, particularly in unstable environments, may be heavily influenced by the 

mycorrhizae that can be established (Kernaghan 2005).  

 

Mycorrhizae can be grouped into three major categories, with the exception of 

some specialized or multifunctional types (Thormann, Currah and Bayley 1999; Smith 
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and Read 2008) Ectomycorrhizae (ECM) are mycorrhizae that form mainly on woody 

plants. They are characterized by the formation of a mantle of fungal hyphae around the 

root tips of the plant (Figure 1) and a Hartig net that interacts with root cortical cells. 

ECM are formed by fungi in the phyla Basidiomycota, Ascomycota (Tedersoo, May and 

Smith 2009). The basidiomycetes, or club fungi, are best known for the reproductive 

mushrooms that they may form, and they have a large range of ecological functions 

beyond the production of ectomycorrhizae. Ascomycetes, or cup fungi, also have a broad 

ecological and geographical range (Smith and Read 2008).  

 

 

Figure 1. Fine root tips of Pinus strobus showing a mycorrhizal tip (a) alongside an 

uncolonized tip (b) from the forested wetland near Merrymakedge Beach.  

 

The oldest, best-known, and most common type of mycorrhizae are the arbuscular 

mycorrhizae (AM) (Brundrett 2002). These are formed by fungi in the phylum 
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Glomeromycota (Brundrett and Ashwath 2013) in a large spatial and geographical range 

of land plants including herbaceous plants and some deciduous trees (Smith and Read 

2008). The Glomeromycetes are obligate mycorrhizal symbionts and are characterized by 

the formation of tree-shaped structures called “arbuscules” within the cortical cells of the 

plant’s roots, although they often form storage vesicles as well (Beck-Nielsen 

and Vindbæk Madsen 2001) (Figure 2). Arbuscular mycorrhizae are the most studied 

mycorrhizae because of their valuable role in agriculture. They tend to be relatively 

seasonal and ephemeral, with AM plants being most heavily colonized in the spring, and 

much of the colonization disappearing by the mid-to-late summer (Bauer et al. 2003).  

 

 

Figure 2. Arbuscules (*) and vesicles (+) in Cornus canadensis collected from upland 

soil near the Mersey Tobeatic Research Institute (200X).  

 

* 

* 
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* 

* 

+ 
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The ericoid mycorrhizae (ErM) comprise the third major group of mycorrhizal 

fungi but are less studied than the ectomycorrhizae or arbuscular mycorrhizae. Ericoid 

mycorrhizae form intracellular hyphal coils in the hair roots of ericaceous plants (Smith 

and Read 2008) (Figure 3). They are known to be more stress tolerant than the other 

mycorrhizal types and are important in helping ericaceous plants survive in stressful 

environments such as coastal barrens, heaths, and bogs (Bradley, Burt and Read 1982) 

likely because of their ability to mobilize organically bound nutrients (Read 1983) and 

protect against heavy metals in soil (Cairney and Meharg 2003). Ericoid mycorrhizae are 

often formed by ascomycetes (Allen, Richards and Busso 1989), particularly those in the 

order Helotiales, although there are basidiomycete fungi that form ericoid mycorrhizae as 

well, including those in the genera Serendipita (formerly Sebacina) (Vohník et al. 2016) 

and Kurtia (Kolařík and Vohník 2018).  Ericoid mycorrhizae, like AM, tend to vary 

seasonally in their level of colonization, depending on their habitat (Read 1996).  

 

 

Figure 3. Ericoid mycorrhizal intracellular hyphal coils in Kalmia angustifolia collected 

from the forested wetland near Merrymakedge Beach (200X).  
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Wetlands 

 Forested wetlands are an integral part of the Nova Scotian landscape, but their 

distribution and abundance are not well understood. The Nature Conservancy of Canada 

has identified Nova Scotian forested wetlands as areas where increased research should 

be focused. Forested wetlands house numerous species of birds and invertebrates, 

including the avian species at risk Cardellina canadensis, Contopus cooperi, and 

Euphagus carolinus (Rice and Harper 2018). The endangered Boreal felt lichen 

(Erioderma pedicellatum) is also found mostly in Atlantic Canadian forested wetlands 

(Nature Conservancy of Canada 2019). Forested wetlands perform a variety of ecosystem 

services including flood abatement, water filtration, and carbon sequestration (Zedler and 

Kercher 2005). Those in Atlantic Canada are particularly unique because they are formed 

in Acadian forests which are a blended forest type combining deciduous and coniferous 

trees in a diverse patchwork that is not found anywhere else on earth (Mosseler, Lynds 

and Major 2003).  

 

All fungi, including those that form mycorrhizae, are aerobic (Tanner and Clayton 

1985). As wetland soils are characteristically anaerobic, researchers long-assumed that 

mycorrhizal relationships would be unable to form there (Clawson, Lockaby and Rummer 

2001; Bauer et al. 2003; Dolinar and Gaberščik 2009; Orchard et al. 2016). This 

conventional wisdom has been challenged as researchers now regularly find evidence of 

mycorrhizal colonization in wetland plants (Thormann, Currah and Bayley 1999; 

Cornwell, Bedford and Chapin 2001). However, the mycorrhizal capabilities of wetland 

plants appear to be somewhat dependent on the type of plants and mycorrhizal fungi 
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involved (Weishampel and Bedford 2006; Orchard et al. 2016) and soil oxygen and 

nutrient concentrations (Read, Leake and Perez-Moreno 2004).  Some researchers have 

proposed that wetland plants may form aerenchyma in order to provide oxygen to 

mycorrhizal fungi, although evidence for this strategy is limited (Kozlowski 1997; Cooke 

and Lefor 1998). It remains unclear what mechanisms are responsible for determining 

which mycorrhizae can form in wetlands and what adaptations for survival these fungi 

may have (Thormann, Currah and Bayley 1999; Cornwell, Bedford and Chapin 2001; 

Bacheler 2014).  

 

Although researchers once argued that mycorrhizae were unable to survive in 

wetlands, it now appears that plants in wetlands may be even more reliant on mycorrhizae 

in wet soils where stressful conditions predominate (Miransari 2009). Mycorrhizae that 

are adapted to wet soils may currently be facing multiple biodiversity threats including 

plant community shifts under soil eutrophication (Fagúndez 2012) and suppression of 

fungal diversity by invasive species (Mummey and Rillig 2006) which could hinder 

restoration efforts by reducing mycorrhizal potential of soils. Wetland mycorrhizae may 

also be subjected to new patterns of droughts, fires and floods that could threaten those 

with niche adaptations (Wessel et al. 2004). Failure to protect forested wetland 

biodiversity could lead to worsening impacts of climate change through the loss of these 

services.  

 

Ectomycorrhizae appear to have relatively uncomplicated patterns of colonization 

in forested wetland soils. ECM researchers have often found decreased colonization 
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correlated with increasing soil moisture (Jurgensen et al. 1996; Sumorok et al. 2008). In a 

pot study by Bougher and Malajczuk (1989), ectomycorrhizae were able to improve plant 

growth, but when soils were waterlogged, the formation of ectomycorrhizae was 

significantly reduced. Ectomycorrhizal community compositions may also shift in 

response to soil water saturation (Robertson et al. 2006; Moeller, Peay and Fukami 2013) 

or the symbioses may be almost entirely inhibited. Inhibition of ectomycorrhizal 

colonization in wet soils is so reliable that the reduced presence of fungal mantles has 

been proposed as an indicator for wetland delineation (Vasilas et al. 2004).  

 

The colonization patterns of arbuscular mycorrhizae in wetlands is less 

straightforward. There is a clear seasonality in the formation of arbuscular mycorrhizae, 

with colonization peaking in the spring and being lowest in the mid-to-late summer. This 

trend may overshadow the impacts of other environmental factors, for example, some 

researchers found that seasonality was correlated with colonization levels, but despite 

differences, soil moisture and phosphorus content could not be significantly linked 

(Bohrer, Friese and Amon 2004).  Other researchers found much lower colonization in 

wet soils than in drier ones (Brundrett and Ashwath 2013; Silvani et al. 2013; Orchard et 

al. 2016), while AM colonization in a growth chamber study was less impacted by 

increased soil moisture than in an accompanying field study, which showed a correlation 

between increasing soil moisture and a decrease in arbuscular mycorrhizal colonization 

(Stevens and Peterson 1996). In arbuscular mycorrhizal plants, root depth may play a role 

in determining how much colonization can occur in wet soils as longer rooted plants can 

be much less colonized than plants with shorter roots (Clayton and Bagyaraj 1984). 
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Communities of AM fungi may vary in composition between wet and dry soils (Miller 

and Bever 1999), and plant type may be an important factor in mycorrhizal formation in 

wetland soils, as colonization was present in wetland dicots but not in monocots 

(Cornwell, Bedford and Chapin 2001). In contrast, others showed high levels of 

colonization in a variety of wetland plant types (Allen, Richards and Busso 1989; Wetzel 

and van der Valk 1996; Kandalepas et al. 2010). In wetland hummocks arbuscular 

mycorrhizal colonization was higher in the uppermost aerobic microsites than in the 

lower, wetter soils (Cantelmo and Ehrenfield 1999). In general, although the trends in 

AM colonization in wetlands lack consensus, most researchers have found some degree 

of inhibition with increased soil moisture.  

 

The literature on mycorrhizal colonization in wetland ectomycorrhizal and 

arbuscular mycorrhizal plants is incomplete, but they have received more attention than 

ericoid mycorrhizal plants in wetlands. Bacheler (2014), in one of the few studies on 

wetland ericoid mycorrhizae, found more intraradical root penetration in wet soils 

compared with dry soils. While communities of ericoid mycorrhizal fungi do appear to 

change in structure between wet and dry sites, colonization levels may be less affected 

than in other mycorrhizal types (Gorzelak, Hambleton and Massicotte 2012).  

 

Ericoid mycorrhizae may be important in wetland habitats because of their ability 

to reduce heavy metal uptake in plants (Read 1983), as heavy metals are more 

bioavailable in wet soils (Bradley, Burt and Read 1982). Ericoid mycorrhizae may also be 

important to wetland plants because of their ability to access a wide range of organically 
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bound nitrogen and phosphorus sources that are typically unavailable to other 

mycorrhizal types (Jonasson and Shaver 1999; Read, Leake and Perez-Moreno 2004) 

Insufficient evidence exists to draw conclusions about the patterns of ericoid mycorrhizal 

colonization in wetland soils.  

 

Determinants of Colonization 

In addition to average soil moisture, there are other factors likely to be important 

in determining colonization patterns in wetland soils. Colonization levels vary seasonally 

for AM and ErM fungi. Plant phenology encourages colonization at some times, and 

restricts it at others (Read 1996; Bohrer, Friese and Amon 2004; Courty et al. 2006). In 

general, colonization tends to be highest in the late winter into the spring and lowest in 

the dry parts of the summer (Hutton, Dixon and Sivasithamparam 1994; García and 

Mendoza 2008). The interactions between mycorrhizal seasonality and soil moisture have 

not been well studied as researchers have often been unable to separate the impacts of 

these two competing factors (Bauer et al. 2003). Temperature changes may play an 

important role in seasonal shifts in mycorrhizal colonization. Arbuscular mycorrhizal 

colonization levels can be higher when temperatures increase, although the increase is not 

necessarily linked to improved mycorrhizal effectiveness. The seasonality of arbuscular 

mycorrhizae could be explained by the preference of their fungal symbionts for a certain 

temperature range, and these preferences may be favoured as higher temperature periods 

extend with the changing climate (Rillig et al. 2002). In the ectomycorrhizal fungi 

seasonality tends to be linked more to community composition than colonization levels, 

certain species dominating certain seasons, despite relatively constant diversity and 
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richness between seasons (Walker, Miller and Horton 2008). Ericoid mycorrhizal 

colonization, although not well characterized, appears to be somewhat positively 

correlated with higher temperatures (Olsrud et al. 2004).  

 

Plants form mycorrhizal relationships with fungi in order to improve their access 

to soil nutrients. Generally, arbuscular mycorrhizal plants are most common on high 

nitrogen low phosphorus sites, such as in the tropics, while ectomycorrhizal plants are 

more common in higher latitude areas with seasonally available nitrogen and phosphorus, 

and ericoid mycorrhizal plants dominate in very low nutrient zones such as heaths and 

tundras (Read 1991). While mycorrhizal fungi are generally thought to prefer inorganic 

nutrient sources, there is evidence for the ability to access organically bound nitrogen and 

phosphorus in some mycorrhizae, particularly in the ErM fungi (Cairney et al. 2000; Liu 

et al. 2017). The ability to mobilize organic forms of nitrogen and phosphorus would be 

an especially beneficial trait of mycorrhizal symbionts in forested wetlands where 

organically bound nutrients tend to accumulate, as bacterial decomposition is generally 

low (McLatchey and Reddy 1998). 

 

Another factor that can impact mycorrhizal colonization levels is soil pH. It is a 

significant determinant of AM (Wetzel and van der Valk 1996; Cooke and Lefor 1998), 

ericoid (Hambleton and Currah 1997) and ectomycorrhizal (Moeller, Peay and Fukami 

2014) colonization levels. Ericoid mycorrhizal relationships are most often characterized 

by their dominance in low pH soils (Leake, Shaw and Read 1990), while AM and ECM 
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colonization is limited under very acidic conditions (Danielson and Visser 1989; Postma, 

Olsson and Falkengren-Grerup 2007).  

 

Aerenchyma are air pockets in root tissue that allow plants to distribute oxygen 

from aboveground tissues into their roots and the surrounding soil. Some plants form 

aerenchyma in their roots in response to elevated soil moisture conditions (Kozlowski 

1997). They may form in some plants in wet soils while not forming in the same plants in 

drier soils, while other plants always form aerenchyma. These tissues may have an impact 

on mycorrhizal colonization in wetland plants in several ways. Plants that can form 

aerenchyma may be better adapted to wetland soils and, therefore, less reliant on 

mycorrhizae for nutrient uptake (Cornwell, Bedford and Chapin 2001). Conversely, 

plants that form aerenchyma may be better able to host mycorrhizae, as they could be able 

to provide an aerobic environment for the fungi (Cooke and Lefor 1998). The role of 

aerenchyma in relation to wetland mycorrhizae is not well known, but is deserving of 

further attention, as it could explain why aerobic fungi are able to survive in oxygen poor 

wetland soils.  

 

Quantification Methodologies 

Methods for quantification of mycorrhizal colonization vary widely between 

researchers and over time (Giovannetti and Mosse 1979). This can partially be excused 

because different methods are required for different mycorrhizal types. For arbuscular 

mycorrhizae, clearing and staining is the most popular method for visualization. Clearing 

and staining methods vary, but generally involve using a strong base and heat to remove 
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plant cell contents, followed by the application of a weak acid then fixing a dye with a 

second heat treatment. Some researchers use autoclaves to clear and stain, while others 

use an extended time period to allow reagents to act gently, and others still apply heat 

using a microwave (Dalpé and Séguin 2013). With these variations comes variability in 

the accuracy of quantification, as some methods may be better at visualizing mycorrhizae 

than others (Giovannetti and Mosse 1980) Also, some researchers record a variety of 

fungal structures (Bacheler 2014) while others are more concerned with the presence or 

absence of mycorrhizal colonization in general (Bierman and Linderman 1981).  

 

In addition to the use of a variety of clearing and staining methods, researchers 

also use different methods to quantify mycorrhizal colonization. The most common is the 

gridline-intersect method (Giovannetti and Mosse 1980; McGonigle et al. 1990) but many 

others exist. Wide variations in methods of quantification make comparisons between 

studies difficult, if not impossible. Quantification of ericoid mycorrhizae generally 

follows modified methods of AM visualization and quantification (Hutton, Dixon and 

Sivasithamparam 1994; Bacheler 2014) although, because ericoid mycorrhizae form 

different structures, these methods may not be as appropriate. The picture is complicated 

more by the fact that some plants form dual mycorrhizae or hybrid mycorrhizae which 

have characteristics of both types (Smith 1980; Smith and Read 2008; Vohník and 

Albrechtová 2011). Methods for quantifying ectomycorrhizal colonization are different 

from those for endomycorrhizas (AM and ErM) and generally involves low-power 

microscopic identification of the fungal mantle or cross sectioning to view the Hartig net 

(Flores-Rentería et al. 2014).   
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Molecular analyses are popular in studies of all types of mycorrhizal fungi, but 

because of the presence of endophytic fungi that occur within plant tissues but do not 

form mycorrhizae, and the insufficient characterization of mycorrhizal communities in 

wetland habitats (particularly with respect to ErM), this method is not best for 

understanding colonization patterns in wet soils. Molecular analysis is, however, more 

comparable between mycorrhizal types and researchers, and over time (Martin 2007).   

  

Mycorrhiza researchers may assess colonization using cultivation experiments in 

the field or in growth chambers (Bradley, Burt and Read 1982; Allen, Richards and Busso 

1989; Bougher and Malajczuk 1989; Chen, Kahlili and Cairney 2003). While these in 

vivo experiments can provide the opportunity to isolate particular traits without the 

influence of confounding factors, their results must not be taken as conclusive, as they are 

not always representative of colonization patterns found in nature.  

 

Conclusions 

Mycorrhizal colonization in wetlands was once believed to be negligible. It is now 

clear that many wetland plants do become colonized by symbiotic fungi, although the 

factors involved are not well understood. Ectomycorrhizae appear to be negatively 

impacted by high average soil moisture. Arbuscular mycorrhizae also appear to be 

somewhat negatively affected by wet soils, although factors such as plant type and season 

are also important. For ericoid mycorrhizae, colonization patterns in wet soils have gone 

largely unexplored, although the research that does exist suggests that ericoid 
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mycorrhizae may be less affected by high average soil moisture. Variations in 

quantification methods have made comparisons between existing studies difficult. Studies 

of all three major mycorrhizal types in the same environment, in the same season, and 

using standard methods of quantification are required. Other factors including pH, 

aerenchyma formation, temperature, and soil nutrient levels must also be taken into 

consideration. Only after this research is done can the mycorrhizal colonization patterns 

of wetland mycorrhizal fungi be better understood.  
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CHAPTER TWO 

Mycorrhizal Colonization Along an Upland to Forested Wetland Gradient 

 

Abstract 

Mycorrhizal symbioses are not well studied in forested wetlands. In wet soils, 

colonization of woody plants by ectomycorrhizal (ECM) fungi tends to be poor and is 

highly variable in arbuscular mycorrhizal (AM) herbaceous plants. However, little 

information is available on the influence of soil moisture on the colonization of 

ericaceous roots by ericoid mycorrhizal (ErM) fungi. In this study mycorrhizal fungal 

colonization levels and edaphic factors along two upland to wetland transects in 

Southwestern Nova Scotia were studied. Colonization was assessed microscopically in 

Pinus strobus (ECM), Cornus canadensis and Lysimachia borealis (AM) and Kalmia 

angustifolia and Gaultheria hispidula (ErM). The data indicate that ErM colonization 

increases with soil moisture in forested wetlands.  

Introduction 

Mycorrhizae are ubiquitous symbioses between plant roots and fungi (Brundrett 

2004). They are found on most plants around the world but levels of root colonization by 

mycorrhizal fungi are affected by a variety of factors including seasonality, soil nutrient 

levels, global distribution, temperature and surrounding plant community (Eom et al. 

2000; Bauer et al. 2003; Nilsson et al. 2005; Smith and Read 2008; Soudzilovskaia et al. 

2015). Another important factor in the formation of mycorrhizal relationships is the 

average soil moisture content.  
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Figure 4 (a-c). Anatomy of mycorrhizal symbioses with green representing plant tissue 

and fungal tissue in blue. a) Ectomycorrhiza with the fungal mantle surrounding the root 

tip and the Hartig net extending around the root cortical cells) b) Arbuscular Mycorrhizae 

with intracellular fungal arbuscules and a storage vesicle c) Ericoid Mycorrhizae with 

intracellular fungal hyphal coils.  

 

Ectomycorrhizae (ECM) (Figure 4a) form on woody plants and are widely 

distributed throughout the Acadian forest (Nilsson et al. 2005). Elevated soil moisture 

conditions are clearly inhibitory to ectomycorrhizae (Vasilas et al. 2004; Robertson et al. 

2006). A broad range of plants, from herbaceous understory vegetation to some deciduous 

trees, form arbuscular mycorrhizae (AM) (Figure 4b).  High soil moisture content appears 

to also be somewhat inhibitory to (AM) colonization, but the confounding factors of 

seasonality, root length, and plant host species makes this relationship more variable and 

less predictable (Clayton and Bagyaraj 1984; Cornwell, Bedford and Chapin 2001; 

Brundrett and Ashwath 2013). In the case of the ericoid mycorrhizae (ErM) of ericaceous 

plants (Figure 4c; Smith and Read 2008), very few studies have focused on colonization 
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in wetland habitats, but the research that does exist suggests that they may be relatively 

tolerant to high soil moisture contents (Bacheler 2014). 

 

In the current study, mycorrhizal colonization patterns from upland forests to 

forested wetlands were compared among ectomycorrhizal, arbuscular mycorrhizal, and 

ericoid mycorrhizal plants. Variations in mycorrhizal colonization were related to 

volumetric water content, soil nutrients, pH, and temperature, as well as foliar nutrient 

levels in the plant species assessed for mycorrhizal colonization. The objective was to 

gain an improved understanding of colonization patterns in common mycorrhizal plants 

in forested wetlands compared to upland forests. Increases in average soil moisture 

content was predicted to be associated with a decrease in ectomycorrhizal and arbuscular 

mycorrhizal colonization, but with no decrease in ericoid mycorrhizal colonization.   

Materials and Methods 

Plant Selection  

Two plant species known to form AM, two that form ErM, and one that forms 

ECM were selected (Malloch and Malloch 1981). AM and ErM plants that are common 

in Nova Scotian upland forests and forested wetlands were selected using Boland (2014). 

Availability of the selected plant species was confirmed by a plant survey of the sites 

conducted by Logan Gray as a part of a larger Atlantic Ecosystems Initiative project on 

forested wetlands. The AM plant species studied were Cornus canadensis L. and 

Lysimachia borealis (Raf.) U. Manns & Anderb. and the ErM plants were Kalmia 

angustifolia L. and Gaultheria hispidula (L.) Muhl. ex Bigelow (Figure 5). The ECM 
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plant was Pinus strobus L. Other ECM plant options were considered, including Picea 

spp. and Abies balsamea. However, Picea was excluded from the study due to the 

tendency for different species to occur along the moisture gradient, with Picea rubens in 

the uplands and Picea mariana in the wetlands, and possible hybrids in between. Abies 

balsamea was also excluded from the study, as it avoided the wettest conditions by 

growing mainly on hummocks within the forested wetland plots and mycorrhizal 

colonization levels can be higher on hummocks than in surrounding flooded soil 

(Cantelmo and Ehrenfeld 1999). Other ECM plant species were not common enough 

along the transects to be used. 

 

 

Figure 5. Cornus canadensis (AM) and Gaultheria hispidula (ErM) growing together in 

the Mount Merritt upland plot in June 2019.  

 

Site Descriptions 
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Two forested wetland sites were examined in Southwestern Nova Scotia. One in 

Kejimkujik National Park (44º23’17N 65º12’21W and 96m elevation) near 

Merrymakedge Beach (MME) (Figure 6a) and the other (44º25’37N 65 º05’25W and 

102m elevation) located near the Mersey Tobeatic Research Institute on Mount Merritt 

road (MTM) (Figure 6b). Sites were classified using Nova Scotia’s Forest Ecosystem 

Classification (FEC) system (Neily et al. 2013) FEC classifications were conducted by 

Dr. Kevin Keys of the Nova Scotia Department of Lands and Forestry.  

 

Table 1. Summary of forest and soil FEC classifications.  

 

Merrymakedge 

 Upland  Ecotone Wetland 
Forest 
Type 

Red spruce – White 
pine / Lambkill / 
Bracken (SH4)  

Black spruce / False holly 
/ Ladies’ tresses 
sphagnum (SP7) 

Tamarack – Black 
spruce / Lambkill / 
Sphagnum (WC7) 

    
Dominant 
Moss 

Pleurozium schreberi  P. schreberi or 
Hylocomium splendens 

Sphagnum spp. (Vonn 
post of 2-3) 

    

Soil Type MCT Loamy (2L) MCT Moist loamy (3L) Organic (14) 

    
Mount Merritt 

 Upland  Ecotone Wetland 
Forest 
Type 

Red spruce – White 
pine / Lambkill / 
Bracken (SH4) 

Red spruce – Balsam fir / 
Stair-step moss – 
Sphagnum (SH6) 

Red maple – Balsam fir 
/ Wood aster / 
Sphagnum (WD6) 

    
Dominant 
Moss 

Pleurozium schreberi   Hylocomium splendens Sphagnum spp. (Vonn 
post of 2-3) 

    

Soil Type Dry shallow MCT 
loamy (15L) 

MCT Moist loamy (3L) Organic (14) 
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Figure 6 (a and b). Forested wetland plots on sites a) Merrymakedge and b) Mount 

Merritt.  

 

Sampling 

A 120m transect was established on each site, with the middle of the ecotone at 

60m, the forested wetland at 0m and the upland forest at 120m. The transects were 

divided into three plots labelled “wet”, “ecotone”, and “dry” and delineated by the ratios 

of Sphagnum spp. (wet), Hylocomium splendens (ecotone), and Pleurozium schreberi 

(relatively dry) moss types. The ecotone area, dominated by Hylocomium splendens moss, 

was narrower on site MTM than on MME. Soil, root and leaf samples were collected 

from as close to the transect possible, not exceeding 15m from the transect line in either 

direction. Individual plants were visually identified, and leaf, root, and soil samples were 

collected from each along with pH using an ExStik® Waterproof pH Meter (EXTECH 

Instruments), and volumetric water content (VWC %) and temperature (˚C) data using a 



   

 40 

ProCheck® by Decagon Devices and Hoskin Scientific multimeter. From Kalmia, 

Cornus, and Pinus, four replicate samples of fifteen mature leaves were collected for 

foliar nutrient analysis along with 400-500g soil samples from the organic horizon. Roots 

were located by tracing from the base of the plant and approximately 50cm of ECM and 

approximately 250-500cm3 of AM and ErM roots were sampled from organic horizons 

only. For each plant species four replicate sets of root samples were collected in the 

spring and fall seasons (Table 2). Samples were transported to the laboratory on ice and 

then frozen at -18ºC until processing.  

 

Table 2. Study design of roots sampled with four replicates each.  

Site  Season Plot Species (Mycorrhizal Type) 

MME Spring 
(June 14th, 
2017) 

Upland Pinus strobus (ECM) 
Kalmia angustifolia and Gaultheria hispidula (ErM) 
Cornus canadensis and Lysimachia borealis (AM) 

Ecotone Pinus strobus (ECM) 
Kalmia angustifolia and Gaultheria hispidula (ErM) 
Cornus canadensis and Lysimachia borealis (AM) 

Wetland Pinus strobus (ECM) 
Kalmia angustifolia and Gaultheria hispidula (ErM) 
Cornus canadensis and Lysimachia borealis (AM) 

MTM Spring 
(June 18th, 
2017) 

Upland Pinus strobus (ECM) 
Kalmia angustifolia and Gaultheria hispidula (ErM) 
Cornus canadensis and Lysimachia borealis (AM) 

Ecotone Pinus strobus (ECM) 
Kalmia angustifolia and Gaultheria hispidula (ErM) 
Cornus canadensis and Lysimachia borealis (AM) 

Wetland Pinus strobus (ECM) 
Kalmia angustifolia and Gaultheria hispidula (ErM) 
Cornus canadensis and Lysimachia borealis (AM) 

MME Fall 
(November 
5th, 2017) 

Upland Pinus strobus (ECM) 
Kalmia angustifolia and Gaultheria hispidula (ErM) 
Cornus canadensis and Lysimachia borealis (AM) 

Ecotone Pinus strobus (ECM) 
Kalmia angustifolia and Gaultheria hispidula (ErM) 
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Cornus canadensis and Lysimachia borealis (AM) 
Wetland Pinus strobus (ECM) 

Kalmia angustifolia and Gaultheria hispidula (ErM) 
Cornus canadensis and Lysimachia borealis (AM) 

MTM Fall 
(November 
5th 2017) 

Upland Pinus strobus (ECM) 
Kalmia angustifolia and Gaultheria hispidula (ErM) 
Cornus canadensis and Lysimachia borealis (AM) 

Ecotone Pinus strobus (ECM) 
Kalmia angustifolia and Gaultheria hispidula (ErM) 
Cornus canadensis and Lysimachia borealis (AM) 

Wetland Pinus strobus (ECM) 
Kalmia angustifolia and Gaultheria hispidula (ErM) 
Cornus canadensis and Lysimachia borealis (AM) 

 

Plant and Soil Nutrient Analysis  

Soil bulk densities from the east, west, and center of each plot, within 7 m from 

either side of the transect line, were calculated by collecting 400cm2 surface area cubes of 

organic horizon and measuring the organic horizon depth from each side of the 

excavation. Soil for bulk density samples was weighed after being dried for three days at 

80˚C. 

 

Samples of approximately 15 healthy, mature leaves were dried in plastic cups for 

five days at room temperature before being sent in Ziploc bags to the University of 

Guelph Agriculture and Food Laboratory where they were tested for nitrogen, 

phosphorus, potassium, magnesium, and calcium content (Plant Package 1), according to 

the Ontario Ministry of Agriculture, Food, and Rural Affairs (OMFRA) accredited 

method (OMFRA 2019).  
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For soil nutrient samples, any large roots were removed, and samples were air 

dried in foil trays for five days at room temperature then sealed in Ziploc bags and sent to 

the University of Guelph Agriculture and Food Laboratory for soil nutrient analysis. The 

samples were tested for soil pH (saturated paste and SMP buffer methods), sodium 

bicarbonate extractable phosphorus, and ammonium acetate extractable potassium and 

magnesium. The soil ammonium-nitrogen and nitrate and nitrite-nitrogen were also 

determined by 2M KCl colorimetry.  

 

Clearing and Staining of Root Samples  

Root samples were processed over 2mm and 300µm mesh sieves. They were 

washed free of all visible soil particles in cold water before being rinsed in fine mesh-

wrapped plastic filter boxes under cold water for fifteen minutes to remove any remaining 

soil particles. Clean roots from AM and ErM plants were cleared in 10% potassium 

hydroxide for twenty hours at 60ºC in a Fisher IsoTemp® Incubator 200 series. After 

twenty hours the roots were checked for sufficient clearing. Those still containing 

obvious pigments were cleared for an additional two hours at 60ºC in fresh KOH. After 

clearing roots were washed with distilled water for five minutes, acidified in 1% glacial 

acetic acid for five minutes, then stained in a solution of 1% Parker Pen Company 

Quink® (a dark blue non-toxic ink) in 7% glacial acetic acid for twenty hours at 60ºC. 

The roots were destained by agitating in a 1:1:1 solution of glacial acetic acid, glycerol, 

and distilled water for 10 minutes.  
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Stained roots were sectioned into 1cm pieces of the finest roots (AM) or hair roots 

(ErM) and randomly selected using a gridded petri dish for microscopic quantification of 

colonization. Three 1cm long root sections were selected for each ErM and AM plant. 

Each field of view along the root lengths was photographed using CellSens® standard 

(Olympus corporation) microscope software and an Olympus BX43 microscope at 200X 

total magnification. This produced 20 microphotographs per 1cm root segment, each 

representing 0.5mm of root tissue. The photographs were copied to PowerPoint® 

(Microsoft®)  where they were overlaid with a 7 X 9 (63 intersections) grid, allowing 

colonization to be assessed at every 70 micrometers vertically and every 55 micrometers 

horizontally along the length of the root (Figure 7), in a modification of the magnified 

intersections method (McGonigle et al. 1990). At each of the 63 intersections the 

colonization was assessed as either absent or present. For arbuscular mycorrhizal roots, 

each intersection containing fungal tissue was also classified as an arbuscule, vesicle, 

hypha, or dark septate endophyte hypha. For ericoid mycorrhizal roots, intersections with 

fungal tissue were classified as a hyphal coil, hypha, or dark septate endophyte hypha. 

Any intersections that were not occupied by plant or fungal tissue were classified as 

empty when present so that percent colonization for each root could be determined.  
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Figure 7. Example of the 7 X 9 grid overlaid on a 0.5mm section of Kalmia angustifolia 

root from Mount Merritt cleared and stained with Quink®.  

 

Ectomycorrhizal colonization was assessed by characterizing the fine root tips 

collected. Root tips were removed from each washed sample under 10X magnification 

using a Nikon SMZ800 dissecting microscope. For each root tip, binary presence/absence 

data was recorded on bifurcation, fungal mantle, apparent root health, root hairs, and 

apical meristem swelling. In Pinus roots bifurcation, fungal mantle, and apical meristem 

swelling are all indicative of mycorrhizal colonization, while the presence of root hairs 

indicates a lack of symbiosis (Peterson and Bonfante 1994). Roots tips that appeared 

unhealthy, shriveled, or decomposed were considered dead and were not classified 

according to their mycorrhizal status. Root tips exhibiting any of the features of a 
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mycorrhizal relationship were classified as colonized, those with root hairs or lacking 

mycorrhizal features were classified as non-mycorrhizal.  

Percent colonization represented percent of total gridline intersections covering 

plant root tissue that also contained mycorrhizal fungal tissue for each 1cm ErM and AM 

root segment. Segments were averaged to give a per-plant percent colonization. In ECM 

roots, the proportion of the total fine root tips that were classified as mycorrhizal was 

used to produce the percent colonization.   

 

Data Analysis 

Bulk density was calculated at the east, west, and center of each plot using the 

formula: average organic soil mass (g)/(soil depth (cm) * 400 (soil sample surface area 

(cm))). Bulk densities were averaged across each plot and multiplied by 1000 to give the 

units kg/m3 for use in calculating the plant available nitrogen and phosphorus.  

 

Plant available nitrogen (kg/ha) in the soil was calculated using the formula: 

((ammonium (mg/kg) + nitrate (mg/kg)) * soil depth (m) * bulk density (kg/m3))/100.  

Plant available phosphorus was calculated using the formula: phosphorus (mg/L) * soil 

depth (m) *10. Edaphic factors pH, N, P, were compared by one-way ANOVA in Past 

3.1.0 (Hammer, Harper and Ryan 2001).  

 

Generalized quasi-binomial linear regression models of percent colonization were 

constructed using R Statistical Software (R Core Team 2013). Individual models were 

produced for each plant species type for a total of five models (n=36 per model) where 
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colonization (%) was fitted to the z-transformed variables pH, volumetric water content 

(%), temperature (˚C), plant available nitrogen (kg/ha) and phosphorus (kg/ha). The 

variables were tested for multicollinearity using the vif (variance inflation factor) function 

in the package car with a cut-off of 3. The variables season and site were not included in 

the final generalized linear models as they each had a vif over 3 with temperature. 

Instead, temperature was used as a proxy for site and season. Results were assembled into 

dot and whisker plots with 95% confidence intervals using the package dwplot.  

Results  

Site Descriptions 

Table 3. Edaphic factors (mean ± standard error) by season and site.  

Spring 

 Wetland Ecotone Upland 
 Merrymakedge 
pH 3.93 ± 0.07 3.81 ± 0.10 3.67 ± 0.28 
VWC (%) 79.60 ± 4.19 39.48 ± 2.58 24.57 ± 1.85 
Temperature (˚C) 17.81 ± 0.25 14.99 ± 0.23 18.53 ± 0.12 
Nitrogen (kg/ha) 2.52 ± 0.19 3.69 ± 0.31 5.55 ± 0.61 
Phosphorus (kg/ha) 2.89 ± 0.14 3.20 ± 0.20 5.16 ± 0.30 
 Mount Merritt 
pH 3.73 ± 0.03 3.68 ± 0.11 3.29 ± 0.10 
VWC (%) 86.49 ± 1.03 52.33 ± 0.93 13.49 ± 1.72 
Temperature (˚C) 21.85 ± 0.19 20.01 ± 0.48 27.24 ± 1.11 
Nitrogen (kg/ha) 1.39 ± 0.12 1.76 ± 0.19 1.09 ± 0.77 
Phosphorus (kg/ha) 3.75 ± 0.20 3.86 ± 0.44 2.42 ± 0.41 

 

Fall 
 Wetland Ecotone Upland 
 Merrymakedge 
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pH 3.51 ± 0.03 3.46 ± 0.04 3.50 ± 0.06 
VWC (%) 49.85 ± 5.16 32.68 ± 1.59 28.90 ± 1.23 
Temperature (˚C) 11.02 ± 0.10 8.75 ± 0.32 5.63 ± 0.11 
 Mount Merritt 
pH 4.96 ± 0.29 3.65 ± 0.06 3.88 ± 0.05 
VWC (%) 58.87 ± 3.53 45.89 ± 3.67 25.14 ± 0.61 
Temperature (˚C) 17.30 ± 0.14 16.51 ± 0.21 11.47 ± 0.14 

 

Edaphic Factors  

 Soil pH, plant available nitrogen, and phosphorus did not vary significantly 

between the sites or plots (p>0.05) and pH was not significantly different between the 

seasons (soil nutrients were measured only in the spring) (Table 3). Volumetric water 

content increased significantly along the transects from upland to wetland, but was not 

significantly different between sites. The average soil moisture in the spring was 24.57% 

in the upland to 79.60% in the wetland at Merrymakedge, while the transect at Mount 

Merritt had a greater range, from 13.49% to 86.49% from the upland to the wetland. The 

wetlands on both sites were drier in the fall, with an average soil moisture of 49.85% at 

Merrymakedge and 58.87% at Mount Merritt. Merrymakedge was a cooler, shadier site, 

with an average spring soil temperature of between 14.99˚C to 18.53˚C compared to 

spring soil temperatures between 20.01˚C to 27.24˚C at Mount Merritt. The same trend 

was observed in the fall, with soil temperatures of 5.63-11.02˚C and 11.47-17.30˚C at 

Merrymakedge and Mount Merritt, respectively. No significant relationships were 

observed between plant foliar and soil nutrient levels (not shown).  

 

Percent Mycorrhizal Colonization in Forested Wetlands  
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Figure 8 (a-b) (pages 48-52). Dot and whisker plots of edaphic influences on mycorrhizal 

colonization (%) of Pinus strobus (a), Cornus canadensis (b), Lysimachia borealis (c), 

Kalmia angustifolia (d), and Gaultheria hispidula (e). Each dot represents the quasi-

binomial generalized linear model coefficient value for each variable (Temperature (˚C), 

VWC (%), pH, plant available nitrogen (mg/ha), and phosphorus (mg/ha)), with the 

associated whiskers representing the 95% confidence interval. Significant factors (*) 

listed at α=0.05 or smaller. Non-significant p-values are not shown. 

 

Average soil moisture, temperature, and pH were not significant factors in 

predicting colonization level in either arbuscular mycorrhizal plant. In the Lysimachia 

borealis model both plant available nitrogen and phosphorus were significant variables. 

None of the factors measured were significant in predicting colonization level in Cornus 

canadensis. In Cornus canadensis (Figure 8a), 16.25% of the variation in colonization 

level could be explained by the variables observed, while in Lysimachia borealis, 35.82% 

of the variation in could be explained (Figure 8b).  

 

 Ectomycorrhizal colonization was not significantly related to changes in VWC 

(%) along the forested upland to wetland transects (Figure 8c). Using the measured 

variables, only 14.19% of the variation in percent colonization could be explained. None 

of the variables had a significant influence on the colonization level. However, at the plot 

level, ectomycorrhizal colonization was lower in the wetland than in the upland (One-way 

ANOVA; p=0.005).  



   

 54 

 

A strong, significant positive relationship between percent colonization and soil 

volumetric water content was detected for both ericoid mycorrhizal plants. The trend was 

more pronounced in Gaultheria (Figure 8d) than in Kalmia (Figure 8e), but was observed 

in both host plants. None of the other factors measured were significant in predicting the 

mycorrhizal colonization level of the ericaceous plants studied.  

 

When compared to volumetric water content directly, colonization levels of 

ectomycorrhizal and arbuscular mycorrhizal fungi did not significantly change across the 

transects, while the colonization level of ericoid mycorrhizal fungi increased significantly 

with increasing soil moisture content (Figure 9).  

 

Figure 9 (Next page). Percent colonization compared to volumetric water content by 

plant species with mycorrhizal type in parentheses. Significant p-values at α < 0.05 are 

bold.  
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Discussion and Conclusions 

 In the five plants studied, average soil moisture content was a significant predictor 

of mycorrhizal colonization level in only the two ericoid mycorrhizal species. Plant 

available phosphorus and nitrogen were significantly linked to Lysimachia borealis 

percent colonization, while none of the other factors were significant in any of the other 

plants. Soil temperature and VWC were higher in the spring than in the fall, but no 

seasonal effect on pH was observed. There were no significant differences in pH or soil 

nutrients on either transect. Merrymakedge was shadier and more nutrient rich than 

Mount Merritt, yet similar colonization patterns were observed on both sites.    

 

Although arbuscular mycorrhizal colonization was not well explained by the 

measured variables, plant available nitrogen and phosphorus were the best predictors of 

AM colonization level. This is in agreement with the characterization of AM as important 

associates for phosphorus and nitrogen acquisition (Read 1991). It is somewhat surprising 

that AM colonization was not significantly different between seasons (as represented by 

temperature in the model), but it is possible that the between site differences in 

temperature obscured a seasonal shift in AM colonization level in the model. 

Nonetheless, the lack of significant differences in colonization between upland and 

wetland sites is also in agreement with other recent studies (Allen, Richards and Busso 

1989; Wetzel and van der Valk 1996; Kandalepas et al. 2010).  

 

Ectomycorrhizal colonization levels were not well predicted by any of the 

variables measured in this study. Surprisingly, average soil moisture content was not a 
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significant predictor of ectomycorrhizal colonization as it has been in previous studies. 

This could be explained by the fact that I excluded any inactive fine root tips and used 

multiple indicators of mycorrhizal status for quantification. Other studies including 

partially senesced root tips and/or fewer mycorrhizal indicators may have underestimated 

colonization levels in forested wetlands. Another possible explanation for this observation 

is that some of the Pinus strobus plants were growing on hummocks and therefore not 

subjected to wet enough conditions to produce a steep decline in mycorrhizal status. 

Ectomycorrhizal colonization was lower in the wetland than in the upland when 

considered at the plot level, suggesting that there is another variable that was not 

measured that is responsible for the decreased colonization.  

 

Ericoid mycorrhizal colonization, although somewhat different between the two 

ericaceous species, increased significantly from the upland forest through the ecotone to 

the forested wetlands. Conversely, season, pH, site, temperature, and soil nitrogen and 

phosphorus were not significant factors in predicting ericoid mycorrhizal colonization.  

 

One possible limitation of this study is the number of segments used to assess 

mycorrhizal colonization level in each plant type. Some studies in this discipline use up to 

100 root segments per plant to determine percent colonization, while my calculations 

were based on 3 root segments from 3 replicate plant samples per plot studied. While this 

number of root segments studied quickly multiplied through the inclusion of 5 plant 

species, 3 plot types, 2 sites, and 2 seasons, a study on forested wetland ericoid 
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mycorrhizal plants alone might benefit from the examination of more root segments per 

sample.  

 

The sodium bicarbonate extractable (Olsen 1954) method used for measurement 

of plant available phosphorus in the studied soils may not have been optimal, as the Olsen 

method is best used for neutral or alkaline soils, and the sites studied ranged in pH from 

(2.71 to 7.33). The Olsen method was selected as a component of a package of plant 

available soil parameters but absolute extractable phosphorus in these soils might have 

been better described by the Bray- 1 or 2 methods (Radwan, Kraft and Shumway 1985). 

Despite these limitations, the soil mean pH was reasonably consistent between sites and 

along the transects, meaning that the relative extractable soil phosphorus is informative, 

even if the absolute levels of soil phosphorus may have been underestimated.  

 

Of the three mycorrhizal types studied, only ericoid mycorrhizal colonization 

could be significantly linked to soil moisture content, while ectomycorrhizal colonization 

decreased at the plot level between the upland and wetland, and arbuscular mycorrhizal 

colonization was not significantly correlated to VWC or plot. As the major mycorrhizal 

types are formed by different groups of fungi, with ECM formed by homobasidiomycetes 

and ascomycetes, AM by Glomeromycota, and ErM by heterobasidiomycetes and 

ascomycetes, it can be inferred that differences in their abilities to colonize wetlands are 

linked to water tolerance in the different groups of fungi. Ectomycorrhizal fungi, which 

are typical of woody plants in temperate forests, may not have been evolutionarily 

pressured to evolve wetland tolerance, or perhaps only certain species of ECM fungi can 
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survive in wetlands. This speculation is supported by the fact that wetland tolerant trees in 

the genus Acer are arbuscular mycorrhizal (Kessler 1966). Ericaceous plants are known 

for being broadly stress tolerant, thus it is not surprising that their symbionts are also 

tolerant of a range of edaphic conditions. This may be as a result of higher water 

tolerance in ErM fungi, or perhaps there are a range of potential ErM fungi that are 

specialized for survival in different stressful habitats.  

 

This study shows that ericoid mycorrhizal colonization can be significantly higher 

in forested wetlands than in nearby upland forests. This capability is important to consider 

when planning conservation efforts for forested wetlands. Ericaceous plants in their 

native habitats are prone to displacement by invasive grasses under eutrophic conditions 

in normal soils, where their competitive abilities to liberate organically bound nutrients 

are not as advantageous (Fagúndez 2012). If eutrophication occurs in wetlands, ErM 

plants might be less prone to displacement because of their higher levels of fungal 

colonization, or, if they are displaced in the same way, their highly specialized symbioses 

may be lost. This would be problematic as native species are more valuable than invasive 

ones for promoting mycorrhizal fungal biodiversity, and non-native plant species can 

reduce mycorrhizal biodiversity and lower the inoculum potential of soil (Mummey and 

Rillig 2006). The mycorrhizal inoculum potential of wetland soils may be particularly 

delicate, as species that thrive there are likely to be highly specialized. If ericaceous 

plants with wetland-specialized ericoid mycorrhizal fungal symbionts are displaced by 

invasive (likely AM) grasses, they may be difficult, if not impossible, to re-establish.  
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CHAPTER THREE 

Ericoid Mycorrhizal Communities Along Forest to Wetland Gradients  

 

Abstract 

 There has recently been a large increase in the understanding of ericoid 

mycorrhizal (ErM) fungal communities. The symbiosis was long thought to take place 

between Ericaceous plants and only one species of fungus, Rhyzoscyphus ericae. 

However, evidence has arisen in the past two decades for the existence of other ErM 

fungi. Now, thanks to advanced molecular techniques, there are more than ten known 

species of fungi that form ErM. Still, studies on ErM communities from natural habitats 

are rare. In this study the fungal root inhabitants of two Ericaceous plants were 

characterized along forest to wetland gradients by DNA cloning and sequencing. 

Serendipita was the dominant putative ErM fungal species observed while Pezoloma 

(Rhizoscyphus), Hyaloscypha (Meliniomyces), and Oideodendron were also observed. 

Distinct Sebacinales OTUs were found in the wetland and upland sites, suggesting habitat 

specialization in this order in which species have recently been characterized as ErM.  

Introduction 

 The classic conception of the ericoid mycorrhizal (ErM) symbiosis came from the 

easily cultured helotialean Pezoloma ericae aggregate (formerly Rhizoscyphus ericae 

aggregate and Hymenoscyphus ericae). However, culture-based studies of mycorrhizal 

communities are highly biased, as there are many symbiotic fungi that are not easily 

cultured (Allen et al. 2003). Early molecular studies of ErM communities that sequenced 
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DNA from fungi cultured from roots are also subject to the same biases (Chambers, Liu 

and Cairney 2000; Sharples et al. 2000). Culture-independent molecular methods have 

vastly expanded the understanding of ericoid mycorrhizal symbioses (Hazard et al. 2014), 

which are now known to be formed by the ascomycetes Hyaloscypha (Meliniomyces) 

variabilis, Oideodendron maius (Walker et al. 2011), Gamarada delbrueckii (Midgley et 

al. 2018), Cairneyella variabilis (Palmer et al. 2007), heterobasidiomycetes in the genus 

Serendipita (Vohník et al. 2016) and the homobasidiomycete Kurtia argillacea (Kolařík 

and Vohník 2018).  

 

 Ericoid mycorrhizal relationships have received very little research attention, as 

they are relatively uncommon in agriculture, except in the cultivation of blueberry or 

cranberry or some ornamentals and are seen as relatively unimportant in forestry.  

 

Very few studies of ErM fungi have been conducted directly on Ericaceous hair 

roots (culture independent). Instead, many have opted for the culture dependent studies, 

isolating fungi from roots and then sequencing the isolates. While this allows for the 

option of investigating the mycorrhizal status of isolates through re-synthesis 

experiments, this approach inevitably underestimates diversity due to the resistance of 

many fungi to growth in culture (Tedersoo et al. 2010).  

 

 Studies of bacterial and fungal communities in soil provide evidence for structural 

shifts across natural gradients, including changes in pH, soil moisture content, and 

nutrients (Li et al. 2018). Similarly, mycorrhizal communities appear to be influenced by 
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edaphic shifts, including higher ECM and ErM biomass in low nutrient soils, while AM 

biomass can be higher in low phosphorus, higher pH microsites (Nilsson et al. 2005). The 

same trend has been recorded on a global scale, with higher ErM colonization toward the 

poles, ECM at intermediate latitudes, and AM at the tropics (Read 1991). Shifts have also 

been observed along a successional gradient (Huusko, Ruotsalainen and Markkola 2017) 

with AM fungi dominating in the youngest zones with a shift toward dark septate 

endophytes in later successional ages. Kohout and Tedersoo (2017) found changes in 

fungal community composition along a soil moisture gradient in the ericoid mycorrhizal 

plant Erica dominans, with more operational taxonomic units (OTUs) in the Helotiales in 

wet sites, although their next generation sequences could not be identified to the species 

level.  

 

 Forested wetlands are important resources for carbon storage and water filtration 

and provide important habitats for numerous bird and invertebrate species (Conner 1998). 

They currently face multiple threats including urbanization (Faulkner 2004), hydrological 

destabilization (Burkett and Kusler 2000), and displacement by invasive species (Zedler 

and Kercher 2004). Some evidence suggests that microbial community richness may be 

reduced in wetlands (Li et al. 2018), but those that can survive in wetland habitats are 

potentially more sensitive to environmental conditions outside of their ecological niche 

(Thuiller et al. 2005). Others have suggested that soil fungal species richness may be 

relatively high in wetlands, but with a different community structure than upland forests 

(Wolfe et al. 2007). The fungal root-associated communities in forested wetlands require 

increased attention in order to mitigate the threats to their continuance.  
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Soil nutrients are an important factor in all soil fungal communities and ericoid 

mycorrhizae are no exception. Hazard et al. (2014) found a significant correlation 

between ErM fungal community structure and soil nitrogen. Fungal communities are also 

impacted by season, with evidence for peaks in diversity in the summer or fall, depending 

on the functional guild (Voříšková et al. 2014).  

 

The majority of studies on ericoid mycorrhizal communities are limited to a single 

plant species at a single sampling time, often from a limited geographic range and without 

the consideration of linked edaphic factors (Bougoure et al. 2007). The inclusion of 

multiple, potentially linked factors in a single study may prove useful in defining which 

common covariant factors may be responsible for the observed variations in ericoid 

mycorrhizal communities. In this study, ericoid mycorrhizal communities associated with 

two common Acadian forest Ericaceous plants, Kalmia angustifolia and Gaultheria 

hispidula, were examined along upland forest to forested wetland transects and fungal 

DNA sequences from clone libraries were compared between sites, seasons and host 

species. The objective was to gain an understanding of shifts in root-associated 

community structure along upland to wetland gradient. Changes in the root-associated 

fungal community in both ericoid mycorrhizal plant species along the upland to wetland 

gradient were predicted.  

Materials and Methods 

DNA Extraction and PCR 
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Hair roots from Kalmia angustifolia and Gaultheria hispidula plant samples (see 

Chapter 2 methods) were sampled for fungal community analysis. Root samples were 

washed free of all visible soil particles through 2mm and 300µm mesh sieves followed by 

15 minutes of washing in fine mesh wrapped plastic filter boxes. The roots of the four 

plant samples of each plant species on each plot were pooled, resulting in one sample per 

species, plot, site, and season for a total of 24 pooled samples. From each sample 40 1mm 

hair roots (Figure 10) were randomly selected for DNA extraction using a gridded Petri 

dish under 10X magnification using a Nikon SMZ800 dissecting microscope. The roots 

were frozen in AP1 buffer (Qiagen©) before the DNA was extracted using a Qiagen© 

DNeasy Plant Mini Kit according to the manufacturer’s instructions. The extraction 

produced two 100µL elutions of DNA. Both elutions of the DNA were diluted by 1/10, 

1/20 and 1/50 in nuclease free water. Both the diluted DNA and undiluted samples, were 

amplified by PCR using the primers ITS1F (Gardes and Bruns 1993) and NL6C2 

(Kernaghan, Mayerhofer and Griffin 2017) and the following thermocycler parameters: 

initialization at 95˚C followed by 35 cycles of 1 minute for denaturation at 95˚C, 

annealing for 1 minute at 53˚C and 2 minutes of extension at 72˚C followed by an 

additional 10 minutes of elongation at 72˚C. The PCR products were resolved on a 1.5% 

agarose gel in 1% sodium boric acid electrophoresis buffer at 122v for 90 minutes. The 

least dilute elution with a clear band was selected for molecular cloning.  
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Figure 10. Section (1mm) of Gaultheria hispidula hair root collected in the fall from 

Mount Merritt (20X, unstained) with intracellular hyphal coils (*) symptomatic of 

colonization by ericoid mycorrhizal fungi.  

 

Cloning and Sequencing 

PCR products were purified using a QIAquick PCR Purification Kit (Qiagen©) 

according to the manufacturer’s instructions. Purified PCR products were cloned using 

the p-GEM®-T Easy Vector System with an overnight ligation for increased number of 

transformants. Transformed competent cells were inoculated on solid lysogeny broth 

media with ampicillin, X-Gal, and IPTG, and incubated overnight. Two replicate plates 

were created for each sample. From each plate 12 white colonies were selected using an 

autoclaved toothpick and transferred to 50µL of nuclease free water. A total of 24 clone 

libraries, each containing 24 cloned colonies, were produced. The libraries were frozen at 

-18˚C until amplification by PCR. Bacterial colonies were amplified using the nested 

primers ITS1 and ITS4 (White et al. 1990) and the colony PCR thermocycler program: 7 

minutes at 94˚C for cell lysis followed by 30 cycles of 1 minute for denaturation at 94˚C, 

* * 

* 

* 
* * 



   

 70 

annealing for 1 minute at 60˚C and 2 minutes of extension at 72˚C followed by an 

additional 10 minutes of elongation at 72˚C. The PCR products were resolved on a 1.5% 

agarose gel in 1% sodium boric acid electrophoresis buffer at 122v for 90 minutes. All 

PCR products produced were then analyzed by restriction fragment length polymorphism 

(RFLP) using CutSmart buffer and Taq α1 restriction enzyme (New England Biolabs) at 

65ºC for 2 hours. RFLP products were resolved on a 1.5% agarose gel in 1% sodium 

boric acid electrophoresis buffer at 122v for 90 minutes (Figure 11) and restriction 

fragment patterns were compared to select clones for sequencing. One colony was 

selected to represent each unique RFLP pattern in each clone library and amplified again 

for Sanger sequencing by Nanuq - McGill University and Génome Québec Innovation 

Centre using the primers ITS1 and ITS4 (White et al. 1990) and the colony PCR 

parameters listed above.  

 

Figure 11. Restriction fragment length polymorphism run on 1.5% agarose 

electrophoresis gel of a clone library produced from spring harvested Kalmia angustifolia 

roots from the Mount Merritt forested wetland.  
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Analysis 

 Consensus reads were assembled in Sequencher 5.3 (Gene Codes Corporation, 

Ann Arbor, MI) and multiple alignments were prepared using MUSCLE (EMBL-EBI 

Hixton) for editing and trimming in BioEdit (Ibis Therapeutics). A multiple sequence 

comparison produced by BioEdit, along with NCBI BLAST, and CD-HIT (Li and Godzik 

2006; Fu et al. 2012) was used to bin sequences into OTUs of 97% similarity.  

 

When possible, each OTU was assigned a functional guild using the FUNGuild 

database (Nguyen et al. 2016) query tool or available literature (Vohník et al. 2016). The 

total number of samples of each OTU in each guild were assembled into a stacked 

percentage bar plot in R Statistical Software (R Core Team 2013) with the package 

ggplot2. 

 

 Fungal OTUs and the edaphic variables: volumetric water content, pH, 

temperature, plant available nitrogen, and phosphorus (Olsen-P) were compared by 

canonical correspondence analysis (CCA) in Past 3.1.0 (Hammer, Harper and Ryan 

2001). Fungal species richness, Fisher’s alpha diversity indices and Whittaker’s beta 

diversity indices were also calculated for each sampling plot in Past.  

 

 To further investigate the taxonomic positions of OTUs identified as representing 

members of the Sebacinales, a midpoint rooted maximum parsimony tree comparing all 

cloned Sebacinales sequences to key reference sequences from GenBank (Clark et al. 

2015) was generated in PAUP 4.0a165(X86) (Swofford 2003).  
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Results  

 A total of 200 fungal ITS clones were sequenced, uncovering 73 unique OTUs 

(Table Appendix 1). From these sequences, 12 ErM or putative ErM fungal OTUs were 

identified. Endophytes, ectomycorrhizal fungi, pathogens, and saprotrophs comprised the 

other guilds (Figure 12). Twenty-eight OTUs could not be identified to a level sufficient 

to characterize their functionality and were given the designation “unassigned”. In both 

seasons root endophytes were most common on the upland plots and least common in the 

forested wetlands, while ErM and putative ErM OTUs were most common in the forested 

wetlands.  

 

Table 4. Species richness, Fisher’s alpha diversity indices and Whittaker’s beta diversity 

indices, means averaged by plot across seasons and sites (mean ± SE for Fisher’s α).   

 Wetland Ecotone Upland 

Richness 44 44 45 
Fisher's alpha 24.39 ± 0.78 32.11 ± 1.15 31.34 ± 1.07 
Whittaker's beta 4.27 5.54 5.22 

 

 

Figure 12 (Next page). Stacked percentage bar plot of fungal OTUs in each guild. Bars 

are arranged by plot from upland to wetland.  
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Species richness was greatest in the upland plots, ranging between 1 and 11 OTUs 

per sample. Of the Merrymakedge plots, the ecotone had the greatest richness, while the 

wetland had the least. The pattern at Mount Merritt was different, with the upland 

displaying the greatest richness and the wetland showing the least. In contrast to the 

richness, Fisher’s alpha and Whittaker’s beta diversity were highest on both sites in the 

ecotone, while the wetlands had the lowest alpha and beta diversity (Table 4).  

 

In the canonical correspondence analysis, axis 1 essentially mirrors volumetric 

water content, with some influence of pH (Figure 13). Axis 2 is related to plant available 

nitrogen and phosphorus in the negative direction, while temperature is related to axis 2 

in the positive direction. However, none of pH, nitrogen, phosphorus, and temperature are 

related to an axis as strongly as VWC is to axis 1. The wetland plots all cluster to the left 

side of the diagram (following increasing VWC) and the upland plots cluster to the right, 

with ecotone plots distributed between the two, showing clear fungal community 

grouping along the moisture gradient. The two replicate sites do not separate along either 

axis.   

 

Most of the ErM and putative ErM OTUs clustered in the wetland, with another 

distinct assemblage in the upland forest and ecotone-associated ErM OTUs distributed 

throughout, suggesting strong habitat adaptation in ErM fungi. Species in the Sebacinales 

were common throughout the samples studied, with distinctive OTUs characteristic of 

either wetland or upland plots. Species in the Helotiales and Verrucariales were also 

characteristic of the wetlands. In contrast, Rhizoscyphus and Mortierella species were 
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more common in the upland forest. The genera Capronium and Chloridium were most 

commonly associated with nutrient rich plots, and Trichisporales and Cladophialophora 

were only seen in the spring  

 

Figure 13. (Next page) Canonical correspondence analysis of fungal associates with 

Kalmia angustifolia (circles) and Gaultheria hispidula (squares) along two upland (red) 

to ecotone (yellow) to wetland (blue) transects on sites Merrymakedge (filled) and Mount 

Merritt (hollow). ErM and putative ErM OTUs are bold. Axis 1 explains 6.30% of the 

variation in species distribution and axis 2 explains 5.92%.  
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 Of all of the clones sequenced, those representing members of Sebacinales were 

the most common. There was a total of 63 clones in the Sebacinales, belonging to seven 

distinct OTUs (Figure 14). Of the seven Sebacinales OTUs, only one was observed all 

along the upland forest to forested wetland transects. All of the other OTUs were 

observed either only in the ecotone and wetland or only in the ecotone and the upland 

forest. In six of the seven Sebacinales OTUs, there was no overlap in habitat between the 

upland associated OTUs and the wetland associated OTUs. When compared with key 

GenBank reference sequences, the Sebacinales sequences appear to be most closely 

Serendipita vermifera, which has been recently classified as ErM (Vohník et al. 2016). 

However, the sequence similarity indicates that the fungi detected in the present study 

likely represent different species within the genus Serendipita.   

 

Figure 14. (Next page) Midpoint rooted maximum parsimony tree of sequences 

representing Sebacinales compared to reference sequences in the Sebacinales from 

GenBank. Clones from wetland (blue), ecotone (yellow), and upland (red) forest plots are 

indicated with coloured dots. Bars indicate OTUs as chosen by multiple sequence 

comparisons in BioEdit and BLAST. Bootstrap values below 75 are not shown. 
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Discussion and Conclusions 

 In this study of ErM fungi along a forest to wetland gradient, 12 ErM or putative 

ErM fungal OTUs were observed. Although the overall fungal species richness did not 

change as average soil moisture increased, the richness of the OTUs designated as ErM 

and putative ErM increased along the same transects. Differences in ErM fungal 

communities were not as strong between seasons, sites, and plant hosts, although some 

non-ErM species were driven by changes in plant available nitrogen and phosphorus in 

surface organic horizons. This data supports the hypothesis that ErM fungal communities 

shift along a wetland to upland gradient.  

 

 In this study 40 randomly selected pooled hair roots were used for DNA 

extraction and subsequent techniques. Spatially distributed studies avoiding sample 

pooling could provide even more detailed information on the exact soil moisture 

preferences of symbiotic fungal communities.  

 

 Many recent studies of mycorrhizal fungal communities have used advanced 

molecular platforms such as Pyrosequencing, Illumina, or PacBio. While these techniques 

are capable of producing impressively large data sets, only the most expensive (such as 

PacBio) are capable of producing long, high quality reads required to identify often 

cryptic mycorrhizal fungi to the species level. As only a few species of fungi are known 

to be involved in ericoid mycorrhizal symbioses, it was important in this study to obtain 

large, clean sequences. Thus, the more traditional method of DNA cloning and 

sequencing was determined to be the most appropriate. Future studies of ErM fungal 
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communities in natural habitats may benefit from more intensive inspection, especially as 

next generation sequencing technologies improve and become more affordable.  

 

 Recent studies of ericoid mycorrhizal communities in wetlands have found high 

putative ErM species richness, yet only two ErM fungal species were identified (Kohout 

and Tedersoo 2017). One concern with sequencing ErM fungal communities is that many 

of these plant symbionts have not been well characterized. Thus, many BLAST matches 

are to environmental samples. They often originate from Ericaceous plants, but without 

an identified isolate in culture it is impossible to confirm the mycorrhizal status of a 

species. All of the species designated as putative ErM in this study were chosen based on 

evidence from FUNGuild (Nguyen et al. 2016) and literature, but none can be confirmed 

as ErM without proof via re-synthesis, and they cannot be identified without a pure 

culture reference. More work is required to isolate and identify ericoid mycorrhizal fungal 

species so that their biology can truly be understood.   

 

 While ErM species richness was higher overall in forested wetland sites, the trend 

in the Sebacinales was most striking. Certain OTUs were observed only on wetland or 

ecotone plots, while others were found only in the ecotone or the upland. This finding 

strongly supports the idea that ErM fungal communities are driven in large part by soil 

moisture content. Sebacinales have recently been split into two functionally distinct 

clades, Sebacinales Group A, which forms basidiomes and can be endophytic, 

ectomycorrhizal and orchid mycorrhizal; and Sebacinales Group B, which is not known 

to produce spores and is orchid and ericoid mycorrhizal, endophytic, and occasionally 
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ectomycorrhizal (Weiß et al. 2016). Many of the sequences in this study were most 

closely related to sequences in the genus Serendipita (Sebacina) which is in Sebacinales 

Group B. The species Serendipita vermifera was recently demonstrated to be ericoid 

mycorrhizal (Vohník et al. 2016). The distinct Sebacinales OTUs identified in this study 

may represent different species of Serendipita with wetland and upland habitat 

specificity. However, the high level of variability in the ITS region of Sebacinales 

challenges the delineation of species (Selosse et al. 2007) and may indicate that the 

Sebacinales OTUs observed are distinct strains, rather than species.  
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CHAPTER FOUR 

General Conclusions 

 

Introduction 

 The mycorrhizal fungi of forested wetlands are an enigmatic group. As obligate 

aerobes, it is surprising that fungi are found in waterlogged habitats where oxygen levels 

are often limited. I found a decrease in ectomycorrhizal (ECM) colonization (although 

only statistically significant at the plot level) which is in agreement with the suppression 

of ECM seen along a moisture gradient in a spruce forest (Robertson et al. 2006). My 

results regarding arbuscular mycorrhizae (AM) are also in line with other studies that 

have found little or no suppression of arbuscular mycorrhizal (AM) colonization by 

elevated soil moisture. (Allen, Richards and Busso 1989; Wetzel and van der Valk 1996; 

Kandalepas et al. 2010). However, in contrast to these other mycorrhizal types, ericoid 

mycorrhizal (ErM) colonization was higher in the forested wetlands studied than in 

adjacent upland forest. This increase appears to be linked to an increase in ErM and 

putative ErM diversity and richness in wetland plots. Furthermore, fungi in the 

Sebacinales were common in all plots, but with distinct OTUs occurring in the wetland 

and upland plots. Thus, there is strong evidence for habitat specific adaptations in the 

ErM associated Sebacinales.  

 

Ectomycorrhizal Colonization 

 Ectomycorrhizal fungi are easily observed without preparation under the 

dissecting microscope, making them much easier to quantify than other mycorrhizal 
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types. This is an advantage, but it is easy to underestimate ECM colonization levels by 

treating inactive and senescing root tips as uncolonized. Truly uncolonized ECM roots 

should have visible root hairs and lack other characteristic features, whereas many 

senescing root tips were likely colonized when younger. Even root tips that lack an 

apparent fungal mantle may still have an active Hartig net (Downes, Alexander and 

Cairney 1992). Estimates of ECM fungal OTUs in soil samples by DNA sequencing are 

also informative but may overestimate colonization because of loosely associated ECM 

hyphae in soils. In the present study, the decreases in ECM colonization of Pinus strobus 

along the soil moisture gradients were not statistically significant, while decreases found 

in other similar studies were more dramatic. This may be due to other authors classifying 

senescing roots as uncolonized, or because some Pinus plants avoided the wettest 

conditions by growing on hummocks. Despite these reasons, it is still surprising that the 

aerobic fungi associated with ECM plants are able to survive in wetland soils. Perhaps the 

specific fungi involved are stress-tolerant generalists, or perhaps Pinus distributes oxygen 

to its mycorrhizal associates via aerenchyma.  

 

Arbuscular Mycorrhizal Colonization  

 AM colonization was not significantly different along the forest to wetland 

gradients in either plant studied. This is not surprising, as other researchers have found 

both high and low levels of AM colonization in forested wetlands. It appears that other 

factors, such as seasonality, soil nutrients, or plant type play a greater role in determining 

AM colonization rates than soil moisture. This study supports that notion, as it uncovered 

differences in colonization levels between the plant types, and the edaphic variables 
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measured better described colonization in Lysimachia borealis than in Cornus 

canadensis. While none of the variables were strong predictors of colonization in Cornus, 

colonization in Lysimachia was positively associated with plant available nitrogen and 

phosphorus in surface organic horizons. It was expected that the arbuscular mycorrhizal 

plants might have higher colonization levels in richer habitats (Egerton-Warburton and 

Allen 2000), but the finding that Cornus was not significantly associated with the soil 

nutrient factors studied is in line with the finding of other researchers (Bohrer, Friese and 

Amon 2004). 

 

Ericoid Mycorrhizal Colonization 

 Colonization levels in the ericoid mycorrhizal plants studied were significantly 

higher in forested wetland plots than in the adjacent upland forests, regardless of site or 

season. In the generalized linear regression models describing colonization levels for 

Kalmia and Gaultheria, volumetric water content was a more important predictor of 

percent colonization than pH, seasonal soil temperature, and soil nutrient level.  

 

While a broader examination including more hair roots per sample may have 

uncovered more fine scale differences in colonization levels, VWC was significantly 

associated with ErM colonization success in general. Ericaceous plants have numerous 

adaptations likely to protect them in stressful habitats, including thick, waxy evergreen 

leaves, small stature, and long, thin hair roots that provide a high surface area for nutrient 

absorption with low resource cost of production (Small 1972; Grime 1977). As associates 

of stress tolerant plants, ErM fungi must either be broadly stress tolerant themselves, 
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dependent on their plant hosts for protection, or highly adapted to specific habitats. The 

discovery of distinct assemblages of fungi in the Sebacinales between the wetland and 

upland habitats provides evidence for the latter of these strategies.  

 

Mycorrhizal Adaptations 

 Almost all land plants form mycorrhizal relationships. The major types, 

ectomycorrhiza (ECM), arbuscular mycorrhiza (AM), ericoid mycorrhiza (ErM), and 

sometimes orchid mycorrhiza (ORM), have become increasingly less delineated in recent 

years. While researchers once believed that ECM are formed mostly by basidiomycetes, 

AM by glomeromycetes, and ErM by ascomycetes (and for a long time just Rhizoscyphus 

ericae), it is now clear that there is often significant overlap between the species of fungi 

involved in some of the mycorrhizal types. For example, some ericoid mycorrhizal fungi 

form ECM-like mantles on the root tips of ectomycorrhizal plants (Bergero et al. 2000), 

and the basidiomycete Serendipita is an endophyte, an orchid mycorrhizal fungus, and 

forms ericoid mycorrhizal structures in Ericaceous plants (Vohník et al. 2016). A plethora 

of new mycorrhizal types have also been recently proposed (Brundrett 2004). With all of 

these complications, it is reasonable to expect that there is something beyond the plant 

and fungal lineage that determines mycorrhizal status. Soil fungal communities play a 

role in determining plant community structure (Van der Heijden et al 1998; Kernaghan 

2005) so it is possible that the fungi capable of surviving wetland habitats are 

determinants of the plants that will thrive there.  
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 While mycorrhizal associations are generally viewed as mutualistic, it is possible 

that one of the partners may become less beneficial under stressful conditions (Johnson, 

Graham and Smith 1997). There is evidence that mycorrhizal fungi may be exploited, or 

may exploit their plant partners, when the conditions are not optimal (Brundrett 2004). 

This could explain the increased wetland colonization levels in ErM plants and may also 

be the reason why AM and ECM colonization did not decrease in the wetland as much as 

expected. The increased abundance in putatively pathogenic OTUs in the wetland plots 

also points to this explanation.  

 

 Mycorrhizal colonization patterns in wetland plants may be partially explained by 

the variation in the ability of the host plants to maintain a healthy symbiosis under 

stressful conditions. Plants growing in flooded soils experience myriad stresses, including 

reduced stomatal aperture and photosynthesis (Kozlowski 1984) and physical injuries to 

their roots, leading to leaf epinasty (Crawford 1982). Wetland specialist plants may have 

adaptations for surviving flood conditions, but the plants in this study were specifically 

chosen for their generalist growth habit. When a plant experiences edaphic stress, it may 

terminate symbiotic relationships which can be energetically expensive to maintain 

(Zheng et al. 2015). While this preservationist strategy may conserve energy, it could also 

cut plants off from valuable soil nutrients. Perhaps, to maintain access to nutrients under 

edaphic stress, some stressed plants may develop the ability to support their mycorrhizal 

fungi, possibly through oxygen allocation, or by association with wetland adapted 

mycorrhizal fungi.  
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Root-Associated Fungal Communities 

 In the examination of fungal communities of Ericaceous plants along the forest to 

wetland gradients, different assemblages of fungi were associated with different soil 

conditions. While Fisher’s alpha and Whittaker’s beta diversity, as well as the richness of 

OTUs classified as endophytes was higher in upland plots, ericoid and putative ericoid 

mycorrhizal fungal richness was highest in the wetland. Beyond this, specific OTUs 

within the same order (Sebacinales) were distinctly associated with different habitats. 

Several Sebacinales OTUs were restricted to the wetland or ecotone, while another was 

observed only in the upland or ecotone. Only one of the seven Sebacinales OTUs 

sequenced was found in all three habitats. Mycorrhizal plants that are able to associate 

with highly adapted symbiotic fungi may have the advantage of continued access to soil 

nutrients even under stressful conditions.  

 

Conclusions and Future Directions  

 Ericoid mycorrhizal colonization levels in forested wetlands are higher than 

previously observed. The cause of this increased colonization level is not yet known but 

is associated with a distinct community of wetland-dwelling ericoid mycorrhizal fungi.  

Some of the OTUs in the Sebacinales were restricted to wetland and ecotone plots, while 

others were restricted to the ecotone and the upland. This is the first indication of habitat 

specialization in potentially ErM Sebacinales and deserves further investigation. As the 

OTUs sequenced did not match with any identified fungus, the potential exists for the 

identification of a new, wetland specialist species in the Sebacinales, likely in the genus 

Serendipita. The increased colonization level of ericoid mycorrhizal plants also deserves 
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further attention. Specifically, it should be clarified if this increase in colonization level is 

associated with an increase in effectiveness of the mycorrhizal symbiosis, or if it is a 

symptom of a more exploitative symbiosis. From a conservation standpoint, this research 

shows a complexity and level of adaptation in forested wetland fungal communities that 

must be better understood if they are to be protected.  
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Appendix Table 1. OTUs, taxonomies, and GenBank accession numbers of root associates of ericoid mycorrhizal plants Kalmia 

angustifolia and Gaultheria hispidula.  

OTU Phylum Order Genus Species 
GenBank 
Match 

% 
Cover 

% 
Identity 

52 Ascomycota    JQ272389.1 100 97.33 
59 Ascomycota    KF359573.1 100 90.89 
19 Ascomycota    HQ022256.1 95 93.97 
77 Ascomycota    FJ475651.1 100 93.26 
69 Ascomycota Capnodiales Cladosporium fusiforme MF077225.1 100 100 
16 Ascomycota Chaetomellales Epithamnolia  xanthoriae KY814539.1 97 97.71 
5 Ascomycota Chaetomellales Pilidium concavatum KF646103.1 100 99.16 
50 Ascomycota Chaetosphaeriales Chloridium  MF671833.1 93 98.43 
56 Ascomycota Chaetothyriales Capronia  EU139148.1 98 97.47 
57 Ascomycota Chaetothyriales Cladophialophora minutissima MH863155.1 97 95.67 
58 Ascomycota Chaetothyriales Cladophialophora minutissima MH487545.1 100 93.87 
75 Ascomycota Eurotiales Aspergillus cibarius MK267410.1 100 99.82 
64 Ascomycota Eurotiales Aspergillus sydowii MH707094.1 100 99.3 
80 Ascomycota Eurotiales Aspergillus sydowii MH707094.1 100 99.3 
24 Ascomycota Eurotiales Aspergillus versicolor MG845255.1 100 100 
25 Ascomycota Eurotiales Penicillium glabrum MK910051.1 98 99.8 
17 Ascomycota Helotiales   HF947859.1 99 97.85 
18 Ascomycota Helotiales   HQ021977.1 96 99.81 
20 Ascomycota Helotiales   KC019908.1 97 91.06 
36 Ascomycota Helotiales   FJ440902.1 95 98.7 
72 Ascomycota Helotiales   KX609411.1 91 98.81 
35 Ascomycota Helotiales   JQ272327.1 100 99.12 
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37 Ascomycota Helotiales   EF093150.1 100 99.1 
31 Ascomycota Helotiales Chalara longipes FR717230.1 98 97.98 
22 Ascomycota Helotiales Dwayaangam  colodena KT289617.1 96 91.71 
66 Ascomycota Helotiales Hyaloscypha aureliella MH018926.1 96 97.16 
30 Ascomycota Helotiales Hyaloscypha  JN943606.1 92 97.92 
73 Ascomycota Helotiales Hyaloscypha variabilis EF093178.1 100 97.73 
29 Ascomycota Helotiales Hyaloscypha  FM172789.1 92 99.42 
26 Ascomycota Helotiales Lachnum  FJ378855.1 97 97.24 
14 Ascomycota Helotiales Mollisia minutella KJ817294.1 96 99.37 
27 Ascomycota Helotiales Pezoloma ericae JQ711893.1 100 98.79 
13 Ascomycota Helotiales Phialocephala fortinii MK356722.1 100 99.65 
33 Ascomycota Helotiales Venturiocistella   JN033391.1 99 96.04 
48 Ascomycota Hypocreales Trichoderma parapiluliferum NR_134341.1 98 99.34 
23 Ascomycota Onyginales Oidiodendron maius KF359579.1 100 98.39 
76 Ascomycota Rhytismatales Lophodermium nitens MG877529.1 98 99.41 
44 Ascomycota Saccharomycetales Candida tropicalis MK752669.1 100 99.05 
40 Ascomycota Trechisporales Trechispora  JX392820.1 93 94.75 
43 Ascomycota Trechisporales   MK131687.1 99 98.35 
70 Ascomycota Trechisporales   MK131687.1 98 99.55 
3 Ascomycota Verrucariales   FJ475710.1 96 99.22 
63 Ascomycota Verrucariales   FJ475710.1 100 97.27 
71 Ascomycota Verrucariales   HQ022024.1 97 99.12 
81 Ascomycota Verrucariales   FJ475710.1 98 98.61 
42 Basidiomycota Atheliales Athelia acrospora KP814332.1 98 99.22 
41 Basidiomycota Atheliales Piloderma  KP403081.1 100 98.45 
51 Basidiomycota Hymenochaetales Resinicium furfuraceum KP814421.1 94 97.54 
74 Basidiomycota Russulales Lactifluus deceptivus MK069517.1 100 98.59 
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1 Basidiomycota Sebacinales Serendipita  JQ420983.1 100 96.66 
8 Basidiomycota Sebacinales Serendipita  JQ420992.1 100 98.94 
82 Basidiomycota Sebacinales Serendipita  JQ420981.1 100 98.93 
85 Basidiomycota Sebacinales   HF947904.1 98 89.59 
4 Basidiomycota Sebacinales   HF947910.1 100 95.8 
86 Basidiomycota Sebacinales   HF947911.1 90 94.04 
7 Basidiomycota Sebacinales   JQ272430.1 99 94.52 
38 Basidiomycota Sporidiobolales Rhodotorula mucilaginosa MG241534.1 100 100 
39 Basidiomycota Tremellales Genolevuria  bromeliarum NR_137811.1 95 91.06 
47 Mortierellomycota Mortierellales Mortierella soussauensis JX976063.1 92 100 
45 Mortierellomycota Mortierellales Mortierella  KP714556.1 87 98.74 
46 Mortierellomycota Mortierellales Mortierella verticillata MH844766.1 100 98.91 
2 Unassigned    KC978008.1 100 95.71 
32 Unassigned    AM260809.1 100 98.93 
34 Unassigned    KT334701.1 87 96.57 
9 Unassigned    KP889896.1 99 97.61 
21 Unassigned    JN890147.1 87 87.03 
55 Unassigned    KF800339.1 97 84.04 
60 Unassigned    KP889686.1 100 98.47 
61 Unassigned    JF300546.1 100 95.27 
65 Unassigned    KF617317.1 100 95.89 
62 Unassigned    DQ309235.1 94 98 
10 Unassigned    HQ022090.1 89 96.09 
15 Unassigned    HQ022294.1 98 98.71 

 


