
MASTER’S THESIS 2022

Multilingual Large Scale Text
Classification for Automotive
Troubleshooting Management
Alv Romell, Jacob Curman

ISSN 1650-2884
LU-CS-EX: 2022-07

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2022-07

Multilingual Large Scale Text Classification
for Automotive Troubleshooting

Management

Alv Romell, Jacob Curman

Multilingual Large Scale Text Classification
for Automotive Troubleshooting

Management

Alv Romell
al6515ro-s@student.lu.se

Jacob Curman
ja2085cu-s@student.lu.se

March 7, 2022

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Olof Steinert, olof.steinert@scania.com
Markus Borg, markus.borg@cs.lth.se

Examiner: Pierre Nugues, pierre.nugues@cs.lth.se

mailto:al6515ro-s@student.lu.se
mailto:ja2085cu-s@student.lu.se
mailto:olof.steinert@scania.com
mailto:markus.borg@cs.lth.se
mailto:pierre.nugues@cs.lth.se

Abstract

This master’s thesis explores the possibility of using pre-trained transformer-
based language models to predict the malfunctioning part on trucks based on
human-generated text descriptions from workshop work orders. It tackles a
large-scale text classification problem with heavy data imbalance and multiple
languages based on data from a Swedish truck manufacturer. Data analysis was
done to understand the domain and generate hypotheses for methods of increas-
ing predictive performance, with a special focus on underrepresented classes
and languages. Experiments were set up to test the pre-trained models Distil-
BERT and XLM-RoBERTa’s predictive performance in both a monolingual and a
multilingual domain, based on di�erent techniques to reduce the data complex-
ity, sampling techniques and augmentation through unidirectional translation.
Findings show that basic methods of up-sampling infrequent classes or languages
improve performance on the underrepresented segments and that monolingual
models trained on translated data can perform equally well as multilingual mod-
els trained on data in its original language, and even show that monolingual mod-
els perform remarkably well on multilingual data.

Keywords: Machine Learning, Deep Learning, Natural Language Processing, Multilin-
gual Text Classification, Class Imbalance, Transformers

2

Acknowledgements

We would like to express our gratitude to Scania, for providing us with an interesting topic
to our thesis and help and guidance with the work. First, we would like to thank Olof Stein-
ert, our supervisor at Scania, for his dedicated work and time put in to discussing the work
conducted in this project, and for always being a source of help and reflection. We would also
like to thank Prashant Maheshwari and Kristo�er Bernhem for coming to our rescue when
technical di�culties arose, and John Paylopoylos for the detailed and interesting insights
into the world of NLP research.

We would also like to extend a warm thank you to Markus Borg, our supervisor at the
Department of Computer Science at LTH, for his help and guidance along the project, and
for being a great source of inspiration.

Finally, a massive thank you to our family and friends for the support along the way, and
for five incredible years in Lund.

3

4

Contents

1 Introduction 7
1.1 Background . 7
1.2 Research Questions . 8
1.3 Delimitations . 9

2 Theory 11
2.1 Machine Learning . 11
2.2 Deep Learning . 12

2.2.1 Convolutional Neural Networks 13
2.3 Natural Language Processing . 13

2.3.1 Tokenization . 14
2.3.2 Word Representations . 15
2.3.3 Transformer Architecture . 18
2.3.4 Transfer learning in NLP . 20

2.4 Models . 21
2.4.1 BERT . 21
2.4.2 DistilBERT . 22
2.4.3 XLM-RoBERTa . 23

2.5 Precision Metrics . 23
2.6 Imbalanced data . 24

2.6.1 Dealing with class imbalance . 25
2.7 Related Work . 26

3 Data 29
3.1 Dataset Overview . 29
3.2 Exploratory Data Analysis . 30

4 Methodology 37
4.1 Experiment Planning . 37
4.2 Overview of the Experimental Design . 38

5

CONTENTS

4.2.1 Controlled Variables . 38
4.2.2 Independent Variables . 42
4.2.3 Dependent Variables . 43

4.3 Establishing Baselines . 44
4.3.1 FastText Model . 44
4.3.2 Deep Learning Models . 45

4.4 Modelling and Experimentation . 45
4.4.1 Experimental Group Exp-A: E�ect of Cleaning Data 45
4.4.2 Experimental Group Exp-B: Multilingualism in the Dataset 47
4.4.3 Experimental Group Exp-C: Language-Wise Performance 48
4.4.4 Experimental Group Exp-D: Oversampling 49
4.4.5 Experimental Group Exp-E: Augmentation Through Unidirectional

Translation . 50

5 Results 53
5.1 FastText Baseline . 53
5.2 Deep Learning Baselines . 54
5.3 Exp-A: E�ect of Cleaning Data . 55
5.4 Exp-B: Multilingualism in the Dataset . 58
5.5 Exp-C: Language-Wise Performance . 59
5.6 Exp-D: E�ect of Oversampling . 62
5.7 Exp-E: Augmentation Through Unidirectional Translation 64
5.8 Inference and Training Time . 65

6 Discussion 67
6.1 Experiments . 67

6.1.1 Baselines . 67
6.1.2 Exp-A: E�ect of Cleaning Data . 68
6.1.3 Exp-B: Multilingualism in the dataset 70
6.1.4 Exp-C: Language-Wise Performance 71
6.1.5 Exp-D: Oversampling . 73
6.1.6 Exp-E: Augmentation Through Unidirectional Translation 73

6.2 Text Data and Future Use Case . 74
6.3 Limitations . 78

6.3.1 Model Architecture Choice . 78
6.3.2 Interpretability of results . 79
6.3.3 Error Analysis . 80

7 Conclusion 83
7.1 Future work . 84

References 87

6

Chapter 1

Introduction

“[0, 15270, 964, 320, 369, 22, 13736, 66805, 174,
19777, 964, 320, 369, 67428, 7, 123476, 38, 2]”

Leif Östling

1.1 Background
This master’s thesis project was done in collaboration with a large Swedish provider of trans-
port solutions with a global presence (hereafter referred to as “the company"). They man-
ufacture heavy-duty trucks and busses and are a leading provider of industrial and marine
engines. Headquartered in Södertälje, south of Stockholm, they have over 50,000 employees
in around 100 countries. A core element of the company’s business model is the provision of
aftermarket services, such as repairs and maintenance of vehicles. Most vehicles sold by the
company also come with service agreements, as e�cient handling of truck malfunctions are
critical to ensure high levels of uptime for the company’s customers.

Every day, large amounts of text data are generated through fault claims from the net-
work of workshops and dealerships. Among these claims, valuable information can be found
regarding the observed issues and how customers become aware of these. As the flow of infor-
mation can be ine�ective and lead to loss of vital information between customer and service
technician, improvements in this area could bring several benefits for both the company and
its customers.

Just as in many other industries, the potential for using machine learning is growing in
the transport solutions sector. Recent developments in the area of natural language process-
ing (NLP) have enabled the automatic extraction of information from text. The company has
started to investigate how this technology could be leveraged to make the process of trou-
bleshooting more e�cient by analyzing text data generated from customers. This could turn

7

1. Introduction

descriptions of symptoms into a valuable source of information in the diagnostics process.
One potential application is building tools to quickly provide diagnostics for the represen-
tatives who come in contact with customers, as well as e�ciently provide scheduling and
planning of services, and check spare part availability at an early stage. These tools could
help streamline the flow of information and make the process of handling customer claims
and repairs more e�cient.

Problem Description
Due to being a global actor, the customer claims that reach the company come in many di�er-
ent languages, and describe a wide variety of issues. Supervised-learning-based text classifiers
like recurrent- or convolutional neural networks can be trained to predict the fault based on
descriptions of the symptoms observed by the customer. Currently, the way to deal with the
multilingual aspect is for all text to be translated into English before the models are trained.
Given the recent development in NLP, the company now wants to examine the possibility of
using pre-trained, transformer-based multilingual models for the troubleshooting manage-
ment to get around the translation step and to investigate possible increases in performance.
Using automated services for translations of large amounts of text data can be costly, hence
there is also a business incentive for exploring the field of multilingual models.

Project goals
This thesis is part of a larger project regarding advanced analytics and troubleshooting man-
agement automation. Previous research at the company has involved traditional machine
learning models such as decision tree-classifiers, and deep learning models including recurrent-
and convolutional neural networks. The use of deep learning models has shown promising
results, but the area of transfer learning with large, pre-trained, transformer-based language
models is relatively unexplored at the company, although it has shown great potential for
similar problems in other contexts. The goal of this thesis is therefore to investigate whether
such models can be used to predict fault classes based on human-generated text descriptions
in multiple languages, and whether they can be improved with respect to under-represented
classes and languages, while yielding highly interpretable models.

1.2 Research Questions
The research questions to be investigated in this project are the following.

• RQ1: Can existing pre-trained, multilingual, transformer-based language models yield
high predictive performance* and interpretability in the context of large scale text
classification for troubleshooting management?

• RQ2: How can the models’ accuracy of under-represented languages and infrequent
classes be improved?

• RQ3: Other than predictive performance, what are some critical aspects (such as in-
ference time and training time) for the company to consider regarding further imple-
mentation of text classification models supporting di�erent languages?

8

1.3 Delimitations

1.3 Delimitations
To narrow the scope of this project, it is confined to the context of labeled data generated
from workshop work orders. The data is limited to text descriptions that are generated dur-
ing the troubleshooting of trucks in workshops and contains descriptions of symptoms ex-
perienced by customers as well as findings from the troubleshooting process. While there
are many sources of data that could bring valuable information to a machine learning model,
such as age, mileage and error codes of a given vehicle, we consider text data as the only
input to the model and hence do not consider how other data could be used or combined.
This makes it easier to draw conclusions from the experiments and makes the problem more
tangible. All pre-trained transformer-based models used in this project are accessed from the
open-source library HuggingFace [1].

Regarding the use of models, one monolingual and one multilingual transformer-based
model will be used to be able to study these in more detail. While it is possible to extend the
project to involve several models, the primary purpose is to explore the possibility of using
these, and to later optimize them for the given task and understand them better in the given
context.

*The term performance can cover a number of factors in a computer science context. Throughout this thesis
project, however, we limit the use of the term ‘predictive performance’ to signify a classifier’s ability to correctly
label samples through the use of the metrics described in Section 2.5

9

1. Introduction

10

Chapter 2

Theory and related work

This chapter gives a theoretical background and provides an overview of the current state
of the field in academia and industry for deep learning, natural language processing and
imbalanced data. We conclude the chapter with an overview of related work on application-
specific improvements to text classification.

2.1 Machine Learning
Machine Learning is a sub-field of artificial intelligence, which has evolved from fields includ-
ing applied mathematics, statistics, computer science, control theory, signal processing and
biomedical modeling. It is the study of algorithms that learn from experience and observa-
tions, much like how a human learns from observing the world with our senses. In traditional
programming, the goal is to determine pre-defined program rules including model structures
and parameters to generate a certain output from a given input. In contrast, Machine Learn-
ing is focused on training computers to learn to solve specific tasks without being explicitly
programmed to do so. Tom Mitchell in 1997 provided a more formal definition of Machine
Learning: A computer program is said to learn from experience E with respect to some class of
task T and performance measure P if its performance measure at tasks in T, as measured by P,
improves with experience E [2]. In today’s age of increasing access to data, Machine Learning
involves methods that can detect patterns in large datasets and use these uncovered patterns
to predict future data or perform other kinds of decision-making under uncertainty [3].

The field of Machine Learning can be further divided into categories based on the system
for which learning is conducted, and a common breakdown is into the fields of supervised
learning, unsupervised learning and reinforcement learning [3]. This thesis is centered around
supervised learning and the task of classification, where the goal is to learn a mapping from
inputs x to outputs y, where the outputs belong to a set of classes, y ∈ {1, . . . ,C}, given a set
of labeled input-output pairs.

11

2. Theory

2.2 Deep Learning
The field of Machine Learning has seen impressive development and growth in recent decades,
both in terms of new techniques and areas of application. Deep learning provides a powerful
framework for supervised learning through the possibility to represent functions of increas-
ing complexities. One of the key terms in the area is neural networks, which has evolved to
encompass a large class of models and learning methods. Neural networks, or multilayered
perceptrons are nonlinear statistical models with the goal of approximating some function f ∗,
which in the example of a classifier could be a function mapping an input x (vector-valued)
to an output class or category y, through y = f ∗(x). A neural network would approximate
this by defining a mapping y = f (x; θ) and learning the values of the parameters θ that result
in the best function approximation [4]. The output y could be a vector of values representing
the predicted probabilities of the input belonging to each class.

A feedforward neural network is one where the information flows through the model
and its intermediary computations without any feedback connections (where model outputs
are fed back into itself). They are often represented by a network diagram, an acyclic graph
describing the chain of functions [4]. As can be seen in the example in figure 2.1, the output
layer o would be a combination (chain) of the functions, or layers, h1, h2 and h3 on the input i.
The overall length of the chain gives the depth of the model, and this is the origin of the term
deep learning. A network with only a few layers of trainable weights is generally referred to as
shallow. Deep models are those with many hidden layers, and often have a massive number of
trainable parameters, reaching from tens of millions up to billions [3]. Each hidden layer of
the network is typically vector-valued, where each element of the vector may be interpreted
as playing the role analogous to a neuron. Rather than thinking of the layer as representing
a single vector-to-vector function, one can also think of the layer as consisting of many units
that act in parallel, each representing a vector-to-scalar operation. Each unit represents a
neuron in the sense that it receives inputs from many other units in the previous layer and
computes its own activation value [4].

Figure 2.1: Structure of a Feedforward Neural Network

The motivation for using deep learning models over traditional, linear models is that
many machine learning problems become exceedingly di�cult when the number of dimen-
sions in the data is high, a phenomenon known as the curse of dimensionality [4]. It is also the
case that the linearity is limiting when it comes to modelling complex relationships between

12

2.3 Natural Language Processing

variables in the data. Linear models can be extended to represent non-linear functions of x,
by applying the linear model to a transformation of the input, φ(x), where φ is a non-linear
transformation which can be thought of as providing a new representation of x. The question
then is how to chose this mapping φ, and the strategy of deep learning is to learn it from data.
By parameterizing the representation as φ(x; θ) and using an optimization algorithm one can
find the θ that corresponds to a good representation. Using a loss function, which provides
feedback on how close the model output is to the expected output, or true label, and a pro-
cess called back-propagation the parameters of the model are adjusted until the loss function
reaches a low value, at which point the model has hopefully learnt how to accurately repre-
sent the mapping from input to output. As the non-linearity of neural networks causes the
loss functions to become non-convex, most neural networks are trained by using iterative,
gradient-based optimizers [4]. Gradient based optimizers decrease the value of a function
f (x) using gradient descent, updating x with small steps with opposite sign of the derivative.
The gradient is a generalization of the derivative when it is calculated with respect to a vec-
tor, containing all its partial derivatives. A common optimization technique is Stochastic
Gradient Descent, which is an extension of gradient descent that alleviates the computational
expensiveness of large training sets and the computational costs associated with calculating
the gradient step for each of the many training samples. It is done by approximating the
gradient using only a small set of samples [4].

2.2.1 Convolutional Neural Networks
Convolutional neural networks (CNNs) are a specialized kind of neural networks for pro-
cessing data that has a known, grid-like topology such as time-series data (a 1D-grid of time
steps) and images (a 2D-grid of pixels). CNNs have been widely used in image classification,
and make use of a mathematical operation called convolution [4]. The convolution is an inte-
gral of two functions after one has been reversed and shifted, which is evaluated at all values
for the shift and expresses how one function is modified by the other. Convolutional neural
networks are neural networks that use convolution instead of regular matrix multiplication
in one or more layers. This process can in simple terms be described as “sliding” a filter over
the grid which can detect the presence of features. The filters are also referred to as “ker-
nels” and are normally multidimensional arrays of parameters that are adapted by a learning
algorithm [4]. CNNs are great at capturing spacial dependencies and patterns, and leverage
important concepts which can improve a machine learning system. These are for example
sparse interactions (reducing the connections needed in a model, in turn reducing the param-
eter count), and parameter sharing (using the same parameter for more than one function).
Convolution also allows for working with inputs of variable size [4].

2.3 Natural Language Processing
Natural Language Processing (NLP) revolves around linguistics, and how computers can com-
prehend, produce and derive meaning from human communication in the form of text and
speech. It is a cross-disciplinary field that draws from computational linguistics and com-
puter science, and the challenge within natural language processing lies within the fact that
computers are unable to understand human language in the form of words and sentences,

13

2. Theory

and are only able to comprehend numbers and vectors. Also, a large amount of the complex-
ity of a given NLP problem comes from the diversity of information each written or spoken
sentence can contain, whether it is in the form of choice of words, tone, or punctuation.
Humans do not have a problem processing this information, and we are also able to pro-
cess things like irony and di�erent kinds of negations, which a computer might be unable
to do. Common tasks in the field of NLP are sentiment analysis (e.g. understanding if on-
line reviews are positive or negative), text summarization, question-answering, and machine
translation [5, 6].

The idea of computers being able to communicate with human-like language has been
around for a long time. Already in the 1950s, Alan Turing proposed a game-like idea called
The Imitation Game in which a human judge communicates with another human and a com-
puter, using written communication. Both the computer and the human tries to convince
the judge that they are human, and if the judge cannot consistently tell which is which, the
computer wins the game [7]. When this idea was proposed it was merely a thought experi-
ment, as the computational capabilities of that time were unable to really put this question to
the test. However, as technology improved, the field of NLP has grown immensely, with the
state-of-the-art performances within di�erent tasks constantly being pushed as new models
enter the scene.

2.3.1 Tokenization
When dealing with any machine learning task revolving around language, it is important
to realize that no machine learning model takes in raw text data as its input - instead they
work with numerical vectors. Thus, it is important to find suitable ways to convert this text
data into a numeric representation. The process of transforming text into numerical vectors
is called vectorizing, and it is a process needed to prepare the text data before using it in a
machine learning model. The first step in this process is tokenization, which is a method
performed to break down sentences into smaller segments, such as words, punctuation, or
subwords. The standard and most straightforward way of tokenizing a sentence is simply
splitting at every space. Using this method, the sentence Let’s learn natural language processing!
would be tokenized as ["Let’s", "learn", "natural", "language", "processing!"]. An improvement
to this method would be to not only split at spaces but also at punctuation, as the token "pro-
cessing!" is hardly a token we would like in the model vocabulary. Adding this step to the
tokenizer would make the sentence tokenized as ["Let", "’", "s", "learn", "natural", "language",
"processing", "!"].

Both of these rule-based tokenization methods are very computationally inexpensive and
easy to understand, but they are both likely to result in a large model vocabulary, especially
when given a large corpus as input, as every single word, punctuation mark, and number in
the corpus needs to be given its own token. To deal with this problem, there are a number of
more sophisticated tokenization methods that use subword tokenization. The idea behind
subword tokenization is to give frequently occurring words their own tokens in the vocab-
ulary, while less frequent words are divided into more frequently occurring subwords. This
way, the meaning of a word can be kept intact, but the word does not need to be given its
own token. Using this method, it is also possible to specify the desired vocabulary size as a
hyperparameter to the tokenization algorithm.

14

2.3 Natural Language Processing

Two commonly used tokenizers are the WordPiece tokenizer, first outlined by Schuster
and Nakajima in the paper Japanese and Korean voice search [8] in 2012, and the SentencePiece
tokenizer, introduced by Kudo and Richardson in 2019 [9]. Both the WordPiece tokenizer
and the SentencePiece tokenizer are sub-word tokenizers, and attracted a lot of attention
after being the tokenizers used in the BERT model and the XLM-R model respectively (as
described in more detail in sections 2.4.1 and 2.4.3). The di�erence between the two is in
how they break down words into sub-word tokens. Where WordPiece uses double octothorps
(commonly known as hashtag-symbols) to denote sub-word elements which are not the be-
ginning of words, SentencePiece does the reverse. An element in the start of a word is pref-
aced by an underscore, and this in essence provides a good way to capture white spaces and
reconstruct full sentences. Figure 2.2 and Figure 2.3 show examples of a text being tokenized.
As seen in the figures, the tokenizers also use special tokens to denote the beginning and end
of a sentence. The WordPiece tokenizer uses [CLS]-tokens (classification) and [SEP]-tokens
(separation), whereas the SentencePiece tokenizer uses <s> and </s>.

Figure 2.2: Example of tokenization with the WordPiece tokenizer

Oil leakage on the back of the gearbox
↓

[CLS] Oil leak ##age on the back of the gear ##box [SEP]
↓

101 3514 17271 4270 2006 1996 2076 1997 1996 22227 5632 102

Figure 2.3: Example of tokenization with the SentencePiece tokenizer

Oil leakage on the back of the gearbox
↓

<s> _Oil _le ak age _on _the _back _of _the _gear box </s>
↓

0 60687 95 344 4588 98 70 4420 111 70 72397 11728 2

2.3.2 Word Representations
After performing the chosen tokenization procedure on the text data, numeric vectors are
associated with the generated tokens, and it is these vectors that are fed into the model. There
are a variety of ways to associate each token with a vector, but two frequently used techniques
are One Hot Encoding and Word Embeddings [10].

One Hot Encoding
One Hot Encoding is a common and one of the most basic ways to convert a token into
a vector representation. The technique simply assigns an integer value i to each token in

15

2. Theory

the vocabulary and thereafter represents that specific token with a vector of size N (size of
the vocabulary) with a 1 on the i:th position and zeroes elsewhere. One Hot Encoded word
vectors are sparse, hard-coded, and often high-dimensional (same dimensionality as words in
the vocabulary), as opposed to the other commonly used technique, Word Embeddings [10].

Word Embeddings

The term word embedding describes a mapping of a particular word or token to a vector
representation, where the vector representation can capture the semantic meaning of the
word. The vectors are typically real-valued, and the vectors encode the meaning of the words
such that words that have similar semantic meaning are likely to have vector representations
that are located close to each other in the vector space. Word embeddings can be learned
from the data, where the word vectors are initialized randomly and then altered using back-
propagation in a similar manner that a neural network learns its weights. However, if the
available amount of data is small, another approach is to use already existing word embed-
dings that have been pre-trained on another task. When using word embeddings, the seman-
tic di�erences between words can be represented as geometric relationships between the
numeric vectors. This can be exemplified by performing basic vector operations such as ad-
dition and subtraction. For instance, taking the embedding vectors for the words "Sweden",
"Stockholm" and "Portugal" and performing the operations Stockholm – Sweden + Portugal
gives a vector that is very close to the vector representing the word "Lisbon". In the same
way, it is possible to find vectors that represent di�erent word operations. For instance, the
vector that allows us to go from the word "son" to the word "daughter" should be similar
to the vector that allows us to go from the word "king" to the word "queen". Similarly, the
vector that allows us to go from "king" to "kings" should also be similar to the vector that
allows us to go from "queen" to "queens". These vector representations are visualized in a
lower-dimensional space in Figure 2.4. As opposed to one-hot encoded word vectors, word
embeddings are dense, lower-dimensional, and learned from the data [10]. Visualizations of
both one-hot word vectors and word embeddings are shown in Figure 2.5.

Figure 2.4: Illustration of relationships between word embedding
vectors in two dimensions.

16

2.3 Natural Language Processing

Figure 2.5: Visualization of one-hot word vectors (top) showing
large, sparse vectors with black representing zeros and white rep-
resenting ones, and word embeddings (bottom) showing lower di-
mensional dense vectors. Adapted from [10]

Word2Vec & FastText Embeddings
Word2Vec is one of the most commonly used algorithms for creating word embedding rep-
resentations from a large corpora of unstructured data. Introduced by Mikolov et al. in
2013 [11], the Word2Vec algorithm uses a neural network to learn the embedding representa-
tions of words using two di�erent learning techniques - continuous bag-of-words (CBOW)
and skip-gram. When using the continuous bag-of-words method, the task of the neural net-
work is to predict a word given its surrounding words, using a certain window size. When
using skip-gram, the training technique is the exact opposite. Here, the task of the network is
to predict the neighboring words given the center word. The two techniques are visualized in
Figure 2.6 and Figure 2.7 using a window length of three, where the red words are the target
words that are to be predicted, and the blue words are context words.

Figure 2.6: CBOW

I like natural language processing

I like natural language processing

I like natural language processing

Figure 2.7: Skip-gram

I like natural language processing

I like natural language processing

I like natural language processing

Even though Word2Vec has proven to be a very e�cient method to generate word em-
beddings learned from data, there are drawbacks associated with the method. Firstly, the
method is unable to handle out-of-vocabulary words. When training, the Word2Vec algo-
rithm learns a vector representation for every word, but it cannot handle words it has not
encountered in the training data. The second drawback is related to the morphology of the
words. As Word2Vec learns vector representations for each word individually based on the
context the words appear in, there are no automatic similarities between the vector repre-
sentations of words that share the same lemma or stem, thus ignoring the internal structure
of the words [12].

17

2. Theory

FastText is an extension of the Word2Vec-model, which was introduced by Bojanowski et
al. in 2017 [12]. Instead of learning vector representations for individual words, the FastText
algorithm breaks words down into smaller parts, so called character level n-grams.

Table 2.1: Character level n-grams for di�erent values of n

Word n n-grams
vector 3 vec, ect, cto, tor
vector 4 vect, ecto, ctor
vector 5 vecto, ector

The algorithm learns a vector representation for each of these n-grams using the skip-
gram technique, and the final vector representation for the word becomes the sum of the
vector representations for the word’s n-grams. With this approach, the model will end up
with vector representations for all n-grams obtainable from the training corpus. This means
that if the algorithm encounters a word that it has not seen during training, it is in many cases
able to assign a vector representation to the word since it is likely to have a representation
for one of the word’s n-grams.

2.3.3 Transformer Architecture
The transformer architecture was first introduced in 2017 [13], and has since then been used in
many of the models that today give state-of-the-art performance on many NLP-tasks. Trans-
formers make use of the Attention Mechanism, which allow models to make connections be-
tween words in sequential text data. This section will briefly describe how both the attention
mechanism and Transformers work.

Attention
Attention is a mechanism used in neural architectures that allows for placing of special fo-
cus on certain parts or features of neural network inputs [14]. In NLP, it helps models to
distinguish connections between di�erent inputs, or di�erent parts in an input sequence by
weighting them based on how important they are to one another. For instance, if a model
is fed the input sentence “The dog didn’t cross the street, because it was scared”, it could
prove di�cult for the model to distinguish if the word “it” refers to the dog or the street.
In this case, the attention mechanism helps the model clear the ambiguity by putting more
weight on "the dog" when encoding the word “it”. In short, the attention mechanism can be
described as weighting the relevance of input elements, and then taking these weights into
consideration when performing the model’s main task [14]. In the case of Natural Language
Processing, weighting the relevance of input elements refers to quantifying how relevant each
word in the input sentence is to every other word in the same sentence. This mechanism is
of great importance when dealing with models that handle sequential inputs, such as text
input in NLP. In this case, attention enables models to take in long input sequences without
forgetting information early in the sequence when it completes processing the whole input.

18

2.3 Natural Language Processing

Transformers
The transformer architecture was introduced in 2017 in the now acclaimed paper Attention is
all you need [13]. Before the release of this paper, the attention mechanism had almost exclu-
sively been used in conjunction with Recurrent Neural Networks, which are neural networks
well suited to handle sequential data, but for which the possibilities of parallel computations
are severely limited due to the sequential nature of the network. The transformer, however,
was the first model architecture to rely entirely on attention to compute representations of
its input and output data, without using Recurrent Neural Networks.

Figure 2.8: The architecture of the Transformer. Adapted from
Vaswani et al. [15]

Figure 2.8 describes the overall architecture of the Transformer. The main components of
the Transformer is the encoder shown in the top of the figure, and the decoder shown below.
The encoders encode the input to some hidden representation, and the decoders decode this
hidden representation into a new output. In for example machine translation, this decoder
output can be a new representation of the input text in another language. Within both the
encoder and the decoder there are several attention layers (colored orange in Figure 2.8), mak-
ing use of the previously mentioned attention mechanism, followed by a feedforward (often
fully connected) neural network. More specifically, the central part of the transformer is
“self-attention”, meaning that the attention is calculated between words in a given sentence
internally, rather than calculating attention between words in di�erent sequences. The en-
coder maps the input sequence to a sequence of representations, which are the outputs of the
encoder’s attention layer. Given these representations, the decoder then generates an output
sequence of symbols, one element at a time.

When passing information into the transformer model you start by representing words
in the input X with token embeddings, as numerical vectors, meaning word i is represented
by the vector xi . Starting with this word embedding, it is then computed how it is related to
all other words using three types of vectors, called queries, keys, and values (Q,KandV). To
compute these there are three types of weight matrices, Wq, Wk,Wv. The parameters of these

19

2. Theory

matrices are optimized during the training of the neural network. The input xi is multiplied
by the W -matrices to generate qi , ki and vi for each token respectively. After computing Q,
K , and V a dot product is computed between the queries and the keys which gives a similarity
metric. The results are scaled by dividing with the square root of the dimension (to improve
stability of model during training), and the results are scaled again by being passed through a
softmax layer, to between 0 and 1. This is called scaled dot product attention, and its formula
is shown in the following equation:

Attention(Q,K,V) = so f tmax(
QKT
√

dk
)V

where dk is the dimensions of the queries and keys. The softmax-operation normalizes a vec-
tor of real numbers, and turns it into (what can be interpreted as) a probability distribution
of values in the interval of (0, 1), all adding up to 1.

One of the great benefits of the Transformers lies within the multi-head attention blocks
described in Figure 2.8. These blocks allow the Transformer to focus on di�erent positions in
the input data by calculating attention multiple times with di�erent sets of queries, keys, and
values, and then average the outputs to get the final representations. Thus, one multi-head
attention layer consists of several attention layers running in parallel, enabling the model
to perform parallelized computations. This results in Transformer architecture models re-
quiring significantly less time to train compared to other models that also use attention [13],
while also delivering state-of-the-art results on many NLP tasks.

2.3.4 Transfer learning in NLP
Deep learning is notorious for its dependence on massive amounts of data for training, in
comparison to traditional machine learning methods [16]. This creates di�culties in pro-
ducing e�cient machine learning models for many applications due to the fact that labeled
data is often hard to come by for specific tasks. The concept of transfer learning has become
an important tool in deep learning to solve the problems that arise due to data scarcity. The
goal is to leverage knowledge from a source task to improve learning in a target task [17]. The
idea is that a model can be trained in a domain separate from that of the final task, where
training data is abundant, to avoid the labor-intensive and costly task of labeling data in the
target task domain. As phrased by Tan et al., transfer learning relaxes the hypothesis that the
training data must be independent and identically distributed (i.i.d.) with the test data [16],
which opens up for the possibility described above. Definition 1 from Yang and Pan [18] gives
a formal description.

Definition 1 (Transfer Learning). Given a source domainDS and learning taskTS, a target domain
DT and learning task TT , transfer learning aims to help improve the learning of the target predictive
function fT (·) inDT using the knowledge inDS and TS, whereDS 6= DT , or TS 6= TT

In natural language processing with deep learning, for a model to gain a rich language un-
derstanding there is a need for extensive training, and thereby for large amounts of training
data. It is also a time-consuming and complex process. Being able to use previously learned
language understanding from earlier models is therefore a very attractive idea when creating
task specific models. Some of the earliest forms of transfer learning in NLP was the use of pre-
trained word embeddings, which is a field that has evolved through the years with some of

20

2.4 Models

the most impressive and successful examples mentioned in section 2.3.2. A significant break-
through in the field was due to the approach of using unlabeled data to induce word features,
as it brought with it the possibility of utilizing large, unlabeled corpora which were easily
accessible on the internet [19]. The semi-supervised approach of word prediction produced
great results in deep sequence models for NLP tasks. The learned parameters in the networks
can be used as a starting point in other models, which are adapted for specific downstream
tasks, and the parameters are fine-tuned through training on supervised data [20].

In recent years, substantial gains on many NLP tasks have been shown through the process
of pre-training language models on large corpora of texts, followed by fine-tuning the models
on specific downstream tasks. This pre-training can be seen as giving the model a general
language understanding, where the semantic meaning of words and context can be captured.
It has been shown that scaling up language models (increasing the capacity of the models
through an increased number of parameters) greatly improves task-agnostic performance [21],
although the scale of today’s state-of-the-art models is on a level where only a few actors
have the resources to produce and train such models. Many models have, however, been
released to the public and are available as open-source, including the ones described later on
in section 2.4. These are increasingly flexible and apt for downstream transfer, and the ability
to fine-tune pre-trained language models based on the recent transformer structure has all
but removed the need for task-specific model architectures [21].

Fine-Tuning of Transformer Models
In the paper Universal Language Model Fine-tuning for Text Classification. The authors present a
novel method for fine-tuning language models on downstream tasks, to avoid “catastrophic
forgetting” of semantic understanding learned during pre-training. The method includes
discriminative fine-tuning, slanted triangular learning rates, and gradual unfreezing and is referred
to as ULMFiT [22].

The fine-tuning of pre-trained transformer-based language models is an unstable pro-
cess, and training the same model with random initialization can result in large variance of
task performance [23]. While it is generally accepted that two main reasons for this instabil-
ity are small fine-tuning datasets and catastrophic forgetting, it has also been attributed to
optimization di�culties that lead to vanishing gradients [24].

2.4 Models
This section introduces the models BERT, DistilBERT, and XLM-R, of which the two lat-
ter are the deep learning models used throughout this thesis, which are both based on the
progress made by the team behind the original BERT model. The models are available open-
source, and the DistilBERT and XLM-R models were accessed through the Transformers
library from Huggingface.

2.4.1 BERT
BERT (Bidirectional Encoder Representation from Transformers) is a state-of-the-art lan-
guage model developed by Devlin et al., released in 2018, which has achieved impressive re-

21

2. Theory

sults in an array of language understanding tasks. The novelty of BERT lies in its bidirectional
training, using the transformer architecture. Previous models relied on processing sequential
data when analyzing words in a sentence in relation to each other, to capture context. This
process of only looking from left-to-right, or vice versa, limits the model’s ability to gain a
full language understanding, as the context of a word in a sentence depends on other words
both to the left and to the right of itself [25].

BERT alleviates the unidirectionality constraint through the use of a pre-training method
called Masked Language Modelling (MLM). In MLM a percentage of the input words (15% in
the original BERT-paper) are masked with a special token. The goal is then for the model to
predict the masked word, based only on the context of the surrounding words in the sentence.
This allows for the pre-training of a deep bidirectional transformer. The training of BERT
also features a second parallel training method called Next Sentence Prediction (NSP), where
the model is given two sentences, A and B, and tries to decide whether B is actually a sentence
that proceeds sentence A, or a random sentence. This lets the model understand semantic
relationships between di�erent sentences. BERT is pre-trained on two large English text
sets, the BooksCorpus which contains 800 million words, and text passages from the English
Wikipedia containing 2,500 million words [25].

Comparing BERT to previous word embedding models, like Word2Vec mentioned in 2.3.2,
BERT can capture the contextual meaning of homonyms, or multiple-meaning words. An
example is the word "bark", which can mean both the outer layer of a tree and the sound made
by a dog. As two homonym words often have completely di�erent meanings, not being able to
distinguish between the two severely limits a model’s ability to correctly identify the semantic
meaning and context of a sentence. The BERT “base” model has 12 transformer block layers,
an embedding dimension of 768, and 110 million parameters for the base model [25].

BERT pushed the state-of-the-art within the field of NLP far forward. As the inherent
language understanding of the trained BERT model is captured in these parameters, the mod-
els can be used for a wide variety of di�erent tasks once it has been trained on a large corpus,
as discussed earlier in the concept of transfer learning.

2.4.2 DistilBERT
In machine learning, knowledge distillation is a process by which it is possible to transfer knowl-
edge and learned predictive capability from a large and cumbersome model to a smaller, more
lightweight model, which might be more suited to deploy and use in production. Bucilua et.
al [26] present a method for "compressing" large, complex ensembles of models into smaller
models and thereby gaining computational speed without a great loss in performance.

A distillation approach that has proved e�ective in transferring knowledge from a larger
to a smaller model is by training the smaller model to replicate the target distribution of the
larger model, using the class probabilities of the large model as so-called "soft targets" [27].
The idea is to teach a small model to mimic the target distribution of a larger model with
many more parameters, thereby providing it with the ability to generalize on new data better
than if it had only been trained directly on the datasets used to train the larger model. It has
been shown to allow for training with less data and larger learning rates [27]. Learning rate
is a hyperparameter that decides how much the weights of the model are updated at every
iteration in response to the estimated error during prediction.

In 2019 a distilled version of BERT was released by Sanh et al. [28] through the use of the

22

2.5 Precision Metrics

previously mentioned methods, aptly named DistilBERT. The authors created a model with
the same general structure as the original BERT model, modified to reduce its size through
the removal of layers, resulting in a parameter count of 66 million. Compared to the original
model this is a 40% reduction in model size, which is 60% faster to train yet retains 97% of
the language understanding of BERT [28].

2.4.3 XLM-RoBERTa
In November 2019 Facebook released a robustly optimized recreation of the original BERT,
named RoBERTa, in which they experimented with the pre-training procedure without mak-
ing significant changes to the general model structure originally presented by the Google
research team [29]. In this implementation, key hyperparameters were modified, the next
sentence prediction objection is removed, and batch sizes are changed.
Subsequent work from Facebook led to the development of a multilingual version of RoBERTa,
which came to be known as XLM-RoBERTa (XLM-R) [30]. XLM-R uses the tokenization
technique SentencePiece, instead of BERT’s WordPiece. The base model has a similar struc-
ture to that of BERT with 12 attention block layers and an embedding dimension of 768, but
has a larger capacity of 270 million parameters (for the base model) [30].

2.5 Precision Metrics
In binary classification tasks the performance of a classifier can be expressed in a variety of
metrics, calculated by using the terms true positive, false positive, true negative and false negative.
Positive and negative refer to how a sample has been classified, as in either belonging to a
target class or not. True and false in turn refer to whether the classification was correct in
identifying the sample’s true class. Accuracy is the number of correctly labeled samples as a
proportion of all samples.

Accuracy =
True Positives + True Negatives

All samples

Precision is the fraction of correctly labeled samples out of all those predicted as positives. It
is also called positive predicted value.

Precision =
True Positives

True Positives + False Positives

Recall is the fraction of correctly labeled elements out of all relevant elements in the popu-
lation.

Recall =
True Positives

True Positives + False Negatives

F1-score is another measure of a classifier’s accuracy. It is calculated as the harmonic mean of
precision and recall.

F1 = 2 ·
Precision · Recall
Precision + Recall

Depending on the task, it can be more desirable to have high values in a certain selection
of these than others, although preferably all of them should be high. A high precision value

23

2. Theory

only means the classifier does a good job at predicting samples that are relevant, i.e., it does
not produce many false positives. However, a high precision says little about how many
relevant samples that are left out and should have been identified as positives, i.e., the fraction
of false negatives. Precision is important when the cost of a false positive is high. A high
recall value means there are few relevant samples that are not correctly identified. A high
recall value is desirable when the cost of a false negative is high [4].

In a multi-class classification setting, one needs to categorize a sample into one out of N
di�erent classes. The metrics above can still be used if the task is treated as a set of binary
problems (“one-vs-all”). Similar to the binary case, precision, recall, and F1-score can be
calculated for each class respectively, but to get a single number to describe the classifier’s
overall performance these di�erent scores must be combined, and there are di�erent ways of
doing so. The most straightforward way is to calculate the arithmetic mean of the per class
scores, which gives equal weight to all classes and is called the macro-averaged score. Another
alternative is to calculate the micro-averaged score, which gives equal weight to all samples,
rather than all classes. This is common in the case of binary classification problems with
imbalances in the datasets and is done by calculating over all samples. In a multi-class setting,
when each sample is assigned to exactly one class, the micro-averaged value for precision,
recall, and F1 will always be equal to the accuracy and are therefore less insightful. This is
due to the fact that each incorrectly labeled sample will be a false positive with respect to the
predicted class, but at the same time be a false negative with respect to the true class. Given
that the micro-averaged values of prediction and recall in this setting are given by

Precisionmicro =

∑
c TPc∑

c TPc +
∑

c FPc
Recallmicro =

∑
c TPc∑

c TPc +
∑

c FNc

where c is the class label, the fact that
∑

c FPc =
∑

c FNc, and that the denominator sums
up to the total number of samples, will result in precision and recall (and thereby F1-score)
all being equal to accuracy. In this project we will report macro averages for precision, recall
and F1-score when evaluating the models.

2.6 Imbalanced data
The problem of class imbalance is persistent and ubiquitous in machine learning when it
comes to creating predictive classification models. The phenomenon appears when there
are many more examples belonging to some classes than others, and can greatly impair the
potential of classifier models [31]. Not only do large imbalances in the data distribution make
general performance metrics like overall accuracy less useful. For example; In a dataset with
two classes A and B, where 95% of samples belong to the prior, and only 5% belong to the
latter, one can reach an accuracy of 95% by simply always predicting class A, which makes
studying other metrics like precision and recall more important. Large class imbalance also
tends to produce an inductive bias towards the majority class or classes in many models [32].

Imbalanced data can significantly compromise the performance of most standard learn-
ing algorithms, which assume or expect balanced class distributions or equal misclassification
costs. While any unequal distribution between classes can be considered imbalanced, com-
mon understanding in the community is that the term "imbalanced data" generally refers to
datasets exhibiting severe or extreme imbalance, and between-class imbalances in the orders

24

2.6 Imbalanced data

of 100:1, 1000:1 or even as large as 10000:1 are not uncommon [33].
When imbalances in data are a direct result of the nature of the data space, they are re-

ferred to as intrinsic. If they are caused by other factors, such as sampling time and storage,
they are considered extrinsic [33]. Factors in the method of sampling can produce an im-
balanced dataset from an otherwise balanced data space. Imbalances can also be relative or
absolute, the latter being imbalance due to rare instances. While a class can be heavily out-
numbered in a datasets, it is not necessarily imbalanced due to a lack of samples but instead
because the majority class is very large.

The degree of imbalance is not the only thing that hinders learning. Studies show that
the e�ect of class imbalance can be increased given high levels of complexity in the data [34].
Data complexity is a broad term that involves issues such as overlapping, lack of represen-
tative data, small disjuncts and more, and it has been identified as a determining factor of
classification deterioration [33]. Small disjuncts, i.e. when the minority class is being decom-
posed into many sub-clusters with very few examples have been connected to degradation
in classifier performance [35]. Overlapping between classes is defined as those regions of the
data space in which the representation of the classes is similar, and can be among the most
harmful issues for many classifiers [36, 37]. Class noise (or label noise) is another factor that
has been shown to impair classification performance [38]. It refers to a situation where there
are incorrectly classified samples, which make the representations for each class ambiguous
and leads to increased data complexity [39].

2.6.1 Dealing with class imbalance
There are several common ways to handle class imbalance in machine learning. They include
sampling techniques (such as oversampling of the minority class or undersampling of the
majority class), using cost-sensitive learning where misclassifications of certain classes are
penalized more than others, and generating synthetic data through data augmentation [32].

Over- and undersampling are basic techniques that each have strengths and weaknesses.
Undersampling of the majority class has the benefit of not requiring the addition of ‘fake’
data to the set, but inevitably leads to information loss from the removed samples. Wasting
data in this sense is therefore mainly a viable option when there is an abundance of available
data. Oversampling of the minority class leads to no such loss in information, but can tend to
reinforce patterns that do not generalize well and thereby cause the model to overfit on the
training samples. Oversampling has been shown to both increase and decrease classification
performance, depending on the situation [34]. It also does not provide any new information
to the model, which can be achieved through data augmentation.

Data augmentation refers to methods used to increase the amount of data by adding
slightly modified copies of already existing data or newly created synthetic data from exist-
ing data [40]. It is common in computer vision and has been particularly e�ective for object
recognition [4]. Images can be manipulated in di�erent ways to create these new samples. For
example, a picture of a cat can be rotated, mirrored, or have its colors altered, and technically
be the same picture to a human eye, but provide new information to a machine learning al-
gorithm. Using new information rather than oversampling with identical samples, improves
the diversity in the training data and helps the model generalize better on unseen data [40].
In contexts dealing with numerical data as model inputs, a common method to augment a
dataset is to use SMOTE (Synthetic Minority Oversampling Technique), which has the benefit

25

2. Theory

of adding samples that are not exact replicas of the minority instances in the datasets, which
forces the decision region of the minority class to become more general [41]. The SMOTE
algorithm generates new samples by looking at random minority class samples and selecting
nearby related samples (using K-nearest neighbor) and interpolating a line in feature space,
then generating a new sample somewhere on that line. While this is theoretically possible to
do when working with language and text data, it has to be done on the embeddings of words
or sentences. Given that word embeddings are generally of large dimensions, especially when
using transformer-based models, this complicates matters as the SMOTE technique is less
e�ective in high dimensional feature spaces, as K-nearest neighbor classifiers perform worse
in higher dimensions [42].

Data augmentation methods for NLP have been more explored recently, and analyzed in
surveys by Li et al. [40], Feng et al. [43] and Liu et al. [44]. The interest has grown as NLP
has seen more work appear in low-resource domains, with a plethora of new tasks and due
to the popularity of large-scale neural networks that require large amounts of data [43]. A
number of methods have been suggested which all in some sense manipulate language and
text to form new samples, and can be broadly split into three categories: Paraphrasing, Noising
and Sampling [40]. Methods vary regarding the extent they change the original texts, from
replacing single words with synonyms, to rephrasing an entire sentence while still convey-
ing the original meaning of the text. Machine translation is a natural means of paraphrasing
and has become a popular approach given the availability of online translation API:s. Back-
translation is a method in which a document is first translated into other languages, and
then translated back to its original language, often obtaining a sample that is di�erent but
(hopefully) contains the same semantic information. In the multilingual application context,
unidirectional translation can be used to generate a new sample in another language. While
machine translation as a means to augment data has the advantages of being easy to use, hav-
ing strong applicability and ensuring correct grammar and unchanged semantics, it is limited
in its poor controllability and diversity because of the fixed machine translation models [40].

2.7 Related Work
In this section, we present related work in the field of transfer learning and fine-tuning of
pre-trained transformer-based language models for text classification.

In How to Fine-Tune BERT for Text Classification, Sun et al. [45] investigate di�erent fine-
tuning methods for BERT on text classification tasks. While they note that the potential of
BERT has yet to be fully explored and that there is little research to enhance BERT to improve
prediction accuracy on target tasks further, they also provide a general solution for BERT
fine-tuning. The proposed solution includes three steps: (1) Further train BERT through
masked language modeling and next sentence prediction (in the same way it is trained during pre-
training) on within-task training data or in-domain data; (2) optional fine-tuning of BERT
with multi-task learning if several related tasks are available; (3) fine-tune BERT for the target
task. The authors also explore the fine-tuning methods for BERT, and discuss the importance
of choosing optimizer and learning rates appropriately to avoid overfitting and “catastrophic
forgetting”, where the pre-trained knowledge is erased during the learning of new knowledge.
The authors show that further pre-training within the domain is an e�cient way to enhance
performance on the downstream task, but that generally, in-domain pre-training can bring

26

2.7 Related Work

better performance than within-task pre-training.
In Multiclass Imbalanced Classification of Quranic Verses Using Deep Learning Approach, Aqsa

and Ahmad [46] use a deep learning approach for classification of Quranic verses. Working
with an imbalanced dataset with samples mapping to six di�erent classes, they show that
traditional oversampling and augmentation methods such as SMOTE can be used to tackle
problems caused by data imbalance.

In Transfer Learning Robustness in Multi-Class Categorization by Fine-Tuning Pre-Trained Con-
textualized Language Models, Liu and Wangperawong [47] compare the e�ectiveness and ro-
bustness of multi-class categorization of Amazon product data using transfer learning on
pre-trained contextualized language models, by fine-tuning BERT on a dataset as the num-
ber of classes grows from 1 to 20. They show an approximately linear decrease in performance
metrics with the number of class labels, with an estimated performance degradation rate of
approximately 1% per additional class, and achieve macro-averaged accuracy and F1-score of
80% with 20 di�erent classes.

In Large Scale Legal Text Classification Using Transformer Models, Shaheen et al. [48] tackle the
problem of large multi-label text classification (a case of text classification where each sample
or document can be assigned more than one label) in the legal domain. They describe how the
setting of long-tail frequency distribution (where some labels or classes are used frequently,
while others are used very rarely) at large scale is largely unexplored in the context of text
classification. They compare DistilBERT to RoBERTa and show that the former, and smaller,
model performs surprisingly well and on par with the latter.

Yu et al. discuss in their paper Improving BERT-Based Text Classification With Auxiliary
Sentence and Domain Knowledge [49] a method of “constructing auxiliary sentence to turn the
classification task into a binary sentence-pair one, aiming to address the limited training
data problem and task-awareness problem”, and analyze the use of post-training (further pre-
training model in the task domain) to improve classification performance with mixed results
on di�erent tasks. For multi-class classification, the use of suitable auxiliary sentences seems
to improve model performance, and while they do not see added benefits of post-training,
they do believe it is due to the data and that the method of utilizing domain-related corpus
still has potential.

Prabhu et al., in their paper Multi-class Text Classification using BERT-based Active Learn-
ing [50], explore methods of using active learning to improve multi-class classification for
text. In a domain where labeled data is sparse, allowing models to select sets of data from an
unlabeled set can be an e�ective way of increasing the available data for training, and reduc-
ing labeling costs by 85%. Active learning for improving text-classification is also explored in
On Using Active Learning and Self-training when Mining Performance Discussions on Stack Overflow
by Borg et al. [51] and in the master’s thesis Evaluation of Active Learning Strategies for Multi-
Label Text Classification by Zethraeus and Horstmann [52], although in multi-label contexts.
Both studies similarly show that active learning strategies can help decrease the time needed
for annotating data.

While multilingual transfer learning can be able to benefit both high- and low resource
languages, Singh et el. show in their paper BERT is Not an Interlingua and the Bias of Tokeniza-
tion [53] that the multilingual version of BERT partitions representations for each language
rather than using a common, shared, interlingual space. They claim to show that the e�ect
is magnified in the deeper layers of the model, which would indicate that the model does
not abstract semantic content while disregarding languages. Through hierarchical clustering

27

2. Theory

based on similarity scores from Cananical Correlation Analysis a tree-like structure is revealed
where the partitioning of representations in di�erent languages mirrors that of the linguistics
and evolutionary relationships between languages.

28

Chapter 3

Data

In this section we provide an overview of the data available for this project. We describe the
exploratory data analysis and the assumptions, limitations, and other concerns on which the
experimental phase is based.

3.1 Dataset Overview
The dataset studied in this project is in the form of texts in a variety of languages describing
malfunctions in trucks, originating from workshop work orders. The work orders are pro-
duced by individuals working in workshops, and while the data used in this project comes
from real work orders, the distribution of languages and classes shown do not necessarily
represent the distribution with which the orders reach the company. The data has been ex-
tracted from a database containing work orders from multiple years and for each non-English
sample, an automatic third-party translation service has attempted to generate an English
translation of the text (not always in a successful manner, further explained in Section 3.2),
together with the predicted language of the original text. The data is labeled, with each text
sample corresponding to a main group and a class. The main group refers to what overarching
segment the faults belong to, such as engine or chassis, and the class is an integer mapping
to a particular sub-part that has been identified as the root cause for the vehicle malfunction
in a workshop, such as oil pump or yoke. The latter category, i.e., the root cause class, is
what we refer to as the target classes for the classifiers in this project. In table 3.1 an example
containing modified dummy data is presented to show the structure in which the dataset
was received. It is common to evaluate models on data that they have not been exposed to
during training, to see how well a model can generalize (perform on unseen data), and avoid
overfitting to the training data. The dataset in this project contains roughly 450,000 samples
split into training-, validation- and test sets, as shown in Figure 3.1 This split was done be-
fore receiving the datasets to achieve similar distributions of classes and languages, and not
altered throughout the project by request of the company.

29

3. Data

Table 3.1: Example of data (with modified numbers).

Main group Original text Predicted language Translated text Class
8 Noise from rear axle en Noise from rear axle 1227
15 Luftverlust am Fahrersitz de Air loss at driver’s seat 223

Training

52%

Validation

24%
Test

24%

Figure 3.1: Data split into training, validation and test sets.

Some limitations and inherent issues with the data include the fact that the texts have
been generated by individuals in di�erent countries and situations, leading to a large variety
in the quality of the samples and thereby the inherent semantic information that is available.
Some examples contain only a single word, while others are long and detailed descriptions. A
breakdown of the data is found in section 3.2. On request by the company, we will not present
the actual names of the classes (i.e. the part that caused the malfunction of the truck), but
instead the assigned integer values.

3.2 Exploratory Data Analysis
Through exploratory analysis by manual inspection, and using the Python libraries Pandas
and Matplotlib, the data was studied to understand its characteristics. The findings are pre-
sented below.

Language distribution
There are 38 languages identified in the dataset by the language detection service, and a subset
of these are presented in Figure 3.2, together with examples of the languages present. The
languages have been anonymized per request of the company. When the translation service
has not been able to identify a language, a predicted language of “Unknown” (abbreviated
“un” in Figure 3.2) has instead been assigned. The distribution of the most frequent languages
can be seen in figure 3.2, showing the large imbalance between the languages. The ten most
frequent languages make up 93.3 percent of the total samples, while the ten least frequently
predicted languages make up 0.01 percent.

Through manual inspection, it is possible to identify flaws in the language detection and
to find translations of cases where a language has been identified, but where the translation
does not seem to be accurate. Examples of these are shown in Table 3.2 For example, there are
cases where text in Swedish has been assigned a predicted language of Vietnamese. Another
example is the presence of the language “Esperanto”, which has been identified 14 times in the

30

3.2 Exploratory Data Analysis

whole dataset, but when inspected closer seem to be incorrect classifications of texts in lan-
guages like Danish and Latvian. Similarly, the language “Cebuano” has also been identified 14
times, mainly for a specific phrase in Spanish. When manually inspecting the samples for ev-
ery low-frequency language, it was noted that only the 19 most frequent languages could with
certainty be said to be represented in the dataset. For the 19 least frequent languages (con-
sisting of between 1 - 44 samples per language), the textual description was clearly written
in another language or lacked interpretable text to the extent that the language predictions
were considered inaccurate. As it could not with certainty be said that these languages actu-
ally existed in the data, it was chosen to throughout this thesis not report precision metrics
for them, although the samples were kept in the data.

Table 3.2: Example of samples with inaccurate language predictions.
The predicted languages are Vietnamese, Haitian and Indonesian.

Main group Original text Predicted language Class
14 110-5002.06 SKARVKOPPLING 6 MM PLAST vi 4
4 TMI 04 15 02 19 ht 38
9 tpm 48180 id 309

For the nearly 50,000 samples that have been assigned a predicted language of "Unknown",
a translation has not been generated and the translated text is simply a not-a-number (‘NaN’)
value. In 70% of the cases where a language has not been identified, the reason is that the orig-
inal text is simply an empty string, containing a single whitespace character (’ ’). The cause for
this could be mistakes in the manual data entry process, or due to empty descriptions being
provided in the workshop work orders. These samples contain no information of value for ei-
ther language domain (original or translated), and were therefore disregarded throughout all
experiments. However, the samples with a predicted language of "Unknown" that contained
texts were kept in the datasets.

Identified languages ISO Code
German de
English en
Swedish sv
Finnish fi

Norwegian no
Danish da
French fr
Dutch nl

Portuguese pt
Italian it
Czech cs

Hungarian hu
Spanish es

Lithuanian lt

Figure 3.2: Language distribution (left) and examples of identified
languages, not ordered (right).

31

3. Data

Class distribution
There are over 1,350 unique classes in the available data, all indicating a subpart that has
been identified as being the root cause of a problem in a workshop work order. Examples
of the classes are ‘water valve’, ‘yoke’, and ‘oil pump’. The distribution between the classes is
heavily imbalanced. This imbalance is mainly believed to be absolute and caused by intrinsic
factors (as discussed in section 2.6), given that some errors and faults are more likely to appear
earlier in the life cycle of a truck than others. The class distribution is not equal between the
languages, meaning there is a di�erence in the number of unique classes that are represented
in each individual language, as can be seen in figure 3.4. However, the class distribution
between the training, validation, and test sets were similar, as shown in figure 3.3. In this
thesis we occasionally refer to the number of instances of a given class in the datasets as
support, which simply is the number of samples belonging to that class. The ten most frequent
classes (i.e. those with the highest support) make up 14.8 percent of total samples, while
the one hundred least frequent classes on the other hand make up less than 0.3 percent. As
discussed in section 2.6, class imbalances make classification tasks more di�cult and lead to
complications when trying to create machine learning models, due to the tendency of models
to overfit to the overrepresented classes.

Figure 3.3: Distribution of the 50 most frequent classes in the train-
ing, validation and test sets as a percentage of the total amount of
samples in each set.

As shown in figure 3.3, the most frequent class makes up just over 2.5% of the total amount
of data, whereafter the amount of samples for each class decreases drastically. As the number
of classes is too high to represent in a single figure it is hard to visualize the size comparisons
for all classes.

The Venn–diagram in figure 3.5 shows the overlap of represented classes between the
three most frequent languages. In the experiments in the project we do not limit the number
of classes to those shared by all or certain languages, but note the fact that classes are not
represented equally in the languages.

Duplicates
Over 33 thousand duplicate samples were identified in the datasets. Not only are there sam-
ples containing the exact same text descriptions and class, but there are also samples with
identical text descriptions mapping to di�erent classes, and in some cases even to di�erent
main groups. This is believed to be caused by a number of factors. Workshops might be

32

3.2 Exploratory Data Analysis

Figure 3.4: Number of unique
classes represented in major
languages ordered by language
size.

Figure 3.5: Overlap
of represented classes
for the three most
frequent languages.

registering several orders simultaneously, and thereby copy-pasting similar texts for di�er-
ent orders to save time in the process. If one describes a problem using information from
the dashboard display of a vehicle, some repetition is also expected. While duplicates are
not unexpected, the finding that identical texts map to di�erent classes was more so, and
believed to contribute to the already existing issues of data complexity through class noise.
It is possibly due to the fact that error codes can map to di�erent faults, and that symptoms
caused by di�erent faults can be similar. As an example, "engine malfunction" can cover a
wide range of faults. Another surprising finding was that within the duplicated samples, the
variation in the number of identical samples was large. Some samples were only duplicated
once (2 samples in total), whereas other identical samples were encountered over 100 times
in the data.

An attempt was also made to investigate if duplicated samples were more common in
certain languages. Figure 3.6 presents the total number of samples with the exact same input
text (i.e. not considering class) for the di�erent languages in the data. This figure shows that
the distribution of duplicates for the di�erent languages is similar to the overall language
distribution.

Sample length
The length of the descriptions varies greatly throughout the data. The shortest samples con-
tain as little as one word, whereas the longest one consists of over 350 words. Figure 3.7
shows the distribution of word counts for the original text. The longer text inputs often
consist of conversations between people in the workshop, or long descriptions of conducted
troubleshooting or repairs. By manual inspection, it was noted that a large share of the short
samples were void of valuable information. Examples of such texts are “Trouble code”, “NOT
PAINTED” and “see below”.

33

3. Data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

5,000

10,000

15,000

Language

N
um

be
ro

fd
up

lic
at

es

Figure 3.6: Number of duplicate samples represented in major lan-
guages ordered by language size.

Figure 3.7: Distribution of sample length, showing samples contain-
ing up to 50 words.

Special characters & phrases

The data was found to contain many special and non-alphanumeric characters. In total, the
original (non translated) data consisted of 191 unique characters, of which 129 of them were
not the standard a-z, A-Z, or 0-9. Naturally, many of the non-alphanumeric characters were
punctuation characters such as ".", "!", "?" etc. However, since the data is written in di�erent
languages, there were many language-specific letters and symbols present in the data. Besides
the common punctuation characters, the most frequent non-alphanumeric characters were
vowels with di�erent diacritical marks, such as á, â, æ, ȩ, ǒ, ü etc, in di�erent combinations.

When looking at the translated data, the situation was somewhat di�erent. The trans-
lated data consisted of 186 characters in total, meaning that only five unique characters were
lost in the translation step. This is probably due to the translation service being unable to
translate every single word in a given sentence and thus leaving some words with special
characters untranslated. However, after translating the data the frequency of which special
characters were present was much lower, as the translation step was shown to remove roughly

34

3.2 Exploratory Data Analysis

93% of the unique instances of special characters in the data.

Manually inspecting the data also showed that it contained a lot of phrases that are rela-
tively common in the data, and does not provide any information regarding the actual prob-
lem with the truck. Examples of these phrases are “customer complaint”, “driver complaint”,
“attend to”, “vehicle presenting” and other similar phrases. Inspecting to what extent these
phrases are present in the data showed that around 7% of the samples in the training dataset
contained at least one of these phrases. These phrases were only investigated in the context
of translated data, as the phrases in their original language would be too many, making the
work cumbersome to perform for all languages.

35

3. Data

36

Chapter 4

Methodology

In this chapter we give a brief introduction to the experimental setup of the thesis project.
We explain the motivation for the experiments and how they were conducted, as well as how
they are evaluated.

4.1 Experiment Planning
The purpose of this thesis, as mentioned in the introduction, is to investigate the useful-
ness of pre-trained transformer-based language models in the context of the company’s trou-
bleshooting management. To ensure that the findings are useful and relevant, the experiments
conducted were set up with the goal of yielding interpretable models, and results that are pos-
sible to evaluate in a manner that can bring insights as to how they could be used for large
scale text classification at the company. The process of CRISP DM (Cross-Industry Standard
Process for Data Mining) [54], seen in Figure 4.1, was followed to create a workflow. This is a
framework developed with the purpose of standardizing the process of data mining, making
it more e�cient, more reliable and more manageable.

Primarily, the goal was to gain a business understanding (see A in Figure 4.1) and to un-
derstand the actual problem at hand. By determining the business objectives, including the
background and success criteria, goals were developed for this thesis and its purpose was
clarified in the context of the overarching project at the company, of optimizing the trou-
bleshooting process for trucks. The primary goals identified were to understand the under-
lying data and how it a�ected the classification models currently in use, how performance
on underrepresented classes and languages could be improved given the imbalances in the
data, and if lexical resources and other unrelated sources of text data could be leveraged to
improve the models’ predictive performance.

Time was also spent on gaining thorough data understanding (see B in Figure 4.1) by
looking at the data through exploratory analysis, and creating benchmarks and baselines.
The findings from these steps were presented and used to form the hypotheses which led to

37

4. Methodology

the initial experiments (see C and D in Figure 4.1). The results from the initial experiments
were evaluated and analyzed to shed new light on the problem context and gain further un-
derstanding of the situation before designing the next steps in the experimentation phase
(see E in Figure 4.1). This led to an iterative process with a focus on utilizing new insights
to guide the project which was useful in setting more concrete goals in a an otherwise ex-
ploratory project, although it led to revisions in the project plan as the project went along.
Note that the deployment step in CRISP-DM, i.e., F in Figure 4.1, is beyond the scope of this
thesis project. Still, we provide a discussion on deployment aspects for the company context
in Chapter 6.

Figure 4.1: CRISP DM Process Methodology. Picture adapted from
Wirth and Hipp [54].

4.2 Overview of the Experimental Design
In the project, we evaluate the models through experiments [55]. Figure 4.2 shows an overview
of the experimental design. There are a number of controlled variables that were established
through early modeling and kept unchanged throughout the project. The independent vari-
ables are those altered in the experiments. The dependent variables are those through which
the results of the experiments are evaluated.

4.2.1 Controlled Variables
Though all experiments described in the following sections di�er with regard to model choice,
data pre-processing and datasets used, they all share some of the training configurations and

38

4.2 Overview of the Experimental Design

Experiment
Groups

Exp-A
(D)

Exp-B
(D, X)

Exp-C
(X)

Exp-D
(X)

Exp-E
(X)

Baselines
(F, C, D, X)

Prediction metrics
Top 1 Accuracy
Top 3 Accuracy
Top 5 Accuracy
Precision
Recall
F1

Segmentation
Top-, Middle-, and Bottom
segments based on number
of samples

Models
FastText (F)
CNN (C)
DistilBERT (D)
XLM-R (X)

 Training Data: Workshop work orders containing
- Problem description (original text)
- English problem description (translated text)
- Identified source of malfunction (class)

Time

Independent variables

Dependent Variables
Controlled variables

Hyperparameters
Optimizer
Loss function
Learning rate
Early stopping criteria
Max sequence length

Data
analysis

Time measurements
Inference time
Training time

Figure 4.2: Experimental Design

hyperparameters. The configurations and hyperparameters throughout the experiments were
not changed in order to isolate the variables to what the experiment was designed to investi-
gate. The configurations and hyperparameters are further described in the following sections.

Optimizer & Learning rate

The chosen optimizer used for all of the experiments was the Adam optimizer, due to it being
commonly used to fine-tune BERT-based models [45, 24]. This optimizer uses the stochastic
gradient descent method and is computationally e�cient, has limited memory requirements,
and is suitable for problems that are large in terms of data and parameters [56]. Adam is an
adaptive learning rate method, which means that it computes individual learning rates for
di�erent parameters, by calculating moving averages of the gradient and the squared gradient.
The parameters β1 and β2 control the decay rates of these moving averages [56]. The chosen
learning rate and beta-values are based on early experimentation and the research of Mosbach
et al. [24], and are presented in table 4.1.

Table 4.1: Optimization parameters.

Model Learning Rate β1 β2
CNN 5e-4 0.9 0.999
DistilBERT 5e-5 0.9 0.999
XLM-R 3e-5 0.9 0.980

39

4. Methodology

Loss function
For all experiments, the categorical cross-entropy loss function was used. This loss function
is mainly used in multi-class classification problems, such as the problem at hand in this
project. It is computed by the formula:

Loss = −
n∑

i=1

yi · log ŷi (4.1)

where n is the output size (i.e. the number of classes), ŷi is the model’s predicted logit for
class i, and yi is the target value. The purpose of the categorical cross-entropy loss function
is to take the output probabilities and measure the distance to the true values. Categorical
cross-entropy is used in cases where the labels are one-hot encoded (such as in the case of this
project), meaning they are in the form of a vector of size n, with a one at the index of the
class the sample belongs to, and zeros elsewhere.

Number of epochs & early stopping
When training models for the experiments described in the following sections, early stopping
was used in order to avoid overfitting the models to the training data. Early stopping is a form
of regularization that dictates how many epochs the model should train for before stopping. If
too few epochs are run, there would still be room left for improvement. If too many epochs are
run, the model would overfit to the training data and thus lose performance when predicting
unseen data, such as the data in the test set. The early stopping was configured to monitor
the accuracy on the validation dataset when training the model. This means that after every
epoch of training, the model predicts the class of every sample in the validation dataset,
and computes the overall validation accuracy. The early stopping terminates the training
whenever the validation accuracy stops increasing, meaning that as soon as the model gets an
accuracy on the validation dataset that is worse than what it had after the previous epoch,
the training is stopped. The motivation for using validation accuracy as a stopping criterion
rather than validation loss, which is another common method, is that early modeling showed
the models stopping too early when using validation loss as a stopping criterion. Letting
the models train for longer, until reaching decreasing validation accuracy, led to increased
predictive performance, especially in the bottom segment.

Figure 4.3 is an example of what the training- and validation accuracy could look like dur-
ing training. In this case, the validation accuracy starts decreasing after six epochs, which is
why the training has stopped at this point. If the training were to continue, one could expect
the training accuracy to continuously increase, while the validation accuracy will decrease
more and more due to the model being overfit to the training data.

Segmentation of classes and languages
To be able to study the performance with respect to under- and overrepresented classes, the
metrics are also presented for grouped segments of classes with varying support. As men-
tioned before, the support for a class refers to its frequency in the training data, meaning the
number of samples belonging to the respective class.

40

4.2 Overview of the Experimental Design

0 1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of epochs

A
cc

ur
ac

y

Training set
Validation set

Figure 4.3: Example of accuracy on training- and validation set for
di�erent epochs. Dashed line shows point after which the model
starts overfitting to the training data.

Two possible approaches for segmenting based on support were identified. The first was
to select a certain percentage of the total number of classes with the highest and lowest sup-
port for each group, and evaluate the performance within these groups respectively. Hav-
ing the same number of classes in both groups, however, resulted in a large imbalance of
samples, where the top group contains a great number of samples, and the bottom a signif-
icantly smaller part. To demonstrate; if using a threshold of 25% of the most and the least
well-represented classes (same amount of classes in each segment), the resulting top segment
contains 80 percent of all samples, and the bottom segment contains less than 3 percent. The
upper part of Figure 4.4 shows an example where the Top Segment and Bottom Segment
contain 366 classes each, but 80% of the data resides in the Top Segment.

The second approach attempted to address this by splitting the groups based on sample
size, resulting in di�erent numbers of classes represented in the top and bottom group, but
equal size with respect to the share of total samples. The motivation for this is that while
it is desirable to perform well on rare classes, achieving good results on a tiny subset of the
data might not bring useful insights, compared to evaluating on a larger set. In the case of
fault classification for the company, it is also not as important to achieve great results on a
very minor fraction of the samples, but instead more valuable to understand the performance
gain on a larger portion of the data which might still be categorized as underrepresented. The
segmentation of classes was therefore done as described in the second approach mentioned
above. While this leads to equally sized top and bottom segments, it does as mentioned before
result in the bottom segment having many more unique classes represented. The lower part
of Figure 4.4 shows an example where the Top Segment and Bottom Segment contain 25% of
the data each, corresponding to 27 classes in the Top Segment and 1,076 classes in the Bottom
Segment.

Within each segment, the method of presenting an aggregate performance metric is to

41

4. Methodology

Figure 4.4: Visualization of the two identified methods for class seg-
mentation based on support. Graph shows percentage of test sam-
ples in each segment for each method.

take the macro average of all classes belonging to each segment. The motivation for this is
to be able to present interpretable and comparable results between models. A consequence
of this is that the F1-score presented for each group does not always fall between the values
of precision and recall, which is normally the case. This is explained by the fact that the
F1-score is more heavily a�ected by the lower value of its components, and if precision and
recall alternate in being the larger value between di�erent classes, their averages can both
end up being larger than the average F1-score.

Evaluation with regards to language is done by calculating the language-wise accuracy
and F1-score.

Environment
To run the experiments, the company o�ered access to two nodes in their high-performance
computing cluster. The software and hardware that were used to produce the acquired re-
sults are presented in Table 4.2. The experimentation was performed using the programming
language Python and the deep learning framework TensorFlow.

Table 4.2: Hardware and software setup.

Operating system Python version TensorFlow version GPU
Ubuntu 16.04.4 LTS 3.7.11 2.3.4 Nvidia Tesla P100-SXM2
Ubuntu 16.04.6 LTS 3.7.11 2.3.4 Nvidia Tesla K80

4.2.2 Independent Variables
The independent variables are those altered during the experiments, the e�ect of which is
studied and evaluated to understand the impact with regards to the dependent variables.

42

4.2 Overview of the Experimental Design

Transformer models
Through the experimentation phase, pre-trained DistilBERT and XLM-R models were used.
The models and their corresponding tokenizers were accessed through the HuggingFace Trans-
formers library which provides open-source access to pre-trained transformer-based language
models [57]. The Transformers library contains many di�erent versions of these models, and
the ones that were chosen when running the experiments were TFDistilBERTForSequenceClas-
sification and TFXLMRobertaForSequenceClassification. These models are designed to be used
with TensorFlow, and they consist of the respective base model with an added classification
head on top, making them suitable for classification tasks. As for the models, the tokenizers
used in the experiments were also accessed through the Transformers library. These tokeniz-
ers were also pre-trained (meaning that the tokens are not generated from the data related
to this project). Each tokenizer is associated with a particular model and adapted to the data
on which that model was pre-trained. Throughout all experiments, the maximum sequence
length was chosen to 256. Sequence length refers to the number of tokens in each sample,
and if the sample is over 256 tokens long, it is truncated to match the maximum sequence
length.

Training data
As will be explained later on in Section 4.4, the experiments are focused around studying the
e�ect of training data through various methods of modifying and altering the training data.

4.2.3 Dependent Variables
The dependent variables in this project are the metrics through which we evaluate the predic-
tive performance of the models, meaning the model’s ability to correctly classify the samples
in the datasets, and the models’ performance with regards to training and inference time.

Prediction metrics
To achieve interpretable and meaningful results a number of metrics are used. These are
top k categorical accuracy (k=1,3,5), precision, recall, and F1-score. Top k categorical accuracy
is defined as the number of times the true label is among the k classes predicted with the
highest probability, which in the case of k = 1 is simply traditional accuracy. Since a possible
future use-case is using the model to predict the most likely causes for a vehicle malfunction
based on a human-generated description, it is not necessarily crucial that the true class is the
number one prediction. As it is possible to generate a list of likely causes, understanding how
the model performs with regards to top 3 and top 5 categorical accuracy can be of importance.
Precision and recall can give good insights into how mistakes are made if they are done within
segments or in-between segments.

Inference and training time
To measure the inference time of the transformer-based models studied in this project, the
TensorFlow Benchmark class from the HuggingFace library Transformers was used. Inference
time refers to the time it takes for the model to make predictions for one batch of data.

43

4. Methodology

Inference time was studied for several configurations of di�erent batch sizes and sequence
lengths, presented in table 4.3. The environment specifications for testing is presented in
table 4.4.

Table 4.3: Configurations for testing inference time.

Hyperparameter Values
Batch size 1, 4
Sequence Length 8, 32, 128, 256

Table 4.4: Environment for test of inference time.

Transformers version: 4.10.3
Framework: TensorFlow
Framework version: 2.5.0
Python version: 3.6.4
OS: Windows
OS Version: 10.0.19042
CPU: Intel64 Family 6 Model 165 Stepping 2

4.3 Establishing Baselines
By establishing baselines, the results obtained from experiments can be compared and ana-
lyzed with more nuance. As a first baseline for this thesis, a non-deep learning model was
first trained to study whether the use of more complex models was justified for this applica-
tion, and thereafter a baseline for deep learning models was set to create comparability with
later experiments. It was also done to create comparability to the previous research done at
the company.

4.3.1 FastText Model
FastText was used to understand the lexical aspect of the problem and to be able to con-
trast the performance of deep learning models with more lightweight and e�cient methods.
Lexicality in this context refers to the vocabulary, words, or morphemes in the language, as
a hypothesis from the data analysis was that much semantic information in the samples is
captured in key words and technical terms. While deep learning models can capture context
due to their size and complexity, certain key words might be more important in determin-
ing the class of a sample. If a FastText-model, having a size and training time being only
a fraction of that of transformer-based models can generate high performance, it motivates
studying trade-o�s between performance, training-time and costs of deployment. The goal
with this baseline is therefore to be able to evaluate the possible gains from using deep learn-
ing methods in the light of increased time and costs for both training and deployment in
future applications.

44

4.4 Modelling and Experimentation

A classifier was trained on the monolingual (translated) training data, using FastText
word embeddings generated on the corpus, with a multinomial logistic regression classifier
head. The motivation for using FastText to generate word embeddings is the e�cient imple-
mentation it gives and its documented performance [58].

4.3.2 Deep Learning Models
As a baseline for the deep learning models, convolutional neural networks were used. Two
separate models were trained, one on the translated (monolingual) texts and one on the orig-
inal (multilingual) texts. This was done using custom SentencePiece tokenizers with a vocab-
ulary size of 40,000 tokens, trained on all three datasets (training, validation, and testing), in
the language domain of the respective model. The motivation for using convolutional neu-
ral networks was that it goes in line with previous research done at the company, and the
model architecture was based on that of previous models. Moreover, convolutional neural
networks have recently been successfully applied for text classification in various applica-
tions [59]. While recurrent neural networks work well for the NLP tasks where comprehen-
sion of long range semantics is required (e.g., Question-Answering), convolutional neural
networks work well where detecting local and position-invariant patterns is required, such
as key phrases [60, 59].

DistilBERT was used to set baselines for the performance on the translated data, to be
able to evaluate the possible gains from using multilingual models, and the reduced need for
automatic translation of large quantities of text. The motivation for using DistilBERT in
favor of the original BERT was its documented performance compared to the original BERT,
while being more lightweight and having significantly fewer parameters, thereby reducing
training time [28, 48].

XLM-R was used when working with the original, multilingual data, as it is a BERT-based
model showing state-of-the-art performance on multilingual tasks [30].

It is worth noting the di�erence in the use of the phrase “training a model” with regards to
the convolutional neural networks and the transformer-based models. The CNNs are trained
from scratch, while DistilBERT and XLM-R are fine-tuned (see Section 2.3.4), although we
refer to both of these processes as “training” in this project.

4.4 Modelling and Experimentation
This section introduces the experiments conducted as part of this thesis project. The exper-
iments are organized into e�ect of cleaning data (Exp-A1 – Exp-A5), multilingualism (Exp-B1 –
Exp-B2), language-wise performance (Exp-C), oversampling (Exp-D1-D4) and data augmentation
through translation (Exp-E1 – Exp-E2).

4.4.1 Experimental Group Exp-A: Effect of Cleaning
Data

When studying the data as described in Chapter 3, many interesting characteristics were
identified that were believed to possibly impact the model’s learning. Based on these findings,

45

4. Methodology

a number of experiments were designed to study the e�ect of di�erent inherent traits of the
data on model performance (as related to research question RQ1) by cleaning the data before
training.

These experiments were performed using a monolingual DistilBERT model. In order to
make the datasets applicable for a monolingual model that takes in the text samples transla-
tions as input, a general pre-processing step removing all samples without a translation was
performed. A key hypothesis for this experiment was that based on the findings from the
data analysis, cleaning the data could improve training and lead to an understanding of how
the di�erent characteristics in the data a�ected the models and increased interpretability.
The experiments were performed by using di�erent steps of pre-processing for the training
data, but the test set was left untouched for all pre-processing configurations. The following
parts describe the di�erent pre-processing configurations in more detail. With these di�er-
ent pre-processing configurations a monolingual DistilBERT model was trained on each of
the four pre-processing steps individually (Exp-C1 – Exp-C4), as well all of them at the same
time (Exp-C5). For validation purposes, and to study the variability in the results, models
were trained four times for each configuration.

Exp-A1: Removing duplicate samples
As mentioned in Section 3.2, the data contained two di�erent forms of duplicates that needed
to be handled di�erently. Firstly, there were many duplicates that were identical with regard
to both input text, main group, and class. For this pre-processing step, all but one of these
identical samples were removed, keeping one in order to actually keep the information given
in these samples. However, there were also duplicates contributing to class noise, meaning
duplicate samples where the input texts were identical, but the samples were mapped to
more than one class. It is easy to see how this could prove confusing to the model, and in
an attempt to reduce the class noise, all of these duplicates were removed. These two steps
removed around 11,9% of the data from the training data.

Exp-A2: Removing non-alphanumeric characters
This pre-processing step consisted of making all text inputs in the training data alphanu-
meric. That meant removing all characters from the data that were something other than
standard Latin alphabet letters or digits. As with the case for standard phrases, the non-
alphanumeric characters were removed from the data, but the entire sample was not removed
if the data contained any non-alphanumeric characters.

Exp-A3: Removing long and short input texts
As described in chapter 3, the data contained many samples that were either very short (just
a few words), or very long (over 350 words). Given the lack of information in the shortest
samples, and the typically messy nature of the longest samples, the next pre-processing con-
figuration consisted of removing the shortest and the longest samples from the training data.
Based on manual inspection, the lower threshold was chosen to four words, removing samples
with a length of three words and less. The upper threshold was in a similar fashion chosen
to 67, removing samples with a length over 67 words. While it might seem arbitrary to draw

46

4.4 Modelling and Experimentation

a sharp line at 67, the upper threshold was chosen in a range where the quality of samples
was deemed to diminish and set to remove as close to 10% of the data as possible, and around
equally many under the short threshold as over the long threshold. Note that the samples
having a text shorter than 4 words or longer than 67 words were completely removed, and
the long texts were thus not shortened to fit the interval.

Exp-A4: Removing standard phrases

Another pre-processing configuration consisted of removing the identified standard phrases
from the data. The standard phrases were as mentioned in section 3.2 phrases that were
common in the data, but did not carry any information regarding the actual problem with
the vehicle. The identified phrases that were removed from the data were the following:

Table 4.5: Standard Phrases Removed in Exp-A4.

"customer complaint" "customer complained" "customer complains"
"customer complaints" "customer request" "customer requested"

"customer reports" "attend to" "vehicle presenting"
"vehicle presented" "driver complains" "customer is complaining"
"vehicle presents" "driver complaint" "driver complained"

"driver complaints" "driver request" "driver requested"

The standard phrases were removed from the text inputs in the training and validation
set, but the whole sample was not removed if it contained one of the identified phrases.

Exp-A5: Full Pre-Processing

As a final step in this experiment group, all four pre-processing methods were tested at the
same time.

4.4.2 Experimental Group Exp-B: Multilingualism in
the Dataset

When implementing multilingual models that use the original text input instead of the trans-
lated version, it was of interest to compare the predictive performance of models from both
the monolingual and the multilingual domain, and study the e�ect of the translation step
and whether it can be omitted (as related to research question RQ1). As there was a large
number of samples where a translation had not been generated from the translation service,
the multilingual data contained samples that had no corresponding counterpart available in
the monolingual domain. Two ways of performing the comparisons were therefore identi-
fied to achieve fair comparability, where the models are trained and evaluated on comparable
data.

47

4. Methodology

Exp-B1: Removing samples without available translation
First, it was of interest to perform a comparison where the multilingual dataset is reduced by
removing the samples not available in the translated dataset. To accomplish this, all samples
that were not able to be used when training a DistilBERT model were also removed when
training an XLM-R model. Those were samples for which the translation service had not
been able to identify a language, leaving the sample without a translated text. Removing
these samples removed around 3.7% of the samples in the datasets when training the XLM-R
model.

Exp-B2: Company use-case comparison
Secondly, a comparison between the two models based on a more true use-case scenario was
performed, as data in a real production case would not likely be discarded. Instead it would
likely be replaced or at least translated using information regarding the origin of the work-
shop order from which the sample originated. It was therefore of interest to also compare the
predictive performance of models in both the mono- and multilingual domain where these
samples were included.

To perform this experiment a DistilBERT model was trained, and in all cases where a
sample was missing a translated text, the original text was used instead. This means the
monolingual model will see certain samples in other languages than English during training,
but no data is discarded.

Exp-B3: Training DistilBERT on multilingual data and XLM-R on
monolingual data
An experiment was also conducted where the two models were trained and evaluated on
switched data, i.e. where the DistilBERT model was trained on original data and the XLM-R
model was trained on translated data. It was of interest to compare an XLM-R model trained
on translated data to the DistilBERT baseline to see if a model being pre-trained in only
English performs better if the subsequent classification task is only in the English domain, or
if being pre-trained on additional languages helps the model perform better. The DistilBERT
model was trained on original data in order to compare the results to the XLM-R baseline,
and to see how a model being pre-trained using only English data would perform when the
subsequent classification task was in a multilingual domain. This can give an understanding
regarding whether it is the model size and complexity, or the model’s pre-trained language
understanding which is of benefit when using these pre-trained models.

4.4.3 Experimental Group Exp-C: Language-Wise Per-
formance

As the languages are not evenly represented in the data, combined with the fact that the mod-
els used during the project are exposed to di�erent amounts of data for separate languages
during pre-training, a need was identified to understand how the model’s performance for
separate languages is a�ected by the amount of data it sees in that language during fine-tuning
(as related to research questions RQ1 and RQ2). To test this an experiment was constructed

48

4.4 Modelling and Experimentation

in which over-represented languages with high accuracy were artificially reduced to low lev-
els, and models were trained with gradually increasing amounts of data in these languages
present. By studying the relative performance, both overall but also for each of the men-
tioned languages separately, with the goal of gaining insights into how a model can learn in
an individual language. Note that the two languages in this experiment are anonymized and
referred to as X and Y. Starting with Language X from Figure 3.2, new subsets of data were
created from the original training set, where all samples in Language X were removed and
gradually replaced in di�erent quantities (20, 40, 60, and 80 percent) through random sam-
pling, after which XLM-R was trained on each of the sets respectively. The experiment was
after this repeated where a dataset where all samples from Language Y were removed, and
replaced in the same absolute quantities (rather than relative) as in the case of Language X
(resulting in partitions of 8,16, 24, 32 and 40 percent of the Language data). The reason for
not replacing all data in Language Y was to get an understanding of how the absolute num-
ber of samples for each language a�ected performance, and as the experiment in Language X
showed a large early increase followed by diminishing returns, as shown in the next chapter.

An important aspect to keep in mind is that not all classes are represented equally in the
di�erent languages, and that there are variations in the amounts of unique classes present in
each language.

4.4.4 Experimental Group Exp-D: Oversampling
To study the e�ect of using sampling techniques in an attempt to improve model accuracy
for infrequent classes (as related to research question RQ2), four experiments were designed
in which underrepresented classes were oversampled to even out the class distribution. Based
on the previously mentioned theory of oversampling, the hypothesis was that by duplicating
samples belonging to one of the classes in the “low-support” category, one could expect the
model’s predictive performance on these classes to improve. Even though the model will
already have seen all the samples during every epoch of training and no new information is
added by performing this oversampling, the dataset will be more balanced and the skewness
in class distribution will be smaller.

A certain threshold was selected for each experiment, which was used as the minimum
number of samples per class, shown in Table 4.6. All classes containing fewer samples than
the selected threshold were upsampled in the training set, using the method described in
Algorithm 1. An XLM-R model was thereafter trained on the di�erent datasets.

Table 4.6: Thresholds for experimental group Exp-D.

Experiment Threshold
Exp-D1 10
Exp-D2 20
Exp-D3 30
Exp-D4 50

The motivation for never adding more than 20 additional samples for any given class
during oversampling (see Algorithm 1) is to avoid the least frequent classes being duplicated

49

4. Methodology

Algorithm 1 Oversampling

C ← All classes in training set {c1, ..., ci, ..., cN }
X ← Threshold
for all classes in C do

si ← support of ci
if si < X then

n← min(X − si, 20)
Random sample n from Ci with replacement and add to training set

end if
end for

to a point where it fails to generalize. It only a�ects Exp-D3 and Exp-D4 as those are the
cases where the di�erence between a class’ support and the threshold can exceed 20.

4.4.5 Experimental Group Exp-E: Augmentation Through
Unidirectional Translation

After seeing the results from Exp-C (presented in section 5.5), showing the e�ect of increased
amounts of original data, and the results of Exp-D (presented in section 5.6), showing that
oversampling can improve the predictive performance on underrepresented classes, it was
of interest to study whether using the available translations could be used to augment the
datasets. To clarify, the term “augmentation” is used when utilizing the translated texts as new
versions of the samples’ original texts. As discussed in section 2.6.1 unidirectional translation
can be used as a way to augment data in NLP. Two experiments were set up, comparing the
e�ect of using translated data to that of original data.

Exp-E1: Augmenting data for infrequent languages
The following experiment was designed to study the e�ect which an increase in data of a
certain language has, depending on how well represented the language is and on how much
data is used to augment the training set. The goal was to quantify the relationship between
an increase in data and a possible performance gain as well as to investigate whether there
was a point of diminishing returns where adding more data does not bring additional benefit.
Additionally, the experiment aimed to study whether “synthetic” data could be an alternative
to producing more original labeled data. The synthetic data in this case refers to all the trans-
lated samples that are available but not utilized when working in the multilingual domain.
Since English was the only language in which translated samples were available, the experi-
ment was designed to study the e�ect of augmenting data only for this language. In order to
investigate the possible increase in performance based on how well represented the language
originally is, two di�erent configurations were run. To test the e�ect of augmenting data for
low represented languages, two starting points of 10% and 20% of the original English data
respectively were augmented with synthetic data up to a point where the total amount of data
matched the original amount of English. For the second configuration the same approach was
done, but this time using starting levels at 80% and 100% of the English data and augmenting
up to a point where to total amount of data matched 300% of the original amount of English.

50

4.4 Modelling and Experimentation

Exp-E2: Augmenting data for infrequent classes
This experiment was again designed to study the e�ect of a larger training dataset, but this
time when augmenting the dataset with respect to infrequent classes instead of languages.
The reasoning for using this setup was again to get an understanding for if any information
was lost in the translation step, or if this technique would yield similar results to those seen
in Exp-D (section 4.4.4). Sampling was done following the process described in Algorithm 1,
using a threshold of 50, while substituting the original text of the samples selected to augment
the dataset with its English translation. The datasets used for validation and testing were kept
in their original form. The experiment was performed using a multilingual XLM-R model.

51

4. Methodology

52

Chapter 5

Results

In this chapter we present the results from the conducted experiments. All precision, recall
and F1 scores correspond to macro-averages as described in section 2.5. Numbers highlighted
in bold are the highest value within each metric and segment (top, middle and bottom as
described in section 4.2.1) for a set of tables presented together. To give a brief reminder, the
segmentation based on class support is done so that the top and bottom segments include
the samples belonging to the most over- and underrepresented classes respectively, so that
they both contain 25% of the data.

5.1 FastText Baseline
The results from the FastText baseline are presented in table 5.1. The findings from this shal-
low model show that performance varies a lot between segments, and that the overall accuracy
is just over 20%. With the larger precision values for the top segment and low recall values for
the bottom segment it is clear that the model has a bias towards the over-represented classes
in the data. In the process of training and evaluating the FastText model it was not possible
to get metrics for top 3 and top 5 categorical accuracy the same way as when training deep
transformer-based models, which is why these metrics are not presented in this section.

Table 5.1: FastText Benchmark

Segment Total Top Mid Bottom
Accuracy 0,203 0,253 0,235 0,089
Precison 0,205 0,475 0,378 0,158
Recall 0,090 0,250 0,212 0,057
F1 0,109 0,287 0,248 0,073

53

5. Results

5.2 Deep Learning Baselines
The results from models using convolutional neural networks are shown in 5.2 and 5.3. They
show that the models reach accuracy levels of over 50%, and top 3- and top 5 categorical
accuracy levels of over 67% and 72% respectively. The results from the two models show only
minor di�erences, considering the di�erences in languages present in the datasets to which
they have been exposed, and the fact that they are trained on tokenizers with equally sized
vocabularies (i.e, number of tokens).

Table 5.2: Convolutional neural net on monolin-
gual data (translated texts).

Top 3 Cat. Acc. 0,678
Top 5 Cat. Acc. 0,732
Segment Total Top Mid Bottom
Accuracy 0,513 0,706 0,548 0,238
Precison 0,379 0,633 0,541 0,335
Recall 0,238 0,692 0,491 0,169
F1 0,265 0,643 0,495 0,203

Table 5.3: Convolutional neural net on multilin-
gual data (original texts).

Top 3 Cat. Acc. 0,675
Top 5 Cat. Acc. 0,724
Segment Total Top Mid Bottom
Accuracy 0,523 0,724 0,563 0,228
Precison 0,349 0,641 0,532 0,300
Recall 0,233 0,708 0,505 0,158
F1 0,254 0,657 0,498 0,188

Tables 5.4 and 5.5 present the baselines for the DistilBERT model trained on translated
texts and the XLM-R model trained on original texts. Noteworthy is that samples with un-
known predicted language, and thus not having a translation, were not applicable when train-
ing and evaluating the DistilBERT model. These samples are however included when training
the XLM-R model, resulting in the XLM-R model being trained and evaluated on 3.7% more
data. The results show that the XLM-R model marginally outperforms the DistilBERT model
for the top- and middle segment, but that the DistilBERT model achieves much better re-
sults on the bottom segment, as well as higher top 3 and top 5 categorical accuracy. Table
5.6 shows that the two models perform equally well on most of the languages, but that the
accuracy between di�erent languages di�ers significantly. The results show that both of the
pre-trained models outperform the convolutional networks by a margin of around 10 per-
centage points in most metrics and segments. The exception is that of the performance of
XLM-R in the bottom segment, which actually shows an F1-score lower than that of both
convolutional neural networks, and an overall F1-score on par with the two.

Table 5.4: DistilBERT Baseline

Top 3 Cat. Acc. 0,779
Top 5 Cat. Acc. 0,826
Segment Total Top Mid Bottom
Accuracy 0,619 0,815 0.643 0.370
Precison 0,440 0,746 0,600 0,397
Recall 0,365 0,794 0,601 0,290
F1 0,364 0,765 0,585 0,305

Table 5.5: XLM-R Baseline

Top 3 Cat. Acc. 0,754
Top 5 Cat. Acc. 0,792
Segment Total Top Mid Bottom
Accuracy 0,613 0,820 0,666 0,298
Precison 0,284 0,745 0,579 0,204
Recall 0,264 0,802 0,630 0,166
F1 0,254 0,770 0,593 0,162

54

5.3 Exp-A: Effect of Cleaning Data

Table 5.6: Accuracy per language for the DistilBERT model and the
XLM-R model (%)

Language DistilBert XLM-R
1 71,3 72,4
2 61,3 61,4
3 61,0 58,5
4 N/A 44,3
5 48,3 48,5
6 52,4 53,2
7 62,8 60,5
8 55,3 54,0
9 61,0 61,4
10 57,4 57,1
11 38,0 36,0
12 62,4 64,8
13 57,8 55,5
14 61,7 62,0
15 55,1 50,5
16 46,2 54,6
17 51,4 46,3
18 54,5 49,7
19 40,8 40,8

Table 5.7: Confustion matrix for the 10 largest
classes (DistilBERT)

5 16 12 2 0 41 159 140 64 90
5 2154 88 0 2 1 2 0 1 0 1
16 113 1534 0 0 0 0 0 0 0 1
12 0 0 1374 53 0 3 0 0 0 0
2 0 0 41 1181 0 2 0 0 0 0
0 1 0 1 1 1126 1 0 0 0 0
41 2 0 0 2 0 1081 0 0 2 0
159 1 1 0 1 0 0 735 128 0 1
140 4 0 1 1 0 2 161 762 0 1
64 10 1 0 0 0 0 0 2 890 0
90 2 1 0 1 0 0 1 2 0 645

Table 5.8: Confustion matrix for the 10 largest
classes (XLM-R)

5 16 12 2 0 41 159 140 64 90
5 2305 67 0 0 1 2 0 2 2 0
16 159 1595 0 2 0 0 0 0 1 1
12 0 1 1487 42 2 2 0 0 0 0
2 0 0 94 1216 0 1 0 0 0 0
0 0 0 1 1 1134 0 0 0 0 0
41 2 0 0 2 0 1083 0 0 1 0
159 1 0 0 1 0 0 794 117 1 0
140 7 1 1 0 0 2 184 790 1 1
64 12 2 0 0 0 1 0 1 906 0
90 3 0 0 0 0 2 0 1 0 660

Table 5.7 and 5.8 show the confusion matrices for the DistilBERT model and the XLM-
R model for the ten most frequent classes. In the figures, the rows correspond to the true
class and the columns to the predicted class. The high values on the diagonal of the matrices
imply that both models predict the top 10 classes well, but there are some inconsistencies,
most notably for classes 5, 16, 140 and 159.

5.3 Exp-A: Effect of Cleaning Data
The results from experiment group A (4.4.1) which studies the e�ect of di�erent pre-processing
configurations for the DistilBERT model are presented in tables 5.9 to 5.14. The results are
averages from four runs for each configuration. The results are very similar, indicating that

55

5. Results

there is no significant benefit from either configuration when comparing to the baseline
model. The best results overall are achieved when not doing any pre-processing more than
removing NaN-values. Removing standard phrases (Exp-A4, 4.4.1) is the only configuration
that performed better in any of the segments, by a margin that is essentially insignificant.

Table 5.9: Baseline: Only Remove NaN

Average Max
Top 3 Cat. Acc. 0,777 0,778
Top 5 Cat. Acc. 0,825 0,826
Segment Total Top Mid Bottom
Accuracy (Avg) 0,618 0,808 0,645 0,371
Precison (Avg) 0,426 0,750 0,598 0,380
Recall (Avg) 0,354 0,790 0,601 0,287
F1 (Avg) 0,359 0,767 0,584 0,297

Table 5.10: Exp-C5: Fully Processed

Average Max
Top 3 Cat. Acc. 0,764 0,766
Top 5 Cat. Acc. 0,813 0,816
Segment Total Top Mid Bottom
Accuracy (Avg) 0,603 0,796 0,632 0,349
Precison (Avg) 0,408 0,740 0,589 0,358
Recall (Avg) 0,335 0,780 0,586 0,266
F1 (Avg) 0,340 0,757 0,572 0,276

Table 5.11: Exp-C1: Make Alphanumeric

Average Max

Top 3 Cat. Acc. 0,775 0,777
Top 5 Cat. Acc. 0,824 0,826
Segment Total Top Mid Bottom
Accuracy (Avg) 0,612 0,810 0,642 0,351
Precison (Avg) 0,418 0,739 0,592 0,371
Recall (Avg) 0,337 0,791 0,594 0,267
F1 (Avg) 0,343 0,760 0,576 0,279

Table 5.12: Exp-C2: Remove Duplicates

Average Max

Top 3 Cat. Acc. 0,773 0,775
Top 5 Cat. Acc. 0,821 0,823
Segment Total Top Mid Bottom
Accuracy (Avg) 0,612 0,806 0,643 0,351
Precison (Avg) 0,417 0,741 0,592 0,370
Recall (Avg) 0,339 0,787 0,597 0,268
F1 (Avg) 0,345 0,760 0,579 0,280

Table 5.13: Exp-C3: Long and Short Texts

Average Max

Top 3 Cat. Acc. 0,771 0,772
Top 5 Cat. Acc. 0,820 0,822
Segment Total Top Mid Bottom
Accuracy (Avg) 0,610 0,811 0,639 0,347
Precison (Avg) 0,410 0,729 0,591 0,361
Recall (Avg) 0,333 0,793 0,592 0,262
F1 (Avg) 0,339 0,755 0,575 0,274

Table 5.14: Exp-C4: Remove Standard Phrases

Average Max

Top 3 Cat. Acc. 0,779 0,780
Top 5 Cat. Acc. 0,827 0,829
Segment Total Top Mid Bottom
Accuracy (Avg) 0,617 0,813 0,647 0,357
Precison (Avg) 0,412 0,748 0,603 0,359
Recall (Avg) 0,341 0,795 0,602 0,269
F1 (Avg) 0,343 0,767 0,585 0,277

To give nuance to the results and understand how much the results varied between train-
ing runs, the box-plots in Figure 5.1 and Figure 5.2 show the variability in accuracy and F1-
score for the di�erent segments between the di�erent runs. Each graph represents a class
segment and each box corresponds to a pre-processing configuration. The box-plots show
the mean (mid line), mean ± standard error (box edges), and maximum/minimum value
(whiskers). As can be seen in the box-plots, the overall results ((i) in Figure 5.1) vary next
to nothing between the training runs. While there is a little more variation within the seg-
ments, the di�erences are at most a single percentage point. A key finding is that the bottom
segment was consistently negatively impacted by the modifications to the dataset.

56

5.3 Exp-A: Effect of Cleaning Data

BL A5 A1 A2 A3 A4

0.6

0.61

0.62

A
cc

ur
ac

y

(i) Overall

BL A5 A1 A2 A3 A4

0.8

0.81

0.82

A
cc

ur
ac

y

(ii) Top segment

BL A5 A1 A2 A3 A4

0.63

0.64

0.65

A
cc

ur
ac

y

(iii) Middle Segment

BL A5 A1 A2 A3 A4

0.33

0.34

0.35

0.36

0.37

A
cc

ur
ac

y

(iv) Bottom segment

Figure 5.1: Variability in accuracy, overall and within each segment
(i-iv), for baseline DistilBERT (BL) and each pre-processing strategy
(A1-A5). Note the di�erence in scale on the y-axes.

BL A5 A1 A2 A3 A4

0.32

0.33

0.34

0.35

0.36

F 1
-s

co
re

(i) Overall

BL A5 A1 A2 A3 A4

0.75

0.76

0.77

F 1
-s

co
re

(ii) Top segment

BL A5 A1 A2 A3 A4

0.57

0.58

0.59

F 1
-s

co
re

(iii) Middle Segment

BL A5 A1 A2 A3 A4

0.25
0.26
0.27
0.28
0.29
0.3

F 1
-s

co
re

(iv) Bottom segment

Figure 5.2: Variability in F1-score, overall and within each segment
(i-iv), for baseline DistilBERT (BL) and each pre-processing strategy
(A1-A5). Note the di�erence in scale on the y-axes.

57

5. Results

5.4 Exp-B: Multilingualism in the Dataset

The results from experiment group B (4.4.2) are presented in tables 5.16 to 5.17. This ex-
periment was aimed at comparing the monolingual DistilBERT model and the multilingual
XLM-R model in a context where the two models were trained on comparable data, and in
a context based on the more realistic use-case scenario where samples without translation
were not discarded. The results show that in both cases the XLM-R model performs bet-
ter for the top- and middle segments of the classes but performs significantly worse for the
bottom segment, while the overall accuracy for both models is very similar. When removing
samples without available translations (Exp-B1), the distribution of the removed samples was
the following: 34% belonged to the top segment, 44% belonged to the middle segment and
22% belonged to the bottom segment.

Table 5.15: DistilBERT: Using original text for
samples without translations

Top 3 Cat. Acc. 0,775
Top 5 Cat. Acc. 0,822
Segment Total Top Mid Bottom
Accuracy 0,614 0,812 0,634 0,374
Precison 0,421 0,734 0,591 0,377
Recall 0,354 0,793 0,591 0,290
F1 0,362 0,759 0,581 0,303

Table 5.16: XLM-R Baseline (same as reported in
section 5.2)

Top 3 Cat. Acc. 0,754
Top 5 Cat. Acc. 0,792
Segment Total Top Mid Bottom
Accuracy 0,613 0,820 0,666 0,298
Precison 0,284 0,745 0,579 0,204
Recall 0,264 0,802 0,630 0,166
F1 0,254 0,770 0,593 0,162

Table 5.17: DistilBERT Baseline (same as reported
in section 5.2)

Top 3 Cat. Acc. 0,779
Top 5 Cat. Acc. 0,826
Segment Total Top Mid Bottom
Accuracy 0,619 0,815 0,643 0,370
Precison 0,440 0,746 0,600 0,397
Recall 0,356 0,794 0,601 0,290
F1 0,364 0,765 0,585 0,305

Table 5.18: XLM-R: Removing all samples that do
not have a translation

Top 3 Cat. Acc. 0,762
Top 5 Cat. Acc. 0,799
Segment Total Top Mid Bottom
Accuracy 0,620 0,825 0,678 0,297
Precison 0,282 0,747 0,579 0,202
Recall 0,265 0,807 0,639 0,164
F1 0,255 0,773 0,597 0,163

The results from letting the DistilBERT model be trained on original data, and letting the
XLM-R model be trained on translated data are presented in tables 5.19 and 5.20. The results
show that the XLM-R model trained on translated data achieves roughly the same overall
accuracy as the XLM-R baseline, but that the accuracy for the top- and middle segment is
worse, and the accuracy for the bottom segment is somewhat better. The reverse relationship
goes for the DistilBERT model. Comparing the results in Figure 5.19 to the DistilBERT
baseline shows that the DistilBERT model trained on original data achieves similar overall
accuracy, but has better accuracy on the top segment, and lower on the bottom segment,
although in this case the accuracy for the middle segment is exactly the same. To see that the
monolingual DistilBERT model performed well when trained and evaluated on original data
was an interesting finding, further discussed in Section 6.1.3.

58

5.5 Exp-C: Language-Wise Performance

Table 5.19: DistilBERT: Trained and evaluated on
original data

Top 3 Cat. Acc. 0,769
Top 5 Cat. Acc. 0,817
Segment Total Top Mid Bottom
Accuracy 0.611 0,823 0.643 0.330
Precison 0.404 0.730 0.596 0.353
Recall 0.320 0,805 0,591 0.247
F1 0.328 0,762 0,577 0.260

Table 5.20: XLM-R: Trained and evaluated on
translated data

Top 3 Cat. Acc. 0,760
Top 5 Cat. Acc. 0,805
Segment Total Top Mid Bottom
Accuracy 0,610 0,806 0,654 0,322
Precison 0,294 0,752 0,569 0,218
Recall 0,280 0,788 0,615 0,189
F1 0,267 0,769 0,582 0,182

5.5 Exp-C: Language-Wise Performance
The results from gradually removing amounts of data in a single language are presented for
Language X and Language Y in Figure 5.3 and Figure 5.4. There is initially a sharp increase
in performance when looking at accuracy, with a declining increase as more data is added.
In the Language Y case, there is a higher level of initial performance, a larger initial increase,
and a higher top accuracy reached than in the Language X case. Notice by looking at the
performance of the other languages, that the average accuracy for non-Language X and non-
Language Y in the respective cases is marginally a�ected. This points to the fact that perfor-
mance in one language is dependent on the amount of data it receives in that language, and
that there seems to be a point of diminishing returns after which the performance gain from
new data in a language is reduced.

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Amount of data in Language X (percent)

A
cc

ur
ac

y

All other languages
Language X

0 8 16 24 32 40
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Amount of data in Language Y (percent)

A
cc

ur
ac

y

All other languages
Language Y

Figure 5.3: Accuracy per language plotted against what percentage
of the samples in a given language is kept in the training set.

In order to further investigate what factors yield a high accuracy for a given language, the
language-wise accuracy was plotted against various characteristics. The results are presented
in Figure 5.5 and Figure 5.6, and are from the XLM-R baseline. The individual language
understanding varied based on how many samples belonged to a certain language, as well as
if the samples belonged to frequent or infrequent classes. Figure 5.5 presents scatter plots
for accuracy per language, based on what percentage of the language’s samples belong to a
class with high support, and what percentage of the language’s samples belong to classes with
low support. Figure 5.6 also presents accuracy per language, but plotted against the total

59

5. Results

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Amount of data in Language X (percent)

F 1
-s

co
re

All other languages
Language X

0 8 16 24 32 40
0

0.1

0.2

0.3

0.4

Amount of data in Language Y (percent)

F 1
-s

co
re

All other languages
Language Y

Figure 5.4: F1-score per language plotted against what percentage of
the samples in a given language is kept in the training set.

number of samples for each language, as well as the total number of unique classes for each
language. While there is a large variability, figure 5.5 shows a trend of increased accuracy for
languages that have most of their samples belonging to high support classes and vice versa.
Figure 5.6 shows that a language being well represented in the data is more likely to have
a high accuracy. The figure also shows a slight trend towards languages with more unique
classes being predicted better. In all these cases it is noted that there is high variability and
low R2-values, due to which no conclusions can be drawn with certainty.

0.1 0.2 0.3 0.4
0.3

0.4

0.5

0.6

0.7

0.8

Percentage of samples in top segment

A
cc

ur
ac

y

R2-value = 0.1318

0.1 0.2 0.3 0.4
0.3

0.4

0.5

0.6

0.7

0.8

Percentage of samples in bottom segment

A
cc

ur
ac

y

R2-value = 0.0081

Figure 5.5: Accuracy per language plotted against what percentage
of the samples are in top or bottom segments

60

5.5 Exp-C: Language-Wise Performance

0 10 20 30 40 50 60 70 80
0.3

0.4

0.5

0.6

0.7

0.8

Number of training samples (thousands)

A
cc

ur
ac

y

R2-value = 0.3063

0 250 500 750 1,000 1,250
0.3

0.4

0.5

0.6

0.7

0.8

Number of unique classes

A
cc

ur
ac

y
R2-value = 0.0681

Figure 5.6: Accuracy per language plotted against number of sam-
ples (left), and number of unique classes (right)

61

5. Results

5.6 Exp-D: Effect of Oversampling
The results from experiments D1–D4 (4.4.4) show that simple oversampling techniques can
lift the performance of the bottom segment and increase the models’ ability to correctly label
under-represented classes. Tables 5.21 – 5.24 show the results of the di�erent oversampling
approaches for each segment. The largest improvements are shown when oversampling with
the highest threshold of 50, and there is a clear trend of improved performance in the bottom
segment as the sampling threshold is increased. Compared to the baseline XLM-R in section
5.2, experiment Exp-D4 shows an increase in overall accuracy of nearly 2 percentage points,
an increase in precision and recall of 15 and 8 percentage points respectively, and an increase
in overall F1-score of 10 percentage points. Top 3- and 5 categorical accuracy are increased
by 3 and 4 percentage points each.

Table 5.21: Oversampling with a threshold of 10

Top 3 Cat. Acc. 0,773
Top 5 Cat. Acc. 0,816
Segment Total Top Mid Bottom
Accuracy 0,625 0,824 0,666 0,344
Precison 0,344 0,744 0,596 0,275
Recall 0,304 0,805 0,626 0,216
F1 0,300 0,771 0,600 0,218

Table 5.22: Oversampling with a threshold of 20

Top 3 Cat. Acc. 0,774
Top 5 Cat. Acc. 0,819
Segment Total Top Mid Bottom
Accuracy 0,626 0,819 0,663 0,356
Precison 0,347 0,746 0,595 0,279
Recall 0,314 0,802 0,627 0,229
F1 0,309 0,769 0,602 0,230

Table 5.23: Oversampling with a threshold of 30

Top 3 Cat. Acc. 0,775
Top 5 Cat. Acc. 0,819
Segment Total Top Mid Bottom
Accuracy 0,627 0,816 0,660 0,369
Precison 0,390 0,756 0,596 0,336
Recall 0,336 0,797 0,624 0,260
F1 0,337 0,774 0,602 0,267

Table 5.24: Oversampling with a threshold of 50

Top 3 Cat. Acc. 0,784
Top 5 Cat. Acc. 0,830
Segment Total Top Mid Bottom
Accuracy 0,632 0,824 0,668 0,366
Precison 0,420 0,757 0,598 0,371
Recall 0,350 0,806 0,632 0,275
F1 0,353 0,778 0,606 0,285

To visualize how the model performs varied based on support for each class, figures 5.7,
5.8 and 5.9 show the F1-score for each class plotted against its frequency in the training data.
They show the results for the baseline XLM-R model, and the oversampled XLM-R model
with a threshold of 30 and 50 respectively. Each point in the scatter plots represents an
individual class, and the dashed red lines show the separation between the bottom, middle
and top segments. There is a clear cut-o� in figure 5.7 below a support of roughly 40 samples,
where essentially no classes are correctly predicted. After oversampling this region is more
densely populated by classes with higher F1-values. Comparing a sampling threshold of 30
and 50 respectively, note that there are more classes with non-zero F1-values in the latter,
shown in figure 5.9. In the case of the baseline XLM-R model, there are 661 classes that are
never correctly identified in the test set. The same number is 443 classes when oversampling
with a threshold of 30, and 375 classes when oversampling with a threshold of 50.

62

5.6 Exp-D: Effect of Oversampling

Figure 5.7: F1-score per class based on class support for baseline
XLM-R model.

Figure 5.8: F1-score per class based on class support for XLM-R
model on oversampled data with a sampling threshold of 30.

Figure 5.9: F1-score per class based on class support for XLM-R
model on oversampled data with a sampling threshold of 50.

63

5. Results

5.7 Exp-E: Augmentation Through Unidirec-
tional Translation

The results from experiment Exp-E1 (4.4.5) are shown in Figure 5.10 and Figure 5.11. The left-
most figure shows the results when starting with 10% and 20% original English data, and the
rightmost figure when starting with 80% and 100%. Figure 5.10 shows no clear trends, as the
accuracy and F1 sometimes increase when more translated samples are added, and sometimes
decrease. This could be due to the inherent variation between runs, as further discussed in
section 6.3.3. Due to this, it is hard to draw any conclusions from these results, but what can
be said is that adding translated samples seems to have a greater e�ect (positive or negative)
if the original amount of English is small. Comparing the two graphs, the accuracy for the
starting levels of 10% and 20% varies with just over 2 percentage points. For the starting levels
of 80% and 100% (being augmented with more than three times the data) the accuracy varies
with less than 1 percentage point.

20 40 60 80 100
0.47
0.48
0.49
0.5

0.51
0.52
0.53
0.54
0.55
0.56

Percent of english original data used

A
cc

ur
ac

y

English 20% original
English 10% original

80100 150 200 300
0.56
0.57
0.58
0.59
0.6

0.61
0.62
0.63
0.64
0.65

Percent of English original data used

A
cc

ur
ac

y

English 100% original
English 80% original

Figure 5.10: Accuracy on English data when augmenting with syn-
thetic data. Starting levels at 10, 20, 80 and 100%.

20 40 60 80 100

0.16
0.17
0.18
0.19
0.2

0.21
0.22
0.23
0.24

Percent of english original data used

F 1
-s

co
re

English 20% original
English 10% original

80100 150 200 300
0.24
0.25
0.26
0.27
0.28
0.29
0.3

0.31
0.32
0.33
0.34

Percent of English original data used

F 1
-s

co
re

English 100% original
English 80% original

Figure 5.11: F1-score on English data when augmenting with syn-
thetic data. Starting levels at 10, 20, 80 and 100%.

64

5.8 Inference and Training Time

Table 5.25: Augmenting with a sampling thresh-
old of 50

Top 3 Cat. Acc. 0,782
Top 5 Cat. Acc. 0,828
Segment Total Top Mid Bottom
Accuracy 0,627 0,818 0,665 0,357
Precison 0,383 0,759 0,594 0,325
Recall 0,332 0,801 0,628 0,251
F1 0,331 0,778 0,600 0,258

Table 5.26: Oversampling with a threshold of 50
(same as Table 5.24, for comparison)

Top 3 Cat. Acc. 0,784
Top 5 Cat. Acc. 0,830
Segment Total Top Mid Bottom
Accuracy 0,632 0,824 0,668 0,366
Precison 0,420 0,757 0,598 0,371
Recall 0,350 0,806 0,632 0,275
F1 0,353 0,778 0,606 0,285

The results for augmenting data with translated samples for underrepresented classes are
shown in Figure 5.25. Table 5.26 from section 5.6 that shows the same experiment but when
oversampling with original English samples is also shown to allow for an easier comparison.
Table 5.25 shows that the accuracy for the top- and middle segment is very similar if compared
to the XLM-R baseline, but that augmenting with translated samples for underrepresented
classes in fact does increase accuracy for the bottom segment by almost 6%. Comparing
Table 5.25 to Figure 5.26 shows that oversampling using original English samples yields better
results for almost all metrics calculated.

5.8 Inference and Training Time
The inference time of the models with respect to the di�erent configurations when predict-
ing on a CPU is shown in Figure 5.12 and Figure 5.13. The inference time for the smaller
DistilBERT model is as can be seen significantly shorter than that of XLM-R.

Figure 5.12: Inference time
for di�erent sequence lengths
with a batch size of 1

Figure 5.13: Inference time
for di�erent sequence lengths
with a batch size of 4

When predicting using a GPU the inference time drops by a factor of 10 for both models,
as shown in Figure 5.14 and Figure 5.15.

The training time for each model varied both between the models due to di�erences in
parameter count, learning rate, and batch size, but also in-between runs for each model due
to the nature of random initialization and the varied amount of training data. The average

65

5. Results

Figure 5.14: Inference time
for di�erent sequence lengths
with a batch size of 1 on a
Nvidia T4 GPU

Figure 5.15: Inference time
for di�erent sequence lengths
with a batch size of 1 on a
Nvidia Tesla P100 GPU

training times are presented for the models in table 5.27, for models trained on a Nvidia Tesla
P100-SXM2 GPU. Not only is the training time per epoch longer for the larger XLM-R, but
the average number of epochs per training run is almost the double that of DistilBERT.

Table 5.27: Training time for DistilBERT and XLM-R.

Model Average no. of Epochs Average Training Time Average Time per Epoch
DistilBERT 6.60 5h 45min 52min
XLM-R 12.75 26h 36min 2h 5min

66

Chapter 6

Discussion

In this chapter we will discuss the experiments conducted throughout this theses, the results
yielded from these experiments, and what conclusions can be drawn. Furthermore, this chap-
ter will discuss the use-case and implications for the company, and limitations for the way
this thesis was performed. Lastly, we will present the conclusions and future work – possible
areas to explore that we think could complement this thesis and lead to interesting research.

6.1 Experiments
In this section we discuss and interpret the results from the experimental phase, to bring
nuance and contrast them to related research in the field.

6.1.1 Baselines
The results produced by a shallow model with FastText word embeddings showed to be dras-
tically lower than those from deep learning models. While it is rather unsurprising given a
problem of this scale, it shows that deep learning is a viable and promising area to explore
for this context. The performance of the CNNs are significantly better than the FastText
model, and are surprisingly equal between the monolingual and multilingual domain. This
was unexpected due to the belief that training on the multilingual data would require a larger
vocabulary for the tokenizer. It could however be the case that the size is already well beyond
what is needed in the monolingual case and could be reduced without a loss in performance.

Given a classification problem with over 1,300 classes, the baselines for the deep learning
models are impressive. The top 1-, 3-, and 5 accuracy levels of over 61%, 75% and 79% for Dis-
tilBERT and XLM-R are quite striking, considering the identified performance degradation

67

6. Discussion

rate of nearly 1% per added class of Liu et al. [47]. To be noted is that the authors just men-
tioned achieved both accuracy and F1-scores of 80%, whereas the baselines in this report show
a significant di�erence between the two (accuracy and F1). The large di�erence between top
1 accuracy and top 3 accuracy of 14 and 16 percentage points for XLM-R and DistilBERT
respectively (see Figure 5.5) indicate that there might be potential to fine-tune the model
even further as there are many cases where the model comes just short of selecting the right
label. The results (found in table 5.4 and 5.5 show that the XLM-R model performs better
on the top- and middle segments of classes, but significantly worse on the bottom segment,
resulting in the XLM-R having a lower overall accuracy than the DistilBERT model. Why
XLM-R has a tendency to perform worse on the bottom segment is unclear, but throughout
the project there seems to be a connection between increased performance when training on
the translated data, rather than using the original data.

The finding that DistilBERT can deliver results on par with those of larger models such
as RoBERTa (and XLM-R) goes in line with the previous work of Shaheen et al. [48], but
is not consistent with the findings presented in the original paper of Liu et al. regarding
RoBERTa [29], on which XLM-R is based. As mentioned in section 5.2, one should have in
mind that during these baseline experiments, the two models have been trained and evalu-
ated on di�erent amounts of data, since the samples without translations were inapplicable
when training the monolingual DistilBERT model. On one hand, this can be thought to help
the XLM-R model perform better, as it has in fact been trained on more data than the Distil-
BERT model. However, the “additional” data is solely samples that have unknown predicted
language, meaning that these samples in general are of bad quality, with very limited amounts
of interpretable text.

At first sight, it might seem strange that the XLM-R model has significantly lower over-
all precision, recall and F1-score whilst having an accuracy that is almost the same as the
DistilBERT model. This can be explained by the fact that overall accuracy is calculated for
all samples, whilst (macro) precision, recall and F1-score is calculated as an average over all
classes. The bottom segment of classes consists of 25% of the data, and is hence a�ecting the
overall accuracy the same amount as the top segment. However, due to the way the segmen-
tation of classes was done, the bottom segments consists of over 1,000 of the 1,355 classes,
meaning that a model’s performance on the bottom segments has a very substantial e�ect on
the macro-weighted overall precision, recall and F1-score.

Regarding the confusion matrices in Table 5.7 and Table 5.8 it is noteworthy that the two
classes (out of the top 10 classes) that got confused to the highest extent was class 5 and 16, and
class 140 and 159. For both cases, the classes getting confused map to similar components of
a truck, which are probably located close to each other and have similar functionality. Due to
this, it is not hard to see how the symptom descriptions can be similar for these components,
which is probably why the models confuse them to a higher extent than other classes.

6.1.2 Exp-A: Effect of Cleaning Data
When first designing the experimental setup to investigate whether di�erent methods of
cleaning the data could a�ect model performance, the hypothesis was that the results would

68

6.1 Experiments

di�er quite significantly between the di�erent experiments. However, looking at the results
it is evident that the di�erent cleaning methods did not a�ect model performance signifi-
cantly at all, and that performing none of the cleaning methods actually produced the best
results for many of the evaluation metrics studied.

The only processing step that actually can be said to improve the model’s predictive per-
formance regarding some evaluation metrics was the removal of standard phrases. Why this
is the case is not immediately clear, but there are some possible drawbacks with the other
methods. For example, the removal of duplicates and removal of long and short samples,
entire samples were removed. Even though the information removed was thought to be con-
fusing to the model and thus lowering its performance, these cleaning techniques reduced
the amount of training data.

Regarding the removal of all non-alphanumeric characters from the data, the processing
step should in theory reduce the number of unique tokens in the data, and was thought to
make predictions easier since all instances of characters not from the English language were
removed. However, since this processing step removes certain letters from words whilst keep-
ing the rest, it is possible that the changes in structure confuse the model, or that important
context is lost. However, removing standard phrases does not really have a clear drawback.
Since only the standard phrase is removed from a sample, no valuable information should be
lost. Also, since entire phrases are removed, no words are left in an altered and unstructured
way. It is also the cleaning method that is the most understandable with regards to how the
data is actually altered.

Different ways of cleaning data
The di�erent ways of cleaning the data could naturally have been performed in many dif-
ferent ways, and some parameters could have been chosen with more concern. Regarding
the removal of long and short samples, the thresholds of 4 and 67 could have been chosen
di�erently to remove more or less data, possibly based on a more thorough inspection of the
data to determine at what lengths the samples were deemed less informative. It could also
have been done in a more sophisticated way, perhaps through finding a way to measure the
informational content of a sample.

When removing all non-alphanumeric characters from the samples the characters them-
selves were removed, but other characters in the a�ected word were left untouched. An
approach that might have proven to be more e�ective is to remove the di�erent diacritics
from the texts, instead of removing the entire character. That would mean that every instance
of for example the characters é, ê, ȩ, ě and ë would simply be replaced by an e. However, the
results from the experiment go somewhat in line with other research showing that BERT-
based models are not improved by the removal of non-alphanumeric characters [61].

The identification of what standard phrases were present in the data was done solely
based on manual inspection of the data. This approach is rather primitive, and could have
been performed in a more sophisticated way. One interesting approach could have been to
calculate what word-orders of a certain length that was most frequent in the data. Starting
at n = 2, taking out all word-orders of length two and sorting them based on frequency would
probably have led to more standard phrases being identified. It would then also be possible

69

6. Discussion

to increase n, thus being able to identify longer phrases that are common.

When removing duplicate samples, the hypothesis was that many of the duplicates would
confuse the model, especially those with identical input texts but with mappings to di�erent
classes. However, the results again show that this processing step actually makes the model’s
predictions worse. Regarding the samples with identical input text and class, it was hard to
tell if they originated from the same workshop order but for some reason had been added
to the dataset multiple times, or if they actually referred to di�erent workshop orders. In
hindsight, it would have been interesting to divide this experiment into two parts, one where
all identical duplicates were removed, and one where only duplicates mapping to di�erent
classes were removed. This would allow for more nuanced insights into how these two types
of duplicates a�ect the model. It is also probable that the original distribution will naturally
include duplicates, which might be a reason to not eliminate duplicated samples in the future.

Variation between runs
When looking at figure 5.1, it is evident that the accuracy varied between the four runs for
the di�erent segments. One insight from this figure is that the accuracy for all data (overall)
does not vary between runs much at all, but that the accuracy for the di�erent segments varies
somewhat, especially for the top- and bottom segments. The reason for this is thought to be
that the more samples the accuracy is calculated for, the more stable it should be between
runs. With this reasoning it is not surprising to see that the variability between runs is the
largest when calculated for the top- and bottom segments, as these two segments contain
25% of the data each. The middle segment consists of 50% of the data and overall accuracy is
calculated for 100% of the data, which should according to this reasoning make the variability
between runs smaller, as is the case.

6.1.3 Exp-B: Multilingualism in the dataset
When comparing the DistilBERT model and the XLM-R model in a context where the mod-
els were trained on comparable data, shown in Table 5.16 to Table 5.17 no large di�erences
were shown in the results. The overall trend of the XLM-R model performing better on the
top- and middle segments but worse on the bottom segment is yet again apparent in both
cases. Due to the results being so similar, and the overall accuracy between the two mod-
els di�ering only 0.1 percentage point for both cases it is hard to get indications whether
this classification problem is best tackled using a monolingual model on translated data or a
multilingual model on original data. It is however interesting to see that both models per-
form better in almost every metric when trained and evaluated without the samples that do
not have a translation. For the DistilBERT model the overall accuracy rises from 61,4% to
61,9%, and for the XLM-R model it rises from 61,3% to 62,0%. This result could imply that
the samples without translations (all belonging to the unknown-category) in fact are of such
bad quality that their presence in the data worsens the models’ predictive performance. It
should be noted, however, that the variability of the results between training runs means the
di�erences can not only be attributed to the di�erence in data.

Table 5.20 shows that an XLM-R model also performs well when being trained on the

70

6.1 Experiments

translated, monolingual data. This is rather unsurprising, as the XLM-R model is pre-trained
on large amounts of English data. Compared to the XLM-R baseline, the results show that
the model trained on translated data gets slightly better results for the bottom segment, but
slightly worse for the top- and middle segments. It is also noteworthy that the XLM-R model
trained on translated data performs almost as well as the DistilBERT baseline. This goes in
line with the previous work by Rust et. al [62], showing only very small performance de-
creases for languages that are well represented in the multilingual model’s vocabulary when
compared to their monolingual counterpart. It is however important to recall that the Dis-
tilBERT model is of smaller size and has fewer parameters than XLM-R, and it is possible
that these results would di�er more should the two models be of more comparable sizes.

Perhaps the most surprising finding throughout this thesis was the realization that the
smaller and monolingual DistilBERT model performs equally well on the original data as it
did on the translated data, as shown in figure 5.19. Being pre-trained only in English, the
expected results was that its performance on multilingual data would be far below that of
the performance on monolingual, English texts, as the vocabulary is several times larger and
contains words that intuitively would seem impossible to break down into sub-word tokens
which carry any meaning given the pre-trained word embeddings in DistilBERT. Why this is
the case is hard to tell.

One possible explanation could be that the specific task, in this case text classification,
is a task that in a way does not require substantial amounts of general language understand-
ing. It could be the case that classifying short text samples only requires the models to learn
mappings between specific tokens and classes, and thus not really needing a thorough under-
standing for the language.

If the task would have been for instance multilingual question answering, where a model
is expected to generate an answer sentence based on a question input in a given language,
it might be required to actually understand the language and its grammar better. In such
a setting, it is possible that a model that has been trained in a monolingual context would
underperform immensely. However, further research is needed to understand why the Dis-
tilBERT model performs nearly as well as the XLM-R model on this specific multilingual
dataset.

6.1.4 Exp-C: Language-Wise Performance
Just like in the dataset explored in this project, the distribution of languages on which XLM-
R is pre-trained is uneven, meaning the model is exposed to some languages to a much
larger extent than others. A consequence of this is that certain languages (those being over-
represented during pre-training and among the most frequent languages during fine-tuning)
are languages which the model was believed to perform well on, even if it is artificially re-
duced to an under-represented language. The question to study in Exp-C, however, was first
if there was a relative increase in accuracy for a language, in relation to other languages and
overall performance when augmenting with data in only the respective language.

The results in figure 5.3 show that an increased amount of data in Language X and Lan-
guage Y results in increased accuracy for the respective language. It also shows that the accu-
racy levels for the non-Language X and non-Language Y languages stay somewhat constant,
indicating that an increase of data in a certain language mainly seems to a�ect the perfor-

71

6. Discussion

mance on that particular language. There is a reduction in the incremental increase in accu-
racy as more data is added, and the biggest increase in accuracy is gained when going from
0% data to 20% of the total amount of Language X data. This implies that there is a point of
diminishing returns, after which adding more data in a certain language has a lesser e�ect.

We identified two possible explanations for the isolated increase in accuracy for a lan-
guage from increasing the amount of data. First, it can be due to the model getting an in-
creased understanding for that particular language, and the domain-specific technical terms
in this language. Secondly, the observed e�ect can originate in an increase in the number of
samples for the classes that are represented in the language. After investigating this possi-
bility further, it turns out that there are only five classes that are unique to Language X and
six classes unique to the Language Y language in the data. Thus, all other classes in Language
X and Language Y are also to be found in other languages. The claim that the accuracy for
Language X and Language Y increase due to an increasing understanding for the languages
in isolation, rather than an increased amount of data for the classes represented in the lan-
guages cannot be said to be confirmed with certainty. However, the fact that the number of
unique classes for both languages is very low, that the class distribution is equal between the
languages (see Fig 3.3), and that the accuracy of other languages remains somewhat constant
imply that this is the case. This also goes in line with the research of Singh et al. [53], who
show that models like Multilingual BERT do not embed di�erent languages into a shared
space, indicating that the representations learned in one language do not necessarily transfer
to other languages.

As seen in figure 5.5, there is a trend showing that an increased percentage of classes
in the top segment is associated with higher accuracy for a language, and that an increased
percentage of samples in the bottom segment is associated with a decreased accuracy. This
is rather unsurprising, as it is clear from previous results that all models perform better on
the top segment classes and worse on the low segments. What is interesting in figure 5.5 are
mainly the "outliers", languages that do not follow the overall trend very well. Looking at
the leftmost plot, there is one language with a very high percentage (36%) of its samples in
the top segment of classes, but which is still only predicted with 44% accuracy. This is the
unknown-category, and this result once again supports the assumption that the samples in
this category are of lower quality than for the other languages, and thus harder for the model
to predict.

Figure 5.6 also provides some interesting insights. Rather unsurprisingly, the figure shows
that the accuracy for a language tends to increase when more data in that language is added.
The rightmost plot however shows something interesting. A hypothesis before performing
these experiments was that the more unique classes that were represented in a language, the
harder the classification task would be, and hence the accuracy for that particular language
would be lower. Figure 5.6 shows that this is not the case for the experiments done in this
thesis. Although a somewhat weak trend, the relationship between the number of unique
classes and accuracy seems to be the opposite. This could be explained by the fact that a lan-
guage with many unique classes is also likely to be well represented in the data, as illustrated
in figure 3.4. This figure shows that a language with a high number of unique classes is also
likely to be well represented in the data, with Language Y being the only major exception.

72

6.1 Experiments

This could be an explanation for why there is a trend showing that languages with many
classes tend to be predicted better. For all scatter plots in figure 5.5 and figure 5.6 it should
be noted that the data shows large variability, which is why it is hard to draw any certain
conclusions from the figures, and the trend lines are simply for illustrative purposes.

6.1.5 Exp-D: Oversampling
While it is clear that oversampling led to improvements among underrepresented classes, it
is important to study whether it comes on the expense of performance for the middle- or
top segments. It can be argued that such a trade-o� is not beneficial in a real use-case where
it is crucial to have high predictive performance on the most frequent classes, and where
the desired result is to increase the performance of the underrepresented classes without
negatively a�ecting the performance in the other segments. However, there is no significant
decrease in performance of the middle segment as shown in Figure 5.24. In fact, the overall
performance of the oversampled XLM-R model (with a threshold of 50) is better than that of
the baseline model. This indicates that balancing the dataset through duplication of samples
aids the model in training to not overfit to the most frequent classes, and is a viable method
to mitigate the class imbalance issue.

In experiment Exp-D, it was decided to only focus on oversampling of infrequent classes.
The reason for not undersampling the most frequent classes was to not reduce the amount
of data for the top segment, since it is a key goal to maintain high performance on frequent
classes. Undersampling can be a more viable alternative when the cost of misclassification for
an underrepresented class is much higher than that of overrepresented classes. Examples of
such situations are in fraud detection or medical diagnostics of rare diseases, where it is more
critical to correctly identify the low-frequency classes, even if it comes at a cost of reduced
precision for the high-frequency classes. This was understood as not being the case in this
context, and was therefore not prioritized.

Note the increase in top 3- and top 5 categorical accuracy, when comparing the results
from oversampling (78.4% and 83.0%) to the baseline XLM-R model (75,4% and 79.2%). It
was hypothesized that while oversampling minority classes might not result in perfect pre-
dictions for those classes, it should increase the model’s predicted probability for them. It
was therefore expected to see an increase in the mentioned metrics due to the correct class
more often being in the top k predictions. Comparing table 5.24 to the baselines in tables 5.4
and 5.5 it can be seen that the top 3- and 5 categorical accuracy for XLM-R improves by a
few percentage points due to the oversampling. While these findings support the hypothesis,
it is noteworthy that it is only marginally better than the results achieved with DistilBERT.

6.1.6 Exp-E: Augmentation Through Unidirectional
Translation

The results in section 5.7 show only minor changes in accuracy when the English data is aug-
mented with synthetic, translated samples. Although some improvements were made, the
results imply that using translated samples perhaps is not the best way to increase perfor-
mance for underrepresented languages in this context. The results are also somewhat hard
to interpret since the accuracy sometimes increases as more data is added, and sometimes

73

6. Discussion

decreases. This is thought to be due to two factors. First, since the di�erences in results are
so small, it is possible that the inherent randomness between runs, as further discussed in
Section 6.3.3, a�ects the results more than the actual adding of translated data. Secondly, it
is possible that the data quality di�ers for the translated samples added for the di�erent con-
figurations. Since these samples are randomly sampled from the training data, it is possible
that some configurations contained more ambiguous data, or more data in underrepresented
classes. When using translated samples to augment the data for infrequent classes in Exp-
E2, the results show a greater e�ect, as the accuracy for the bottom segment is 6 percentage
points higher than the XLM-R baseline. However, comparing to the the case where the data
was oversampled by original English samples shows that oversampling increases predictive
performance even more.

Looking at the results from Exp-E2, the results show that the oversampling with original
English samples yields better performance for almost all of the calculated metrics compared
to augmentation with synthetic samples. One explanation to this result is that the translated
samples used for augmentation are already present in the training data but in their original
language. Therefore the translated samples are essentially duplicates, just in a di�erent lan-
guage. Perhaps the model’s connections between words in di�erent languages are so strong
that adding the translated samples does not provide any new information. This is however
not supported by the finding from Section 6.1.4 that the model seems to improve in di�er-
ent languages in isolation. Another explanation could be the quality of the translation. By
translating the samples, it is possible that information is lost. As shown by the work of Van-
massenhove et. al [63], machine translation often fails to render the same lexical diversity
and richness as in the original texts. Perhaps this causes the problem descriptions to lose
specificity, thus rendering a translation that does not describe the problem as accurately as
the original description. This again, however, goes against the findings that models generally
perform well on the translated data.

6.2 Text Data and Future Use Case
In this section we discuss the importance of data quality in a future use-case, and other critical
aspects that will be of importance when deciding on the use of transformer-based language
models.

Text data
As described in chapter 3, the inherent flaws that were identified in the data point to the
fact that improved selection and filtering can be applied in advance, to not end up with
datasets containing empty points with no information and to reduce the number of obscure
and confusing samples of low quality. Data quality is an important factor in the creation of
automated systems and can be a decisive factor of the final performance of machine learning
models.

The ISO-25000 series of standards, Systems and Software Quality Requirements and Evalua-
tion, has the goal of creating a framework for the evaluation of software product quality [64].
Specifically, The Data Quality Model defined in ISO-25012 establishes the main data quality

74

6.2 Text Data and Future Use Case

characteristics that must be taken into account when assessing the properties of a data prod-
uct. It outlines how requirements on data can be formulated through 15 characteristics. Some
of the characteristics are referred to as inherent. Inherent data quality refers to the “degree to
which quality characteristics of data have the intrinsic potential to satisfy stated and implied
needs when data is used under specified conditions” [65].

Given the results from the data analysis, we believe that there is a limit to model perfor-
mance given the actual datasets, and that increased quality could allow for larger improve-
ments in predictive performance than those achieved in this thesis. We also believe it can
lead to higher potential quality of a final product. The areas where we see data quality could
be improved are the following areas, described as per the ISO-25012 Data Quality Model.

• Accuracy: The degree to which data has attributes that correctly represent the true
value of the intended attribute of a concept in a specific context of use.

• Completeness: The degree to which subject data associated with an entity has values
for all expected attributes and related entity instances in a specific context of use.

• Consistency: The degree to which data has attributes that are free from contradiction
and are coherent with other data in a specific context of use. It can be either or both
among data regarding one entity and across similar data for comparable entities.

• Credibility: The degree to which data has attributes that are regarded as true and
believable by users in a specific context of use. It includes the concept of authenticity
such as the truthfulness of origins.

The data used in this thesis project contains many instances which do not go in line with
these characteristics – such as empty or incoherent text descriptions not related to the context
(for example long conversations), with lengths varying from a single word to several hundred
words and identical samples mapping not only to di�erent classes but also to di�erent main
groups. Increased "accuracy" in this context would mean that a sample actually contains
an informative text description, instead of only a sequence of numbers or seemingly non-
informative notes.

This is not only important to think about in the context of this trial case, but even more
important when looking at the intended future use-case, to maximize the value of an ap-
plication in practice. Using better filtering and curated datasets can probably yield more
high-quality training data. If so, curating a dataset might achieve higher performance in a
training context, but it is also important to consider the fact that the flaws in the dataset
might be more representative of the true distribution of the data which the model will see
in a real use-case. To increase the potential performance and benefit of a system like this in
practice it therefore seems important to implement measures which reduce the risk of peo-
ple entering text descriptions of low quality, not in line with the characteristics mentioned
above.

Practices such as setting a minimum limit of words or nudging a user through the use of
hints, prompts and descriptive questions in the application could lead to more consistency
and relevance, especially if the text is generated by a person with less technical expertise and
vocabulary. There are automatic frameworks for data validations that can aid in this process,
such as Great Expectations [66].

75

6. Discussion

Future use-case for the company
The data used in this thesis is generated after troubleshooting of the truck has been done.
However, it does also include the symptoms that made the customer aware of something
being malfunctioning in the truck, so it is a combination of descriptions of symptoms and
post-diagnostic results. In a future use-case, the data will most likely only be descriptions of
symptoms, as one of the applications of these predictive models is to give mechanics an idea
of what the faulting part might be before the truck is even analyzed. Since the text descrip-
tions in the future use-case most likely not will be written by technicians at the company,
but by people with less technical know-how, the jargon and language might di�er. These
factors would most likely lead to a change in the distribution, causing the models explored
in this thesis to underperform. They do however, show promising results that indicate that
the technology could perform well in other domains, and in a real-life use-case.

The potential benefits of using pre-trained language models in troubleshooting show
themselves in several promising ways. For the workshops connected to the company, they
could provide improved workflows with e�ciency gains related to more specific and accu-
rate estimations of the time requirements for the troubleshooting process in each individual
vehicle case. Having an early prediction as to what could be wrong, gives an understanding
for how long a troubleshooting might take. It can then be decided to schedule troubleshoot-
ing for a shorter period, say two hours rather than eight hours, just to be safe. It could also
allow for more e�ective inventory planning and guarantee spare parts availability to a higher
extent, thereby reducing potential delays in service. Both of these scenarios would directly
translate into gained customer value and help guarantee uptime of customers’ vehicles, in
turn providing long-term positive e�ects for the company. More generally, this research area
could allow for a new troubleshooting process, transforming diagnostics overall to focusing
on symptoms, rather than being heavily focused on error codes and manual inspection.

The results shown in Figure 5.12 to Figure 5.15 highlight the implications of using large
scale models in production. In a real use-case, latency would be of great concern and this
in turn would decide what machines are needed for deployment. It is not easy to determine
what magnitude of latency could be deemed as "acceptable" for these models in production,
but if a repair needs to be scheduled when having direct contact with the customer, it is of
importance that the models can give an output without delay to the service administrator. As
described in Usability Engineering, a response time of 0.1 seconds is about the limit for having
the user feel that the system is reacting instantaneously, which naturally is desirable for an
application of this nature. Given that the total latency for an application using these models
in a real use-case will be the sum of both the inference time of the model and the latency
of the connection to the server on which the model is hosted, it would be desirable to have
the model inference time under 50 milliseconds. When looking at using a batch size of 1,
meaning that the model predicts one sample individually (which is likely to be the case in a
real use-case), Figure 5.12 shows that running the models on a CPU is probably not a viable
option. Although it is unlikely that models in a live use-case would need to have a maximum
sequence length of 256 or even 128, Figure 5.12 shows that the XLM-R model is unable to be
run on a CPU with satisfying inference times. Therefore the model would probably need to
be hosted on a GPU. In Figure 5.14 and Figure 5.15 it is shown that the more powerful GPU
Tesla P100 is able to perform predictions fast for both the DistilBERT model and the XLM-R

76

6.2 Text Data and Future Use Case

model, but that the less powerful Tesla T4 also is su�cient to provide inference times under
50ms for both models. Due to this, it is plausible to believe that this GPU (or another model
of roughly the same capacity) would be chosen in a live use-case.

There are naturally costs associated with hosting these models in a real use-case. If hosted
in a cloud environment such as Google Cloud or Amazon Web Services, costs would be asso-
ciated with accessing a GPU based on what time the company wants to maintain this access.
To get more concrete, yearly access to one Tesla T4 GPU would cost the company around
$1300 yearly on Google Cloud. If for some reason the more powerful P100 GPU is deemed
more appropriate for hosting the models, this number would increase to $6300*. Naturally, a
GPU on one cloud environment would not be su�cient given the company´s global presence,
and many environments hosted on servers in di�erent geographic locations would probably
be necessary. However, one GPU could be used to process the data from one geographic re-
gion, given that the intensity of model invokes does not exceed the inference time.

The training time of the models will a�ect how they can be used in production, as they
will need to be re-trained at a certain interval, and perhaps updated with regards to changes
in the manufacturing of vehicles. If a change or problem in the production line leads to an
increased risk of a certain fault, this will propagate and change the distribution of faults over
time. Having models which can adapt to these changes will require updates and training of
models with new data. With XLM-R taking almost five times longer to train when compared
to DistilBERT, it is easy to see how this might a�ect the pace of development.

The di�erences between the models also a�ect their respective usefulness when studying
the future use-case in production. Not only are time requirements for training of importance,
but during deployment more lightweight models are of course also preferable. When trying
to analyze the benefits of using multilingual models in the context of reduced need for trans-
lation, there are two main areas involved. One is the financial aspect that relates to the cost
of using automated translation services. The second aspect is integrating the translation step
in the design of the application. As multilingual models are only trained on a certain set of
languages, there are potentially markets where the company is present whose language is not
included in the pre-training of some multilingual models, resulting in a continued need for
translation services. The financial aspect related to costs of translations is considered to be
the most important factor in this case. As the discussion regarding potential costs is based
on estimates, the number of invocations needed are not necessarily reflecting what would be
a true use-case scenario. To truly understand the benefit of multilingual models that reduce
the need for translation services, a thorough analysis of the expected use is of importance
to get an accurate estimate of the invocation intensity. Regarding latency, it is also hard to
draw a sharp line regarding what is acceptable or not without knowing the true requirements.
These are all factors that need to be considered when choosing whether to use a mono- or
multilingual model in the future use-case.

*Numbers gathered from www.cloud.google.com at the time of writing this master’s thesis.

77

6. Discussion

6.3 Limitations
This section reports a critical discussion of our work including the most important threats
to the validity of our conclusions.

6.3.1 Model Architecture Choice
When it comes to constructing machine learning models, deciding the architecture can some-
times seem more of an art than a science. In this thesis pre-trained language models have been
acquired from the public library provided by HuggingFace, which limits the flexibility and pos-
sibility to customize models. In the future, adapting a model to the specific use-case could be
of benefit. In the case of using pre-trained language models like the ones used in this thesis
project, fine-tuning for a downstream task can be done in several ways, and there is a large
room for customization. The model has to be adapted to the task at hand, which can lead
to a great variety in model architectures. In the case of implementing and fine-tuning a pre-
trained language model for a downstream classification task, the following are two possible
approaches:

• Adding custom classification layer(s) on top of the base model, with the base model
being trainable.

• Adding custom classification layer(s) on top of the base model, with the base model
being non-trainable (frozen).

There are di�erent motivations for using these di�erent options. During pre-training,
the models learn language understanding in its core layers. One risk connected to allowing
for the base layers to be trained is that it can “disrupt” or interfere with the pre-training,
essentially leading to the model “forgetting" its original understanding. For this reason, one
can instead choose to freeze the base layers, meaning they receive no updates during training,
hence staying intact. Instead an additional neural network can be added to the model, which
takes as input the numerical word embeddings produced by the base layers and learns the
classification task at hand. By using small learning rates, the risk of the model forgetting
previous knowledge can be mitigated and allow for fine-tuning of the whole model. The
reason for doing this is that it can adapt the full model to learn representations in a way more
adapted to the target task at hand. The two above mentioned methods can also be combined,
through the process of gradual unfreezing, mentioned in Section 2.7, where the parameters of
di�erent layers are gradually made trainable.

In this thesis, the chosen method was to allow for the training of the parameters in the
original pre-trained base layers, as early experiments with only training custom classifica-
tion heads proved to be less e�ective and often resulted in low-quality results. Using the
pre-trained models available in the HuggingFace-library designed for sequence classification
provided models which are readily available to use for text classification tasks, which also
made implementation easy.

Comparability between models
Given that all models in these experiments are di�erent to some extent, they are not always
easily comparable. In the case of di�erences in the amounts of original and translated data,

78

6.3 Limitations

the mitigation in this report has been to train both mono- and multilingual models on sets
where missing translations are substituted by their original text, and also where the samples
missing a translated text are dropped, as discussed in section 6.1.3. There are also significant
di�erences in the sizes of the DistilBERT and XLM-R models, which impact the capacity
for the models to adapt to the problem. However, from the experiments conducted in this
thesis, this increased capacity does not necessarily lead to significant increases in predictive
performance. With the expectation that XLM-R would be a generally more high-performing
model with a larger capacity for learning and generalization, and given that the automatic
translation step was expected to cloud or distort the data to some extent, it was quite unex-
pected to see DistilBERT outperforming XLM-R on the translated data. What could then be
the reason for this? As DistilBERT is only pre-trained using English data, it has a language
domain much smaller than that of XLM-R. The same is true for the vocabulary of tokens for
the two models. It could then be speculated that moving from the multilingual domain to the
monolingual domain simplifies the problem, given that the automatic translation service is of
high quality and can thereby accurately translate the data. While XLM-R has a significantly
larger capacity, it is also trained on over a hundred languages, which to some extent have
to “share” this capacity. This should, however, not be a problem according to the creators
of XLM-R, who claim to achieve state-of-the-art results comparable to those of RoBERTa
in the monolingual case, and that the multilingual capacities do not sacrifice per-language
performance [30].

6.3.2 Interpretability of results
The scale of the problem at hand makes fully understanding the results complicated. The
large number of classes, multiple languages, and the size of the models make it hard to fully
evaluate experiments in such a black-box situation as in this thesis project, as there is cor-
relation between several important aspects. For example, the e�ect on both class-wise and
language-wise performance from increased amounts of data will be highly correlated, and it
is hard to study one or the other in isolation. As a focus in this thesis was to understand
what would a�ect performance for classes and languages, not being able to isolate individual
aspects of the problem makes it hard to understand what the success factors are in high-
performing models. It also becomes di�cult to answer questions such as why a monolingual
model can perform just as well on multilingual data as a model with larger capacity, trained
on multiple languages.

It is not easy to understand fully how the language understanding of models such as Dis-
tilBERT and XLM-R works. As mentioned by Danilevsky et al. [67], the advances in the
quality of state-of-the-art models in NLP have come at the expense of interpretability. In the
paper they identify five major explainability techniques, one being feature importance, where
the main idea is to derive explanation by investigating the importance of di�erent features
used to output the final prediction. Such features can be lexical features in the text or latent
features like the word embeddings and attention scores between words learned by the deep
models used in this thesis project. While it is possible to extract attention scores, and study
embeddings for words and sentences to compare their similarity with respect to di�erent
metrics and thereby draw conclusions as to why a model performs well on certain languages
or classes, this kind of analysis is complicated and labor-intensive. Many levels of abstraction

79

6. Discussion

make the details in the results less clear and interpretable. This makes it hard to understand
what kind of characteristics would constitute a "high" or "low" quality sample, although we
have tried to do so in section 6.2 by looking at the lexical features of samples. Danilevsky
et al. refer to local explanations as those providing information or justification for a model’s
prediction on a specific input. In contrast, a global explanation reveals how the model’s pre-
dictive process functions in general, not connected to a specific input [67].

In a context with over 1,300 classes, finding local explanations and justifications become
very di�cult. The choice in this thesis project to segment classes based on support leads to
a simple breakdown which is easy to look at, but it is not possible to understand the e�ect
of changes in performance metrics on a class-by-class level. In classification tasks of smaller
scale, the use of confusion matrices and other tools can provide a detailed understanding of
classifier behavior. It can give insights regarding between what classes, or types of classes,
prediction errors are made. This can bring clarity to the question of what classes are prone
to be misclassified in favor of another, and allow for further research as to why that is. As
the full-scale confusion matrices in this project are of dimensions above 1,300 × 1,300 it was
decided to only present reduced versions for the most frequent classes. However, a possible
approach to help visualize could have been confusion matrix ordering [68].

6.3.3 Error Analysis
A potential source of error in this project is that working with translated data relies on an
external machine translation service. This leads to little insights as to how the texts are trans-
lated, and what it might entail. While manual inspection can be used to verify translations
to an extent, it is not certain that the translation service can perform well in a technical do-
main. As shown in the data analysis, there are several mistakes identified with regard to the
language of a certain sample. It is likely that the translation service is better at performing
translations in languages which it has seen more of earlier, which might be a problem if such
a translation would be used to generate synthetic samples in an underrepresented language.

Another source of error in this thesis is the variation in results identified between dif-
ferent runs. Although two models trained on the same data with identical hyperparameters
generally yielded very similar results, there were instances where the results between runs
di�ered with around 3% for some prediction metrics. As described by Dodge et. al. in Fine-
Tuning Pretrained Language Models: Weight Initializations, Data Orders, and Early Stopping [23],
distinct random seeds can a�ect the model’s performance, leading to substantially di�erent
results. According to Dodge et. al, the two factors influenced by the inherent randomness are
the weight initialization of the model and the data training order, the latter being in what
order the model processes the samples during training. It was with this in mind it was chosen
to run the experiments for Exp-A (E�ect of Cleaning Data) four times per configuration and
average the results. Unfortunately, as reported in section 5.8, the training of XLM-R models
was more time-consuming than that of DistilBERT models. Due to this it was deemed unfea-
sible to perform multiple runs for the experiments involving XLM-R models as it would have
exceeded our time budget, even though it would have added validity to the results presented
in this thesis.

There are other sources of errors in the work presented in this thesis that also arise from

80

6.3 Limitations

inherent randomness. When creating datasets for all experiment configurations not run on
the standard training set, the sampling from the original training set was done randomly.
For instance, creating the datasets used in Exp-C: Language Wise Performance in section 5.5,
the sampling from the total amount of Language Y and Language X data was done indepen-
dently for each configuration. This means that the samples used when training on 40% of the
Language X data could very well be completely di�erent from when training on 20% of the
data. The same goes for Exp-D: E�ect of oversampling and Exp-E: Augmentation through
unidirectional translation. This somewhat complicates the comparison of results between ex-
periments, as some experimental configurations might have had more samples in the bottom
segment of classes, or more samples of low quality than others. This was done in an attempt
to not introduce external influence on the sampling, and to keep the process completely ran-
dom, but is something that might a�ect the results presented in this thesis.

81

6. Discussion

82

Chapter 7

Conclusion

In this thesis project, we have explored the use of pre-trained, transformer-based language
models in the context of large-scale multilingual text classification for troubleshooting man-
agement. We have seen that models such as DistilBERT and XLM-R reach high levels of pre-
dictive performance considering the large number of classes, but that larger models do not
necessarily yield better accuracy. While there seems to be an upper limit of accuracy believed
to be caused by inherent traits in the data, there might be much potential left to explore in
the use of models such as XLM-R, especially in the areas of domain-specific pre-training and
improved fine-tuning (RQ1).

Increasing amounts of data in a given language lead to higher levels of accuracy for that
language, but little of this knowledge seems to be transferred to other languages. We see a
sharp early increase in accuracy for the first few thousand added samples in a language, and
continuing but decreasing improvements after this point. As the experiments in this project
show little potential in using translated texts to augment performance in underrepresented
languages, it seems crucial to obtain more data in each respective original language. Simple
techniques to balance and augment the training data, such as oversampling and automatic
translation, have been shown to improve model performance, especially for underrepresented
classes (RQ2).

Increased data quality, business understanding and usability requirements will be critical
aspects for the company to consider regarding further implementing multilingual models for
text classification, as the longer training- and inference time for the multilingual model can
have a large impact in a real use-case scenario. While the training time for the large XLM-R
model is long, it is worth noting that fine-tuning the DistilBERT-model to reach high levels of
performance is actually faster than training CNN-models and similar non-transformer based
models from scratch. This shows the promise of using pre-trained transformer-based models
as long as they are not too large. Therefore, leveraging transfer learning through pre-trained
language models is seen as beneficial in future research (RQ3).

Finally, the monolingual and multilingual domains do not seem to be very di�erent in
terms of complexity, as monolingual models perform remarkably well even on the multilin-

83

7. Conclusion

gual data, and smaller convolutional neural networks with custom tokenizers perform well
in both domains without an increase in size of either vocabulary or model.

7.1 Future work
With a problem of this size, there are many ways to go about trying to solve it. It is a compli-
cated context and there are several interesting ideas that have revealed themselves during the
writing of this thesis. In this section, we present the identified future research areas which
we think would complement the work done in this thesis.

The concept of ensemble models is one that could be of value in the company’s context of
large-scale multi-class classification. As there is a gradual hierarchy of abstraction when de-
scribing the sub-parts of a truck, there is a straightforward and logical way to see how classes
form clusters in which more specialized models could possibly be trained on subgroups of
the data, perhaps based on main group. A generalized model could be used to predict main
group and several "specialist" models could be used to in turn predict the target part within
that main group. A trial experiment on this particular subject was in fact conducted during
the work of this thesis, where a generalized model was trained to predict main group instead
of class. However, the data was found to contain large inconsistencies with regards to main
group, where many individual classes were found in multiple main groups. Hence, the data
would probably need to be more thoroughly structured for this approach to yield good re-
sults. Also, the ensemble model approach would naturally require a large number of models
to be trained, and hence also increase both training time and inference time. Therefore one
would need to consider the trade-o� between time e�ciency and accuracy if investigating if
ensemble models can be used in a real-life use-case.

The time dimension is not taken into account throughout this thesis, but could carry
valuable information regarding what errors are more probable than others. As some mal-
functions are more likely to occur at di�erent stages of a trucks lifetime, the distribution of
classes would probably di�er depending on if the truck is very new or has been in use for
several years. Hence, information such as production year and mileage could be used by the
models to get a better prior understanding of what classes are more probable than others. As
this information was not included in the data used for this thesis it was not possible to test
whether this approach could yield increased performance, but it would be interesting to see
if such information could be leveraged by the models.

An alternative method to increase the number of training samples is to use unlabelled
data. Such data from a similar domain is available to the company, and in the context of this
problem it would be possible to leverage the large amount of unlabelled data on which an
already fine-tuned model makes predictions. The predictions for which the model is most
confident are then considered as true labels, and those samples are thereafter added to the
training data on which another model is trained. This could be done iteratively, thus becom-
ing a form of Knowledge Distillation as described in section 2.4.2, where the original model can
be considered the teacher model that guides the learning of the second model with its predic-
tions. This way it would be possible to add samples to the training data that are completely

84

7.1 Future work

new to the model. One could also refine this idea, possibly only adding samples that are
predicted to a class in the bottom segment, and whose texts are dissimilar from the samples
already in the training data based on some similarity score.

A topic briefly touched upon in section 6.3.1 is further pre-training of transformer-based
models in a target domain. As the models are pre-trained on general language, but the target
task in this setting has a distinct and technical vocabulary, it could potentially give the mod-
els a more domain-specific language understanding. This would require training the model in
the same way the original pre-training was conducted, which for the models used in this the-
sis is Masked Language Modelling (MLM) and Next Sentence Prediction (NSP). It would be
possible to perform both within-task pre-training, in which the models are further pre-trained
on the data from the target task, and in-domain pre-training, in which the models are trained
on data from the same domain as the target task. Such data could for instance be technical
documentation and company-specific lexical resources, such as catalogues for spare parts or
troubleshooting manuals. As investigated in the paper How to Fine-Tune BERT for Text Classi-
fication?[45], within-task pre-training and in-domain pre-training can significantly boost the
performance of transformer-based models. Since the workshop orders used to train the mod-
els in this thesis often contain technical terms and names of specific sub-parts, it would be
interesting to see if further pre-training could improve the models’ predictive performance.

85

7. Conclusion

86

References

[1] Huggingface. https://huggingface.co/. Accessed: 2022-01-28.

[2] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[3] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[4] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[5] Nhan Cach Dang, María N. Moreno-García, and Fernando De la Prieta. Sentiment
analysis based on deep learning: A comparative study. Electronics, 9(3), 2020.

[6] James F. Allen. Natural Language Processing, page 1218–1222. John Wiley and Sons Ltd.,
GBR, 2003.

[7] Ayse Pinar Saygin, Ilyas Cicekli, and Varol Akman. Turing test: 50 years later. Minds
and machines, 10(4):463–518, 2000.

[8] Mike Schuster and Kaisuke Nakajima. Japanese and korean voice search. In 2012 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5149–
5152. IEEE, 2012.

[9] Taku Kudo and John Richardson. Sentencepiece: A simple and language indepen-
dent subword tokenizer and detokenizer for neural text processing. arXiv preprint
arXiv:1808.06226, 2018.

[10] F. Chollet. Deep Learning with Python. Manning Publications, 2018.

[11] Tomas Mikolov, Kai Chen, Greg Corrado, and Je�rey Dean. E�cient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[12] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word
vectors with subword information. Transactions of the Association for Computational Lin-
guistics, 5:135–146, 2017.

87

https://huggingface.co/

REFERENCES

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008, 2017.

[14] Andrea Galassi, Marco Lippi, and Paolo Torroni. Attention in natural language pro-
cessing. IEEE Transactions on Neural Networks and Learning Systems, 32(10):4291–4308,
2020.

[15] Ashish Vaswani, Samy Bengio, Eugene Brevdo, Francois Chollet, Aidan Gomez, Stephan
Gouws, Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki Parmar, Ryan Sepassi, Noam
Shazeer, and Jakob Uszkoreit. Tensor2tensor for neural machine translation. 03 2018.

[16] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu.
A survey on deep transfer learning. In Věra Kůrková, Yannis Manolopoulos, Barbara
Hammer, Lazaros Iliadis, and Ilias Maglogiannis, editors, Artificial Neural Networks and
Machine Learning – ICANN 2018, pages 270–279, Cham, 2018. Springer International
Publishing.

[17] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of research on machine
learning applications and trends: algorithms, methods, and techniques, pages 242–264. IGI
global, 2010.

[18] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345–1359, 2010.

[19] Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio. Word representations: A simple
and general method for semi-supervised learning. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics, pages 384–394, Uppsala, Sweden, July
2010. Association for Computational Linguistics.

[20] Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. Advances in neural
information processing systems, 28:3079–3087, 2015.

[21] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Je� Wu, Clemens Winter, Christopher Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners. ArXiv, abs/2005.14165, 2020.

[22] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text
classification. arXiv preprint arXiv:1801.06146, 2018.

[23] Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and
Noah Smith. Fine-tuning pretrained language models: Weight initializations, data or-
ders, and early stopping. arXiv preprint arXiv:2002.06305, 2020.

[24] Marius Mosbach, Maksym Andriushchenko, and Dietrich Klakow. On the stability
of fine-tuning bert: Misconceptions, explanations, and strong baselines. arXiv preprint
arXiv:2006.04884, 2020.

88

REFERENCES

[25] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[26] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression.
In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 535–541, 2006.

[27] Geo�rey Hinton, Oriol Vinyals, and Je� Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

[28] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a dis-
tilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108,
2019.

[29] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized
bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[30] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume
Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin
Stoyanov. Unsupervised cross-lingual representation learning at scale. arXiv preprint
arXiv:1911.02116, 2019.

[31] Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Special issue on learning
from imbalanced data sets. ACM SIGKDD explorations newsletter, 6(1):1–6, 2004.

[32] Qi Dong, Shaogang Gong, and Xiatian Zhu. Imbalanced deep learning by minority class
incremental rectification. IEEE transactions on pattern analysis and machine intelligence,
41(6):1367–1381, 2018.

[33] Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE Transactions on
knowledge and data engineering, 21(9):1263–1284, 2009.

[34] Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A systematic
study. Intelligent Data Analysis, pages 429–449, 2002.

[35] Krystyna Napierała, Jerzy Stefanowski, and Szymon Wilk. Learning from imbalanced
data in presence of noisy and borderline examples. In Marcin Szczuka, Marzena
Kryszkiewicz, Sheela Ramanna, Richard Jensen, and Qinghua Hu, editors, Rough Sets
and Current Trends in Computing, pages 158–167, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[36] Alberto Fernández, Salvador Garcia, Francisco Herrera, and Nitesh V Chawla. Smote
for learning from imbalanced data: progress and challenges, marking the 15-year an-
niversary. Journal of artificial intelligence research, 61:863–905, 2018.

[37] Vicente García, José Salvador Sánchez, and Ramón Alberto Mollineda. An empirical
study of the behavior of classifiers on imbalanced and overlapped data sets. In CIARP,
2007.

89

REFERENCES

[38] Khaled Al-Sabbagh, Regina Hebig, and Miroslaw Staron. The e�ect of class noise on
continuous test case selection: A controlled experiment on industrial data. 11 2020.

[39] Dragan Gamberger, Nada Lavrac, and Ciril Groselj. Experiments with noise filtering in
a medical domain. 03 2001.

[40] Bohan Li, Yutai Hou, and Wanxiang Che. Data augmentation approaches in natural
language processing: A survey. arXiv preprint arXiv:2110.01852, 2021.

[41] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence research,
16:321–357, 2002.

[42] V. García, R. A. Mollineda, and J. S. Sánchez. On the k-nn performance in a challenging
scenario of imbalance and overlapping. Pattern Anal. Appl., 11(3–4):269–280, aug 2008.

[43] Steven Y Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko
Mitamura, and Eduard Hovy. A survey of data augmentation approaches for nlp. arXiv
preprint arXiv:2105.03075, 2021.

[44] Pei Liu, Xuemin Wang, Chao Xiang, and Weiye Meng. A survey of text data augmen-
tation. In 2020 International Conference on Computer Communication and Network Security
(CCNS), pages 191–195, 2020.

[45] Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. How to fine-tune bert for text
classification? In China National Conference on Chinese Computational Linguistics, pages
194–206. Springer, 2019.

[46] Aqsa Noor and Ahmad Ali. Multiclass imbalanced classification of quranic verses using
deep learning approach. In 2021 4th International Conference on Computing Information
Sciences (ICCIS), pages 1–6, 2021.

[47] Xinyi Liu and Artit Wangperawong. Transfer learning robustness in multi-class cat-
egorization by fine-tuning pre-trained contextualized language models. arXiv preprint
arXiv:1909.03564, 2019.

[48] Zein Shaheen, Gerhard Wohlgenannt, and Erwin Filtz. Large scale legal text classifica-
tion using transformer models. arXiv preprint arXiv:2010.12871, 2020.

[49] Shanshan Yu, Jindian Su, and Da Luo. Improving bert-based text classification with
auxiliary sentence and domain knowledge. IEEE Access, 7:176600–176612, 2019.

[50] Sumanth Prabhu, Moosa Mohamed, and Hemant Misra. Multi-class text classification
using bert-based active learning. arXiv preprint arXiv:2104.14289, 2021.

[51] Markus Borg, Iben Lennerstad, Rasmus Ros, and Elizabeth Bjarnason. On using ac-
tive learning and self-training when mining performance discussions on stack overflow.
In Proceedings of the 21st International Conference on Evaluation and Assessment in Software
Engineering, pages 308–313, 2017.

90

REFERENCES

[52] Henric Zethraeus and Philip Horstmann. Evaluation of active learning strategies for
multi-label text classification. Master’s thesis, Lund University, Faculty of Engineering,
2021.

[53] Jasdeep Singh, Bryan McCann, Richard Socher, and Caiming Xiong. BERT is not an in-
terlingua and the bias of tokenization. In Proceedings of the 2nd Workshop on Deep Learning
Approaches for Low-Resource NLP (DeepLo 2019), pages 47–55, Hong Kong, China, Novem-
ber 2019. Association for Computational Linguistics.

[54] Rüdiger Wirth and Jochen Hipp. Crisp-dm: Towards a standard process model for
data mining. In Proceedings of the 4th international conference on the practical applications
of knowledge discovery and data mining, volume 1, pages 29–39. Springer-Verlag London,
UK, 2000.

[55] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and An-
ders Wesslén. Experimentation in Software Engineering. Springer, Berlin, Heidelberg, 2012.

[56] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[57] Thomas Wolf, Julien Chaumond, Lysandre Debut, Victor Sanh, Clement Delangue, An-
thony Moi, Pierric Cistac, Morgan Funtowicz, Joe Davison, Sam Shleifer, et al. Trans-
formers: State-of-the-art natural language processing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing: System Demonstrations, pages
38–45, 2020.

[58] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks
for e�cient text classification. arXiv preprint arXiv:1607.01759, 2016.

[59] Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Narjes Nikzad, Meysam Chenaghlu,
and Jianfeng Gao. Deep learning–based text classification: A comprehensive review.
ACM Computing Surveys (CSUR), 54(3):1–40, 2021.

[60] Wei Wang and Jianxun Gang. Application of convolutional neural network in natural
language processing. In 2018 International Conference on Information Systems and Computer
Aided Education (ICISCAE), pages 64–70, 2018.

[61] Deepak Kumar, Nalin Kumar, and Subhankar Mishra. NLP@NISER: Classification of
COVID19 tweets containing symptoms. In Proceedings of the Sixth Social Media Mining for
Health (#SMM4H) Workshop and Shared Task, pages 102–104, Mexico City, Mexico, June
2021. Association for Computational Linguistics.

[62] Phillip Rust, Jonas Pfei�er, Ivan Vulić, Sebastian Ruder, and Iryna Gurevych. How good
is your tokenizer? on the monolingual performance of multilingual language models.
arXiv preprint arXiv:2012.15613, 2020.

[63] Eva Vanmassenhove, Dimitar Shterionov, and Andy Way. Lost in translation: Loss and
decay of linguistic richness in machine translation. arXiv preprint arXiv:1906.12068, 2019.

[64] The iso/iec 25000 series of standards. https://iso25000.com/index.php/en/
iso-25000-standards. Accessed: 2022-01-27.

91

https://iso25000.com/index.php/en/iso-25000-standards
https://iso25000.com/index.php/en/iso-25000-standards

REFERENCES

[65] Iso/iec 25012. https://iso25000.com/index.php/en/iso-25000-standards/
iso-25012. Accessed: 2022-01-27.

[66] Great expectations. https://greatexpectations.io/. Accessed: 2022-01-28.

[67] Marina Danilevsky, Kun Qian, Ranit Aharonov, Yannis Katsis, Ban Kawas, and Prithvi-
raj Sen. A survey of the state of explainable ai for natural language processing. In
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computa-
tional Linguistics and the 10th International Joint Conference on Natural Language Processing,
pages 447–459, 2020.

[68] Martin Thoma. Analysis and optimization of convolutional neural network architec-
tures. Masters’s thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, June
2017.

92

https://iso25000.com/index.php/en/iso-25000-standards/iso-25012
https://iso25000.com/index.php/en/iso-25000-standards/iso-25012
https://greatexpectations.io/

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2022-02-11

EXAMENSARBETE Multilingual Large Scale Text Classification
for Automotive Troubleshooting Management
STUDENT Jacob Curman, Alv Romell
HANDLEDARE Markus Borg (LTH), Olof Steinert (Scania)
EXAMINATOR Pierre Nugues (LTH)

Transformer-modeller för storskalig
textklassificering

POPULÄRVETENSKAPLIG SAMMANFATTNING Jacob Curman, Alv Romell

Maskininlärningsmodeller baserade på så kallad transformer-arkitektur har visat sig
mycket användbara när det kommer till att lära datorer förstå språk. Detta arbete
handlar om att använda dessa modeller för att klassificera felbeskrivningar av problem
i lastbilar.

Naturlig språkbehandling, eller natural language
processing, handlar om att tolka och förstå det
mänskliga språket. Inom detta område finns förut-
sättningar för att lära datorer och maskiner tolka
och förstå språkdata och text, ofta i form av
matematiska koncept likt vektorer i flerdimen-
sionella rum. Detta innebär att modeller får
lära sig representationer av ord genom att stud-
era stora mängder text.
Storskaliga språkmodeller som för-tränats av

aktörer likt Google och Facebook har visat sig
vara av stor nytta i många maskininlärningsap-
plikationer gällande språkförståelse. Dessa mod-
eller har tränats på data i en generell domän för
att uppnå en allmän språkförståelse, men kan även
finjusteras genom ytterligare träning för att bättre
anpassas till specifika uppgifter och användning-
sområden. Modeller med transformer-akitektur
utnyttjar ett koncept kallat attention (uppmärk-
samhet) för att förstå kontext och samband mel-
lan ord i en mening. Dessa finns i olika varianter,
där vissa blivit tränade till språkförståelse på ett
specifikt språk (enkelspråkiga) och andra tränats
till att uppnå förståelse på ett stort antal språk
(flerspråkiga).
I detta examensarbete har två modeller

med transformer-arkitektur genom vidareträn-

ing finjusterats till uppgiften att klassificera
felbeskrivningar av problem i lastbilar. Datan
som använts kommer från en svensk lastbilstil-
lverkare, där stora mängder textdata produceras
vid service- och garantiärenden. Företaget vill
undersöka möjligheten att använda språkmodeller
för att förutsäga vilken komponent i lastbilen som
orsakat felet redan innan lastbilen nått en verk-
stad, då detta skulle kunna möjliggöra en mer ef-

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2022-02-11

EXAMENSARBETE Multilingual Large Scale Text Classification
for Automotive Troubleshooting Management
STUDENT Jacob Curman, Alv Romell
HANDLEDARE Markus Borg (LTH), Olof Steinert (Scania)
EXAMINATOR Pierre Nugues (LTH)

fektiv schemaläggning av reparationer och lager-
hållning av reservdelar. På grund av företagets
globala närvaro är flera olika språk representer-
ade i datan, där även en engelsk översättning finns
för varje textbeskrivning. Som följd har en enkel-
språkig och en flerspråkig modell använts.

Med dessa modeller har en rad experi-
ment genomförts, med särskilt fokus på tolkn-
ingsbarheten kring hur dessa modeller upp-
når språkförståelse, och olika möjligheter att
öka modellernas prediktionsförmåga gällande
textbeskrivningar som beskriver ovanliga fel, och
på ovanligt förkommande språk. Rapporten un-
dersöker även vilka faktorer som kommer vara vik-
tiga i ett potentiellt framtida användningsfall av
dessa modeller i en industri-kontext.

Resultaten visar att storskaliga transformer-
baserade modeller når en hög prediktionsförmåga
i den undersökta klassificeringsuppgiften, trots
att det finns många olika unika fel-klasser, men
att större modeller inte nödvändigtvis ger bättre
resultat. En ökad mängd data på ett visst språk
visas resultera i en ökad prediktionsförmåga för
textbeskrivningar på just detta språk, medan
prestandan för andra språk är relativt oförän-
drad. Dessutom är olika tillvägagångssätt för
att göra datan mer balanserad med avsende på
klasser och språk effektiva för att öka modellernas
predktionsförmåga, framför allt för fel-klasser
som är ovanliga.

	Introduction
	Background
	Research Questions
	Delimitations

	Theory
	Machine Learning
	Deep Learning
	Convolutional Neural Networks

	Natural Language Processing
	Tokenization
	Word Representations
	Transformer Architecture
	Transfer learning in NLP

	Models
	BERT
	DistilBERT
	XLM-RoBERTa

	Precision Metrics
	Imbalanced data
	Dealing with class imbalance

	Related Work

	Data
	Dataset Overview
	Exploratory Data Analysis

	Methodology
	Experiment Planning
	Overview of the Experimental Design
	Controlled Variables
	Independent Variables
	Dependent Variables

	Establishing Baselines
	FastText Model
	Deep Learning Models

	Modelling and Experimentation
	Experimental Group Exp-A: Effect of Cleaning Data
	Experimental Group Exp-B: Multilingualism in the Dataset
	Experimental Group Exp-C: Language-Wise Performance
	Experimental Group Exp-D: Oversampling
	Experimental Group Exp-E: Augmentation Through Unidirectional Translation

	Results
	FastText Baseline
	Deep Learning Baselines
	Exp-A: Effect of Cleaning Data
	Exp-B: Multilingualism in the Dataset
	Exp-C: Language-Wise Performance
	Exp-D: Effect of Oversampling
	Exp-E: Augmentation Through Unidirectional Translation
	Inference and Training Time

	Discussion
	Experiments
	Baselines
	Exp-A: Effect of Cleaning Data
	Exp-B: Multilingualism in the dataset
	Exp-C: Language-Wise Performance
	Exp-D: Oversampling
	Exp-E: Augmentation Through Unidirectional Translation

	Text Data and Future Use Case
	Limitations
	Model Architecture Choice
	Interpretability of results
	Error Analysis

	Conclusion
	Future work

	References

