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Abstract: Precise and inexpensive uncertainty quantification (UQ) is crucial for robust optimization
of compressor blades and to control manufacturing tolerances. This study looks into the suitability
of MC−adj−nonlinear, a nonlinear adjoint-based approach, to precisely and rapidly assess the per-
formance discrepancies of a transonic compressor blade section, arising from geometric alterations,
and building upon previous research. In order to assess the practicality and illustrate the benefits
of the adjoint-based nonlinear approach, its proficiency and precision are gauged against two other
methodologies, the adjoint-based linear approach (MC−adj−linear) and the high-fidelity nonlinear
Computational Fluid Dynamics (MC−CFD) method. The MC−adj−nonlinear methodology exhibits
impressive generalization capabilities. The MC−adj−nonlinear method offers a great balance be-
tween precision and time efficiency, since it is more precise than the MC−adj−linear method in both
design and near-stall conditions, yet requires approximately a thirtieth of the time of the MC−CFD
method. Finally, the MC−adj−nonlinear method was utilized to conduct fast UQ analyses of the
section at four distinct speeds to quantify the performance uncertainty for the compressor map. It is
found that aerodynamic performance is more sensitive to geometric deviations at high speeds than at
low speeds. The impact of the geometric deviations is generally detrimental to the mean efficiency.

Keywords: manufacturing variability; uncertainty quantification; Monte Carlo; adjoint method;
compressor map

1. Introduction

In reality, it is impossible to avoid discrepancies between the actual shape of man-
ufactured blades and their intended design, resulting in performance deviations from
their design intent [1]. The exact performance of the blade cannot be determined until
after it is manufactured [2]. The performance’s mean and standard deviations [3,4] can be
used to measure the level of uncertainty [5]. Robust optimization [6–8] and/or production
tolerance tailoring [9] are required to reduce variability in performance. Either approach
requires UQ to obtain performance statistics precisely and quickly.

The most common UQ approach is the Monte Carlo method [10] based on a Com-
putational Fluid Dynamics (CFD) solver (MC−CFD) [11]. However, MC−CFD can be
prohibitively expensive for a three-dimensional compressor, as the number of CFD sim-
ulations required for a reliable UQ is at least in the order of thousands. Considering the
computational cost, surrogate models [12] and polynomial chaos expansion (PCE) [13,14]
was proposed to replace the MC−CFD method. Unfortunately, it is still expensive to con-
struct such models for a three-dimensional compressor. It is promising to construct linear
and quadratic models, based on first- and second-order sensitivities. The finite difference
method (FDM) and the adjoint method [15] can both be used to calculate the derivatives.
Due to its high efficiency in calculating sensitivity in cases where there are several interested
performance functionals, but many geometric variables, the adjoint method has attracted a
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lot of attention. Marta, Rodrigues et.al. assessed the sensitivity of performance to bound-
ary conditions by employing the adjoint method [16] and developed the adjoint solver
for multi-row turbomachinery [17]. The study of the geometric sensitivity of multi-row
turbomachinery [18], which catalyzed the use of the adjoint method for optimization, was
highly beneficial. In terms of application for UQ, using the adjoint method to calculate
the sensitivity to construct the MC−adj−linear method [19] is computationally efficient,
but neglects the nonlinearity of the performance functional. The quadratic model [20] can
capture part of the nonlinearity but the computational cost increases significantly with
increase of the dimension. The adjoint-based nonlinear method [21] (MC−adj−nonlinear)
was proposed nearly two decades ago. However, the method did not attract due attention,
and no ensuing application of the method was reported in the open literature, until it was
rediscovered recently [22,23]. In ref. [22,23], it was found that the MC−adj−nonlinear
approach could capture some of the nonlinear relationship between performance functional
alterations and geometric variations, while maintaining the same order magnitude time
cost as that of the adjoint-based linear approach.

Within this context, UQ is conducted for the same case as in the Ref. [22,23] to investi-
gate its applicability at different conditions to rule out the contingency and to demonstrate
the advantages of the MC−adj−nonlinear method. Subsequently, the MC−adj−nonlinear
method is applied to carry out fast UQ of the blade section’s aerodynamic performance,
due to manufacturing uncertainties at 50%, 80%, 100%, and 120% of the nominal speeds, to
examine how geometric deviations affect aerodynamic performance at various shaft speeds.

2. The Adjoint-Based Nonlinear/Linear Method (Adj-Nonlinear/Linear)

This section introduces the MC−adj−nonlinear method [21,22] and the MC−adj−linear
method [19]. The performance functional J represents mass flow rate (ṁ), pressure ratio (π)
or efficiency(η), and is a function of U, and α = (α1, α2 . . . . . . , αM)T :

J = J(U, α). (1)

where, U represents the flow solution, a 6×N vector for an unstructured Reynolds-averaged
Navier—Stokes (RANS) flow solver, whose turbulence equation is the
Spalart—Allmaras turbulence equation. The number ’6’ presents the primal variables
and ’N’ is the nodes of the mesh. α is the geometric variable vector, which is used to
described the geometry of the blade. It can be the vector of coordinate points at the blade
surface or the vector of design parameters like chord, thickness and so on. U and α always
satisfy the following symbolic flow governing equation:

R(U, α) = 0, (2)

where, R represents the nonlinear residual. The adjoint method can be used to calculate the
sensitivity of the performance functional to the geometric variable vector as follows:

dJ
dα

=
∂J
∂α
− vT ∂R

∂α
, (3)

The adjoint variable vector v is determined by the adjoint equation:(
∂R
∂U

)T
v =

(
∂ J
∂U

)T
. (4)

From Equation (3), assuming that v and U are constant, the performance functional
deviation caused by a geometric deviation can be obtained by the integral of:

∆J ≈
α0+∆α∫

α0

∂ J
∂α

(U0, α)dα− vT(U0, α0)

α0+∆α∫
α0

∂R
∂α

(U0, α)dα, (5)
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where, the subscript 0 represents the baseline, excluding the manufacturing deviation. As
mentioned above, U represents the flow solution, a 6×N vector. U0 is the baseline flow
solution vector. α0 represents the baseline geometry vector, ∆α means the manufactur-
ing deviation, which is the difference between the manufactured blade and the baseline
geometry α0, the geometry of a manufactured blade with manufactured deviation can
be expressed as α := α0 + ∆α. Equation (5) can be expressed using the Newton–Leibniz
formula:

∆J ≈ J(U0, α0 + ∆α)− J(U0, α0)

− vT(U0, α0)[R(U0, α0 + ∆α)−R(U0, α0)].
(6)

The performance functional of the geometry defined by α0 + ∆α is given by:

J(U, α0 + ∆α) := ∆J + J(U0, α0)

≈ J(U0, α0 + ∆α)

− vT(U0, α0)R(U0, α0 + ∆α).

(7)

Referring to Equation (2), R(U0, α0) is dropped as it is zero. This formula defines the
MC−adj−nonlinear method. It is capable of detecting the nonlinear correlation between
the performance and the geometry.

By assuming that dJ/dα is constant in the interval [α0, α0 + ∆α] , Equation (5) can be
simplified as:

∆J ≈ dJ
dα

∣∣∣∣
U0,α0

∆α=
M

∑
i=1

dJ
dαi

∆αi. (8)

where, i ∈ [1, M] represents the ith geometric variable and the quantity of variables is
denoted by M. The ith component of the vector ∆α is ∆αi. Now, the performance functional
of the geometry defined by α0 + ∆α can be approximated by:

J(U, α0 + ∆α) ≈ J(U0, α0) +
M

∑
i=1

dJ
dαi

∆αi. (9)

This is the MC−adj−linear method [19]. In comparison with the MC−adj−nonlinear
method in Equation (7), the linear approach fails to take into account any nonlinearity of
the performance functional related to the geometry variables.

It is conceivable that there exists a range for ∆α, in which Equation (7) is more precise
than Equation (9). It is essential to note, however, that the range cannot be predeter-
mined when used in a particular case. This work endeavors to assess the suitability of
the MC−adj−nonlinear approach by comparing the UQ results of the MC−adj−nonlinear
method to those of the MC−adj−linear method and the MC−CFD approach in two rep-
resentative operational conditions with geometric variations originating from genuine
manufactured blades.

In order to illustrate the MC−adj−linear method and the MC−adj−nonlinear method
more clearly, the diagram of the procedures for the two methods are presented in Figures 1 and 2.
In Figure 1, εi is a vector of the same size as α0. It represents a small perturbation to the
ith element of the baseline geometric variable vector α0, thus, all but the ith element of εi
are zero. ∆α is a vector of the same size as α0. It represents the perturbation to α0 for a
sample geometry.

As shown in Figure 1, a UQ analysis using the MC−adj−linear method involves three steps:

1. Obtain the flow solution U0 and the adjoint solution vT
0 for a specific performance

functional for the baseline geometry;
2. Calculate sensitivity for all geometric variables. The sensitivity calculation involves

mesh perturbation and the objective function J & residual R evaluation, based on
the perturbed mesh α0 + εi and the baseline flow solution U0. The finite difference
method is also involved here to determine the sensitivities, see the green box in
Figure 1. Therefore, the perturbation size of each design variable is quite important,
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as too big or too small a value introduces big truncation or rounding errors. The
operation has to be performed for each geometric variable (for 1:M, M represents the
amount of the geometric variables). In this investigation, there were, in total, 398
geometric variables. This meant that the number of mesh perturbations and residual
evaluations was 398;

3. Calculate the performance metrics of all samples. The geometry perturbations of all
samples(∆αi) (for i = 1:N, N represents the amount of the samples) are reflected in
changes to the baseline geometry variable vector α0. Then, Equation (9) is used to
calculate the performance metric J.

Figure 1. The diagram of the MC−adj−linear method procedure.

Figure 2 illustrates the MC−adj−nonlinear method procedure. It involves two steps
in an UQ analysis. The initial stage is identical to that of the MC−adj−linear method. In
the subsequent step, the sample’s performance metric is determined using Equation (7),
by perturbing the baseline geometry α0 by adding ∆α (that is the geometry of the sample,
totally N times). In contrast to the MC−adj−linear technique, this nonlinear approach does
not rely on finite difference, thus, there are no truncation or rounding errors. In an UQ
analysis using this method, the number of mesh perturbations and residual evaluations
is equal to the number of samples. If the amount of samples greatly exceeds the amount
of geometry variables, then the MC−adj−nonlinear method is more time-consuming
than the MC−adj−linear method. Actually, we cannot draw a general conclusion as to
which method is cheaper and more recommended, as the conclusion lies in the case. The
amount of time it takes to use the MC−adj−linear approach and the MC−adj−nonlinear
approach is dependent upon the amount of geometric variables and samples. If the
amount of geometry variables, M, is more than the amount of samples, N, of the case,
then the MC−adj−nonlinear is more recommended. Otherwise, the MC−adj−linear is
more recommended in terms of the time cost. However, we can confirm that no matter
whether the MC−adj−linear approach or the MC−adj−nonlinear approach is used, the
time cost for both these methods is at least ten times less than what is required by the
MC−CFD method.

The use of both the MC−adj−linear method and the MC−adj−nonlinear method
requires a nonlinear flow solver and an adjoint solver. In this work, the in-house flow solver,
named Newton Unstructured Turbomachinery Solver for Computational Fluid Dynamics
(NutsCFD), was employed. A Jacobian forming Newton–Krylov method, Generalized
Minimal RESidual (GMRES) method, was employed to solve the large sparse linear system



Aerospace 2023, 10, 280 5 of 18

of the equation. A discrete adjoint solver was also developed, on the basis of the flow
solver NutsCFD. As the system of the Jacobian matrix is explicitly formed for solving the
nonlinear flow equation, the Jacobian matrix was transposed to construct an adjoint system.
The solution of the adjoint system was also accomplished using the GMRES method. As the
adjoint equation system is a linear system, a single GMRES solution is required. Therefore,
the time cost of solving the adjoint equation using the GMRES method is just a fraction of
that of solving the nonlinear flow equation, which uses the GMRES solution as part of a
nonlinear iteration process. The small time cost of an adjoint solution, with respect to that
of a nonlinear solution, differs from that resulting from a solution method using a fixed
point iteration. Further information regarding the flow/adjoint solver can be obtained from
ref. [24–26].

Figure 2. The diagram of the MC−adj−nonlinear method procedure.

3. Uncertainty Quantification

This section concentrates on the UQ of the performance variations resulting from
manufacturing deviations in a high compressor blade section. The suitability of the
MC−adj−nonlinear method and its superiority to the other two methods, MC−CFD
and MC−adj−linear, were studied at two specific conditions, through the utilization of the
three methods.

3.1. Test Case

To minimize the computational expense of the MC−CFD approach, which served as
the benchmark, a transonic compressor blade section, located at a radius of 0.245 m, was
selected. The compressor’s design speed was 11,990 RPM. In this work, the geometric
variables were the coordinate points at the blade surface. The profile of the sectional blade
section was outlined by the coordinates of 398 points on its surface. The areas around
the leading edge and trailing edge (LE and TE) of the blade had higher concentrations of
surface points, as illustrated in Figure 3.

The computational mesh was generated using the NUMECA Autogrid software and
consisted of a total number of 6522 quadrilateral elements, as shown in Figure 4. At the inlet
of all CFD analyses domains, the total pressure and temperature were set to 158,885.9 Pa
and 330.6 K, respectively, with an axial incoming flow. A constant pressure was used as the
outlet condition. The flow solution (relative Mach number distribution) at the design point
is shown in Figure 5.
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Figure 3. Blade profile and distribution of control points.

Figure 4. The mesh used in this study.

Figure 5. The relative Mach number distribution at the design point.

To obtain the performance UQ due to geometric variations, geometric perturbations
in the normal direction to the 398 points were added to the baseline geometry, bringing
the total number of samples to 2899. The added geometric perturbations had a standard
deviation and a mean (The actual values are not provided at the request of the data owner)
derived from the scanned data of manufactured blades. To reflect the correlation between
perturbations to the coordinates of neighboring points, the coordinate perturbations of some
points on the blade surface were generated first, and the coordinate perturbations to the
points in between were interpolated using a smooth function. The nominal blade, average
blade, and the average blades with twice the positive and negative standard deviation
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are shown in Figure 6, where, σ represents the standard deviation of the manufactured
deviation.

Figure 6. The nominal blade, average blade, and the average blades with twice the positive and
negative standard deviation.

3.2. Adjoint Solution Verification

Both MC−adj−linear and MC−adj−nonlinear methods need the adjoint solution.
Hence, in order to evaluate the reliability of the adjoint solution, this subsection compares
the sensitivity of a single-mode profile perturbation, which is expressed by ε, between the
finite difference and the adjoint methods. The adjoint solution of the eddy viscosity with
the mass flow rate as the performance functional at the design point is shown in Figure 7.

Figure 7. The eddy viscosity adjoint field with the mass flow rate as the performance functional at
the design point.

Figure 8 displays the sensitivities of mass flow rate (ṁ), pressure ratio (π), and effi-
ciency (η) computed using the two methods when the perturbation step size is altered
within the range between 10−8 and 1 times ε. As can be seen in Figure 8, when the step size
was between 10−6 and 10−3, the sensitivities of the three quantities were almost constant.
The relative difference between the adjoint sensitivity and the finite difference sensitivity
was below 0.01% when the step size was within the range of [10−5, 10−4]. The precision
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of the adjoint sensitivity was acceptable. It should be noted that the adjoint sensitivity
calculation also involved finite differencing to calculate residual perturbations due to mesh
perturbations. The use of finite differencing led to the variation of the calculated adjoint
sensitivities with respect to the perturbation size.

Figure 8. Comparison of sensitivities between the finite difference and the adjoint methods.

3.3. Verification of the MC−Adj−Nonlinear Method at Design and Near-Stall Conditions

Figures 9 and 10 display the performance map of the nominal blade, the aerodynamic
performance scatterings and the probability density functions (PDFs) of the samples at the
design and the near-stall points computed utilizing the three methods. The different colors
of all the dashed lines, curves, and dots in Figures 9 and 10 represent the results calculated
by different methods: black corresponds to the MC−CFD method, red corresponds to the
MC−adj−linear method, and blue corresponds to the MC−adj−nonlinear method. The
dashed lines represent the mean of the mass flow rate, pressure ratio, and efficiency at
the two conditions calculated by the three methods. The curves without dots represent
the PDFs of the mass flow rate, pressure ratio, and efficiency computed by the three
methods. The dots are the objective performance of all samples at the two conditions
calculated by the three methods. The black curve with dots is the performance map of the
baseline calculated by CFD simulation. There appeared to be a definite connection between
pressure ratio/efficiency and mass flow rate: when the mass flow rate increased, the
pressure ratio and efficiency also increased. The PDFs calculated by the MC−adj−nonlinear
method showed greater consistency with those of the MC−CFD method, whereas the PDFs
calculated by the MC−adj−linear method exhibited a tendency towards higher values
with more prominent peaks than the MC−CFD method. Table 1 presents the mean mass
flow rate, pressure ratio, and efficiency at the design and near-stall points, computed using
the three methods( the mean is also shown by the dotted lines in Figures 9 and 10).
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Figure 9. Performance characteristic with PDFs of mass flow rate and pressure ratio using the
three methods.

Figure 10. Performance characteristic with PDFs of mass flow rate and efficiency using the three methods.

The absolute difference in a performance functional, be it mass flow rate, pressure
ratio, or efficiency, between the three methods, was very small. To contrast the differences,
the mean deviations of the three quantities, normalized to their respective baseline values,
are shown in Figure 11. In the figure, J represents ṁ, π, or η, the subscript 0 represents the
baseline and ∆ denotes the difference in a performance functional between a sample and
the baseline.
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Table 1. The mean aerodynamic performance computed using the three methods at the design and
near-stall points.

Operating Point Numerical Method Mass Flow Rate (kg/s) Pressure Ratio Efficiency

the design condition
MC−CFD 0.023428 1.420063 0.910661

MC−adj−linear 0.023457 1.420703 0.912055

MC−adj−nonlinear 0.023431 1.420036 0.911103

the near-stall condition
MC−CFD 0.021610 1.476226 0.882060

MC−adj−linear 0.021681 1.477472 0.884464

MC−adj−nonlinear 0.021614 1.476129 0.882412

Figure 11. The mean of normalized performance variations at the design (left) and near-stall condi-
tions (right) computed using the three methods.

It can be seen that the sign of the mean of normalized performance deviations predicted
by the MC−adj−linear were wrong. Although there were some discrepancies in the
mean of normalized performance deviations between the MC−CFD method and the
MC−adj−nonlinear method, the sign of the mean by the MC−adj−nonlinear method was
always correct for this particular case. This meant that the MC−adj−nonlinear method
was much more reliable than the MC−adj−linear method. This feature is also critical for
robust optimization when using the adjoint approach.

The calculated standard deviations of mass flow rate, pressure ratio, and efficiency
at the two operating conditions are presented in Figures 9 and 10. Figure 12 compares
the normalized standard deviations of the three quantities. The standard deviations were
normalized by their respective baseline performance functionals. The difference in the
normalized standard deviations, using the three methods, was much smaller than in
the mean. At the design condition, the results from the three methods were very close.
Nevertheless, it can be seen that the predictions from the MC−adj−nonlinear method
were closer to those from the MC−CFD method than those from the MC−adj−linear
method. At the near-stall condition, the difference in the standard deviation was much
more pronounced among the three methods. Both the MC−adj−linear method and the
MC−adj−nonlinear method under-predicted the values. Nevertheless, the predictions
from the MC−adj−nonlinear were once again closer to those of the MC−CFD method than
those of the MC−adj−linear method.

Figures 11 and 12 show that the MC−adj−nonlinear method was more accurate than
the MC−adj−linear method. This was because the MC−adj−nonlinear method could
capture some nonlinear effects and there was a non-negligible nonlinear effect in the
performance functionals at the design speed. The nonlinear effect was expected to be
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pronounced at the near-stall condition, where a larger difference was observed between
the results calculated by the linear and nonlinear methods. It was expected that the
nonlinearity of the flow at a low speed would be weaker and the two methods were
expected to give smaller differences. To verify this speculation, the mean and standard
deviation of normalized aerodynamic performance deviations at two operating points with
different pressure ratios at 50% speed were calculated by the two adjoint-based methods.
Figures 13 and 14 show the mean and the standard deviation of normalized performance
deviations of the two operating points at 50% speed, together with the results of 100% speed.
We found that the difference in the UQ results between the MC−adj−linear method and the
MC−adj−nonlinear was much smaller at 50% speed than at the 100% speed, as expected.
In particular, at 50% speed, the mean of the performance deviations predicted by the two
methods had the same correct signs. This further illustrated that the MC−adj−nonlinear
method could capture some nonlinear effects.

Figure 12. The normalized standard deviation of performance functionals variation at the design
(left) and near-stall conditions (right) computing using the three methods.

Figure 13. The mean of normalized performance deviations at the design (left) and near-stall
conditions (right) of 100% speeds and that of low pressure ratio (left) and high pressure ratio
(right) operating points at 50% speed by the MC−adj−linear and MC−adj−nonlinear methods.

Table 2 presents the time-consumption of performing the UQ for this case at the design
condition using the three methods. The MC−CFD method solved the nonlinear flow equa-
tion 2899 times which accounted for 97% of the total time cost. Both the MC−adj−linear
method and the MC−adj−nonlinear method solved the nonlinear flow equation once (for
the baseline geometry only) and the adjoint equation three times (for the baseline geometry
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and three performance functionals). With the use of the GMRES method to solve a linear
system of equation, the time cost of an adjoint solution was about 6.7% that of a nonlinear
flow solution. For both the MC−adj−linear method and the MC−adj−nonlinear method
in this case, the major time cost came from the mesh perturbation, which accounted for
about 84% and 90% of the total, respectively. It should be noted that the relative time cost
of each component in Table 2 is valid for two-dimensional cases only and is not valid for
three-dimensional cases. For a three-dimensional case with grid points in the order of
0.5 million, the relative time cost of solving the nonlinear flow equation and the adjoint
equation would increase considerably in comparison with that of grid perturbation and
residual evaluation.

Figure 14. The normalized standard deviation of performance functionals at the design (left) and
near-stall conditions (right) at 100% speeds and that of low pressure ratio (left) and high pressure
ratio (right) operating points at 50% speed by the MC−adj−linear and MC−adj−nonlinear methods.

Table 2. The UQ time-consumption of the three methods at the design condition (eight cores).

Time (min) Grid Grid of
Baseline Cfd Adjoint Residual Sum Time Ratio

MC−CFD 0.017 × 2899 0 0.539 × 2899 0 0 1611.84 203.68
MC−adj−linear 0.017×389 0.017 0.539 0.036×3 0.0016×398 (for

Equation (8)) 7.91 1

MC−adj−nonlinear 0.017 × 2899 0.017 0.539 0.036×3 0.0016×2899 (for
Equation (6)) 54.58 6.90

The total time cost ratio of the MC−CFD, the MC−adj−linear, and the MC−adj−nonlinear
method was about 204:1:7. The MC−adj−nonlinear method was roughly seven times more
time-consuming than the MC−adj−linear, due to the fact that it required 2899 mesh
perturbations and residual evaluations, while the MC−adj−linear only needed 389 mesh
perturbations and residual evaluations, a number that is roughly seven times the number
of geometric variables in this study.

It was demonstrated that the MC−adj−nonlinear technique provided an appropriate
balance between accuracy and time-consumption. The mean of the mass flow rate at
the near-stall condition was selected to quantify the accuracy and time cost of the three
methods. In Figure 15.

The MC−CFD method yielded an error of zero because its results were used as the
benchmark, although it was the most time-consuming approach. The MC−adj−linear
method required the least amount of time but resulted in the biggest error. The time-
consumption of the MC−adj−nonlinear method was slightly bigger than that of the
MC−adj−linear method but the solution error was greatly reduced, compared with that of
the MC−adj−linear method. Hence, it was evident that the MC−adj−nonlinear approach
offered a good balance of precision and time consumption for the UQ.
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Figure 15. Time cost versus accuracy in calculating the mean mass flow rate at the design condition
using the three methods.

3.4. Full Map UQ of Aerodynamic Performance at Four Speeds

With the applicability of the MC−adj−nonlinear method for UQ demonstrated above,
the method was used to investigate how the geometric deviations affected the aerodynamic
performance of the blade section over a wider operating range. To do this, the UQs of mass
flow rate, pressure ratio, and efficiency were performed at four speeds: 50%, 80%, 100%,
and 120% of nominal speeds.

Figure 16 shows the pressure ratio and efficiency characteristics of the baseline design
and all 2899 samples. The characteristics of the baseline design were obtained using CFD,
while those of the 2899 samples were obtained using the MC−adj−nonlinear method.
The green curves in Figure 16 represent the characteristics of sample #2839 (marked as
sample_W with W standing for worse in Figure 16), the performance of which was always
worse than that of the baseline. The purple curves correspond to sample #1159 (marked as
sample_B with B standing for better in Figure 16), the performance of which was always
better than that of the baseline. In order to understand the cause of the performance
deviations of sample_B and sample_W from the baseline, Figure 17 shows the profiles of
the baseline, sample_W, and sample_B. It can be seen that the main differences between
the three blades were in the leading edge and the suction side. Sample_B had a thinner
leading edge and an increased blade inlet angle. Sample_W had a thicker leading edge and
a reduced blade inlet angle.

To facilitate further understanding of the performance deviations of sample_B and
sample_W from the baseline, the relative Mach number contours of the two blades and the
baseline blade at the near-stall conditions of the four speeds are presented in Figures 18–21.
It can be seen that at the near-stall conditions, flow was separated on the blade suction
surface. Sample_B had the smallest separation bubble, while sample_W had the biggest
separation bubble. The difference in the separation bubble size was attributed to the change
in the blade inlet angle and the blade leading edge thickness. Both the reduction of the
blade leading edge thickness and the increase of the blade inlet angle were favorable in
reducing the flow separation. At 120% speeds, the strength of the detached shock was
reduced and pushed further upstream for sample_B (marked with the red box in Figure 21).
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The former could be attributed to the reduction of the blade leading edge thickness and the
latter was attributed to the increase of the blade inlet angle.

Figure 16. Pressure ratio and efficiency characteristics at different speeds.

Figure 17. The profiles of the baseline, sample_W, and sample_B.

Figure 18. Mach number distribution of the three blades at the near-stall condition at 50% speed:
sample_B (left), baseline (middle) and sample_W (right).

Figure 19. Mach number distribution of the three blades at the near-stall condition at 80% speed:
sample_B (left), baseline (middle) and sample_W (right).
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Figure 20. Mach number distribution of the three blades at the near-stall condition at 100% speed:
sample_B (left), baseline (middle) and sample_W (right).

Figure 21. Mach number distribution of the three blades at the near-stall condition at 120% speed:
sample_B (left), baseline (middle) and sample_W (right).

The mean and standard deviation of mass flow rate, pressure ratio, and efficiency are
presented in Figures 22–24.

Figure 22. Uncertainty statistics of mass flow rate.

Figure 23. Uncertainty statistics of pressure ratio.

It should be noted that the mean is shifted by the baseline value, which can be
considered the mean of deviation. Presented in this way, the sign of the mean indicates
whether the mean of performance functional increased or reduced with respect to the
baseline value. It should also be noted that the standard deviation of a shifted performance
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functional remains the same as its original unshifted quantity, as the standard deviation
represents the scattering of a quantity and it should not change from data shifting.

Figure 24. Uncertainty statistics of efficiency.

From Figure 22, we can see that the effect of geometric deviations on the mean mass
flow rate was different at low and high speeds. At low speeds (50% and 80% speeds), the
mean mass flow rate increased. At high speeds(100% and 120% speeds), the mean mass
flow rate reduced. Even at the two low speeds, the increase of the mean mass flow rate
(the mean mass flow rate deviation) reduced from the stall side to the choke side. The
mean mass flow rate variation could be attributed to the increased blade inlet angle and
the increased thickness of the average blade (the major thickness increase was on the blade
suction side, see Figure 6). An increased blade inlet angle was beneficial for operating
conditions with a large inlet flow angle (the two low speeds). With higher inlet flow velocity,
the mass flow rate and other performance functionals were more sensitive to geometric
blockage, due to the thickening of the blade suction side.

At 50% speed, the insensitivity of mass flow rate to geometric deviations led to a small
standard deviation. The standard deviation of mass flow rate increased with the increase
of the shaft speed. Along a speedline, the standard deviation increased from the choke side
to the stall side. The increase in standard deviation became more and more pronounced
with increase in the shaft speed.

The effect of geometric deviations on uncertainty statistics of pressure ratio at the
four speeds was qualitatively the same as that of mass flow rate. However, the effect of
geometric deviations on uncertainty statistics of efficiency was different from that of mass
flow rate. The geometric deviations were largely detrimental to efficiency. Only at the
near stall region of 50% and 80% speeds was the mean efficiency increased. In general,
the mean efficiency deviation increased with the increase of the shaft speed. This implied
that geometric deviations are more detrimental to efficiency at high speeds. Regarding
the standard deviation, it increased along a speedline from the choke side to the stall side,
which was the same as that of mass flow rate and pressure ratio. Across the four speeds, at
both the choke and stall sides, the standard deviation increased first and then reduced.

4. Conclusions

The paper researched the applicability of the adjoint-based nonlinear method for
fast UQ of aerodynamic performance of compressor blades and the effects of real-life
manufacturing deviations on performance deviations using the adjoint-based nonlinear
method. The following three conclusions are determined:

(1) At 100% speed, compared with the MC−adj−linear method, the UQ results predicted
by the MC−adj−nonlinear method were more accurate, especially for the near-stall
condition, where the nonlinear dependence of performance functionals on geometric
variables was stronger. At 50% speed, the differences in the UQ results predicted by
the two adjoint-based methods were much smaller, due to the weaker nonlinearity of
the flow. The MC−adj−nonlinear method required nearly 30 times less time than the
MC−CFD method. Hence, the MC−adj−nonlinear approach provides a satisfactory
balance between precision and time cost for UQ.
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(2) Aerodynamic performance is more sensitive to geometric deviations at high speeds
than at low speeds. For this particular case, the geometric deviations produced an
increased mean of mass flow rate and pressure at low speeds, while incurring a
reduced mean at high speeds. The geometric deviations were generally detrimental
to the mean efficiency over the four speeds. The reduction of the mean of mass flow
rate, pressure ratio, and efficiency became more with increase in shaft speed.

(3) The standard deviation of performance generally increased with increase in shaft
speed. Along a speedline, the standard deviation also increased with increase in
pressure ratio. The difference in standard deviation between a near choke point and a
near stall point along a speedline was much larger at high speeds than at low speeds.

Further studies will be conducted to examine the effectiveness of the approach on
three-dimensional turbomachinery components.
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