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Abstract: The fungal community structure and soil fertility in rhizosphere soil have an important
effect on the health of Panax notoginseng (P. notoginseng). The attack of pathogenic fungi and the
imbalance of soil fertility can easily lead to diseases. The effect of Bacillus subtilis on improving
the community structure of soil fungi has been confirmed, and the corresponding biological agent
products have been commercialized. A pot experiment carried out in a greenhouse explored the
effect of a biological agent and fertilizer on the fungal community in the rhizosphere of P. notoginseng.
In the experiment, fertilization and the addition of biological agents were set up with three gradients,
respectively, and the full coupling experiment was adopted, and the blank control group (CK) was
set up at the same time. Therefore, there were thirteen treatments in the experiment. NH4 decreased
between 36.42% and 11.56%, AP increased between 6.03% and 92.46%, AK increased between 2.99%
and 25.40%, TN increased between 0.10% and 9.41%, and TP increased by 18.25% to 47.73% The
addition of Bacillus subtilis biological agent decreased the Chao1, Shannon, Simpson, and ACE index of
fungi in the rhizosphere soil of P. notoginseng. The Chao1 index decreased between 0.39% and 78.22%;
the ACE index decreased between 0.43% and 78.24%. The main pathogenic fungi Cylindrocarpon
and Fusarium of P. notoginseng were different in the experimental results. Cylindrocarpon decreased
under F1C1, F2C1, and F3C2 treatments, while Fusarium increased under F1C1, F2C2, F3C1, and F3C3
treatments and decreased Fusarium content in rhizosphere soil of P. notoginseng in other treatments.
RDA analysis (Redundancy analysis) showed that NH4-N was negatively correlated with the main
pathogen Cylindrocarpon, Fusarium, and Ilyonectria, while AP and AK were positively correlated
with Cylindrocarpon, Fusarium, and Ilyonectria. The results of the GRA-TOPSIS analysis showed
that the score of F3C2 was the highest, while F2C3 and F2C1 ranked second and third, respectively.
The calculation results of the theoretical model based on GRA-TOPSIS analysis showed that the
GRA-TOPSIS score was highest when the theoretical optimal fertilizer application rate and bacteria
application rate were 116.31 kg hm−2 and 15.83 kg hm−2, respectively.

Keywords: P. notoginseng; biological agent; Bacillus subtilis; rhizosphere soil fungal community

1. Introduction

P. notoginseng is a perennial herb preferring moisture and shade. The main root has
high medicinal value. P. notoginseng is mainly produced in southwest China (Yunnan and
Guangxi). Previous studies have shown that P. notoginseng is mostly used to stop bleeding
and treat cardiovascular diseases [1,2]. At the same time, P. notoginseng also plays a role
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in anti-thrombosis, lowering blood pressure and relieving pain and neuroprotection [3,4].
With the increase of cardiovascular diseases in the world and the modern application of tra-
ditional Chinese medicine, the demand for P. notoginseng is increasing [5,6]. At present, the
research on P. notoginseng focuses on water and fertilizer management, pesticide residues,
and pest control [7–9]. Water and fertilizer management in the field of P. notoginseng is very
important for the sustainable cultivation of the crop. Water and fertilizer mismanagement
will lead to soil consolidation, nutrient loss, agricultural pollution, and low efficiency of
water and fertilizer use. Pesticide spraying is not only the main means to prevent insect
pests but also an important aspect to ensure yield. Excessive pesticide spraying will,
however, lead to pesticide residues. In the actual planting process, yield was seriously
restricted by diseases. Such as root rot, black spot, and round spot [10]. Previous studies
have shown that root rot is the main cause of yield reduction, with annual losses of up to
30% [11]. Continuous cropping obstacles not only reduce the quality and yield but also
affect the health of planting soil and limit the planting area [12]. However, the main reason
for the production issues is the imbalance of fungal structure in soil and the increase of
pathogenic bacteria [13]. The main pathogens causing root rot are Cylindrocarpon, Fusarium,
and Ilyonectria [14], while Alternaria causes black leaf disease [15].

Rhizosphere soil is the main active area of crop roots [16], so the structure and fertil-
ity of rhizosphere soil microorganisms play a very important role in crop growth [17,18].
The accumulation of P. notoginseng saponins is greatly affected by soil water content and
fertilizer application [19]. Previous studies have shown that the structure of the soil microor-
ganism community changes significantly with the increase in fertilizer application [20].
Fertilization not only changes the content of nutrients in the soil but also changes the
structure of the microbial community in the soil, which in turn affects the transport of soil
nutrients and inhibits or increases plant morbidity. The relationship between microorgan-
isms and crops in rhizosphere soil is generally divided into positive interaction, negative
interaction and non-interaction [21]. Positive microorganisms are not only involved in
the growth and development of crops, but also one of the key factors to ensure plant
health and soil fertility [22,23]. For example, plant growth-promoting rhizobacteria (PGPR)
and arbuscular mycorrhizal (AM) fungi enhance plant nutrition, improve plant growth
and protect host plants from pathogen infection [24–26]. Although plants benefit from
some rhizosphere microorganisms, some microbes also spread diseases [27]. Plant diseases
caused by soil fungi can greatly reduce crop yield and even lead to crop death in serious
cases [28]. In summary, in the process of planting P. notoginseng, the characteristics of the
rhizosphere soil fertility and fungal community jointly affected the health and final yield of
P. notoginseng.

Many microbes have the ability to promote plant growth [29–31]. These microbes
promote plant growth by producing compounds that stimulate plant growth or inducing
plants to produce antibiotics [32,33]. Bacillus subtilis is a kind of thermophilic and aerobic
Gram-positive rod-shaped bacteria. Its endospores are heat-resistant, drought-resistant,
and UV-resistant [34]. Previous studies have shown that a variety of secondary metabolites
produced by Bacillus subtilis have the potential to mediate the production of antibiotics.
It is estimated that at least 4% to 5% of the genome of any given group of Bacillus subtilis
is used to produce antimicrobial compounds (AMCs) [35]. These molecules are mainly
antimicrobial peptides (AMPs) and contain special parts, such as D-amino acids (AA) or
intramolecular thioether bonds, whose overall structure is usually cyclic and has some
hydrophobicity [36]. Bacillus subtilis can enhance plant resistance by secreting extracel-
lular polysaccharides to iron carriers to inhibit the movement of toxic ions, maintain the
movement of water molecules in plant tissues, and inhibit pathogenic microorganisms
in soil [37]. Previous experiments have shown that adding Bacillus subtilis to farmland
can not only reduce nitrogen and ammonia emissions [38] but also improve soil colony
structure [39]. Bacillus subtilis performs well in the control of tomato blight [40]. Therefore,
we hope to explore whether Bacillus subtilis can inhibit pathogenic microorganisms in
the production process of P. notoginseng. Due to the potential of Bacillus subtilis to secrete
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antimicrobial compounds, it is possible to improve the rhizosphere soil microenvironment
of P. notoginseng. On this basis, we speculated that adding Bacillus subtilis could improve the
fungal community in the rhizosphere soil of P. notoginseng and inhibit a series of pathogenic
fungi in the rhizosphere soil.

In this study, we applied biological agents together with fertilizer for the first time to
reduce the pathogenic bacteria in Panax notoginseng soil through the improvement effect of
biological agents on the soil fungal community. Therefore, this study introduced Bacillus
subtilis biological agent as an exogenous additive bacteria, hoping to explore the possibility
of Bacillus subtilis in improving the rhizosphere soil microenvironment of P. notoginseng
by way of co-application with fertilizer. The aims of this study are to explore: (1) the
effect of fertilization on the nutrient characteristics in the rhizosphere; (2) the structural
characteristics of the microenvironment in the rhizosphere under different bacterial and
fertilizer combinations; (3) whether the addition of Bacillus subtilis can inhibit the pathogenic
bacteria in the rhizosphere; and (4) the potential of adding Bacillus subtilis to improve
the rhizosphere.

2. Materials and Methods
2.1. Experimental Site and Experimental Setup

Yunnan has more suitable climatic conditions for the growth of P. notoginseng. In March
2021, we transplanted P. notoginseng from the Intelligent Agriculture Demonstration Green-
house at Kunming University of Science and Technology (24◦50′49.95′′ N, 102◦5′37.54′′ E,
1778.9 m above sea level). Eight hundred grams of soil was loaded into a PVC basin
with upper and lower diameters of 18 cm and 13 cm and a height of 15 cm. Fifteen days
later, the transplant that did not survive was removed. P. notoginseng with similar growth
was then selected to be taken further in the experiment. The potting soil was collected
from the forest soil of Kunming University of Technology. The soil pH was 7.61, and
the soil ammonium nitrogen (NH4-N), total nitrogen (TN), available phosphorus (AP),
total phosphorus (TP), and available potassium (AK) were 34.67 mg·kg−1, 38.22 mg·kg−1,
80.27 mg·kg−1, 433.75 mg·kg−1, and 35.24 mg·kg−1, respectively. According to the re-
sults of previous studies [41,42], there were three gradients fertilizer application and the
Bacillus subtilis biological agent in which the fertilizer application rate was 80 kg·hm−2

with the low fertilizer application, 110 kg·hm−2 with medium and 140 kg·hm−2 with
high fertilizer application, 10 kg·hm−2 with low bacterial application, 15 kg·hm−2 with
medium bacterial application, and 20 kg·hm−2 with high bacterial application. The current
experiment used the full combination and set up a blank control group, a total of 10 treat-
ment groups, each treatment group repeated three times. The treatments were as follows
(Table 1): low fertilizer and low bacteria (F1C1), low fertilizer and medium bacteria (F1C2),
low fertilizer and high bacteria (F1C3), medium fertilizer and low bacteria (F2C1), medium
fertilizer bacteria (F2C2), medium fertilizer and high bacteria (F2C3), high fertilizer and low
bacteria (F3C1), high fertilizer and medium bacteria (F3C2), high fertilizer and high bacteria
(F3C3), and the blank control group (CK). Each treatment of processing was repeated three
times. Organic carbon water-soluble fertilizer (21%N − 21%P2O5 − 21%K2O + 6% humic
acid + trace elements). The contents of chelated iron(Fe), chelated zinc(Zn), chelated cop-
per(Cu), chelated manganese(Mn), boron(B), and molybdenum(Mo) were 0.05%, 0.05%,
0.017%, 0.05%, 0.1%, and 0.007%, produced by Sichuan Shifang Demi Industrial Co.,
Ltd., Shifang City, China, and Bacillus subtilis (enhanced microbial agent, implementation
Standard: GB 20287-2006). A bacterial fertilizer produced by Dongshuuyuan Ecological
Agriculture Development Co., Ltd. (Longyan City, China) was used in the experiment.

2.2. Determination of Soil Physical and Chemical Properties

After the completion of the harvest, three replicates of the soil from each treatment
were collected and brought back to the laboratory for related data determination. The
indexes using fresh soil were determined as soon as the soil arrived in the laboratory.
The indexes that could be determined from air-dried soil were placed in a ventilated and
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sheltered place to be tested later. All samples were tested at the same time to ensure that
the results were not disturbed by temperature, humidity, or chemical batch variation. pH
was determined by PHS-3C using a pH acidity meter, NH4-N by extraction colorimetry,
TN by Kjeldahl nitrogen meter, AP and TP by molybdenum antimony sulfate colorimetric
method, The content of AK was determined by using an ammonium acetate extraction
atomic absorption spectrophotometer.

Table 1. The amount of fertilizer and biological agents.

Treatments Fertilizer (kg·hm−2) Biological Agents (kg·hm−2)

CK 0 0
F1C1 80 10
F1C2 80 10
F1C3 80 10
F2C1 110 15
F2C2 110 15
F2C3 110 15
F3C1 140 20
F3C2 140 20
F3C3 140 20

2.3. DNA Extraction and Amplification

The rhizosphere soil was quickly frozen and preserved in liquid nitrogen at −80 ◦C.
Fungus DNA was isolated using a DNeasy PowerSoil kit (Qiagen, Hilden, Germany) fol-
lowing the manufacturer’s instructions. DNA concentration and integrity were measured
by a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and
agarose gel electrophoresis, respectively. Fungal ITS diversity identification corresponding
region: front primer: ITS1 FCTTGGTCATTTAGAGGAAGTAA’; back-end primer: ITS2
GCTGCGTTCTTCATCGATGC. The PCR products were detected by electrophoresis, puri-
fied by magnetic beads, purified as a second round of PCR template, and then amplified by
two rounds of PCR and detected again by electrophoresis. After detection, magnetic beads
were used to purify the PCR products. After purification, the PCR products were quantified
by Qubit. The same amounts of samples were mixed according to the concentration of
PCR products and sequenced on the computer. The Amplicon quality was visualized
using gel electrophoresis. The PCR products were purified with Agencourt AMPure XP
beads (Beckman Coulter Co., Brea, CA, USA) and quantified using Qubit dsDNA assay kit.
The concentrations were then adjusted for sequencing. Sequencing was performed on an
IlluminaNovaSeq6000 with two paired-end read cycles of 250 bases each. (Illumina Inc.,
San Diego, CA, USA; OEBiotech Company; Shanghai, China)

2.4. Bioinformatic Analysis

Raw sequencing data were done in FASTQ format. Paired-end reads were then
preprocessed using Cutadapt (Version 2.6) software to detect and cut off the adapter. After
trimming, paired-end reads were filtered low-quality sequences, denoised, merged, and
detected and cut off the chimera reads using DADA2 with the default parameters of
QIIME2 [43] (November 2020). The final product was the representative reads and the ASV
abundance table.

The representative sequences of each ASV are selected by using the QIIME 2 software
package compared with the Unite database (https://unite.ut.ee/repository.php (accessed
on 17 March 2023)). Species comparison annotations were analyzed using default parame-
ters of q2-feature-classifier software (Version 2022.2.0-1).

The soil’s physical and chemical properties were processed by Microsoft Excel 2016
and SPSS 22 to use in the statistical analysis via the Duncan method [44]. The vegan
package in R (Version 3.5.1) was used to draw heat maps and the composition of fungal
communities for principal coordinate analysis (PCoA). The effects of physical and chemical

https://unite.ut.ee/repository.php
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properties of the rhizosphere soil on fungal microorganisms in rhizosphere soil were
analyzed by redundancy analysis (RDA) in Canoco 5.0. Indicator analysis was completed by R
(Version 3.5.1); random forest analysis was drawn by R package randomForest (Version 4.7-1.1);
GRA-TOPSIS analysis was completed by Python 3.9; theoretical model was established and
solved by MATLAB (r2020a); theoretical model function diagram was drawn by Origin 2018.

3. Results
3.1. Physical and Chemical Properties of Rhizosphere Soil of P. notoginseng

The nutrient characteristics of the rhizosphere soil of P. notoginseng are shown in
Table 2. Generally, the soil pH was between 7.32 and 7.55 and slightly alkaline. The re-
sults indicated that the pH value of the soil of the CK treatment decreased after adding
biological agents and fertilization. Duncan’s analysis showed a significant decrease in
the pH of the F3C2 treatment (p < 0.05). The content of NH4-N in soil was between
38.44 mg·kg−1 and 24.44 mg·kg−1 for the CK treatment was 38.44 mg·kg−1. The results
showed that NH4-N decreased significantly under all treatments compared to the CK
treatment. The NH4-N content in the F2 C3 treatment was 24.44 mg·kg−1 and showed
the biggest decrease. The total content of AP was between 65.66 and 126.37 mg·kg−1.
The content of AP increased in all treatments compared with the control, with the high-
est increase in treatment F3C2 (126.37 mg·kg−1). The AP content increased significantly
in treatments F2C2, F3C1, F3C2, and F3C3 (p < 0.05). The AK content ranged between
24.76 mg kg−1 and 31.05 mg·kg−1. Compared with the control, the content of AK was in-
creased in some of the treatments, although there were no significant differences. Treatment
F3C2 had the highest improvement effect (31.05 mg·kg−1). The soil TN content ranged
between 368.90 mg·kg−1 and 403.68 mg·kg−1. The same trend as was the case with AK
was evident in TN content. The TP content ranged between 335.15 and 495.13 mg·kg−1.
All treatments, except F1C2, showed significant improvements (p < 0.05), with the highest
in treatment F3C1 (495.13 mg·kg−1).

Table 2. Physical and chemical properties of rhizosphere soil of P. notoginseng. (a, b, c, d indicate
significant differences (p < 0.05) among treatments based on Duncan’s mean test).

Treatments PH NH4-
N(mg·kg−1)

AP
(mg·kg−1)

AK
(mg·kg−1)

TN
(mg·kg−1)

TP
(mg·kg−1) Yield (g)

CK 7.55 ± 0.06 a 38.44 ± 0.94 a 65.66 ± 4.25 d 24.76 ± 1.25 a 368.90 ± 10.27 a 335.15 ± 7.56 c 10.91 ± 0.72 a
F1C1 7.38 ± 0.03 a 34.19 ± 0.50 b 71.34 ± 4.36 cd 26.10 ± 2.28 a 369.27 ± 6.97 a 448.72 ± 32.69 ab 11.09 ± 0.48 a
F1C2 7.41 ± 0.02 a 34.19 ± 1.20 b 73.64 ± 8.82 cd 26.4 ± 2.4 a 373.94 ± 7.32 a 396.32 ± 11.07 bc 11.49 ± 0.29 a
F1C3 7.51 ± 0.01 a 25.22 ± 0.52 c 69.62 ± 10.23 cd 25.50 ± 1.96 a 369.83 ± 8.75 a 449.36 ± 20.03 ab 11.90 ± 0.51 a
F2C1 7.33 ± 0.01 a 25.41 ± 0.45 c 97.98 ± 8.04 abcd 30.48 ± 2.49 a 377.58 ± 11.52 a 445.51 ± 14.69 ab 12.55 ± 1.04 a
F2C2 7.45 ± 0.02 a 25.55 ± 0.29 c 99.42 ± 6.16 abc 30.44 ± 2.09 a 389.94 ± 11.25 a 430.32 ± 14.77 ab 11.99 ± 1.07 a
F2C3 7.36 ± 0.06 a 24.44 ± 1.69 c 91.50 ± 12.82 bcd 30.42 ± 1.18 a 379.77 ± 14.9 a 455.99 ± 20.19 ab 11.66 ± 1.51 a
F3C1 7.40 ± 0.02 a 26.04 ± 0.12 c 120.6 ± 8.99 ab 30.60 ± 0.76 a 399.46 ± 12.07 a 495.13 ± 27.46 a 11.71 ± 0.42 a
F3C2 7.32 ± 0.03 b 27.08 ± 0.46 c 126.37 ± 7.54 a 31.05 ± 1.39 a 403.62 ± 1.96 a 410.43 ± 3.34 b 11.44 ± 0.74 a
F3C3 7.36 ± 0.04 a 25.83 ± 0.48 b 125.46 ± 7.11 a 30.65 ± 3.22 a 400.68 ± 2.48 a 453.64 ± 22.35 ab 13.05 ± 20 a

NH4-N: soil ammonium nitrogen, TN: total nitrogen, AP: available phosphorus, TP: total phosphorus, AK:
available potassium. CK: blank control group, F1C1: low fertilizer and low bacteria, F1C2: low fertilizer and
medium bacteria, F1C3: low fertilizer and high bacteria, F2C1: medium fertilizer and low bacteria, F2C2: medium
fertilizer bacteria, F2C3: medium fertilizer and high bacteria, F3C1: high fertilizer and low bacteria, F3C2: high
fertilizer and medium bacteria, F3C3: high fertilizer and high bacteria.

After harvest, the roots of P. notoginseng were separated from the stems and leaves,
cleaned, and the fresh weight was recorded as the yield. The results showed that the yield
increased in all treatments compared with the control (CK), but with no statistical differences.

3.2. Diversity and Structural Characteristics of Fungi in Rhizosphere Soil of P. notoginseng
3.2.1. Diversity and Abundance

The average number of fungal ASVs under different treatments ranged from 75 to
342. The average ASV numbers were 342, 224, 310, 306, 232, 341, 233, 320, 75, and 340 for
CK, F1C1, F1C2, F1C3, F2C1, F2C2, F2C3, F3C1, F3C2, and F3C3, respectively. The average
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number of ASV in the CK treatment was the highest, while that in the F3C2 group was
the lowest. From the results of species annotation, the Heatmap map (Figure 1a) of the
community structure of each group in the top 15 at the phylum level was selected. The
results showed that Ascomycota, Mortierellomycota, and Basidiomycota were the dominant
fungal groups in the rhizosphere soil of P. notoginseng. Compared with the control, the
relative abundance (Table 3) of Mortierellomycota increased by 5.23% under F1C3 treatment;
the relative abundance of Mortierellomycota decreased by 20.43% under F3C2 treatment. The
relative abundance of Basidiomycota under F1C3 treatment increased by 7.96% compared
with CK treatment; the relative abundance of Basidiomycota decreased by 15.07% under
F3C2 treatment compared with CK treatment.
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Figure 1. Heatmap diagram of the community structure of each group at the phylum level (Plotting
a heatmap requires species relative abundance information. At the phylum level, we selected the top
15 relative abundance species for Heatmap drawing in groups. The Abscissa is sample information,
the right ordinate is species annotation information, and the left ordinate is clustering information).
(a) Heatmap diagram of the community structure of each group at the phylum level; (b) heatmap
diagram of the community structure of each group at the genus level.
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Table 3. The relative abundance of different treatments at the phylum level. Different values in the
table represent the percentage of relative abundance, %.

Treatments Ascomycota Mortierellomycota Basidiomycota

CK 50.54 21.48 18.17
F1C1 83.41 5.15 4.22
F1C2 67.17 11.08 11.29
F1C3 49.06 26.71 13.09
F2C1 40.61 23.36 26.13
F2C2 47.53 25.12 14.49
F2C3 42.86 19.77 25.63
F3C1 53.85 16.59 15.75
F3C2 95.32 1.05 3.10
F3C3 63.47 11.53 14.39

Generating the community structure Heatmap (Figure 1b) diagram of the top
15 species abundance at the genus level. The results showed that the relative abundances
of Mortierella, Ilyonectria, Fusarium, Trichoderma, Cephaliophora, and Cercophora in the CK
group were 8.85%, 1.89%, 2.23%, 1.75%, 3.28%, and 1.77%, respectively, and the relative
abundances were all greater than 1% (Table 4).

Table 4. The relative abundance of different treatments at the genus level. Different values in the
table represent the percentage of relative abundance, %.

Treatments Peziza Mortierella Ilyonectria Cylindrocarpon Fusarium Trichoderma Cephaliophora Minimelanolocus

CK 0.02 8.85 1.89 0.12 2.34 1.75 3.28 0.02
F1C1 0 2.77 0.64 0.07 5.09 5.52 0.59 0.02
F1C2 0.01 4.25 6.04 33.02 2.09 1.25 1.16 0.05
F1C3 0 8.80 4.61 0.30 1.56 0.93 2.95 0.02
F2C1 0.01 17.03 6.63 0.08 0.69 0.86 1.05 0.05
F2C2 0 10.17 1.89 0.19 2.71 0.81 0.50 0.05
F2C3 0.01 5.28 2.55 0.15 2.14 1.06 0.61 0.04
F3C1 0 7.59 7.85 0.26 3.73 2.41 1.23 0.44
F3C2 91.16 0.19 0.44 0.01 1.52 0.26 0.10 0.01
F3C3 0.06 5.05 2.56 0.42 6.38 1.84 2.29 11.72

Analysis of the Alpha and Beta Diversity of Fungi Community

The species accumulation curve (Figure 2a) describes the increase of species with the
rise of sampling volume. It is widely used to judge sampling volume adequacy and species
richness estimation in biodiversity and community surveys. The results show that as the
sample size increases, the curve tends to be stable, which shows that the species in this
environment will not increase significantly with the increase in the sample size, and the
sampling is sufficient.

The results of the Alpha analysis (Table 5) showed that the ASV, Chao1, and ACE
indexes decreased with the addition of fertilization and biological agents. Compared with
the control, the ASV decreased by 0.29–78.07%; the Chao1 index decreased between 0.39%
and 78.22%; the ACE index decreased between 0.43% and 78.24%. The decreases for ASV,
Chao1 and ACE were significant for treatmen F1C1, F2C1, F2C3, and F3C2 (p < 0.05). This
showed that the number of fungi in the rhizosphere soil of P. notoginseng decreased after
fertilization and adding biological agents. The Shannon index, which can simultaneously
reflect the species richness and evenness of distribution, only increased by 0.33% under
the F1C3 treatment while decreasing between 0.33% and 87.15% in the other treatments.
The decreases were significant in the F1C1, F1C2, F2C3, and F3C2 treatments. This result
indicated that the richness and uniformity of fungal colonies in the rhizosphere soil of P.
notoginseng decreased after adding fertilizers and biological agents. The Simpson index
mainly reflects the diversity of the community. The Simpson index increased slightly by
1.05% in the F2C2 treatment, while the rest of the treatments stayed the same or decreased.
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It was only significant in the F1C1 and F3C2 treatments (p < 0.05). The Alpha index analysis
showed that the number, richness, and uniformity of fungi in the rhizosphere decreased
compared with the untreated soil.
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Table 5. Alpha diversity of fungi in rhizosphere soil of P. notoginseng. The data in the table are
average ± standard error, and those with the same letter after the same column of data indicate that
there is no significant difference between processing (p > 0.05, Duncan’s method).

Treatments ASV Chao1 Shannon Simpson ACE

CK 342 ± 15.00 a 342.31 ± 14.62 a 5.99 ± 0.13 a 0.95 ± 0.011 a 342.63 ± 14.58 a
F1C1 224 ± 7.00 c 224.14 ± 7.41 c 3.49 ± 0.21 c 0.69 ± 0.052 b 224.07 ± 7.93 c
F1C2 311 ± 36.00 ab 310.65 ± 36.21 ab 4.96 ± 0.44 b 0.86 ± 0.045 a 310.40 ± 36.05 ab
F1C3 307 ± 46.00 ab 306.68 ± 46.25 ab 6.01 ± 0.04 a 0.95 ± 0.007 a 306.83 ± 46.29
F2C1 232 ± 9.00 bc 232.01 ± 9.01 bc 5.43 ± 0.10 ab 0.95 ± 0.004 a 231.82 ± 9.18 bc
F2C2 341 ± 6.00 a 340.98 ± 6.59 a 5.97 ± 0.09 a 0.96 ± 0.005 a 341.16 ± 6.68 a
F2C3 233 ± 7.00 bc 233.33 ± 7.22 bc 4.77 ± 0.36 b 0.87 ± 0.044 a 233.26 ± 7.50 bc
F3C1 320 ± 9.00 a 320.09 ± 9.20 a 5.91 ± 0.20 a 0.95 ± 0.009 a 319.95 ± 9.42 a
F3C2 75 ± 3.00 d 74.54 ± 3.90 d 0.77 ± 0.25 d 0.16 ± 0.065 c 74.56 ± 4.49 d
F3C3 340 ± 15.00 a 340.34 ± 15.50 a 5.87 ± 0.08 a 0.95 ± 0.012 a 340.33 ± 15.48 a

ASV is the Amplicon Sequence Variant (amplified subsequence variation). Each de-duplicated feature sequence is
produced by quality control operations such as denoising and splicing by the DADA2 method. The abundance
table of these sequences in the sample is called feature table (feature-table); Chao index: The actual number of
species in the community was estimated by calculating the ASV of only one or two reads in the community;
Shannon index: the higher the species diversity is, the more uniform the species distribution is, and the larger the
Shannon index value is (which can reflect both the species richness and the evenness of distribution); Simpson
index: the probability that two randomly selected individuals belong to different species. The higher the
Simpson index, the higher the community diversity; Ace index: an index used to estimate the number of ASV in
a community.

Rank abundance (Figure 2b) is used to simultaneously account for two aspects of
sample diversity: the richness and uniformity of the species contained in the sample. The
richness of species is reflected by the length of the curve on the horizontal axis; the more
significant the span of the horizontal axis of the curve, the richer the composition of species;
the uniformity of species composition is reflected by the shape of the curve, and the smaller
the span of the vertical axis of the curve is, the higher the uniformity of species composition
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is. The results showed that the species richness of each group decreased compared with
CK, and the species richness of the F3C2 group was the lowest.

Beta diversity analysis is mainly used to evaluate the differences in species composition
between different samples. The more similar the sample composition, the closer the distance
reflected in the PCA diagram (Figure 3a). The results of the PCA analysis showed that the
explanatory degree of PC1 was 6.34%, the explanatory degree of PC2 was 5.79%, and the
total explanatory degree was 12.13%. There was a good aggregation among the samples,
and the sample points of different groups were close, which indicated that the fungal
community in the rhizosphere soil of P. notoginseng did not change significantly after
fertilization and biological agent addition.

Agronomy 2023, 13, x FOR PEER REVIEW 10 of 21 
 

 

  
(a) (b) 

 
(c) 

Figure 3. (a) PCA analysis; (b) PCoA analysis based on the Bray–Curtis distance calculation method 
(c) Clustering tree based on binary-Jaccard distance. 

3.3. Relationship between Rhizosphere Soil Microorganisms and Environmental Physicochemical 
Parameters 

The relative abundance of dominant phyla of soil fungi in the rhizosphere of P. noto-
ginseng and the RDA analysis (Figure 4a) of soil physical and chemical properties showed 
that RDA1 and RDA2 explained 27.2% and 2% of the changes in the composition of soil 
fungi. The relationship between the environmental indicators and RDA1 and RDA2 
showed that pH, AK, and RDA1 were negatively correlated; NH4-N, TN, AP, TP, and 
RDA1 were positively correlated; pH, NH4-N, and RDA2 were positively correlated; TN, 

Figure 3. (a) PCA analysis; (b) PCoA analysis based on the Bray–Curtis distance calculation method
(c) Clustering tree based on binary-Jaccard distance.



Agronomy 2023, 13, 2093 10 of 19

PCoA analysis (Figure 3b) was performed based on the Bray-Curtis distance calcu-
lation method. The results showed that the explanation rates of PC1 and PC2 for the
differences between groups were 20.65% and 14.88%, respectively, and the repeated dis-
tance parameters among the samples were close. The distance between the F1C1 and F3C2
treatments was farther than that of the CK treatment, which indicated that the change of
the rhizosphere soil fungal community was more significant than that of other treatments.

The clustering results based on the binary-Jaccard distance algorithm (Figure 3c) show
that the groups can be better clustered together, which shows that the grouping effect was
excellent. The branching distance reflects the degree of similarity between samples, and
the sample most similar to CK is F3C3 processing.

3.3. Relationship between Rhizosphere Soil Microorganisms and Environmental
Physicochemical Parameters

The relative abundance of dominant phyla of soil fungi in the rhizosphere of
P. notoginseng and the RDA analysis (Figure 4a) of soil physical and chemical properties
showed that RDA1 and RDA2 explained 27.2% and 2% of the changes in the composition
of soil fungi. The relationship between the environmental indicators and RDA1 and RDA2
showed that pH, AK, and RDA1 were negatively correlated; NH4-N, TN, AP, TP, and RDA1
were positively correlated; pH, NH4-N, and RDA2 were positively correlated; TN, AP,
TP, AK, and RDA2 were negatively correlated. Ascomycota was positively correlated with
RDA1; Rozellomycota, Basidiomycota, Mortierellomycota, and RDA1 were negatively corre-
lated; Mortierellomycota, Ascomycota, and RDA2 were positively correlated; Rozellomycota,
Basidiomycota, and RDA2 were negatively correlated.
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Figure 4. Relative abundance of dominant phylum (a), relative abundance of dominant genus (b),
and redundancy analysis of soil physical and chemical properties in the rhizosphere of P. notoginseng.
NH4-N: Nitrate nitrogen; T-N: Total nitrogen; A-P: Available phosphorus; T-P: Total phosphorus A-K:
Available potassium; PH: Soil pH value.

At the genus level, the relative abundance of rhizosphere fungi Top10 species and soil
physical and chemical properties of redundancy analysis (Figure 4b) showed that RDA1
and RDA2 explained 33.5% and 2.7% of the changes in soil fungal colony composition,
respectively. AP, AK, TP, TN, and RDA1 were positively correlated; NH4-N, pH, and
RDA1 were negatively correlated; pH, NH4-N, and RDA2 were positively correlated; TN,
AP, TP, AK, and RDA2 were negatively correlated. Peziza, Ilyonectria, Chromelosporium,
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Minimelanolocus, and RDA1 were positively correlated; Mortierella, Cylindrocarpon, Fusarium,
Trichoderma, and Cephaliophora were negatively correlated with RDA1; Ilyonectria, Cylindro-
carpon, Fusarium, and Trichoderma were positively correlated with RDA2; Peziza, Mortierella,
Chromelosporium, Cephaliophora, and Minimelanolocus were negatively correlated with RDA2.

3.4. Indicator Analysis

Using the R software package(indicspecies_1.7.14), by calculating the indicator value
of ASV in each group and then conducting a statistical analysis of the indicator value
between groups, the index species of each group were revealed (Figure 5). The index
species mainly refer to the biological species, genera, or communities that can have a great
impact on the growth environment in a certain area. At the gate level, the indicative species
of each group were mainly Ascomycota, Basidiomycota, and Rozellomycota, in which the
relative abundance of Ascomycota was the highest; at the genus level, it was mainly Peziza,
Cylindrocarpon, and Chromelosporium, in which the relative abundance of Peziza was the
highest. There were significant differences in the distribution of indicative species among
treatments. The main indicative species (Indicator.values > 0.75) were summarized in a
table (Table 6).
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Table 6. The main indicative species, The “\” in the indicative species column, indicates that there is
no indicative species indicator.values > 0.75.

Treatments Indicative Species Indicator.Values

CK
ASV_94.Basidiomycota.Melanophyllum 0.93

ASV_217.Basidiomycota.Subulicystidium 0.90
F1C1 \ \
F1C2 ASV_5.Ascomycota.Cylindrocarpon 0.99
F1C3 ASV_100.Ascomycota.Coleophoma 0.88
F2C1 ASV_36.Mortierellomycota.Mortierella 0.96
F2C2 ASV_129.Ascomycota.Paraboeremia 0.96
F2C3 \ \
F3C1 ASV_191.Ascomycota.Cephaliophora 0.95
F3C2 ASV_1.Ascomycota.Peziza 1.00

F3C3

ASV_235.Basidiomycota.Thanatephorus 1.00
ASV_202.Basidiomycota.Thanatephorus 1.00
ASV_20.Ascomycota.Minimelanolocus 0.99

ASV_67.Ascomycota.Dactylonectria 0.87



Agronomy 2023, 13, 2093 12 of 19

3.5. Random Forest Analysis

In order to classify microbial community samples effectively and accurately and to find
out the key species that can differ among groups, the genera with the top
30 relative abundance are selected, and R-packet randomForest was used to draw the
species importance point map (Figure 6).
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3.6. GRA-TOPSIS Analysis

To explore the best combination of bacterial fertilizer, we integrated ten indexes of pH,
NH4-N, AP, AK, TN, TP, Cylindrocarpon, Ilyonectria, Fusarium, and yield, and sorted each
treatment by GRA-TOPSIS analysis (Table 7). The sort results were displayed in the table.

Table 7. GRA-TOPSIS analysis results.

Treatments Score Sort

CK 0.51 6
F1C1 0.48 7
F1C1 0.45 8
F1C2 0.53 5
F2C3 0.57 3
F2C2 0.57 4
F2C3 0.60 2
F3C1 0.42 10
F3C2 0.63 1
F3C3 0.45 9

3.7. Establish the Best Model in Theory

To further determine the response characteristics of biological agents and fertilizer to
the rhizosphere and the yield of P. notoginseng, we established a theoretical model using
MATLAB according to the results of the GRA-TOPSIS analysis. The regression model is
as follows:
Z = −1.9032 + 0.035192X + 0.059526Y − 0.00014534X2 − 0.0015591Y2 − 8.7333 × 10−5XY
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In the formula, X represents the fertilizer application amount, kg·hm−2; Y represents
ap plication amount of biological agent, kg·hm−2; and Z represents GRA-TOPSIS Score.

The calculation results of the theoretical model were as follows: the maximum value
of the GRA-TOPSIS score was 0.61469, and the coordinate of the maximum point of the
model was X = 116.31 and Y = 15.83. Generally, the best coupling scheme of biological
agent and fertilizer, in theory, was as follows: the amount of fertilizer was 116.31 kg·hm−2;
when the number of bacteria was 15.83 kg·hm−2, the score of GRA-TOPSIS was the highest,
reaching the comprehensive best.

According to the theoretical model, the corresponding function diagram (Figure 7) was
drawn, and the best application interval of biological agents and fertilizer was calculated.
The part of the graph with the maximum GRA-TOPSIS score of 0.5% as the optimal
interval (GRA-TOPSIS score ∈ (0.61~0.61)). It was calculated that the optimal interval of
fertilization was 111.74~120.86 kg·hm−2, and the optimal interval of adding biological
agents was 14.43~17.23 kg·hm−2.
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4. Discussion

There is an interactive relationship between soil microorganisms, plants, and the soil
environment. In the cultivation of oil peony, as an example, not only the soil’s physical
and chemical properties of the plants with black root rot were changed, but also the fungal
network structure in the soil of diseased plants was more complex than that of healthy
plants [45]. Long-term tillage or long-term fertilization will change the soil’s physical
and chemical properties and soil microbial structure [46,47]. After long-term continuous
cropping, the fungal colony of peanuts changed, the pathogenic fungi increased, and the
beneficial fungi decreased. At the same time, the bacterial abundance decreased with the
increase of continuous cropping years, and the soil microbial structure was destroyed,
which led to a decrease in peanut yield [48,49]. There was a similar trend in the planting
process of buckwheat and apple [50–53]. Long-term fertilization will also change the
soil microbial structure [54]. Long-term application of nitrogen fertilizer will reduce the
diversity of soil bacteria [55]. The experiment was carried out in alkaline soil (pH > 7.5),
and the soil pH decreased after planting P. notoginseng. The experimental results showed
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that the pH value decreased significantly only in the F3C2 treatment and CK treatments
(p < 0.05), and similar results also appeared in previous studies [56,57], mainly due to the
selective absorption of ions by crops after fertilization. At the same time, NH4-N was acidic
and easily neutralized with alkaline soil [58]. The experimental results showed that with a
decrease in soil pH, the soil NH4-N decreased. The soil microbial community will degrade
the residual plants deposited in the soil to provide energy for itself, but when the plant
residual nitrogen cannot satisfy the microbial community, the microbial community will
also absorb nitrogen in soil and fertilizer [59]. This is called nitrogen immobilization. AP
and AK were significantly increased with the increase in fertilizer application, which was
due to the accumulation of AP and AK in the soil because they were not fully absorbed
and utilized by P. notoginseng after fertilization. TN and TP increased with the increase
in fertilizer application rate, but the increase was not significant (p > 0.05). This may be
due to the fact that exogenous N and P were not all absorbed and utilized by the roots of
P. notoginseng after fertilization, and the remaining N and P were fixed and transformed into
a steady state by soil. The experimental results are in good agreement with the previous
experimental results [60].

Many microorganisms have the ability to promote plant growth and have beneficial
effects on root systems and overall plant growth by colonizing the plant rhizosphere [29].
These bacteria have been designated as plant growth-promoting rhizosphere bacteria
(PGPR). PGPR promotes plant growth mainly by improving plant abiotic stress tolerance;
nutrient immobilization for plant absorption; plant growth regulators; production of
iron carriers, and production of volatile organic compounds [61]. It has been confirmed
that Bacillus subtilis is an excellent biocontrol bacterium in previous reports [62–65]. When
applied, it will reduce the diversity of the fungal community in plant rhizosphere soil [66,67].
The diversity index of the fungal community in the rhizosphere soil of P. notoginseng
decreased after the addition of biological agents in this experiment, which may be due
to the antagonism between Bacillus subtilis and fungi in the soil after planting inhibiting
the increase of fungi in the soil. Ascomycota, Mortierellomycota, and Basidiomycota were the
dominant fungal species in the rhizosphere soil of P. notoginseng, which was similar to the
results of the dominant species during the sitting period of wild ginseng [68]. Furthermore,
the results of the genus-level analysis showed that Cylindrocarpon and Fusarium, which
are considered to be the main pathogens causing P. notoginseng [14], showed different
trends. Cylindrocarpon decreased in the F1C1, F2C1, and F3C2 treatments but increased
slightly in other treatments. Fusarium was increased in the treatment of F1C2, F1C3, F2C1,
F2C3, and F3C2. Some studies have shown that many species of Ilyonectria can cause
plant root rot [69]. The same conclusion was drawn from the comparative experiment
on the composition of rhizosphere fungi in healthy and diseased P. notoginseng soil [23].
However, the experimental results showed that the co-application of biological agents and
fertilizers could not inhibit Ilyonectria. Therefore, the effects of biological agents on specific
pathogenic fungi in complex soil environments need to be studied in more detail. Based on
the diversity of soil fungal community and its inhibitory effect on some pathogenic fungi,
the effect of Bacillus subtilis on the rhizosphere soil microenvironment of P. notoginseng was
comprehensively evaluated. Bacillus subtilis has application potential.

The increase of soil nitrogen and phosphorus will increase the relative abundance
of soil fungal pathogens [70]. Our experimental results showed that the nutrients in the
rhizosphere soil of P. notoginseng showed a significant upward trend with the increase in
fertilizer application rate. RDA analysis showed that NH4-N was negatively correlated
with Rozellomycota, Basidiomycota, and Mortierellomycota, while AP was negatively correlated
with Mortierellomycota. RDA analysis at the genus level showed that NH4-N was negatively
correlated with the main pathogenic bacteria Cylindrocarpon, Fusarium, and Ilyonectria of
P. notoginseng; AP was positively correlated with Cylindrocarpon, Fusarium, and Ilyonectria,
the main pathogenic bacteria of P. notoginseng. AK in the rhizosphere soil of P. notoginseng
also increased with the increase in fertilizer application. The results of RDA analysis
were the same as AP, and the main pathogenic fungi were proportional to AK. Therefore,
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we speculated that excessive fertilization increased the increase of AP and AK in the
rhizosphere soil of P. notoginseng, which was an indirect cause of P. notoginseng disease,
which was confirmed in previous reports [71]. Soil pH has significant effects on microbial
growth, community structure, and biomass [72–74]. High-pH soil was beneficial to bacterial
growth, which led to the inhibition of fungal growth. RDA analysis at the gate level showed
that soil pH was negatively correlated with Ascomycota, Rozellomycota, and Basidiomycota
but positively correlated with Mortierellomycota. RDA analysis at the genus level showed
that pH was positively correlated with Cephaliophora, Mortierella, and Chromelosporium and
negatively correlated with others, including Cylindrocarpon, Fusarium, and Ilyonectria, the
main pathogens of P. notoginseng root rot. This shows that the pathogenic fungi in the
slightly alkaline soil will be inhibited to a certain extent with the increase in soil pH.

There is competition between pathogenic bacteria and probiotics in soil, which is one of
the reasons for the change of colony structure in soil [75]. Previous studies have confirmed
that this competition is mainly the competition for space and resources [76]. Strains that can
reproduce rapidly tend to occupy more space and resources. When artificially increasing
the number of probiotics in the soil can enhance the reproduction speed of probiotics,
make them occupy space and resources faster, compress the living space and resources
of pathogens, and finally achieve the role of inhibiting pathogens [77]. After long-term
planting of a single crop, plant growth will be inhibited, which is also known as soil
fatigue [78]. Previous studies have shown that the inhibitory effect of soil on plant growth
is weakened after heating and disinfection at 100 ◦C, which indicates that soil fatigue is
related to biological factors in biological soil, especially microbial communities [79]. The
space and resources in the soil are often gradually occupied by pathogens with the increase
of planting time, and the planting life of P. notoginseng is often longer, so P. notoginseng
diseases caused by the imbalance of soil colony structure are particularly frequent [79]. The
microbial structure in the soil is affected by many factors, such as plant root exudates, plant
residue decay, external interference, and other factors. Our experimental results showed
that the indicative species were different under different treatments, which indicated
that the application of biological agents and fertilizers had complex effects on the colony
structure in the soil. Therefore, in order to explore the changes of soil colony structure
under specific exogenous interference, more detailed and in-depth research should be
carried out.

5. Conclusions

The results showed that fertilization increased the nutrient content in the rhizosphere
soil of P. notoginseng. Excessive fertilization was one of the causes of P. notoginseng disease.
Co-application of bacterial fertilizer shows that Bacillus subtilis biological agent has potential
application value in improving the rhizosphere soil fungal community of P. notoginseng.

According to the results of the GRA-TOPSIS theoretical model analysis, we established
the theoretical model and obtained the theoretical optimal coupling scheme of bacterial
fertilizer as follows: the amount of fertilizer application was 116.31 kg·hm−2, and the
amount of bacteria application was 15.83 kg·hm−2. Taking part with the maximum score
of 0.5% of GRA-TOPSIS as the optimal interval, it was calculated that the optimal range
of fertilization was 111.74–120.86 kg·hm−2, and the optimal interval of adding biological
agents was 14.43–17.23 kg·hm−2. Bacillus subtilis needs further study on other potential
pathogens. Although our experiments have verified that the combined application of
Bacillus subtilis biological agent and fertilizer has an inhibitory effect on pathogenic fungi in
the soil, in the field where the actual situation is complex, the change of colony structure in
soil needs further systematic and perfect demonstration.
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