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Abstract: Since the discovery of penicillin, β-lactam antibiotics have commonly been used to treat
bacterial infections. Unfortunately, at the same time, pathogens can develop resistance to β-lactam
antibiotics such as penicillins, cephalosporins, monobactams, and carbapenems by producing β-
lactamases. Therefore, a combination of β-lactam antibiotics with β-lactamase inhibitors has been a
promising approach to controlling β-lactam-resistant bacteria. The discovery of novel β-lactamase
inhibitors (BLIs) is essential for effectively treating antibiotic-resistant bacterial infections. There-
fore, this review discusses the development of innovative inhibitors meant to enhance the activity
of β-lactam antibiotics. Specifically, this review describes the classification and characteristics of
different classes of β-lactamases and the synergistic mechanisms of β-lactams and BLIs. In addition,
we introduce potential sources of compounds for use as novel BLIs. This provides insights into
overcoming current challenges in β-lactamase-producing bacteria and designing effective treatment
options in combination with BLIs.
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1. Introduction

In recent decades, the evolution and rapid spread of antibiotic-resistant bacteria have
threatened public health and become a major threat worldwide. In the U.S. alone, antibiotic-
resistant infections have been estimated to cause more than 23,000 deaths and USD 35 billion
in economic losses every year [1]. Although the development of antibiotic agents has been
ongoing for several decades, the clinical supply of novel antibiotics remains unsatisfactory
due to the rapid emergence of antibiotic-resistant bacteria [2]. The overuse and misuse
of antibiotics in clinics and animal farms have exerted excessive selective pressure on the
bacterial ecosystem, leading to the rapid dissemination of antibiotic resistance [3]. Moreover,
limited chemotherapeutic options lead to frequent treatment failure in cases of pan-drug-
resistant bacterial infections. Therefore, the discovery of novel antibiotics in the clinical
pipeline is an essential strategy to effectively control antibiotic-resistant bacteria [4]. β-
lactam antibiotics (BLAs) are most commonly used to treat bacterial infections, accounting
for nearly 60% of global antibiotic usage, due to their broad spectrum of antimicrobial
activity [5,6]. BLAs comprise four major categories, including penicillin, cephalosporins,
monobactams, and carbapenems. These antibiotics have a common structural feature, the
four-membered β-lactam ring. N-acetylmuramic acid (NAM) units linked to pentapeptides
are major cell wall components [7]. Cross-linking D-alanine-D-alanine NAM pentapeptides
catalyzed by penicillin-binding proteins (PBPs) can confer rigidity and osmotic stability to
the bacterial cell wall [8]. The β-lactam ring exhibits structural similarity to D-Ala-D-Ala
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peptides [9], which can irreversibly acylate the serine-active sites of PBPs and block further
transpeptidation reactions, resulting in a damaged cell wall and bacterial death [10].

Unfortunately, the evolution of antibiotic resistance in pathogens has significantly
reduced the effectiveness of BLAs. The World Health Organization (WHO) has designated
a priority list of antibiotic-resistant bacteria, including Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacteriaceae [11] (Table 1). The resistance mechanisms of bacteria to
BLAs are the production of β-lactamases, the modified active sites of PBPs, the down-
regulation of outer-membrane proteins (OMPs), and the overexpression of efflux pumps [7]
(Figure 1). Among these mechanisms, the production of β-lactamases is a major cause of
the resistance of Gram-negative bacteria to BLAs [12]. Bacteria-produced β-lactamases can
hydrolyze BLAs that bind to PBPs, preserving the physiological function and structure of
the cell wall [13,14]. Furthermore, the mutation of PBPs is the most representative resistance
mechanism in Gram-positive bacteria [12]. The modified active sites of PBPs can effectively
reduce affinity for BLAs, resulting in enhanced resistance. For example, the altered forms of
PBPs can induce BLA resistance in bacteria and transfer to susceptible bacteria to develop
antibiotic resistance [15]. The down-regulation of OMPs, such as OprD in P. aeruginosa and
CarO in A. baumannii, can reduce membrane permeability and prevent the binding of BLAs
to PBPs [16,17]. Notably, the down-regulation of OMPs is not sufficient to enhance bacterial
resistance to BLAs [7]. Efflux pumps contribute to multidrug resistance by transporting
antibiotics outside the cell, which can synergistically increase the carbapenem resistance
mediated by β-lactamases [18].
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Recently, the rapid emergence and widespread distribution of BLA resistance have
been mainly attributed to β-lactamase-producing Gram-negative bacteria, resulting in
multidrug and pan-drug resistance [19]. In order to deal with this threat, two main
strategies have been proposed to restore the antimicrobial activity of BLAs against bacteria:
(i) the development of novel BLAs that can resist the hydrolysis of β-lactamase and (ii) the
discovery of β-lactamase inhibitors (BLIs) that can be used as adjuvants to improve the
antibiotic efficacy of BLAs [7]. However, the development of new BLAs and the assessment
of their clinical feasibility are time-consuming and costly processes. Furthermore, bacteria
can easily evolve resistance to newly developed BLAs. However, BLIs are not antibiotics,
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which may not cause antibiotic resistance in bacteria. BLIs target the active sites of β-
lactamases and inhibit the formation of complexes between BLAs and β-lactamases. Hence,
the antibiotic activity of BLAs can be restored when combined with BLIs, which can
increase the possibility of re-using BLAs [20]. For instance, BLA–BLI combinations such
as amoxicillin–clavulanic acid, ampicillin–sulbactam, and piperacillin–tazobactam have
been extensively utilized and can significantly enhance antibiotic activity. This review
discusses the classification and characteristics of different classes of BLAs, the synergistic
inhibitory mechanisms of BLAs and BLIs, and the potential sources of compounds for use
as novel BLIs.

Table 1. The priority list of antibiotic-resistant bacteria declared by the WHO.

Priority Gram-Staining Category Bacteria Major BLA Resistance Reference

Priority 1: Critical

Negative Acinetobacter baumannii Carbapenem [21]
Negative Pseudomonas aeruginosa Carbapenem [22]

Negative Enterobacteriaceae Carbapenem,
3rd Generation of Cephalosporin [23,24]

Priority 2: High

Positive Enterococcus faecium Vancomycin [25]
Positive Staphylococcus aureus Methicillin, Vancomycin [26]

Negative Helicobacter pylori Clarithromycin [27]
Negative Campylobacter spp. Fluoroquinolone [28]
Negative Salmonellae spp. Fluoroquinolone [29]
Negative Neisseria gonorrhoeae Cephalosporin, Fluoroquinolone [30]

Priority 3: Medium
Positive Streptococcus

pneumoniae Penicillin [2]

Negative Haemophilus influenzae Ampicillin [31]
Negative Shigella spp. Fluoroquinolone [32]

WHO: World Health Organization; BLA: β-lactam antibiotics.

2. Classification of β-Lactamases and Genetic Transfer Origins

Previous studies have shown that β-lactamases can hydrolyze the β-lactam ring
through acylation/deacylation and thereby deactivate penicillin, cephalosporins, monobac-
tams, and carbapenems [20]. According to the β-lactamase database, more than 8100
β-lactamases have been identified and classified based on their structural and functional
properties; the Ambler molecular classification uses amino acid sequences, and the Bush–
Jacoby–Medeiros functional classification uses biochemical substrates and inhibitory pro-
files [6,10,33] (Table 2). Specifically, the Ambler molecular classification categorizes serine-
β-lactamases (SBLs) into classes A, C, and D, while metallo-β-lactamases (MBLs) are
classified into class B [34]. The chromosome- and plasmid-encoded β-lactamase genes can
be transferable, causing the emergence of β-lactamase-producing bacteria [7,19].

Table 2. Classification schemes and characteristics of β-lactamases.

Ambler
Classification

Functional
Scheme

Representative
Enzyme Relevant Bacteria Transfer Origin Substrate Reference

Class A 2b TEM-1, TEM-2,
and SHV-1

E. coli, N. gonorrhoeae, P.
aeruginosa, H. influenzae,
and K. pneumoniae

Plasmid-
mediated

Penicillin and
narrow-spectrum
cephalosporins

[6]

2be
CTX-M, SHV-2,
TEM-10, and
GES-1

E. coli, K. pneumoniae, C.
freundii, and other
Enterobacteriaceae

Chromosome-
encoded and
plasmid-
mediated

Penicillin, aztreonam,
narrow and
extended-spectrum
cephalosporins

[33,35]
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Table 2. Cont.

Ambler
Classification

Functional
Scheme

Representative
Enzyme Relevant Bacteria Transfer Origin Substrate Reference

2br TEM-30, SHV-72 K. pneumoniae, E. coli, Plasmid-
mediated Penicillin [7]

2c PSE (CARB)
V. cholerae, E. coli, S.
enterica, P. aeruginosa,
and S. typhimurium

Chromosome-
encoded

Penicillin and
carbenicillin [36]

2f

KPC-2, KPC-3,
GES-2, GES-11,
NMC-A, IMI-1,
SFC-1, and SME-1

K. pneumoniae, E.
cloacae, A. baumannii, P.
aeruginosa, and S.
marcescens

Chromosome-
encoded and
plasmid-
mediated

Penicillin,
cephalosporins,
aztreonam, and
carbapenems

[10,37]

Class B 3 IMP, VIM, NDM,
CphA, and L1

A. baumannii, P.
aeruginosa, K.
pneumoniae, A.
hydrophila, and S.
maltophilia

B1: Plasmid-
mediated
(mainly)
B2 and B3:
chromosome-
encoded

Penicillin,
cephalosporins, and
carbapenems

[38,39]

Class C 1 CMY, FOX, MIR,
ACT, and DHA

C. freundii, E. cloacae, S.
marcescens, P.
aeruginosa, K.
pneumoniae, and M.
morganii

Chromosome-
encoded and
plasmid-
mediated

Penicillin, aztreonam,
cephamycin, and
cephalosporins
(except cefepime)

[40]

Class D 2d
OXA-23, OXA-40,
OXA-48, OXA-51,
and OXA-58

A. baumannii, E. coli, E.
cloacae, K. pneumoniae,
P. aeruginosa, and other
Enterobacteriaceae

Plasmid-
mediated
(mainly) and
chromosome-
encoded

Penicillin,
cephalosporins, and
carbapenems

[10,41]

A. baumannii, Acinetobacter baumannii; A. hydrophila, Aeromonas hydrophila; C. freundii, Clostridium freundii; E.
coli, Escherichia coli; E. cloacae, Enterobacter cloacae; H. influenzae, Haemophilus influenzae; K. pneumoniae, Klebsiella
pneumoniae; M. morganii, Morganella morganii; N. gonorrhoeae, Neisseria gonorrhoeae; P. aeruginosa, Pseudomonas
aeruginosa; S. marcescens, Serratia marcescens; S. maltophilia, Stenotrophomonas maltophilia; S. enterica, Salmonella
enterica; S. typhimurium, Salmonella typhimurium; V. cholerae, Vibrio cholerae.

The class A enzymes, according to the Ambler classification, are predominant β-
lactamases, showing a broad spectrum of activity. There are two common plasmid-mediated
β-lactamases, designated TEM-1 and SHV-1, found in most Escherichia coli, Neisseria gon-
orrhoeae, H. influenzae, and P. aeruginosa [6]. These enzymes are capable of inactivating
penicillin and narrow-spectrum cephalosporins. Up to now, new antibiotics such as pen-
ems and cephems have been used to treat β-lactam-resistant bacteria [7]. Nevertheless,
bacteria produce extended-spectrum β-lactamases (ESBLs) under antibiotic selective pres-
sure, resulting in the inactivation of extended-spectrum cephalosporins and monobactam
aztreonam [42]. Among ESBLs, more than 246 have been identified as belonging to the
CTX-M family, which is involved in the regulation of chromosomes, plasmids, and mobile
genetic elements [33,35]. The CTX-M family shows greater enzymatic activity than other
ESBLs against third-generation cephalosporins such as cefotaxime, ceftriaxone, and cef-
tazidime [43]. Interestingly, these ESBLs do not degrade carbapenems, and their enzymatic
activity is inhibited by common BLIs such as clavulanic acid, sulbactam, and tazobactam.

The class A carbapenemases that hydrolyze carbapenems belong to the KPC, GES,
NMC-A, IMI, and SME families [44]. The KPC and GES enzymes are the common plasmid-
borne carbapenemases, widely distributed in Klebsiella pneumoniae, A. baumannii, Salmonella
spp., and Enterobacter spp. [45]. KPC-type β-lactamases are highly resistant to clavu-
lanic acid, sulbactam, and tazobactam, while these are suppressed by avibactam and
vaborbactam [46]. Unlike KPC-type β-lactamases, NMC-A, IMI, and SME enzymes are
chromosome-encoded carbapenemases, predominantly identified in Enterobacter cloacae and
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Serratia marcescens [10]. These carbapenemases are responsible for the transfer of resistance
genes through plasmid mobilization [37].

Ambler class C AmpC β-lactamases are the predominate cephalosporinases encoded
on both chromosomes and plasmids [40]. AmpC β-lactamases mainly include the CMY,
FOX, MIR, ACT, and DHA families, which are widely distributed in multiple Gram-
negative bacteria such as Citrobacter freundii, Morganella morganii, P. aeruginosa, and E. cloa-
cae [23]. AmpCβ-lactamase-producing bacteria are able to hydrolyze penicillin, cephalosporins
(except cefepime), aztreonam, and cephamycin [47]. The majority of AmpC β-lactamases
have no carbapenemase activity. However, mutated AmpC β-lactamases down-regulate
OMPs and up-regulate efflux pumps, leading to resistance to carbapenem antibiotics [43,48].
AmpC β-lactamases are resistant to β-lactam-based inhibitors but sensitive to diazabicyclo-
octane BLIs and boronate BLIs [49].

Ambler class D enzymes, also known as oxacillinases, are characterized by their ability
to hydrolyze isoxazolylpenicillins. Commonly, plasmid-encoded OXA β-lactamases are
resistant to clavulanic acid, sulbactam, and tazobactam, conferring resistance to penicillin,
cephalosporins, and carbapenems [41]. OXA β-lactamases, including OXA-23, OXA-40,
OXA-48, OXA-58, and OXA-143, can degrade carbapenems and are produced by in A.
baumannii, P. aeruginosa, and Enterobacteriaceae [50,51]. Moreover, most OXA β-lactamases
are known as carbapenemases because of their ability to increase carbapenem resistance in
low-permeability environments, especially in A. baumannii [52].

In contrast to SBLs, which possess catalytic serine residues, Ambler class B enzymes,
as MBLs, use zinc ions to mediate antibiotic hydrolysis. The hydrolytic spectrum of
MBLs encompasses most BLAs, with the exception of aztreonam [53]. Although MBLs are
resistant to most available BLIs, their hydrolyzing activity is easily inhibited by chelating
agents [10]. According to their amino acid sequences and active site characteristics, MBLs
can be further divided into three different subclasses: B1, B2, and B3. Among these, subclass
B1 is included in plasmid-borne MBLs such as the IMP, VIM, and NDM families, which are
widely distributed in A. baumannii, P. aeruginosa, and K. pneumoniae [38]. Notably, NDM,
a unique membrane-bound protein, can protect neighboring bacteria from antibiotics
and transfer resistance genes through outer-membrane vesicles [54]. In contrast, the
subclasses B2 and B3 encompass some chromosome-encoded MBLs, such as CphA in
Aeromonas hydrophila, L1 in Stenotrophomonas maltophilia, and GOB-1, in Chryseobacterium
meningosepticum [39].

3. Criteria for Selecting Appropriate BLIs as a Promising Antimicrobial Strategy

BLIs have gained great attention due to their effectiveness in inhibiting β-lactamases.
The application of BLIs can be a promising strategy to control antibiotic-resistant bac-
teria in clinical settings, specifically for β-lactamase-producing bacteria. Recently, BLIs
combined with β-lactam antibiotics were used to improve antibiotic activity against β-
lactamase-producing bacteria. A few BLIs have been approved for clinical use. For ex-
ample, a ceftolozane–tazobactam combination was used to clinically treat complicated
intra-abdominal infections caused by ESBL-producing Enterobacteriaceae and P. aerugi-
nosa [55]. The combination of ceftazidime–avibactam showed a synergistic effect on the
treatment of complicated urinary tract infections and intra-abdominal infections caused
by ceftazidime-resistant Enterobacteriaceae [56]. The development of BLIs is still in the
experimental stages and undergoing clinical trials. Moreover, the currently approved com-
binations are encountering resistance issues, such as clinical strains developing multiple
drug resistance mechanisms, including alterations in amino acid sequences, decreases in
membrane permeability, mutations in target protein mutations, and the activation in efflux
pumps [57]. Therefore, the discovery of BLIs is essential to increasing the utilization of
current antibiotics and designing new treatment options for antibiotic-resistant bacterial
infections in clinical practice.

Many potential compounds for BLIs have been evaluated and verified to enhance the
activity of β-lactam antibiotics in laboratories and clinical trials. The criteria for selecting
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suitable BLIs include (1) the specificity of BLIs for β-lactamases, (2) the broad-spectrum
inhibition of BLIs against β-lactamases, (3) the synergy of BLIs with β-lactams, (4) the
optimum pharmacokinetic properties of BLIs, (5) the high-efficiency cellular penetration
of BLIs, (6) less induction of BLI resistance, and (7) no adverse effect of BLIs (Figure 2).
BLIs need to specifically and competitively target β-lactamases by mimicking β-lactam
antibiotics. For example, avibactam effectively inhibits ESBL activity in multidrug-resistant
Enterobacteriaceae and P. aeruginosa [58]. Similarly, tazobactam is a non-toxic inhibitor
responsible for class A β-lactamases [59]. Hence, the specific binding to β-lactamases plays
a key role in restoring the efficacy of β-lactam antibiotics. Currently, SBLs and MBLs can
degrade many β-lactam antibiotics. Therefore, it is necessary to develop broad-spectrum
BLIs that inhibit SBLs and MBLs. In general, β-lactamases show high affinity for substrates
such as penicillin analogs and cephalosporin analogs [60]. This implies that BLIs with
structures similar to these antibiotics can competitively inhibit β-lactamase activity. The
optimal pharmacokinetic properties of BLIs ensure adequate concentrations at the infection
site, which can restore antibiotic activity [61,62]. Mutations in porins can result in antibiotic
resistance in Gram-negative bacteria [63]. For instance, the overexpression of blaKPC can
mediate outer-membrane permeability, leading to avibactam resistance [64,65]. Thus, the
ability of BLIs to penetrate outer membranes is also a critical criterion because β-lactamases
are located in the bacterial periplasmic space. Non-toxicity is one of the most important
criteria for employing BLIs in clinical practice. In this context, novel BLIs need to be
evaluated for off-target effects causing side effects.
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4. Application of BLIs and Non-BLIs
4.1. Classical Penicillin-Based BLIs

As early BLIs, clavulanic acid, sulbactam, and tazobactam have been successively
developed to restore antibiotic activity against bacteria. Specifically, these BLIs can com-
petitively bind to β-lactamases to enhance the antibiotic activity of β-lactams. These BLIs
involve the irreversible binding of serine residues at the β-lactamase active site, resulting in
enzyme inactivation [38]. The inhibitory spectrum of early BLIs primarily targets Ambler
class A β-lactamases such as TEM-1, TEM-2, SHV-1, and CTX-M but shows no inhibitory
effect against SBLs and MBLs due to the alteration of active sites [66,67]. Recently, clavu-
lanic acid, sulbactam, and tazobactam have been used in combination with antibiotics in
clinical trials (Table 3).
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Table 3. Clinical application of combination therapy: BLIs and antibiotics.

β-Lactamase
Inhibitor Chemical Structure Company Clinical

Trial Phase
Representative
Combination Indication

Clavulanic acid
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Clavulanic acid is a β-lactam compound derived from Streptomyces clavuligerus and 
was the first BLI in clinical practice [68]. The combination of amoxicillin and clavulanic 
acid has been used in treatments of bacterial infections in the gut, bacteremia after dental 
procedures, chronic bronchitis, and acute otitis media. Clavulanic acid and amoxicillin 
have a half-life of approximately 1 h and exhibit similar distribution patterns [69]. How-
ever, the use of clavulanic acid in oral infections can lead to an increase in gastrointestinal 
side effects. Hence, the combination ratio of amoxicillin to clavulanic acid is typically 4:1 
to minimize the risk of potential toxicity and to ensure inhibitory activity against β-lac-
tamase-producing bacteria [70]. Additionally, drug-induced hepatitis can cause a poten-
tial side effect in combination therapy because the liver metabolizes clavulanic acid [71]. 

Penicillin-based BLIs such as sulbactam were synthesized after the discovery of 
clavulanic acid. Ampicillin–sulbactam is a commonly used combination in clinical prac-
tice for the treatment of intra-abdominal and skin infections and the prevention of 
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Clavulanic acid is a β-lactam compound derived from Streptomyces clavuligerus and
was the first BLI in clinical practice [68]. The combination of amoxicillin and clavulanic
acid has been used in treatments of bacterial infections in the gut, bacteremia after dental
procedures, chronic bronchitis, and acute otitis media. Clavulanic acid and amoxicillin
have a half-life of approximately 1 h and exhibit similar distribution patterns [69]. However,
the use of clavulanic acid in oral infections can lead to an increase in gastrointestinal side
effects. Hence, the combination ratio of amoxicillin to clavulanic acid is typically 4:1 to
minimize the risk of potential toxicity and to ensure inhibitory activity against β-lactamase-
producing bacteria [70]. Additionally, drug-induced hepatitis can cause a potential side
effect in combination therapy because the liver metabolizes clavulanic acid [71].

Penicillin-based BLIs such as sulbactam were synthesized after the discovery of clavu-
lanic acid. Ampicillin–sulbactam is a commonly used combination in clinical practice for
the treatment of intra-abdominal and skin infections and the prevention of postoperative
infections. Commonly, the half-life of ampicillin and sulbactam is roughly 1 h with renal
metabolism [72]. Unlike clavulanic acid, sulbactam is typically administered parenterally
due to its poor absorption efficiency when administrated orally [7]. Sulbactam has intrin-
sic antibacterial activity against Acinetobacter and Bacteroides. However, it is not effective
against A. baumannii mutated in penicillin-binding protein 3 (PBP3) [73]. Furthermore,
sulbactam shows a lower inhibitory effect on the enzymatic activity of TEM-1 and SHV-1
than clavulanate and tazobactam [74].

Tazobactam is also a synthetic penicillin sulfone introduced to the market as a third
BLI [75]. Piperacillin–tazobactam is one of the most effective combinations and shows a
broad spectrum of antibacterial activity. In general, the optimum ratio of piperacillin to
tazobactam is 8:1, with an elimination half-life of 0.8–1 h [76]. This combination therapy
has been widely applied against bloodstream infections, febrile neutropenia, diabetic foot
infections, and septic shock. The common side effects include headache, nausea, diarrhea,
and hypersensitivity reactions [77]. However, piperacillin–tazobactam typically is not
effective against non-class A enzyme-producing A. baumannii and S. maltophilia [78]. In
recent years, a new combination of ceftolozane and tazobactam was developed to combat
multidrug-resistant infections. Its broad spectrum of antibacterial activity can used as an
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alternative to the use of carbapenem antibiotics [79]. According to a recent report, however,
bacteria can evolve resistance to the ceftolozane–tazobactam combination [80].

Enmetazobactam, also known as AAI101, is a N-methylated derivative of tazobactam.
Unlike tazobactam, enmetazobactam has an extra methyl group at the triazole ring that
improves antibiotic activity [81]. As a new penicillanic acid sulfone, enmetazobactam
exhibits potent inhibitory activity against SBLs, particularly class C and D enzymes in En-
terobacteriaceae [82,83]. In contrast, no inhibitory activity has been observed in S. maltophilia,
A. baumannii, or AmpC-producing P. aeruginosa [84]. Cefepime–enmetazobactam is the
most common combination used in clinical practice. Enmetazobactam can restore bacterial
susceptibility to cefepime from 2% to 98%, especially against class A enzyme-producing
bacteria [85]. Currently, the cefepime–enmetazobactam combination is applied for phase 2
and 3 clinical trials to treat UTIs.

4.2. First Generation of Non-BLIs: Diazabicyclooctanes

Despite the effective inhibition of early BLIs against class A β-lactamases, these BLIs
still lack sufficient potency to control infections caused by MBLs, AmpC-type enzymes,
and carbapenemases. Recently, diazabicyclooctanes (DBOs) were developed to treat BLI-
resistant bacterial infections. DBOs are non-β-lactam compounds that reversibly acylate
the active site of serine residue against β-lactamase [86]. DBOs can deactivate class A,
C, and D enzymes. Nonetheless, MBLs still evade inhibition owing to their distinctive
active sites [63]. Relevant clinical trials are undergoing to explore the potential of DBOs in
combination with other antibiotics (Table 3).

Avibactam, also known as AVE1330A or NXL104, is the first SBL inhibitor belonging to
the diazabicyclooctanes. Avibactam is mostly effective against class A and C β-lactamases
of Enterobacteriaceae and P. aeruginosa [66,87]. Ceftazidime–avibactam is one of the most
prevalent combinations, having been evaluated in phase 3 and phase 4 trials for the
treatment of cystic fibrosis, hospital-acquired bacterial pneumonia (HABP), urinary tract
infections (UTIs), and acute pyelonephritis. Avibactam is mainly cleared via the kidney
with a 1.7–2.1 h half-life [88]. Moreover, relatively few adverse effects have been observed
with the administration of avibactam, except for rare headaches, nausea, and diarrhea [89].
Avibactam alone is not effective against A. baumannii and MBL-producing bacteria, whereas
the combination of avibactam and aztreonam can inhibit SBLs and MBLs [90].

Relebactam, formerly designated as MK-7655, shares a structural similarity with
avibactam, characterized by the addition of a piperidine ring [91]. Relebactam is effective
against class A and C β-lactamases and less effective against class D enzymes [92]. The
combination of imipenem–cilastatin–relebactam is currently undergoing two phase 4 clin-
ical trials for the treatment of cystic fibrosis and bacterial pneumonia. This combination
therapy can further enhance efficacy and safety compared with colistin monotherapy [93].

Nacubactam, also called RG6080 or OP05095, has a carbamoyl side chain that in-
cludes an additional aminoethoxy group [94]. Currently, the efficacy of the meropenem–
nacubactam combination is being evaluated in two phase 3 clinical trials for the treatment
of complicated urinary tract infections (cUTIs), acute pyelonephritis, HABP, ventilator-
associated bacterial pneumonia (VABP), and complicated intra-abdominal infections (cIAIs).
In general, nacubactam is well tolerated and occasionally leads to headaches or complica-
tions associated with intravenous access [43].

Zidebactam, previously known as WCK 5107, is a DBO inhibitor with PBP2 binding
activity [10]. The cefepime–zidebactam combination shows strong inhibitory effects against
β-lactamases produced by P. aeruginosa, A. baumannii, and Enterobacteriaceae [95]. Currently,
the cefepime–zidebactam combination is undergoing phase 3 clinical trials to evaluate its
efficacy in treating cUTIs and acute pyelonephritis.

Durlobactam, also named ETX2514, inhibits most β-lactamases, except for class B [96].
Unlike conventional combinations, durlobactam is commonly used in combination with
sulbactam. This therapy has been evaluated in four clinical trials for the treatment of
cUTIs, acute pyelonephritis, and A. baumannii infections. Durlobactam can penetrate outer-
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membrane protein A (OmpA). Thus, the down-regulation of OmpA can confer resistance
to durlobactam in pathogens [97].

Funobactam, formerly designated as XNW4107, is a novel DBO inhibitor developed
in recent years. Funobactam is effective against class A, C, and D enzymes, particularly the
OXA-24/40-like β-lactamases produced by A. baumannii [98]. Notably, funobactam has no
intrinsic antibacterial activity and is commonly used in combination with imipenem [99].
Recently, the combination of imipenem and funobactam was evaluated in two phase 3
clinical trials for the treatment of HABP, VABP, and cUTIs.

4.3. Second Generation of Non-BLIs: Boronic Acid Derivatives

Phenylboronic acid was first used to deactivate penicillinases, and then, boronic acids
were widely investigated as inhibitors for combatting distinct β-lactamases. These BLIs are
designed as transition state analogs that can reversibly bind to active sites and competitively
inhibit β-lactamases [38]. Unlike conventional BLIs and diazabicyclooctanes, boronic acids
can suppress SBLs and MBLs. In addition, there is still no information that describes the
hydrolytic activity of β-lactamases on boronic acids [100]. Currently, clinical trials have
been conducted to identify the potency of combination therapy utilizing boronic acids and
antibiotics (Table 3).

Vaborbactam, formerly known as RPX7009, is known as the first boronic-acid-related
BLI targeting KPC-type carbapenemases and other class A and C β-lactamases [101].
Vaborbactam primarily enters bacteria through OmpK35 and OmpK36, responsible for
binding and acylating the active sites of enzymes [102]. In general, vaborbactam by it-
self has no antibacterial activity, but the meropenem–vaborbactam combination is used
for therapeutic purposes in clinical practice. Currently, phase 3 clinical trials are being
conducted to evaluate the efficacy of this combination in treating cUTIs, acute pyelonephri-
tis, and HABP. Additionally, the therapeutic benefits of this combination include high
clinical cure rates, low mortality rates, and reduced nephrotoxicity [103]. However, the
meropenem–vaborbactam combination is not effective in the treatment of infections caused
by A. baumannii and P. aeruginosa, which may involve alternative resistance mechanisms
such as porin alterations and efflux activity [104].

Taniborbactam, also named VNRX-5133, can inhibit SBL and MBL activities, and
is known as the first pan-spectrum BLI capable of inhibiting class A, B, C, and D β-
lactamases [105]. Commonly, taniborbactam has a half-life ranging from 3.5 to 4.8 h,
metabolized in the kidney [106]. Recently, two clinical trials (phase 1 and phase 3) were
completed using a cefepime–taniborbactam combination for the treatment of UTIs and
acute pyelonephritis. Taniborbactam has great potential as an inhibitor when combined
with proper antibiotics [107]. However, the application of taniborbactam can cause side
effects consisting of dizziness, headache, nausea, and diarrhea [108].

Xeruborbactam, also known as QPX7728, can inhibit a variety of MBLs and SBLs,
including KPC-, AmpC-, and OXA-type enzymes [109,110]. In contrast to vaborbactam
and taniborbactam, xeruborbactam has antibacterial activity [111]. As a pan-spectrum BLI,
xeruborbactam in combination with antibiotics can suppress β-lactamases and effectively
control bacterial infections. For instance, the meropenem–xeruborbactam combination
is synergistically effective against multiple β-lactamase-producing K. pneumoniae [112].
Recently, two phase 1 clinical trials were conducted to evaluate the pharmacokinetics
and side effects of xeruborbactam in bacterial infections. Additionally, QPX7728 can be
administered orally in combination with other oral antibiotics in clinical practice [113].

In general, the utilization of BLIs in clinical settings has been gradually recognized as
having great prospects in β-lactamase inhibition. Different generations of BLIs can demon-
strate synergistic effects in combination with BLAs, including enhancing inhibitory activity,
extending inhibitory ranges, and maintaining BLA levels in the body. Unfortunately, ad-
verse reactions due to BLIs have been witnessed in clinical trials. These inhibitors can
result in certain nervous system dysfunctions, gastrointestinal reactions, and anaphylactic
reactions, such as clavulanic acid, avibactam, tazobactam, nacubactam, and taniborbac-
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tam. Specifically, the β-lactam ring can target side chains and cause cross-reactivity with
some BLAs, leading to anaphylactic reactions [114]. Similarly, mild headaches, confu-
sion, and seizure risk have also been reported in some cases involving high doses or poor
metabolism [115]. The hepatorenal toxicity induced by BLIs also requires more attention.
The elimination route of BLIs is closely related to hydrophilia, and thus, hydrophilic BLIs are
almost metabolized by the kidney. Notably, the combination of hydrophilic BLIs and BLAs
can increase metabolic burden, including ceftaroline–avibactam, imipenem–relebactam,
and cefepime–zidebactam [116–118]. To avoid metabolic toxicity, it is imperative to consider
the specific doses used for patients with liver and kidney dysfunction.

5. Inhibitory Enzymatic Mechanisms of SBLs and MBLs

SBLs and MBLs have distinct enzymatic mechanisms that can inactivate antibiotics
due to their structural and functional characteristics. SBLs hydrolyze β-lactam antibiotics
via catalytic sites containing serine residue. The interaction of β-lactams and SBLs forms
hydrogen bonds through a process of acylation and deacylation, resulting in the release of
inactive antibiotics and active β-lactamases [119]. MBLs produce nucleophiles at the active
sites in the presence of Zn2+ and amino acids and attack the β-lactam ring, resulting in the
hydrolysis of β-lactam antibiotics [10]. Therefore, BLIs need various inhibitory mechanisms
to target the distinct hydrolytic activities of SBLs and MBLs, which can restore the efficacy
of β-lactam antibiotics. Specifically, SBL inhibitors commonly target and bind to the serine
residue at the catalytic site to protect β-lactam antibiotics from hydrolysis, while MBL
inhibitors can competitively bind to active sites or chelate zinc ions to inactivate MBLs.

Current research has proposed three types of BLIs characterized by distinct inhibitory
mechanisms (Figure 3). The early BLIs function as suicide inactivators by forming a covalent
adduct with serine residue and effectively binding to SBLs [38]. Subsequently, the BLI
molecule undergoes gradual hydrolysis and fragmentation, resulting in the inactivation of
the β-lactamase adduct [120]. However, these mechanisms cannot effectively inhibit ESBLs
and suppress carbapenemases and MBLs. Thus, DBO inhibitors have been developed
to treat BLI-resistant bacterial infections. Unlike suicide inactivators, DBO inhibitors
reversibly bind to β-lactamases, enabling re-cyclization and resulting in sustained inhibitory
effects [86,121]. Unfortunately, bacterial resistance to DBO inhibitors can be developed due
to the slow inactivation process of DBO inhibitors against β-lactamases [122].

A broader spectrum of novel BLIs can be developed with structural modifications. For
instance, the incorporation of a piperidine ring into the carbamoyl side chain can generate
a positive charge in relebactam under physiological pH, leading to the reduced extrusion of
BLIs from bacterial cells and enhanced antibacterial activity against β-lactamase-producing
bacteria [43,91]. Likewise, the addition of an aminoethoxy group into the carbamoyl side
chain can induce the intrinsic antibiotic activity of nacubactam [84,94]. Boronic acid can
form an enzyme–inhibitor complex, competitively inhibiting SBLs and MBLs [107,111].
Specifically, boronic acid BLIs reversibly form coordinate covalent bonds with SBLs to
induce a transition state to mimic the β-lactamase hydrolytic reaction. Hence, the primary
mechanism of action for boronic acid BLIs is the mimicry of tetrahedral intermediates
during the enzymatic hydrolysis of SBLs and MBLs, leading to the restoration of antibi-
otic efficacy.

Various chelating agents, such as aspergillomarasmine A, thiol-based compounds,
and phosphonate-containing compounds, can be potential BLIs against MBLs [123–125].
These agents directly chelate zinc ions at active sites. Moreover, BLI ANT431 can penetrate
the bacterial periplasm where MBLs are produced and inhibit enzyme activity [107,126].
However, BLI ANT431 is limited in use due to its toxicity, off-target effects, differential
pharmacokinetics, and drug interactions.

In addition to the enzymatic inhibitory activity of BLIs, intrinsic bacteriostatic activity
has also been widely investigated in association with PBPs [111]. For example, avibactam
can directly suppress Enterobacter strains by inhibiting PBP2 activity [127]. Similarly,
sulbactam can inhibit PBP1 and PBP3 in A. baumannii, resulting in the inactivation of
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bacteria [128]. Therefore, the combination of intrinsic bacteriostatic activity and enzymatic
inhibitory activity may contribute to better antibacterial potency and extend the inhibitory
spectrum. However, the potential intrinsic bacteriostatic activity of BLIs may induce the
up-regulation of antibiotic resistance genes, leading to an increase in β-lactamase activity.
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Figure 3. Main inhibitory mechanisms of β-lactamase inhibitors (BLIs). 1: The classical BLIs are
mainly characterized as suicide inactivators, combining with serine residue at active sites and
inactivating β-lactamases. 2: The first generation of non-β-lactam diazabicyclooctane (DBO) BLIs
mediate reversible acylation reactions to inhibit SBLs. 3: The second generation of non-β-lactam
borate BLIs can form a covalent adduct transition state to reversibly inhibit both serine-β-lactamases
(SBLs) and metallo-β-lactamases (MBLs). KPC and OXA denote Klebsiella pneumoniae carbapenemase
and oxacillin-hydrolyzing enzymes, respectively.

6. Potential Sources of BLIs
6.1. Novel Synthetic BLIs

Phosphonates are categorized as organophosphorus compounds that have abundant
biological activities, including antibacterial, antiviral, anti-cancer, and anti-inflammatory
activities [129]. Phosphonate derivatives can inhibit class A, C, and D enzymes via acylation
reactions at serine active sites [130,131]. Phosphonate derivates have shown the specific
and time-dependent suppression of class C β-lactamases in Enterobacter cloacae P99 [132].
Similarly, in preclinical studies, MG96077, a novel phosphonate BLI, was combined with
imipenem, showing a significant reduction of 90% in MIC against imipenem-resistant
P. aeruginosa and K. pneumoniae [100]. Recently, a metal-binding pharmacophore was
discovered, conferring inhibitory activity from phosphonates against MBLs such as IMP-
1, NDM-1, and VIM-5 [133]. However, phosphonate derivates are unstable in aqueous
solutions and susceptible to phosphodiesterase, resulting in limited clinical prospects.

Monobactams are antibiotic agents produced by pathogens [134]. The representative
product is the synthetic compound aztreonam, which is used to treat bacterial infections
in clinical settings. In addition, aztreonam can also suppress class C β-lactamases [135].
MK-8712, a monobactam, shows great potency in enhancing imipenem activity against
P. aeruginosa [136]. A siderophore monobactam, Syn2190, combined with ceftazidime
or cefpirome can suppress AmpC-producing Enterobacteriaceae and P. aeruginosa [137].
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Nonetheless, Syn2190 exhibits low affinity toward class A enzymes and poses risks in
inducing the overexpression of blaAmpC [7,100]. BAL30072 is the other type of siderophore
and possesses inhibitory activity against antibiotic-resistant bacteria capable of producing
carbapenemases or MBLs [138,139]. Additionally, BAL30072 shows intrinsic antibacterial
activity and shares bacterial iron transport systems [140].

Dicarboxylate derivatives chelate metal ions, indicating potential MBL inhibitors.
Specifically, the carboxylate groups of these compounds chelate Zn2+ [141]. Dicarboxylate
derivatives combined with imipenem can effectively inhibit MBL-producing bacteria that
express NDM, IMP, and VIM [20]. ANT431 is a newly developed pyridine-2-carboxylic
acid that suppresses MBLs. ANT431 can penetrate bacterial periplasms where MBLs are
produced [126]. ANT431 can restore meropenem activity against carbapenem-resistant
Enterobacteriaceae [142]. However, the limited-spectrum inhibition of this inhibitor may
induce off-target effects by blocking zinc-containing mammalian enzymes [143].

6.2. Natural BLIs

Plant extracts are good sources for discovering potential BLIs. For instance, methyl
cinnamate derived from Ocimum basilicum exhibits similar inhibitory activity against en-
zymes to clavulanic acid. Specifically, methyl cinnamate targets the same active-site Arg254
as clavulanic acid, and they show similar IC50 values when inhibiting the CTX-M β-
lactamase [144]. As a natural compound with low cytotoxicity, carnosic acid has been
widely utilized in different areas, such as medicine, food, and cosmetics [145]. Studies
have shown that carnosic acid can effectively bind to the allosteric sites of NDM-1, such
as Phe46, Tyr64, Leu65, Asp66, and Thr94. Ultimately, the bioactivity of NDM-1 will be
attenuated, leading to the restored antimicrobial effect of meropenem [146]. Furthermore,
phenolic acids such as salicylsalicylic acid, SB-202742, and EGCg are widely distributed in
plants, possess various biological activities, and can effectively suppress β-lactamases in a
dose-dependent manner [147–149]. Notably, natural polyphenols such as proanthocyani-
dins have been demonstrated to not only suppress SBLs and MBLs but can also overcome
PBP2a-mediated β-lactam resistance [150]. In view of the abundant sources of natural
compounds and their good properties, they have the potential to become good candidates
for BLIs.

Naturally occurring fungal products can be used as BLIs against β-lactamase-producing
bacteria such as Enterobacteriaceae, Acinetobacter, and Pseudomonas strains. Specifically,
aspergillomarasmine A is nontoxic and inhibits MBLs and carbapenemases in a dose-
dependent manner [151]. Currently, most existing BLIs in combination therapy tend to
realize SBL inhibition. In contrast, fungus-derived aspergillomarasmine A provides a
unique approach to tackling multiple MBL-mediated infections and other carbapenem-
resistant pathogens. Therefore, aspergillomarasmine A can be a promising BLI candidate
and exert synergistic activity when combined with carbapenem. Although natural extracts
are potential sources of BLIs, these compounds—for instance, 1,4-naphthalenedione—may
induce cytotoxicity, sore throat, abdominal pain, and vomiting [152]. Given the diversity
and complexity of natural extracts, more comprehensive and in-depth experiments are
needed to confirm their cytotoxicity and their interactions with BLAs before clinical practice.

7. Concluding Remarks and Future Prospects

In conclusion, β-lactamases such as ESBLs, carbapenemases, AmpC, and MBLs pose
a significant threat to human health due to their contribution to antibiotic resistance. Al-
though antibiotics have alleviated the pressure associated with bacterial infections, the
emergence and spread of antibiotic-resistant bacteria have led to the development of
novel antibiotics. However, bacteria quickly evolve resistance to novel antibiotics. Thus,
antibiotics alone are insufficient in combating antibiotic resistance. In this context, the
use of existing antibiotics combined with BLIs shows significant promise in combating
β-lactamase-producing bacteria. Recently, many BLIs have received approval for clinical
use because BLIs have broad-spectrum inhibition, high affinity, no toxicity, and excellent
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pharmacokinetic properties. BLIs and antibiotics are currently available only as fixed-dose
combinations in clinical settings. Nevertheless, the emergence of bacterial resistance to
BLIs has continuously increased when combined with antibiotics. Hence, it is essential to
carefully use current combination therapies and simultaneously explore novel strategies
against β-lactamase-producing bacteria. Recently, triplet combination therapy with a BLI
and two antibiotics has been proposed to treat BLI-resistant bacterial infections. New scaf-
folds for BLIs have been developed based on a core structure mainly consisting of β-lactam,
DBO, and boronic acid, which includes phenolic acid, monobactam, and phosphonates.
Combination therapy involving BLIs shows promise in extending the effectiveness of cur-
rent antibiotics and improving their efficacy in tackling the challenges of the post-antibiotic
era. Due to the complexity and interactions of BLI candidates, it is necessary to further
investigate their mechanisms, pharmacokinetics, and cytotoxicity.
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