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Abstract: Ganoderma lucidum (G. lucidum) has been known for many centuries in Asian countries
under different names, varying depending on the country. The objective of this review is to investigate
the scientific research on the natural active bio-compounds in extracts obtained from G. lucidum
with significant biological actions in the treatment of cancer. This review presents the classes of
bio-compounds existing in G. lucidum that have been reported over time in the main databases and
have shown important biological actions in the treatment of cancer. The results highlight the fact
that G. lucidum possesses important bioactive compounds such as polysaccharides, triterpenoids,
sterols, proteins, nucleotides, fatty acids, vitamins, and minerals, which have been demonstrated
to exhibit multiple anticancer effects, namely immunomodulatory, anti-proliferative, cytotoxic, and
antioxidant action. The potential health benefits of G. lucidum are systematized based on biological
actions. The findings present evidence regarding the lack of certainty about the effects of G. lucidum
bio-compounds in treating different forms of cancer, which may be due to the use of different types
of Ganoderma formulations, differences in the study populations, or due to drug–disease interactions.
In the future, larger clinical trials are needed to clarify the potential benefits of pharmaceutical
preparations of G. lucidum, standardized by the known active components in the prevention and
treatment of cancer.

Keywords: natural bio-compounds; Ganoderma lucidum; polysaccharides; triterpenoids; antitumor
activity; immunomodulatory; antioxidant; cytotoxic

1. Introduction

Ganoderma lucidum (G. lucidum), (Fr.) Karst is a medicinal mushroom known in tradi-
tional Asian medicine under different names depending on the country: Lingzhi (China),
Reishi, and Mannentake (Japan), Linh chi (Vietnam), and Yeong Ji or Yung Gee (Repub-
lic of Korea) [1]. It is considered a source of longevity and health promotion [2–4]. The
traditional medicinal uses of these mushrooms in Chinese and Japanese folk medicine as
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health remedies and herbal supplements are widely recognized [5–7]. The knowledge and
use of medicinal mushrooms have preoccupied researchers, who have developed valuable
studies on their bioactive components and their importance [8–12]. According to the World
Health Organization, it has been estimated that around three-quarters of the world’s popu-
lation relies on traditional medicines to maintain their health [13]. In traditional oriental
medicine, G. lucidum has been used to treat several diseases, such as asthma, bronchitis,
arthritis, hypertension, insomnia, diabetes, liver disease, nephritis, and cancer [14–16]. In
ancient Chinese medicine, G. lucidum has been used for longevity and as an anticancer and
antioxidant agent [17–20]. In the last 30 years, data have been reported on the chemical
composition of G. lucidum extracts, justifying their biological activity and numerous health
benefits. Among the most important bioactive compounds are polysaccharides and triter-
penes [21–26]. Numerous other bioactive metabolites, such as proteins, peptides, sterols,
lectins, adenosine, vitamins, and metals, have also been identified [27–31]. However, it
should be noted that there are differences in the composition of G. lucidum products due
to cultivation conditions, the extraction process of the bio-compounds, and the origin or
part of the fungus used (fruiting body, mycelium, or spores) [14,28,30]. Nevertheless, many
bioactive compounds in G. lucidum exhibit antioxidant, antitumor, and anti-inflammatory
properties [32–37]. Such benefits have been investigated in multiple studies on their effect
against prostate cancer, ovarian cancer, hepatocellular carcinoma, the induction of apoptosis
in colon cancer, and the inhibition of angiogenesis [38–43]. Different immunomodulatory
activities have been reported [44–47]. Other researchers have also reported studies on
antioxidant and antioxidative stress actions [48–50]. With the development of modern
research techniques to identify the chemical compositions of G. lucidum compounds, data
may be accessible for use in medical research. A detailed understanding of these biological
mechanisms could greatly influence and extend their benefits to human health.

The present study aims to review the data on active bio-compounds with important
biological actions against cancer. Factors influencing the composition of the G. lucidum
fungus, such as growing conditions (in the wild, in deciduous forests, or in special crops)
and territorial areas, are analyzed. The characteristics of the G. lucidum fungus, as well as the
chemo-bioactive compounds identified in G. lucidum with anticancer activities, its biological
activities against cancer, and its toxicity and safety, are described in separate sections. The
mechanisms of anticancer effects, including other biological activities that contribute to the
fight against cancer, such as immunomodulatory, antioxidant, and cytotoxic actions, are also
presented. Some negative cases in which G. lucidum bio-compounds were administered
to patients undergoing treatment for several conditions are included as well. In these
patients, the effects of G. lucidum treatments were not beneficial due to the occurrence of
adverse effects.

2. Characteristics of Ganoderma lucidum Fungus
2.1. Description and Spread of the Fungus

The first description of Ganoderma lucidum (Curtis) P. Karst. was made by Curtis in
England, and this description was officially recorded by Fries [51]. Initially, Cao et al.
claimed that this fungus was already known as “Lingzhi”, a medicinal fungus identified
and used in China for more than 2000 years [52]. Later, based on molecular studies, it
was established that the East Asian medicinal mushroom is a different species from the
G. lucidum mushroom [52]. After morphological and molecular examinations, Wang et al.
confirmed that the Lingzhi species from China are related to G. lucidum from the UK
and to other Ganoderma species [53]. Kwon et al. conducted phylogenetic analyses of
Ganoderma species and showed that there are 62 strains of Ganoderma [54]. According to
the taxonomic classification established by Nahata A., the species Ganoderma lucidum (Curt:
Fr.) Karst belongs to the kingdom Fungi, phylum Basidiomycota, class Agaricomycetes, order
Polyporales, family Ganodermataceae, genus Ganoderma, and species lucidum [55]. G. lucidum
from the UK and other related Ganoderma species have also been morphologically and
molecularly examined by different researchers who have conducted important studies,
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such as Kim et al., Park et al., and Liao et al. [56–58]. Several phylogenetically related
Ganoderma species have been found in North America, Europe, and Asian countries [56,58].
Gottlieb et al. also performed molecular and morphological studies on the Ganoderma
species collected from South America, followed by Eyssartier et al. from France [59,60].
In 2017, Copot et al. identified the fungus G. lucidum in hilly and mountainous areas in
Romania, specifically in oak forests [61]. The description of G. lucidum collected from
Romania highlighted the mushroom cap, which is kidney-shaped and can be up to 20 cm
in diameter, ranging in color from red to pinkish-brown when mature [61]. Towards the
edges, the coloration of the cap ranged from bright yellow to white. The spore print is
brown (see Figure 1a,b) [61]. Figure 1c shows the fungus G. lucidum (Reishi or Lingzhi)
adapted from studies by Parepalli et al. [62].
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2.2. Data on G. lucidum Cultivation

G. lucidum can also grow in greenhouses under controlled conditions. Data on cul-
tivation methods have been reported in the literature, such as the study of Boh et al.,
where different biotechnological cultivation methods are presented [14]. As G. lucidum is
rare in nature, cultivation in greenhouses is practiced using two methods: cultivation of
fruiting bodies on wooden logs or on sawdust bags (or large plastic bottles) [14]. The main
cultivation methods to produce G. lucidum (fruiting body and mycelia) are presented in
Figure 2 [14].
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Various other cultivation methods have also been practiced. For example, Nithya et al.
conducted research on the selection of an ideal material to grow G. lucidum fungus by
testing wood retting, wheat bran, sorghum, and sorghum grains combined with chalk dust
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and gypsum [63]. Adongbede et al. (2021) used indigenous hardwoods supplemented
with rice and wheat bran as substrates for growing G. lucidum in Nigeria, where the
fungus is not naturally available [64]. Matute et al. (2002) grew G. lucidum in bags using
sunflower hulls as a nutrient source [65]. Yang et al. (2003) used carbohydrate and
nitrogen-rich residues from a rice bran distillery to grow G. lucidum in polypropylene
bags [66]. Hsieh et al. (2004) used soybean residues as a nutrient for growing G. lucidum in
polypropylene bags [67]. Chang et al. (2006) reported studies on the optimization of growth
methods for G. lucidum [68]. It is worth noting that cultivation conditions and substrate
composition influence the biochemical composition of G. lucidum fungi qualitatively and
quantitatively, as confirmed by Baskar et al. in 2011 through their studies [69].

3. Chemical Bioactive Compounds Identified in G lucidum with Anticancer Actions

In the last 30 years, numerous studies have been conducted highlighting the nutritional
potential of G. lucidum mushrooms [30]. Research on the biochemical composition of this
mushroom has led to the identification of several categories of compounds with health-
promoting biological activity, as reported by Ahmad et al. [7,13].

3.1. Proximate Composition for G. lucidum

The values of the bioactive compound classes differ quantitatively and qualitatively
within certain limits, depending on the country and area of origin of the fungus and whether
it is cultivated or naturally occurring in the forest. In the case of cultivated mushrooms,
bioactive compounds depend on the nutrient richness of the substrate and environmental
factors, such as humidity and temperature [14]. Most phytochemical reports show that,
with regard to the chemical composition, the fruiting body of G. lucidum consists of 90%
water and 10% different compounds, as presented in Table 1, according to Mau et al. [70].

Table 1. Proximate composition of the fruiting body of G. lucidum from different country origins,
reported as a percentage.

Mushroom Origin/
Constitutes

From
Bangladesh

From
Bangladesh

From
Taiwan

From
China

From
Spain

From
India

From
Nigeria

Moisture % 12.19 47 - - - 7.5 2.78 ± 0.05

Ash % 3.93 6.3 1.8 1.21 ± 0.06 2.31 ± 0.12 18.7 8.42 ± 0.13

Water-soluble proteins % 28.6 19.50 7–8 7.47 ± 0.22 11.70 ± 0.35 23.6 16.79 ± 0.13

Total lipids % 2.4 3.00 3–5 - - 5.8 1.52 ± 0.09

Fatty acid - - - 1.44 ± 0.10 1.27 ± 0.09 - 1.22 ± 0.07

Total carbohydrates % 44.91 5.41 26–28 9.88 ± 1.04 11.02 ± 1.16 42.8 63.27 ± 0.20

Dietary fibers % 14.67 2.4 59 76.81 ± 3.46 69.35 ± 3.12 - 7.77 ± 0.34

References [21] [30,71] [70] [72] [72] [73] [74]

Table 1 summarizes the information on the biochemical composition of the fungus,
as noted by multiple researchers. The content analysis of the bioactive compound classes
includes data on moisture, ash, water-soluble protein content, total lipid content, total
carbohydrate content, and dietary fiber content. From Bangladesh, data were reported by
Rahman et al. (2020), El Sheikha (2022), and Roy et al. (2018) [21,30,71]. The interest in the
nutritional potential of G. lucidum in Taiwan was proven by studies conducted by Mau et al.
(2001) [70]. The total fatty acid content was reported only by Fraile-Fabero et al. for G.
lingzhi from China and G. lucidum from mushroom crops from Madrid, Spain, in 2021 [72].
Comparable data were also reported by Parapelli et al. (2021) for G. lucidum from India and
by Ogbe et al. (2013) from Nigeria [73,74]. Additional studies were published by Wachtel-
Galor et al. (2011), by Paterson et al. (2006), and by Garuba et al. (2000) [75–77]. The
pharmacognostic review of the active compounds isolated from basidiocarp and mycelium
of G. lucidum revealed that it contains polysaccharides, triterpenes, vitamins, minerals,



Antioxidants 2023, 12, 1907 5 of 36

sterols, proteins, proteo-polysaccharides, lectins, nucleotides, and fatty acids, as reported
by Ahmad (2018) [13]. Figure 3 systematizes the categories of biochemical compounds that
support the biological activities occurring in the treatment of various cancer tumors [13].
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3.2. Polysaccharide Content of G. lucidum

Numerous studies have identified the existence of several types of polysaccharides
in the fruiting body, spores, or mycelium of G. lucidum, as reported by Liu et al. and
Lin et al. [78,79]. Polysaccharides represent a class of macromolecules with diverse struc-
tures and a wide range of physicochemical properties and biological actions, according to
studies by Ferreira et al., Yu et al., and Giavasis [80–82]. According to Ahmad, Bhat et al.,
and Liu et al., these polysaccharide compounds are considered some of the most potent
bioactive metabolites with antitumoral effects due to their biochemical structure [13,18,78].
Polysaccharide compounds (Gl-Ps) have a rich history and have been extensively studied
in recent years by Sanodiya et al., Parepalli et al., and Chen et al. [27,62,83].

3.2.1. Extraction and Purification of Polysaccharides

The most widely used method for polysaccharide extraction from spores, fruiting
bodies, and mycelium is hot-water extraction, as documented by Nie et al. [84]. Figure 4
illustrates the extraction of five polysaccharide fractions from G. lucidum [85]. The fruiting
body of G. lucidum was initially peeled, shredded, and sieved in order to obtain a fine
powder. The extraction of Gl-Ps from the mushroom powder was performed with distilled
water at 80 ◦C [85]. There are researchers who have used diluted saline solution or alkaline
acid solutions for polysaccharide extraction, as reported by Wang et al. (2011). Other
extraction methods that were applied included microwaves, ultrasound, or enzymatic
methods, as in the studies of Lin et al. (2005), Huang et al. (2010), Zhao et al. (2010),
and Leong et al. (2021) [86–90]. After filtering, the solution is subjected to precipitation
with alcohol or acetone to obtain crude polysaccharides [84]. Polysaccharide purification
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can be achieved by several techniques, such as ethanol fractionation or different column
chromatographic techniques, as illustrated by Chen et al. (2008), Huang et al. (2011),
and Jiang et al. (2012) [91–93]. Ion-exchange chromatography (DEAE-Sepharose Fast
Flow), gel filtration, and affinity chromatography were the most useful methods, as high-
lighted by Choong et al. [85]. Figure 4 illustrates the extraction and fractionation steps of
polysaccharides from G. lucidum. Five polysaccharide fractions were obtained [85].
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3.2.2. Structure of Polysaccharides from G. lucidum

The investigation of the structures and chemical properties of polysaccharides from G.
lucidum involves knowledge of the composition of existing monosaccharides, branching
structures, types of glycosidic linkages, chain conformations, and molecular weights [18].
As investigation techniques have developed, it was found that G. lucidum can have polysac-
charides in its composition, either as pure or linked with other proteins or peptides [94–98].
Bhat et al. (2021) showed that homo-glucans from G. lucidum are linear or branched
biopolymers, possessing a backbone formed by α- or β-linked (1→3), (1→6)-β-glucan
and (1→3)-α-glucan glucose units, and may possess side chains attached in different posi-
tions [18]. Further investigations by different authors explore bioactivities as well. Bao et al.
(2002) determined that the structures of the backbone chains are linear or branched bipoly-
mers [94]. These possess a backbone consisting of α- or β-linked glucose units [94]. In 2006,
new structures with heteroglucans were outlined by Cao et al., and new structures with
heteropolysaccharides were documented by Sullivan et al. [95,96]. Further types of ligands
were presented by Li et al. (2007), Ye et al. (2008), Ye et al. (2009), Wang et al. (2009), Ye et al.
(2010), and Liu et al. (2010) [97–102]. Pan D. et al. (2012), Ma et al. (2013), and Pan K. et al.
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(2013) also described the types of polysaccharide structures with different types of linkages,
shown in detail in Table 2 [103–105]. Ooi et al. (2000) and Zhang et al. (2007) pointed
out in their studies that the degree of base-chain substitution and branching chain length
play important roles in determining the bioactivity of β-(1→3)-linked glucans [106,107].
Table 2 illustrates various techniques and methods utilized in the extraction, fractionation,
and purification of polysaccharides and provides information about their structure (the
backbone and monosaccharide compositions).

Side-chain branching occurs at C-6 of the main-chain glucosyl residues, as shown in
Figure 5 and indicated by Choong et al. (2019) [85]. Jia et al. (2009) argued that among all
homo-glucans, β-glucans are glucose polymers that exist as unbranched (1→3)-β-linked
backbones in the form of (1→3)-β-linked backbones [108]. Figure 5 shows a Gl-Ps chain [85].
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The molecular weight of Gl-Ps can range from 4 × 105 to 1 × 106 Da. Sanodiya et al.
(2009) demonstrated that this has a significant impact on reducing cancer progression [27].
Studies by Moradali et al., Doco et al. (2001), and Hung et al. (2005) described polysaccharide-
protein or peptide complexes using modern GC-MS methods [109–111]. Wang et al. (2002)
and Sanodiya et al. (2009) investigated monosaccharides from the raw extract of G. lu-
cidum [24,27]. Furthermore, Wang et al. (2009) and Ye et al. (2010) also provided data
on monosaccharides identified in G. lucidum [100,101]. Similarly, Dai et al. (2010) and
Yang et al. (2010) investigated G. lucidum and described the monosaccharide composition
as predominantly consisting of xylose, fructose, glucose, and maltose [112,113]. Several
other studies have been published reporting data on the polysaccharide structure and their
medical applications, including Dong et al. (2012), Liu et al. (2012), Skalicka-Wozniak et al.
(2012), and Pascale et al. (2022) [114–117].
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Table 2. Structural characteristics, extraction, and fractionation techniques of polysaccharides from G. lucidum.

Mushroom Part of
G. lucidum

Monosaccharide
Composition Backbone Extraction and Fractionation Bioactivity References

1 Fruiting body
Glucose,
rhamnose glucose,
galactose, rhamnose

β(1→3)-Glucan; -(1→3)-(1→4)-,
(1→6)Heteroglycan
α-(1→4), β-(1→6)-heteroglycan

Hot-water extraction; DEAE-cellulose
and gel filtration; chromatography Antioxidant activity [94]

2 Fruiting body
(cultivated)

Mannose, rhamnose,
glucose, galactose

Heteroglucans (GLP, GLP1, GLP2,
GLP3, GLP4) Main glycosidic bond

Ultrasonic extraction; Sevag method;
ethanol precipitation;
ultrafiltration membranes

Antioxidant activity in vitro by DPPH
scavenging activity; reducing power;
Fe2+ chelating activity; ORAC

[95]

3 Fruiting body
(cultivated)

Glucose, galactose,
mannose, arabinose

Heteropolysaccharide (GL-1; GL-V)
(1→4)-galactan,
Heteropolysaccharide

Soluble in water and in ethyl-acetate;
Sevag method; dialysis

Bioactive compounds are an
important source of anticancer agents [96]

4 Extracellular
Galactose,
mannose, glucose,
arabinose, rhamnose

α-(1→4)-Galactose DEAE-Sephcel and Sephadex G200. Enhance T- and B-lymphocyte
proliferation and antibody production [97]

5 Fruiting body Galactose, glucose, fucose α-(1→6)-galactose
α-(1→3)-Glucose

Hot-water extraction; DEAE-Sepharose
Fast-Flow and Sephacryl S-300

Immunostimulatory activity of spleen
lymphocyte proliferation [98]

6 Fruiting body Glucose,
galactose, arhamnose Heteroglycan α-(1→4), β-(1→6) Hot-water extraction

Immunologically active; proliferation
of B-lymphocytes with important
immunologic activity

[99]

7 Fruiting body
(cultivated)

Glucose, galactose,
mannose, arabinose,
xylose, fucose

Heteropolysaccharides glucans
(1→3)-β-D-glucan with a few short
(1→4)-linked glucosyl units

Extraction and separation of fractions
with hot water, cold and hot 1 M NaOH

Antitumor activity against sarcoma
solid tumor [100]

8 Fruiting body Galactose, glucose, fucose α-(1→6)-, (1→2,6)-Galactose
β-(1→3)-, (1→4,6)-Glucose

Hot-water extraction; DEAE-Sepharose
Fast-Flow and Sepharose CL-6B An immunostimulating potential [101]

9 Fruiting body Glucose,
galactose, mannose

β-(1→3)(1→4)(1→6)-Glucan
Heteropolysaccharides

Hot-water extraction;
DEAE-cellulose-32 and Sephacryl
S-200 h

Pronounced antioxidant activity in
free radicals scavenging and
Fe2+ chelating

[102]

10 Fruiting body (wild)
Galactose, rhamnose, and
glucose in mole ratio of
1.00:1.15:3.22

Water-soluble polysaccharide
α-(1→6)-, (1→2,6) Galactose
β-(1→3)-, (1→4,6) Glucose

Hot water and ethanol precipitation;
DEAE-Sepharose Fast Flow and
Sephacryl S-300

Neutral heteropolysaccharide, which
reported antihyperglycemia effects [103]
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Table 2. Cont.

Mushroom Part of
G. lucidum

Monosaccharide
Composition Backbone Extraction and Fractionation Bioactivity References

11 Mycelium
(cultivated)

Rhamnose,
arabinose, mannose,
glucose, galactose

Heteropolysaccharide α-D-Glc (1→6),
α-D-Glc,α-D-Man (rhamnose and
arabinose residues in the side chain)

Hot water; ethanol precipitation; Sevag
method; dialysis

Antitumor activity against Human
hepatocarcinoma cell line (HepG2)
and tumor xenografts in ICR mice

[104]

12 Fruiting body Glucose
Branched homo-glucan (GLP0; GLP1)
(1→3)-β-D-glucan with
(1→6)-β-D branches

Hot water followed by
ethanol precipitation

Induced a cascade of
immunomodulatory cytokines
against sarcoma 180 solid tumor

[105]
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3.3. Triterpene and Triterpenoid Content of G. lucidum

Triterpenes belong to the class of terpenes that have a molecule consisting of six isoprene
units and are widespread in the plant kingdom [35]. Triterpenoids are part of the triterpene
class, having heteroatoms (usually oxygen atoms) in the molecule. They are important
bioactive compounds in the composition of G. lucidum, as shown by Wu et al. (2023) [118].
In 2018, Gu et al. revealed that the present triterpenes synthesize structures derived from
lanosterol, which has a skeleton with a tetracyclic structure and the molecular formula
C30H48 [119]. Terpenoid compounds from G. lucidum that have a C30 backbone and molec-
ular masses between 400 and 600 kDa were studied by Baby et al. and Galappaththi et al.,
who generically named them Ganoderma triterpenoids (Gl-Ts) [120,121]. Further research
on the structure and characterization of triterpenoids from G. lucidum that elucidates their
biological activities was published in 2022 by Cör et al. and Lin et al. [122,123].

3.3.1. Physicochemical Determination and Analysis of Triterpene Compounds

Studies conducted by Ghorai et al. (2012), Taofiq et al. (2017), and Chang et al. (2012)
utilizing UV spectrophotometric measurements have made significant contributions to
the methods for determining total terpenoids [124–126]. Huie et al. (2004) employed chro-
matographic and electrophoretic methods for the analysis of triterpenoids, and Yang et al.
(2007) utilized a combined approach involving HPLC-ESI-MS [127,128]. Chen et al. (2012)
highlighted the existence of multiple methods for investigating terpenoids [83]. Triter-
penoid analysis was also outlined in the studies of Zhang et al. (2008), Shi et al. (2010),
and Hadda et al. (2015) [129–131]. Che et al., Hui et al., and Zhang et al. reported novel
insights into triterpenoids obtained from G. lucidum [132–134]. In 2023, Wu et al. emphasized
the necessity of a new research strategy intertwining the concepts of chemical component
analysis and pharmacological activity [118].

3.3.2. Structure of G. lucidum Triterpenoids (Gl-Ts)

Wu et al. (2023) extensively reported on the diverse types of Gl-Ts identified from
the mycelia, fruit body, and spores of G. lucidum, showcasing distinct structural variations,
including alcohols, aldehydes, ketones, acids, esters, and various other substituents po-
sitioned differently [118]. Xia et al. (2014) conducted an in-depth analysis of the skeletal
structure of G. lucidum, revealing that a majority of these terpenoids consist of 30 carbon
atoms [135]. Using information derived from Wu et al., in Figure 6, the structures of a typi-
cal terpenoid skeleton are depicted, illustrating the numbered positions corresponding to
the matched carbon atoms alongside 10 additional terpenoid structures exhibiting diverse
substituents [118].

In Figure 6, illustrating the typical terpenoid skeleton structure, distinct substituents
are evident at positions C-3, C-7, C-11, C-12, C-15, C-20, and C-27. Fatmawati et al. (2010)
elucidated the structure of a new terpenoid, Ganoderic acid Df, featuring a β-hydroxy
substituent at the C-11 position, distinguishing it from all other compounds characterized
by a carbonyl group at the same position [136]. At the C-3 position, potential substituents
include the β-hydroxy, carbonyl, and β-acetoxy groups. At C-20, a single carbon atom can
host two substituents, which may be the methyl or hydroxyl groups or even hydrogen.
Wu et al. demonstrated that at the C-25 position, various carboxyl groups, such as formyl,
acetyl, or butyryl, can be found [118]. Additionally, Sharma et al. (2019) presented data on
triterpenes from G. lucidum, characterized by isoprene units in their composition, featuring
a C30 skeleton structure of ganoderic acids, aldehydes, esters, alcohols, lactones, glycosides,
ketones, and molecular masses ranging from 400 to 600 g/mol [137]. Koo et al. (2019)
identified a new compound with a lanostane triterpenoid structure named Ganosidone A,
which, along with eight other derivatives, was investigated for its cancer chemopreventive
potential [138]. Concerning the molecular configuration of ganoderic acids, Cör et al. (2022)
documented the structures illustrated in Figure 7 [122].
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Murata et al. (2019) identified and extracted a novel compound with a lanostane
triterpene structure from G. lucidum using NMR and MS physicochemical analysis [139].
Studies presented by Yue et al. in 2008 and 2010, as well as those by Zhang et al. and
Cheng et al., revealed the cytotoxic effects exerted by ganoderic acids from G. lucidum,
which alter proteins involved in cell proliferation and cell death in carcinogenesis or
oxidative stress [140–143]. In 2012, Liu et al. and Rios et al. studied the lanostanoid
compounds from G. lucidum for their anticancer activities [144,145]. In 2013, Li et al.
isolated a novel ganoderic acid from G. lucidum mycelia and studied its characteristics.
Fatmawati et al. studied the structure–activity relationship of lanostane-type triterpenoids,
and Li et al. reported cytotoxic effects in a wide range of triterpene compounds [146–148].
In 2017, Chen et al. presented data on compounds with triterpene structures existing in G.
lucidum that exhibited activity as inhibitors of biological processes [149]. In 2019, Liang et al.
illustrated their findings on the structure and mechanisms of action of ganoderic acids
from G. lucidum [150]. In 2021, Chinthanom et al. documented their findings on lanostane
triterpenoids isolated from mycelial cultures of Ganoderma spp. that can be modified by
semisynthesis, thus obtaining synthetic compounds [151]. In 2023, Pascale et al. reported
data on the specific structures and pharmacological mechanisms of triterpenoids with
biological activities from G. lucidum [152]. Figure 8 illustrates other structures specific to
the terpenoid compounds described by Pascale et al. [152].
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3.4. Vitamins, Minerals, and Sterols Content

Vitamins, minerals, and sterols were among the 400 biologically active constituents
recognized by various researchers after 2018, including Cör et al., Yang et al., and Ahmad,
F. In terms of quantity, the vitamins were in the following order: B1, B2, B6, β-carotene,
C, D, and E [153–155]. Hussein et al. (2022) also studied the existence of vitamins in G.
lucidum [156]. El Sheikha et al. (2022) highlighted the highest vitamin content as consisting of
niacin (B3) and ascorbic acid (C) [30]. Mineral contents have been reported by several studies,
such as El Sheikha et al., Roy et al., Ogbe et al., Cör et al., and Hussein et al. [30,71,74,153,156].
Table 3 displays the values for mushroom compositions reported by various authors,
expressed in milligrams per 100 g (mg/100 g), parts per million (ppm), and percentages
(%) [30,71,74,153,156].

Similar data were also presented by Sharif et al. (2016) and Treviño et al. [157,158]. The
bioaccumulation of copper and zinc in G. lucidum was also documented by Matute et al.
in 2011 [159]. In 2008, Falandysz J. reported the existence of selenium in the composi-
tion of some antioxidant enzymes with protective actions that are involved in antitumor
effects [160]. In their study, conducted in 2000, Chiu et al. identified the presence of germa-
nium in the Ganoderma extract. Their research encompassed an assessment of genotoxicity
and antigenotoxicity related to this finding [161]. Du et al. (2008) studied the positive effect
of selenium on the immune regulation activity of G. lucidum, and the involvement of this
element in anticancer activities was documented [162].
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Table 3. Minerals of G. lucidum fruiting body.

Elements mg/100 g mg/100 g % or ppm ppm

Potassium 432 3.590 1.11 ± 0.04 (%) -

Phosphorus 225 4.150 30.17 ± 1.29 (ppm) -

Sulfur 129 - - -

Magnesium 7.95 1.030 0.34 ± 0.01 (%) 50.76 ± 1.19

Sodium 2.82 375 229.88 ± 0.34 (ppm) -

Calcium 1.88 832 1.99 ± 0.04% -

Copper 27 - 7.43 ± 0.13 (ppm) 5.49 ± 0.35

Manganese 22 - 71.06 ± 1.56 (ppm) 20.19 ± 0.54

Iron 2.22 82.6 121.37 ± 1.82(ppm) 130.60 ± 1.63

Zinc 0.7 - 51.49 ± 2.16 (ppm) 8.45 ± 0.38

References [30,71] [153] [74] [156]

Sterols with the chemical formula C17H28O are a group of steroids that are cyclic
secondary monohydric alcohols. Since 2002, Ma et al. have reported three new lanostanoids
and two ergostane sterols, which were isolated by spectroscopic methods [163]. The role of
sterols is important in the body’s metabolism in regulating some hormonal and immune
system functions. Akihisa et al. (2007) studied the effects of sterols and triterpene acids from
G. lucidum on anti-inflammatory and antitumor actions [164]. In 2011, the sterol content of
G. lucidum was researched by Liu et al., who analyzed it qualitatively and quantitatively
using HPLC methods [165]. In 2015, Baby et al. showed that sterols in G. lucidum can be
classified based on their skeletons [120].

3.5. Protein, Lectin, and Amino Acid Content
3.5.1. Proteins and Peptides in G. lucidum

Proteins constitute a distinct category of biochemically active molecules in G. lucidum,
as demonstrated by Cör et al. in 2018 [153]. Numerous studies have reported various
biological effects of the primary fungal protein, Ling-zhi-8 (LZ-8). Structural reports were
published by Huang et al. in 2009, and the immunomodulatory actions of LZ-8 were
documented by Hsu et al. in 2013, Lin et al. in 2014, and Yang et al. [166–169]. In 2015, Sa-
ard et al. studied crude proteins from G. lucidum (both mycelia and fruiting bodies) for their
antioxidant actions [170]. In 2021, Fraile-Fabero et al. conducted studies on proteins from G.
lucidum [72]. Additional research by Sun et al. in 2004 revealed the existence of compounds
with a polysaccharide-peptide complex structure along with phenolic components with
antioxidant potential in G. lucidum [171].

Ji et al. (2007) further documented the existence of proteo-polysaccharides in Gano-
derma lucidum. They studied the immunomodulatory effects, emphasizing the anticancer
properties of this fungus [172]. The immunomodulatory properties of LZ-8 protein and
polysaccharides were studied by Yeh et al. in 2010 and Girjal et al. in 2012 [173,174].
Zhong et al. (2015) conducted research on the involvement of the peptide-polysaccharide
complex from G. lucidum in oxidative stress [175]. Subsequent data on the presence of
proteins in G. lucidum and their biological actions were published by Kumakura et al.
in 2019, and further insights were provided by Yu et al. in 2021 and 2023, where they
specifically documented the effects of proteoglycans derived from G. lucidum [176–178].
Huang et al. (2022) reported a novel pentapeptide in the mycelium of Ganoderma spp. that
demonstrates antioxidant properties [179].

3.5.2. Lectins from G. lucidum

Lectins are glycoproteins found in the fruiting body of G. lucidum. Lectins are
carbohydrate-binding proteins that have been classified according to their origin and
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structure. In 2007, Thakur et al. isolated and purified a group of lectin-structured proteins
with a weight of 114 kDa from the fruiting bodies of G. lucidum [180]. In 2011, Girjal et al.
isolated a new bioactive lectin from G. lucidum, which also exhibited hemagglutinating
activity against both human and animal erythrocytes [181]. Nikitina et al. (2017) investi-
gated lectins in mycelia and detected hemagglutinating activity in culture medium and
in a crude mycelial extract of G. lucidum [182]. Recent research conducted by Yousra et al.
has demonstrated varying binding patterns of lectins from G. lucidum with glycan moieties.
These patterns play a crucial role in influencing biological activities, including antitumor,
antiviral, and immunomodulatory effects [183].

3.5.3. Amino Acid Content of G. lucidum

The amino acid content has been documented by several authors. According to the
research of Sanodiya et al., Yousra et al., and Deepalakshmi et al., the most abundant
amino acid was glutamic acid [27,183,184]. This was followed by aspartic acid, glycine, and
alanine. The amino acids in G. lucidum have also been analyzed by Zhang et al. in 2018,
who reported 18 different types of amino acids [185]. It should be noted that factors such
as the origin of the tested samples and the species of fungus, as well as different analysis
techniques, may result in different amino acid values. Compounds with antioxidant
properties from G. lucidum have been analyzed in numerous studies. Thus, Kim et al.
(2008), Sheikh et al. (2014), Lin et al. (2015), and Veljović et al. (2017) presented data on
the chemical compounds of G. lucidum [186–189]. The amino acid values for G. lucidum,
as reported by Sanodiya et al. in 2009 and Deepalakshmi et al. in 2011, are presented in
Table 4 [27,184].

Table 4. Amino acids content in Ganoderma lucidum mushroom.

Amino Acid Aspartic
Acid Threonine Serine Glutamic

Acid Proline Glycine Alanine Valine

Asp Thr Ser Glu Pro Gly Als Val

mg AA/g protein 117 66 54 120 60 108 100 61

References [27,184] [27,184] [27,184] [27,184] [27,184] [27,184] [27,184] [27,184]

Amino acid Methionine Isoleucine Leucine Phenylalanine Tyrosine Histidine Lysine Arginine

Met Ile Leu Phe Tyr His Lys Arg

mg AA/g protein 6 36 55 28 16 12 21 22

References [27,184] [27,184] [27,184] [27,184] [27,184] [27,184] [27,184] [27,184]

3.5.4. Content of Compounds with Antioxidant Properties in G. lucidum

Dong et al. (2019), Zheng et al. (2020), Rahman et al. (2020), and Kolniak-Ostek et al.
(2022) reported data regarding the total triterpenoid, polysaccharide, polyphenol (TPC), and
flavonoid (TFC) content of G. lucidum [21,190–192]. Furthermore, Kim et al. (2008) analyzed
the phenolic compounds from G. lucidum using HPLC and identified 28 phenolic compounds.
All these compounds are responsible for antioxidant activity [186]. Triterpenoid compounds
were documented by Lin et al. in 2015 and Kolniak-Ostek et al. in 2022 [188,192]. Polysac-
charide compounds were described by Lin et al. in 2015 [188]. Polyphenolic compounds
were investigated by Rahman et al. in 2020 and by Kolniak-Ostek et al. in 2022 [21,192].
Flavonoid compounds and ascorbic acid were detailed in a study by Rahman et al. in
2020 [21]. Depending on the area of origin of the mushroom (cultivated or forest) and the
extraction techniques used, the concentrations of the compounds listed in Table 5 vary
considerably. The terpenoid content is lower in cultivated G. lucidum, depending on the
cultivation method, as Kolniak-Ostek et al. showed [192]. The results on compounds
responsible for antioxidant activity are presented in Table 5.
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Table 5. Compounds with antioxidant activity from G. lucidum.

Total
Triterpenoids Total Polysaccharides Total Polyphenol Content (TPC) Total Flavonoid

Content (TFC) Ascorbic Acid

/g d.w. mg glucose equiv./g d.w. mg/100 g d.w. mg/100 g d.w. mg/100 g d.w.

196.03–643.06 769.1 112.53 33.3–43.49 912.38 34.09–38.08 30.51–32.2

[188] [192] [188] [21] [192] [21] [21]

Kolniak-Ostek et al. presented more data on several phenolic acids present in G.
lucidum responsible for antioxidant activity, which are presented in Table 6 [192].

Table 6. The phenolic acids from G. lucidum [192].

Nr. Phenolic Acids Quantity (mg/100 g DW of Extract)

1 Tricaffeoyl-glucosyl-glucoside 13.54 ± 0.23
2 Tricaffeoyl-glucosyl 23.79 ± 0.24
3 Caffeoyltrihexoside 38.02 ± 0.30
4 Protocatechuic acid hexoside 19.09 ± 0.15
5 1-Caffeoylquinic acid 505.89 ± 3.21
6 trans-5-P-coumaroylquinic acid 0.46 ± 0.01
7 5-Caffeoylquinic acid 95.01 ± 0.92
8 Caffeoyl-2-hydroxyethane-1.1.2-tricarboxylic acid 213.89 ± 1.52
9 Yunnaneic acid F 1.29 ± 0.01
10 Salvianolic acid B 1.39 ± 0.01

Sum 912.38 ± 20.14
Means ± SD (p ≤ 0.05; n = 3).

The antioxidant properties of G. lucidum were analyzed using several methods, includ-
ing the reporting of DPPH and ABTS radical scavenging activities, as well as the FRAP
assay. The results were expressed in units of measurement. These units vary according to
the different experimental methods used. However, the importance of the results lies in the
unequivocal demonstration of the antioxidant activity possessed by the constituents found
in G. lucidum (see Table 7).

Table 7. Antioxidant capacity in the extract of G. lucidum.

DPPH FRAP ABTS

(%) (µMol TE/g) (µg/100 g) (µMol TE/g) (µMol TE/g)

24.04 ± 0.33 51.3 ±1.04 614.83 ± 0.05 49.87 ± 1.58 81.26 ± 1.10

[21] [192] [21] [192] [192]
Means ± SD (p ≤ 0.05; n = 3).

Furthermore, Dong et al. (2019) demonstrated a strong correlation between the an-
tioxidant capacities measured using DPPH, ABTS, and FRAP assays and the content of
polyphenolics and triterpenoids in G. lucidum [190]. Similar studies have also been pub-
lished by Saltarelli et al. in 2015 [193]. The properties of compounds in G. lucidum and
their effects on antioxidant activity were also documented by Tang et al. (2016), Sanchez C.
(2017), Mohammadifar et al. (2020), and Mustafin et al. (2022) [194–197].

3.6. Content in Nucleosides and Fatty Acids
3.6.1. Nucleosides and Nucleobases in G. lucidum

Nucleotides are monomeric units that consist of a base (purine or pyrimidine) and one
or more phosphate groups. Nucleotides are formed from nucleosides by phosphorylation
under the action of kinases. Nucleosides are glycosyl amines derived from a nitrogenous
base and a ribose or deoxyribose. These compounds have been shown to contain uridine
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and uracil, both of which are capable of reducing elevated serum aldolase levels. The water-
soluble fraction of Ganoderma suppresses platelet aggregation. Cheung et al. have carried
out studies on the identification and role of bases and nucleoside markers [198]. Gao et al.
(2007) identified six nucleobases qualitatively in fruiting body samples of G. lucidum and
G. sinense [199]. Additional studies of the distribution of nucleotides and nucleobases
were also carried out by Yuan et al. in 2008 and Chen et al. in 2012, who were able to
document 16 nucleotides and nucleobases in the Ganoderma species [200,201]. Phan et al.
(2018) demonstrated in their work that nucleobases, nucleosides, and nucleotides found in
fungi play crucial roles in regulating various physiological processes in the human body
through purinergic and/or pyrimidine receptors. [202]. In 2022, Sheng et al. analyzed
10 target compounds from 23 batches of Ganoderma samples from different regions of
China and demonstrated that the geographical origin of the fungi might be the exclusive
factor affecting the accumulation of nucleosides and nucleobases in the Ganoderma spp.
mycelium [203].

3.6.2. Fatty Acid Content

The total lipid content of G. lucidum has been reported in several studies by Rahman et al.
(2020), El Sheikha (2022), Roy (2018), and Ogbe et al. (2013) [21,30,71,74]. Comparative data
for the fatty acid content of carpophores from G. lingzhi (from industrial cultures in China)
and G. lucidum (from cultures in Madrid, Spain) were described by Fraile-Fabero et al. in
2021 [72]. Fraile-Fabero et al. found that G. lingzhi contains the highest percentage of
arachidic acid, followed by the margaric, behenic, margaroleic, lignoceric, and cis-vaccenic
acids, while G. lucidum contains the highest percentage of α-linolenic acid, followed by
the myristic, stearic, capric, erucic, nervonic, elaidic, octadecatrienoic, octadecadienoic,
and eicosatrienoic acids [72]. Data on the presence of essential fatty acids in G. lucidum
were also presented by Hossain et al. in 2007 [204]. Stojković et al. (2014) conducted
comparative studies between the G. lucidum species from Serbia and China [205]. Lin et al.
(2017) reported hydroxy fatty acids (HFA) present in the molecular species of acylglycerols
of G. lucidum [206]. Salvatore et al. (2020) identified fatty acid methyl esters (FAMEs) in
the triglycerides of G. lucidum spores [207]. Table 8 displays the composition similarities
between the two species. [72].

Table 8. Fatty acids content of two Ganoderma species [72].

Fatty Acids G. lingzhi ± 15% G. lucidum ± 15%

Total monounsaturated fatty acids 37.5 28.68

Total polyunsaturated fatty acids 43.84 49.93

Total saturated fatty acids 18.64 20.77

Total 99.98 99.38

Phytochemical reports over the past four decades indicate the presence of 279 bioac-
tive secondary metabolites (Wasser et al.), along with over 200 polysaccharides and
polysaccharide-protein complexes (Baby et al.), and more than 30 steroidal compounds
(Wasser et al.) within the chemical composition of G. lucidum. These compounds play a
pivotal role in the development of various biological actions. [120,208,209].

4. Biological Activities against Cancer

The biocomponents present in G. lucidum contribute to the numerous biological actions
of this medicinal mushroom, making it applicable in medical contexts for combating cancer.
Both polysaccharide compounds (Gl-Ps) and triterpene compounds (Gl-Ts) have been
shown to exhibit anticancer activities. Over a 25-year period, numerous studies have
investigated the anticancer effects of G. lucidum compounds, including those reported by
Wang et al. (2002), Zhang et al. (2007), and Akihisa et al. (2007) [24,107,164]. Between
2009 and 2015, other researchers published studies on the anticancer effects of G. lucidum
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bio-compounds, such as Cho et al., Ferreira et al., Trajkovic et al., Kao et al., Zhao et al., and
Joseph et al. [15,28,34,35,37,80,89]. Between 2018 and 2023, new studies disclosed data on
anticancer actions, including those by Ahmad F. and Cör et al. in 2018, Kolniac-Ostek et al.
in 2022, and Ekiz et al. in 2023 [13,153,192,210]. Our aim is to review the most important
studies and systematize these data on the possible mechanisms.

4.1. Anticancer Action

The anticancer activity attributed to Gl-Ps was studied by Cao et al. in 2002 and
2003 [211,212]. Many other studies have demonstrated the effect of Gl-Ps on cytokines,
including those by Chen et al. and Zhu et al. [213,214]. In 2007, Zhu et al. demonstrated the
beneficial immunological effects in mice attributed to Gl-Ps extracts administered at low
doses [215]. You et al. studied the effects of Gl-Ps on antioxidant enzymes in ovarian cancer
in rats, while Xu et al. conducted research on mediating the immunomodulatory, cytotoxic,
and anti-angiogenic effects of Gl-Ps [216,217]. Polysaccharides have been identified as a
distinct class of compounds present in G. lucidum compositions, demonstrating anticancer
activity by stimulating host immune function, as reported by Ahmad F., Sun et al., and
Wiater et al. [213,218,219]. In 2012, Zhang et al. reported the effects of Gl-Ps on suppressing
hepatocyte proliferation in rats [220]. Pan et al. reported the effects of Gl-Ps on rats with
gastric cancer, inducing enhanced immunity and antioxidant activity [103]. The study by
Suarez-Arroyo et al. in 2013 explored inflammatory breast cancer (IBC) and the effects
of Gl-Ps in breast cancer [221]. In 2015, Habijanic et al. reported on the effects of Gl-Ps
in modulating cytokine responses and lymphocyte activity [222]. Several studies have
delved into the mechanisms of action of G. lucidum compounds in cancer treatment, such as
those published by Ahmad F., Sohretoglu et al., and Wang et al. in 2018, as well as Fu et al.
in 2019 [13,223–225]. The triterpene compounds (Gl-Ts) identified in G. lucidum exhibit
significant anticancer effects. Both Min et al. in 2000 and Gao et al. in 2002 reported that
triterpene compounds displayed cytotoxic effects against tumor cells [226,227]. In 2004,
Lin et al. investigated the actions of Gl-Ps from aqueous extracts and Gl-Ts from alcoholic
extracts of G. lucidum, evaluating their angiogenic effects [228]. Li et al. conducted research
on ganoderic acid X, which acts by inhibiting topoisomerases and inducing apoptosis [229].
In Table 9, we have compiled the effects of essential compounds (Gl-Ps and Gl-Ts) in G.
lucidum that significantly contribute to its anticarcinogenic activity.
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Table 9. Anticancer activity of polysaccharides and triterpenes from G. lucidum.

G. lucidum
Compounds Actions and Effects of Gl-Ps on Antitumor Activity Mechanism of Action References

1 Gl-Ps Effects on dendritic cells Gl-Ps acts on the maturation and function of cultured murine bone marrow-derived
dendritic cells (DCs). [211]

2 Gl-Ps Effect on cytotoxicity Gl-Ps acts with a specific T-lymphocyte cytotoxic (CTL) mechanism, which has been
pulsed with the tumor antigen P815. [212]

3 Gl-Ps Evaluation of immunomodulatory effect on cytokines Explain the mechanism of action on macrophages in which Gl-Ps (fractions) activate
kinase to induce, in turn, activation of IL-1, IL-2, and TNF-α. [213]

4 Gl-Ps Effect of cytokine-induced killer cells (CIK) Gl-Ps decreases the number of lymphokine-activated cytokines (LAK) and
CIK-induced cytokine-killing cells. [214]

5 Gl-Ps Actions in immunopotentiation therapy against
induced immunosuppression

Gl-Ps extract at low doses leads to increased immunological effector cell activity in
immunosuppressed mice. [215]

6 Gl-Ps Effect on antioxidant enzyme activity Gl-Ps from G. lucidum significantly reduced malondialdehyde (MDA) production and
increased the activity of serum antioxidant enzymes in ovarian cancer therapy in rats. [216]

7 Gl-Ps Gl-Ps suppresses tumorigenesis, inhibits tumor growth
Gl-Ps affects immune cells, including B-lymphocytes, T-lymphocytes, dendritic cells,
and natural killer cells. They are mediated by immunomodulatory, anti-angiogenic,
and cytotoxic effects.

[217]

8 Gl-Ps Antitumor effects by stimulating host immune function Gl-Ps acts directly in activating lymphocytes that have been tested by incubating Gl-Ps
with an antigen-deficient tumor cell line. Also, Gl-Ps acts on B16F10 melanoma cells. [218]

9 Gl-Ps Antitumor effects by stimulating host immune function Gl-Ps can induce lymphocyte proliferation through action on B16F10 melanoma cells
and IFN-γ production. [219]

10 Gl-Ps Antitumor activity manifested by a mixture of Gl-Ps and sulfates. Gl-Ps sulfate showed remarkable inhibition of rat Heps proliferation. [220]

11 Gl-Ps Therapeutic potential in inflammatory breast cancer (IBC).
Study results provide evidence that Gl-Ps treatment suppresses protein synthesis and
tumor growth by affecting survival signaling pathways in mice injected with IBC cells,
suggesting a natural therapeutic potential for breast cancer.

[221]

12 Gl-Ps The ability of isolated Gl-Ps fractions (F3) to induce innate
inflammatory cytokines

Enhanced Th1 response with high levels of IFN-γ and IL-2. Cell wall Gl-Ps were
inducers of innate inflammatory cytokines, and extracellular Gl-Ps demonstrated a
high capacity to modulate cytokine responses to IL-17 production.

[222]

13 Gl-Ps Potential anticancer activity
They discussed the mechanisms of anticancer activity attributed to Gl-Ps by
highlighting immunomodulatory, anti-proliferative, pro-apoptotic, antimetastatic and
anti-angiogenic effects.

[223]
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Table 9. Cont.

G. lucidum
Compounds Actions and Effects of Gl-Ps on Antitumor Activity Mechanism of Action References

14 Gl-Ps Antitumor action and immunomodulatory effects of Gl-Ps in rats
Gl-Ps increased the serum concentration of Il-2, INF-γ and tumor necrosis factor-α. It
increased the cytotoxic activity of natural killer cells and T cells and led to prolonged
lifespan of brain glioma-bearing rats.

[224]

15 Gl-Ps,
spores

Antitumor action of a novel polysaccharide with an estimated
average molecular weight of 1.5 × 104 Da

In vivo antitumor activity tests showed that Gl-Ps could significantly inhibit S180
tumor growth in mice. No drug-related toxic reactions were observed. [225]

16 Gl-Ts Ganoderic acids from spores and their cytotoxicity The cytotoxicity of the compounds isolated from the Ganoderma spores was carried out
in vitro against Meth-A and LLC tumor cell lines. [227]

17 Gl-Ts Anticancer study of lucialdehydes B, C (2,3), ganodermanonol,
and ganodermanondiol

Cytotoxic mechanism. Lucialdehyde C exhibited the most potent cytotoxicity against
CLL, T-47D, sarcoma 180, and Meth-A tumor cells. [227]

18 Gl-Ps
Gl-Ts

Antitumor effect of aqueous extract;
cytotoxic activity of alcoholic extract

Manifestation of a significant antitumor effect in several tumor-bearing animals;
manifestation of an anti-angiogenic effect that may be involved in the
antitumor activity.

[228]

19 Gl-Ts Ability of ganoderic acid X (GAX) to inhibit topoisomerases and
interfere with apoptosis

Mechanisms of chromosomal DNA degradation, cancer cell apoptosis, mitochondrial
membrane disruption, and caspase-3 activation have been elucidated upon GAX
treatment of HuH-7 human hepatoma cells.

[229]

20 Gl-Ts Cytotoxicity of GA-T on different human carcinoma It was shown in vivo to significantly inhibit proliferation of lung cancer cells by
inducing apoptosis by GA-T [230]

21 Gl-Ts The effect of ganoderic acids A, F, and H on breast cancer cells
was evaluated

GA-A, GA-F, and GA-H suppressed cell proliferation, colony formation, and invasive
behavior of MDA-MB-231 cells. They have biological effects by inhibiting
transcription factors AP-1 and NF-κB.

[231]

22 GA-T Studies of anti-invasive and antimetastatic mechanisms of GA-T
in vitro in lung cancer

GA-T dose-dependently inhibited 95-D cell migration by wound healing assay,
promoting cell aggregation and inhibiting cell adhesion to the extracellular matrix
(ECM). GA-T prevents tumor metastasis in highly metastatic lung carcinoma.

[232]

23 Gl-Ts. Anticancer, anti-inflammatory, and antimetastatic activities of G.
lucidum extracts

Gl-Ts from G. lucidum reduces the production of IL-8, IL-6, MMP-2, and MMP-9 in
breast cancer and melanoma cells. They decrease cancer cell viability in a time and
dose-dependent manner.

[233]

24 GL-Ts
Investigation of Gl-Ts with activity in inhibiting growth of
pulmonary carcinoma metastates and suppressing
colonic inflammation

The triterpene extracts exhibit inhibitory activity against foodborne
carcinogen-induced mouse colon carcinogenesis. All suppressive functions were
enhanced by high doses of triterpene extract.

[234]
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Table 9. Cont.

G. lucidum
Compounds Actions and Effects of Gl-Ps on Antitumor Activity Mechanism of Action References

25 Gl-Ts
NTF, ATF

Evaluation of anticancer effects of NTF (neutral triterpene fraction)
and ATF (acidic triterpene fraction) on human colorectal cancer

The cytotoxic effects of Gl-Ts on human colon cancer cells SW480, SW620, SW116, and
mouse embryonic fibroblast cells NIH3T3 were studied. Compounds isolated from
NTF acted as antitumorals by inducing apoptosis.

[235]

27 GlSO Mechanistic investigation of the anticancer-gene effect of GlSO (G.
lucidum spore oil) on mammary cancer cells

Growth of MDA—MB-231 cells, in vitro, were inhibited by treatment with GlSO (0.2,
0.4, and 0.6 µL/mL). In vitro, GlSO increased Bax and caspase-3 expression but did
not affect caspase-8 expression.

[236]

27 Gl-Ts Anticancer potential of G. lucidum against prostate cancer (PC-3)
G. lucidum has been shown to prevent prostate cancer cell growth and stimulate
apoptosis in PC-3 cells by preventing STAT-3 translocation (signal transduction and
activation of transcription).

[237]

28 Gl-Ts Effects on colorectal cancer. Involves suppression of
NF-κB-regulated inflammation and carcinogenesis

In vitro administration of GLSF extract at non-toxic concentrations to mice inoculated
with CT27 tumor cells significantly potentiated paclitaxel-induced growth inhibition
and apoptosis in CT27 and HCT-15 cells.

[238]

29 Gl-Ps, Gl-Ts Evaluation of the effects on skin carcinogenesis analyzed on JB6
cells in SKH-1 mice

Reduced incidence and multiplicity of skin tumors. In tumor-free skin tissue of mice,
Gl-Ps and Gl-Ts attenuated UV-induced epidermal thickening. Gl-SF increased CD8
and Granzyme B expression.

[239]
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Tang et al. (2006) reported the effects of ganoderic acid T in inhibiting lung cancer
tumors (95-D), inducing apoptosis, and arresting the cell cycle at the G(1) phase [230].
Gl-Ts-type triterpenes and ganoderic acids A, F, and G were investigated in 2008 by Jiang
et al. for their effects on breast cancer [231]. In 2009, Trajkovic et al. documented the action
of triterpenes in B-16 melanoma, while Xu et al. studied ganoderic acid T and its effects on
lung cancer [34,232]. In 2017, Barbieri et al. published data on the inhibition of IL-8, IL-6,
MMP-2, and MMP-9 release in cancer cells under pro-inflammatory conditions in breast
cancer and melanoma cells, and Ye et al. disclosed data on the effects of ganoderic and
lucidenic acids in inhibiting the growth of lung carcinoma metastases and suppressing colon
inflammation [233,234]. In 2020, the anticancer effects of triterpene fractions extracted from
G. lucidum on SW620 human colorectal cancer cells were reported in vitro by Li et al. [235].
The action of Gl-Ts against various cancers has been studied by Jiao et al. (breast cancer
cells), Wang et al. (prostate cancer), and Liu et al. (colorectal cancer) [236–238]. In 2022,
Shahid et al. conducted research on the anticancer activities of Gl-Ts in skin cancer [239].

4.2. Possible Mechanisms in Anticancer Actions

The medical world has shown significant interest in establishing possible mechanisms
of anticancer activity, especially as the literature provides ample evidence regarding the
actions of G. lucidum biocomponents against various forms of cancer. In 2018, Ahmad F.
systematized the possible mechanisms by which G. lucidum bio-compounds participate in
cancer treatment [13]. The steps considered by Ahmad include the activation of the host
cell immune response, induction of cell differentiation, inhibition of angiogenesis, direct
cytotoxicity to tumor cells, inhibition of urokinase-type plasminogen activator and receptor
expression in cancer cells, and inhibition of phase II metabolizing enzymes [13].

Kao et al. elucidated the mechanisms of the anticancer action of G. lucidum compounds
by discussing the distinct effects of polysaccharide and triterpene compounds separately,
as well as their combined effects (see Figure 9) [35].
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They showed that polysaccharide compounds (Gl-Ps) act through three mechanisms [35]:
by enhancing the host immune response, by stimulating macrophage activity, and by
stimulating T-lymphocytes and natural killer (NK) cells. Triterpenes (Gl-Ts) act through
five mechanisms:

- G1-phase cell cycle arrest by inhibition of β-catenin;
- Inhibition of protein kinase C (PCK), which generates G2-phase cell cycle inhibition;
- Induction of apoptosis in cancer cells via the mitochondrial pathway, followed by

activation of caspase cascades;
- Preventing tumor metastasis by inhibiting MMP-9 and interleukin IL-8 and by de-

grading the extracellular matrix (ECM);
- Suppressing the secretion of anti-inflammatory cytokines [240].

Together, the two major classes of bio-compounds, Gl-Ps and Gl-Ts, share two common
mechanisms, namely:

I. Antioxidant actions by reducing oxidative stress generated by free radicals and reac-
tive oxygen species (ROS) through the actions of antioxidant enzymes [35].

II. Suppressing angiogenesis and inhibiting nitric oxide production.

4.3. Other Biological Actions Involved in Anticancer Activities

The antitumor activity of G. lucidum bio-compounds is based on the differential
effects of other biological activities generated by G. lucidum bio-compounds, as reported
by Cör et al. [122,153]. Other researchers, such as Sharma et al., Ahmad, and You et al.,
have also conducted studies on the various factors that can lead to cancer [137,155,216].
Additionally, researchers like Xu et al., Fu et al., and Hapuarachchi et al. have analyzed
various biological actions associated with cancer [217,225,241].

4.3.1. Immunomodulatory Activities

Anticancer activity based on immunomodulation activity has been reported by several
researchers, such as Bao et al., Ooi et al., Moradali et al., and Lin et al. [94,106,109,168].

Effects of Gl-Ps on T- and B-Lymphocytes

Numerous studies have been reported that highlight the activating role of Gl-Ps (F3
fraction) on T-lymphocytes by increasing interleukin production: IL-1, IL-2, IL-6, and IL-12,
and increasing the expression of IFN-γ and INF-α. Additionally, they enhanced DNA syn-
thesis in mouse spleen cells, as reported by Chen et al. [213] and Wang et al. [24]. Gl-Ps from
G. lucidum can activate PKC and PKA protein kinases in murine T-lymphocytes, according
to Sohretoglu et al. [223]. The effect of Gl-Ps on B-lymphocytes is also crucial for tumor
immunity. For example, Gl-Ps can activate B-lymphocytes by enhancing their proliferation
and differentiation, leading to the production of substantial amounts of immunoglobulins
in mice. Furthermore, Gl-Ps can directly stimulate the expression of PKCα and PKCγ

in B-lymphocytes, as reported by Zhang et al. [242]. Activated B-lymphocytes increase
the production of immunomodulatory substances, such as IL-1β and TNF-α, and reactive
nitrogen species, such as NO [242].

Effect of Gl-Ps on Dendritic Cells

Dendritic cells (DCs) are professional antigen-presenting cells involved in the initi-
ation of the primary T-lymphocyte immune response [223]. Stimulation of dendritic cell
maturation by Gl-Ps from G. lucidum was documented by Sanodiya et al. [27]. Lai et al.
reported that treatment with Gl-Ps F3 fraction extract improved the mixed lymphocyte
response and stimulated the production of ten cytokines and six chemokines [243]. Jan et al.
outlined the immunomodulatory activity of Gl-Ps, including the activation and maturation
of DCs, as evidenced by increased cytokine production (IL-12, IL-6, IL-23, and IL-10) [244].
Chan et al. reported that treatment of monocytic leukemic cell lines with Gl-Ps resulted in
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increased leukocyte HLA-DR antigen expression and induced leukemic cell differentiation
through increased superoxide production and cell cycle arrest [245].

Effect of Gl-Ps on Macrophages

Sohretoglu et al. demonstrated that Gl-Ps activate macrophages in vitro and elevate
the levels of various cytokines, including IL-1β, tumor necrosis factor (TNF-α), IFN-γ, and
IL-6 in the culture medium. This activation significantly increases macrophage phagocytosis
and enhances macrophage-mediated tumor cytotoxicity [223]. Zhang et al. showed that the
in vivo treatment of S180 sarcoma-bearing mice with Gl-Ps activated bone marrow-derived
macrophages, inducing the production of immunomodulatory compounds such as IL-1β,
TNF-α, and nitric oxide (NO) [242]. Hsu et al. elucidated the role of caspases in macrophage
F3 fraction-induced Gl-Ps from G. lucidum spores [246]. Guo et al. discovered a novel water-
soluble polysaccharide within G. lucidum spores that acts as an inducer of TNF-α and IL-6
secretion in murine peritoneal macrophages [247]. The in vivo administration of extracts
from G. lucidum spores potentiated the proliferative response of splenocytes and induced
antitumor activity against lung cancer in mice [247]. Hsu et al. reported that Gl-Ps induces
increased secretion of the inflammatory cytokine IL-1 and stimulates the expression of
pro-IL-1 and IL-1-converting enzymes in human and murine macrophages, an association
linked with its anticancer activity [248].

Effect of Gl-Ps on Natural Killer (NK) Cells

Altfeld et al. defined the role of (NK) natural killer cells in innate immunity [249].
Chien et al. demonstrated that treatment with Gl-Ps resulted in increased monocyte,
macrophage, and NK cell populations in human umbilical cord blood [250]. Wang et al.
studied the effects of the bio-compounds from G. lucidum that, upon oral administration to
mice, improved NK cell and phagocytosis activities and increased cytokine levels [251]. In
additional research by Zhu et al., it was shown that Gl-Ps accelerated the recovery of bone
marrow cells, red blood cells, and white blood cells, as well as splenic NK and NKT killer
cells, and enhanced T- and B-lymphocyte proliferative responses [215]. The application of
Gl-Ps treatments is recommended in cancer chemotherapy only at low doses [215].

4.3.2. Anti-Proliferative, Cytotoxic, and Apoptosis-Increasing Activities

Ganoderic bio-compounds have demonstrated various anti-proliferative and cytotoxic
effects in studies regarding the treatment of different types of cancer [252–255]. The
anti-proliferative effects of Gl-Ts compounds in G. lucidum manifest through cell cycle
arrest [252,253]. Gl-Ts compounds can arrest the cell cycle in the G1 phase by inhibiting
the β-catenin pathway, as reported by Wu et al., and in the G2/M phase by suppressing
protein kinase C (PKC) activity, as reported by Lin et al. [252,253]. Jedinak et al. reported
that ganodermanontriol inhibited the proliferation of HCT116 and HT-29 colon cancer cells
by inhibiting β-catenin [254]. Li et al. (2005) identified ganoderic acid X as a compound that
can arrest the cell cycle by inhibiting topoisomerase [229]. Chen et al., in 2010, reported that
ganoderic acid T (GA-T) exhibits anti-proliferative effects against cancer cells in vitro and
against metastasis in vivo [255]. In 2008, Chen et al. reported in the wound vacuolization
assay that ganoderic acid Me (GA-Me), administered in a dose- and time-dependent
manner, inhibited tumor invasion and cell adhesion to the extracellular matrix (ECM) [256].
GA-Me suppressed master metalloproteinases at the mRNA and protein levels in 95-D cells
and is considered a potent antimetastatic carcinoma inhibitor [256]. Hsu et al. studied the
anti-proliferative effects of lucidenic acids in human leukemic HL-60 cells [257].

Tang et al. conducted a study on the anti-proliferative effect of ganoderic acid T
against cancer cells and observed enhanced cytotoxicity in lung cancer [230]. Triterpene
compounds can induce apoptosis of cancer cells via the mitochondria-dependent pathway,
followed by caspase activation, as reported by Kao et al. and Liu et al. in 2011 and
2012 [35,258,259]. Zhou et al. investigated the cytotoxic effects of GA-Me in human
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colon carcinoma, observing a dose-dependent pattern, and determined that the anticancer
bioactivity of GA-Me was mediated through induced apoptosis [260].

4.3.3. Anti-Inflammatory Activities

Several inflammatory mediators, such as TNF-α, IL-6, TGF-β, and IL-10, have been
shown to play roles in cancer initiation and progression [261,262]. G. lucidum biocomplexes
have demonstrated dose-dependent anti-inflammatory effects [223]. Administration of the
triterpene extract suppressed inflammatory cytokine secretion in macrophages with a sig-
nificant reduction in inflammation in the affected tissue, as reported by Dudhgaonkar et al.
in 2009 [263]. Joseph et al. found that Gl-Ps administration resulted in a 58% inhibition of
inflammation, as assessed by carrageenan-induced (acute) and formalin-induced (chronic)
inflammation assays [37].

4.3.4. Anti-Angiogenic Activities

Angiogenesis, the process by which new vasculature is formed from pre-existing
vasculature, plays a key role in tumor growth and metastasis as well [264]. Nitric oxide
is known to be an angiogenesis-inducing agent in tumors, promoting capillary formation
within the tumor and allowing it to expand. In 2004, Cao et al. reported the existence of
a peptide in G. lucidum that significantly reduced microvessel formation, as detected by
the chorioallantois membrane assay [265]. Stanley et al. (2005) found that the G. lucidum
extract prevented capillary morphogenesis by inhibiting the secretion of angiogenic factors
VEGF and (TGF)-β1 [38]. Cao et al. (2006) demonstrated that the G. lucidum extract contains
a polysaccharide peptide that exhibits anti-angiogenic activity by inhibiting nitric oxide
production, subsequently suppressing cell multiplication in a dose-dependent manner [95].

4.3.5. Antioxidant Activities

Excess free radicals adversely affect bases in the nucleic acid structure, amino acids
in the protein structure, and double bonds in unsaturated fatty acids, leading to oxidative
stress, which is responsible for the alteration of DNA, RNA, proteins, and lipids. Hsieh et al.
reported that bio-compounds from G. lucidum can exert chemopreventive effects through
their antioxidant properties, such as free radical scavenging, as well as the ability to affect
phase II detoxification enzymes [39]. Other authors, such as Smina et al., studied the
antioxidant activity of Gl-Ts and demonstrated that they can reduce free radicals in cancer
cells. [266]. In another study, Smina et al. reported the effect of total triterpenes from G.
lucidum on the intracellular levels of reactive oxygen species (ROS) and the activities of
endogenous antioxidant enzymes in spleen lymphocytes, highlighting their role in reducing
radiation-induced oxidative DNA damage in spleen cells [267]. In 2001 and 2003, Lu et al.
highlighted the beneficial contribution of the polysaccharides extracted from G. lucidum
mycelium in reducing ROS-induced oxidative damage [268,269]. Lee et al. reported the
existence of an amino polysaccharide compound in G. lucidum that can inactivate hydroxyl
and superoxide anion radicals [270]. Other authors, such as XiaoPing et al. and Zhao et al.,
studied Gl-Ps and showed that these bio-compounds could be beneficial for glutathione
peroxidase and reduce malonaldehyde levels in rats with cervical carcinoma and mice
exposed to γ-irradiation [49,271].

5. Toxicity and Safety

Although there are numerous published studies on the beneficial effects of G. lucidum,
there is also relatively little information reporting the toxic effects in humans. In this
regard, Ahmad F. highlighted human sensitisation to Ganoderma antigen, reported in the
USA, leading to allergic reactions [13,155]. When undergoing G. lucidum treatment, special
attention should be paid to potential interactions with other drugs. Diabetic patients or
those being treated with anticoagulants or antiplatelet drugs require special caution when
being administered G. lucidum, as the anticipated effects may be altered [272].



Antioxidants 2023, 12, 1907 25 of 36

In cancer therapy, although G. lucidum has been utilized as an anticancer agent, caution
is still required when using it in conjunction with chemotherapy due to potential toxicity.
Plasma concentrations of G. lucidum should be carefully monitored to detect elevated,
toxic levels [273]. In an in vitro study, G. lucidum extracts were found to have toxic effects
when exposed to cells at concentrations higher than those required for stimulatory results,
resulting in a significant reduction in cell viability in a number of cell lines [274]. G.
lucidum exhibits antihypertensive activity and may potentiate the effects of antihypertensive
drugs [275]. Gl-Ps from G. lucidum have antibacterial activity and can enhance the activity
of some antibiotics (e.g., tetracycline and cefazolin) [276].

6. Conclusions

G. lucidum bio-compounds are regarded as valuable in alternative cancer treatments
based on non-natural products. The present work has compiled available data from various
in vitro and in vivo studies on G. lucidum bio-compounds and their beneficial effects in
anticancer treatment through their biological actions, such as anti-proliferative, antioxidant,
immunomodulatory, anti-inflammatory, and anti-angiogenic effects. This paper presents in-
formation on the active bio-compounds in G. lucidum to obtain conclusive data and confirm
their benefits regarding the mechanisms of anticancer action. Additionally, understanding
the mechanisms of anticancer action, combined with other biological anticancer actions
exerted by both the main bioactive compounds Gl-Ps and Gl-Ts and other compounds
described in the paper (proteins, vitamins, metals, sterols, fatty acids, and nucleotide
compounds), is necessary for targeted use in anticancer treatments. It is also crucial to
comprehend that the biocomponents of G. lucidum are directly influenced by several fac-
tors, including the origin and culture medium, environmental conditions, temperature,
humidity, and the quality of the environment from which the fungus originates. Therefore,
further experimental, epidemiological, and clinical studies are needed to characterize the
interactions of the administration of G. lucidum forms with different conventional anticancer
drugs. More research is needed to combine G. lucidum bio-compound treatments with
chemotherapy. Extensive pharmacological studies are also necessary to establish optimal
dosages and assess the efficacy and safety of administration. Moreover, it is important
to extend the research to identify metabolite subtypes that support the observed bioac-
tivities, aiming to establish anticancer therapy procedures that promote general health
and longevity.
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Abbreviations

Gl-Ps G. lucidum polysaccharides ROS Reactive Oxygen Species
Gl-Ts G. lucidum triterpenoids GA-A Ganoderic acids A
TPC Total polyphenol content GA-F Ganoderic acids F
TFC Total flavonoid content GA-H Ganoderic acids H
IL Interleukin GA-T ganoderic acid T
TNF-α Tumor Necrosis Factor Alpha GA-Me Ganoderic acid Me
INF-γ Interferon Gamma MMP Matrix metalloproteinase;
TGF-α Transforming Growth Factor-Alfa TCL T-lymphocyte cytotoxic
TGF-β Transforming Growth Factor-Beta NK Natural killer cells;
VEGF Vascular Endothelial Growth Factor PKC Protein kinase C
NO Nitrogen species ECM Extracellular matrix;
MDA Malondialdehyde DCs Dendritic cells

HPLC-ESI-MS
Liquid chromatography coupled with

TEAC
Trolox equivalent

electrospray ionization mass spectrometry antioxidant capacity
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