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Abstract: The research aimed to investigate the chemical composition and antioxidant and antibac-
terial potential of the essential oil (EO) isolated from the aerial parts (flowers, leaves, and stems)
of Ruta graveolens L., growing in western Romania. Ruta graveolens L. essential oil (RGEO) was iso-
lated by steam distillation (0.29% v/w), and the content was assessed by gas chromatography-mass
spectrometry (GC-MS). Findings revealed that 2-Undecanone (76.19%) and 2-Nonanone (7.83%)
followed by 2-Undecanol (1.85%) and 2-Tridecanone (1.42%) are the main detected compounds of
the oil. The RGEO exerted broad-spectrum antibacterial and antifungal effects, S. pyogenes, S. aureus,
and S. mutans being the most susceptible tested strains. The antioxidant activity of RGEO was
assessed by peroxide and thiobarbituric acid value, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH),
and β-carotene/linoleic acid bleaching testing. The results indicated moderate radical scavenging
and relative antioxidative activity in DPPH and β-carotene bleaching tests. However, between the
8th and 16th days of the incubation period, the inhibition of primary oxidation compounds induced
by the RGEO was significantly stronger (p < 0.001) than butylated hydroxyanisole (BHA). Molecular
docking analysis highlighted that a potential antimicrobial mechanism of the RGEO could be exerted
through the inhibition of D-Alanine-d-alanine ligase (DDl) by several RGEO components. Docking
analysis also revealed that a high number RGEO components could exert a potential in vitro protein-
targeted antioxidant effect through xanthine oxidase and lipoxygenase inhibition. Consequently,
RGEO could be a new natural source of antiseptics and antioxidants, representing an option for the
use of synthetic additives in the food and pharmaceutical industry.

Keywords: Ruta graveolens L.; essential oil; 2-undecanone; 2-nonanone; antimicrobial activity; antiox-
idant activity; molecular docking
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1. Introduction

Food spoilage may be caused by physical, chemical, or microbiological mechanisms.
Microbial spoilage is frequently due to spoilage bacteria, yeasts, or moulds’ growth and/or
metabolism [1,2]. The chemical spoilage typically occurs when food exposure to oxygen
triggers a chain of several chemical reactions involving lipids, fatty acids, and pigments and
generates chemical compounds with undesirable biochemical properties, such as toxicity
and unpleasant smell, taste, and colour [3]. These changes make foodstuff unacceptable
or undesirable for consumption and, finally, generate food loss and waste [2]. The real
economic losses generated by food spoilage are challenging to estimate. However, these
losses represent a substantial financial burden assessed at 1.3 billion tonnes per year by
FAO [4].

Consequently, to increase foodstuff quality, safety, and shelf-life without any adverse
effect on their nutritional or sensorial properties, food additives such as preservatives and
antioxidants have become indispensable for the food industry, mainly synthetic ones. In
recent decades, there has been significant scientific progress concerning pharmacological
studies of aromatic plants to identify and valorise natural extracts [5,6]. This trend is
concurrent with an increasing interest in identifying new sources of preservatives and an-
tioxidants to replace synthetic food additives because of their potential carcinogenicity [7,8].
A large plethora of plant extracts are also well known and researched for their antimicrobial
potential. These extracts contain various compound classes such as terpenes, polyphenolic
compounds, flavonoids, various adelhydes, and ketones or alkaloids that disrupt bacteria
activity by various mechanisms [9]. These mechanisms include key enzymes that play
important roles in bacterial survival and proliferation and are frequently used as targets
for novel antimicrobial drug design or for the determination of active antimicrobial agents’
mechanisms of action using computational methods [10]; Rutaceae family have been recog-
nized for their economic value and also for the cultivated citrus fruits, timber, and essential
oils (EOs), indicating a potential source of natural active principles [11–13]. One of the gen-
era of Rutaceae family plants investigated is the genus Ruta [13]. The genus Ruta includes
about 40 species of perennial shrubs and herbs distributed along the Mediterranean coast,
the Balkan Peninsula, and Crimea [14]. In Romania, the Ruta genus is represented by Ruta
graveolens L., Ruta suaveolens D.C., and Dictamnus albus L. [15]. Among the family members,
R. graveolens L. stands out for EO production [6]. Several studies report that oxygenated
compounds (e.g., aldehydes, alcohols, and esters) are predominant in the R. graveolens
EOs (RGEO) isolated from leaves, fruits, flowers, stems, and roots [16]. In contrast, other
investigations mention aliphatic compounds, especially ketones (2-undecanone and 2-
nonanone), representing more than 50% of the total composition of RGEO [6,14,17]. These
differences in the phytochemical profile of R. graveolens may explain the anti-rheumatic,
anti-diarrheic, anti-inflammatory, anti-febrile, antiulcer, anti-diabetics, and antimicrobial
properties reported in the recent pharmacological trials [6,18,19]. To our knowledge, no
investigation of the antioxidant properties of R. graveolens has been previously reported.
However, several studies report the in vitro antioxidant properties of the Ruta montana and
Ruta chalepensis. Still, no investigations report the Ruta genus members’ antioxidant activity
in food systems.

This research aimed to investigate: (i) the chemical composition of the EO isolated
from the aerial parts of R. graveolens cultivated in western Romania by using the GC-MS
technique; (ii) the antioxidant and antimicrobial activities of the oil; and (iii) the mechanisms
of interaction between RGEO chemical components and target proteins corelated with
antibacterial activity and intracellular antioxidant mechanisms, thus aiming for its potential
application in food and pharmaceutic industries as a green preservative and/or antioxidant.

2. Materials and Methods
2.1. Plant Material and RGEO Isolation Procedure

The fresh plant material was harvested manually, during the flowering phase in July
2019, from the experimental fields of the Didactic Station ”Tinerii Naturalis, ti”/Banat’s
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University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”
in Timisoara, Romania. After identification, a voucher specimen (VSNH.BUASTM–109/1)
was deposited in the Herbarium of Agricultural Technologies Department, Faculty of
Agriculture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King
Michael I of Romania” from Timisoara, Romania. The fresh plant material (flowers, leaves,
and stems) was manually chopped into parts approximately 1.5 cm long and immediately
submitted to steam distillation [20] in a Craveiro apparatus for 4 h. A water-cooled EO
receiver was used to reduce the formation of artifacts due to overheating, which may occur
during the isolation of RGEO. After separating the RGEO by decantation (yielding at 0.29%
v/w), the oil was dried using anhydrous sodium sulphate and stored until use at −18 ◦C.

2.2. Gas Chromatography Coupled to Mass Spectrometry Method

The RGEO was analyzed using a sensitive and qualitative gas chromatographic
technique performed on an HP6890 gas chromatograph coupled with an HP5973 mass
spectrometer. The sample, diluted 1:1000 in hexane, was injected in a splitless mode in a
heated inlet at 230 ◦C, and run through a Bruker Br-5MS column (30 m × 0.25 mm; film
thickness 0.25 µm) (Agilent Technologies, Santa Clara, CA, USA), carrier gas: helium, flow
rate 1.0 mL/min. The gas chromatograph oven temperature was set up to 50 ◦C for 5 min,
raised to 300 ◦C at a temperature rate of 6 ◦C/min, and kept there for 5 min. The HP5973
mass spectrometer operating parameters were as follows: ionization potential, 70 eV; mass
analyzer quadrupole 150 ◦C; solvent delay 3.0 min; mass range 50 to 550 amu. The NIST0.2
spectral library (USA National Institute of Science and Technology software) was employed
to identify the compounds (similarity indexes > 90 %), followed by a comparison of the
retention index (RI), calculated based on the n-alkanes C8–C20 homologous series, with the
values reported in the literature [21].

2.3. Effect of RGEO on Cold-Pressed Sunflowers Oil Oxidation

RGEO and synthetic antioxidants, butylated hydroxyanisole (BHA) and butylated
hydroxytoluene (BHT), used for comparison were added at 200 mg/L concentrations sepa-
rately to 10 mL of cold-pressed sunflower oil purchased from the local market. Oxidation
was periodically evaluated by measuring peroxide value (PV) at the 0th, 4th, 8th, 12th, 16th,
20th, and 24th days of storage according to the potentiometric end-point determination
method described by ISO 27107:2010 [22]. In addition, the thiobarbituric acid (TBA) value
was analysed to measure secondary oxidation products in the cold-pressed sunflower oil
at the same days of storage, according to the previous investigation described by Jianu
et al. [23]. A negative control sample was prepared under the same conditions without
adding any additives. All analyses were performed in triplicate.

2.4. 1,1-Diphenyl-2-picrylhydrazyl Radical (DPPH) Free Radical Scavenging Activity

The radical-scavenging activity of the RGEO with DPPH was established on the scav-
enging capacity of the stable DPPH· free radical following the Brand-Williams method [24].
Shortly, all samples, RGEO and reference positive controls (δ-tocopherol, BHA, BHT) were
diluted in methanol to obtain concentrations between 1.5 and 0.093 mg/mL. Samples were
pipetted in triplicate into plates with 96 wells and left to incubate at room temperature in
the dark for 30 min. Their absorbances were read at 515 nm against methanol as a nega-
tive control at a Tecan i-control 1.10.4.0 Infinite 200Pro spectrophotometer. The obtained
results were expressed as a DPPH free radical percentage (I%) and calculated based on the
equation: I% = (Amethanol − Asample/Amethanol) × 100; Amethanol is methanol absorbance,
and Asample is the tested sample absorbance. IC50 index was calculated with the software
BioDataFit 1.02 (Chang Bioscience Inc., Fremont, CA, USA).

2.5. β-Carotene Bleaching Test

The experiment measured the coupled autoxidation of β-carotene and linoleic acid as
previously described by Jianu et al. [23]. Briefly, β-carotene (0.5 mg) was added to chloro-



Appl. Sci. 2021, 11, 11753 4 of 23

form (1 mL), linoleic acid (25 µL), and Tween 40 (200 mg). The mixture was evaporated
at 45 ◦C for 5 min under vacuum to remove chloroform. The residue was diluted slowly
with distilled water saturated with oxygen (100 mL) and vigorously shaken to form an
emulsion. The emulsion (2.5 mL) was transferred to the test tubes containing 350 µL of
RGEO methanolic solution (2 g/L concentration). BHT in methanol was used as a positive
control. The test tubes were gently shaken and incubated for 48 h (room temperature)
before their absorbances readings at 490 nm. All experiments were performed in triplicate.

2.6. Determination of Antimicrobial Activity
2.6.1. Bacterial Strains

For determining the RGEO antimicrobial activity, the following microbial reference
strains were used: Gram-positive cocci (Enterococcus faecalis ATCC 51299, Staphylococcus
aureus ATCC 25923, Streptococcus pyogenes ATCC 19615, and Streptococcus mutans ATCC
35668), Gram-negative bacilli (Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC
700603, Salmonella enterica serotype Typhimurium ATCC 14028, Shigella flexneri serotype 2b
ATCC 12022, and Pseudomonas aeruginosa ATCC 27853), and two strains of Candida species
(Candida albicans ATCC 10231 and Candida parapsilosis ATCC 22019). The methods used to
test RGEO antimicrobial activity were performed according to the European Committee on
Antimicrobial Susceptibility Testing (EUCAST) [25] and with minimal adjustments based
on our previous studies [20,23,26].

2.6.2. Antimicrobial Screening

The disk diffusion method was used for the initial testing of RGEO antimicrobial
activity. The microbial suspension was prepared to 0.5 McFarland using a standard saline
solution for each strain and inoculated on Mueller-Hinton agar (bioMérieux, Marcy-l’Etoile,
France). Afterward, on these plates, a disk (BioMaxima, Lublin, Poland) containing 10 µL of
RGEO to be tested and disks containing 5 µg levofloxacin and 25 µg fluconazole for positive
control were placed on the surface. The inhibition zones were measured in millimeters
after a 24-hour incubation at 35–37 ◦C for bacteria species and at 28 ◦C for Candida species.

2.6.3. Minimum Inhibitory Concentration

Using the serial dilution method, the microbial suspension was adjusted to
5 × 105 CFU/mL (colony forming units). Serial dilutions of RGEO in DMSO were pre-
pared, ranging from 400 to 12.5 mg/mL concentrations. The following: 0.5 mL microbial
suspension, 0.1 mL of each RGEO dilution, and 0.4 mL Mueller Hinton broth, were trans-
ferred in six test tubes, obtaining a final inoculum of 0.5 × 105 CFU/mL and a final RGEO
dilution from 40 to 1.25 mg/mL. After 24 h of incubation at 37 and at 30 ◦C, respectively, the
test tube containing the lowest RGEO concentration, and no visible growth was considered
MIC interpretation.

2.6.4. Minimum Bactericidal Concentration and Minimum Fungicidal Concentration

From the tubes with MIC, 1 µL was inoculated on Columbia agar and 5% sheep
blood for bacterial strains and Sabouraud for Candida strains (bioMérieux, Marcy-l’Etoile,
France). The inoculated plates were incubated for appropriately 24 h, and the lowest
concentration with no visible growth was considered for MBC or MFC.

2.7. In Silico Molecular Docking

Molecular docking analysis was achieved using a previously described method [27].
All protein target structures were retrieved from the RCSB Protein Data Bank [28] (Table 1).
These structures were optimized as suitable docking targets, using Autodock Tools v1.5.6
(The Scripps Research Institute, La Jolla, CA, USA). The protein structure file was prepared
by removing water molecules, unlinked atoms/protein chains, and the native ligands after
which the potential of the protein target was assigned with Kollman charges, a feature
imbedded in the software. The target structures were saved as pdbqt files. The structures
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of the 37 RGEO compounds were generated based on their available SMILE strings (or
isomeric SMILE strings in case of enantiomers), using BIOVIA Draw (Dassault Systems
BIOVIA). The 2D structures were converted into 3D structures using PyRx’s Open Babel
module by using 500 steps of a steepest descent geometry optimization with the MMFF94
forcefield. The lowest energy conformer generation does not alter the stereochemistry of
the input structures. Molecular docking was achieved with the PyRx v0.8 virtual screening
software (The Scripps Research Institute, La Jolla, CA, USA) using Vina’s encoded scoring
function [29]. This is a custom scoring function which combines, as their developers
describe, empirical information from both the conformational preferences of the receptor-
ligand complexes and experimental affinity measurements [29]. The docking software
was set to generate/dock 10 conformers of each input molecular structure. The docking
protocol was validated by re-docking the native ligands into their original protein binding
sites. The root means square deviation (RMSD) between the predicted and experimental
docking pose of the native ligand was calculated. Molecular docking was performed only
for cases with aforementioned RMSD values not exceeding a 2 Å threshold. The docking
grid box coordinates and size were selected to best fit the active binding site (Table 1).
Docking scores were recorded as ∆G binding energy values (kcal/mol). Protein-ligand
binding interactions were analysed using Accelrys Discovery Studio 4.1 (Dassault Systems
BIOVIA, San Diego, CA, USA).
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Table 1. Molecular docking parameters for each protein target.

Protein
PDB ID/

Protein Structure
Resolution

Grid Box Center
Coordinates Grid Box Size Native Ligand References

IARS 1JZQ
3.00 Å

center_x = −27.683
center_y = 7.940

center_z = −28.726

size_x = 15.314
size_y = 10.229
size_z = 10.025

N-[isoleucinyl]-n’-[adenosyl]-diaminosufone
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DHFR 3SRW
1.70 Å

center_x = −4.932
center_y = −31.078

center_z = 6.811

size_x = 11.512
size_y = 12.532
size_z = 9.986

7-(2-ethoxynaphthalen-1-yl)-6-methylquinazoline-
2,4-diamine
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2-[(3S,4R)-4-{[(3,4-dichloro-5-methyl-1H-pyrrol-2-
yl)carbonyl]amino}-3-fluoropiperidin-1-yl]-1,3-

thiazole-5-carboxylic acid
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2.8. Statistical Analysis 
The main approach for statistical testing the antioxidant property of RGEO was the 

ANOVA method, with samples (synthetic antioxidants and RGEO) and incubation period 
as main effects, followed by a post-hoc analysis. The overall ANOVA analysis shows that 
the main effects and interaction effects are highly significant (p < 0.001) for PV and TBA 
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groups have homogenous variances at this level of analysis according to Leven’s test. In 
the case of the scavenging effect on the DPPH radical assay, we faced the situation of non-
normality (Shapiro–Wilk, p = 0.005) of ANOVA residuals, non-homogeneity of variances 
across groups (Levene, p < 0.001), and a low number of observations per group (nine meas-
urements). Therefore, the data have been normalized by using the natural logarithm trans-
formation. In addition, the Games-Howell test was used in post-hoc analysis to address 
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2.8. Statistical Analysis

The main approach for statistical testing the antioxidant property of RGEO was the
ANOVA method, with samples (synthetic antioxidants and RGEO) and incubation period
as main effects, followed by a post-hoc analysis. The overall ANOVA analysis shows that
the main effects and interaction effects are highly significant (p < 0.001) for PV and TBA
values. Because the number of observations of each sample per incubation period is low
(nine values), the normality assumption was tested on the ANOVA residuals using the
Shapiro–Wilk test. The null hypothesis was not rejected in the case of PV (p = 0.182) but was
rejected in the case of TBA (p < 0.001). Consequently, the post-hoc analysis was performed
using the Tukey parametric test in the case of PVs. Instead, the post-hoc analysis was
performed using Dun’s non-parametric test with Bonferroni correction for the TBA values.
To take into account the interaction effect, all the pairwise comparisons were performed
separately, for each incubation period at a time; also worth mentioning is that the groups
have homogenous variances at this level of analysis according to Leven’s test. In the
case of the scavenging effect on the DPPH radical assay, we faced the situation of non-
normality (Shapiro–Wilk, p = 0.005) of ANOVA residuals, non-homogeneity of variances
across groups (Levene, p < 0.001), and a low number of observations per group (nine
measurements). Therefore, the data have been normalized by using the natural logarithm
transformation. In addition, the Games-Howell test was used in post-hoc analysis to
address the lack of variance homogeneity. Finally, the ANOVA approach followed by
Tukey’s test in the post-hoc analysis was applied to assess the antimicrobial properties. The
ANOVA residuals have close to normality distribution (Shapiro–Wilk, p = 0.844), and the
groups (three inhibition zone measurements per group) are homogenous from a variance
point of view (Levens’s, p = 0.28). Data analysis was completed using JASP (Version 0.15),
and p-values < 0.05 were considered as significant.

3. Results
3.1. Chemical Composition of RGEO

Steam distillation of the fresh plant material of R. graveolens gave a yellowish oil
with an intense and penetrating odour with a yield of 0.29% (v/w). The extraction yields
obtained for R. graveolens are comparable to those reported in the literature [17,42–45]. As
previous reported by Formisano et al. [46], the total EO content of plants was affected by
genetic background, environmental conditions, and soil composition.

GC-MS analysis of the RGEO identifies thirty-seven compounds (Figure 1 and Table 2),
representing 98.68% of the obtained oil. The main detected compounds are 2-Undecanone
and 2-Nonanone at 76.19% and 7.83%, respectively, followed by 2-Undecanol at 1.85%
and 2-Tridecanone at 1.42%. The abundance of 2-Undecanone in RGEO is in accord
with the previous studies conducted on RGEOs from Egypt [47], Algeria [45], Iran [48],
and Saudi Arabia [49]. However, the proportions and nature of the identified chemical
compounds of the analysed EOs are not always the same compared with the previous
studies. These differences may be due to genetic, distinct environmental and climatic
conditions, geographic origins, and plant populations [49,50].
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Figure 1. Gas chromatogram of RGEO cultivated in western Romania.

Table 2. Chemical composition of RGEO cultivated in western Romania.

No Compounds KI a %

1. 3-Octanone 908 0.06
2. beta-Thujene 912 tr.
3. 4-Carene, (1S,3S,6R)-(−) 919 tr.
4. Hydroperoxide, 1-ethylbutyl 925 0.24
5. Hydroperoxide, 1-methylpentyl 934 0.19
6. (2E)-2-Hexenyl benzoate 942 tr.
7. 1-Cyclohexyl-2-propen-1-ol 947 tr.
8. 2-Bornene 959 tr.
9. para-Cymene 1005 0.58
10. beta-Terpinyl acetate 1011 0.08
11. Eucalyptol 1014 tr.
12. 4-Carene, (1S,3R,6R)-(−) 1042 0.06
13. 2-Nonanone 1076 7.83
14. 2-Decanone 1190 0.75
15. Cyclopropanecarboxylic acid, nonyl ester 1238 0.49
16. (S)-(+)-Carvone 1248 0.18
17. 2-Undecanone 1308 76.19
18. 2-Undecanol 1315 1.85
19. 1-methyl-cycloundecanol 1380 1.13
20. 2-Dodecanone 1412 0.63
21. beta-Caryophyllene 1439 0.55
22. 2-Acetoxytetradecane 1450 1.34
23. Germacrene-D 1478 0.42
24. 2-Tridecanone 1515 1.42
25. Hexa-hydro-farnesol 1536 0.28
26. Elemol 1568 0.48
27. 9-Methyl-10-methylenetricyclo [4.2.1.1(2,5)]decan-9-ol 1598 0.81
28. 2,5-Octadecadiynoic acid, methyl ester 1605 0.19
29. 4-(3,4-Methylenedioxyphenyl)-2-butanone 1612 0.15
30. Ascaridole epoxide 1615 0.24
31. Valeric acid, 2-tridecyl ester 1658 0.59
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Table 2. Cont.

No Compounds KI a %

32. Geranyl isovalerate 1663 0.32
33. alpha-Eudesmol 1669 0.38
34. 1,2,3,3a,4,9,10,10a-Octahydrobenzo[f]azulene 1681 0.40
35. Corymbolone 1743 0.13
36. Methoxsalen 1977 0.16
37. Bergaptene 1995 0.56

Total: 98.68
a Retention indices (RIs) calculated upon the calibration curve of alkane C8–C20 standard injected and analyzed in the same conditions as
RGEO.; tr. (trace) < 0.05.

3.2. Antioxidant Activity

The formation of primary lipid oxidation products throughout 24 days of storage of
the samples was measured using the amount of PV. The effect of RGEO, BHA, and BHT
on PV changes in cold-pressed sunflower oil lipids has been shown in Table 3. The PV
of samples treated with RGEO, after 8 days and 16 days of incubation, were lower than
the values of the control sample and samples treated with BHA and BHT, with a high
significance level (p < 0.001). After 12 days of incubation, the PV of the sample treated with
RGEO was lower than the values of the control sample and sample containing BHA but
higher than the values of the sample containing BHT with high significance in all cases
(p < 0.01). Finally, after 20 days and 24 days of incubation, the PV of the sample treated with
RGEO was significantly lower than the control sample values (p < 0.001) and significantly
higher than the samples treated with BHA and BHT (p < 0.001).

Table 3. The antioxidant effects of RGEO, BHA, and BHT in terms of peroxide values (meq of oxygen kg−1).

PV (meq of Oxygen kg−1)

Storage Time (Days) Control Sample BHT BHA RGEO

0 days 1.97 ± 0.05 bc 1.88 ± 0.04)a 1.93 ± 0.06 ab 2 ± 0.04 c

4 days 3.1 ± 0.06 a 2.98 ± 0.06 c 3.21 ± 0.06 b 3.13 ± 0.09 ab

8 days 5.67 ± 0.07 a 4.28 ± 0.04 b 5.9 ± 0.06 c 4.01 ± 0.05 d

12 days 7.7 ± 0.05 a 5.91 ± 0.06 b 7.06 ± 0.07 c 6.56 ± 0.08 d

16 days 9.73 ± 0.07 a 8.66 ± 0.08 b 8.68 ± 0.04 b 8.19 ± 0.05 c

20 days 12.12 ± 0.05 a 9.58 ± 0.03 b 9.82 ± 0.06 c 9.95 ± 0.06 d

24 days 15.91 ± 0.07 a 10.03 ± 0.05 b 10.11 ± 0.08 b 11.49 ± 0.08 c

Values with different superscripts are significantly different (p < 0.05) according to Tukey test; each value is the Mean ± SD.

TBA value has been extensively applied to evaluate the degree of lipid oxidation. TBA
reactive substances are reckoning the second stage auto-oxidation, during which peroxides
are oxidized to aldehyde and ketone [51]. The changes in TBA value of different treatment
samples during 24 days are shown in Table 4. Generally, the values of samples treated
with RGEO were closer to BHA values in the case of TBA measurements. From day 0
through day 20, the TBA values of samples treated with RGEO were higher than those of
samples treated with BHA, but the difference was not significantly different, with only
one exception, day 4. However, after 24 days of incubation, the values of TBA were lower
for samples treated with RGEO but not significantly different according to Dunn’s test
(p = 0.32). Regarding the TBA values of samples treated with BHT, samples treated with
RGEO were significantly higher after 4 through 20 days of incubation.
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Table 4. The antioxidant effects of RGEO, BHA, and BHT in terms of thiobarbituric acid value (TBA) (µg malondialde-
hyde g−1).

TBA (µg Malondialdehyde g−1)

Storage Time (Days) Control Sample BHT BHA RGEO

0 days 2.62 ± 0.04 a 2.5 ± 0.12 b 2.55 ± 0.08 ab 2.56 ±0.06 ab

4 days 3.08± 0.04 ab 2.85 ± 0.04 c 2.88 ± 0.05 ac 4.4 ± 0.06 b

8 days 7.51 ± 0.07 a 3.46 ± 0.05 b 4.55 ± 0.11 bc 6.54 ±0.11 ac

12 days 10.97 ± 0.06 a 5.18 ± 0.08 b 6.66 ± 0.15 bc 9.49 ± 0.1 ac

16 days 15.77 ± 0.1 a 5.9 ± 0.05 b 8.06 ± 0.07 bc 10.38 ± 0.11 ac

20 days 19.48 ± 0.2 a 6.67 ± 0.22 b 11.43 ± 0.08 bc 12.41 ± 0.16 ac

24 days 28.93 ± 0.04 a 7.3 ± 0.13 b 14.55 ± 0.08 ac 14.35 ± 0.12 bc

Values with different superscripts are significantly different (p < 0.05) according to Dunn’s test; each value is the Mean ± SD.

Antioxidants interact with 1,1-diphenyl-2-picrylhydrazyl radical, a stable free rad-
ical, and transform it into 1,1-diphenyl-2-picrylhydrazine. The degree of discoloration
demonstrates the radical scavenging potential or the hydrogen-donating ability of the
compounds [52]. RGEO was able to to reduce the stable free radical DPPH with an IC50
value of 0.25 ± 0.09 mg/mL (Table 5). Even if the effect of the radical scavenging activity
of RGEO is comparable to that of the delta-tocopherol (IC50: 0.16 ± 0.02 mg/mL), it is not
statistically significant (p = 0.133) according to the Games-Howell test. In contrast, BHA
(IC50: 0.09 ± 0.01 mg/mL) and BHT (IC50: 0.02 ± 0.02 mg/mL) exhibited significantly
(p < 0.05) better antioxidant activity than RGEO (Table 5). Recently, Benoli et al. (2020)
reported DPPH scavenging abilities for Moroccan oil of R. montana with an IC50 value of
0.244 mg/mL [53]. In contrast, Mohammedi et al. (2018) found IC50 values ranging from
0.0496 to 0.0634 mg/mL for R. montana oils collected from different regions in Algeria [54].
Similar results were reported by Jaradat et al. (2017) that found IC50 values ranging from
0.0069 to 0.0199 mg/mL for Palestinian R. chalepensis volatile oils [55], and by Althaher
et al. (2021) that reported an IC50 value of 0.035 mg/mL for Jordanian R. chalepensis
oil [56].

Table 5. Antioxidant activities of the RGEO by DPPH and β-carotene–linoleic acid bleaching test.

Parameter RGEO Delta-Tocopherol BHA BHT

DPPH, IC50 (mg/mL) 0.25 ± 0.09 a 0.16 ± 0.02 a 0.09 ± 0.01 b 0.02 ± 0.02 c

β-carotene bleaching (RAA) (%) 77.42 ± 0.07 Nd Nd 100

Values with different superscripts are significantly different (p < 0.05) according to Games-Howell test; each value is the Mean ± SD;
Nd—not detected.

The β-Carotene bleaching test is based on the discoloration of β-carotene determined
to its reaction with radicals produced by linoleic acid oxidation in an emulsion. The
antioxidants’ presence can decrease the rate of β-carotene bleaching [57,58]. The relative
antioxidant activity percentage (RAA%) of RGEO was calculated with the formula RAA
= ARGEO/ABHT, where ARGEO is the absorption of RGEO, and ABHT is the absorption of
BHT (positive control used). Compared with BHT, R. graveolens oil bleached β-carotene
by 77.42 ± 0.07% (Table 5). Similar results were reported by Loizzo et al. (2017) for leaf
extracts obtained from R. chalepensis [59]. However, no previous research were available in
the literature concerning the in vitro and in vivo antioxidant activity of RGEO to support
us to compare the results directly.
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3.3. Antimicrobial Activity

The in vitro antimicrobial activity of RGEO against nine bacteria and fungal strains
was evaluated qualitatively and quantitatively by the presence or absence of inhibition
zones, MIC, MBC, and MFC values. The diameters of the inhibition zone of RGEO, which
include the diameter (6 mm) of the paper disk against the microorganisms tested, are
shown in Table 6. The diameters of the inhibition zone induced by RGEO against the
tested microorganism strains ranged between 15.21 ± 0.14 mm and 20.61 ± 0.21 mm,
suggesting that the oil exerts low to moderate antimicrobial effects. The results revealed
that S. pyogenes, S. aureus, and S. mutans were the most susceptible tested strain to the
RGEO action, followed by C. albicans > C. parapsilosis > E. faecalis > P. aeruginosa > E. coli >
K. pneumoniae > S. enterica > S. flexneri. Our results agree with previous studies [6,45,49],
which reported that RGEO exhibited antimicrobial activity against S. aureus, E. faecalis, E.
coli, K. pneumoniae, and C. albicans. The recorded MICs, MBCs, and MFCs for the tested
strains were 1.25, 2.5, and 5 mg/mL, respectively. According to Aligiannis et al. [60], a
strong MIC EOs can hold up to 0.5 mg/mL, moderate for MIC 0.6–1.5 mg/mL, and low
for MIC above 1.5 mg/mL. The RGEO exhibited a moderate MIC for S. mutans and S.
pyogenes and showed low activity against the rest of the analyzed bacteria. Overall, RGEO
showed low efficiency in inhibiting the Gram-negative strains compared to Gram-positive
strains, following previous studies [6,27,49,61,62]. These differences in susceptibility could
be associated with different rates of penetration of EO constituents into the cell wall and
cell membrane structures. Therefore, the ability of EO to disrupt the permeability barrier
of cell membrane structures and the accompanying loss of chemiosmotic control are the
most likely reasons for its lethal action [63].

Table 6. Antimicrobial of the RGEO by disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal
concentration (MBC), and minimum fungicidal concentration (MFC).

Bacterial and Yeast
Strains Disk Diffusion (mm) MIC Value (mg/mL) MBC Value (mg/mL) MFC Value (mg/mL)

Streptococcus mutans 19.77 ± 0.26 b 1.25 1.25 -

Streptococcus pyogenes 20.61 ± 0.21 a 1.25 1.25 -

Staphylococcus aureus 19.89 ±0.14 b 2.5 2.5 -

Enterococcus faecalis 16.56 ± 0.17 d 2.5 2.5 -

Escherichia coli 15.76 ± 0.1 fe 5.0 5.0 -

Klebsiella pneumoniae 15.71 ± 0.13 fe 5.0 5.0 -

Salmonella enterica 15.65 ± 0.23 fe 5.0 5.0 -

Shigella flexneri 15.21 ± 0.14 f 5.0 5.0 -

Pseudomonas aeruginosa 15.95 ± 0.08 de 5.0 5.0 -

Candida albicans 18.66 ± 0.26 c 2.5 - 2.5

Candida parapsilosis 18.42 ± 0.39 c 2.5 - 2.5

Values with different superscript are significantly different (p < 0.05) according to Tukey test; each value is the Mean ± SD.

3.4. In Silico Prediction of Mechanism by Molecular Docking Analysis

Ligand-based molecular docking is a computational technique that can be used, among
other methods, as a starting point for understanding the targeted mechanism of action
of a given molecular structure. In the form of free-binding energy values, the obtained
results may indicate an increased/decreased affinity of the analyzed molecule towards the
selected target compared to the native ligand (a known inhibitor), given that the binding
energy decreases when the compounds’ affinity increases [64–66]. For our current study,
we used a molecular docking-based protocol to identify possible protein targets for the 37
RGEO components, whose inhibition could be correlated with their in vitro antimicrobial
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activity. The same method was also employed to provide an insight regarding a potential
in vitro protein targeted based antioxidant activity, apart from the chemical structure
related antioxidant activity described above. Protein targets, usually associated with
bactericidal/bacteriostatic effects, such as dihydropteroate synthase (DHPS), dihydrofolate
reductase (DHFR), D-alanine: D-alanine ligase (Ddl), penicillin binding protein 1a (PBP1a),
DNA gyrase, type IV topoisomerase, and isoleucyl-tRNA synthetase (IARS), were used in
the present work [10]. Furthermore, molecular docking screening was also employed to
assess the RGEO components inhibitory potential towards protein targets that play active
roles in intracellular antioxidant mechanisms. To achieve this goal CYP2C9, lipoxygenase
xanthine oxidase, and NADPH-oxidase [67] were selected as protein targets.

Docking scores recorded as ∆G values (kcal/mol) corresponding to the 37 docked
compounds and the native ligands of each protein are presented in Table 7. However, we
intended to spot a trend related to a possible protein-targeted cumulative mechanism of
action associated with the set of 37 RGEO compounds in the sense that if a majority of the
RGEO components score better or comparable docking results with the native ligand of
a target protein, then that cumulative effect may lead to the observed biological activity.
To better visualize this tendency, firstly, the docking scores corresponding to each protein
target column were reordered in descending order, the lowest ∆G value representing the
highest affinity for that specific target. Subsequently, we generated a heatmap based on
the rearranged table. Each table column was colored with a three-color scheme gradient,
ranging from red for the ∆G value scored by the native ligand (used as control), through
white for the midpoint interval, and to blue for the highest value (the structure with the
lowest affinity), respectively. Thus, the columns of the target proteins where most of the
compounds obtained good docking scores compared to the native ligands will be colored
predominantly red (Figure 2).

Table 7. Docking results (binding energy, ∆G kcal/mol) for RGEO 37 compounds.

1N8Q 1OG5 2CDU 3NRZ 1JZQ 1KZN 2VEG 3RAE 3SRW 3TTZ 3UDI 2I80

Free Binding Energy ∆G (kcal/mol)

NL −5.8 −9.8 −9.3 −6.7 −8.8 −9.3 −6.9 −4.3 −9.9 −8.5 −7.4 −8.4
1 −4.8 −4.7 −4.7 −5.8 −4.3 −4.4 −4 −2.3 −4.5 −4.7 −3.9 −5.4

2 −5.8 −5.5 −5.2 −4.5 −4.8 −4.7 −3.8 −2.1 −5.7 −4.9 −4.4 −5.8

3 −7.1 −5.6 −5.8 −4.3 −5.2 −5.2 −4 −2.4 −6.2 −5.5 −4.6 −6.3

4 −4.7 −4.2 −4.3 −5.6 −3.9 −4.4 −4.1 −2.6 −4.3 −4.6 −4 −4.9

5 −4.8 −4.3 −4.3 −5.5 −4 −4.5 −4 −2.7 −4.6 −4.8 −4.1 −4.9

6 −5.2 −6.8 −6.3 −6.8 −5.8 −5.6 −5.3 −2.9 −6.2 −6.2 −5.3 −6.9

7 −5.8 −5.6 −5.5 −6.7 −5.1 −5 −4.7 −2.9 −5.7 −5.6 −4.6 −6

8 −3.3 −5.6 −5.7 1.7 −4.6 −4.2 −3.7 −2.1 −5.5 −4.7 −4.5 −6.2

9 −6.1 −6.2 −5.7 −6.9 −5.1 −5.3 −4.4 −2.3 −5.6 −5.8 −4.8 −5.9

10 −3.7 −6.8 −6.2 −6.5 −5.9 −5.7 −5.2 −3.4 −6.3 −6.3 −5.7 −6.8

11 −3.6 −5.6 −6 2.8 −4.8 −4.6 −3.7 −2.6 −5.9 −5 −4.8 −6

12 −7.1 −5.7 −5.8 −4.3 −5.1 −5.2 −4 −2.4 −6.2 −5.5 −4.6 −6.3

13 −4.7 −5 −4.9 −5.9 −4.6 −4.5 −3.7 −2.4 −4.8 −5.1 −3.9 −5.8

14 −4.8 −5.4 −4.8 −6.2 −4.7 −4.6 −4.2 −2.3 −5 −5.4 −4 −5.8

15 −4.3 −5.7 −5.3 −5.5 −4.9 −4.6 −4.8 −2.6 −5.4 −5.3 −4.6 −6.6

16 −5.3 −6.4 −6.2 −7.3 −5.7 −5.5 −4.8 −3.2 −5.9 −6 −5.2 −6.2

17 −4.7 −5.3 −5.2 −6 −4.9 −4.4 −4.1 −2.4 −5 −5.1 −4.2 −6

18 −5.3 −5.4 −5 −5.7 −5 −4.5 −4.3 −2.2 −5.2 −5.1 −4.3 −6.1
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Table 7. Cont.

1N8Q 1OG5 2CDU 3NRZ 1JZQ 1KZN 2VEG 3RAE 3SRW 3TTZ 3UDI 2I80

Free Binding Energy ∆G (kcal/mol)

19 −2.5 −6.2 −6.3 −3 −5.8 −5.3 −4.8 −3.4 −7.1 −6.5 −5.5 −3.4

20 −4.8 −5.5 −4.8 −5.7 −4.8 −4.7 −4.5 −2.4 −5.2 −5 −4.2 −6.4

21 −0.5 −7.3 −6.5 0.4 −6.3 −6.1 −4.9 −3 −7.6 −6.5 −6.2 −4.3

22 −2 −5.7 −5.8 −2.8 −5.4 −4.8 −4.2 −2.2 −5.9 −5.7 −5.1 −6.2

23 −1.3 −7.1 −6.5 −1.2 −6.8 −6.4 −5.3 −3 −7.7 −6.6 −6.2 −4.4

24 −4.7 −5.6 −5.1 −5.3 −4.9 −4.7 −4.4 −2.1 −5.4 −5.5 −4.5 −6.4

25 −2.1 −6.4 −6.3 −4.3 −5.7 −5.4 −5.1 −2.7 −6.1 −6.4 −5.6 −6.3

26 −2 −6.7 −6.6 −0.8 −6 −6.1 −4.6 −3 −7 −6.7 −5.9 −6.3

27 −0.4 −6.2 −6.7 2.5 −5.3 −5.1 −4.1 −3.2 −6.6 −5.6 −5.8 −5.3

28 0.7 −6 −5.6 −1.1 −5.1 −5.2 −4.8 −2.4 −6.4 −6 −5.1 −5.4

29 −2.9 −6.4 −6.5 −8 −5.8 −5.7 −5.2 −3.3 −6.6 −6.6 −5.8 −7.1

30 −4.7 −5.9 −6.2 −1.2 −5.9 −5.1 −5.1 −3.8 −6.2 −5.6 −5.9 −5.7

31 0.6 −5.5 −5.3 0.3 −4.8 −4.6 −4.5 −2.4 −5.6 −5.5 −4.9 −5.9

32 −2.3 −6.4 −5.8 −3.6 −5.6 −5.5 −5 −2.9 −6.3 −5.9 −5.8 −6.1

33 −2.7 −7.2 −7.2 −2.3 −6.7 −7.6 −5.4 −3.3 −7.8 −7 −6.6 −6.4

34 −0.8 −8.5 −7 −6.7 −7 −6.9 −5.7 −3.1 −7.7 −7.3 −6 −5.7

35 2.9 −7 −6.2 6.1 −6.2 −5.7 −4.6 −3.6 −7.8 −6 −5.4 −2.9

36 −3.7 −7 −7.4 −6.5 −6.8 −6.7 −6.4 −4.3 −7.3 −7.2 −7 −5.4

37 −3.7 −7.1 −7.1 −6.2 −6.3 −6.9 −6.2 −4.3 −7.4 −7.2 −6.4 −6.2

NL—native ligand; highlighted values represent cases were ∆G values of the respective compounds are lower than ∆G of the NL.

Concerning the set of proteins related to RGEO’s antibacterial activity, our results
show an increased affinity of the majority of docked molecules towards the DDl protein
(2I80). DDl is an essential key enzyme involved in bacterial wall biosynthesis and an
important drug target for developing new antibiotic agents. This enzyme is responsible for
the formation of the dipeptide D-alanine: D-alanine, in a two-step reaction, sequentially by
using D-alanine and ATP as substrates for the first reaction step and another D-alanine to
complete the reaction [35]. The analyzed compounds were docked in an allosteric pocket
adjacent to the D-Ala and ATP binding site. Of the docked compounds, various struc-
tures showed a good affinity towards DDl compared to the native ligand, in the range of
2.1 kcal/mol. These structures include monoterpenoids (β-Terpinyl acetate, −6.8 kcal/mol;
4-Carene, −6.3 kcal/mol), sesquiterpenes (Hexa-hydro-farnesol, −6.3 kcal/mol; Elemol
−6.3 kcal/mol, α-Eudesmol, −6.4 kcal/mol), esters (Cyclopropanecarboxylic acid, nonyl
ester, −6.6 kcal/mol; (2E)-2-Hexenyl benzoate, −6.9 kcal/mol), and ketones (2-Tridecanone,
−6.4 kcal/mol; 4-(3,4-Methylenedioxyphenyl)-2-butanone, −7.1 kcal/mol). These findings
can be correlated with previous studies that have clearly shown that monoterpenes or
terpene-rich EOs are bactericidal and induce bacterial wall disruption, causing the loss
of essential nutrients [68,69]. Additionally, based on the present computational data, the
antibacterial effect of RGEO may be attributed more to the lower occuring components.
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Figure 2. Three-colored heat map (red-white-blue gradient) obtained after coloring each reordered column of the docking
scores table in descending order, from red for the ∆G value scored by the native ligand (control), through white for the
midpoint interval, and to blue for the highest value (the structure with the lowest affinity).

Compound 29 (4-(3,4-Methylenedioxyphenyl)-2-butanone) was recorded as the highest-
scoring structure towards DDl. Binding analysis revealed a good accommodation of the
structure in the protein binding pocket (Figure 3). The compound forms four hydrogen
bonds (HBs) (Glu16, Leu95, Thr23, and Gly118), two hydrophobic interactions (Phe313,
Leu94), and one S-Pi interaction with Met310. This binding pattern is highly similar to that
of the native-ligand, which also forms three of the four HB mentioned above (Figure 3).
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Figure 3. Structure of DDl (2I80) in presence of 4-(3,4-Methylenedioxyphenyl)-2-butanone (29). (A) the native ligand,
3-chloro-2,2-dimethyl-N-[4-(trifluoromethyl)phenyl]propenamide and (B) compound 29 and the native ligand’s structures
superimposed; (C) HB interactions are depicted as green dotted lines; interacting amino acids are shown as violet sticks.

Terpenes, represent a varied structural group of naturally occurring compounds, with
a wide range of pharmacological proprieties. Given their well-documented antioxidant
potency, terpenes were shown to induce significant protection against oxidative stress
environments in the case of different types of diseases, such as neurodegenerative liver,
cardiovascular and renal diseases, cancer, diabetes, and aging [70]. The docking data
for the second subset of protein targets, corelated to the antioxidant activity, showed a
tendency for the majority of compounds to potentially inhibit xanthine oxidase (3NRZ)
and lipoxygenase (1N8Q), the results being very close.

Xanthine oxidase (XO) is the enzyme responsible for the metabolisation of hypoxan-
thine to xanthine and further to uric acid. The inhibition of XO was shown to reduce vascu-
lar oxidative stress and circulating levels uric acid [71]. Docking results show that four of
the assessed compounds recorded a superior affinity compared to that of the native ligand,
hypoxanthine (−6.7 kcal/mol). These compounds include 4-(3,4-Methylenedioxyphenyl)-
2-butanone (29), (2E)-2-Hexenyl benzoate (6), (S)-(+)-Carvone (16), and 2-Bornene, with
compound 29 showing the highest calculated affinity for XO. Binding analysis reveals
the formation of 3HB (Val1011, Thr1010, Ala1079), two of which are also observed in the
case of the native ligand hypoxanthine and several other hydrophobic interactions, which
stabilize the molecule in a tight conformation (Figure 4). Previous reports showed that rich
monoterpene EOs exerted a significant antioxidant effect, assessed by a HPLC-based assay
that quantifies the activity of xanthine oxydase [72].
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Figure 4. Structure of XO (3NRZ) in complex with 4-(3,4-Methylenedioxyphenyl)-2-butanone (29). (A) the native ligand,
hypoxanthine; (B) compound 29 and the native ligand’s structures superimposed; and (C) HB interactions are depicted as
green dotted lines; interacting amino acids are shown as violet sticks.

In the case of lipoxygenase (LOX) (1N8Q), three compounds scored higher than the
native ligand. These structures include the two stereoisomers of 4-Carene (3,12) and p-
Cymene (9). The most active compound, 4-Carene interacts with the active site of LOX
through multiple hydrophobic interactions, as presented in Figure 5. LOX is, among others,
a polyunsaturated fatty acid (PUFA) metabolizing enzyme. PUFA metabolites profoundly
affect inflammatory diseases and cancer progression [32]. Therefore, antioxidant com-
pounds that act as LOX inhibitors may reduce these problems. These findings are in line
with a previous study that showed the inhibitory LOX activity of terpene-containing orange
juice extracts. The study also showed that some extracts elicited LOX inhibitory activity
comparable to the known inhibitor quercitin [73].
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4. Conclusions

The current research reveals that the volatile oil extracted from the aerial parts of R.
graveolens L. is rich in ketone compounds, mainly 2-Undecanone and 2-Nonanone. The
oil exhibits broad-spectrum antifungal and antibacterial effect along with moderate an-
tioxidants properties revealed by DPPH and β-carotene/linoleic acid bleaching assays.
However, the oil inhibited the formation of primary oxidation products is significantly
stronger (p < 0.001) than BHA between the 8th and 16th days of the incubation period.
Furthermore, molecular docking analysis showed that the RGEO could exert its antimicro-
bial activity by inhibiting the DDl enzyme. The compound with the highest affinity (29)
binds in the active site through HB interactions (Glu16, Leu95, Thr23, and Gly118), sharing
a high similarity with the native ligand. RGEO compounds may also induce an in vitro
antioxidant effect through cumulative XO and LOX inhibition. The highest in silico active
compounds showed increased affinity for XO inhibition (compound 29 through HB forma-
tion with Val1011, Thr1010, Ala1079) and LOX inhibition (compound 3) mainly through
a high number of hydrophobic interactions. Consequently, the analyzed oil could be a
new source of natural preservatives and antioxidants in various food and pharmaceutical
industry applications.
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