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Featured Application: The herbicidal and fungicidal system developed in this study can be used
by the agricultural industry for sustainable crop production by lowering the pesticide burden in
fields and promoting byproduct recycling.

Abstract: A sustainable, alternative weed control strategy is developed using salicylaldehyde (SA;
2-hydroxybenzaldehyde) as an active ingredient. SA is a natural, redox-active small molecule listed
as a Generally Recognized As Safe food additive by the European Food Safety Authority and the
United States Food and Drug Administration. The repurposing of SA determined that SA possesses
both pre- and post-emergent herbicidal, fumigant activity, where the emitted SA from the source
completely prevented the germination of plant seeds and/or the growth of the germinated plants.
As a proof-of-concept, we developed agricultural byproducts (tree nutshell particles) as SA delivery
vehicles to the soil, thus helping the growers’ sustainable byproduct recycling program, necessary
for carbon sequestration. In plate assays, SA emitted from the nutshell vehicles (0.15 to 1.6 M)
completely prevented the germination of six invasive or native weed seeds (monocots, dicots). In
Magenta vessel assays, SA emitted from the nutshell vehicles (0.8 to 1.6 M) not only prevented
the germination (pre-emergent) of Lagurus ovatus (Bunny Tails Grass) seeds but also inhibited the
growth (post-emergent) of the germinated weeds. We determined further that soil covering (soil
pasteurization) could be one of the practices to effectively deliver SA to the soil, whereby 1.6 M of SA
emitted from the nutshell vehicles prevented the germination of the L. ovatus seeds maintained in
soil trays covered with plastic tarp at 22 ◦C, while 0.8 M SA allowed partial (15%) germination of the
weed seeds. Of note, SA also possesses an intrinsic antifungal activity that overcomes the tolerance
of the stress signaling mutants of filamentous fungal pathogens (Aspergillus fumigatus, Penicillium
expansum) to the phenylpyrrole fungicide fludioxonil. Environmental degradation data available in
the public database indicate that, once released to the environment, SA will be broken down in the
air by sunlight or microorganisms and, thus, is not built up in aquatic organisms. Altogether, SA can
serve as a safe, potent pesticide (herbicidal, fungicidal) ingredient that promotes sustainable crop
production by lowering the pesticide burden in fields.

Keywords: agricultural byproducts; fludioxonil; fungal pathogens; herbicides; natural compounds;
pre-emergent; post-emergent; salicylaldehyde; soil pasteurization; weeds

1. Introduction

The timely control of weeds in crop fields is an important task for the agricultural
industry. Uncontrolled weed growth engenders diverse flora in crop fields, which not only
compete with crops for water and nutrients, especially nitrogen, but also host harmful
pests (e.g., fungi, bacteria, insects, nematodes) that damage/contaminate crops (Figure S1a).
Transmission of pests from the weeds (viz., field reservoir) can trigger pest outbreaks in the
environment. For example, a recent study on Fusarium in French maize fields determined
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that termination of herbicide usage during crop cultivation triggered unexpected increases
in mycotoxin contamination in the grains, with near maximum threshold levels for ni-
valenol [1]. The study identified that the uncontrolled weeds in the crop fields functioned
as Fusarium reservoirs/spillovers, thus highlighting the importance of adequate weed
control practices for assuring public food safety as well as food security. Therefore, the
rapid elimination of weeds via safe, cost-effective methods will positively impact the safety,
quality, and competitiveness of agricultural commodities.

However, there are emerging issues with the current uses of conventional herbicides,
including: (1) the increasing negative perceptions of the public towards conventional herbi-
cides such as glyphosate (N-(phosphonomethyl) glycine), a broad-spectrum post-emergent
herbicide [2], (2) the development of weed resistance to commercial herbicides [3], (3) the
European Union’s (EU’s) new policy in lowering maximum residue limits against paraquat
(pulmonary toxicity) and glufosinate (reprotoxicity) (European Food Safety Authority
(EFSA) [4–6]), and (4) the cancellation of the registration of toxic seed-disinfecting fungi-
cides such as Ferbam (iron tris (dimethyldithiocarbamate)) and Ziram (zinc dimethyldithio-
carbamate) (Pest Management Regulatory Agency [7]). Moreover, certain herbicides and
fungicides, such as glyphosate and azoles (tebuconazole, propiconazole), respectively,
trigger severe toxicity to non-target organisms, including bees, when they are applied in
combination [8,9]. Therefore, the development of a new, sustainable weed control system
or formulation that can be applied as safe alternatives to conventional, toxic herbicides is
continually needed.

Despite this need, the development of entirely new herbicides is a very expensive and
time-consuming process. While there has been a steady increase in the numbers of herbicide-
resistant weeds in the fields, no new herbicide modes of action have been identified or
introduced to the market in 30 years [10]. We investigate a fast pesticide screening system to
expedite the identification of new, safe pesticide alternatives or intervention strategies. One
of the approaches is drug/chemical repurposing [11], which is the repositioning of already
marketed drugs or chemicals previously developed for treating human diseases/pathogens
or as food additives to treat new types of problems such as weed invasion. The advantage
of the repurposing approach is that the mechanism of action, cellular targets, toxicity
profile, or safety of the repurposed drugs/chemicals have already been identified and
documented, thus accelerating the regulatory approval following the repurposing. We
previously identified via repurposing that salicylaldehyde (SA; 2-hydroxybenzaldehyde)
exerted a potent anti-aflatoxigenic and antifungal activity as a fumigant [12,13]. SA is
a natural, redox-active small molecule listed as a Generally Recognized As Safe agent
by the EFSA [14] and the United States Food and Drug Administration (FDA) [15] that
has been used in the drug/food industries as an intermediate for pharmaceuticals or a
food-flavoring agent.

Meanwhile, agricultural industries produce an excess of byproducts/biomass of crops
annually. For example, tree nuts (almonds, walnuts, pistachios) are the largest commod-
ity produced in California, United States [16], which results in the excess production of
agricultural byproducts such as nutshells and hulls each year. Considering tree nuts also
capture and store a huge amount of carbon over their life cycle, effective utilization of
the byproducts is one of the key components to reducing carbon emissions (thus, carbon
sequestration). Therefore, finding effective ways to manage agricultural byproducts is
of high importance [17,18]. Currently, orchard recycling, namely, byproduct incorpora-
tion back into the orchard soil, is one of the compelling alternative methods to managing
agricultural byproducts.

However, since agricultural byproducts are commonly contaminated with environ-
mental fungal and bacterial pathogens, it is critical to ensure that byproducts do not harm
soil health or integrity by passing along pathogens, especially those resistant to conven-
tional antibiotics/fungicides or producing mycotoxins, during field application (orchard
recycling). Of note, the fumigant SA emitted from the delivery vehicles not only inhibited
the production of aflatoxins B and G (AFB1, AFB2, AFG1, AFG2) by Aspergillus flavus and
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Aspergillus parasiticus (Figure S2) but also prevented the growth of fungal pathogens [12,13].
Fungal mutants lacking genes in the antioxidant system (such as superoxide dismutase
and glutathione reductase) were highly susceptible to the treatment, indicating that SA
interferes with cellular redox homeostasis in fungi [12,13]. The intrinsic anti-aflatoxigenic
and antifungal activity of SA as a fumigant are well-suited for sanitation practices in crop
fields, especially during agricultural byproduct recycling in tree nut orchards.

In this proof-of-concept investigation, the following was performed: (1) repurposing
the natural food additive SA as a pre- and post-emergent weed control agent, (2) developing
tree nutshell particles as SA delivery vehicles for use in orchards, thus integrating into
the growers’ sustainable byproduct recycling program, and (3) determining soil cover-
ing/pasteurization as one of the optimum practices to effectively deliver SA to the soil.

2. Materials and Methods
2.1. Testing the Level of Fungal Contamination on the Surfaces of Weed Seeds or Nutshell Particles

A representative bioassay to determine the level of fungal contamination on the
surfaces of weed seeds was performed by placing Schizachyrium scoparium (Little Bluestem)
or Lagurus ovatus (Bunny Tails Grass) seeds (Table 1) on potato dextrose agar plate (PDA;
100 mm × 15 mm) (Corning Inc.-Life Sciences, Tewksbury, MA, USA). A total of 10 seeds
per species were placed on each PDA (in duplicate). Petri plates were sealed with Parafilm
(Bemis Associates Inc., Shirley, MA, USA), covered with aluminum foil to maintain a
dark condition, and kept at room temperature (22 ◦C) for 3 to 5 days. The level of fungal
contamination was monitored during seed germination.

Table 1. List of fungi and weed seeds used in this study.

Fungi Characteristics References/Source

Aspergillus fumigatus AF293 Human pathogen (aspergillosis),
Reference clinical strain

The University of Texas, MD Andersen Cancer Center,
Houston, TX, USA [19]

A. fumigatus sakA∆ Human pathogen (aspergillosis), MAPK mutant
derived from AF293

The University of Texas, MD Andersen Cancer Center,
Houston, TX, USA [19]

A. fumigatus mpkC∆ Human pathogen (aspergillosis), MAPK mutant
derived from AF293

The University of Texas, MD Andersen Cancer Center,
Houston, TX, USA [20]

Aspergillus flavus 3357

Plant pathogen (aflatoxigenic),
Human pathogen (aspergillosis),

Reference aflatoxigenic strain used for
genome sequencing

National Center for Agricultural Utilization and
Research, USDA-ARS, Peoria, IL, USA

Penicillium expansum W1 Plant pathogen
(Patulin-producing, Parental strain) Washington State University, Wenatchee, WA, USA [21]

P. expansum FR2 Plant pathogen, Fludioxonil resistant mutant
derived from P. expansum W1 Washington State University, Wenatchee, WA, USA [21]

Penicillium expansum W2 Plant pathogen
(Patulin-producing, Parental strain) Washington State University, Wenatchee, WA, USA [21]

P. expansum FR3 Plant pathogen, Fludioxonil resistant mutant
derived from P. expansum W2 Washington State University, Wenatchee, WA, USA [21]

Plant Seeds Characteristics References/Source

Brassica rapa var. pekinensis (dicot) Chinese cabbage; field weed Plant nursery, Oakland, CA, USA

Centaurea solstitialis (dicot)
(Yellow starthistle) California invasive weed USDA-ARS, Albany, CA, USA

Salsola tragus (dicot)
(Russian thistle) California invasive weed USDA-ARS, Albany, CA, USA

Genista monspessulana (dicot)
(French broom) California invasive weed USDA-ARS, Albany, CA, USA

Lagurus ovatus (monocot)
(Bunny Tails Grass) Ornamental grass Plant nursery, Berkeley, CA, USA

Schizachyrium scoparium (monocot)
(Little Bluestem) USA native grass Plant nursery, Berkeley, CA, USA
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To test the level of fungal contamination on the surface of walnut shell particles
(6/10 mesh) (Kramer Industries, Inc., Piscataway, NJ, USA), a total of 0.3 g of walnut
shell particles were placed at the center of the PDA plate (100 mm × 15 mm), sealed with
Parafilm, and the level of fungal contamination in duplicate plates was monitored at 22, 28,
and 35 ◦C, respectively, for 3 to 5 days.

2.2. Optimization of Nutshell Particles as Salicylaldehyde (SA) Delivery Vehicles

Walnut shell particles (6/10 mesh) were used as the delivery vehicles for salicylalde-
hyde (SA) (Sigma Aldrich Co., St. Louis, MO, USA). We reasoned that the newly developed
system not only sanitizes raw byproducts per se after SA permeation but also functions as
SA delivery vehicles for emission for pathogen and weed control in orchards.

The surface of the PDA medium (in duplicate) was spread with A. flavus 3357 spores
(1 × 105 CFU/mL) and allowed to air dry. At the center of each plate, 0.3 g of walnut shell
particles w/o or w/ SA (1.2 M) saturation was placed; then, the plate was sealed with
Parafilm. Fungal germination/growth was monitored for up to 10 days. SA was dissolved
in dimethyl sulfoxide (DMSO; AMRESCO Co., Solon, OH, USA) before application.

2.3. Overcoming Fludioxonil Tolerance of Mitogen-Activated Protein Kinase (MAPK) Mutants of Fungi

The capability of SA to overcome fludioxonil tolerance of mitogen-activated protein
kinase (MAPK) mutants of Aspergillus fumigatus (sakA∆, mpkC∆) or Penicillium expansum
(FR2, FR3) was examined in PDA. Petri plates (in triplicate) were prepared with PDA
containing fludioxonil (50 µM) (Sigma Aldrich Co., St. Louis, MO, USA) or DMSO only
(control). SA (0.09 M for A. fumigatus; 0.12 M for P. expansum) was applied to qualitative filter
paper (Grade 1, 2.5 cm diameter) (Cytiva Co., Marlborough, MA, USA). The saturated filters
were transferred onto the lower panel of each PDA plate; then, fungal spores (1 × 103 CFU)
were spotted onto the upper panel. The Parafilm-sealed, inoculated plates were incubated
at 35 or 28 ◦C for A. fumigatus or P. expansum, respectively. SA was delivered to the target
fungi as a fumigant. Compounds were dissolved in DMSO before application. Fungal
growth (radial growth) was monitored for 3 to 5 days.

2.4. Antifungal Synergism between SA and Mild Heat (42 ◦C)

Antifungal synergism between SA and mild heat (42 ◦C) was tested against the
aflatoxin-producing A. flavus 3357. The surface of the PDA medium (in triplicate) was
spread with A. flavus spores (1 × 105 CFU/mL) and allowed to air-dry. Qualitative filter
paper (Grade 1, 2.5 cm diameter) saturated w/0.06 M SA or DMSO only (control) was
placed at the center of each plate, and the fungal germination/growth was monitored
for 3 to 5 days at 35 and 42 ◦C (triplicate), respectively. SA was dissolved in DMSO
before application.

2.5. Pre- and Post-Emergent Herbicidal Activity of SA
2.5.1. Petri Plate Assay

The pre-emergent herbicidal activity of SA was tested against L. ovatus, Brassica rapa
var. pekinensis, or other invasive weeds (S. scoparium, Centaurea solstitialis, Salsola tragus,
Genista monspessulana) (see Table 1). First, plant seeds were germinated in Petri plates
(100 mm × 15 mm), where 10 seeds per plate (in duplicate) were placed on a Murashige
and Skoog basal salt mixture medium (MS medium; 0.5×) (Sigma Aldrich Co., St. Louis,
MO, USA). SA concentrations tested were: 0.05 to 0.50 M (saturated on 0.3 g/plate walnut
shell particles) for Brassica rapa var. pekinensis (0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40,
0.45, 0.50 M) and 0.05 to 1.6 M for other weed seeds, respectively. The level of seed
germination/growth was monitored for 10 days at 22 ◦C (12 h light/12 h dark cycle).

2.5.2. Magenta Vessel Assay

The pre- and post-emergent herbicidal activity of SA was compared further in Magenta
GA-7 vessels (Magenta LLC, Lockport, IL, USA) using L. ovatus seeds (in duplicate). For
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the pre-emergent herbicidal activity of SA, 10 seeds of L. ovatus were placed per vessel
supplemented with MS medium (0.5×). The culture vessels were supplied with 0.3 g of
walnut shell particles w/o or w/ SA (0.8 or 1.6 M) saturation.

For the post-emergent herbicidal activity of SA, the L. ovatus seeds were germinated in
Magenta vessels filled with MS medium (0.5×) (in duplicate), where 10 seeds per vessel
were placed on the surface of agar (w/o walnut shell particles in any of the culture boxes).
After 5 days of seed germination, the culture vessels were supplied with 0.3 g of walnut
shell particles w/o or w/ SA (0.8 or 1.6 M) saturation, and the germinated seeds were
cultured further for up to 10 days for determining the post-emergent herbicidal activity
of SA.

2.6. SA Herbicidal Efficacy in Soil

Pre-emergent herbicidal activity of SA was tested further in soil (garden soil purchased
from a local store, Berkeley, CA, USA). Four plastic trays (22 cm × 50 cm × 15 cm) were
half-filled with soil, and forty L. ovatus seeds were sown (~1 cm deep) in two rows per tray.
SA preparation for each tray was: (1) No SA w/o nutshells (control), (2) No SA w/ nutshells
(10 g) (control), (3) SA 0.8 M w/ nutshells (10 g), and (4) SA 1.6 M w/ nutshells (10 g). To
mimic the soil pasteurization practice, trays were covered with a plastic layer and then
were incubated in the dark (22 ◦C) for seed germination. After 7 days of incubation, the
plastic covers were removed from the trays and the trays were shifted to a light (12 h)/dark
(12 h) cycle at 22 ◦C. The germination/growth of L. ovatus seeds were monitored for 4 more
days (up to 11 days from sowing to monitoring).

2.7. Statistical Analysis

Statistical analysis (Student’s t-test) was performed based on “Statistics to use” [22],
where p < 0.05 was considered significant.

3. Results and Discussion
3.1. Agricultural Byproducts (Walnut Shell Particles) as SA Delivery Vehicles: Intrinsic
Antifungal Activity of SA as a Fumigant

Initially, walnut shell particles were investigated as sustainable delivery vehicles for
SA. Since nutshells are commonly contaminated with environmental microbial pathogens
(Figure S1b), caution should be exercised during the recycling of tree nut byproducts.
For the optimization of SA delivery, SA was tested as a fumigant at 1.2 M to target the
aflatoxin-producing A. flavus 3357.

As shown in Figure 1, SA at 1.2 M, emitted from the delivery vehicles, completely pre-
vented the growth of A. flavus 3357 on the culture plate, while none of the nutshell particles
showed an indication of microbial contamination on the surface. It can be concluded that
walnut shell particles could serve as safe, effective delivery vehicles for emission of SA,
which possesses an intrinsic antifungal activity.

Tree nutshells (e.g., almond, hazelnut, pistachio, walnut shells) have been investigated
extensively for use in various industrial processes/practices. While tree nut biomass, such
as walnut shells, has been converted to solid biofuel through torrefaction [23], tree nutshells
have also been tested as economic biosorbents, such as: (1) toxic heavy metal removal
from contaminated waters by nutshells [24], (2) rhodamine B cationic dye elimination from
contaminated aqueous solutions with acrylic-acid-modified walnut shells [25], (3) amine-
functionalized walnut shells as a novel adsorbent for the removal of the pollutants PO4

3−

and NO3
−; the mechanism of the adsorption was determined as electrostatic interactions

and hydrogen bonding [26]. Although walnut shell-derived cellulose nanocrystals pos-
sess the potential as effective nanocarriers in the food and drug delivery industries [27],
studies exploring the use of walnut shells as drug/chemical delivery vehicles are currently
very scarce.
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Figure 1. (a) Diagram showing the fumigant activity of salicylaldehyde (SA) as an antifungal
agent, which enables remote delivery of SA to the target sites; (b) SA at 1.2 M emitted from the
delivery vehicles (walnut shell particles, 0.3 g/plate) completely inhibited the growth of the aflatoxin-
producing A. flavus 3357.

3.2. Overcoming Fludioxonil Tolerance of Mitogen-Activated Protein Kinase (MAPK) Mutants of
Aspergillus fumigatus (sakA∆, mpkC∆) or Penicillium expansum (FR2, FR3) by SA

Chemo-sensitization was previously developed as a new antifungal formulation strat-
egy, whereby co-application of a second compound (chemo-sensitizer; natural or synthetic)
with a commercial antifungal agent (fungicides, drugs), both at sub-inhibitory concen-
trations, greatly enhances antifungal efficacy of the treatment [28]. A chemo-sensitizer
causes the target fungi to become more susceptible to the treatment by modulating the
pathogen’s defense system, such as antioxidant or cell wall integrity systems, to the agents.
Therefore, chemo-sensitization could contribute to the development of a new antifungal
formulation, wherein the chemo-sensitizers serve as potent “adjuvants” enhancing the
antifungal efficacy of commercial fungicides or drugs co-applied.

The potential of SA as a chemo-sensitizer was investigated to overcome the fludioxonil
(phenylpyrrole fungicide) tolerance of A. fumigatus and P. expansum. Fludioxonil was
chosen as a model fungicide for SA chemo-sensitization because its current application to
the tree nut orchards has increased public concern over the toxicity fludioxonil may trigger
in humans and non-target organisms, including aquatic organisms [29,30]. Therefore, the
chemo-sensitization capacity of SA to fludioxonil will enhance the antifungal efficacy of
the treatment, lowering the doses of the fungicide required for the effective control of
fungal pathogens.

The fungicidal effect of fludioxonil is exerted via the fungal osmotic/oxidative stress
signaling system, namely, the mitogen-activated protein kinase (MAPK) pathway [31].
Fludioxonil disrupts fungal growth by triggering unusual, excessive stimulation of the
osmotic/oxidative stress signaling MAPK system, thus causing energy drain [31]. This
MAPK pathway is responsive to osmotic/oxidative cues and, hence, protects the wild-type
fungal cells from environmental osmotic/oxidative stressors. In contrast, fungi having
mutations in the MAPK system escape from fludioxonil toxicity, which results in the
development of fludioxonil tolerance in the fields [31].

The wild-type and MAPK mutants, namely, sakA∆ and mpkC∆ strains of A. fumigatus
and FR2 and FR3 of P. expansum (see Table 1), were examined in this investigation, where
SA was remotely applied (from the SA-saturated filter placed on each plate) to the target
fungi. As shown in Figure 2, the growth of wild-type P. expansum (W2) was completely
inhibited by fludioxonil (50 µM), while the MAPK mutant (FR3) exhibited tolerance to
the fungicide. However, the combined application of fludioxonil (50 µM) and SA (0.12 M)
completely prevented the germination of FR3, thus overcoming the fludioxonil tolerance
of the mutant. Similar results were also observed with other MAPK mutant strains (A.
fumigatus (sakA∆, mpkC∆), P. expansum (FR2); figure data not shown).
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In previous studies, the fumigant SA also chemo-sensitized other oxidative stress
drugs or fungicides, namely, inhibitors of complex III in the mitochondrial respiratory
chain (antimycin A, strobilurin) or itraconazole [12,13]; thus, it is speculated that SA modu-
lates antioxidant defense systems in fungi. In summary, SA could also serve as a potent
adjuvant to fludioxonil for the effective control of fungal pathogens. The intrinsic anti-
aflatoxigenic and antifungal activities of SA, especially the capability to overcome fungicide
resistance, are highly beneficial characteristics of the compound for fungal pathogen control
in the fields.

3.3. Pre- and Post-Emergent Herbicidal Activity of SA

It was determined further whether the fumigant SA could be repurposed as a potent
herbicidal reagent. If repurposed successfully, the herbicidal potential of SA will lower the
pesticide burden in crop fields by reducing the frequency of both fungicide and herbicide
applications. Adoption of this strategy will, therefore, contribute to the Integrated Pest
Management (IPM) program in agriculture.

3.3.1. Pre-Emergent Herbicidal Activity of SA

Initially, the pre-emergent herbicidal activity of SA was investigated against Brassica
rapa var. pekinensis seeds on PDA (Petri plates, 100 mm × 15 mm). Brassica spp. is listed
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as a restricted or prohibited noxious weed seed in the states of Arizona and Michigan,
respectively, in the United States [32]. Brassica spp. may become weedy or invasive by
producing allelopathic chemicals, which prevent the germination of native plants or plants
in cultivated fields. Therefore, if not adequately managed, Brassica spp. could displace
desirable vegetation [32]. Walnut shell particles saturated with SA (concentration: 0.05, 0.10,
0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50 M) were placed on the center of PDA (duplicate
plates), and seed germination/growth was monitored for 10 days at 22 ◦C (12 h light/12 h
dark cycle). SA emitted from the nutshell vehicles completely inhibited the germination of
Brassica seeds at as low as 0.15 M of SA (Table 2).

Table 2. Kinetics of pre-emergent herbicidal activity of SA tested against Brassica rapa var. pekinensis
(total 10 seeds placed/plate) determined in duplicated plates. SA delivery vehicles: walnut shell
particles 0.3 g/plate.

SA (M) # of Seeds
Germinated

# of Seeds
Contaminated w/ Fungi

Level of Nutshell
Contamination w/ Fungi 1

0.00 10, 10 2, 1 +++, +++
0.05 4, 3 1, 0 +++, ++
0.10 1, 0 1, 0 +, -
0.15 0, 0 2, 0 +, +
0.20 0, 0 0, 0 +, -
0.25 0, 0 1, 0 +, -
0.30 0, 0 0, 0 -, -
0.35 0, 0 0, 0 -, -
0.40 0, 0 0, 0 -, -
0.45 0, 0 0, 0 -, -
0.50 0, 0 0, 0 -, -

1 Level of nutshell particle contamination: +++, High; ++, Medium; +, Low; -, No contamination.

Plant seeds are also commonly contaminated with environmental fungi and other
microbes [33,34]. However, the germination/growth of microbial contaminants associated
with the surfaces of Brassica seeds and nutshell particles was completely prevented w/ SA
at or above 0.3 M (Table 2) (Figure 3; representative bioassay w/ 0.0 and 0.3 M of SA).
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Similar assays were performed on different weed seeds, including Centaurea solstitialis,
L. ovatus, Salsola tragus, Genista monspessulana, and S. scoparium (see Table 1 for seed charac-
teristics). It was determined that the germination of the seeds as well as that of the fungi
associated with the surface of test seeds, was completely prevented at 0.25 to 1.6 M of SA,
depending on the types of seeds investigated (Table 3).

Table 3. Pre-emergent herbicidal activity of SA tested against invasive/native weed seeds. Concen-
trations shown are the minimum inhibitory concentration (MIC) preventing seed germination.

Plants SA MIC (M)

S. scoparium (Little Bluestem) 0.25
S. tragus (Russian thistle) 0.40

G. monspessulana (French broom) 0.40
L. ovatus (Bunny Tails Grass) 0.80

C. solstitialis (Yellow starthistle) 1.60

Average 0.60 ± 0.54 (p = 0.021) 1

1 Student’s t-test for paired data (MICs (M) of SA from six plants, including Brassica rapa var. pekinensis), vs. no
treatment control (SA = 0 M).

The pre-emergent herbicidal activity of SA was tested further in Magenta vessels,
where 10 seeds of L. ovatus were placed per vessel supplemented with MS (0.5×). As
shown in Figure 4, the germination of L. ovatus seeds exposed to 0.8 to 1.6 M SA vapor was
completely inhibited, while those in the control boxes (w/ or w/o walnut shell particles)
still germinated.
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3.3.2. Post-Emergent Herbicidal Activity of SA

The post-emergent herbicidal activity of SA was tested in L. ovatus according to the
modified protocol described above. Initially, 10 L. ovatus seeds were germinated in Magenta
vessels without exposure to SA. After 5 days of seed germination/growth, the germinated
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weeds (~3 cm of stem length) were provided with 0.3 g nutshell vehicles (w/ or w/o SA, 0.8
to 1.6 M) and were cultivated further for another 10 days. The level of the inhibition of weed
growth was evaluated by comparing it to that of the untreated (no SA) weeds. As shown
in Figure 5, the emitted SA completely prevented the growth of the germinated weeds
at 0.8 to 1.6 M (no further growth, exhibiting wilting), while those without SA (w/ 0.3 g
nutshell vehicles) continued to grow further. It can be concluded that SA possesses both pre-
and post-emergent herbicidal activity. Interestingly, the fact that SA possessed herbicidal
activity against both monocot and dicot plants, as shown above, indicates that SA can be
used for broad-spectrum weed control.
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3.4. SA Herbicidal Efficacy during Soil Pasteurization

Soil pasteurization (solarization) is a method that uses sunlight to control pests (weeds,
microbial pathogens, insects) in crop fields. Soil pasteurization requires: (a) keeping a
clear plastic cover in place for at least 4 weeks in the hottest part of the summer and
(b) providing enough water to generate steam every day, which effectively kills weed
seeds [35,36]. However, although the temperature of the top layers of the solarized soil
can reach 60 ◦C (140 ◦F) or higher with sunlight, the heat efficiency of soil pasteurization
is practically dependent upon the geographic location or weather condition (namely, the
amount/days of solar radiation) [36].

Considering that SA exerted potent fumigant activity, we reasoned that soil covered
with a plastic tarp (during soil pasteurization) could improve the herbicidal (also fungicidal)
efficacy of SA at a much lower temperature, such as room temperature, during the anti-pest
treatment. Therefore, the efficacy of SA was tested by treating weed seeds (L. ovatus) with
SA in soil trays, which were covered with a plastic tarp and maintained at 22 ◦C, thus
mimicking the treatment under colder or cloudy geographic/weather conditions.

As shown in Figure 6, 1.6 M of SA emitted from the nutshell vehicles completely
prevented the germination of the weed seeds, while 0.8 M SA allowed partial germination
(6 seeds out of a total of 40 seeds per tray) of the test seeds. Control trays (both w/ or w/o
nutshell vehicles; w/o SA) exhibited normal seed germination. It can be concluded that SA
could serve as a potent herbicidal agent as a fumigant, especially during soil pasteurization
(temperature: 22 ◦C or above), which, therefore, could effectively complement current
soil pasteurization (solarization) practices requiring high temperature in the fields. Of
note, the soil testing required a higher concentration of SA (1.6 M) than that tested in Petri
plate/Magenta vessels (0.3 to 0.8 M) to achieve complete inhibition of weed germination.
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In this proof-of-concept study, we have developed a potent anti-pest system, which
used the fumigant compound SA. We repurposed the food additive SA as a pre- and
post-emergent weed control agent and developed tree nutshell particles as sustainable
SA delivery vehicles for use in orchards. The binary function of SA, namely, the potent
herbicidal and fungicidal activity of SA, could lower the pesticide burden in crop fields
by reducing the doses and frequency of herbicide and fungicide applications required for
effective weed/fungal pathogen control.

SA is a natural constituent identified in many plant species [37]. According to its
vapor pressure value (5.93 × 10−1 mm Hg, 25 ◦C), SA exists mainly as a vapor in the
atmosphere; thus, when applied in the fields, SA has high mobility in soil, which then
volatilizes from dry soil [38]. Worthy of note, SA is a small molecule lacking “functional
groups” that hydrolyze under environmental conditions (between pH 5 to 9) [38]. Hence,
hydrolysis of volatilized SA is not supposed to occur in the environment; instead, safe
biodegradation and/or photolysis by sunlight are considered an important environmental
fate of SA, thus warranting environmental safety [38]. Moreover, the fumigant characteris-
tics of SA have been determined to be “specific” to this molecule compared to other SA
derivatives, enabling the effective application of SA, especially during soil pasteurization;
other derivatives of SA from the prior study could not be applied as fumigants [39].

While SA modulates antioxidant defense systems in fungi [12,13], the mechanism of
herbicidal action of SA has not been investigated thus far. It is speculated that, in nature, the
allelopathic activity of SA (namely, SA released from plants into the environment function
as inhibitors towards the germination or growth of the neighboring plants) might be one
mechanism of herbicidal action. Precise determination of the SA mechanism of action
(cellular targets) as a herbicide warrants future investigation.

The derivatives of SA or salicylic acid have previously been developed as herbicides
and bioregulators [40]. It was speculated that SA/salicylic acid derivatives might affect
plant metabolism or inhibit vegetative and/or generative plant growth, but the mechanisms
of herbicidal action of the derivatives were not comprehensively investigated or discussed
in the study [40].

Meanwhile, a fungal pathogen of Elytrigia repens (couch grass; perennial weed) As-
cochyta agropyrina var. nana has been shown to produce natural toxins [41]. One of the
toxins characterized is agropyrenol, a substituted SA that causes phytotoxicity in several
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weeds, including Mercurialis annua (French mercury), Chenopodium album (goose foot), and
Setaria viridis (wild foxtail millet), resulting in necrotic lesions in plants [41]. Addition-
ally, SA is one of the compounds identified in the cattail species Typha domingensis [42].
The aqueous extracts of cattail plants, which also contain two phenolic agents (namely,
2-chlorophenol, SA), inhibited the growth of the watermoss Salvinia, suggesting SA could
function as one of the allelopathic substances released from T. domingensis [42]. Recently,
the sugar crop “sugar beet” has been determined to be vulnerable to continuous cropping,
where allelopathy was one of the crucial factors triggering cropping disorder [43]. The
transcriptomics and metabolomics study identified that SA was one of the allelochemicals
continuously accumulated in sugar beet root exudates with continuous cropping; it func-
tioned as an autotoxic substance [43]. It was hypothesized in the study that continuous
cropping changes the metabolome of sugar beet, which interferes further with the diversity
of the rhizosphere microbial community, thus negatively affecting sugar beet growth and
quality [43]. However, none of these studies explored the mechanisms of the phytotoxic
action of SA or its structural derivatives.

In contrast, SA and its structural derivatives have recently been shown to possess
metal chelating activities [44–46]. Of note, certain SA derivatives, such as SA isonicotinoyl
hydrazone, exhibited pro-oxidant activity as an iron-chelator, thus increasing the levels of
reactive oxygen species (ROS) and modulating the anti-/pro-oxidant balance [44]. It was
surmised that, in addition to the intrinsic redox-active nature of SA (see above) [47,48], the
pro-oxidant activity exerted by SA or SA derivatives (as metal-chelators) would contribute
to the phytotoxicity in the treated plants, thus resulting in disruption of normal germina-
tion/growth of weeds. This pro-oxidant effect, along with the modulation of the cellular
antioxidant system, as determined in other organisms [12,13], would disrupt the integrity of
normal cellular components (such as cellular membranes, lipids, and proteins). Elucidation
of the precise mechanisms of SA herbicidal action warrants future in-depth investigation.

Nonetheless, compared to prior research, the SA fumigation developed in our in-
vestigation provides several advantages over the state-of-the-art, which include: (i) SA
is a safe, natural constituent identified in many plant species, thus maintaining an intact
structure (non-synthetic); (ii) compared to the derivatives of SA developed in prior re-
search, SA lacks functional groups that hydrolyze under environmental conditions; hence,
SA hydrolysis is not supposed to occur in the environment, warranting environmental
safety (FDA-proven safety); (iii) binary functions (herbicidal and antifungal activity) of
SA as a fumigant, the unique characteristics of SA, greatly lowers the pesticide burden in
orchards, which also enables the sanitation of crop byproducts (SA delivery vehicles); and
(iv) the adjuvant capacity of SA towards commercial fungicide fludioxonil overcomes the
fludioxonil tolerance of fungi. Notably, in a preliminary bioassay, the fungicidal activity of
SA was also greatly enhanced at an elevated temperature (42 ◦C) (Figure S3), indicating
that the antifungal efficacy of SA would be heightened in the solarized soil surface, which
can reach to 60 ◦C or higher with sunlight. Overall, once adopted, the SA fumigant system
as a natural herbicide/fungicide will promote the stakeholders’ sustainable agriculture.

In the United States, California leads the nation in the production of agricultural com-
modities. Tree nuts (almonds, walnuts, and pistachios) are the largest commodity produced
in California, representing over USD 9 billion in sales in 2018 [16]. However, there are
serious food safety challenges that must be addressed; the tree nuts are commonly contami-
nated by aflatoxin-producing fungi (A. flavus, A. parasiticus) and are subsequently suscepti-
ble to aflatoxin contamination. Aflatoxins are hepato-/nephrotoxic carcinogens/mutagens
deleterious to human and poultry health. Since aflatoxin is a serious threat to food safety
and food/crop marketability, with many importing countries, including the EU, imposing
limits as low as 4 ppb [49], new intervention strategies to reduce the incidence of this food
safety challenge should be developed. As mentioned above, weeds are the field reservoir of
important pests, including mycotoxigenic fungi [1]. In California, the eradication of weeds,
such as the widespread alkaliweed (Cressa truxilensis), along with other invasive weeds,
is one of the prominent tasks for the tree nut industry [50]; around 9% of tree nut culture
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costs are currently spent on weed control. Hence, the SA herbicidal system can contribute
to the cost-effective weed management endeavor in the orchards.

In conclusion, the SA anti-pest system developed in this study could serve as a
sustainable, complementary/alternative way to conventional weed and fungal control
measures that is applicable to the agricultural industry, including the tree nut industry.
The developed method will reduce costs, abate resistance, and alleviate the negative side
effects associated with current anti-pest practices. The identification of more practical or
improved usage of SA, such as the controlled release of SA to the target sites, as well as
translation of the information presented in this study into agricultural practices, warrants
future in-depth investigation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12083749/s1, Figure S1: (a) Weed seed contamination with
environmental fungi tested on potato dextrose agar (PDA) plates (28 ◦C). Fungal growth was ob-
served during germination of tested seeds (Lagurus ovatus (Bunny tail grass), Schizachyrium scoparium
(Little Bluestem)) (10 seeds/plate). Top, top view of test plates; Bottom, bottom view of test plates;
(b) Walnut shell contamination with environmental fungi tested on PDA at different temperatures (22,
28, and 35 ◦C; duplicate plates per each temperature) (walnut shell particles: 0.3 g/plate), Figure S2:
Inhibition of the production of aflatoxins (aflatoxin B (AFB) and aflatoxin G (AFG)) by A. flavus and
A. parasiticus via the treatment of SA (adapted from [12]), Figure S3: Enhanced fungicidal activity of
SA at an elevated temperature (42 ◦C). Fungi: A. flavus 3357.
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