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Abstract: The lichenized green microalga Trebouxia lynnae Barreno has been recently described and
is considered a model organism for studying lichen chlorobionts. Its cellular ultrastructure has
already been studied in detail by light, electron, and confocal microscopy, and its nuclear, chloroplast
and mitochondrial genomes have been sequenced and annotated. Here, we investigated in detail
the ultrastructure of in vitro grown cultures of T. lynnae observed by Low Temperature Scanning
Electron Microscopy (LTSEM) applying a protocol with minimum intervention over the biological
samples. This methodology allowed for the discovery of ultrastructural features previously unseen
in Trebouxiophyceae microalgae. In addition, original Transmission Electron Microscopy (TEM) images
of T. lynnae were reinterpreted based on the new information provided by LTSEM. The nucleolar
vacuole, dictyosomes, and endoplasmic reticulum were investigated and reported for the first time in
T. lynnae and most likely in other Trebouxia lineages.

Keywords: axenic cultures; low temperature scanning electron microscopy; phycobiont; transmission
electron microscopy

1. Introduction

Lichens are self-sustaining microecosystems formed by the interaction of a major
ascomycetous or basidiomycetous fungus (the mycobiont), photosynthetic microorgan-
isms (the photobionts) comprising one or more populations of microalgae (phycobionts)
and/or cyanobacteria (cyanobionts), and other microorganisms such as bacteria and other
microfungi (filamentous and yeasts) [1]. In the lichen, the mycobiont builds a framework
of hyphae enwrapping the photobionts cells, housing all the microorganisms that partic-
ipate in the symbiosis. The genus Trebouxia Puymaly (Trebouxiaceae) comprises coccoid,
colony-forming, aero-terrestrial green microalgae [2–5]. Trebouxia species are among the
most widespread phycobionts, associating with a variety of ascomycetous mycobionts [6,7].
Among them, Trebouxia lynnae Barreno has emerged as the Trebouxia research model because
its ultrastructure has been largely analysed and its cells have been described in detail by dif-
ferent approaches [8,9]. Furthermore, its nuclear, chloroplast, and mitochondrial genomes
have been sequenced and annotated, and more physiology information is gathered every
year [8–15].

The phycobiont-mycobiont association and their reciprocal selectivity are complex
subjects. There are plenty of examples of phycobionts switching in relation to environmental
and geographic variables. In particular, a diversity of Trebouxia phycobionts within different
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lichen species has been reported across niche gradients [16–21]. In addition, the intrathalline
coexistence of various Trebouxia species-level lineages has been frequently reported, and
it has been suggested that the thallus morphology and growth stage affect the diversity
of the associated phycobionts [12,17,22–28]. Inter- and intrathalline phycobiont diversity
has been mainly assessed by molecular techniques [19,21,22,24–29]. The lack of additional
evidence for phycobiont diversity gives rise to some questions: are we underestimating
the phycobiont diversity by skipping photobionts with abundances below the detection
threshold? Are there phycobionts undetectable by the molecular approaches due to the
primers efficiency? Are less abundant phycobionts real symbionts, or rather residual cells
of a former phycobiont? Are estimated phycobiont abundances reliable? Supplementing
molecular analysis with taxonomic identification of microalgae inside the thalli by means
of microscopy is highly desirable. To this end, it is essential to analyse the morphology and
ultrastructure of putative species-level lineages and identify taxonomic relevant traits. In
order to reliably identify phycobionts, it is important to correlate the in vitro traits with
those exhibited in the symbiotic state within the lichen thallus [30].

Recently, the diversity and the evolutionary relationships of Trebouxia species-level
lineages were reappraised by Muggia et al. [7], who assembled DNA sequence data from
over 1600 specimens and inferred a phylogeny from multi-locus sequence data. The
multi-locus phylogenetic reconstructions confirmed four major clades within Trebouxia. In
Bordenave et al. [9], 20 axenically grown species-level lineages of Trebouxia belonging to
the four major clades were characterized in their morphology and ultrastructure by Con-
focal Laser Scanning Microscopy (CLSM) and Transmission Electron Microscopy (TEM).
Pyrenoid ultrastructure and chloroplast morphology were presented as reliable taxonomic
recognition tools in the genus Trebouxia. However, it is possible to further distinguish
species-level lineages of Trebouxia by including additional traits by means of new mi-
croscopy approaches.

High-end Scanning Electron Microscopy imaging of fully hydrated biological samples
can be attained by cryo-fixing them freshly and maintaining the frozen condition in the
SEM [31]. Thus, Low Temperature Scanning Electron Microscopy (LTSEM) arises as a
powerful tool to obtain biological images with minimum intervention over the sample.
LTSEM frequently includes additional freeze-fracture and freeze-etching steps, in which
samples are mechanically sectioned and superficial water is removed by sublimation to
reveal the underlying structures. For the past few decades, microalgae samples have been
frozen and cryo-fractured to observe and analyse their morphology and ultrastructure.
Detailed ultrastructure of microalgae [32,33], and in particular green microalgae [34–39], has
been explored by LTSEM, yielding outstanding results. LTSEM of axenically cultured lichen
phycobionts for cell ultrastructure has been performed only in Asterochloris glomerata [40].
Although LTSEM of in vitro cultured Trebouxia phycobionts has also been performed,
only the cell morphology, cell wall, or extracellular substances have been analysed so
far [8,13,41,42].

In order to find new morphological and ultrastructural traits with the potential to be
added to the taxonomic discrimination of Trebouxia species in the future, here we explore the
detailed ultrastructure of T. lynnae as observed by LTSEM. In addition, we reinterpreted the
original TEM images of T. lynnae, as well as those of other Trebouxia species-level lineages,
based on the new information provided by LTSEM.

2. Materials and Methods
2.1. Microalgae Strains and Growth Conditions

The analyses were performed on one strain of the lichen phycobiont Trebouxia lynnae.
This strain was originally isolated from a thallus of Ramalina farinacea collected from
the Sierra del Toro (39◦57′ 32.34′′ N–0◦46′ 35.51′′ W, Castellón, España). This microalga
was both propagated several years by in vitro cultures and deposited and maintained as
living culture at the “Symbiotic Algal collection from the University of Valencia” (ASUV,
https://www.asuvalgae.com, accessed on 25 January 2023), and numbered as ASUV 44.

https://www.asuvalgae.com
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Microalgae strains maintained in the ASUV collection have been molecularly identified
and are routinely monitored by means of ITS amplification and sequencing as described
in Bordenave et al. [9]. T. aggregata, T. anticipata T. arboricola, T. asymmetrica, T. australis,
T. corticola, T. crenulata, T. crespoana, T. cretacea, T. decolorans, T. flava, T. gigantea, T. impressa,
T. incrustata, T. jamesii, T. maresiae, T. potteri, T. showmanii, and T. simplex were used for TEM
analyses. Additional information about Trebouxia strains is available in the supplementary
table (Supplementary Table S1). Microalgae strains were maintained axenically in Petri
dishes on solid Bold’s Basal Medium (BBM) [43,44] for 21 days in a growth chamber at
20 ◦C under a 12:12 h light:dark cycle (25 µmol photons m−2 s−1). At 21 days, entire colonies
were scraped from the substrate, resuspended in 3N liquid BBM solution (supplemented
with glucose 20 g l−1 and casein 10 g l−1), counted in Neubauer’s chamber, and adjusted to
5.107 cells/µL. 50 µL of filtered cell suspension were applied directly over solid 3N BBM or
over acetate discs deposited on the same medium. The Petri dishes were incubated in a
growth chamber at 20 ◦C under a 12:12 h light:dark cycle (25 µmol photons m−2 s−1).

2.2. Low Temperature Scanning Electron Microscopy (LTSEM)

For LTSEM, microalgal colonies plus the underlying agar medium or acetate discs
were cut into squares of around 2 × 2 mm from the centre of the colony and attached
to a cryo-holder using colloidal graphite. Samples were plunge frozen in LN2 slush
and transferred with a transfer rod module into the cryo-preparation system (PP3010T,
Quorum Technologies, Sussex, UK). Samples were mechanically freeze-fractured and then
freeze-etched by sublimation for 15 to 25 min at −90 ◦C. The time of sublimation was
adjusted to the estimated water content of the sample and the type of structures aimed at
imaging. A thin layer of platinum was sputtered onto the specimens for 10 s and afterward
transferred into a Field Emission Scanning Electron Microscope (FESEM ZEISS Ultra-55,
Carl ZEISS SMT, Oberkochen, Germany). Images were recorded at an accelerating voltage
of 1.5 kV. The images are photographic negatives; hence, protuberant elements of the
fractured/etched surface are most heavily coated with platinum and appear white.

2.3. Transmission Electron Microscopy (TEM)

For TEM analyses, a portion of the sample of the microalgal colony of about 2 × 2 mm
was covered with tempered low melting point agarose at 1%, fixed in Karnovsky fixative
(with para-formaldehyde 2.5% and glutaraldehyde 0.5%) for 12 h at 4 ◦C, washed three
times for 15 min with 0.01 M PBS (pH 7.4), and postfixed with 2% OsO4 in 0.01 M PBS
(pH 7.4) for 2 h at room temperature. After washing in 0.01 M PBS, pH 7.4, the samples were
dehydrated at room temperature in a graded series of ethanol, starting at 50% and increasing
to 70%, 95%, and 100% for at least 20–30 min at each step. The fixed and dehydrated samples
were embedded in LR-White resin. Finally, increasing ethanol and resin infiltrations were
carried out (two parts 90% ethanol plus one part resin, one part 90% ethanol plus two parts
resin, and one part 100% ethanol plus two parts resin) until attaining 100% LR-White resin.
Samples were then incubated at 60 ◦C for the resin to polymerizate. Ultra-thin sections,
60–90 nm thick, were cut with a UC7 Leica Ultramicrotome (Leica-Biosystems, Wetzlar,
Germany) endowed with a diamond knife (Diatome ultra 458, Diatome, Switzerland),
mounted on 100 mesh copper grids, and then stained with 10% uranyl acetate and Reynolds
solution (0.1% lead citrate) using the ‘Synaptek Grid-Stick Kit’. Sections were observed at
80 kV under a JEOL JEM-1010 microscope (Jeol, Peabody, MA, USA). Images were obtained
using an Olympus MegaView III camera and processed with Fiji distribution of ImageJ [45].

3. Results and Discussion
3.1. General Aspects of Axenically Cultured Trebouxia lynnae LTSEM for Cell
Ultrastructure Analysis

Most LTSEM protocols for microalgae were optimized for aquatic microalgae, which
are axenically grown in liquid media [33–39]. Even when used with algae grown over solid
media, the structure of the algal colony was not preserved [40]. Trebouxia microalgae, when
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grown over solid media, proliferate in thick colonies around 1 mm tall [7,46]. Here, we used
square-shaped samples of 2 × 2 mm, including the underlying agar, in order to maintain
the original colony structure of the region to be analysed (Figure 1A). As a result, the surface
of the samples is very irregular due to the differential cell growth (Figure 1B). Furthermore,
it is possible to apply this approach to analyse different regions of the colony by selecting
samples according to their distance from the center of the colony (Figure 1A). Acetate discs
over the solid media were also used. In this case, the colony and the underlying disc were
sectioned without taking the medium below.
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Figure 1. (A) Sample preparation before attaching to the cryo-holder: square-shaped samples of
2 × 2 mm of axenically cultured Trebouxia lynnae were cut, including the underlaying agar, in order to
maintain the colony structure of the region to be analysed. (B) LTSEM of T. lynnae: general view of
the cross-section of the colony, displaying the crests (c) and valleys (v) and the underlaying agar (a).
Scale bar: (A) 100 µm, (B) 10 mm.

So far, no typical biological sample preparation procedure for LTSEM is available.
When freeze-fracture coupled with freeze-etching is used for investigating the cell contents,
the procedure can be divided into four main steps: first, the rapid freezing of the sample,
second, the mechanical fracture, third, freeze etching by sublimation, and fourth, covering
the surface with a spout to give contrast.

The rapid freezing of the sample has many alternatives [47], but plunging the sam-
ple in LN2 slush yielded good results for Trebouxia, and minimum to no water crystal
formation was observed. The size of the sample was good for the following mechani-
cal freeze-fracturing step, as just a small amount of debris remained over the fractured
sample. On the contrary, freeze-etching by sublimation was unsuccessful under the most
common conditions for microalgae LTSEM. Previous works with microalgae reported
times of sublimation of 2 min [32,33,39,40] and 5 min [34,35,37]. Here, times as high as
20 min were needed to reveal the Trebouxia cell ultrastructure. Times of sublimation shorter
than 15 min resulted in low contrast, the presence of ice, and an orange peel texture
(Supplementary Figure S1). The high water content of the underlying agar was ruled out
to be the cause of the high time of sublimation required, as the samples grown over the
acetate disc also needed at least 15 min of sublimation. Lichen and its phycobionts are
extremely tolerant to dehydration [42,48–53]. Recently, Bruñas et al. [54] obtained sur-
prising results applying NIRS aquaphotomics to analyse Ramalina farinacea phycobionts.
They demonstrated that T. lynnae allocates water molecules to high-bonding conformations.
High-bounding waters require significantly higher times of sublimation than other con-
formations. Accumulation of cytoplasmic glycerol/polyol has been reported in Trebouxia.
The sugar alcohols form hydration shells, which reduce water activity and impede water
sublimation. Another explanation that cannot be discarded is that highly hydrated extra-
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cellular substances that have an impact on the sublimation times may be present when
working with sections of the thick colonies. Casano et al. [13] observed and analysed these
extracellular substances both by LTSEM and biochemically, reporting the higher values of
extracellular substances in T. lynnae among the assayed strains.

As expected from previous reports [9], no differences were observed between the grow-
ing conditions (solid medium vs. acetate discs laid over the solid medium, Supplementary
Figure S2).

Within the T. lynnae colony, different types of cells were recognized both by LTSEM and
by TEM. Young cells (6 ± 2 µm; Figure 2A,B) presented shallowly lobed chloroplasts dis-
playing a low number of lobes and a single pyrenoid. Mature vegetative cells (10 ± 1 µm;
Figure 2C,D) had shallowly lobed chloroplasts and a single impressa-type pyrenoid [9].
In both young and mature vegetative cells, a high number of vesicles was observed, and
a moderate number of mitochondria could be distinguished, although they were incon-
spicuous. Mature vegetative cells displayed a big nucleus with a clearly distinguishable
nucleolus.
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Figure 2. LTSEM (A,C) and TEM (B,D) of Trebouxia lynnae vegetative cells. (A,B) Young vegetative
cells. (C,D) Mature vegetative cell. Chloroplast (c), pyrenoid (p), vesicles (v), starch grains (s),
mitochondria (m), and nucleus (n) are indicated with letters. Scale bars: (A–D) 1 µm.

Two types of sporangia were observed (Figures 3 and 4). One in which spores with
cell walls are symmetrically arranged (11–13 µm; Figure 3), presumably autosporangia (i.e.,
mitotic sporangia carrying cell-walled spores that resemble the morphology of vegetative
cells). The chloroplast of the autospores was of the shallowly lobed type [9], with a low
number of lobes (Figure 3A,B). The pyrenoid was recognizable as impressa-type (Figure 3A).
Before opening, the spaces between cells are filled with an aqueous substance (Figure 3A,B)
that is missing when the envelope is opened (Figure 3C). The autosporangia envelope was
frequently persistent, even at the maturity of the daughter cells (Figure 3D,E).
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Figure 3. LTSEM (A,C,D,F) and TEM (B,E) of Trebouxia lynnae autosporangia. (A,B) Closed au-
tosporangia. (C) Open autosporangia. (D,E,F) Vegetative cells inside the persistent autosporangium
envelope. Chloroplast (c), pyrenoid (p), vesicles (v), starch grains (s), mitochondria (m), and nu-
cleus (n) are indicated with letters. A persistent autosporangium envelope is indicated by a white
arrowhead. Scale bars: (A–F) 2 µm.

The other sporangia contained naked spores that were asymmetrically arranged
(Figure 4), presumably zoosporangia (i.e., sporangia carrying naked flagellated spores).
Flagella were observed both by LTSEM (Figure 4A) and by TEM inside the zoosporangia
(Figure 4B).
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Figure 4. LTSEM (A,C,E) and TEM (B,D,F) of Trebouxia lynnae zoosporangia, zoospores, and senescent
cells. (A,B) Zoosporangia. (C,D) Zoospores. (E,F) Senescent cells. Chloroplast (c), vesicles (v), starch
grains (s), and plasma membrane (pm) are indicated with letters. Flagella are indicated by a white
arrowhead. Scale bars: (A,B) 2 µm, (C–F) 1 µm.

Flagellated cells (around 7 µm; Figure 4), presumably zoospores (i.e., naked flagellated
spores), are fragile and usually suffer from cytolysis. Zoospores were observed by LTSEM
(Figure 4C) and TEM (Figure 4D), always showing the complete absence of the cell wall.
Chloroplasts were shallowly lobed with abundant starch grains (Figure 4D).
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Finally, cells bearing a parietal chloroplast with a central cavity, presumably senescent
cells, were observed both in LTSEM (Figure 4E) and TEM (Figure 4F).

3.2. Chloroplast and Pyrenoid

T. lynnae presents a single massive, axial chloroplast with a shallowly lobed mor-
phology, as reported previously (Figures 2 and 5) [8,9]. The surface of the chloroplast
depicted shallow lobes to which the thylakoids project from the centre of the chloroplast
(Figure 5A,B,E). A chloroplast pocket is always present where the nucleus is located, tightly
embraced by the chloroplast (Figure 5C,D). Each chloroplast usually displays a single
pyrenoid, although multiple pyrenoids per cell were occasionally observed. T. lynnae
pyrenoids belong to the impressa-type, as previously reported [8,9]. These pyrenoids
are characterized by radial, straight, unbranched tubules penetrating the pyrenoid ma-
trix, appearing either long or short depending on the orientation of the section, with
the pyrenoid matrix thicker than the tubules. LTSEM allowed to clearly distinguish the
thylakoid lamellae from which the pyrenotubules originates (Figure 5F).
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Figure 5. LTSEM (A,C,E,F) and TEM (B,D) of Trebouxia lynnae chloroplasts. (A,B) Chloroplast shallow
lobes. (C,D) Chloroplast pockets. (E) Chloroplast lobule. (F) Pyrenoid. Chloroplast (c), chloroplast
envelope (ce), nucleus (n), starch granules (s), vesicles (v), and pyrenoid (p) are indicated with letters.
Thylakoid lamellae transitioning into pyrenotubules are indicated by a white arrowhead. Scale bars:
(A–F) 1 µm.

3.3. Nucleus

Vegetative cells of T. lynnae present a round nucleus, occupying a significant frac-
tion of the cell volume (Figure 2C,D). The nucleus is always located in the chloroplast
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pocket (Figures 5C,D and 6A,B). When the freeze-fracture revealed the nuclear enve-
lope surface, nuclear pores were distinguishable with a regular distribution (Figure 6A).
Material deposited in the nuclear pores was observed, presumably proteins or protein
complexes translocating through the nuclear pores (Figure 6A). When the nucleus was sec-
tioned by the freeze-fracture, both membranes of the nuclear envelope could be observed
(Figure 6C–E). The nuclei of vegetative cells usually display a nucleolus (Figures 2C,D,
5C,D and 6C–F). LTSEM revealed that the nucleolus of T. lynnae mature vegetative cells
frequently possessed a central nucleolar vacuole (Figure 6C,E). Although nucleolar vac-
uole function is still discussed [55], it is thought that in plants it indicates a highly active
nucleus [56]. Being aware of this feature of LTSEM, it was possible to identify the nucleolar
vacuole in samples of T. lynnae observed with TEM (Figure 6F). Furthermore, the nucleo-
lar vacuole was observed in cells of 61% of the Trebouxia species-level lineages analysed
(Supplementary Figure S3).
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Figure 6. LTSEM (A–E) and TEM (F) of Trebouxia lynnae nuclei. (A) Surface of a whole nucleus.
(B) Nucleus inside the chloroplast pocket. (C) Double membrane of the nuclear envelope of a
fractured nucleus. (D) Fractured nucleus with a whole nucleolus. (E,F) Nucleus with a fractured
(sectioned) nucleolus with a nucleolar vacuole. Nucleus (n), nucleolus (nc), and nuclear envelope (e)
are indicated with letters. The nucleolar vacuole is indicated by a white arrowhead. Material that
accumulates at the surface of the nuclear pore is indicated by a black arrowhead. Inner and outer
membranes of the nuclear envelope are indicated by white arrows. Scale bars: (A–F) 1 µm.
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The observation of the nuclear pores and both membranes of the nuclear envelope is
facilitated by LTSEM, whereas it is difficult, if not impossible, to achieve by standard TEM
procedures. In addition, LTSEM allowed the observation of the nucleolar vacuole and its
identification in TEM images of T. lynnae and other Trebouxia species, making this one of
the few reports of nucleolar vacuoles in microalgae [57].

3.4. Cytosol and Cytosolic Organelles

The cytosol of T. lynnae was revealed to be a highly crowded compartment, with a
large amount of globular structures populating it. There were also a variety of membranous
structures, vesicles, and droplets, evident either by LTSEM or TEM observation (Figure 7).
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Figure 7. LTSEM (A,C,E) and TEM (B,D,F) of Trebouxia lynnae mitochondria and secretion system.
(A,B) Mitochondria. (C,D) Fenestrated endoplasmic reticulum. (E,F) Dictyosome. Mitochondria
(m), endoplasmic reticulum (er), secretion space (ss), and chloroplast (c) are indicated with letters.
The dictyosome is indicated by a black arrowhead. Endoplasmic reticulum trafficking vesicles are
indicated by white arrowheads. Scale bars: (A–F) 1 µm.
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Mitochondria were observed in high numbers in LTSEM (Figure 7), although their
internal structures were difficult to discern (Figure 7A,B). TEM images allowed us to
observe the internal structures of the mitochondria in T. lynnae (Figure 7C), as already
reported by Casano et al. [12]. As expected, every Trebouxia species-level lineage analysed
by TEM presented well-developed mitochondria (Supplementary Figure S4). The overall
ultrastructure of Trebouxia mitochondria was similar to that of mitochondria observed in
other Trebouxiophyceae algae [58,59]. For each Trebouxia analysed here, a wide range of
shapes and sizes was observed, even within the same cell (Supplementary Figure S4). This
was already reported decades ago in some species of microalgae [59]. In several species
of the Chlorella genus, it has been demonstrated that each cell contains a single, tubular,
branched mitochondrion [60–62].

The diversity of morphologies observed in our results indicates that Trebouxia may
also have tubularly branched mitochondria. To assert the number of this organelle present
in each cell of these microalgae, other microscopy approaches may be needed.

Guo et al. [62] reported that the chloroplast and mitochondrial membranes of Chlorella
pyrenoidosa run parallel to each other, hypothesizing that there may exist a mechanism of
direct translocation of NADPH and ATP between these compartments in these microalgae.
In T. lynnae (Figure 7B), as well as other Trebouxia species-level lineages (Supplementary
Figure S4), a close proximity between the membranes of these two compartments is ob-
served. How this phenomenon affects the efficiency of the Trebouxia metabolism compared
to other microalgae and plants having different mitochondria/chloroplast architectures is
still unknown.

Endoplasmic reticulum and dictyosomes are inconspicuous in T. lynnae, probably due
to the cytosol crowding in cells with a low ratio of cytosol/chloroplast volumes, and have
never been reported by TEM ultrastructure analyses before. Here, LTSEM allowed for
the identification of both organelles (Figure 7C–F). Endoplasmic reticulum was observed
as a fenestrated system of cisternae from which trafficking vesicles sprout (Figure 7C,D),
similar to those observed in Botryococcus braunii [39]. Dictyosomes were observed as a
group of flattened cisternae of around 0.2 × 0.5 µm (Figure 7E,F). In TEM images, we were
able to recognise the endoplasmic reticulum as a stack of membranous structures with a
punctuated electrodense texture, likely ribosomes (Figure 7D). Endoplasmic reticulum was
frequently located at the periphery of the cell, next to the widest section of the secretion
space (Figure 7D and Supplementary Figure S5).

Both endoplasmic reticulum and dictyosomes were observed in around 28% of other
Trebouxia species-level lineages (Supplementary Figures S5 and S6).

Vesicles and droplets were distinguishable from each other by the presence or absence
of a membrane, respectively (Figure 8A–C). However, droplets inside some vesicles were
also observed (Figure 8B,C). Multivesicular bodies, highly packaged vesicles inside a
membranous structure, were also identified (Figure 8D). Multivesicular bodies have been
reported to facilitate the trafficking of a variety of cargo through both the cell membrane
and the cell wall [63].

The amount and diversity of vesicles, including multivesicular bodies, the presence of
well-developed fenestrated endoplasmic reticulum and dictyosomes, and the location of
the secretion system in the vicinity of the secretion space suggest that T. lynnae is secreting
high amounts of extracellular substances, as already observed in other Trebouxiales [39].
This is also in line with the results reported by González-Hourcade et al. [42,53] on the
extracellular polysaccharides and proteins of T. lynnae.
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(A–D) 1 µm.

3.5. Cell-Wall

T. lynnae cell wall was thick (0.25 ± 0.05 µm) and composed of at least three layers
(Figure 9B,C). Different layers of the cell wall were already reported for T. lynnae [8,12,42]
and are also visible in TEM micrographs (Figure 9C). The cell wall of microalgae that
contains a high amount of algaenan (sporopollenin) appears greasy/gummy when ob-
served in LTSEM [33,40]. None of T. lynnae cell wall layers appeared greasy/gummy. This
is in line with the observations of Gonzales-Hourcade et al. [42], in which the degree of
crystal violet permeability in T. lynnae indicated the absence of this biopolymer in its cell
wall. LTSEM images revealed some features of the T. lynnae cell-wall that are not evident
with other microscopy approaches. The cell wall presents pores or cavities that seem to
meander through the interior of the structure (Figure 9B). LTSEM (Figure 9A,B) and TEM
(Figure 9D) also revealed the presence of fibers, either on the surface or as part of the cell
wall structure. Fibre-like structures have been observed previously in the cell walls of the
Trebouxia phycobiont of Cladonia macrophylla [64] and also in the phycobiont Asterochloris
glomerata [40]. The porosity of the cell wall and the presence of fibre-like structures on its
surface are also in line with the hypothesis of an important traffic between the intracellular
compartments and the extracellular space.
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Figure 9. LTSEM (A,B,E,F) and TEM (C,D) of Trebouxia lynnae cell wall. (A) Cell wall depicting
superficial fibers. (B,C) Cell wall depicting three layers, inner pores, and fibrils. (D) Fibrils on the
surface of the cell wall. (E,F) Eisosomes. Cell wall layers are indicated by white arrows. Eisosomes
are indicated by black arrows. Inner pores are indicated by white arrow heads. Fibrils are indicated
by black arrowheads. Scale bars: (A–F) 1 µm.

When the inner face of the cell wall or the outer face of the cell membrane is exposed,
regularly distributed, elongated eisosomes are visible (Figure 9C–F). Eisosomes are trough-
shaped invaginations of the plasma membrane in which protein complexes nest and project
up to the cell wall [41]. Eisosomes in the Trebouxia genus have been largely observed and
described [40–42,65] and, although inconspicuous, can also be detected by TEM (Figure 9C).

4. Conclusions

LTSEM of Trebouxia phycobionts is presented here as a suitable method to expand the
analysis of morphological and ultrastructural traits in lichen phycobionts. This technique
contributes to reinterpreting how microalgal cell structures and compartments are shaped,
and the results can be used to implement the taxonomic classification of lichen phycobionts
in general. In addition, it allowed for the identification of elusive organelles and cell
constituents that are difficult to observe by traditional microscopy approaches due to the
nature of the procedures (steps of dehydration of the sample or affinity for the dyes for
different structures) or the sample itself (high levels of cytosol crowding). Once the elusive
structures are identified, it is possible to track them back with traditional microscopy for
everyday benchwork, revaluing traditional microscopy methodologies, like TEM.
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Our results are consistent with cell features, besides the chloroplast and the pyrenoid,
and may be used for an integrative taxonomy of molecular and ultrastructural data in
Trebouxia phycobionts.

LTSEM proves to be a methodology that uses a minimum amount of intervention
on the biological sample. Applying LTSEM to Trebouxia phycobionts opens the door to
analysing and observing microalgae samples as similar as possible to their intact condition.
This will be highly desirable to assess the physiological and morphological state of phyco-
bionts in axenic cultures or in the lichenized state, subjected to abiotic conditions such as
desiccation, UV light, and salinity stresses, among many others.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d15020170/s1, Figure S1: “Orange peel” artefact produced by
a short time of sublimation; Figure S2: General ultrastructure of Trebouxia lynnae vegetative cells
growing over different substrates; Figure S3: TEM micrographs showing the presence or absence
of the nucleolar vacuole on Trebouxia species-level lineages; Figure S4: TEM micrographs showing
mitochondrial morphology on Trebouxia species-level lineages; Figure S5: TEM micrographs of
Trebouxia species-level lineages in which the endoplasmic reticulum was found; Figure S6: TEM
micrographs of Trebouxia species-level lineages in which the dictyosome was found; Table S1: list of
Trebouxia species-level lineages used in the TEM analysis with their isolation information.
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