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Abstract: In a survey of the mycobiota from the dung of herbivorous animals collected in natural
areas in Spain, an Alternaria isolate was found. Morphological data and a multi-locus phylogenetic
approach carried out through Maximum Likelihood and Bayesian Inference analyses with three gene
markers (i.e., the internal transcribed spacer of rDNA, glyceraldehyde-3-phosphate dehydrogenase,
and plasma membrane ATPase) revealed that it represents a novel Alternaria species in Chalastospora.
Alternaria muriformis sp. nov. is described and illustrated here. It is closely related to Alternaria
abundans, Alternaria armoraciae, and Alternaria breviramosa, but can be easily differentiated by its
production of muriform conidia. Key morphological features of the members of the Chalastospora
section are provided.

Keywords: Ascomycota; Alternaria; Chalastospora; new species; herbivore dung; dematiaceous
hyphomycetes; phylogeny; Pleosporaceae; taxonomy

1. Introduction

Alternaria, erected in 1816 [1], is currently one of the richest-species genera in the order
Pleosporales (Dothideomycetes), with a wide environmental distribution and adaptation to
diverse ecological lifestyles. It includes saprophytic species mainly inhabiting decaying
plant material but also species associated with living plants, such as endophytes or phy-
topathogens [2–4]. Phytopathogenic species cause disease in a wide variety of important
agronomic host plants, including ornamentals, fruits, vegetables, and other crops, affecting
both pre- and post-harvested stages [5–8]. Several species are also able to cause animal and
human infections, such as Alternaria alternata, Alternaria infectoria, Alternaria triticina, and
the recently described pathogenic species Alternaria anthropophila, Alternaria atrobrunnea,
and Alternaria guarroi [9–12]. Furthermore, Alternaria spp. are notable for their ability to
produce secondary metabolites with phytotoxic, cytotoxic, antifungal, and antimicrobial
effects, some of which have beneficial applications in the biotechnological and chemical
industries [8,13,14].

In the last decade, the genus Alternaria has been taxonomically reevaluated based
on several multi-gene phylogenetic analyses using a combination of various gene mark-
ers like the internal transcribed spacer of rDNA (ITS) and protein-coding genes, such as
glyceraldehyde-3-phosphate dehydrogenase (gapdh), plasma membrane ATPase (ATPase),
RNA polymerase second largest subunit (rpb2), and translation elongation factor 1-alpha
(tef 1) [2,12,15]. As a result, the genus currently contains more than 380 species, which
are distributed in 29 sections and seven monotypic lineages [4,7,15–18]. The section Cha-
lastospora, which was erected by Woudenberg et al. [15] and typified by Alternaria cetera
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(E.G. Simmons), was introduced to accommodate species previously included in the hy-
phomycetous genera Chalastospora [19] and Embellisia [20]. The section was morphologically
characterized as producing simple or branched primary conidiophores from which pale
to medium brown conidia originated singly or in chains. Conidia are usually narrowly
ellipsoid to ellipsoid or ovoid, beakless, with no to multiple transverse eusepta, and rarely
longitudinal or oblique septa [15]. The species in the section are consistently separated in
terms of their genetic differences based on multilocus sequence typing (MLST) of three
concatenated loci (i.e., ITS, gapdh, and ATPase) [2]. Currently, the Chalastospora section
comprises seven species, most of which have been found on plant material, i.e., Alternaria
abundans (E.G. Simmons), Alternaria armoraciae (E.G. Simmons and C.F. Hill), Alternaria
breviramosa (Woudenberg and Crous), and A. cetera. The Alternaria obclavata (Crous and U.
Braun) was described from air, and Alternaria malorum (Rühle, U. Braun, and Crous and
Dugan) and Alternaria pobletensis (Iturrieta-González and Dania García and Gené) from
herbivore dung, with A. malorum having also been reported as an opportunistic pathogen
in humans [2,15,21].

The aim of the present study was to characterize, using a polyphasic approach com-
bining phenotypic and sequence data, a putative novel species of Alternaria in the section
Chalastospora isolated from herbivore dung collected in a natural area of Catalonia (Spain).

2. Materials and Methods
2.1. Sampling and Isolation of Fungi

Dung samples collected from different geographical regions of Spain were incubated
in moist chambers at room temperature (ca. 24 ◦C) in darkness and examined periodically
for about two months. Interesting fungi were isolated on potato dextrose agar (PDA;
Pronadisa, Madrid, Spain) and preserved at the culture collection of the Medical School
of Rovira i Virgili University (FMR; Reus, Spain) for further studies. The Alternaria isolate
FMR 17518 was revived for morphological and molecular analysis.

Taxonomic information and nomenclature for the new species were deposited in My-
coBank (https://www.mycobank.org/). Ex-type culture and holotype (as a dry colony) were
deposited at the Westerdijk Fungal Biodiversity Institute (CBS, Utrecht, The Netherlands).

2.2. DNA Extraction, PCR, Sequencing, and Phylogenetic Analysis

Genomic DNA was extracted from colonies growing on PDA for 7 to 14 days at 25 ◦C
in darkness, according to Müller et al. [22]. For a preliminary identification and later for
establishing phylogenetic relationships, we amplified and sequenced the ITS region, ATPase,
and gapdh gene markers according to the loci used in previous studies [2]. Amplification of
the ITS barcode was performed using the primer pairs ITS5/ITS4 [23], ATPDF1/ATPDR1
for ATPase [24], and gpd1/gpd2 for gapdh [25] (Table 1).

Table 1. List of primer pair sets used for PCR and sequencing.

Locus Primer Sequence (5′–3′) References

Internal transcribed spacer (ITS)
ITS5 GGAAGTAAAAGTCGTAACAAGG

[23]
ITS4 TCCTCCGCTTATTGATATGC

Glyceraldehyde-3-phosphate dehydrogenase (gapdh)
gpd1 CAACGGCTTCGGTCGCATTG

[25]
gpd2 GCCAAGCAGTTGGTTGTGC

Plasma membrane ATPase (ATPase)
ATPDF1 ATCGTCTCCATGACCGAGTTCG

[24]
ATPDR1 TCCGATGGAGTTCATGATAGCC

PCR products were purified with a Qiagen PCR Purification Kit (Qiagen, Inc., Valencia,
CA, USA) and stored at −20 ◦C until sequencing. The same pairs of primers used for the
amplification were used in sequencing the products, which were processed at Macrogen

https://www.mycobank.org/
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Europe (Macrogen Inc., Madrid, Spain). The sequences of each isolate were edited using
SeqMan v.7.0.0 (DNAStar Lasergene, Madison, WI, USA) to obtain the consensus sequences.

The sequences obtained were compared with those in the National Center for Biotech-
nology Information (NCBI) database, and those of the species related to our unidentified
isolate were retrieved from GenBank for phylogenetic analysis (Table 2).

Multiple sequence alignments of the individual loci and combined analysis were
performed using the MEGA (Molecular Evolutionary Genetics Analysis) software v.6.0 [26],
through the ClustalW algorithm [27], refined with MUSCLE [28] in the same platform,
and manually adjusted as necessary. Phylogenetic reconstructions were made using Maxi-
mum Likelihood (ML) and Bayesian Inference (BI) under MEGA software v.6.0 and Mr-
Bayes v.3.2.6 [29], respectively. The combined analysis of these phylogenetic markers was
tested through the incongruence length difference (ILD) implemented in the Winclada
program [30]. ML bootstrap values (bs) ≥ 70% were considered significant. For the BI
phylogenetic analysis, the best nucleotide substitution model was determined using jMod-
elTest [31]. The parameter settings used were two simultaneous runs of five M generations
and four Markov chains, sampled every 1000 generations. The 50% majority-rule consensus
tree and posterior probability values (pp) were calculated after discarding the first 25% of
the samples. A pp value of ≥0.95 was considered significant. Sequence data generated in
the present study were deposited in GenBank (Table 2).

Table 2. Alternaria species included in the phylogenetic analysis and their GenBank accession number.

Species Section Isolates 1 Sources
GenBank Accession Numbers 2

References
ITS gapdh ATPase

A. abundans Chalastospora CBS 534.83 T Fragaria sp. and stolon JN383485 KC584154 JQ671802 [15,32]
A. armoraciae Chalastospora CBS 118702 T Armoracia rusticana KC584182 KC584099 LR134098 [2,15]
A. breviramosa Chalastospora CBS 121331 T Triticum sp. FJ839608 KC584148 LR134099 [2,15]
A. cetera Chalastospora CBS 121340 T Elymus scabrus JN383482 AY562398 LR134101 [15,32]
A. malorum Chalastospora CBS 135.31 Malus sylvestris and fruit JQ693638 JQ646278 JQ671800 [33]

Chalastospora FMR 17369 Rabbit dung LR134074 LR134077 LR134029 [2]
A. obclavata Chalastospora CBS 124120 T Air KC584225 KC584149 LR134100 [2,15]
A. pobletensis Chalastospora FMR 16448 T Herbivore dung LR133896 LR133897 LR133903 [2]
A. muriformis Chalastospora FMR 17518 T Herbivore dung OQ421258 OQ425406 OQ425407 Present study
A. caricis Nimbya CBS 480.90 T Carex hoodii AY278839 AY278826 JQ671780 [15,32]
A. scirpicola Nimbya CBS 481.90 Scirpus sp. KC584237 KC584163 JQ671781 [15,32]

1 CBS: culture collection of the Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; FMR: Facultat
de Medicina, Universitat Rovira i Virgili, Reus, Spain; T indicates ex-type strains. 2 ITS: internal transcribed
spacers and intervening 5.8S nrDNA; ATPase: plasma membrane ATPase gene; gapdh: glyceraldehyde-3-phosphate
dehydrogenase. The novel species described in this study is indicated in bold.

2.3. Phenotypic Study

Macroscopic characterization of the colonies was performed on PDA, potato carrot
agar (PCA; potato 20 g, carrot 20 g, agar 13 g, and distilled water 1 L), and oatmeal agar
(OA; oatmeal 30 g, agar 13 g, and distilled water 1 L) for 7 days at 25 ◦C in darkness. The
colors of the colonies in descriptions were based on Kornerup and Wanscher [34]. Cardinal
temperatures for growth were tested in duplicates on PDA after 7 days in darkness, at 5 ◦C
intervals from 5 ◦C to 40 ◦C, as well as at 37 ◦C.

The microscopic characterization was carried out after 7 days at 25 ◦C in darkness,
following the recommendations of Simmons [19]. Measurements and descriptions of
the microscopic structures were taken from the specimens mounted in Shear’s solution
growing on the media described above. Photomicrographs were obtained using a Zeiss
Axio-Imager M1 light microscope (Zeiss, Oberkochen, Germany) with a DeltaPix Infinity X
digital camera.



Diversity 2023, 15, 606 4 of 10

3. Results

The preliminary comparison of the ITS sequence in our isolate with those in the NCBI
confirmed its taxonomic position in the genus Alternaria section Chalastospora, showing 98.66%
of sequence identity with two species in this section, i.e., A. abundans CBS 535.83 and A.
armoraciae CBS 118702. Based on this preliminary result, the phylogenetic reconstruction
for each locus was performed through ML analysis. The best nucleotide substitution model
determined with the MEGA program was Kimura two-parameter (K2 + G) for ITS and gapdh,
and Tamura Nei with gamma distribution (T93 + G) for ATPase (Supplementary Material).

Multi-locus reconstruction of the section Chalastospora was performed using the three
recommended loci for these sections, and through ML and BI analyses. The alignment
comprised a total of 2216 bp (i.e., ITS 536 bp, gapdh 485 bp, and ATPase 1195 bp), includ-
ing 310 variable sites (i.e., ITS 62 bp, gapdh 88 bp, and ATPase 160 bp) and 195 being
phylogenetically informative (i.e., ITS 31 bp, gapdh 43 bp, and ATPase 121 bp). The best
nucleotide substitution model for the ML using the combined analysis of these three loci
was Tamura-Nei with gamma distribution (T93 + G) and for BI was Kimura two-parameter
with gamma distribution and invariant sites (K80 + G + I) for the ITS region, and Hasegawa-
Kishino-Yano with invariant sites (HKY + I) for ATPase and gapdh. The phylogenetic tree
obtained showed that the isolate FMR 17518 formed a single distant branch, which was
placed in a supported clade (89% bs/0.99 pp), along with the three well-supported species
of A. abundans, A. armoraciae, and A. breviramosa (Figure 1). The phylogenetic distance,
high support values of the lineages, and the morphological differences with the related
species allow us to propose a new species in the genus Alternaria, which is described in the
taxonomy section.
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Figure 1. Phylogenetic tree constructed with ITS (536 bp), gapdh (485 bp), and ATPase (1195 bp)
and sequences of ex-type strains of Alternaria species in the section Chalastospora and rooted with
Alternaria caricis CBS 480.90 and Alternaria scirpicola CBS 481.90 (section Nimbya). Bootstrap support
(bs) values greater than 70% and Bayesian posterior probabilities (pp) greater than 0.95 are given
at the nodes (bs/pp). Bold branches indicate a bs/pp of 100/1. The novel species described in this
study is indicated in bold. T indicates an ex-type of strain.

Taxonomy

Alternaria muriformis (Iturrieta-González and Gené) sp. nov.—MycoBank MB847820
(Figure 2).
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Figure 2. Alternaria muriformis (ex-type FMR 17518). (a) Colonies on PDA; (b) colonies on PCA; (c) 
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(c) colonies on OA; (d–h) Conidia. Scale bars (d–f) = 20 µm and (g,h) = 10 µm.
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Etymology: The epithet refers to the production of muriform conidia in OA culture.
Culture characteristics (at 25 ◦C for 7 days): Colonies on PDA reaching 58–61 mm diam,

blond-white to yellowish-white (4C4/4A2), cottony, abundant aerial mycelium, margins
regular; reverse yellowish-brown (5F8/5D5), yellowish-white final edge (4A2). On PCA
attaining 49–50 mm diam, flat, slightly velvety, scarce aerial mycelium, margins regular;
reverse grey (1D4) to colorless towards the periphery. On OA reaching 55–56 mm diam,
flat, slightly floccose, scarce aerial mycelium, margins regular; surface and reverse olive
(4E3) to colorless.

Cardinal temperature for growth: minimum of 15 ◦C; optimum of 20 ◦C; and maximum
of 30 ◦C.

Morphological description of the asexual morph (on OA at 25 ◦C for 7 days): Mycelium
is superficial and immersed. Hyphae 1–4 µm wide, septate, branched, subhyaline to
pale olivaceous, smooth-walled to verruculose. Conidiophores micronematous to semi-
macronematous, arising laterally or terminally from aerial hyphae, erect to slightly flex-
uous, unbranched, 10.5–73 × 3–4.5 µm, pale olivaceous to yellowish brown, smooth-
walled, with 1–2 terminal conidiogenous loci. Conidia forming unbranched or slightly
branched chains, with up to 15 conidia in the unbranched part, commonly ellipsoidal or
obclavate, 10–40 × 4–14 µm, with darkened middle transverse septa, some constricted,
(1–)3–5(–7) transverse septa, and 0–1(–2) longitudinal or oblique septa per transverse seg-
ment, yellowish-brown to brown, smooth-walled; conidia with muriform conidial bodies
are present, 37–45 × 16–33 µm. Secondary conidiophores can be formed as lateral conidio-
genous loci from the conidial body. Furthermore, sexual morphology was not observed.

Known distribution: In Spain (as seen in this article: lifestyle-saprobic on herbivorous dung).
Specimen examined: Spain, Catalonia, Barcelona province, Pontons (N 41.40590◦ E

1.50918◦), dung of an unidentified herbivorous animal, June 2018, J. Gené and I. Iturrieta-
González (holotype FMR H-17518, culture ex-type FMR 17518).

Notes: Alternaria muriformis is placed in a supported clade in Alternaria section Cha-
lastospora (Figure 1), and it is phylogenetically related to A. armoraciae, A. abundans, and
A. breviramosa. However, the new species differs morphologically from its relatives in the
production of muriform conidia [19,35,36] (Table 3). Despite following the recommenda-
tions of Simmons [19] for morphological characterization of the new fungus, we observed
sporulation exclusively on OA at 25 ◦C.
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Table 3. Comparison of the conidial morphology among Alternaria species in section Chalastospora.

Species
Conidia

References
Shape Size (µm) Transverse Septa

Numbers
Longitudinal or Oblique

Septa Numbers (*) Ornamentation

A. abundans Ovoidal
Obclavate

20–30 × 10–12
40–50 × 8–12 3–6(–8) 0–1 Usually smooth [36]

A. armoraciae Ovoidal to ellipsoidal 15–35 × 8–12 3–5 0–1 Smooth [19]

A. breviramosa Ellipsoidal to fusiform (8–)10–15(–17) × 3(–3.5) 0–1(–2) Absent Smooth [35]

A. cetera Ellipsoidal to narrow-ovoid 18–22 × 3–4(–5) 1–3 Absent Smooth [19,37]

A. malorum Ellipsoidal-ovoidal, cylindrical,
or fusiform 6–14(17) × 2–4 Absent Absent Smooth [38]

A. obclavata Obclavate (23–)26–30(–35) × (3.5–)4 0–3 Absent Smooth [35]

A. pobletensis Obpyriform or obclavate, and some
ellipsoidal or subcylindrical 8–50 × 5–20 (1–)3–7(–9) 0–1(–2) Smooth or verruculose [2]

A. muriformis Ellipsoidal or obclavate 10–40 × 4–14
(1–)3–5(–7) 0–1(–2) Smooth Present study

Muriform 37–45 × 16–33

* per transverse segment. The novel species described in this study is indicated in bold.
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4. Discussion

Morphological traits have long been the basis for species identification in the genus
Alternaria [19]. However, due to the limited number of taxonomically informative features,
especially to distinguish closely related species, the use of DNA sequence data and multi-
gene analysis is now required, not only for identification purposes but also for delineating
novel species. The molecular markers recommended for this purpose have been defined
for various Alternaria sections over the course of several studies [2,15,33,39,40]. Therefore,
based on those molecular approaches, numerous new species, mainly in the sections
Alternaria, Infectoriae, Porri, and Radicina, have been described in recent years [2,12,18,41],
but only a few in the section Chalastospora [2]. This section comprises a small group of
eight Alternaria species, including the new species A. muriformis (Table 3), which are well
delineated by using the ITS, gapdh, and ATPase gene markers. Of note is that despite the ITS
barcode being considered a gene marker only able to classify Alternaria species at the section
level [2,15,33,40], in section Chalastospora, each locus is able to discriminate each species (see
Supplementary Material). However, significant statistical support to establish phylogenetic
relationships among species can only be achieved with the combination of the three markers.
In our multi-locus analysis, the isolate investigated here formed a highly supported branch
with both ML and BI analysis (89/0.99) that reinforces the proposal of A. muriformis. With
the exception of A. obclavata, which has been exclusively reported from air samples [35],
most species in Chalastospora have been isolated from vegetal substrates, as mentioned
before. However, A. malorum [21,42], A. pobletensis [2], and now A. muriformis have also
been recovered from the dung of herbivorous animals, suggesting that this is a good source
to find taxonomically interesting Alternaria species, not only for this section but also for
other Alternaria groups, as previously reported by Marin-Felix et al. [2]. Animal dung,
and specifically herbivore dung, contains hemicellulose, cellulose, lignin, high nitrogen
content, minerals, and high moisture content, which constitute a good substrate for fungal
growth [43]. This is how, in recent years, a significant number of new species and new
records have been described from this type of substrate [2,44–48].

The genus Alternaria contains species with an important role as producers of metabo-
lites [14,49]. Although some metabolites have been shown to be toxic in plants and animals,
they have also been shown to have biotechnological applications with excellent antioxida-
tive, herbicidal, antibacterial, antiparasitic, antitumor, and enzyme inhibitory properties,
which reinforces the need to study potential new metabolites produced by new species in
the genus [49–52].

This study introduces a new Alternaria species for the section Chalastospora based on
a polyphasic approach combining morphological and molecular characterization. Future
research is required in order to elucidate the ecology of A. muriformis, its role as a possible
pathogenic species in toxin production, and its potential biotechnological applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/d15050606/s1, Figure S1: Maximum Likelihood tree of the section
Chalastospora constructed with ITS region; Figure S2: Maximum Likelihood tree of the section
Chalastospora constructed with gapdh; Figure S3: Maximum Likelihood tree of the section Chalastospora
constructed with ATPase.
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