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Abstract: Degradation of tropical forests is a major driver of the global extinction crisis. A key
question is understanding the role of evolution history during forest succession in the context of forest
restoration for maintaining ecosystem function and stability. This study was conducted in a fragmented
forest landscape in the central highlands of Vietnam. We sampled living trees with diameters at
breast height of ≥6.0 cm in nineteen 0.25 ha plots to evaluate forest community structure changes over
two early successional stages (<10 years and 10–20 years old) after abandonment and old-growth.
We used both statistically metric and nonmetric analyses to examine correlations of community
composition during successional stages and along elevational gradients. We found that (i) significant
differences existed in the structural compositions between early successional forests and old-growth
forests, but did not exist within early successional forests; (ii) the phylogenetic structure shifted
from overdispersion to clustering with increasing successional ages; and (iii) above-ground biomass
(AGB), representing ecosystem functioning, significantly increased from early-to-late successional
stages, but did not correlate with phylogenetic diversity or elevation. Our results revealed that the
forest community structure was strongly affected by degradation, particularly AGB and phylogenetic
structure. These findings have clear implications for sustaining biodiversity persistence and ecosystem
functioning in human-modified landscapes in the study region.

Keywords: above-ground biomass; biodiversity; phylogenetic diversity; community assembly;
tropical rain forest

1. Introduction

Degraded tropical forests due to anthropogenic disturbance are rapidly expanding in the tropics
at alarming rates [1,2]. The conversion of tropical forest to monocultural plantations and agricultural
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lands led to mosaic landscapes with various spatial arrangements of tropical evergreen forests of
widely varying ages [3]. Considering that forest resilience in maintaining its function and structure is
associated with history, evolutionary pressures, and previous extinction, conservation actions should
target entire communities, rather than species [4]. Previous studies on forest succession focused
on changes in phylogenetic structure and dispersion during succession [3,5–7], while the ecological
theory assumes that diversity is positively correlated with productivity when diversity increases niche
complementarity, for example, complementary resource use [8]. Few studies quantified the relationship
between biodiversity and ecosystem functions (e.g., phylogenetic diversity and forest productivity)
during successional process in tropical forests [3,6,8]. Expectedly, this approach allows scientists to
better understand community assembly by considering the long-term evolutional history of coexisting
species [9].

Phylogenetic diversity is assumed to be a good predictor of community stability in biomass
productivity throughout space and time as it contains more information about species complementarity,
in which a more diverse plant community is able to use resources more completely, thereby, increasing
productivity [10–13]. In the tropical forests of Costa Rica, Lasky et al. [8] found a strong correlation
between phylogenetic diversity and above-ground biomass (AGB) during the early stages of forest
succession. Across geographical regions in the United States, Potter and Woodall [14] reported that
phylogenetic diversity was significantly associated with AGB, but weakened with both increasing site
productivity and live tree stocking. However, in a subtropical forest of South China, Ouyang et al. [6]
found no significant effect of species and phylogenetic diversity on forest biomass in any phase (early,
mid, or late) of forest succession. In addition, Rozendaal and Chazdon [15] stated that, depending on
the interactions between tree mortality and growth, biomass dynamics were largely regulated by tree
growth in early succession and by both in later succession.

The relationship between phylogenetic diversity and forest ecosystem function is simultaneously
influenced by many factors, such as disturbance, edaphic and topographic heterogeneity, and
speciation [6,16–18]. Phylogenetic clustering suggests abiotic factors drive community assembly
processes leading more closely related species to coexist, which in turn, tend to share similar niches,
phenotypes in a particular environment, and sensitivities to disturbance [19,20]. Phylogenetic
overdispersion, on the other hand, is assumed to dominate later successional stages because of
competitive exclusion governing species establishment [3,21,22] as a result of biotic processes, such as
species interaction, dispersal and speciation.

Habitat filtering (sunlight, temperature, soil types, topography) plays an important role in selecting
species during colonization [3,21]. In addition, Mi et al. [23] found a dominance of stochastic processes
with significant interactions between the environment and disturbance over succession, concluding
that post-disturbance restoration may be largely unpredictable and difficult to control in subtropical
forests. Among abiotic factors, elevation is assumed to have a significant impact on the vegetation
structure of most mountain ranges in the world, particularly species diversity, which varies largely
depending on the interaction between plant communities, species, and environmental factors [24].
In the tropical forests of Southeast Asia, Satdichanh et al. [3] found a strong correlation between soil
fertility and community structure in the early successional stages, with significant elevation associated
with above-ground biomass only in forests younger than 100 years. In the mountainous region of
Veracruz, up to 3500 m a.s.l, Mexico, Monge-González et al. [25] found a correlation between tree
diversity and community composition along elevational gradients of disturbed forests.

To better understand the change in forest biodiversity and ecosystem functioning, over time,
herein, we study the relationship between evolutionary history (phylogenetic diversity and community
structure) and forest productivity (e.g., volume and above ground biomass) through different
successional forest phases in a mosaic landscape in the central highlands of Vietnam (Figure 1).
The present paper uses data from 19 plots from tropical evergreen forests covering three successional
stages (early, early–mid, and old-growth), addressing the following questions: (1) How do community
structure and phylogenetic diversity change over different successional forest phases? and (2) Do
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taxonomic and phylogenetic diversity correlate with forest productivity and elevation during
forest succession?
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Figure 1. Map of Ta Dung National Park and study plots. Circles are secondary forest plots <10 years
old (SF1), triangles are secondary forest plots 10–20 years old (SF2), and squares are old-growth forest
plots (OGF).

2. Materials and Methods

2.1. Study Site and Data Collection

The study was conducted at Ta Dung National Park, located in the central highlands of Vietnam
(Figure 1). In 2013, The National Park was established in order to maintain high forest protection from
human disturbance. Before that time, this region was disturbed by local people in easy access areas,
for example, areas close to main roads, local villages, or areas at low elevation, for timber collection
or crop plantation. The climate is strongly affected by the seasonal climate, with about 90% of total
precipitation falling from April to November and the dry season lasting from December to March.
The average annual rainfall is about 2513 mm and the annual mean humidity is 84%. The mean annual
temperature is 22.5 ◦C, while the lowest temperature is 14 ◦C in December and the highest temperature
is 35 ◦C in April.

In this study, we classified forest successional stages according to plot land use and disturbance
history. The successional stages used were according to secondary forest since abandonment;
(a) <10 years old (SF1, early); and (b) 10–20 years old (SF2, early–mid), recovering after illegal
logging or slash-and-burn for annual crop plantation, thereby lacking large-diameter trees; and
(c) old-growth forest (OGF), a primary forest with tall, large-diameter trees without visible signs of
recent human disturbance. The successional stage was assigned at the plot level with help by staff

from the National Park.
During 2019–2020, we established 19 plots of 0.25 ha (50 × 50 m) each, including six plots in SF1,

nine plots in SF2, and four plots in OGF. All live trees with diameters at breast height (dbh) of ≥6.0 cm
were recorded in terms of their characteristics (species, dbh, and total tree height). The location and
elevation of each study plot were recorded using the GPS Garmin 60s (Garmin Coporation, Taiwan).
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2.2. Data Analysis

2.2.1. Community Diversity and Structure

Above-ground biomass (AGB) was estimated according to the allometric equation obtained by
Chave et al. [26] for pantropical forest stands as,

AGB = 0.0673 × (D2
× H × ρ)0.976 (1)

where D is dbh (cm), H is total height (m), and ρ is the wood-specific density (g/cm3). We obtained the
wood-specific density ρ for the observed species/genera from various sources [27–31]. In cases where a
range of wood density values were reported, we used a median value. Where wood density data were
unavailable for a species, the average across all species in that genus or mean wood-specific density of
that plot was applied (see [32]).

We used five commonly used and ecologically interpretable indices of taxonomic diversity
emphasizing different aspects of species diversity [33], namely, species richness (SR), the Shannon’s H
and Simpson’s D indices of entropy, Margalef’s richness (Ma), and Fisher’s alpha (Fa). Species richness
is the number of species found in a plot. Simpson’s dominance is weighted toward the abundance of a
species combining species richness and evenness. The Shannon index is more sensitive to rarer species,
while the Simpson index [34] responds more to abundant species, both representing two points in a
spectrum of relative sensitivity to species number versus relative evenness [35]. Fisher’s alpha index
was calculated for all trees within each plot [36], combining species richness and abundance in a single
metric that is relatively independent of sample size and is commonly used in studies of tropical tree
diversity (e.g., [37]). Margalef’s richness was calculated, including the number of species and the total
amount of individuals in a sample [38].

Species diversity indices were calculated separately for each plot in each forest type using the
software PAST ver. 3.25 (PAleontological Statistics, https://folk.uio.no/ohammer/past/). The data of the
19 plots were pooled to model the dbh height curves for all tree individuals, which were fitted best
using the equation of Prodan [39].

2.2.2. Phylogenetic Diversity and Structure

We used a phylogenetic mega-tree approach to construct separate family level phylogenetic
trees to study forest communities. All tree species names were standardized following taxonomic
name resolution service ver. 4.0 [40] at http://tnrs.iplantcollaborative.org. We then assembled species
lists into phylogenies using the phylomatic and the maximum resolved super-tree of Angiosperm
Phylogeny Group (APG) IV (R20160415.new, [41]) at http://phylodiversity.net/phylomatic/. To evaluate
the phylogenetic structure of tree communities, we used the phylogenetic metrics mean phylogenetic
distance (MPD), net related index (NRI), net nearest taxon index (NTI), and mean nearest taxon distance
(MNTD) [42], which were calculated using Phylocom software ver. 4.2 [43].

NRI analyzes the degree of phylogenetic relatedness by measuring mean pair-wise phylogenetic
distances among constituent species in a community relative to that found in the species pool. Therefore,
NRI analyzes phylogenetic structure throughout the phylogeny, while NTI only reflects phylogenetic
clumping at the terminal tips of a phylogeny. Using the Phylocom software, the branch lengths of
the phylogenies were calibrated using the function Bladj and the node ages were provided by [44],
while alpha MPD and NRI were calculated through the function Comstruct by using the “-a” argument
to weight species by their abundance. To calculate NRI, we firstly compared the observed values of
MPD with those obtained by chance after generating 999 communities from the null model, which
maintained the species richness of each sample and randomized species occurrence [45]. NRI and NTI
were calculated as following,

NRI = −
(

MPDobs−MPDrd

sdMPDrd

)
NTI = −

(
MNTDobs−MNTDrd

sdMNTDrd

)
(2)

https://folk.uio.no/ohammer/past/
http://tnrs.iplantcollaborative.org
http://phylodiversity.net/phylomatic/
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where MPDobs is the observed mean phylogenetic distance, MPDrd is the expected mean phylogenetic
distance of randomized species assemblages, sdMPDrd is the standard deviation of the mean
phylogenetic distance of randomized species assemblages, MNTDobs is the observed mean nearest taxon
distance, MNTDrd is the expected mean nearest taxon distance of randomized species assemblages,
and sdMNTDrd is the standard deviation of the mean nearest taxon distance of randomized species
assemblages.

Positive NRI and NTI values indicate phylogenetic clustering (i.e., species are more closely related
than expected by chance) while negative values indicate phylogenetic overdispersion (i.e., species are
more distantly related than expected by chance) [45]. Using Phylocom 4.2, we measured Faith’s PD,
the sum of branch lengths of the subtending tree of the species present in a community [46], which
does not account for species abundance, and Rao’s quadratic entropy index Dp, an extension of the
Simpson diversity index that incorporates the phylogenetic distance between each pair of species [47].

2.2.3. Correlation between Community Diversity and Structure

We examined changes in tree community composition among forest successional stages, such as
the stand characteristics (including the number of tree individuals (N) and AGB), species diversity
(containing H, 1-D, Ma, and Fa) and phylogenetic structure (including SR, NRI, NTI, MPD, PD, Dp,
and MNTD) using the following methods:

(1) Non-metric multidimensional scaling (NMDS) with abundance-based Bray–Curtis dissimilarities
(adjustment noshare = 0.1; 999 permutations) was used to test the differences in tree community
composition using a nested permutational multivariate analysis of variance (PERMANOVA, 999
permutations). All statistical analyses were performed in R ver. 3.5.1. All tests and ordination
plots were computed using the package vegan ver. 2.4–5 [48]. The variables were fitted onto the
NMDS ordinations using the envfit function in the vegan package and goodness of fit and p-value
were computed 999 times, in order to detect environmental drivers for community dynamics.

(2) Data normality and homogeneity of variances were tested using one-way ANOVA with the
Shapiro–Wilk and Levene tests. When the ANOVA indicated a significant difference among forest
categories (p < 0.05, F test), the differences between means were tested with Scheffe post-hoc test.
All statistical analyses were performed using STATISTICA 9.1 (StatSoft, Inc., Tulsa, OK, USA).

3. Results

3.1. Plant Community

A total of 1198 (199.00 ± 54.38) individual trees belonging to 103 species, 79 genera, and 40 families
were recorded in six early successional forest plots, less than 10 years old of succession (Table 1). At nine
early–mid successional forest plots 10–20 years old of succession, 2468 (274.22 ± 76.53) individual trees
of 119 species, 88 genera, and 46 families were measured (Appendix A Table A2). At four old-growth
forest plots, a total of 1048 (262.0 ± 30.61) individuals were counted, belonging to 90 species, 72 genera,
and 41 families.

The DBH–height relationship of the three restoration time forest types was well fitted by Prodan
(1951), with R2 ranging from 0.52 to 0.76 the strongest correlation at OGF (Figure 2). It was observed
that the height curve along a DBH gradient is superior in OGF (Figure 2c) compared to SF1 and SF2
(Figure 2a,b), for a certain DBH value, with the height increment greater than those observed in SF1
and SF2 (Figure 2d).
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Table 1. Structural characteristics and species diversity of the three forest types, (Mean ± SD).

Structural Properties SF1 SF2 OGF

Stand structure
Density of trees 199.00 ± 54.38 a 274.22 ± 76.53 a 262.00 ± 30.61 a
Basal area (m2) 2.24 ± 1.05 a 4.29 ± 2.00 a 9.49 ± 1.46 b

Volume (m3) 8.92 ± 5.26 a 21.16 ± 12.79 a 80.55 ± 16.99 b
AGB (Mg) 8.24 ± 4.71 a 21.37 ± 13.53 a 76.88 ± 15.82 b

Species diversity
Species richness 35.00 ± 8.07 a 41.78 ± 10.21 ab 52.75 ± 1.71 b
Shannon’s index 2.77 ± 0.51 a 2.84 ± 0.52 ab 3.46 ± 0.01 b
Margalef’s index 6.47 ± 1.47 a 7.28 ± 1.64 ab 9.31 ± 0.46 b

Fisher’s alpha 12.95 ± 4.26 a 14.04 ± 4.35 ab 20.08 ± 2.21 b
Simpson’s index 0.87 ± 0.11 a 0.86 ± 0.15 a 0.95 ± 0.01 a

Values for a parameter followed by different letters differ significantly (p < 0.05).
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3.2. Compositional Pattern of Forest Community

Significant differences were found between the structural compositions of the forest types,
particularly between secondary forests (SF1 and SF2) and old-growth forest (OGF). The PERMANOVA
analysis showed statistical significance in the community structure of the three forest types (F = 2.4651;
R2 = 0.23555, p = 0.0011). However, no significance difference was found in the community structure
between the secondary forests SF1 and SF2 (F = 1.0851, R2 = 0.07704; p = 0.3219).

Fitting the structural community variables with elevation to the NMDS plot, the results showed a
significant correlation with p-values of <0.05 (detail in Appendix A Table A1.), including community
diversity and functioning (SR with R2 = 0.44, H with R2 = 0.33, 1-D with R2 = 0.5, Fa with R2 = 0.4
and AGB with R2 = 0.69), phylogenetic structure (MNTD with R2 = 0.52, NTI with R2 = 0.63, Dp with
R2 = 0.58), and El with R2 = 0.66) (in red in Figure 3), while N, MPD, NRI, and PD had no correlation,
with p-values of >0.05 (in black in Figure 3).
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Figure 3. NMDS ordination showing dissimilarities of the compositional structure of the forest
types in ellipses: OGF: Old-growth forests (blue squares); SF1:-secondary forests (green triangles);
SF2:-secondary forests (black circles) with stress value = 0.09. Significant variables (p < 0.05) are
displayed in red arrows and nonsignificant variables (p > 0.05) in black arrows. N: number of
individuals, SR: species richness; H: Shannon, (1-D): Simpson, Ma: Margalef, and Fa: Fisher indices;
MPD: mean phylogenetic distance, NRI: net related index, NTI: net nearest taxon index, MNTD:-mean
nearest taxon distance, PD: phylogenetic diversity; AGB: above-ground biomass, El: elevation.

3.3. Correlation of Community Composition

Tree density per plot did not differ significantly among the three restoration type forests
(199 individuals per ha in SF1, 274 in SF2 and 262 in OGF) (Table 1). However, in OGF, basal area
(9.49 ± 1.46, m2), volume (80.55 ± 16.99, m3), and AGB (76.88 ± 15.82, Mg) per plot were significantly
greater than in the other two forest types (Table 1), but these structural properties did not differ
between SF1 (2.24 ± 1.05 m2; 8.92 ± 5.26 m3; 8.24 ± 4.71 Mg) and SF2 (4.29 ± 2.00 m2; 21.16 ± 12.79 m3;
21.37 ± 13.53 Mg).

Species richness (number of species) per plot was significantly lower in SF1 (35.00 ± 8.07) and
SF2 (41.78 ± 10.21) than in OGF (52.75 ± 1.71) (p < 0.05, Scheffe post-hoc test, Table 1), but no
significant differences were found between SF1 and SF2 (p > 0.05, Scheffe post-hoc test). The same
pattern was detected also for other diversity indices; Shannon, Margalef, and Fisher alpha indices
were significantly greater in OGF compared to the two successional forests (SF1 and SF2), and no
significant differences between them were tested. Simpson’s index did not differ among forests
(p > 0.05, Scheffe post-hoc test).

MPD showed the highest value in SF1 (25.17 ± 0.90) and the lowest in OGF (21.85 ± 0.63), with
significant differences between them (Table 2, details in Appendix A, Figures A1–A3). NRI values were
positive in all OGF communities, indicating a clustered phylogenetic structure, but the NRI values of
two of six plots (approximately 33%) in SF1 and four of nine plots (approximately 44%) in SF2 were
negative, indicating phylogenetic over-dispersion. NRI were greater in OGF (1.44 ± 0.48) than SF1
(0.502 ± 0.91) and SF2 (0.02 ± 0.98) but differed in SF2. NTI values were positive in all OGF cases, three
cases (approximately 50%) in SF1, and six cases (approximately 66%) in SF2, indicating phylogenetic
clustering. NTI values were greater significantly in OGF (1.75 ± 0.61) than in SF1 (0.29 ± 0.82), but
did not differ between SF1 and SF2 (0.07 ± 1.62). MNTD values were greater significantly in SF1
(6.64 ± 1.28) than in OGF (4.84 ± 0.53), but also did not differ between SF1 and SF2 (6.43 ± 2.09). PD
and Dp indices did not differ between all three successional forest stages (p > 0.05).
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Table 2. Phylogenetic structure and diversity of the three forest types (mean ± SD).

Plot Elevation
(m) MPD NRI NTI PD Dp MNTD

SF1-Early succession
1 1117 25.6

25
.1

7
±

0.
90

b 0.04

0.
50

2
±

0.
91

ab

1.24

0.
29
±

0.
82

b

239

24
9.

17
±

45
.7

8
a 10.84

10
.7

5
±

1.
33

a 5.78

6.
64
±

1.
28

b2 1092 24.45 0.97 −0.24 200 8.97 8.13
3 1152 25.88 −0.33 1.4 320 11.94 4.91
4 1199 24.79 1.28 −0.57 289 9.29 6.05
5 668 26.3 −0.53 −0.13 219 12.07 7.97
6 718 23.97 1.7 0.04 228 11.4 7.03

SF2 -Early-mid succession
1 1300 16.23

22
.6

9
±

3.
02

ab

1.3

0.
02
±

0.
98

b

0.81

0.
07
±

1.
62

b

187

25
6.

56
±

35
.8

5
a

8.12

11
.3

5
±

1.
51

a

5.47

6.
43
±

2.
09

ab

2 984 21.76 0.72 1.61 253 10.88 4.67
3 1013 23.14 0.2 0.7 306 11.57 5.09
4 970 24.66 −1.12 0.97 273 12.33 4.72
5 704 25.05 −0.69 1.8 280 12.53 4.53
6 676 23.44 −0.13 0.61 223 11.72 6.33
7 738 26.03 −1.42 −2.97 266 13.01 9.72
8 732 23.98 0.04 −1.34 282 11.99 7.71
9 657 19.97 1.3 −1.51 239 9.98 9.62

OGF-Old-growth
1 1002 22.39

21
.8

5
±

0.
63

a 1.13

1.
44
±

0.
48

a 1.23
1.

75
±

0.
61

a 287

27
8.

75
±

6.
65

a 11.19

10
.9

2
±

0.
32

a 5.29

4.
84
±

0.
53

a

2 1061 22.19 1.27 1.39 280 11.09 5.25

3 1285 21.93 1.22 1.81 277 10.96 4.64

4 1417 20.93 2.16 2.6 271 10.46 4.17

MPD: mean phylogenetic distance, NRI: net related index, NTI: net nearest taxon index, PD: phylogenetic distance,
Dp: Rao’s quadratic entropy index, MNTD: mean nearest taxon distance. Values for a parameter followed by
different letters differ significantly (p < 0.05).

4. Discussion

Our results showed changes in community structure and phylogenetic diversity over successional
forest stages, exhibiting correlations of taxonomic and phylogenetic diversity with forest productivity
and elevation. The results showed that the community structure presents changes during forest
succession. There was a significant difference between the secondary forests (early and early-mid
successions) and old-growth forest in structural composition and phylogeny, while no significant
difference within early-successional forests. Community composition and productivity positively
correlated with forest succession and elevation.

Our results showed that structural attributes, such as stem density, basal area, volume and AGB
were significantly different between the secondary and old-growth forests, but were non-significantly
different within the secondary forests. In our study site, AGB increased from 8.24 to 76.88 Mg/plot
(ca. 32.96–307.52 Mg/ha) from secondary forest to old-growth forest types. consistent with previous
studies conducted in the central highlands of Vietnam, geographically close to Ta dung National
Park [27,30]. Species richness increased from 35 to 52 species from early successional to old-growth
forests (Table 1). In a previous study on relationships between species richness and forest productivity,
Ouyang et al. [49] found that stand density and age were more important drivers regulating total
biomass than species diversity, which has a positive effect on forest productivity in the subtropical
forests of China. This effect was consistent with our findings and emphasized the importance of stand
density, forest age, and species diversity, whereby, increasing diversity enhances forest productivity
and increasing the chance of possessing highly productive species [50,51].

Phylogenetic analyses indicated that old-growth forest contained more closely related species
than expected by chance, as shown by phylogenetic clustering and confirmed by positive values of
the net-related index and net-nearest taxon indices (Table 2). Moreover, the community structure
shifted from overdispersion to clustering in the secondary forest of successional stages <10 years old
and 10–20 years old, suggesting evidence that species assembly and colonization dominate ecological
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processes, such as niche assembly or facilitation during early forest succession. Our results were
contrasted by the findings by Satdichanh et al. [3], conducted in tropical forests of Southeast Asia, who
found the phylogenetic community structure shifted from clustering to overdispersion with increasing
successional ages from 15–30 years old in secondary forests to old-growth forest. The changes in
phylogenetic plant community structure during succession may be regulated by environmental filtering
or biotic interactions (deterministic factors such as species, functional, and phylogenetic turnover)
or stochastic factors [3,23]. Throughout successional stages, species co-occurring within sites are
functionally clustered indicates that community assembly is deterministic with respect to species
traits [22]. Taxonomic and phylogenetic diversities showed no significant differences (Tables 1 and 2),
indicating that these evidences mainly reflect colonization and closely related species [22], which
remained during succession in our forest types. Hence, we conclude that as forest succession proceeds,
species assembly possesses relative importance, rather than competitive exclusion in our study site.

Recent studies argued the relative importance of phylogenetic and taxonomic diversity in
promoting ecosystem stability and community biomass productivity [12,52–55]. For instance,
Yuan et al. [55] and Venail et al. [12] reported that phylogenetic diversity does not predict ecosystem
functioning, for instance species richness and phylogenetic diversity, while Larkin et al. [53] agreed
that phylogenetic diversity provides good information for management and restoration interventions.
In this study, phylogenetic and taxonomic diversity were not significantly different between early
successional ages, suggesting a failure in detecting phylogenetic diversity as a predictor for ecosystem
function. Previous studies [3,11,13,56] argued that this failure may be caused by inappropriate
study design when considering the species pool, experimental design, and analyses, such as using
inappropriate phylogenies, skewed distributions of phylogenetic distances or the absence of sufficient
niche space in experimental and observational venues [57].

Previous studies reported that forest biomass decreases with decreasing elevation [58–60]. In our
study, the NMDS analyses showed that elevation significantly correlated with community attributes
(e.g., species diversity and above-ground biomass) and phylogenetic structure (NTI and Dp) with
p-values of <0.05 (Appendix A Table A1), particularly in old-growth forest. These findings were
consistent with other studies conducted in Southeast Asian forests (e.g., [3,61]. In a tropical forest of
Hainan Island, China, Zhu et al. [24] found a community composition, such as tree abundance, species
richness, and phylogenetic diversity increased up to 700 m a.s.l and decreased at the highest elevations
of 1175 m, while our results were analyzed up to elevation of 1417 m. Regionally, in Southeast Asia,
Culmsee et al. [60] found opposite trends of taxonomic richness and phylogenetic diversity in Malesian
mountain forests at elevations from 650 to 3080 m a.s.l.

5. Conclusions

We used a variety of techniques to understand community structure and phylogenetic diversity of
trees in Ta Dung National Park, Vietnam. Our study showed variations in phylogenetic diversity and
community structure, changing over successional stages of tropical species-rich forests. The results
demonstrated the complexity and variability in forest succession of tropical rain forest. From young-
to old-growth forests, the structural compositions differed between early successions and old-growth
forests, but not within early successional forests. The phylogenetic structure shifted from overdispersion
to clustering, while the above-ground biomass-AGB increased, but was not associated with phylogenetic
diversity or elevation. Our results suggest that biodiversity and stand structure should be considered
simultaneously to evaluate and monitor the effectiveness of management practices in order to recover
disturbed forest stands. Long-term experimental and comprehensive studies considering key biotic
(including community properties) and abiotic (such as elevation, aspect, and slope) factors should
be carried out in order to observe the changes during forest succession for the maintenance of forest
biodiversity and function.
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Appendix A

Table A1. NMDS ordination of the compositional structure of three forest types.

NMDS1 NMDS2 r2 Pr(>r)

El −0.99225 −0.12427 0.6608 0.002
N 0.50871 0.86094 0.4423 0.009

AGB −0.32277 −0.94648 0.6935 0.001
X1.D 0.41065 −0.91179 0.5036 0.003

H 0.17959 −0.98374 0.3267 0.041
Fa −0.45491 −0.89054 0.4011 0.018
Ma −0.39278 −0.91963 0.2733 0.074
SR −0.28326 −0.95904 0.1225 0.331

MPD 0.9323 −0.36169 0.0882 0.5
NRI −0.9995 −0.03152 0.1574 0.275
NTI −0.54346 −0.83943 0.6318 0.001
PD 0.1418 −0.9899 0.1624 0.233
Dp 0.6978 −0.71629 0.5767 0.003

MNTD 0.56364 0.82602 0.5168 0.008

NMDS1 and NMDS2: Non-metric multidimensional scaling axes, r: proportion, Pr: significance.
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Table A2. Number of Species Individuals Per Study Plot.

No Species Family
SF1 Plots SF2 Plots OGF Plots

1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 1 2 3 4

1 Acronychia pedunculata (L.) Miq. Rutaceae 20 2 12 1 5 1 41 62 4 6 6 4 11 3 1 2 9 7
2 Actinodaphne pilosa (Lour.) Merr. Lauraceae 3

3 Aglaia elaeagnoidea
(A. Juss.) Benth. Meliaceae 1 4 4 7 2 5 1

4 Aidia pycnantha (Drake) Tirveng. Rubiaceae 2 1 1 1
5 Albizia chinensis (Osbeck) Merr. Fabaceae 1 9 1 2
6 Albizia lebbeck (L.) Benth. Fabaceae 1 5 1 6 37 5
7 Alphitonia philippinensis Braid Rhamnaceae 1 3 1 1
8 Alstonia scholaris (L.) R. Br. Apocynaceae 1 1 1 2
9 Antidesma bunius (L.) Spreng. Phyllanthaceae 2 1

10 Aporosa octandra (Buch.-Ham.
ex D. Don) Vickery Phyllanthaceae 21 1 38 1 2 3 3 10 7 1 3 1

11 Aralia vietnamensis Ha Araliaceae 1 1 1

12 Archidendron clypearia (Jack)
I.C.Nielsen Fabaceae 1

13 Archidendron lucidum (Benth.)
I.C.Nielsen Fabaceae 6 1 10 16 3 9 4 13 3 3 2 2 1

14 Artocarpus rigidus Blume Moraceae 1 1 1 4 1 2 1 3 1 1 1 1
15 Azadirachta excelsa (Jack) Jacobs Meliaceae 2 10 1 4 3 1
16 Baccaurea ramiflora Lour. Phyllanthaceae 27 2 2 5 1 5 8 7 8 7 1 7 9 7 21 1 7
17 Balakata baccata (Roxb.) Esser Euphorbiaceae 8 6 3 3 1 1 87 1
18 Barringtonia macrocarpa Hassk. Lecythidaceae 3

19 Broussonetia papyrifera (L.)
L’HÃ©r. ex Vent. Moraceae 1 1

20 Brucea javanica (L.) Merr. Simaroubaceae 16 1 1 1
21 Buchanania siamensis Miq. Anacardiaceae 1
22 Calophyllum calaba L. Calophyllaceae 1 2 2 2

23 Camellia forrestii (Diels)
Cohen-Stuart Theaceae 1 1 1 2 2 3 11 2 1 1

24 Cananga latifolia (Hook.f. &
Thomson) Finet & Gagnep. Annonaceae 1

25 Canarium album (Lour.) DC. Burseraceae 1 1
26 Canarium littorale Blume Burseraceae 4 1 2 3 1 3 1 1 1
27 Canarium pimela K.D. Koenig Burseraceae 1 2 4 1 3 3 3
28 Carallia brachiata (Lour.) Merr. Rhizophoraceae 9 2 1 1 3
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Table A2. Cont.

No Species Family
SF1 Plots SF2 Plots OGF Plots

1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 1 2 3 4

29 Castanopsis piriformis
Hickel & A.Camus Fagaceae 3 5 3 5 1 85 20 8 2 3

30 Cinnamomum bejolghota
(Buch.-Ham.) Sweet Lauraceae 1 1

31 Cinnamomum iners
Reinw. ex Blume Lauraceae 29 3 12 5 1 1 21 9 3 5 2 2 12 19 4 11

32 Cinnamomum porrectum (Roxb.)
Kosterm. Lauraceae 1

33 Citrus hystrix DC. Rutaceae 1 1 1
34 Clausena excavata Burm. f. Rutaceae 4 4 6 1
35 Colona erecta (Pierre) Burret Malvaceae 1 1 1 1 1 7 1 1 2 1 6 3 3 6

36 Cratoxylum formosum (Jack)
Benth. & Hook. f. ex Dyer Hypericaceae 4 8 2 26 18 4 17 7

37 Croton tiglium L. Euphorbiaceae 6 1 1 1 1 1 16 16 6 21
38 Crypteronia paniculata Blume Crypteroniaceae 12 21 1 6 2 3

39 Dillenia ovata Wall. ex Hook.f.
& Thomson Dilleniaceae 1 2 2 10 5 10

40 Dimocarpus longan Lour. Sapindaceae 1 3 6 9 22 1 3 6 3
41 Diospyros buxifolia (Blume) Hiern Ebenaceae 1
42 Diospyros hasseltii Zoll. Ebenaceae 1 5 1 1 3 3

43 Dysoxylum loureirii (Pierre)
Pierre ex Laness. Meliaceae 2 1 1 3 2

44 Elaeocarpus bojeri R.E. Vaughan Elaeocarpaceae 1 2

45 Elaeocarpus chinensis (Gardner &
Champ.) Hook. f. ex Benth. Elaeocarpaceae 1 1

46 Elaeocarpus gagnepainii Merr. Elaeocarpaceae 1 1

47 Elaeocarpus griffithii (Wight)
A.Gray Elaeocarpaceae 3 2 4 16 9 6 5 1 1 2

48 Elaeocarpus harmandii Pierre Elaeocarpaceae 1
49 Elaeocarpus lanceifolius Roxb. Elaeocarpaceae 1
50 Elaeocarpus obtusus Blume Elaeocarpaceae 1 1
51 Elaeocarpus stipularis Blume Elaeocarpaceae 2 1 1 12 2 8 3 1
52 Elaeocarpus tectorius Poir. Elaeocarpaceae 2 1 3 2 1 29 8 3 2 3 7 2 8
53 Endospermum chinense Benth Euphorbiaceae 1 1
54 Engelhardtia serrata Blume Juglandaceae 1 1
55 Eurya japonica Thunb. Pentaphylacaceae 1 1 3 3 5 2
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Table A2. Cont.

No Species Family
SF1 Plots SF2 Plots OGF Plots

1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 1 2 3 4

56 Eurya trichocarpa Korth. Pentaphylacaceae 4 1 1 3
57 Eurycoma longifolia Jack Simaroubaceae 1

58 Fagraea fragrans Roxb. ex
Carey & Wall. Gentianaceae 3 18 41 1 3

59 Ficus drupacea Thunb. Moraceae 1 1
60 Ficus fulva Reinw. Moraceae 1 3 30 1
61 Ficus hispida L. f. Moraceae 2

62 Garcinia cochinchinensis
(Lour.) Choisy Clusiaceae 2 2 2 2 5

63 Garcinia fusca Pierre Clusiaceae 6 4 8 12 3 7

64 Garcinia oblongifolia
Champ. ex Benth. Clusiaceae 1 2 1 2 1 2 8 9

65 Gardenia obtusifolia
Roxb. ex Hook.f. Rubiaceae 3 2 2 1 3 2

66 Gironniera subaequalis Planch. Cannabaceae 5 3 1 2 8 2 2 8

67 Glochidion zeylanicum
(Gaertn.) A. Juss. Phyllanthaceae 1 5 3 11 4 4 18 3 1

68 Gonocaryum lobbianum
(Miers) Kurz Cardiopteridaceae 2 1 1

69 Grewia asiatica L. Malvaceae 1 3
70 Grewia tomentosa Juss. Malvaceae 1 1 1 2 1
71 Helicia formosana Hemsl. Proteaceae 10 1 4
72 Hibiscus squamosus Hochr. Malvaceae 1 1 3 1

73 Homalium cochinchinensis
(Lour.) Druce Salicaceae 1 2

74 Horsfieldia amygdalina
(Wall.) Warb. Myristicaceae 1

75 Hymenodictyon orixense
(Roxb.) Mabb. Rubiaceae 1

76 Ilex godajam (Colebr. ex Wall.)
Wall. ex Hook. f. Aquifoliaceae 1 6 1 11 1 2

77 Kibatalia laurifolia (Ridl.)
Woodson Apocynaceae 6 1 1

78 Knema furfuracea
(Hook. f. & Thomson) Warb. Myristicaceae 3 2 1 2 1 6 2 1 1 1

79 Knema globularia (Lam.) Warb. Myristicaceae 1
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Table A2. Cont.

No Species Family
SF1 Plots SF2 Plots OGF Plots

1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 1 2 3 4

80 Lagerstroemia micrantha Merr. Lythraceae 4 21 1 2 1

81 Lannea coromandelica
(Houtt.) Merr. Anacardiaceae 4 3 1

82 Lithocarpus braianensis A.Camus Fagaceae 1 3 2 1

83 Lithocarpus dealbatus (Hook. f.
& Thomson ex Miq.) Rehder Fagaceae 1 4 7 1 8 2 4 21 3 29 12 1 1 6 1 6

84 Lithocarpus echinotholus (H.H.
Hu) Chun & C.C. Huang Fagaceae 1 1 1

85 Lithocarpus gigantophyllus
(Hickel & A. Camus) A. Camus Fagaceae 6 1 2 1 2 2 3

86 Lithocarpus truncatus (King ex
Hook. f.) Rehder & E.H. Wilson Fagaceae 2 4 2 1 1 3 1 1 12 21 15 25

87 Litsea auriculata S.S. Chien &
W.C. Cheng Lauraceae 2

88 Litsea balansae Lecomte Lauraceae 1 6 2 1 12 4 5 1 4 1 2 1 8
89 Litsea cubeba (Lour.) Pers. Lauraceae 3
90 Litsea elongata (Nees) Hook. f. Lauraceae 3
91 Litsea glutinosa (Lour.) C.B. Rob. Lauraceae 1 2 6 9 1 2 1 2 1 5 3 4 8

92 Litsea lancifolia (Roxb. ex Nees)
Benth. & Hook. f. ex Fern.-Vill. Lauraceae 1 1

93 Litsea martabanica
(Kurz) Hook. f. Lauraceae 2 1

94 Litsea monopetala (Roxb.) Pers. Lauraceae 3 3 1
95 Litsea rotundifolia Hemsl. Lauraceae 1 6 1 1 6 5

96 Macaranga trichocarpa
(Zoll.) Müll.Arg. Euphorbiaceae 1 121 17 80 1 124 1 1 2 2 1 5

97 Magnolia braianensis
(Gagnep.) Figlar Magnoliaceae 1 5 9 6

98 Magnolia mediocris
(Dandy) Figlar Magnoliaceae 1 1 9 1 2

99 Mallotus barbatus Müll.Arg. Euphorbiaceae 15 15 2 8 2 1 5 1

100 Mallotus philippensis
(Lam.) Müll. Arg. Euphorbiaceae 23 9 11 6 8 2 4 1 3

101 Mangifera odorata Griff. Anacardiaceae 3 2

102 Melicope pteleifolia
(Champ. ex Benth.) T.G. Hartley Rutaceae 1 4 1 6 2 2 1 1
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Table A2. Cont.

No Species Family
SF1 Plots SF2 Plots OGF Plots

1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 1 2 3 4

103 Memecylon scutellatum
(Lour.) Hook. & Arn. Melastomataceae 1 1 2 1 1 1 3 2

104 Millettia nigrescens Gagnep. Fabaceae 1 1
105 Neolitsea ellipsoidea C.K. Allen Lauraceae 14 1 10 3 2 3 2 1 16 16 6
106 Ocotea lancifolia (Schott) Mez Lauraceae 23 3 10 3 1 4 16 8 8 2 3 1 16 11 5 4
107 Ormosia sumatrana (Miq.) Prain Fabaceae 3 1 1 3
108 Parinari anamensis Hance Chrysobalanaceae 4

109 Peltophorum dasyrrhachis (Miq.)
Kurz Fabaceae 1 1

110 Phoebe angustifolia Meisn. Lauraceae 12 2 9 20 27 101 9 14 12 10 2 13 2 7 12
111 Phoebe macrocarpa C.Y. Wu Lauraceae 4 8 3 1 1
112 Phyllanthus reticulatus Poir. Phyllanthaceae 2

113 Polyalthia cerasoides (Roxb.)
Benth. & Hook. f. ex Bedd. Annonaceae 3 1 3 3 1 1 9 1 11 5

114 Premna mollissima Roth Lamiaceae 1 1
115 Prunus arborea (Blume) Kalkman Rosaceae 1 2 2 1 3 3 1

116 Prunus phaeosticta
(Hance) Maxim. Rosaceae 11 18 7 2

117 Psydrax dicoccos Gaertn. Rubiaceae 1

118 Pterospermum heterophyllum
Hance Malvaceae 2 3 1

119 Radermachera hainanensis Merr. Bignoniaceae 6 1 1 1 2 1 1 1
120 Randia aculeata L. Rubiaceae 1 1 2
121 Rhodoleia championii Hook. f. Hamamelidaceae 5 4 1 44 5 75 2 2
122 Schefflera heptaphylla (L.) Frodin Araliaceae 1 5 1 1 3 1 4 3 1 5 2 5
123 Schima wallichii (DC.) Korth. Theaceae 20 4 14 3 1 11 16 13
124 Stereospermum annamense Dop Bignoniaceae 1 1

125 Styrax tonkinensis
(Pierre) Craib ex Hartwich Styracaceae 2 5 24 4 4 1 12 1 22 14 4

126 Syzygium chunianum Merr. &
L.M. Perry Myrtaceae 10 2 16 3 45 3 3 4 3 15 8 18

127 Syzygium cumini (L.) Skeels Myrtaceae 10 3

128 Syzygium lanceolatum
(Lam.) Wight & Arn. Myrtaceae 3 2 13 5 1 31 9 3 3 14 3 5 6 7 23 44 31

129 Syzygium levinei (Merr.)
Merr. & L.M. Perry Myrtaceae 8 3 9 8 5
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Table A2. Cont.

No Species Family
SF1 Plots SF2 Plots OGF Plots

1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 1 2 3 4

130 Terminalia bellirica
(Gaertn.) Roxb. Combretaceae 1

131 Toona sureni (Blume) Merr. Meliaceae 1 1 2
132 Trema orientalis (L.) Blume Cannabaceae 1 8 64 20 1 6

133 Trevesia palmata
(Roxb. ex Lindl.) Vis. Araliaceae 1 1

134 Triadica cochinchinensis Lour. Euphorbiaceae 10 3 1 2 2 4 2 6 5 6
135 Vitex pinnata L. Lamiaceae 1 1 1 1 1
136 Walsura pinnata Hassk. Meliaceae 2 3 3 5 2 3 1 1 10 20 7 12

137 Wendlandia paniculata
(Roxb.) DC. Rubiaceae 6 29 9 1 2 43 11 12 1

138 Xylopia vielana Pierre Annonaceae 1 2 11 8 14 5 1
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