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Abstract: The aim of the research was to check whether the healing of bark-stripping wounds of
the silver fir tree trunks reduces the share of wood-decomposing fungi, which may be the result of
inter-species interactions. The study carried out in Gorce National Park in Polish Western Carpathians
analyzed drill holes of sapwood from three types of wounds (fresh, healed and old) on fir trunks
with a diameter at breast height (DBH) of 4.0–16.9 cm as a result of bark-stripping by red deer (Cervus
elaphus). In the wood of fresh wounds Alternaria alternata (Fr.) Keissl. and Arthrinium arundinis
(Corda) Dyko & B. Sutton had the largest share in mycobiota. Phompsis spp. and the species Sydowia
polyspora (Bref. & Tavel) E. Müll. and Epicoccum nigrum Link were also isolated. The dominants in old
wounds were Eutypa spp., Phomopsis spp. and Cylindrobasidium evolvens (Fr.) Jülich. Healed wounds
were dominated by Trichoderma atroviride P. Karst, a fungus antagonistic to many fungal pathogens.
Such properties are shared by A. arundinis, especially common in fresh wound wood. It seems that
these fungi support the process of wounded tree regeneration (healing of wounds) and limit the
activity of wood-decaying fungi in old age, which makes fir survival very high. Thus, even a strong
red deer pressure cannot be considered the basic factor determining the dynamics of fir in this part of
the Carpathians.

Keywords: forest ecology; fungal ecology; mountain fir-spruce forest; wood decay fungi; bark strip-
ping; Abies alba; ITS rDNA; barcoding of fungi; ungulates; red deer; Gorce National Park; Carpathians

1. Introduction

The bark stripping by ungulates is the result of their need for food and specific
nutrients contained in the bark, including different fiber fractions [1] in the hard-to-survive
winter period [2], but also in summer [3]. This method of a diet supplementing is typical
for forest representatives of Cervidae including genera Alces, Capreolus, Cervus, Dama,
Odocoileus, Rangifer [1] and, unless it causes direct, serious economic damage to forests,
is generally acceptable and these animals are treated as key factors of natural ecological
processes shaping inter-species relationships and the diversity and structure of forest plant
communities [4,5]. Open wounds, however, allow the infection of wood-inhabiting fungi,
the presence of which is already most often perceived negatively in commercial forests.

The problem of young tree bark-stripping and then wound colonization, which in
turn may lead to infection of tree tissues by pathogenic fungi, has long been noticed by
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researchers. The first Polish reports about the significant impact of bark-stripping by
red deer (Cervus elaphus) on the infection of trees by fungi come from the Karkonosze
Mountains in the 1960s. Domański [6] found that open wounds on spruce trunks facilitate
infection by saprophytes and pathogens. Among the potential perpetrators of wood decay,
he mentions fungi of the genus Stereum, but also species currently included in the so-called
Deuteromycota fungi. His results were later confirmed by many researchers, who isolated
many dangerous pathogens from bark-stripped spruce trunks, such as Heterobasidion
spp. [7]. The study also confirmed the presence of the species of fungi that were then
classified as Deuteromycota, and which are responsible for the so-called gray or mildew rot
of wood [8]; their role may be much more important in the process of wood decomposition
than previously thought [7,8].

Arhipova et al. [9] studied, among others, the species composition of fungi occurring
in Pinus contorta Douglas ex Loudon stem wounds, resulting from elk and deer bark-
stripping. Researchers isolated a total of 28 taxa of fungi found in more than half of
the wood samples tested. Ascomycota anamorphs was the dominating species. However,
studies by many authors reveal different sensitivity of individual tree species to bark-
stripping and, consequently, to fungal infections and the appearance of wood rot. In the
case of fir, the species composition of fungi inhabiting wounds has not been studied so
far [10].

Silver fir (Abies alba Mill.) is the sixth most productive forest-forming species in
Europe [11]. Its native distribution ranges from the Pyrenees in the west to the Carpathians
in the east and from the Polish lowlands in the north to southern Italy in the south [12].
In the Carpathians, it is one of the three main forest-forming species, next to beech and
spruce. It is most numerous in the Abieti-Piceetum montanum fir-spruce forests and in the
fir variant of the Carpathian beech forest Dentario glandulosae-Fagetum abietetosum [13].
The situation is similar in Gorce, in the Polish Western Carpathians [14,15], where Gorce
National Park was established in 1981 on an area of just over 7000 ha. Its strategic goal is
to preserve or restore natural features to forests through strict protection of spontaneous
natural processes in the ever-larger territory of the park, currently implemented on an area
of 4009 ha. One such process is red deer pressure on forests, which results in damaging the
young generation of silver fir by browsing and bark-stripping [16,17]. This phenomenon
is generally perceived negatively by many people, especially by foresters, hunters and
locals sharing space with wild herbivorous [18,19]. The pressure of these animals on forests
is also controversial for nature protection services themselves, which often identify their
mission with the need to protect the forest using management methods and to treat fir as
an endangered species that requires special care [20]. This view is largely the result of the
phenomenon of mass extinction of fir in Europe in the second half of the last century [21,22],
and the unique food preference of this forest-forming species by deer [20,23,24]. It is also
supported by the usually locally poor regeneration capacity of fir stands, which, due to
climatic, geomorphological and lighting conditions, can be highly variable and irregular in
time and space [25–27], depending on the occurrence of the ‘rare windows of opportunity’
for fir [23].

The conviction about the poor condition of the fir, despite the noble cause of wildlife
preservation, is the reason for the so-called active protection measures in Polish Carpathian
national parks, consisting in securing treetops with plastic spirals, and trunks of young
firs with repellents [20]. Even if data from various regions of the Carpathians indicate
that fir is currently in expansion [25,28]; that the condition of fir trees which underwent
bark-stripping, expressed in terms of growth rate and tree vitality, does not significantly
differ from the “normal” ones [10]; and that the survival rate of the young generation of
this species, despite intensive gnawing, is very high [20,29], there are still worries about its
health. The perspective of future forests, including natural ones, in which bark-stripped
fir trees will not grow old due to the destructive fungi developing in the wood, raises
concerns. These fears, as well as the desire to learn about the diversity of fungi inhabiting
the wood of fallen firs in different thickness classes, their phytopathological significance
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and, finally, possible inter-species interactions in the communities of these fungi, became
the reason for conducting this study.

The working hypotheses that we wanted to verify are: (1) the type of bark stripping
wound and DBH of trunk determine wood inhabiting fungal diversity and the share of
wood-decomposing fungi, and (2) the natural reduction in the share of wood-decomposing
fungi in healing silver fir trunks is due to fungal species interactions inhabiting wounds,
which results in high regenerative capacities of this forest-forming species. The last hypoth-
esis was based on the results of the study by Pach [10], who found that with age, there is a
significant decrease in the rate of decay and spread of wood discoloration of bark-stripped
fir trees.

The obtained results may provide the answer to the following pragmatic question:
whether in forest habitats dominated by fir (or in the reconstruction phase), particularly in
national parks, it is necessary to apply cost-intensive, mechanical (plastic spirals for apical
shoots) and chemical (repellents) protection of this forest-forming species against red deer.
It is all the more important as, in the time of climate change and the progressive decay of
mountain spruce stands, fir seems to be a species of the future [13,25].

2. Materials and Methods
2.1. Fieldwork

The research was carried out in the Gorce National Park (Western Carpathians, South-
ern Poland) within the active protection zone covered with young (early optimal growth
stage) fir-spruce forest of the lower belt Abieti-Piceetum montanum (Figure 1) extending on
acid brown soil. Wood samples were taken with a Pressler drill from a sapwood part of
silver fir trunks, referring to three categories of wounds: fresh wounds marked with the
symbol “F” (Figure 2A), healed wounds marked with the symbol “H” (Figure 2B) and old,
and open wounds marked with the symbol “O” (Figure 2C). The drill was decontaminated
with Aerodesin 2000 before each drilling.
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Figure 2. (A–C) Types of studied fir wounds caused by red deer (Cervus elaphus): (A)—fresh wound “F”, (B)—healed wound
“H”, (C)—old wound “O”.

The study covered trees of various age classes, corresponding to the following values
of a diameter at breast height (DBH): 4.0–6.9 cm, 7.0–9.9 cm, 10.0–12.9 cm, 13.0–16.9 cm.
The sole criterion for selecting the sample trees was that they had achieved the established
thickness class DBH and wound type, so that each wound type in each thickness class
was represented by ± 10–12 trees. This choice was firstly determined by the shortest
distance between the fir tree and the linear temporal transect in each of the four heavily
bark stripped regions, and in the absence of trees meeting the criteria, they were selected
randomly from the immediate vicinity. A total of 141 wood samples from bark-stripping
wounds were collected (Table 1). Additionally, wood samples were collected in the same
way from 11 firs with DBH between 30.0–40.0 cm with no visual signs of bark-stripping,
growing in the vicinity of damaged trees. These trees were taken as a reference sample,
assuming that in the past they were also subjected to similar pressure of red deer. It was
assumed that the healing of wounds and further growth of these trees is the result of high
regenerative abilities of this tree species, resulting from the natural mechanism allowing
them to neutralize pathogenic fungi inhabiting wounds sustained at younger age.

Table 1. The number of collected drill samples of sapwood in reference to the category of bark-
stripping wounds of Abies alba stems.

DBH [cm] Fresh Wounds Healed Wounds Old Wounds

4.0–6.9 13 13 12
7.0–9.9 11 12 12

10.0–12.9 12 15 12
13.0–16.9 5 10 14

Sum 41 50 50
Control > 30.0 11

In total 152

2.2. Laboratory Analysis

The pieces of wood were placed on MEA medium (Malt Extract Agar, Difco, La Vista,
NE, USA) in accordance with the methodology proposed by Arhipova et al. [9] and PDA
medium (Potato Dextrose Agar, Difco, Lawrence, KS, USA). Growing colonies of fungi were
passaged and then clean mycelium was obtained by the method of monospore cultures,
meeting the requirements of the molecular method of determining species affiliation.
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Isolates grown in Petri dishes with PDA, showing morphological diversity, and repre-
senting various taxonomic units with high probability, were used for molecular analyses
based on the sequence of ITS rDNA regions. The subject of molecular identification were
representatives separated on the basis of microscopic morphological features suggesting
their belonging to different species/genera. The aim of the analysis of ITS regions, in
addition to the identification of the analyzed isolates, was to graphically depict the genetic
connections between isolates and enrich the NCBI international database with their se-
quences. From pure cultures of individual isolates grown on PDA, three mycelial discs
5 mm in diameter were cut and transferred to Petri dishes with PDB glucose-potato liquid
medium (Potato Dextrose Broth, A&A Biotechnology, Gdańsk, Poland), and protected
with parafilm. The mycelium obtained after 5–7, and in the case of the slowest growing
specimens—after 10 days, was rinsed with sterile water, filtered using a filtering set consist-
ing of filter paper, a Büchner funnel and a vacuum pump, and then lyophilized for 2 days
in a Cool Safe freeze dryer (Scanvac, Lynge, Denmark). DNA isolation was performed
according to the modified method of Doyle and Doyle [30]. Thirty milligrams of mycelium
of each isolate homogenized in a Magna Lyser homogenizer (Roche, Basel, Switzerland)
using quartz beads and quartz sand was placed in a 2 mL tube and covered with 900 µL
of extraction buffer containing CTAB 5.0%, EDTA 0.5 M, NaCl 5.0 M, Tris -HCl (pH 8.0)
1.0 M, 2-mercaptoethanol and PVP 2.0%. After incubation at 65 ◦C, phenol, chloroform
and isoamyl alcohol were used to remove proteins and carbohydrates. In the following
stages, 95% and 70% ethyl alcohol were used. The obtained DNA was suspended in 200 µL
of ddH2O and cleaned with an anti-inhibitor kit (A&A Biotechnology, Gdańsk, Poland).

DNA was measured fluorometrically on a Quantus device (Promega, WI, USA) and
diluted in ddH2O to a concentration of 10 ng·µL−1 for further analysis. The PCR re-
action aimed to amplify the ITS regions was performed in a volume of 37.5 µL con-
taining the PCR Core Kit reagents (QIAGEN, Germantown, MD, USA): 1x buffer, 1x
Q solution, 1 mM MgCl2, 0.2 mMdNTP, 0.6 pM of each of the two primers (ITS1: 5′-
TCCGTAGGTGAACCTGCGG-3′ and ITS4: 5′-TCCTCCGCTTATTGATATGC-3′, White
et al. [31] and DNA with a concentration of 10 10 ng·µL−1. DNA was amplified in an
Eppendorf EP Mastercycler according to the reaction protocol: pre-denaturation 3 min at
95 ◦C—3 min, 35 cycles (95 ◦C—1 min, 55 ◦C—45 s, 72 ◦C—1 min) and final elongation
at 72 ◦C—10 min. The presence of reaction products was verified after electrophoretic
separation in TBE buffer, carried out on a 1.2% agarose gel (Pronadisa, Spain) with the
addition of Simply Safe (EURx, Poland) dye, applying 2 µL of the post-reaction mixture.

The amplification products were purified and sequenced by Genomed (Poland).
FinchTV 1.4 (Geospiza Inc., WA, USA) was used to analyze the sequences obtained.
ClustalW analysis was performed on Mega7 Toolbar [32] (accessed on 10 October 2020).
The Basic Local Alignment Search Tool (BLAST) in the NCBI database (The National Center
for Biotechnology Information) [33] (accessed on 10 October 2020) was used to identify
species based on the ITS sequence. The Mega7 Toolbar tools [32] were used to determine
the sequence differentiation (overall mean distance) and dendrogram construction based
on the ITS rDNA sequence using the maximum likelihood algorithm (MLE) based on the
Kimura 2-parameter model [34,35].

The nomenclature of the identified taxa is in accordance with the Catalogue of Life [36]
(accessed on 10 October 2020) and the Index Fungorum [37] (accessed on 10 October 2020).

2.3. Statistical Analysis

Based on the achieved results the differences in the abundance of wood decaying fungi
inhabiting three types of bark-stripping wounds (plus control) have been shown on a box-
plot graph. The same type of graph was used to show differences in the fungal diversity of
these wounds. For this purpose, the three α-diversity indexes were calculated: Shannon-
Wiener (H), Pielou (J) and Simpson (D), based on mathematical equation presented in
Patejuk and Pusz [38]. β-biodiversity Sørensen index was calculated separately. Moreover,
the linear regression between fungal colony abundance on types of bark wounds and the
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number of annual rings and DBH was calculated. Graphical representations and basic
statistics were made in Tableau (2020.2.4 Professional Edition).

3. Results
3.1. Taxonomy and Frequency of Fungal Colonies

A total of 41 taxa of fungi were isolated and assigned to a species or higher systematic
rank (Table 2, Figure 3). Trichoderma atroviride P. Karst and the fungi of the genus Eutypa
were dominant among all the isolated fungal colonies, reaching the frequency of nearly
24% and 13%, respectively. There were also relatively many colonies of such taxa as:
Phomopsis spp. (10.19%), Cylindrobasidium evolvens (Fr.) Jülich (8.57%), Paraphaeosphaeria
neglecta Verkley, Riccioni & Stielow (8.29%), Arthrinium arundinis (Corda) Dyko & B. Sutton
(7.71%), and Alternaria alternata (Fr.) Keissl. (6.67%). The level of remaining taxa colonizing
bark-stripping wounds ranged from 3.4 to 0.1% (Figure 4).

Table 2. Fungi isolated from sapwood of bark-stripped Abies alba. Molecular identification based on ITS rDNA region
sequences using BLAST method and maximum likelihood ITS phylogeny.

Fungal Taxa Number Frequency [%] Accession Number in
NCBI

Identity with NCBI Isolates
(Accession Number)

Alternaria alternata (Fr.) Keissl. 70 6.67 MW090865 MT644140, MT487778

Arthrinium arundinis (Corda) Dyko &
B. Sutton 81 7.71

MW090861 MW090870
MW113167 MW090903
MW113168 MW113226

MW113227
MW113228

MT582801, MT446201

Aureobasidium pullulans (de Bary &
Löwenthal) G. Arnaud 4 0.38 MW090923 MT363099, MN922125

Botrytis cinerea Pers. 8 0.76 MW090881 MT573470, MN448502
Cadophora sp. 23 2.19 MW090880 MW090922 MF782737, MF188972
Chaetomium sp. 2 0.19 MW090810 MH171491, KC963908
Coniochaeta sp. 1 0.10 MW090815 MH859071, MG905629
Coprinellus micaceus (Bull.) Vilgalys,
Hopple & Jacq. Johnson 3 0.29 MW090910 MH179313, GU227721

Cucurbitariaceae sp. 1 0.10 MW090913 KC963916, MK460387
Cylindrobasidium evolvens (Fr.) Jülich 90 8.57 MW113169 MN947592, MH854673
Cystobasidium larynges (Reiersöl)
Yurkov, Kachalkin, H.M. Daniel, M.
Groenew., Libkind, V. de García, Zalar,
Gouliam., Boekhout & Begerow

1 0.10 MW090823 MH047192, KY103134

Cytospora sp. 19 1.81 MW090820 MW090909 KY051899, KU516449
Epicoccum nigrum Link 34 3.24 MW090813 MT548679, LC543647

Eutypa sp. 129 12.29 MW090805 MW090860
MW090912 MW090911 AY620998, KF453561

Fusarium acuminatum Ellis & Everh. 6 0.57 MW090924 MT649858, MT635295
Fusarium avenaceum (Fr.) Sacc. 1 0.10 MW090925 MT446118, MT276139

Fusarium tricinctum (Corda) Sacc. 15 1.43 MW090875 MW090907
MW090918 MK934343, KC311496

Helotiales sp. 1 0.10 MW090817 DQ317330, MF494618
Heterobasidion annosum (Fr.) Bref. 1 0.10 MW090819 MK395162, KU727784
Neonectria neomacrospora (C. Booth &
Samuels) Mantiri & Samuels 5 0.48 MW090919 MH580206, MG049669

Nigrospora oryzae (Berk. & Broome)
Petch 9 0.86 MW090868 MT556421, MG661721

Paraphaeosphaeria neglecta Verkley,
Riccioni & Stielow 87 8.29 MW090864 MW090874

MW090905 MW090906 MK646057, MN244542

Penicillium chrysogenum Thom 17 1.62 MW090830 MT524448, MK762610
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Table 2. Cont.

Fungal Taxa Number Frequency [%] Accession Number in
NCBI

Identity with NCBI Isolates
(Accession Number)

Peniophoraceae sp. 6 0.57 MW090901 MH010048, MH857634
Phomopsis sp. 107 10.19 MW090829 MW090876 MN538335, MT877030
Preussia minima (Auersw.) Arx 3 0.29 MW090811 MG457827, MT645911
Rhizosphaera macrospora Gourb. & M.
Morelet 4 0.38 MW090806 AM884745, MN538337

Rhizosphaera oudemansii Maubl. 1 0.10 MW090827 KU516578, EU700366
Sarea difformis (Fr.) Fr. 5 0.48 MW090809 MN699648, FR837921
Schizophyllum commune Fr. 9 0.86 MW113225 MT647523, MT601951
Sordaria fimicola (Roberge ex Desm.)
Ces. & De Not. 1 0.10 MW090812 MK965099, KX986578

Stereum sanguinolentum (Alb. &
Schwein.) Fr. 6 0.57 MW090831 AY618670, AF533962

Sydowia polyspora (Bref. & Tavel) E.
Müll. 28 2.67 MW090808 MW090828

MW090873 KY659505, KU837235

Tolypocladium sp. 2 0.19 MW090807 MN096582, MH730171
Trametes versicolor (L.) Lloyd 2 0.19 MW090818 MW090825 KJ995921, EU661891
Trametes sp. 3 0.29 MW090814 MK343672, MK269115
Trichoderma atroviride P. Karst 248 23.62 MW090869 MT341775, MT023026
Truncatella angustata (Pers.) S. Hughes 5 0.48 MW090908 MT514378, MK647988
Valsa sp. 1 0.10 MW090826 HQ654894, KY051908

Xylariales sp. 10 0.95

MW090804 MW090816
MW090821
MW090822
MW090878

KC774617, KF415082

Zalerion sp. 1 0.10 MW090824 AY465470, AF169308

3.2. Fungi-Wounds Relationship

When analyzing the obtained results, it can be concluded that the most fungal colonies
were isolated from old wounds (434 colonies and 17 taxa). For fresh and scarred wounds,
this number was 249 (18 taxa) and 212 (24 taxa), respectively, compared to the total number
of 154 (nine taxa) colonies obtained from the control drills (Table 3). In the case of fresh
wounds, species such as A. alternata and A. arundinis had the highest share. Fungi belonging
to the genus Phomopsis were also isolated, as well as the species Sydowia polyspora (Bref. &
Tavel) E. Müll. and Epicoccum nigrum Link. In the case of fresh wounds, T. atroviride was a
distinct dominant, which also dominated in the mycobiota of wood collected from control
trees. On the other hand, in the case of old wounds, the fungi of the genera Eutypa and
Phomopsis, as well as the fungus C. evolvens, were dominant.
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Table 3. Fungi colonies isolated from sapwood of bark-stripped Abies alba firs depending on wound type and habitation
depth (O—outside part of wood; M—middle part of wood; H—the part near heartwood).

Fungal Taxa

Wound
Control

Fresh Healed Old

O M H O M H O M H O M H

Alternaria alternata 14 6 9 6 6 1 11 12 5
Arthrinium arundinis 19 12 9 4 3 1 3 14 7 6 3

Aureobasidium pullulans 1 3
Botrytis cinerea 3 1 3 1
Cadophora sp. 6 11 6

Chaetomium sp. 2
Coniochaeta sp. 1

Coprinellus micaceus 3
Cucurbitariaceae sp. 1

Cylindrobasidium evolvens 7 6 6 23 24 24
Cystobasidium laryngis 1

Cytospora sp. 6 6 6 1
Epicoccum nigrum 9 6 11 5 3

Eutypa sp. 51 42 36
Fusarium acuminatum 6
Fusarium avenaceum 1
Fusarium tricinctum 3 6 1 2 3

Helotiales sp. 1
Heterobasidion annosum 1

Neonectria neomacrospora 5
Nigrospora oryzae 6 3

Paraphaeosphaeria neglecta 2 6 6 6 1 12 18 12 12 12
Penicillium chrysogenum 1 4 6 6

Peniophoraceae sp.
Phomopsis sp. 7 10 15 3 1 37 20 12 2

Preussia minima 2 6
Rhizosphaera macrospora 4
Rhizosphaera oudemansii 1

Sarea difformis 5
Schizophyllum commune 1 2 6

Sordaria fimicola 1
Stereum sanguinolentum 6

Sydowia polyspora 8 4 8 5 1 1 1
Tolypocladium sp. 1 1
Trametes versicolor 1 1

Trametes sp. 3
Trichoderma atroviride 6 6 7 42 42 43 6 8 7 24 27 30
Truncatella angustata 2 3

Valsa sp. 1
Xylariales sp. 1 1 1 1 4 1 1
Zalerion sp. 1

In total: 86 70 93 70 63 79 159 157 118 43 55 56

The number of colonies isolated from the samples was highly variable depending on
the sample, but the median for the examined wounds was 0 for fresh wounds, 1 for healed
wounds and 7 for old wounds (Figure 5). Control samples had the highest number of
colonies, and in this case the distribution of the number of colonies isolated from individual
samples had the features of normal distribution.
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When analyzing wounds on fir trunks in terms of their DBH, it was found that
the largest number of colonies occurs in thinner trees (DBH 4.0–6.9 cm). In their case,
306 colonies belonging to 25 taxa were obtained. In trees thicker than 7.0 cm, the number of
colonies ranged from 113 to 271, with 32 taxa. The fungi of the genus Eutypa and Phomopsis
had the highest share (Table 4).

Table 4. The number of isolated fungi colonies inhabiting wounds depending on the DBH of bark-stripped firs.

Fungal Taxa
DBH [cm]

4.0–6.9 7.0–9.9 10.0–12.9 13.0–16.9 Control

Alternaria alternata 43 6 4 12 5
Arthrinium arundinis 23 19 30 9

Aureobasidium pullulans 3 1
Botrytis cinerea 4 2 1 1
Cadophora sp. 12 11

Chaetomium sp. 2
Coniochaeta sp. 1

Coprinellus micaceus 3
Cucurbitariaceae sp. 1

Cylindrobasidium evolvens 33 33 18 6
Cystobasidium laryngis 1

Cytospora sp. 18 1
Epicoccum nigrum 7 6 18 3

Eutypa sp. 42 24 33 30
Fusarium acuminatum 6
Fusarium avenaceum 1
Fusarium tricinctum 1 2 9 3

Helotiales sp. 1
Heterobasidion annosum 1

Neonectria neomacrospora 5
Nigrospora oryzae 9

Paraphaeosphaeria neglecta 20 23 6 48
Penicillium chrysogenum 1 10 6

Peniophoraceae sp. 6
Phomopsis sp. 17 19 41 28 2

Preussia minima 2 6
Rhizosphaera macrospora 2 2
Rhizosphaera oudemansii 1

Sarea difformis 5
Schizophyllum commune 9

Sordaria fimicola 1
Stereum sanguinolentum 6

Sydowia polyspora 12 10 1 5
Tolypocladium sp. 2
Trametes versicolor 1 1

Trametes sp. 3
Trichoderma atroviride 54 1 33 91 81
Truncatella angustata 5

Valsa sp. 1
Xylariales sp. 1 2 7
Zalerion sp. 1

In total: 306 113 215 271 172

The impact of the measured parameters of trees, i.e., the number of annual rings and
DBH, on the number of fungal colonies isolated from sapwood drillholes from individual
types of wounds is interesting (Figure 6). The number of isolates from old wounds was not
significantly influenced by either the number of annual rings (age of the trees) or the DBH
of firs. A very weak positive correlation at the level of R2 = 0.01229 was found between the
number of colonies inhabiting scarred wounds and the age of the trees, while the DBH of
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the sampled firs was not significant. Significant differences were found in the case of fresh
wounds, where the number of isolated colonies decreased with the increasing number
of annual rings and DBH. The detected correlation was average and depending on the
parameter was R2 = 0.2015 for annual rings and R2 = 0.1205 for DBH.
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3.3. Wounds-Fungal Diversity Relationship

On the basis of the obtained results for samples with all variables taken into account
(location, type of wound and part of wood), α- and β-biodiversity indexes were calculated,
describing the differences between the studied populations. Detailed results are presented
in Tables 5 and 6. If no isolates were identified from a given sample, they were not included
in the biodiversity analysis (Table 5). Samples of very poor biodiversity (1–2 taxa in the
sample), which do not meet the requirements for calculations, are marked with “0” values
(Table 5).

The most common values of the Shannon-Wiener and Simpson diversity indices for
all trials with healed wounds were lower than the values of these indices for fresh and
old wounds (Figure 7). The range of the Pielou evenness index values was much wider
for the mycobiota of wounds compared to the control and for the other types of wounds,
indicating that these wounds are inhabited by fungal communities, often dominated by a
few species, among which T. atroviride plays a major role (Figure 2).
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Table 5. α-diversity indexes values calculated per every type of sample. Abbreviations: J—Suhora
forest district, Jasionów forest area, K—Kudłoń forest district, Za Palacem forest area, P—Kudłoń
forest district, Pasieka forest area, S—Suhora forest district, Czarny Groń forest area.

Location Type of
Wound Part of Wood

α-Diversity Indexes

Shannon-Wiener
(H) Pielou (J) Simpson (D)

J old outside 0.0000 0.0000
J fresh inside 0.4101 0.5917 0.2449
J fresh outside 0.6902 0.9957 0.4970
J fresh middle 0.4101 0.5917 0.2449
K control inside 0.9831 0.7091 0.5139
K control outside 0.7078 0.6443 0.4224
K control middle 1.0693 0.7713 0.5730
K old inside 1.6771 0.8618 0.7800
K old outside 1.8821 0.8566 0.8180
K old middle 1.7873 0.8595 0.7956
K healed inside 0.6229 0.4493 0.3033
K healed outside 0.4258 0.3876 0.2037
K healed middle 0.3488 0.5033 0.1975
K fresh inside 1.6408 0.9157 0.7846
K fresh outside 1.4594 0.8145 0.7160
K fresh middle 0.6931 1.0000 0.5000
P old inside 0.0000 0.0000
P old outside 0.2062 0.2975 0.0997
P old middle 0.0000 0.0000
P healed inside 2.2745 0.9153 0.8698
P healed outside 1.9073 0.9172 0.8194
P healed middle 1.2425 0.8962 0.6667
P fresh inside 0.0000 0.0000
P fresh outside 1.0889 0.7855 0.5800
S control inside 1.2309 0.8879 0.6746
S control outside 0.5623 0.8113 0.3750
S control middle 0.8699 0.7918 0.5128
S old inside 1.6627 0.8545 0.7756
S old outside 1.7293 0.8316 0.7686
S old middle 1.8943 0.8621 0.8278
S healed inside 0.7356 0.6696 0.4063
S healed outside 0.6730 0.9710 0.4800
S healed middle 0.6365 0.9183 0.4444
S fresh inside 2.0577 0.9365 0.8549
S fresh outside 1.9568 0.8906 0.8375
S fresh middle 1.9437 0.9347 0.8443

Table 6. Sørensen’s β-biodiversity index comparing the similarity of mycobiota inhabiting different
types of bark-stripping wounds caused by red deer on silver fir in the Gorce National Park.

Control Fresh Healed Old

0.43 0.38
0.42

0.34
0.63

0.59
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Figure 7. Box-plot representation of the biodiversity in three types of wounds of fir trunk, based on
α-diversity indexes: Shannon-Wiener diversity index (H), Pielou evenness index (J) and Simpson
diversity index (D).

On the basis of the Sørensen’s β-biodiversity index, it was estimated that the most
unique mycobiota were found in healed wounds that were least similar to controls (0.34)
or old wounds (0.38) (Table 6). Fresh and old wounds showed the highest group similarity
index (0.63).
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4. Discussion

In the case of fresh wounds, species such as A. alternata and A. arundinis had the
highest share. Fungi belonging to the genus Phomopsis as well as S. polyspora and E. nigrum
were also isolated. These fungi, considered to be secondary pathogens, can also act as
saprotrophs. They were also isolated by other researchers in wood at the initial stages of
decomposition [39,40]. Particularly noteworthy is the large share of A. arundinis fungus in
fresh wounds, the anti-fungal activity of which has been documented [41]. This fungus
was also isolated in research on the mycobiota of fallen spruces [6]. Scar wounds were
most frequently inhabited by T. atroviride, which was also dominant in the mycobiota of
wood collected from control trees. As shown by recent molecular studies, this species
may be a widespread endophyte [42,43], showing anti-fungal properties, which have been
recently used to protect trees against wood-decaying fungi [44–47]. In Gorce, T. atroviride
also numerously inhabited the wood of bark-stripped firs with a DBH above 13.0 cm.
Perhaps the remarkable natural regenerative abilities of silver fir is the consequence of T.
atroviride domination in the mycobiota of healed wounds of thicker trees and in the wood
of visually undamaged control trees with DBH > 30.0 cm. As shown by the research on
the dynamics of stands carried out in the Gorce National Park on permanent monitoring
plots [14], despite the persistent strong pressure of red deer for years, expressed in the share
of bark-stripped firs with DBH < 17.0 cm at the level of 80% of their numbers [15,48], in the
last 25 years, the density of this forest-forming species in the tree layer has increased almost
threefold, from 78 trees/ha in 1992 to 216 trees/ha in 2017, and the percentage share of fir
in the stand increased from 16% to 36% [48]. The survival rate of this species, estimated on
the basis of the number of trees reaching DBH 7.0–16.9 cm in 1992 that survived until 2017,
ranges from 93% to 100%, depending on the thickness class (Table 7).

Table 7. Survivability of young silver fir trees in the area of the Gorce National Park in a period
1992–2017 assessed on a net of 433 permanent monitoring plots (0.05 ha each) distributed in the
whole area of the park (for methodology see e.g., Chwistek 2010). Abbreviations: C—man-cut trees,
BW—broken and windthrown trees.

DBH [d1,3; cm]
in 1992

Number of
Silver Fir Trees

in 1992

Number of the
Same Silver Fir

Trees in 2017
Mortality [N] Survival Rate

[%]

7.0–7.9 164 153 11 (1C) 93.3
8.0–8.9 116 110 6 (2C) 94.8
9.0–9.9 113 110 3 (1C) 97.3

10.0–10.9 71 69 2 (1C) 97.2
11.0–11.9 71 70 1 98.6
12.0–12.9 82 80 2 (1BW) 97.6
13.0–13.9 46 45 1 (1BW) 97.8
14.0–14.9 40 39 1 97.5
15.0–15.9 44 44 0 100
16.0–16.9 38 38 0 100

In turn, Pach [29], while examining the influence of red deer on the cultivation values
of fir stands in the Beskid Sądecki, another range of the Polish Carpathians, came to the
assumption that the occurrence of damage as a result of bark-stripping in fir regeneration
in the undergrowth stage, is probably not dangerous for trees, as compared to the damage
in later development stages. In light of the above, the results of the studies by Niemtur
et al. [13] who, while assessing the health of old fir trunks by using acoustic tomography
method, found that in a random sample (mean age 99 years; N = 30) in the Gorce National
Park, almost 80% of trees did not have butt rot. The share of healthy wood in this part of
measured trunks reached 94%, despite the fact that the dimensions of the Gorce fir trees in
the entire collection of 450 trees in the entire fir range in Poland were the highest.

The fungi of the genus Eutypa had a relatively large share in the mycobiota of fir
trees that underwent bark-stripping. They dominated in the case of thinner trees and
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were isolated from old wounds. They are dangerous pathogens for many crops that can
also infect wood and occur together with other species of wood-decaying fungi [49–51].
The conducted research recorded the presence—along with Eutypa spp.—of the fungus C.
evolvens in old wounds, which may participate in wood decomposition [52,53]. A similar
situation occurs in the case of the Phomopsis genus, which very often colonize the wounds
of fir [54,55] and are known carcinogenic fungi [56].

The actual role of inter-species competition of fungi in fir bark-stripped by red deer
and the assessment of the importance of fungi showing inhibitory properties in the natural
defense mechanism of this forest-forming species against destructive fungi will be the
subject of a separate study.

5. Conclusions

• The greatest number of fungal colonies inhabiting the silver fir wood was obtained
from old open wounds, with a smaller number of taxa compared to fresh and healed
wounds.

• The age and DBH of bark-stripped trees do not seem to be of importance for the degree
of infection of wounds expressed by the number of colonies; nevertheless, species
diversity of wood decay fungi assessed by the α-diversity Shannon-Wiener (H) and
Simpson (D) indices seems to be lower in healed wounds.

• The strong presence of Arthrinium arundinis and Trichoderma atroviride in firs wounds,
which are often antagonistic to pathogenic fungi, may indicate the natural defense
mechanisms of fir, aimed at inhibiting disease processes and, subsequently, the de-
composition of wood.

• The high survival rate of the young generation of fir indicates that despite the strong
pressure of red deer, the fir regeneration mechanism based on inter-species competition
of fungi may be an effective tool in the fight for the survival of this species in the
Carpathians.
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