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Abstract: Terpenoids with lactone moieties have been indicated to possess high bioactivity. Certain
terpenoid lactones exist in nature, in plants and animals, but they can also be obtained by chemical
synthesis. Terpenoids possessing lactone moieties are known for their cytotoxic, anti-inflammatory,
antimicrobial, anticancer, and antimalarial activities. Moreover, one terpenoid lactone, artemisinin,
is used as a drug against malaria. Because of these abilities, there is constant interest in new terpenoid
lactones that are both isolated and synthesized, and their biological activities have been verified.
In some cases, the activity of the terpenoid lactone is specifically connected to the lactone moiety.
Recent works have revealed that new terpenoid lactones can demonstrate such functions and are
thus considered to be potential active agents against many diseases.

Keywords: terpenoid; lactones; biological activity

1. Introduction

The dynamic development of the world has caused new threats to human health and
wellbeing. Due to climate change and overpopulation, as a society, we face many new
problems from cancer-related or pathogenic diseases that are untreatable in the traditional
way. Additionally, increased demand for food has led to the progressive development of
agriculture. With the development of cultivation techniques, there have also been changes
in the insects that threaten them. Moreover, the environment is becoming increasingly
polluted, and alternatives for protection measures are being sought. Among pesticides,
antifeedants play an important role in protecting crops from herbivores. The aim of feeding
deterrents is not to eliminate the pest but to reduce the quantity of the crops being destroyed
below the economic harmfulness threshold. Recently, research has once again begun to
focus on substances that occur in nature, as scientists are becoming inspired by nature.
Lactones have been known since the 19th century and were first obtained synthetically [1].
The characteristic structure of lactones is an oxygen atom double-bonded to a carbon atom,
which is attached to another oxygen atom that is part of a closed ring; thus, lactones are
derivatives of various organic hydroxy acids, depending on the position of the hydroxyl
group, four (β), five (γ) or six-membered (δ) rings can be possessed [2,3]. Many ester
synthesis methods can be applied to synthesize lactones. First, lactones can be synthesized
by the Baeyer–Villiger reaction, based on the exposure of ketones to peracids. The result is
the inclusion of oxygen among alkyl or aryl substituents and carbonyl moieties, forming
the corresponding ester [4]. Another method is halolactonization, where the ring is formed
by the addition of oxygen and a halogen across a C=C double bond. The halogen can then
be removed by free radical hydrogenation [4,5]. The subsequent reaction that is applied
in lactone synthesis is the Favorskii rearrangement [4]. Additionally, there are a variety
of microorganisms that can perform de novo biosynthesis of lactones, but enzymes are
also known for the lactonization process [2]. Baeyer–Villiger oxidation has been applied
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in enzymatic protocols [4]. Two classes of enzymes are responsible for this reaction:
Baeyer–Villiger monooxygenases (BVMOs) and hydrolases that follow the perhydrolase
pathway. Another approach is the oxidative lactonization of diols, mostly using alcohol
dehydrogenases as catalysts [6]. In nature, cyclic esters are plant secondary metabolites that
are connected with catabolic processes involving structurally related fatty acids and often
possess low molecular weights [2]. They are responsible for the aroma of plants, among
other features, and are often constituents of essential oils [3,4]. Natural lactones are mostly
γ-lactones (in plants) and δ-lactones (in animals) [2]. Lactones have also been reported
in all plant parts, including berries, stone fruits, and plant food products such as wines
and spirits [7]. The biosynthesis of lactones is complex and still not fully understood [2].
Many lactones present a wide range of desired biological properties [8,9] and the molecular
mechanisms of their actions were, in many cases, investigated. The most important
mechanism induced by terpenoid lactones is inhibition of the expression of NF-κB (nuclear
factor kappa-light-chain-enhancer of activated B cells) which is directly related to anti-
inflammatory and anticancer activities [10,11]. Parthenolide inhibits NF-κB by alkylation
of Cys-38 in p65, Helenalin A by p65 alkylation, costunolide, triptolide and nepalolide
A by IκB phosphorylation, artemisinin, triptolide, and ginkgolides by DNA binding,
artemisolide by IKKβ inhibition on Cys-179, ergolide and zerumbone by IκB degradation,
and elephantopins by IKK inhibition [11]. Many drugs contain this moiety and are used to
treat inflammation, cancer, malaria, etc. Other lactones are in clinical trials [8]. Therefore,
we decided to review recent information about lactones belonging to the terpenoid group
and their biological activities. We focused our interest on lactones of both synthetic and
natural origins.

2. Antimicrobial Activity

Various terpenoid lactones of both natural and synthetic origin possess antimicrobial
activities. Pickman et al. reported that the sesquiterpenoid lactones from sunflowers,
alantolactone and isoalantolactone (Figure 1), are active against the fungi Sclerotinium scle-
rotiorum and Verticillium dahliae, which are responsible for verticillium wilt, and the results
were satisfactory [12]. In another study, it was indicated that both sunflower lactones have
great antifungal activity against isolates of Leptosphaeria maculans, Verticillium albo-atrum,
and Fusarium graminearum with low MIC (minimal inhibitory concentration) values ranging
from 1 to 5 ppm [13]. This might be related to lipophilic character of its structures that
facilitate their penetration through the cell wall [14].

Figure 1. Lactones from sunflowers (a,b).

The Villarreal group reported that lactones from Asteraceae species have both antibacte-
rial and anti-yeast actions. They tested various lactones from the germacrolide, heliangolide,
and eremophilanolide groups against Escherichia coli (ATCC8937), Pseudomonas aeruginosa
(ATCC9027), Staphylococcus aureus (ATCC6538), and Candida albicans (ATCC10231). The re-
sults proved that almost all tested lactones were good growth inhibitors with MIC values
ranging from 50–400 µg/mL [15]. There are also active lactones among terpenoids from
the soft coral genus Sinularia [16]. Flexibilide and sinulariolide (Figure 2) both possess
an α-methylene-lactone moiety. Both showed activity against Bacillus subtilis and S. aureus,
although they were not active against fungi and Gram-negative bacteria. The authors indi-
cated that the activity of those compounds is related to the alkylating centers or hemiacetal
moieties in the molecule [17].
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Figure 2. Lactones from soft coral possessing an α-methylene-lactone moiety (a,b).

Neves and colleagues tested the sesquiterpenoid lactones dehydrocostus lactone,
acetyltriflocusolide lactone, and 11-αH-dihydrodehydrocostus lactone from Portuguese
liverwort (Figure 3). All presented activity against Cladosporium cucumerinum, with the best
result obtained for dehydrocostus lactone. This lactone was also the only lactone that
presented activity against C. albicans [18].

Figure 3. Sesquiterpene lactones from Portuguese liverwort (a–c).

Kozioł et al. synthesized a 4-tert-butylcyclohexanone bromolactone derivative (Figure 4a),
which was proven to inhibit the growth of E. coli, S. aureus, and B. subtilis. Additionally,
at a concentration of 200 µg/mL, up to 60% of bacterial growth was inhibited [19]. Another
previous study analyzed the antibacterial activity of bromolactone with a preserved carane
system (Figure 4b). This bromolactone proved to have satisfactory growth inhibitory
activity with an MIC90 value of 200 µg/mL [20].

Figure 4. Bromolactone derivatives of monoterpenoids (a,b).

Mazur and colleagues synthesized anisaldehyde lactone derivatives and evaluated
their antibacterial activity. One of the tested compounds (Figure 5) presented significant
activity against two strains tested: S. aureus and Listeria monocytogenes. The MIC80 values
were 50 and 100 ;µg/mL, respectively [21].
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Figure 5. An anisaldehyde lactone derivative.

A series of lactones were prepared from natural aromatic aldehydes by the Skro-
biszewski group. All γ-butyrolactones were tested for their antifungal activity against four
Fusarium strains, and three γ-butyrolactones (Figure 6) presented strong activity. The first
derivative (Figure 6a) presented considerably high activity (50%) against F. avenaceum and
F. oxysporum. The second lactone (Figure 6b) was the most active; against F. oxysporum,
it showed 70% growth inhibition, and against F. avenaceum, F. solani, and F. culmorum,
this lactone displayed 66%, 66%, and 55% growth inhibition, respectively. The third com-
pound (Figure 6c) also exhibited approximately 50% activity against F. avenaceum, F. solani,
and F. culmorum. Moreover, it was proposed that the reason for such results was that
the most active compounds possess a benzodioxol ring at the β-position [22].

Figure 6. γ-Butyrolactones with a benzodioxol ring at the β-position (a–c).

Terpenoid constituents from Aglaia forbesii seeds were obtained by the Joycharat
group. Isoeichlerialactone, which is a derivative of 3,4-secodammarane, and a second
lactone, a derivative of dammaran-3-one (isocabralealactone), were tested against Phytoph-
thora botryosa, Phytophthora palmivora, and Rigidoporus microporus. Isoeichlerialactone was
active against all phytopathogens tested and showing the best activity against R. micro-
porous with a MIC and MFC (minimum fungicidal concentration) value of 62.5 µg/mL.
However, isocabralealactone was active only against R. microporous with MIC and MFC
values of 125 and 250 µg/mL, respectively [23]. Fernaández et al. verified the antifungal
activity of lactones derived from Hyalis argentea var. latisquama against Cryptococcus ne-
oformans and C. albicans. Lactone derivatives of lindenanolides were the most active.
The lowest concentrations that obtained 100% inhibition were 62.5 µg/mL and 125 µg/mL,
respectively, for one of the lactone derivatives [24]. The antifungal activities of natural
and synthetic sesquiterpenoid lactones were tested against phytopathogens by Wedge and
colleagues. Two compounds (Figure 7) had significant and moderate activities. One of
the compounds (Figure 7b) at a 30 µM concentration reduced Colletotrichum fragariae growth
by 90%, Colletotrichum gloeosporioides by 89%, and Colletotrichum acutatum by 29% but was
not active against Botrytis cinerea or F. oxysporum. The other compound (Figure 7a) was
the only compound active against B. cinerea with 22% inhibition at a concentration of 30 µM.
It might be concluded that those compounds play a plant defense role in maintaining leaf
integrity by inhibiting foliar pathogens [25].



Int. J. Mol. Sci. 2021, 22, 5036 5 of 21

Figure 7. Lactones from the guajanolide class (a,b).

Forville de Andrade and colleagues verified the antibacterial activity of a sesquiter-
penoid lactone mixture extracted from yacon. It is a mixture of two lactones: enhydrin
and uvedalin. The only microorganism susceptible to this mixture was S. aureus (ATCC
29213), and the MIC value was 750 µg/mL. The authors state that its activity might be
related to its lipophilicity and weak polarity [26]. Costunolide and eremanthin isolated
from Costus speciosus were not active against bacteria, although they proved satisfactory an-
tifungal activity against Trichophyton mentagrophytes, Trichophyton simii, Trichophyton rubrum
296, Trichophyton rubrum 57, Aspergillus niger, Epidermophyton floccosum, Curvularia lunata,
Magnaporthe grisea, and the MIC value were ranging from 31.25 to 250 µg/mL [27]. There
is a relation between lactone structure and its antimicrobial activity, but further studies
on the mode of action should have been undertaken. In many cases, its lipophilicity and
low polarity support the antimicrobial activity of terpenoid lactones. It might be considered
that as most plant secondary metabolites their main target is the cytoplasmic membrane
and they can affect its structure and integrity, permeability, or functionality [28].

3. Cytotoxicity and Anticancer Activity

The therapeutic use of cytotoxic compounds or the drugs containing them might
cause side effects. Thus, it is important to verify their impact on healthy cells. In con-
trast, cytotoxicity to cancerous cells might be able to be used as a therapeutic agent.
Many lactones are known for their cytotoxicity in both healthy and tumor cells. Lac-
tones occurring in nature become scaffolds for further synthesis of active compounds [29].
The cytotoxicity of artemisinin, a lactone of natural origin, was proven by Zheng. In this
study, artemisinin showed activity against P-388 (mouse lymphocytic leukemia), A-549
(human lung carcinoma), and HT-29 (human colon adenocarcinoma) tumor cells with
ED50 (the concentration that caused a 50% inhibition of cell growth) values ranging from
9.62 × 10−2 µg/mL to 4.41 µg/mL [30]. Choi et al. presented results on the cytotoxicity of
terpenoid lactones from roots of Ainsliaea acefifolia. Among all of the extracted compounds
they identified, were mokko lactone, zaluzanin C, and glucozaluzanin C. They tested their
compounds in vitro against the following tumor cells: A549, SK-OV-3 (ovarian), SK-MEL-2
(skin melanoma), XF498 (CNS), and HCT15 (colon). The best result was obtained from
zaluzanin C (ED50 = 0.36 µg/mL) and then by glucozalazuanin (ED50 = 0.40 µg/mL)
in both skin melanoma cells lines. The remaining results ranged from 1.05 µg/mL to
2.73 µg/mL [31]. The Duh group tested the cytotoxicity of terpenoids from Formosan Soft
Coral against A549, HT-29, KB (human epidermoid carcinoma), and P-388 cell cultures.
Both lactones tested (Figure 8) were cytotoxic, but the cytotoxicity of the lactone acetate
was significant: 3.03 µg/mL, 0.81 µg/mL, 0.72 µg/mL, and 1.20 µg/mL against the cell
lines, respectively [32].
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Figure 8. Terpenoid lactones from Formosan Soft Coral (a,b).

Woerdenbag and colleagues analyzed the cytotoxicities of sesquiterpenoid lactones
from Arnica montana flowers on the human carcinoma cells GLC-4 (lung small cell carci-
noma) and COLO 320 (colon adenocarcinoma). Helenalin was far more cytotoxic than
its esters. The lack of the ester group is probably responsible for its cytotoxicity, as there
is an exocyclic methylene group fused to a lactone ring. Derivatives that did not have
this group were 50–150 times less potent. Its cytotoxicity is correlated with the ability
to undergo Michael-type reaction with biological nucleophiles [33]. Stojakowska et al.
verified the cytotoxicity of the major terpenoids from Telekia speciosa. Asperilin (Figure 9)
was moderately cytotoxic against PC3 (prostate carcinoma) cells in vitro (IC50 of 58.5 µM)
and against melanoma cells (A375, WM793, and Hs294T) with IC50 values (the concentra-
tion that caused the death of 50% of cells) of 17.6 µM, 28.2 µM, and 29.5 µM, respectively.
Authors recommend further studies on molecular mechanisms of action [34].

Figure 9. Asperilin.

Vernolides A and B, sesquiterpenoid lactones, were tested by the Kuo group against
the KB, DLD1 (colon adenocarcinoma), NCI661 (lung large cell carcinoma), and HELA
(cervical epithelioid carcinoma) tumor cell lines. Vernolide A was more cytotoxic (ED50 of
0.02, 0.05, 0.53, 0.04 µg/mL, respectively) than Vernolide B, which showed up to 180 times
weaker cytotoxicity, further studies on structure-activity relation are recommended [35].
Maldonado and colleagues found a new terpenoid lactone from Kaunia lasiophthalma
(Griseb.) and named it kaunial (Figure 10). Kaunial was significantly cytotoxic against
the breast cancer lines L56BrC1 (IC50 = 0.98 µM) and SKBR-3 (IC50 = 1.6 µM), but also
to healthy human cells. The presence of Michael acceptor is recognized as a factor that
enhances its activity [36].
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Figure 10. Kaunial.

Two C-11 terpene lactones (loliolide and isololiolide) were isolated from Heliotropium bac-
ciferum Forssk. Their cytotoxicity was verified in the HCT116 (human colon cancer) and
DLD1 cell lines. Both lactones showed IC50 values ranging from 0.306 to 0.351 mM
in HCT116 cells and between 0.236 and 0.395 mM in DLD1 cells [37]. A wider group
of lactones from the genus Sinularia proved to have cytotoxic activity rather than an-
timicrobial activity [16]. Both flexibilide and sinulariolide (Figure 2) are cytotoxic [38].
In vitro, sinulariolide was tested against the human KB, A-549, HT29, and P388 cell lines.
The results were 7.6 µg/mL, 3.0 µg/mL, 3.1 µg/mL, and 3.9 µg/mL, respectively [39].
The same lactones as those from the antimicrobial test were evaluated by the Villarreal
group against the KB, P388, and KBVI (vinblastine-resistant KB) cell lines. Lactones from
the germacrolide and heliangolide groups were active against all of the cells, whereas eu-
desmane was moderately active against P388 cells [15]. Pawlak and colleagues synthesized
two trans-β-aryl-δ-iodo-γ-lactone isomers from 2,5-dimethylbenzaldehyde and tested their
cytotoxicity against CLB70 (chronic lymphoid leukemia), GL1 (acute canine lymphoid
leukemia), and Jurkat (acute human lymphoid leukemia) cells. Both isomers showed 80%
dead cells after treatment with 50 µg/mL solution, although the dextrorotatory isomer was
more potent. Apoptosis was induced by a classic caspase-dependent pathway. Inhibition of
two anti-apoptotic proteins (Bcl-xL and Bcl-2) was observed. Canonical apoptotic cell death
was connected with phosphatidylserine exposure and caspase 3/7 activation. A decrease
of the presence of anti-apoptotic proteins is followed by the activation of caspases and
cleavage of PARP in the nucleus [40]. The antiproliferative activities of synthetic lactones
towards similar cells, D17 (canine osteosarcoma cells) and CLBL1 (a canine B-cell lym-
phoma cell line) were tested by Gładkowski et al. Both stereoisomers of several compounds
were evaluated, and the results showed that the trans-isomers were more active. The best
results were obtained for (−)-trans-(4S,5R,6S)-5-(1-iodoethyl)-4-(benzo[d][1′,3′]-dioxol-5′-
yl)dihydrofuran-2-one with IC50 values of 5.29 ± 0.31 µg/mL (Jurkat), 16.65 ± 2.56 µg/mL
(D17), 5.08 ± 0.41 µg/mL (GL1) and 9.10 ± 0.96 µg/mL (CLBL1). Additionally, significant
results were obtained for two other compounds, (−)-trans-(4S,5R,6S)-5-(1-iodoethyl)-4-
(2′,5′-dimethylphenyl)dihydrofuran-2-one and its dextrorotatory form, with IC50 values
ranging from 4.76 ± 0.52 µg/mL to 16.99 ± 4.88 µg/mL [41]. In his earlier study, other
cytotoxic lactones emerged (Figure 11). Iodolactone (Figure 11a) displayed 83.7 ± 5.7%
(Jurkat) and 35.2± 9.6% (D17) dead cells. Bromolactone (Figure 11b) resulted in 51.1± 8.9%
(D17) and 47.6 ± 6.4% (Jurkat) dead cells [42].
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Figure 11. Iodo- (a) and bromolactone (b) from simple aromatic aldehydes.

The Lage group evaluated the antitumor activity of lactones against multidrug-
resistant cell cancer lines: EPG85-257P (parental, drug-sensitive gastric carcinoma), EPG85-
257RDB (gastric carcinoma with the classical MDR phenotype), EPG85-257RNOV (gastric
carcinoma with an atypical MDR phenotype), EPP85-181P (parental, drug-sensitive pan-
creatic carcinoma), EPP85-181RDB (pancreatic carcinoma with the classical MDR pheno-
type), EPP85-181RNOV (pancreatic carcinoma with an atypical MDR phenotype), HT29P
(parental, drug-sensitive colon carcinoma), HT-29RDB (colon carcinoma with the classi-
cal MDR phenotype) and HT29RNOV (colon carcinoma with an atypical MDR pheno-
type). The diterpenic α,β-unsaturated lactones helioscopinolide B, its acetylated deriva-
tive, and helioscopinolide E were effective, showing IC50 values of 5.7, 4.6, and 4.4 µM
against the EPG85-257RDB cell line. The mechanism of action is related to the individual
drug-resistant phenotype. The anticancer effects are not associated with a single factor,
as a multimodal-mediated biological mechanism [43]. The nagilactone E a terpenoid iso-
lated from Podocarpus nagi possesses anticancer activity towards lung cancer cells (A549).
The mode of action of this group of compounds is omnidirectional. It is known that
nangilactone E is a protein synthesis inhibitor [44]. It was also observed that it increases
expression of PD-L1 (Programmed death-ligand 1) through activation of c-Jun (the protein
encoded by JUN gene, the component of activator protein-1 pathway) and further leads to
exposure to the plasma membrane of cancer cells [45]. Nimbolide is another lactone with
potential in the treatment of cancer. It inhibits cell proliferation of MDA-MB-231 and MCF-7
(breast cancer) by inducing apoptosis signaling especially through activation of caspases
and reduction proteins Bcl-2 which resulted in inhibiting cell progression and survival [46].
Against other breast cancer cells (TNBC) it also proved its activity by inhibiting cell growth
via induction of apoptosis and anti-metastatic effects [47]. The same compound proved
also activity to HONE-a cells (nasopharyngeal carcinoma) by inhibiting cell viability t
induction of cell apoptosis via modulating extracellular signal-regulated kinases 1 and 2
and activation of caspases [48].

4. Anti-Inflammatory Activity

Inflammation is a very complex phenomenon, and therapeutic agents might impact
different aspects of this process. Inflammation is initiated by the secretion of proinflam-
matory cytokines such as interleukin 6 (IL-6), interleukin 8 (IL-8), and tumor necrosis
factor (TNF-α), as well as the production of reactive oxygen species. Dai and colleagues
revised the anti-inflammatory activity of andrographolide and its derivatives. They ver-
ified their ability to inhibit NO (nitric oxide) and PGE2 (prostaglandin E2) production,
and also verified their impact on dimethylbenzene-induced mouse ear edema and egg
albumin-induced rat paw edema. Three compounds (Figure 12) inhibited ear edema
in mice at a dose of 0.90 mmol/kg body weight. Additionally, satisfactory results were
observed against rat edema, with lactone c in Figure 12 showing the best reduction results
at a dose of 0.90 mmol/kg body weight. All three compounds reduced PGE2 production
at 1.35 mmol/kg and increased vascular permeability. At this same concentration, two
compounds (Figure 12a,b) reduced NO production. Once again, compound c in Figure 12
obtained the best result at the dose of 0.90 mmol/kg. The great anti-inflammatory activity
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of compound c in Figure 12 is caused by the inhibition of iNOS activity and the reduction
of NO production, moreover, it was the most potent α-glucosidase inhibitor [49].

Figure 12. Andrographolide (a) and its derivatives (b,c).

In another study, the ability of andrographolide to inhibit LPS-induced (lipopolysaccharide-
induced) TNF-α and IL-6 expression was tested. Inhibition of 62.54% lipopolysaccharide-
induced TNF-α and 56% inhibition of IL-6 were observed. Additionally, other derivatives
of this compound were synthesized and evaluated for their anti-inflammatory potential,
proving that compounds with the 12-hydroxyl-14-dehydroandrographolide structure have
higher inhibitory potential than those with isoandrographolide structures. The under-
lying mechanisms were not presented [50]. The Chib group synthesized psilostachyin,
which is an acetylated pseudoguaianolide, and its derivatives and analyzed their anti-
inflammatory potential by in vitro expression of TNF-α, IL-1β, and IL-6 in murine neu-
trophils. Three analogs (Figure 13) displayed good inhibitory effects on TNF-α cytokine
secretion (a = 49.21%, b = 59.76% and c = 53.12%). Slightly worse results were obtained for
the expression of IL-1β (a = 36.04%, b = 41.37% and c = 40.86%), and no significant results
were determined for IL-6 (a = 11.32%, b = 14.01% and c = 17.06%). Both of these last two
sets of results are expressed as the % inhibition against LPS [51].

Figure 13. Psilostachyin derivatives (a–c).

11α-13-Dihydrohelenalin ester derivatives from Arnica flowers were tested for their
croton oil-induced mouse ear edema inhibitory activity. The percent inhibition ranged
from 54% to 77% the underlying mechanisms were analyzed for Arnica flower tinctures
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and not for particular compounds. It was observed that stimulation of TNF-α induced
DNA binding activity in Jurkat T cells–NF-κB p50/p65 heterodimer. Additionally, NF-κB
DNA binding in an EMSA (electrophoretic mobility shift assay) and NF-AT (Nuclear factor
of activated T-cells) DNA binding were weakened [52]. NF-κB (nuclear factor kappa-light-
chain-enhancer of activated B cells) inhibitors were synthesized by Schorr and colleagues.
It was proven that uvedalin inhibited NF-κB DNA binding at the concentrations of 2.5 µM
in Jurkat T cells and 5.0 µM in RAW 264.7 cells (Abelson murine leukemia virus-induced
tumor cells); moreover, no cytotoxic effects were observed. At a concentration of 10 µM,
the NF-κB DNA binding process was inhibited by enhydrin. Both compounds inhibited
the factor NF-κB transcription [53]. The impact of highly oxidized sesquiterpenoids from
Artemisia was tested by Chi et al. Six terpenoids possessing an α-methylene-γ-lactone
moiety proved their anti-inflammatory potential in a model of LPS-induced NO production
in RAW 264.7 cells with IC50 values of 2.38–10.67 µM [54]. This same model was applied
by Xia and colleagues for the analysis of sesquiterpenoids from the essential oil of Cur-
cuma wenyujin. Two lactones, isogermafurenolid and curdionolide B (Figure 14), exhibited
satisfactory inhibitory effects with IC50 values of 30.62 and 14.50 µM, respectively [55].

Figure 14. Sesquiterpenoid lactones from Curcuma wenyujin (a,b).

A pseudopterane diterpene (Figure 15) was thoroughly examined for its anti-inflammatory
potential. This compound not only decreased the production of the mediators TNF-α,
IL-6, IL-1β, IP-10 (interferon γ-induced protein), iNOS (inducible oxide synthase), COX2
(cyclooxygenase 2), and MCP-1 (monocyte chemoattractant protein 1) induced by LPS
in macrophages but also inhibited the degradation of IκBα (nuclear factor of kappa light
polypeptide gene enhancer in B-cell inhibitor alpha) and the activation of NFκB, reducing
the expression of the costimulatory molecules CD80 and CD86 in the LPS-induced process.
All regulations might concern the transcriptional level [56].

Figure 15. Pseudopterane diterpene.

Plaunolide is one of the components of the leaf crude extract of Croton stellatopilosus.
Plaunolide was also proven to have significant inhibitory activity towards NO production
in LPS-induced RAW 264.7 cells with an IC50 of 17.09 µM; moreover, it was nontoxic to
cells. It can downregulate the expressions of the COX-1, COX-2, and iNOS genes [57].
Randainin D, a new diterpenoid found in Callicarpa randaiensis, exhibited mild inhibition of
elastase release and moderate superoxide anion generation inhibitory activity of 35.9% at
a concentration of 28.6 µM and an IC50 value of 21.5 µM [58]. New inositol lactones with
anti-inflammatory potential isolated from Inula montana showed an impact on the release
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of NO on RAW 264.7 macrophages with IC50 values below 30 µM [59]. Shizukaol B is a lac-
tone found in Chloranthus henryi, and this compound showed inhibition of inflammatory
mediators such as iNOS and COX-2 after LPS stimulation. Anti-inflammatory effect is
related to inhibition of expression of iNos and COX-2, blocking JNK (c-Jun N-terminal
kinase) phosphorylation and c-Jun phosphorylation, attenuated c-Jun nuclear translocation.
Moreover, shizukaol B inhibited the binding activity of AP-1 to DNA oligonucleotide [60].
From another plant from the Chloranthus genus, new chololactones were extracted. All of
the compounds had a moderate activity with IC50 values of 4.4–35.4 µM [61]. Another
study identified zaluzanin C as a potential inhibitory agent of NO production in RAW 264.7
macrophages with an IC50 value of 6.54 µM [62]. Nagilactones in a form of glucoside inhibit
NF-κB activity what suppress LPS-induced NO production on RAW264.7 macrophages
The phosphorylation of IKKα/β, IκBα, and p65 was reversed, by what the translocation
of NF-κB/p65 from the cytoplasm to nucleus was prevented. Which resulted in the sup-
pression of iNOS expression [63]. In addition, lactones ((4S)-hydroxy-(8)-methoxyl-(5S)-
(H)-guaia1(10),7(11)-dien-12,8-olide and curcuminol G isolated from Curcuma kwangsiensis
proved significant anti-inflammatory activity. They inhibited carrageenan-induced paw
edema in vitro; at a concentration of 20 µg/mL they proved better inhibitory ratios on IL-1β
and COX-2 than dexamethasone [64]. Michael and colleagues proved the inhibitory poten-
tial of rudbeckolide 5-LOX (lipoxygenase) by 84.9% at 10 µg/mL which might indicate that
it would have the potential in preventing inflammation [65].

5. Antimalarial Activity

Malaria is a disease that threatens human wellbeing and affects millions of people
worldwide. This disease is caused by different species of the genus Plasmodium [66].
Artemisinin is the second treatment after quinine, and artemisinin derivatives are known
as antimalarial compounds. This compound has been used as a drug since 1979, mostly
in patients with chloroquine-sensitive or chloroquine-resistant strains of P. falciparum [67].
Its key pharmacophore is 1,2,4-trioxolane cycle spiro-conjugated with sesquiterpene δ-
lactone [68]. The Pereira group tested limonoids and their derivatives from biomass after
the production of andiroba oil for their in vitro and in vivo antiplasmodial activity. 6α-
Acetoxygedunin and 6α-hydroxydeacetylgedunin (Figure 16) possessed the best in vitro
activity against the P. falciparum K1 strain, with IC50 values of 7.0 and 5.0 µM, respectively.
Compound a in Figure 16 was also tested in vivo in a rodent malaria model against P. berghei
NK65. Compared to untreated animals, 65.7% suppression of parasitemia was observed at
the oral dose of 100 mg/kg/day [69].

Figure 16. Antiplasmodial limonoids (a,b).

The Moon team analyzed the antimalarial activity of ineupatorolide A isolated from
Carpesium rosulatum. In his first study, he proved its activity in vitro against a chloroquine-
sensitive strain of P. falciparum (D10), resulting in an IC50 value of 0.007 µg/mL [70]. Then,
the same compound was tested in vivo against P. berghei in mice. In the first 4 days of
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infection, the dosages of 2, 5, and 10 mg/kg/day showed blood schizontocidal activity
(63.2–86.5% suppression). The authors suspect that there are two mechanisms behind
the antimalarial activity–elevation of erythrocytic oxidation or/and inhibiting protein
synthesis [71]. (+)-4′-Decanoyl-cis-khellactone and (+)-3′-decanoyl-cis-khellactone were
isolated from Agelica purpuraefolia. Both compounds showed notable antiplasmodial activity
against the D10 strain with IC50 values of 1.5 and 2.4 µM, respectively [72]. Tagitinin C
was tested for its antiplasmodial activity in vivo against P. falciparum with an IC50 value of
0.33 µg/mL [73]. Another in vitro study was performed by Kraft and colleagues, and five
lactones proved to be active against the chloroquine-sensitive strain of P. falciparum PoW
and the chloroquine-resistant clone Dd2. 1-Desoxy-1a-peroxy-rupicolin A-8-O-acetate,
rupicolin A-8-O-acetate and 1a,4a-dihydroxybishopsolicepolide showed moderate activity
(IC50 values = 8.7, 12.5, 8.6 µg/mL against PoW; 17.5, 10.8, 11.7 µg/mL against Dd2,
respectively). Vernodalol and its derivative 11b,13-dihydrovernodalin were more active
(IC50 = 4.0 and 2.3 µg/mL against PoW; 4.8 and 1.1 µg/mL against Dd2, respectively) [74].
Pseudoguaianolide sesquiterpenoid lactones (helenalin and its derivatives) proved to be
active against the asexual erythrocytic stages of P. falciparum, in vitro, with IC50 values of
0.23–7.41 µM; the best result was obtained with helenalin [75]. Oret et al. presented studies
on sesquiterpenoid lactones, among which arborescin, ridentin, and hanphyllin (Figure 17)
were significantly active against P. falciparum FcB1 with IC50 values ranging from 2.3 to
5.4 µg/mL [76].

Figure 17. Antiplasmodial compounds from Artemisia gorgonum (a–c).

Pedersen and colleagues presented another in vitro active lactone against P. falciparum
strain D10 and the chloroquine-resistant strain W2. The IC50 values ranged from 1.55
to 3.82 µM against the D10 strain and 2.10 to 4.94 µM against the W2 strain [77]. Next,
a sesquiterpenoid lactone (urospermal A-15-O-acetate) was isolated and analyzed for its
antiplasmodial activity against P. falciparum strains 3D7 and W2. In vitro studies were
performed, resulting in IC50 values of 2.87 and 2.41 µM, respectively [78]. The Sawadjoon
group presented a spirodihydrobenzofuran terpenic lactone that had excellent in vitro
activity against P. falciparum (K1, multidrug-resistant strain), obtaining an IC50 value of
0.15 µg/mL [79]. Tetranortriterpenoids, domesticulides B–D, and five triterpenoids were
tested against this same strain as in a previous study and exhibited antimalarial activity
with IC50 values of 2.4–9.7 µg/mL [80]. Triterpenoid lactones (Figure 18) isolated by
Greve et al. from oleo-gum-resin of Boswellia serrata presented IC50 values of 1.0 µg/mL
and 1.9 µg/mL against the chloroquine-sensitive P. falciparum NF54 strain [81].
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Figure 18. Triterpenoid lactones from the oleo-gum-resin of Boswellia serrata (a,b).

Twelve new cassane-type diterpenes were isolated by the Guoxu group. Two lactones
proved to possess antimalarial activity against the K1 strain with IC50 values of 0.78 and
0.52 µM [82]. Graziose et al. presented the antiplasmodial activity results of compounds
isolated from plants. Peroxyferolide and lipiferolide were tested against the D10 strain
(IC50 values of 6.2 and 1.8 µg/mL, respectively) and Dd2 strain (IC50 values of 12.7 and
7.5 µg/mL, respectively). The authors suspect that the antimalarial activity of the peroxide
is due to the hydroxy peroxide group, which is chemically related to the endoperoxide
residue of artemisinin to which it owes its activity [83]. 2-methoxyisogermafurenolide and
8-epi-2-methoxyisogermafurenolide were isolated as a mixture from Myrrh. A combination
of those two sesquiterpenoid lactones showed antiplasmodial activity against P. falciparum
with an IC50 value of 2.9 mg/L [84].

6. Antifeedant Activity

Pests are a serious threat to crops, and it is important to control their feeding habits
instead of controlling their population by extermination, which might disturb the ecological
balance. Terpenoid lactones are well-known antifeedant agents. The genus Helianthus
is rich in chemicals that serve as feeding deterrents for various pests. Argophyllin A,
argophyllin B, and 4,5-dihydroniveusin A were isolated from sunflowers and were found
to possess antifeedant activity against WCR (west corn rootworm), with relative rates
of consumption at a concentration of 40 µg per disk after 48 h of 0.53, 0.75, and 0.90.
The compounds interact with receptor sites on the gustatory sensilla of WCR [85]. Wu and
colleagues tested sesquiterpenoid lactones on their twenty-four-hour antifeedant activity
against 3rd instar larvae of Plutella xylostella. One lactone (Figure 19) presented excellent
activity with an EC50 (the effective dosage for 50% feeding reduction) of 19.84 mg/L [86].

Figure 19. Antifeedant lactone from the fruits of Carpesium abrotanoides.

A group of sesquiterpene lactones was extracted from Vernonanthura nebularum, four
of which were obtained in good yields and tested for their antifeedant activity against
Spodoptera frugiperda larvae. The results are presented as the antifeedant index, which is
the ratio of consumption between treated and untreated disks. All tested lactones presented
values above 50% [87]. Li et al. tested two diterpenoid lactones (Figure 20) isolated from
the poisonous plant Pieris formosa. Both exhibited antifeedant activity against cotton
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bollworms (Helicoverpa armigera). The antifeedant index was 54.9% at a concentration
of 5.54 × 10−3 µg/mL for compound a in Figure 20 and 40.7% at a concentration of
5.67 × 10−3 µg/mL for compound b in Figure 20 [88].

Figure 20. Antifeedant lactones from Pieris Formosa (a,b).

Neopierisoids A and B, which are other grayanane diterpenoid lactones, were tested
for their feeding inhibitory activity against P. brassicae, a plant-feeding generalist insect
herbivore. These compounds presented EC50 values of 10.07 µg/mL and 5.33 µg/mL,
respectively [89]. The feeding deterrent activity of synthetic lactones was widely studied
by a group of Wawrzeńczyk. The anisaldehyde lactones mentioned before were studied
for their feeding deterrent activity against Sitophilus granaries L., Trogoderma granarium
Everts, and Tribolium confusum Du Val. The total coefficients of deterrence (T coefficients)
are one of the parameters that characterize deterrence and are the sum of attractancy and
repellence. The T coefficients value ranges between –200 and +200 when values are negative
it indicates attractancy. T-coefficients were presented, and the results ranged from 143.3 to
183.9 [21]. In another study, the activity of a β-cyclocitral lactone derivative was verified
against these same pests. The best result was obtained by chlorolactone, with a T coefficient
of 160.8 [90]. γ-Butyrolactones that possess antifungal activity were also tested for their
antifeedant activity against storage pests: the larvae and adults of confused flour beetles
(Tribolium confusum), the larvae of khapra beetles (Trogoderma granarium), and the adults
of granary weevils (Sitophilus granarius). The best result was obtained against khapra
beetles by one γ-ethyl-γ-lactone, resulting in a T coefficient of 167.9 [22]. Racemic β-aryl-γ-
ethylidene-γ-lactones proved to have feeding inhibitory activity against both the adults
and larvae of Alphitobius diaperinus Panzer, resulting in T coefficients ranging from 72.60 to
185.52 [91]. Three (+)-3-carene derivatives (Table 1) were tested for their feeding deterrent
activity on the storage pest insects mentioned before. One of the lactones (Figure 21)
exhibited moderate activity with a T coefficient of 120.9 for Trogoderma granarium [92].

Figure 21. Harzianelactones A (a) and B (b).
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Table 1. Feeding deterrent activity of lactones with carane system.

Storage Pests Insects

Confused flour beetle—larvae
(Tribolium confusum Duv.) 55.0 37.8 108.1

Confused flour beetle—adults
(T. confusum Duv.) 48.8 84.2 93.7

Granary weevil beetle—adults
(Sitophilus granarius L.) 107.3 53.9 104.0

Kharpa beetle—larvae
(Trogoderma granarium Ev.) 52.3 7.5 120.9

Additionally, bromolactone (Figure 4a) was tested against dangerous pests, the lesser
mealworm Alphitobius diaperinus (Panzer), and the peach potato aphid Myzus persicae
(Sulzer); unfortunately, its deterrent activity was low against aphids and adult mealworms,
and it was even an attractant to mealworm larvae [20]. Feeding of Schistocerca americana
is reduced by tomentosin and xanthinosin as its concentration increased. Although at
the same concentration trans form of lactone reduced consumption. As sesquiterpenoid
lactones interfere with various processes and molecular targets it is difficult to identify
a specific one. Authors suspect that the molecular target is GABa/glycine sensitive recep-
tors which leads to chemical disruptions of neurons [93].

7. Other Biological Activities

Terpenoid lactones possess various biological activities that are not extensively studied,
although their considerably potential is worth mentioning. Phytotoxicity is observed for
various lactones from the terpenoid group. Control of weeds is a very important aspect of
agriculture and the use of compounds of natural origin is a great alternative for traditional
methods. Inuloxins A, C, D isolated from Inula viscosa proved the ability to inhibit seed
germination of crenate broomrape and field dodder at a concentration of 4.0·10−4 M
and 1.6·10−3 M, respectively [94]. Harzianelactones proved phytotoxic activity towards
seedling growth of amaranth and lettuce. Harzianelactone A (Figure 21a) inhibited root
and hypocotyl growth of amaranth at a concentration of 200 ppm, and a concentration
of 50 ppm significantly decreased growth of both plant parts. Towards lettuce hypocotyl
better results were observed for herzianelactone B at concentration 200 ppm, it reduced
hypocotyl elongation [95].

Xu and colleagues demonstrated that diterpenoid momilactones are involved in al-
lelopathy. They applied reverse genetics by knocking out relevant diterpene synthases
to prove it. Rice due to the presence of momilactones can suppress the growth of other
plants in its neighborhood [96]. In addition to antiplasmodial activity terpenoid lactones
present activity towards other parasites. De Toledo et al. presented antileishmanicidal
activity of sesquiterpenoid lactones from Tithonia diversifolia. Tagitinin F and one of the 1,10-
epoxy heliangolides (Figure 22a,b) obtained good LD50 values against Leishmania brasiliensis
(13.7 ± 2.6/37.4 ± 7.1 µg/mL/µM and 7.4 ± 2.8/21.2 ± 8.0 µg/mL/µM, respectively) and
relevant selectivity index. Both were then extensively tested against intracellular parasites
by peritoneal macrophages and were able to reduce the infection index [97].
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Figure 22. Antileishmanicidal lactones from Tithonia diversifolia (a,b)

Otoguro and his group proved antitrypanosomal activity against Trypanosoma brucei
of sesquiterpenoid lactones. The best result was obtained by 4-peroxy-1,2,4,5-tetrahydro-
α-santonin with the EC50 value 0.40 ± 0.02 µg/mL [98]. Enzyme inhibition is a very
important target in drug design. Sester-terpenoid YW3548–lactone isolated from Pae-
cilomyces formosus LHL10 proved inhibitory activity towards urease and α-glucosidase at
concentration 250 µg/mL. Such activity might indicate possible future use as a drug for
enzyme inhibition [99]. Andrographolide (Figure 12a) proved hepatoprotective activity
in paracetamol-induced liver injury in mice. Ex vivo studies proved that andrographolide
especially in form of nanocrystals preserves native hepatocellular structures [100]. This com-
pound also indicates thrombolytic activity. Prakash et al. proved andrographolide lyses
blood clots in vitro [101].

8. Conclusions

In conclusion, lactones have been indicated to possess various biological activities
that are often directly connected with lactone moieties. Artemisinin is already being used
as an antimalarial drug. Many newly synthesized lactones and those isolated from plants
have shown promising properties, such as antimicrobial, anti-inflammatory, anticancer,
and antiplasmodial activities, as well as potent feeding deterrents. Unfortunately, antioxi-
dant activity is not in the domain of the activity of lactones. Consequently, further studies
on lactones and their biological activities should be undertaken to determine additional
active agents, and it might also be beneficial to consider these compounds as antioxidants
to verify this inactivity. Additionally, in many cases, molecular targets of terpenoid lactones
remain unknown. Both the field of chemical synthesis of new lactone derivatives and
the expansion of research on already known lactones should be explored for further in vivo
studies.
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Abbreviations

BVMOs Baeyer–Villiger monooxygenases
MIC Minimal inhibitory concentration
MFC Minimal fungicidal concentration
ED50 The concentration that caused a 50% inhibition of cell growth
IC50 The concentration that caused the death of 50% of cells
LPS Lipopolysacharide
IL-6 Interleukin 6
IL-8 Interlekin 8
TNF-α Tumor necrosis factor
NO Nitric oxide
PGE2 prostaglandin E2
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
IP-10 Interferon γ-induced protein
iNOS Inducible oxide synthase
COX2 Cyclooxygenase 2
MCP-1 Monocyte chemoattractant protein 1
IκBα Nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor alpha
WCR West corn rootworm
EC50 The effective dosage for 50% feeding reduction
T coefficients The total coefficients of deterrence
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Racemic β-Aryl-γ-ethylidene-γ-lactones and Antifeedant Activity of the Products against Alphitobius diaperinus Panzer. Molecules
2018, 23, 1516. [CrossRef]
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