

Article

Morphology and Multigene Phylogeny Revealed Three New Species of *Helminthosporium* (*Massarinaceae, Pleosporales*) from China

Ya-Fen Hu¹, Jing-Wen Liu¹, Zhao-Huan Xu¹, Rafael F. Castañeda-Ruíz², Kai Zhang³ and Jian Ma^{1,*}

- ¹ College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Instituto de Investigaciones de Sanidad Vegetal, Calle 110 No. 514 e/5ta B y 5ta F, Playa, La Habana 11600, Cuba
- ³ College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China
- * Correspondence: jxaumj@126.com

Abstract: Saprobic hyphomycetes are highly diverse on plant debris. Over the course of our mycological surveys in southern China, three new *Helminthosporium* species, *H. guanshanense* sp. nov., *H. jiulianshanense* sp. nov. and *H. meilingense* sp. nov., collected on dead branches of unidentified plants, were introduced by morphological and molecular phylogenetic analyses. Multi-loci (ITS, LSU, SSU, *RPB2* and *TEF1*) phylogenetic analyses were performed using maximum-likelihood and Bayesian inference to infer their taxonomic positions within *Massarinaceae*. Both molecular analyses and morphological data supported *H. guanshanense*, *H. jiulianshanense* and *H. meilingense* as three independent taxa within *Helminthosporium*. A list of accepted *Helminthosporium* species with major morphological features, host information, locality and sequence data was provided. This work expands our understanding of the diversity of *Helminthosporium*-like taxa in Jiangxi Province, China.

Keywords: Ascomycota; asexual fungi; Dothideomycetes; multi-locus phylogeny; taxonomy

Citation: Hu, Y.-F.; Liu, J.-W.; Xu, Z.-H.; Castañeda-Ruíz, R.F.; Zhang, K.; Ma, J. Morphology and Multigene Phylogeny Revealed Three New Species of *Helminthosporium* (*Massarinaceae, Pleosporales*) from China. J. Fungi 2023, 9, 280. https:// doi.org/10.3390/jof9020280

Academic Editor: Fang Liu

Received: 2 February 2023 Revised: 17 February 2023 Accepted: 19 February 2023 Published: 20 February 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Hyphomycetes, a group of anamorphic *Ascomycota*, are highly diverse in aquatic and terrestrial habitats and distributed worldwide on many natural substrates such as plant tissues, wood and bark, dung, insects and other arthropods and other fungi including lichens [1]. More than 30,000 species of asexual fungi are recorded worldwide, with 2500 hyphomyceteous genera [2,3]. The most comprehensive occurrence of this group is in the northern temperate regions, with little recorded in tropical and subtropical areas [1,3]. China is considered an important reservoir of biodiversity by the Convention on Biological Diversity. However, more research on fungal diversity in China is needed.

Helminthosporium is a hyphomyceteous genus in the family *Massarinaceae* of the order *Pleosporales*, which was established by Link [4] and typified by *H. velutinum* Link. It is an old, species-rich genus, and its taxonomic history is complex. To date, more than 770 epithets for *Helminthosporium* are listed in Index Fungorum [3], but most *Helminthosporium* species are not congeneric with the generic type in development of conidia and conidio-phores and were excluded from *Helminthosporium* [5–13]. Ellis [7] synonymised numerous species with *H. velutinum*, and accepted 10 *Helminthosporium* species based on extensive morphological investigations. Siboe et al. [10] accepted 27 *Helminthosporium* species, and provided a synopsis table summarizing their main diagnostic morphological characters. Since then, 45 further species have been added to the genus [13–31]. However, nine species, viz., *H. apicale* V. Rao and de Hoog, *H. bigenum* Matsush., *H. catenatum* Matsush., *H. dictyoseptatum* S. Hughes, *H. hypselodelphyos* M.B. Ellis, *H. parvum* R.F. Castañeda and W.B. Kendr., *H. senseletii* Bhat and B. Sutton, *H. varium* Alves-Barb., Malosso and R.F. Castañeda and *H. zombaense* B. Sutton, were excluded [11–13]. Two species, *H. cylindrosporum* Matsush. [32] and *H. gigasporum* Shirouzu and Y. Harada [33], are, respectively, synonymised

with *H. matsushimae* D.W. Li, K. Zhang and R.F. Castañeda [13] and *H. magnisporum* Shirouzu and Y. Harada [17] because they are a later homonym of *H. cylindrosporum* Sacc. and *H. gigasporum* Berk. and Broome, respectively. *Helminthosporium dimorphosporum* Hol.-Jech. is regarded as a questionable species that produces distoseptate and euseptate conidia and does not fit the *Helminthosporium* generic concept [13]. Thus, following Siboe et al.'s [10] treatment, the genus currently comprises 60 species.

Most *Helminthosporium* species are described based on their anamorph alone, and only six species, *H. massarinum* Kaz. Tanaka, K. Hiray. and Shirouzu, *H. microsorum* D. Sacc., *H. oligosporum* (Corda) S. Hughes, *H. quercicola* (M.E. Barr) Voglmayr and Jaklitsch, *H. quercinum* Voglmayr and Jaklitsch and *H. tiliae* (Link) Fr., have been linked with *Massaria*-or *Splachnonema*-like teleomorphs, of which five have been confirmed by pure culture and sequence data [22,24]. Recent molecular data demonstrated that *Helminthosporium* is a polyphyletic genus [30,34], with some members mixed with other taxa of *Byssothecium*, *Haplohelminthosporium*, *Helminthosporiella*, *Pseudosplanchnonema* and *Synhelminthosporium* [30,34].

Jiangxi, located in the southeast of China, is one of the most biodiverse provinces. Its preserved superior ecological environment, humid subtropical climate and abundant plant resources would suggest that the province also has great fungal diversity. During a survey of saprobic hyphomycetes from plant debris in this province, three interesting hyphomycetes belonging to the genus *Helminthosporium* (*Massarinaceae*, *Pleosporales*) were collected on dead branches. Based on the multi-locus phylogenetic analysis and morphological examination, they are introduced as new to science in the present study.

2. Materials and Methods

2.1. Sample Collection, Isolation and Morphology

Samples of dead branches were collected from humid environments and river banks in the subtropical forests of Jiangxi Province, China, and placed in Ziploc[™] plastic bags. Samples were processed and examined following the methods described in Ma et al. [35]. Colonies on decaying wood surfaces were examined and visually observed with a stereomicroscope (Motic SMZ-168, Xiamen, China) from low (0.75 times) to high (5 times) magnification. Fresh colonies were picked with sterile needles at a stereomicroscope magnification of 5 times, placed on a slide with a drop of lactic acid-phenol solution (lactic acid, phenol, glycerin, sterile water; 1:1:2:1, respectively), then placed under an Olympus BX 53 light microscope fitted with an Olympus DP 27 digital camera (Olympus Optical Co., Tokyo, Japan) for microscopic morphological characterization. The tip of a sterile toothpick dipped in sterile water was used to capture the conidia of the target colony directly from the specimen; the conidia were then streaked on the surface of potato dextrose agar (PDA; 20% potato + 2% dextrose + 2% agar, w/v) and incubated in an incubator at 25 °C overnight. The single germinated conidia were transferred to fresh PDA plates following the method of Goh [36] and incubated in an incubator at 25 °C. Culture characteristics were examined and recorded after 3 days and later at regular intervals for 3 days. Colony colors were assessed according to the charts of Rayner [37]. All fungal strains were stored in 10% sterilized glycerin at 4 °C for further studies. The studied specimens and cultures were deposited in the Herbarium of Jiangxi Agricultural University, Plant Pathology, Nanchang, China (HJAUP). The names of the new taxa were registered in Index Fungorum [3].

2.2. DNA Extraction, PCR Amplification and Sequencing

Genomic DNA was extracted from fungal mycelia grown on PDA, using the Solarbio Fungi Genomic DNA Extraction Kit (Solarbio, Beijing, China) following the manufacturer's protocol. DNA amplification was performed by polymerase chain reaction (PCR) using the respective loci (ITS, LSU, SSU, *TEF1* and *RPB2*). The following primer sets were used for these genes: ITS: ITS5/ITS4 [38]; LSU: 28S1-F/28S3-R [39]; SSU: 18S-F/18S-R [39]; *TEF1*: EF1-983F/EF1-2218R [28,40] and *RPB2*: RPB2-5F2 [41]/fRPB2-7cR [42]. The amplifications were performed in a 25 µL reaction volume containing 12.5 µL of 2 × Power Taq PCR MasterMix, 1 µL of each forward and reverse primer, 1 µL of DNA template and 9.5 µL

of ddH₂O. The PCR thermal cycle program for ITS, LSU, SSU and *TEF1* amplification was as follows: 95 °C for 3 min, followed by 35 cycles of denaturation at 94 °C for 15 s, annealing at 55 °C for 15 s, elongation at 72 °C for 30 s and finally extended at 72 °C for 5 min. Regions of *RPB2* were amplified with annealing at 59 °C for 15 s, elongation at 72 °C for 2 min and others consistent with the above procedure. The PCR products were checked on 1% agarose gel electrophoresis stained with ethidium bromide. Purification and sequencing of PCR products were carried out by Beijing Tsingke Biotechnology Co., Ltd. China. New sequences generated in this study were deposited in the NCBI GenBank (www.ncbi.nlm.nih.gov, accessed on 5 January 2023; Table 1).

Table 1. Species and GenBank accession numbers of DNA sequences used in this study. New sequences are in bold.

Smanias	Culture/Specimen No	GenBank Accession Numbers						
Species	Culture/Specimen No.	SSU	LSU	ITS	RPB2	TEF1		
Byssothecium circinans Corynespora cassiicola C. smithii C. smithii	CBS 675.92 CBS 100822 L120 L130	GU205235 GU296144 - KY984419	GU205217 GU301808 KY984297 KY984298	OM337536 - Ky984297 Ky984298	DQ767646 GU371742 KY984361 KY984362	GU349061 GU349052 KY984435 KY984436		
Cuclothuriella		RIJOHIJ	R1904290	R1904290	R1904002	R1901100		
rubronotata	$TR = CBS \ 121892$	-	KX650541	KX650541	KX650571	KX650516		
C. rubronotata	TR9 ET = CBS 141486	KX650507	KX650544	KX650544	KX650574	KX650519		
Helminthosporium aquaticum	S-096 ^{HT} = MFLUCC 15-0357	KU697310	KU697306	KU697302	-	-		
H. austriacum	L132 ^{HT} = CBS 139924	KY984420	KY984301	KY984301	KY984365	KY984437		
H. austriacum	L169 = CBS 142388	-	KY984303	KY984303	KY984367	KY984439		
H. caespitosum	L99 ET = CBS 484.77	KY984421	JQ044448	JQ044429	KY984370	KY984440		
H. caespitosum	L141	-	KY984305	KY984305	KY984368	-		
H. chengduense	UESTC 22.0024 = CGMCC 3.23575 HT	ON557757	ON557745	ON557751	ON563073	ON600598		
H. chengduense	UESTC 22.0025	ON557756	ON557744	ON557750	ON563072	ON600597		
H. chiangraiense	MFLUCC 21-0087 HT	_	MZ538538	MZ538504	_	_		
H. chinense	UESTCC 22.0026 = CGMCC 3.23570 ^{HT}	ON557760	ON557748	ON557754	_	ON600601		
H. chlorophorae	BRIP 14521	_	_	AF120259	_	_		
H. dalbergiae	H4628 = MAFF 243853	AB797231	AB807521	LC014555	_	AB808497		
H. endiandrae	CBS 138902 = CPC 22194 ^{HT}	_	KP004478	KP004450	_	_		
H. erythrinicola	CBS 145569 $^{\rm HT}$ = CPC 35291	_	MK876432	NR 165563	MK876486	_		
H. genistae	L129 = CBS 139922	KY984423	KY984309	KY984309	KY984373	_		
H. genistae	$L142^{\text{ET}} = CBS142597$	_	KY984310	KY984310	KY984374	_		
H. genistae	L143 = CBS 139927	_	KY984311	KY984311	KY984375	_		
H. genistae	L144 = CBS 139928	_	KY984312	KY984312	KY984376	_		
H. genistae	L148 = CBS 139929	_	KY984315	KY984315	KY984379	_		
H. genistae	L149 = CBS 139930	_	KY984316	KY984316	KY984380	_		
H. guanshanense	HIAUP C1022 ET	00172247	00172239	00172249	00234978	00256247		
H. hispanicum	$L_{109}^{HT} = CBS_{136917}$	KY984424	KY984318	KY984318	KY984381	KY984441		
H. ijulianshanense	HIAUP C1057 ET	-	00172253	00172245	00234979	-		
H juolandinum	$L_{101} = CBS 136912$	_	KY984319	KY984319	KY984382	КҮ984442		
H. juglandinum	L102 = CBS 136913	_	KY984320	KY984320	-	-		
H juolandinum	$L_{118}^{HT} = CBS 136922$	_	KY984321	KY984321	KY984383	KY984443		
H. juglandinum	L97 = CBS 136911	KY984425	KY984322	KY984322	-	-		
H. leucadendri	CBS 135133 = CPC 19345 HT	_	KF251654	KF251150	KF252159	KF253110		
H livistonae	CPC 32158 = CPS144413 HT	_	NG 064539	NR 160348	_	_		
H magnisnorum	H4627 = MAFF 239278 = TS 33 HT	AB797232	AB807522	AB811452	_	AB808498		
H massarinum	KT 838 ET - MAFE239604	A B797233	A B807523	A B809628	_	AB808499		
H. massarinum	$\text{KT 1564}^{\text{HT}} = \text{MAFF 239605} = \text{CBS}$ 139690	AB797234	AB807524	AB809629	_	AB808500		
H. meilingense	HJAUP C1076 ET	OQ172246	OQ172238	OQ172244	OQ234980	OQ234981		
H. microsorum	L94	KY984426	KY984327	KY984327	KY984388	KY984446		
H. microsorum	L95	-	KY984328	KY984328	KY984389	KY984447		
H. microsorum	L96 ^{ET} = CBS 136910	KY984427	KY984329	KY984329	KY984390	KY984448		
H. nabanhense	HJAUP C2054 ET	OP555400	OP555398	OP555394	-	OP961931		

Spacios	Culture/Specimen No	GenBank Accession Numbers						
Species	Culture/Specimen No.	SSU	LSU	ITS	RPB2	TEF1		
H. nanjingense	ZM020380 = HHAUF020380	-	-	KF192322	-	-		
H. oligosporum	L92 = CBS 136908	KY984428	KY984332	KY984332	KY984393	KY984450		
H. oligosporum	L93 ^{ET} = CBS 136909	_	KY984333	KY984333	KY984394	KY984451		
H. quercinum	ZT-97034 = CBS 112393	_	KY984334	KY984334	KY984395	KY984452		
H. quercinum	L107 = CBS 136915	_	KY984336	KY984336	KY984397	-		
H. quercinum	L90 ^{HT} = CBS 136921	KY984429	KY984339	KY984339	KY984400	KY984453		
H. sinense	HJAUP C2121 ^{ET}	OP555399	OP555397	OP555393	-	OP961932		
H. solani	CBS 365.75	KY984430	KY984341	KY984341	KY984402	KY984455		
H. solani	CBS 640.85	-	KY984342	KY984342	KY984403	-		
H. submersum	MFLUCC 16-1360 HT	MG098796	MG098787	-	-	MG098586		
H. submersum	MFLUCC 16-1290 PT	MG098797	MG098788	MG098780	MG098592	MG098587		
H. syzygii	CPC35312 = CBS 145570 ^{HT}	_	MK876433	NR_165564	MK876487	-		
H. tiliae	L87 = CBS 136906	_	KY984344	KY984344	KY984405	-		
H. tiliae	L88 ET = CBS 136907	KY984431	KY984345	KY984345	KY984406	KY984457		
H. velutinum	H4626	AB797240	AB807530	LC014556	_	AB808505		
H. velutinum	H4739	AB797235	AB807525	LC014557	-	AB808501		
H. velutinum	L115 = CBS 136924	-	KY984347	KY984347	KY984408	KY984458		
H. velutinum	L131 ET = CBS 139923	KY984432	KY984352	KY984352	KY984413	KY984463		
H. velutinum	L98	KY984433	KY984359	KY984359	KY984417	KY984466		
H. yunnanense	HJAUP C2071 ^{ET}	OP555392	OP555396	OP555395	OP961934	OP961933		
Massarina cisti	CBS 266.62 = JCM 14140 ^{HT}	AB797249	AB807539	LC014568	-	AB808514		
M. eburnea	CBS 473.64	AF164367	GU301840	AF383959	GU371732	GU349040		
M. eburnea	H3953 = CBS 139697	AB521718	AB521735	LC014569	-	AB808517		
Periconia byssoides	H4600 = MAFF243872	AB797280	AB807570	LC014581	-	AB808546		
P. digitata	CBS 510.77	AB797271	AB807561	LC014584	-	AB808537		
P. macrospinosa	CBS 135663	KP184080	KP184038	KP183999	-	-		
P. pseudodigitata	KT 1395 = CBS139699 = MAFF 239,676 _{HT}	NG_064850	NG_059396	NR_153490	-	AB808540		
Pseudosplanchnonema vhorcioides	L16 = CBS 122935	KY984434	KY984360	KY984360	KY984418	KY984467		
Stagonosvora valudosa	S 601 NT = CBS 135088	_	KF251760	KF251257	KF252262	KF253207		
S. perfecta	KT 1726A = MAFF 239609	AB797289	AB807579	AB809642	_	AB808555		
S. pseudoperfecta	KT 889 = CBS 120,236 = MAFF 239607 HT	AB797287	AB807577	AB809641	_	AB808553		
S. tainanensis	KT 1866 = MAFF 243860	AB797290	AB807580	AB809643	_	AB808556		

 Table 1. Cont.

"-", sequence is unavailable; Strain with ET (epitype), HT (holotype), NT (neotype), and PT (paratype); Abbreviations: **CBS**: Central Bureau voor Schimmel cultures, Utrecht, The Netherlands; **CGMCC**: China General Microbiological Culture Collection Center; **CPC**: Collection of Pedro Crous housed at CBS; **HHAUF**: Herbarium of Henan Agricultural University: Fungi; **HJAUP**: Herbarium of Jiangxi Agricultural University, Plant Pathology; **JCM**: Japan Collection of Microorganisms; **MFLUCC**: Mae Fah Luang University Culture Collection, Chiang Rai, Thailand; **UESTCC**: University of Electronic Science and Technology Culture Collection, Chengdu, China; **ITS**: internal transcribed spacer; **SSU**: small subunit ribosomal; **LSU**: large subunit ribosomal; *TEF1*: transcriptional enhancer factor 1-alpha; *RPB2*: second largest subunit of RNA polymerase II; others are not registered abbreviations.

2.3. Phylogenetic Analyses

The newly generated sequences together with other sequences obtained from GenBank (Table 1) were aligned using MAFFTv.7 [43] on the online server (http://maffTh.cbrc.jp/alignment/server/, accessed on 5 January 2023), and optimized manually when needed. Phylogenetic analyses were conducted individually for each locus at first and then for a combined dataset of five gene loci (ITS, LSU, SSU, *TEF1* and *RPB2*). The tandem sequences of ITS, SSU, LSU, *TEF1* and *RPB2* were obtained by Phylosuite software v1.2.1 [44] under "Concatenate Sequence", and absent sequence data in the alignments were treated with a question mark as missing data. The best-fitting nucleotide substitution models for each alignment dataset were selected using ModelFinder [45]. Maximum-likelihood (ML) and Bayesian inference (BI) were used to analyze the dataset after splicing. Maximum-likelihood phylogenies were inferred using IQ-TREE [46] under an Edge-linked partition model for 10,000 ultrafastbootstraps [47]. The optimal ML tree search was conducted with 1000 separate runs using the default algorithm of the program from a random starting tree for each run. The best-fit model was TIM3 + F + R3 for *TEF1*, TIM2e + I + G4 for ITS,

TNe + R4 for LSU, TN + F + I + G4 for *RPB2* and K2P + R2 for SSU. Bayesian inference phylogenies were inferred using MrBayes 3.2.6 [48] under a partition model (2 parallel runs, 2,000,000 generations), in which the initial 25% of sampled data were discarded as burn-in. The best-fit model was GTR + F + I + G4 for *RPB2*, ITS and LSU, GTR + F + G4 for *TEF1* and HKY + F + G4 for SSU. ModelFinder [45] was used to select the best-fit partition model (Edge-linked) using BIC criterion. These trees were visualized using FigTree v. 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree, accessed on 16 January 2023), with editing and typesetting using Adobe Illustrator CS v. 5.

3. Results

3.1. Molecular Phylogeny

In this study, five gene regions of ITS, LSU, SSU, TEF1 and RPB2 were obtained successfully except for H. jiulianshanense, which lack SSU and TEF1 sequences. Phylogenetic relationships of three *Helminthosporium* species were assessed in the combined analysis using 5 gene regions of 74 strains representing 48 species in Massarinaceae and related families (Periconiaceae, Corynesporascaceae and Cyclothyriellaceae). The combined dataset (TEF1:1-372, ITS:1373-2042, LSU:2043-2937, RPB2:2938-4068, SSU:4069-5129) was composed of 2274 distinct patterns, 1900 parsimony-informative, 319 singleton sites and 2910 constant sites. A total of 5 single-locus datasets, ITS, LSU, SSU, RPB2 and TEF1, contained 670, 895, 1061, 1131 and 1372 parsimony informative sites, respectively. *Cyclothyriella rubronotata* (TR) and C. rubronotata (TR9) served as outgroup taxa. Maximum-likelihood and Bayesian inference analyses of the combined datasets resulted in phylogenetic reconstructions with largely similar topologies, and bootstrap support values for maximum-likelihood higher than 75% and Bayesian posterior probabilities greater than 0.90 are given above the nodes. The best-scoring ML consensus tree (lnL = -38,302.006) with ultrafast bootstrap values from ML analyses and posterior probabilities from MrBayes analysis at the nodes are shown in Figure 1. Our newly obtained *Helminthosporium* isolates represent three different clades. The strain of H. guanshanense (HJAUP C1022) forms a distinct clade sister to two different strains of H. massarinum (KT 838 and KT 1564.7) with 89%ML/0.92BI bootstrap support; *H. jiulianshanense* (HJAUP C1057) forms a high-support clade (100%ML/1.00BI) with the lineage consisting of five different strains of *H. velutinum* (H4626, H4739, L131, L115 and L98); H. meilingense (HJAUP C1076) clustered as a sister taxon to the clade containing H. nabanhense (HJAUP C2054) and H. chlorophorae (BRIP 14521) with 94%ML/0.68BI bootstrap support.

Figure 1. Phylogram generated from maximum-likelihood analysis based on combined ITS, LSU, SSU, *TEF1* and *RPB2* sequence data for the families *Corynesporaceae*, *Massarinaceae* and *Periconiaceae*. The ML and BI bootstrap support values above 75% and 0.90 are given above the nodes. The tree is rooted to *Cyclothyriella rubronotata* (TR) and *C. rubronotata* (TR9). Strains from the current study are in bold. Some branches were shortened according to the indicated multipliers.

3.2. Taxonomy

Helminthosporium guanshanense Y.F. Hu and Jian Ma, sp. nov., Figure 2.

Figure 2. *Helminthosporium guanshanense* (HJAUP M1022, holotype): (**a**) surface of colony after 4 weeks on PDA; (**b**) reverse of colony after 4 weeks on PDA; (**c**) conidiophore and conidiogenous cells; (**d**–**g**) conidiophores, conidiogenous cells and conidia; (**h**) conidiogenous cells and conidia; (**i**) conidia.

Indexfungorum number: IF900239.

Etymology: The name refers to Guanshan Nature Reserve, the locality where the fungus was collected.

Holotype: HJAUP M1022.

Description: Saprobic on dead branches in terrestrial habitats. Anamorph hyphomycetous. *Colonies* on natural substrate effuse, scattered, hairy, brown to dark brown. *Mycelium* superficial and immersed in the substratum, composed of branched, septate, smooth, pale brown to brown, thick-walled hyphae. *Conidiophores* macronematous, mononematous, solitary or in groups of 2–4, simple, erect, straight or flexuous, cylindrical, smooth, 10–34septate, blackish brown, paler towards the apex, sometimes with cylindrical, enteroblastic percurrent extensions with well-defined small pores at the apex and laterally beneath the upper 1–5 septa, 282.5–977.5 × 15–20 µm ($\bar{x} = 700.3 × 16 µm$, n = 10). *Conidiogenous cells* polytretic, integrated, terminal and intercalary, cylindrical, brown, smooth. Conidial secession schizolytic. *Conidia* acropleurogenous, solitary, dry, obclavate, rostrate, straight or curved, 5–14-distoseptate, pale brown, smooth, 55–107.5 × 10–15 µm ($\bar{x} = 85.8 × 13.7 µm$, n = 21), tapering to 4.5–7.5 µm near the apex, 5–9 µm wide at the base.

Culture characteristics: Colony on PDA reaching 55–65 mm diam. after 4 weeks in an incubator under dark conditions at 25 °C, irregular circular, surface reddish dark brown with gray white in the center and gray mat of aerial hyphae at the margin; reverse rosy-brown with black dots and pale brown periphery.

Material examined: China, Jiangxi Province, Yichun City, the Guanshan National Nature Reserve, on dead branches of an unidentified broadleaf tree, 25 June 2021, Y.F. Hu (HJAUP M1022, *holotype*; ex-type culture permanently preserved in a metabolically inactive state by freezing HJAUP C1022).

Notes: The phylogenetic tree shows that the strain of *H. guanshanense* (HJAUP C1022) clusters with the ex-type strain of *H. massarinum* (KT 838 and KT 1564^T). The BLASTn analysis of *H. guanshanense* (HJAUP C1022) and *H. massarinum* (KT 1564^T) shows 94%

identity (432/461, 2 gaps) using ITS, 99% identity (570/578, 2 gaps) using LSU, 99% identity (447/448, no gap) using SSU and 95% identity (865/910, no gap) using *RPB2*. Moreover, *H. guanshanense* differs from *H. massarinum* [22] by its wider conidiophores (15–20 µm vs. 7–9 µm) and longer conidia (55–107.5 × 10–15 µm vs. 17–56.5 × 5–9 µm) with more distosepta (5–14 vs. 1–8). *Helminthosporium guanshanense* also superficially resembles *H. quercinum* [24], but the latter has smaller conidiophores [(40–)74–199(–332) × 11–18 µm vs. 282.5–977.5 × 15–20 µm], and longer conidia [(47–)78–130(–201) × (13.2–)15.3–18.0(–20.5) µm vs. 55–107.5 × 10–15 µm] with 8–13(–20) distosepta.

Helminthosporium jiulianshanense Y.F. Hu and Jian Ma, sp. nov., Figure 3.

Figure 3. *Helminthosporium jiulianshanense* (HJAUP M1057, holotype): (**a**) surface of colony after 4 weeks on PDA; (**b**) reverse of colony after 4 weeks on PDA; (**c**) conidiophore and conidiogenous cells; (**d**,**e**) conidiophores, conidiogenous cells and conidia; (**f**) conidia.

Index Fungorum number: IF900240.

Etymology: The name refers to Jiulianshan National Forest Park, the locality where the fungus was collected.

Holotype: HJAUP M1057.

Description: Saprobic on decaying wood in terrestrial habitats. Anamorph hyphomycetous. *Colonies* on natural substrate effuse, scattered, hairy, brown to dark brown. *Mycelium* superficial and immersed in the substratum, composed of branched, septate, smooth, pale brown to brown, thick-walled hyphae. *Conidiophores* macronematous, mononematous, solitary or in groups of 2–3, simple, erect, straight or flexuous, cylindrical, smooth, 10–21-septate, blackish brown, paler towards the apex, with one cylindrical, enteroblastic percurrent extension with well-defined small pores at the apex and laterally beneath the upper 1–4 septa, (290–)531–712 × 10–15 µm ($\bar{x} = 520 \times 13 µm$, n = 10). *Conidiogenous cells* polytretic, integrated, terminal and intercalary, cylindrical, brown, smooth. Conidial secession schizolytic. *Conidia* acropleurogenous, solitary, dry, obclavate, rostrate, straight or curved, 6–13-distoseptate, pale brown to brown, smooth, (57–)78–120 × 13–17.5 μ m (\bar{x} = 93 × 14.8 μ m, *n* = 20), tapering to 4–6.5 μ m near the apex, 5–9 μ m wide at the base.

Culture characteristics: Colony on PDA reaching 70–78 mm diam. after 4 weeks in an incubator under dark conditions at 25 °C, irregular circular, surface velvety, with dense, dark brown mycelium plus white patches of aerial hyphae, and becoming sparser towards the edge; reverse gray with sparser black patches in the center.

Material examined: China, Jiangxi Province, Ganzhou City, Jiulianshan National Forest Park, on dead branches of an unidentified broadleaf tree, 26 June 2021, Y.F. Hu (HJAUP M1057, *holotype*; ex-type culture permanently preserved in a metabolically inactive state by freezing HJAUP C1057).

Notes: The phylogenetic tree shows that the strain of *H. jiulianshanense* (HJAUP C1057) clusters with five different strains of *H. velutinum* (H4626, H4739, L131^T, L115, L98), and they form a sister clade to *H. solani* (CBS 365.75 and CBS640.85). The BLASTn analysis of *H. jiulianshanense* (HJAUP C1057) and *H. velutinum* (L131^T) shows 96% identity (563/585, 6 gaps) using ITS, 98% identity (574/583, 4 gaps) using LSU and 94% identity (880/934, 7 gaps) using *RPB2*. Moreover, *H. jiulianshanense* morphologically differs from *H. velutinum* [24] in the size of the conidiophores [(290–)531–712 × 10–15 µm vs. (163–)340–698(–960) × 14–26 µm] and conidia [(57–)78–120 × 13–17.5 µm vs. (42–)56–89(–142) × (11–)14.3–18.5(–24.7) µm] and conidial distosepta (6–13 vs. 6–8). In addition, *H. jiulianshanense* morphologically differs from *H. solani* Durieu and Mont. [7,49] by its longer conidiophores [(290–)531–712 µm vs. 24–85 µm] with more distosepta (6–13 vs. 2–8).

Helminthosporium meilingense Y.F. Hu and Jian Ma, sp. nov., Figure 4.

Figure 4. *Helminthosporium meilingense* (HJAUP M1076, holotype): (**a**) surface of colony after 4 weeks on PDA; (**b**) reverse of colony after 4 weeks on PDA; (**c**,**g**) conidiogenous cells and conidia; (**d**–**f**) conidiophores, conidiogenous cells and conidia; (**h**) conidia.

Index Fungorum number: IF900241.

Etymology: The name refers to Meiling Scenic Spot, the locality where the fungus was collected.

Holotype: HJAUP M1076.

Description: Saprobic on decaying wood in terrestrial habitats. Anamorph hyphomycetous. *Colonies* on natural substrate effuse, scattered, hairy, brown to dark brown, velvety. *Mycelium* superficial and immersed in the substratum, composed of branched, septate, smooth, pale brown to brown, thick-walled hyphae. *Conidiophores* macronematous, mononematous, solitary or in groups of 2–4, simple, erect, straight or flexuous, cylindrical, smooth, 18–29-septate, blackish brown, paler towards the apex, with several cylindrical, enteroblastic percurrent extensions with well-defined small pores at the apex and laterally beneath the upper 1–5 septa, 544–712.5 × 12.5–17 µm ($\bar{x} = 622 \times 15.2$ µm, n = 8). *Conidiogenous cells* polytretic, integrated, terminal and intercalary, cylindrical, brown, smooth, with noncicatrized, distinct pores. Conidial secession schizolytic. *Conidia* acropleurogenous, solitary, dry, obclavate, rostrate, straight or curved, 6–13-distoseptate, pale brown, smooth, (20.7–)41.5–82.8 × 6.9–10.4 µm ($\bar{x} = 64 \times 8 µm$, n = 29), tapering to 1.7–3.5 µm near the apex, 3–7 µm wide at the base. Basal cell or apical portion sometimes with branches that developed a rostrate.

Culture characteristics: Colony on PDA reaching 60–70 mm diam. after 4 weeks in an incubator under dark conditions at 25 °C, irregular circular, surface gray-brown with blackish brown in the center and gray mat of aerial hyphae at the margin; reverse rosy-brown with dark brown center and pale brown periphery.

Material examined: China, Jiangxi Province, Nanchang City, Meiling Scenic Spot, on dead branches of an unidentified broadleaf tree, 27 June 2021, Y.F. Hu (HJAUP M1076, *holotype*; ex-type culture permanently preserved in a metabolically inactive state by freezing HJAUP C1076).

Notes: The phylogenetic tree shows that the strain of *H. meilingense* (HJAUP C1076) forms an independent clade and clusters with the strains of *H. nabanhense* (HJAUP C2054) and *H. chlorophorae* (BRIP 14521). The BLASTn analysis of *H. meilingense* (HJAUP C1076) and *H. nabanhense* (HJAUP C2054) shows 92% identity (450/487, 4 gaps) using ITS, 96% identity (562/583, 7 gaps) using LSU, 99% identity (883/86, 2 gaps) using SSU and 94% identity (712/761, 1 gap) using *TEF1*; of *H. meilingense* (HJAUP C1076) and *H. chlorophorae* (BRIP 14521) show 90% identity (427/473, 12 gaps) using ITS. Moreover, *H. meilingense* is significantly different from *H. nabanhense* Jing W. Liu and Jian Ma [31] in its longer conidiophores (544–712.5 × 12.5–17 µm vs. 365–557 × 6.5–13.5 µm) and longer conidia [(20.7–)41.5–82.8 µm vs. 26.5–46.5 µm] with more distosepta (6–13 vs. 3–6) and from *H. chlorophorae* M.B. Ellis [7] in its longer conidiophores (544–712.5 × 12.5–17 µm vs. 120–270 × 7–10 µm) and smaller conidia [(20.7–)41.5–82.8 × 6.9–10.4 µm vs. 52–102 × 8–11 µm] with more distosepta (6–13 vs. 6–9). In addition, *H. meilingense* further differs from *H. nabanhense* and *H. chlorophorae* in producing simple or branched conidia.

4. Discussion

The establishment of *Helminthosporium* was based on morphological studies. More than 770 epithets for *Helminthosporium* have been listed in Index Fungorum [3]. Members in the genus mainly occur in the asexual morph, usually forming effuse, hairy colonies on decaying leaf or twig litter. The generic concept of *Helminthosporium* is based on the characteristics of asexual morph and is mainly characterized by distinct, determinate or percurrently extending conidiophores with a well-defined small pore at the apex and/or laterally beneath the septa and tretic, integrated, terminal or intercalary conidiogenous cells that produce solitary (rarely in short chains), clavate or obclavate, distoseptate conidia usually with a distinct dark brown to black scar at the base [1,4,7,11,24,50,51]. VogImayr and Jaklitsch [24] transferred four *Corynespora* species to *Helminthosporium* based on molecular phylogenetic analyses, which led to the characters delineating the genus *Helminthosporium* also covering the criteria of *Corynespora*. The traditional distinction between monotretic vs.

polytretic conidiogenous cells for separating *Corynespora* and *Helminthosporium* is shown to be insignificant in a phylogenetic context.

The taxonomic history of the genus *Helminthosporium* is complex. Many graminicolous taxa conventionally named as "*Helminthosporium*" species have been reclassified into the genera *Bipolaris, Curvularia, Drechslera* and *Exserohilum* [8], and several lignicolous species were recently transferred to *Ellismarsporium, Mirohelminthosporium, Stanhughesiella, Varioseptispora* and other genera due to their atypical features in *Helminthosporium* [11–13]. Konta et al. [34] listed 216 *Helminthosporium* species based on records from Species Fungorum, but many species are identified based only on morphological studies, and only 33 species have sequence data so far. Morphological comparison is important for fungal identification, but species identification only based on morphological studies is not comprehensive [31]. There is presently a strong tendency to evaluate previous described *Helminthosporium* and studying their diversity and biology by a morpho-molecular approach are urgently necessary, which may be helpful to clarify the taxonomic status of many doubtful species and some important plant pathogens [23,28].

The genus *Helminthosporium* has a worldwide distribution with species recorded from a wide range of hosts [23,24,30,34,51–55]. However, the number of Helminthospo*rium* species is very confusing in the recent monograph [24,28,56–58]. For example, Kirk et al. [56] recorded in the Dictionary of the Fungi that the genus comprises c. 35 species. Wijayawardene et al. [57,58] respectively estimated the genus including c. 40 and 416 species. Voglmayr and Jaklitsch [24] approximated the number of taxa accepted in Helminthosporium is about 46. In addition, Voglmayr and Jaklitsch [24] synonymised *Exosporium* with Helminthosporium and evaluated 17 Helminthosporium species by morphological and molecular systematic analysis. Konta et al. [34] listed 216 Helminthosporium species based on the records of Species Fungorum 2021. Considering that the number of Helminthospo*rium* species does not match and many subsequent authors followed Siboe et al.'s [10] treatment, 63 species are currently accommodated in this genus. A checklist for these 63 Helminthosporium species, including major morphological features, host information, locality and sequence data, is provided in Table 2. Most of these are commonly collected from leaves and decaying wood in terrestrial habitats [22,24,30,34], and only two species, H. aquaticum Hong Y. Su, Z.L. Luo and K.D. Hyde and H. submersum Z.L. Luo, N. Zhao, K.D. Hyde and H.Y. Su, are recorded in freshwater habitats [23,28]. Thus, large-scale surveys of fungal resources in aquatic and terrestrial habitats with different geographic regions, ecological environment, vegetation type and climatic conditions will contribute to the knowledge of the fungal diversity and to a better understanding of the doubtful species, further clarifying their taxonomic status by phylogenetic analyses.

Spacios	Conidionhoros (um)	Conida				Sequence	Host/Locality	Deferences	
Species	Colliciophores (µiii)	Shape	Colour	Size (µm)	Septa	Data	Host Locality	Kelefences	
Helminthosporium acaciae	140–280 × 7–11	Obclavate	Subhyaline to pale brown	31–49 × 10–14	3–6	Absent	On dead branches of <i>Acacia farnesiana</i> /Sierra Leone	[7]	
H. ahmadii	220–650 × 12–15	Obclavate, sometimes rostrate	Brown to dark brown	$95-150 \times 25-30$	5–15	Absent	On dead branches of <i>Quercus</i> sp./Pakistan	[7]	
H. aquaticum	$410-580 \times 13-17$	Obclavate	Pale brown to brown	70–80 × 16–18	8–10	Present	On submerged decaying wood/China	[23]	
H. austriacum	275–700(–920) × 11.5–19	Obpyriform to lageniform	Pale brown,	(30–)35–48(–97) × (10.0–)13.7–16.5(–19.8)	(4–)5–7(–10)	Present	On dead corticated twigs of <i>Fagus</i> <i>sylvatica</i> / Austria	[24]	
H. bambusicola	55-247 imes 4-6	Obclavate	Pale brown, paler towards the apex	36-66 × 6-11	5–8	Absent	On dead <i>Bambusa</i> sp. culm/China	[16]	
H. bauhiniae	350–1100 × 10–15	Obclavate, rostrate	Subhyaline to pale brown	55–145 × 16–18	7–18	Absent	On dead twigs of Bauhinia tomentosa/Sierra Leone	[7]	
H. belgaumense	260-455 × 6.6-10	Ellipsoidal to subspherical	Brown to dark brown	$18-24 \times 14.9-18.2$	1	Absent	On dead twigs of unidentified plant/India	[59]	
H.caespitosum	(21–)27–37(–44) × (11.2–)12.2–14.5(–16.5)	Medium to dark reddish brown, paler toward the apex	Broadly ellipsoid to obclavate, sometimes rostrate	(67–)82–109(–119) × (22.0–)27.3–35.5(–40.5)	(3–)6–10	Present	On dead corticated branches of <i>Betula</i> sp./Canada	[24]	
H. chengduense	133–391 × 7–15	Obclavate, sigmoid, lunate or uncinate	Grey-white to pale brown	41–251 × 8–13	3–16	Present	On decaying branch of unidentified host/China	[30]	
H. chiangraiense	168–304.5 × 5.5–12	Obclavate, rostrate	Pale brown	141–207 × 14–22	9–13	Present	On dead twigs of unidentified plant/Thailand	[29]	
H. chinense	214-461 × 6-16	Obclavate	Pale gray to brown	42–109 × 5–11	4–10	Present	On decaying branch of palm trees/China	[30]	
H. chlorophorae	120–270 × 7–10	Obclavate	Subhyaline to pale brown	52–102 × 8–11	6–9	Present	On dead twigs of Chlorophora regia/Sierra Leone	[7]	
H. claviphorum	(200–)350–900 × 8.5–11	Obclavate	Pale yellowish brown	$45-95 \times 12-15$	5-14	Absent	On rotten branch/Peru	[32]	
H. conidiophorellum	60-280 imes 7-8.5	Subulate	Pale brown	100–147.5 × 9.5–11	11–17	Absent	On dead branches of an unidentified tree/China	[18]	

Table 2. Synopsis of morphological characteristics, sequence data, host and locality compared across accepted *Helminthosporium* species.

Table 2. Cont.

Spacias	Conidianharas (um)	Conida					Hest/Locality	Deferreres
Species	Contatophotes (µm)	Shape	Colour	Size (µm)	Septa	Data	110St/Locality	Kererences
H. constrictum	$88-205 \times 5-8$	Obclavate	Pale brown, paler towards the apex	57–120 × 9–12	9–15	Absent	On dead branches of <i>Trachycarpus</i> <i>fortunei</i> /China	[15]
H. cubense	(25–)50–150 × 4–5	Obclavate or cylindrical	Brown, paler towards the apex	$18-62.5 \times 6-18$	3–7	Absent	On rachis of <i>Roystonea</i> <i>regia</i> /Cuba	[60]
H. dalbergiae	300-1300 × 10-12(-15)	Obclavate	Straw-coloured to pale brown	58–125 × 12–14	5–17	Present	On dead branches of Dalbergia sissoo/Pakistan	[7]
H. dongxingense	340-650 × 16-25	Ovoid or obpyriform	Middle brown to brown, paler towards the apex	50–78 × 17–25	6–10	Absent	On dead branches of <i>Rhododendron</i> sp./China	[19]
H. endiandrae	$200-300 \times 5-7$	Obclavate	Brown	(35–)37–45(–57) × (7–)8(–9)	3(-4)	Present	On leaves of <i>Endiandra</i> introrsa/Australia	[24,61]
H. erythrinicola	500-1200 × 6-10	Obclavate	Medium brown	(70–)80–90(–110) × (9–)10–11(–12)	(6–)7–8(–12)	Present	On leaves of <i>Erythrina humeana</i> /South Africa	[26]
H.genistae	(155–)280–460(–560) × 15–23	Obclavate to rostrate	Pale golden brown to brown	(41–)51–73(–93) × (10.5–)12.7–15.8(–17.5)	5–12	Present	On dead corticated twigs of <i>Cytisus</i> <i>scoparius</i> /France	[24]
H. guangxiense	330-850 × 15-20	Obclavate	Middle brown, paler towards the apex	76–110 × 16–22	9–17	Absent	On dead branches of an unidentified tree/China	[18]
H. guanshanense	282.5–977.5 × 15–20	Obclavate, rostrate	Pale brown	55–107.5 × 10–15	3–14	Present	On dead branches of an unidentified broadleaf tree/China	This study
H. hispanicum	$130-540 \times 13-22.5$	Obclavate	Pale brown	69–99(–130) × (17–)18–21(–24)	(4–)6–11(–14)	Present	On dead corticated twigs of <i>Juglans regia</i> /Spain	[24]
H. hunanense	70–226 × 5–7	Obclavate	Middle brown, paler towards the apex	56–127 × 10–14	4–12	Absent	On dead branches of an unidentified tree/China	[16]
H. italicum	(190–)330–600 × (12–)16–18(–20)	Obclavate	Pale brown to brown, with apical cell paler than other cells,	58–78 × 15–19(–23)	6–11	Present	On dead branch of <i>Alnus</i> glutinosa/Italy	[27]
H. jiulianshanense	(290–)531–712 × 10–15	Obclavate, rostrate	Pale brown to brown	(57–)78–120 × 13–17.5	6–13	Present	On dead branches of an unidentified broadleaf tree/China	This study
H. juglandinum	(175–)215–325(–455) × 11–23	Obclavate, rostrate	Pale brown	(69–)89–145(–205) × (15.0–)16.5–20.0(–25.0)	(5–)9–17(–20)	Present	On dead corticated twigs of Juglans regia/Austria	[24]

Table 2	2. Cont.
---------	-----------------

Spacios	Conidianharas (um)	Conida					Host/Locality	Deferreres
Species	Contaiophores (µm)	Shape	Colour	Size (µm)	Septa	Data	11050 Locality	Keferences
H. juglandis	619–1030 × 10.5–14	Clavate	Brown	50–119 × 10–12.7	4–15	Absent	On living branches of Juglans regia/China	[20]
H. kakamegense	250–550 × 8–12	Obclavate, rostrate	Subhyaline	30–90 × 8–10	4–15	Absent	On dead attached twig of <i>Uvariopsis</i> congensis/Kenya	[10]
H. kalakadense	$1000-2000 \times 17-25$	Obclavate	_	45–60 × 13–16	8	Absent	On dead unidentified twig/India	[24,62]
H. kalopanacis	63.1–207.5 × 8.3–13.3	Subcylindrical	Pale dark brown	33.2–59.8 × 10–16.6	2–5	Absent	On dead wood of <i>Kalopanax</i> septemlobus/Russia	[63]
H. leucadendri	100-300 × 4-6(-7)	Obclavate to subcylindrical	Medium brown	(35–)70–110(–170) × (6–)7–8(–11)	(3–)4–6(–10)	Present	On leaves of <i>Leucadendron</i> sp./South Africa	[24,64]
H. ligustri	127–700 × 9.5–18	Obclavate, rostrate or pseudorostrate	Pale brown, subhyaline towards the apex	24–38.5 × 9.5–13	4–6	Absent	On dead branches of an unidentified tree/China	[18]
H. livistonae	Up to 500 \times 4–6	subcylindrical	Medium brown	(25–)40–55(–65) × (7–)8–9	(3–)4–6(–7)	Present	On leaves of <i>Livistona</i> australis/Australia	[25]
H. longisinuatum	20-75 × 3.5-5	Narrowly obclavate	Middle brown, paler toward the apex	65–220(–1000) × 8–10.5	9–22	Absent	On rotten trunk of Palmae/Peru	[32]
H. magnisporum	150–270 × 8.5–13.5	Obclavate, rostrate	Pale olive-brown to pale brown, paler toward the apex	100–203 × 12.5–22.5	7–18	Present	On dead fallen branches of an unknown woody plant/Japan	[17,33]
H. massarinum	$380 - 810 \times 7 - 9$	Obclavate, rostrate	Pale brown	17–56.5 × 5–9	1–8	Present	On vines of <i>Berchemia</i> racemosa/Japan	[22]
H. matsushimae	$20-65 \times 3-4.5$	Cylindrical	Medium to dark brown	(20–) 50–100 × 6–8.5	(3–) 6–14	Absent	On rotten petiole of Palmae/Peru	[13,32]
H. mauritianum	$250-750 \times 14-20$	Obclavate	Subhyaline to rather pale brown	$27-55 \times 8-13$	3–7	Absent	On twigs and stems/Mauritius	[7,65]
H. meilingense	544–712.5 × 12.5–17	Obclavate, rostrate	Pale brown	(20.7–)41.5–82.8 × 6.9–10.4	6–13	Present	On dead branches of an unidentified broadleaf tree/China	This study
H. microsorum	100–550 × 8–14	Obclavate	Pale to mid golden-brown	60–160 × 12–22	9–17	Present	On twigs of <i>Quercus</i> <i>ilex</i> /Italy	[6,66]

Tab	le 2.	Cont.
-----	-------	-------

Spacios	Conidianharas (um)		Conida		Sequence		bequence Host/Locality	
Species	Conditiophores (µm)	Shape	Colour	Size (µm)	Septa	Data	11050 Locality	References
H. multiseptatum	$390-650 \times 10-14$	Thinly obclavate or nearly whip-like	Pale brown, paler towards the apex	78–190 × 11–16	13–25	Absent	On dead branches of an unidentified tree/China	[15]
H. nabanhense	365–557 × 6.5–13.5	Obclavate, rostrate	Pale brown to brown	26.5-46.5 × 6.5-10	3–6	Present	On dead branches of an unidentified broadleaf tree/China	[31]
H. nanjingense	$250-470 \times 6.9-7.7$	Subulate or nearly whip-like	Pale brown	$64.5-170.5 \times 7.3-10.3$	6–17	Present	On dead branches of an unidentified tree/China	[21]
H. novae-zelandiae	165–330 × 12.5–14.5	Obclavate to fusiform, sometimes shortly rostrate	Golden brown to dark brown, paler toward the apex	56–103 × 16–21.5	(5–)6–7(–8)	Absent	On dead wood and bark of <i>Vitex lucens</i> /New Zealand	[67]
H. obpyriforme	225–460 × 9.5–13	Obpyriform	Middle brown, paler towards the apex	$47-74 \times 14-19$	5–9	Absent	On dead branches of an unidentified tree/China	[18]
H. oligosporum	(17–)22–35(–46) × (8.0–)8.5–10.5(–11.5)	Obclavate, sometimes rostrate, smooth but occasionally wrinkled with age	Pale brown to brown, paler toward the apex	(37–)59–80(–124) × (14.8–)15.8–18.0(–20.0)	6–12(–16)	Present	On dead corticated twigs of <i>Tilia cordata</i> /Austria	[24]
H. ovoideum	$380-510 \times 15-25$	Ovoid to ellipsoidal	Moderately brown, paler towards the apex	27–61 × 13–21	3–8	Absent	On dead branches of an unidentified tree/China	[18]
H. palmigenum	70–180(–250) × 7–10	Obclavate	Below pale brown, upper subhyaline	27–47 × 6.5–9	4-9	Absent	On rotten fruit of <i>Cocos</i> nucifera/Papua New Guinea	[68]
H. pseudomicrosorum	$155-288 \times 11-15$	Obclavate	Brown, paler towards the apex	$82-142 \times 17-27$	7–16	Absent	On dead branches of an unidentified tree/China	[18]
H. quercicola	(115–)133–226(–300) × 14–20	Obclavate	Brown	60–100 × 15–22	8–10	Absent	On dead corticated branches of <i>Quercus</i> cf. <i>reticulata</i> /USA	[24]
H. quercinum	(40–)74–199(–332) × 11–18	Obclavate, rostrate	Brown	(47–)78–130(–201) × (13.2–)15.3–18.0(–20.5)	8-13(-20)	Present	On dead corticated twigs of <i>Quercus</i> <i>petraea</i> / Austria	[24]
H. sichuanense	300–550 × 14–25	Obclavate,	Middle brown, paler towards the apex	41-86 × 10-14	5–11	Absent	On dead branches of an unidentified plant/China	[14]
H. sinense	220–370 × 6–8.5	Obclavate	Pale brown	37–60 × 5.5–8.5	2–7	Present	On dead branches of an unidentified broadleaf tree/China	[31]

Table 2. Cont.

Spacias	Canidianharaa (um)	Conida				Sequence	Host/Locality		
Species	Contatophores (µm)	Shape	Colour	Size (µm)	Septa	Data	Host/Locality	Keferences	
H. solani	120-600 × 9-15	Obclavate	Subhyaline to brown	24–85 × 7–11	2–8	Present	On stem of <i>Solanum</i> <i>nigrum</i> /England	[7,49]	
H. spurirostrum	200–600 × 18–23	Obclavate, sometimes pseudorostrate	Moderately brown to brown, paler to the apex	27–73 × 7–15.5	4–7	Absent	On dead branches of an unidentified plant/China	[14]	
H. subhyalinum	120–200 × 6–8.5	Thinly obclavate	Subhyaline	72–125 × 9–11.5	6–9	Absent	On living leaves of <i>Phoenix hanceana</i> / China	[15]	
H. submersum	239–423 × 8.5–15.5	Obclavate, rostrate	Pale brown to mid-brown	$41-55 \times 14.5-18.5$	6–10	Present	On submerged decaying wood/China	[28]	
H. syzygii	150-400 × 10-15	Obclavate	Medium brown	(70–)80–100(–150) × (19–)22–23(–25)	(7–)9–12	Present	On bark canker of <i>Syzygium</i> sp./South Africa	[26]	
H.tiliae	(68–)79–133(–150) × 9–15	Obclavate to rostrate	Pale to golden brown	(57–)74–111(–122) × (13.5–)13.7–19.0(–24.5)	7–18(–25)	Present	On dead corticated branches of <i>Tilia</i> platyphyllos/Austria	[24]	
H. velutinum	(163–)340–698(–960) × 14–26	Obclavate to rostrate	Pale golden brown to brown	(42–)56–89(–142) × (11–)14.3–18.5(–24.7)	6–18	Present	On dead corticated twigs of <i>Fagus</i> <i>sylvatica</i> / Austria	[4,24]	
H. yunnanense	560–680 × 12.5–15.5	Obclavate, sigmoid, lunate or uncinate	Pale brown	30.5–55.5 × 9–11	4–7	Present	On dead branches of an unidentified broadleaf tree/China	[31]	

All conidia are smooth, except for *H. conidiophorellum, H. endiandrae* and *H. oligosporum*, which are verrucose or roughened; All conidiogenous cells are polytretic except for *H. caespitosum*, *H. endiandrae*, *H. leucadendri* and *H. oligosporum*, which are monotretic; All species are reported from terrestrial habitats except for *H. aquaticum* and *H. submersum*, which are recorded in aquatic habitats; All conidia are solitary except for *H. endiandrae*, *H. massarinum* and *H. sinense*, which produce catenate conidia.

Author Contributions: Y.-F.H., J.-W.L., Z.-H.X. and J.M. designed the study and were involved in writing the paper; Y.-F.H. and Z.-H.X. were responsible for sample collections; Y.-F.H. and J.-W.L. were involved in phylogenetic analyses. R.F.C.-R., K.Z. and J.M. contributed to planning and editing of the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This project was supported by the National Natural Science Foundation of China (Nos. 31970018, 32160006).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All sequences generated in this study were submitted to GenBank.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Seifert, K.; Morgan-Jones, G.; Gams, W.; Kendrick, B. The genera of hyphomycetes. CBS Biodivers. Ser. 2011, 9, 1–997.
- Wijayawardene, N.N.; Phillips, A.J.L.; Pereira, D.S.; Dai, D.Q.; Aptroot, A.; Monteiro, J.S.; Druzhinina, I.S.; Cai, F.; Fan, X.L.; Selbmann, L.; et al. Forecasting the number of species of asexually reproducing fungi (*Ascomycota* and *Basidiomycota*). *Fungal Divers.* 2022, 114, 463–490. [CrossRef]
- 3. Index Fungorum. Available online: http://www.indexfungorum.org/Names/Names.asp (accessed on 6 January 2023).
- 4. Link, H.F. Observationes in Ordines plantarum naturales. Dissertatio prima complectens Anandrarum ordines Epiphytas, Mucedines, Gastromycos et Fungos. *Ges. Natur.* **1809**, *3*, 3–42.
- Hughes, S.J. Revision es hyphomycetum aliquot cum appendice de nominibusrejiciendis. *Can. J. Bot.* 1958, *36*, 727–836. [CrossRef]
 Shoemaker, R.A. Nomenclature of *Drechslera* and *Bipolaris*, grass parasites segregated from '*Helminthosporium*'. *Can. J. Bot.* 1959,
- 37, 879–887, Erratum in Can. J. Plant Pathol. 2006, 28, S212–S220. [CrossRef]
- 7. Ellis, M.B. Dematiaceous hyphomycetes. III. Mycol. Pap. 1961, 82, 1–55.
- 8. Tsuda, M.; Ueyama, A.; Nishihara, N. *Pseudocochliobolus nisikadoi*, the perfect state of *Helminthosporium coicis*. *Mycologia* **1977**, *69*, 1109–1120. [CrossRef]
- 9. Sivanesan, A. Graminicolous species of Bipolaris, Curvularia, Exserohilum and their teleomorphs. Mycol. Pap. 1987, 158, 1–261.
- 10. Siboe, G.M.; Kirk, P.M.; Cannon, P.F. New dematiaceous hyphomycetes from Kenyan rare plants. Mycotaxon 1999, 73, 283–302.
- Castañeda-Ruíz, R.F.; Li, D.W.; Zhang, X.G.; Kendrick, B.; Ramos-García, B.; Pérez-Martínez, S.; Sosa, D. Ellismarsporium gen. nov. and Stanhughesiella gen. nov. to accommodate atypical Helminthosporium and Corynesporella species. Mycotaxon 2017, 132, 759–766. [CrossRef]
- 12. Xu, Z.H.; Qiu, L.; Kuang, W.G.; Shi, X.G.; Zhang, X.G.; Castañeda-Ruíz, R.F.; Ma, J. Varioseptispora chinensis gen. & sp. nov., V. apicalis nom. nov., V. hodgkissii comb. nov., and V. versiseptatis comb. nov. Mycotaxon 2020, 135, 753–759. [CrossRef]
- 13. Zhang, K.; Zhang, H.; Li, D.W.; Castañeda-Ruíz, R.F. *Mirohelminthosporium* gen. nov. for an atypical *Helminthosporium* species and *H. matsushimae* nom. nov. *Mycotaxon* **2020**, *135*, 777–783. [CrossRef]
- 14. Zhang, M.; Zhang, T.Y.; Wu, W.P. Taxonomic studies of *Helminthosporium* from China II. Two new species in Sichuan Province. *Mycosystema* **2004**, *23*, 179–182.
- 15. Zhang, M.; Zhang, T.Y.; Wu, W.P. Taxonomic studies of *Helminthosporium* from China III. Three new species in Guangdong Province. *Mycotaxon* 2007, *99*, 137–142.
- Zhang, M.; Wu, H.Y.; Wang, Z.Y. Taxonomic studies of *Helminthosporium* from China 5. Two new species in Hunan and Sichuan Province. *Mycotaxon* 2010, 113, 95–99. [CrossRef]
- 17. Shirouzu, T.; Harada, Y. Lignicolous dematiaceous hyphomycetes in Japan: Five new records for Japanese mycoflora, and proposals of a new name, *Helminthosporium magnisporum*, and a new combination, *Solicorynespora foveolata*. *Mycoscience* **2008**, *49*, 126–131. [CrossRef]
- 18. Zhang, M.; Zhang, T.Y. Taxonomic studies of *Helminthosporium* from China 4. Six new species and a key to *Helminthosporium* from China. *Mycotaxon* **2009**, *109*, 399–413. [CrossRef]
- 19. Zhang, T.Y.; Sun, G.Y. Flora Fungorum Sinicorum, Vol. 30; Helminthosporioid Hyphomycetes; Science Press: Beijing, China, 2010; pp. 1–272.
- 20. Zhao, G.C.; Zhao, R.L. *The Higher Microfungi from Forests of Yunnan Province*; Yunnan Science and Technology Press: Kunming, China, 2012; pp. 1–564.
- 21. Wang, X.J.; Wu, H.Y.; Zhang, M. A new species of *Helminthosporium* from Jiangsu, China. Mycotaxon 2014, 127, 1–4. [CrossRef]
- 22. Tanaka, K.; Hirayama, K.; Yonezawa, H.; Sato, G.; Toriyabe, A.; Kudo, H.; Hashimoto, A.; Matsumura, M.; Harada, Y.; Kurihara, Y.; et al. Revision of the *Massarineae* (*Pleosporales*, *Dothideomycetes*). *Stud. Mycol.* **2015**, *82*, 75–136. [CrossRef]
- 23. Zhu, D.; Luo, Z.L.; Baht, D.J.; Mckenzie, E.H.C.; Bahkali, A.H.; Zhou, D.Q.; Su, H.Y.; Hyde, K.D. *Helminthosporium velutinum* and *H. aquaticum* sp. nov. from aquatic habitats in Yunnan Province, China. *Phytotaxa* **2016**, *253*, 179–190. [CrossRef]
- Voglmayr, H.; Jaklitsch, W.M. Corynespora, Exosporium and Helminthosporium revisited—New species and generic reclassification. Stud. Mycol. 2017, 87, 43–76. [CrossRef] [PubMed]

- Crous, P.W.; Wingfield, M.J.; Burgess, T.I.; Hardy, G.E.S.J.; Gené, J.; Guarro, J.; Baseia, I.G.; García, D.; Gusmão, L.F.P.; Souza-Motta, C.M.; et al. Fungal Planet description sheets: 716–784. *Persoonia* 2018, 40, 240–393. [CrossRef] [PubMed]
- 26. Crous, P.W.; Carnegie, A.J.; Wingfield, M.J.; Sharma, R.; Mughini, G.; Noordeloos, M.E.; Santini, A.; Shouche, Y.S.; Bezerra, J.D.P.; Dima, B.; et al. Fungal Planet description sheets: 868–950. *Persoonia* **2019**, *42*, 291–473. [CrossRef] [PubMed]
- Tian, Q.; Li, W.J.; Hyde, K.D.; Camporesi, E.; Bhat, D.J.; Chomnunti, P.; Xu, J.C. Molecular taxonomy of five species of microfungi on *Alnus* spp. from Italy. *Mycol. Prog.* 2018, 17, 255–274. [CrossRef]
- 28. Zhao, N.; Luo, Z.L.; Hyde, K.D.; Su, H.Y.; Bhat, D.J.; Liu, J.K.; Bao, D.F.; Hao, Y.E. *Helminthosporium submersum* sp. nov. (*Massarinaceae*) from submerged wood in north-western Yunnan Province. China. *Phytotaxa* **2018**, *348*, 269–278. [CrossRef]
- Boonmee, S.; Wanasinghe, D.N.; Calabon, M.S.; Huanraluek, N.; Chandrasiri, S.K.U.; Jones, G.E.B.; Rossi, W.; Leonardi, M.; Singh, S.K.; Rana, S.; et al. Fungal diversity notes 1387–1511: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. *Fungal Divers.* 2021, 111, 1–335. [CrossRef]
- 30. Chen, Y.P.; Tian, W.H.; Guo, Y.B.; Madrid, H.; Maharachchikumbura, S.S.N. *Synhelminthosporium* gen. et sp. nov. and two new species of *Helminthosporium* (*Massarinaceae*, *Pleosporales*) from Sichuan Province, China. J. Fungi 2022, 8, 712. [CrossRef]
- Liu, J.; Hu, Y.; Luo, X.; Castaneda-Ruíz, R.F.; Ma, J. Three novel species of *Helminthosporium* (*Massarinaceae*, *Pleosporales*) from China. *MycoKeys* 2022, 94, 73–89. [CrossRef]
- 32. Matsushima, T. Matsushima Mycological Memoirs No. 7; Matsushima Fungus: Kobe, Japan, 1993; pp. 1–141.
- 33. Shirouzu, T.; Harada, Y. Notes on species of *Helminthosporium* and its allied genera in Japan. *Mycoscience* 2004, 45, 17–23. [CrossRef]
- 34. Konta, S.; Hyde, K.; Karunarathna, S.C.; Mapook, A.; Senwanna, C.; Dauner, L.A.P.; Nanayakkara, C.M.; Xu, J.; Tibpromma, S.; Lumyong, S. Multi-gene phylogeny and morphology reveal *Haplohelminthosporium* gen. nov. and *Helminthosporiella* gen. nov. associated with palms in Thailand and a checklist for *Helminthosporium* reported worldwide. *Life* 2021, *11*, 454. [CrossRef] [PubMed]
- Ma, J.; Wang, Y.; Ma, L.G.; Zhang, Y.D.; Castañeda-Ruíz, R.F.; Zhang, X.G. Three new species of *Neosporidesmium* from Hainan, China. *Mycol. Prog.* 2011, 10, 157–162. [CrossRef]
- 36. Goh, T.K. Single-spore isolation using a hand-made glass needle. Fungal Divers. 1999, 2, 47–63.
- 37. Rayner, R.W. *A Mycological Colour Chart;* Commonwealth Mycological Institute, Kew, Surrey & British Mycological Society: Kew, UK, 1970.
- White, T.J.; Bruns, T.D.; Lee, S.B.; Taylor, J.W. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In *PCR Protocols: A Guide to Methods and Applications*; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [CrossRef]
- 39. Xia, J.W.; Ma, Y.R.; Li, Z.; Zhang, X.G. *Acrodictys*-like wood decay fungi from southern China, with two new families *Acrodictyaceae* and *Junewangiaceae*. *Sci. Rep.* **2017**, *7*, 7888. [CrossRef]
- Rehner, S. Primers for Elongation Factor 1-α (EF1-α). 2001. Available online: http://ocid.nacse.org/research/deephyphae/EF1 primer.pdf (accessed on 15 December 2022).
- Sung, G.H.; Sung, J.M.; Hywel-Jones, N.L.; Spatafora, J.W. A multi-gene phylogeny of *Clavicipitaceae* (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. *Mol. Phylogenet. Evol.* 2007, 44, 1204–1223. [CrossRef]
- 42. Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerse II subunit. *Mol. Biol. Evol.* **1999**, *16*, 1799–1808. [CrossRef] [PubMed]
- 43. Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Mol. Biol. Evol.* **2013**, *30*, 772–780. [CrossRef]
- Zhang, D.; Gao, F.L.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. *Mol. Ecol. Resour.* 2020, 20, 348–355. [CrossRef] [PubMed]
- 45. Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. *Nat. Methods* **2017**, *14*, 587–589. [CrossRef]
- 46. Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol. Biol. Evol.* **2015**, *32*, 268–274. [CrossRef]
- 47. Minh, B.Q.; Nguyen, M.A.; von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. *Mol. Biol. Evol.* **2013**, *30*, 1188–1195. [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. *Syst. Biol.* 2012, *61*, 539–542. [CrossRef]
- De Bory, S.V.; De Durieu, M. Exploration Scientifique de l'Algérie Pendant les Années 1840, 1841, 1842 Publiée par Ordre du Gouvernement et Avec le Concours D'une Commission AcadéMique; Sciences Physiques; Botanique par MM Bory de St-.Vincent et Durieu de Maisonneuve membres de la Commission Scientifique D'Algérie; Imprimerie nationale: Paris, France, 1846–1869.
- 50. Luttrell, E.S. Systematics of *Helminthosporium* and related genera. *Mycologia* **1964**, *56*, 119–132. [CrossRef]
- 51. Ellis, M.B. Dematiaceous Hyphomycetes; Kew, Commonwealth Mycological Institute: Surrey, UK, 1971.

- 52. Drechsler, C. Phytopathological and taxonomical aspects of *Ophiobolus, Pyrenophora, Helminthosporium* and a new genus *Cochliobolus. Phytopathology* **1934**, *24*, 953–981.
- 53. Ellis, M.B. Dematiaceous hyphomycetes. I. Mycol. Pap. 1960, 76, 1–36.
- 54. Manamgoda, D.S.; Cai, L.; Bahkali, A.H.; Chukeatirote, E.; Hyde, K.D. *Cochliobolus*: An overview and current status of species. *Fungal Divers*. **2011**, *51*, 3–42. [CrossRef]
- Manamgoda, D.S.; Cai, L.; McKenzie, E.H.C.; Crous, P.W.; Madrid, H.; Chukeatirote, E.; Shivas, R.G.; Tan, Y.P.; Hyde, K. A phylogenetic and taxonomic re-evaluation of the *Bipolaris-Cochliobolus-Curvularia* complex. *Fungal Divers.* 2012, 56, 131–144. [CrossRef]
- 56. Kirk, P.M.; Cannon, P.E.; Minter, D.W.; Stalpers, J.A. Dictionary of the Fungi, 10th ed.; CAB International: Wallingford, UK, 2008.
- 57. Wijayawardene, N.N.; Hyde, K.D.; Rajeshkumar, K.C.; Hawksworth, D.L.; Madrid, H.; Kirk, K.M.; Braun, U.; Singh, R.V.; Crous, P.W.; Kukwa, M.; et al. Notes for genera: *Ascomycota. Fungal Divers* **2017**, *86*, 1–594. [CrossRef]
- 58. Wijayawardene, N.N.; Hyde, K.D.; Al-Ani, L.K.T.; Tedersoo, L.; Haelewaters, D.; Rajeshkumar, K.C.; Zhao, R.L.; Aptroot, A.; Leontyev, D.V.; Saxena, R.K.; et al. Outline of Fungi and fungus-like taxa. *Mycosphere* **2020**, *11*, 1060–1456. [CrossRef]
- 59. Subramanian, C.V.; Bhat, D.J. Hyphomycetes from South India I. Some new taxa. Kavaka 1987, 15, 41–74.
- 60. Matsushima, T. *Matsushima Mycological Memoirs No. 5;* Matsushima Fungus: Kobe, Japan, 1987; pp. 1–100.
- 61. Crous, P.W.; Wingfield, M.J.; Schumacher, R.K.; Summerell, B.A.; Giraldo, A.; Gené, J.; Guarro, J.; Wanasinghe, D.N.; Hyde, K.D.; Camporesi, E.; et al. Fungal Planet description sheets: 281–319. *Persoonia* **2014**, *33*, 212–289. [CrossRef] [PubMed]
- 62. Subramanian, G.V.; Sekar, G. Three bitunicate ascomycetes and their tretic anamorphs. Kavaka 1987, 15, 87–97.
- 63. Gornostai, V.I. New and uncommon fungal species in the maritime area. Mikol. Fitopatol. 1972, 6, 154–156.
- 64. Quaedvlieg, W.; Verkley, G.J.M.; Shin, H.D.; Barreto, R.W.; Alfenas, A.C.; Swart, W.J.; Groenewald, J.Z.; Crous, P.W. Sizing up *Septoria. Stud. Mycol.* 2013, 75, 307–390. [CrossRef] [PubMed]
- 65. Cooke, M.C. Some exotic fungi. Grevillea 1883, 12, 37-39.
- 66. Saccardo, D. Contribuzione alla micologia veneta e modenense. Malpighia 1898, 12, 201–228.
- 67. Hughes, S.J. New Zealand Fungi 27. New species of *Guedea*, *Hadrosporium*, and *Helminthosporium*. N. Z. J. Bot. **1980**, 18, 65–72. [CrossRef]
- 68. Matsushima, T. Microfungi of the Solomon Islands and Papua-New Guinea; Matsushima Fungus: Kobe, Japan, 1971; pp. 1–78.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.