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Abstract: With an impressive ability to survive in harsh environments, black fungi are an ecological
group of melanized fungi that are widely recognized as a major contributor to the biodeterioration of
stone cultural heritage materials. As part of the ongoing efforts to study the fungal diversity thriving
in a deteriorated limestone funerary art piece at the Lemos Pantheon, a national monument located
in Águeda, Portugal, two isolates of an unknown microcolonial black fungus were retrieved. These
isolates were thoroughly studied through a comprehensive analysis based on a multi-locus phylogeny
of a combined dataset of ITS rDNA, LSU, and rpb2, along with morphological, physiological, and
ecological characteristics. Based on the data obtained from this integrative analysis, we propose a
new genus, Saxispiralis gen. nov., and a new species, Saxispiralis lemnorum sp. nov., in the recently
described Aeminiaceae family (order Mycosphaerellales). Prior to this discovery, this family only had one
known genus and species, Aeminium ludgeri, also isolated from deteriorated limestone. Additionally,
considering the isolation source of the fungus and to better understand its potential contribution to
the overall stone monument biodeterioration, its in vitro biodeteriorative potential was also evaluated.
This work represents a significant contribution to the understanding of the fungal diversity involved
in the biodeterioration of limestone heritage.

Keywords: Ançã limestone; biodeterioration; cultural heritage; new fungal species; fungal phylogeny;
rock-inhabiting fungi; fungal taxonomy

1. Introduction

Our understanding of rocks as inert substrates devoid of life has been challenged over
time with the discovery of lithobiontic organisms [1,2]. Lichens, cyanobacteria, chemoorgan-
otrophic bacteria, and fungi are among the dwellers commonly found within these rock
micro-communities [3]. These organisms inhabit the surface and interior of rocks (epi-
and endolithic, respectively) and engage in interactions with the rock matrix, playing an
active role in the alteration and transformation of rock substrates, which carry important
ecological and biogeochemical consequences [4–8].

Fungi are one of the most ancient and diverse groups of organisms that can be found
worldwide, successfully colonizing and flourishing in every biome, including extreme
environments as far apart as the glacial valleys of Antarctica [9–12] and the hot and
arid deserts [13,14], as well as habitats resulting from human activity such as acid mine
waters, sewage and industrial effluents [15], areas contaminated with nuclear radiation [16],
salterns [17], and many others. With their remarkable versatility and resilience, fungi can
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adopt various structural, morphological, and metabolic strategies to ensure their growth
and survival on multiple substrates [18]. They are widely recognized as one of the most
important stone colonizers [19,20], thriving in both natural and manmade rocky materials,
and playing a pivotal role in the deterioration of these substrates, including stone cultural
heritage artifacts, such as sculptures, monuments, and relics, causing aesthetic, chemical,
physical, and mechanical alterations [19–26], ultimately resulting in economic, artistic, and
historic losses.

Among fungal biodeteriogens, a specialized yet diverse group of melanized fungi
are amidst the persistent settlers of rocks. Commonly known as black fungi (BF), among
other names such as rock-inhabiting fungi (RIF) or microcolonial fungi (MCF) [27], these or-
ganisms represent a heterogeneous taxonomic group, encompassing several orders within
the classes Dothideomycetes (e.g., order Mycosphaerellales) and Eurotiomycetes (e.g., order
Chaetothyriales) in the phylum Ascomycota [28–34]. Despite their phylogenetic diversity,
these fungi form an ecological group specialized in extremotolerance, exhibiting a set of
convergent features that reflect their adaptation to harsh and extreme environments [34].
These morphophysiological traits related to stress tolerance include phenotypic plasticity,
the ability to transition from a mycelial to a meristematic state, microcolonial growth,
simple life cycles, and dispersal mechanisms reliant on vegetative fragmentation or poorly
differentiated conidia-like cells [10,17,35–40]. Among these features, the most prevalent
and distinctive is the presence of strongly melanized cell walls, with melanin being a
major stress-protective compound/pigment [39]. Additionally, these fungi produce other
protective molecules such as mycosporines and carotenoids [41,42]. They are a poikilotoler-
ant group, with these remarkable adaptations enabling them to tolerate a wide range of
stress factors, including extreme temperatures, high solar and UV radiation, oligotrophy,
limited water availability, and variations in salinity and pH, commonly encountered on
rock surfaces [35–40,43]. Multiple studies have consistently documented the ubiquitous
presence of these fungi on stone monuments in the Mediterranean Basin, recognizing
them as one of the most destructive microbial groups responsible for the deterioration and
irreversible damage inflicted upon these assets [44–58]. When colonizing rocks, these fungi
can induce chemical deterioration by secreting siderophore-like compounds [59]. However,
the most significant damage is believed to result from their hyphal mechanical action,
leading to exfoliation and biopitting [60,61]. Furthermore, they cause aesthetical damage
as a consequence of melanin production [50,56]. The slow growth and weak competitive
ability of these peculiar BF outside their extreme environment turn these unfavorable stone
substrates into an ideal habitat for their colonization [58], potentially acting as a reservoir
of undiscovered taxa with unknown implications for biodeterioration.

The Mediterranean region is renowned for its extensive cultural heritage, present-
ing a challenging task of preservation and conservation for the countries within this
area [58]. Portugal, with its diverse and historically rich background, is not an exception,
featuring numerous exceptional stone-built artworks and monuments throughout its terri-
tory. Knowledge of deteriorating agents is of utmost importance for developing effective
conservation strategies and well-executed restoration initiatives, ensuring the long-term
preservation of these invaluable cultural assets [20,23]. As part of the ongoing efforts to
study the fungal diversity thriving in a deteriorated limestone funerary art piece at the
Lemos Pantheon [62,63], a national monument located in Águeda, Portugal, two isolates of
an unknown slow-growing microcolonial black fungus were obtained. Thus, the aim of
this work was to determine the taxonomic relationships of these strains with close relatives
through a multi-locus phylogenetic analysis (Internal Transcribed Spacer (ITS), 28S Large
Subunit of ribosomal DNA (LSU), and the RNA Polymerase II Second Largest Subunit
(rpb2)), coupled with morphological, physiological, and ecological examinations. This
integrative analysis revealed that these strains were included within the Aeminiaceae family,
in the Mycosphaerellales order. However, they did not cluster with the only known genus
representative in this family. The Aeminiaceae family was recently established by Trovão
et al. [57] to accommodate a novel monophyletic lineage, distinctly placed from other
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families in the Capnodiales but related to the families Extremaceae and Neodevriesiaceae (now
part of Mycosphaerellales, Capnodiales s. lat. [33]). To date, this family has been represented
by a single known genus and species, Aeminium ludgeri. However, based on the findings
from our comprehensive analysis, we introduce and describe a new genus, Saxispiralis
gen. nov., and a new species, Saxispiralis lemnorum sp. nov., within the Aeminiaceae family.
Moreover, considering the isolation source of the strains and in an attempt to understand
their contribution to the overall stone monument biodeterioration, their in vitro biodeterio-
rative potential was also evaluated. This assessment allowed us to verify their deteriorative
ability, shedding light on the potential issues that the proliferation of this fungus could
pose under specific conditions for the preservation of this monument.

2. Materials and Methods
2.1. Site Description, Sample Collection, and Fungal Isolation

The Church of São Salvador da Trofa is a Catholic temple located in Trofa do Vouga
(Águeda county), in the district of Aveiro, Portugal. This historic Church houses the
Lemos Pantheon, a 16th century burial place built in honor of the Lemos family, one of
the most influential families in the region. Designated as a National Monument in 1992,
it is an important local landmark and a shining example of Portuguese funerary art [64].
The pantheon comprises two groups of tombstones facing each other, which are carved
from white Ançã limestone, a unique type of Portuguese limestone with a relatively high
proportion of CaCO3 (>96.5%), known for its easy workability and intricate carvings [65,66].
Despite its beauty, the tomb complex shows clear visual signs of biological colonization and
biodeterioration in certain areas, causing structural and aesthetic damage to the limestone.
Four samples (L1, L2, L3, and L4) were collected indoors in July 2021. Temperature (T)
and relative humidity (RH) were monitored at the beginning and end of the sampling
procedure using a digital thermohygrometer, with median values of T 22 ◦C and RH 51%.
Samples were collected from areas displaying clear signs of alteration and degradation,
using both micro-invasive (scalpel scraping, 0.5 g/site) and non-invasive (nitrocellulose
disc swabbing, Ø 5 cm, 2/site) sampling methods, from different types of biodeterioration
observed in the tombs. Further details on the sampled areas, including pictures, and
sampling procedures can be found in Paiva et al. [62]. Out of a total of 16 isolates obtained
from the L4 sample, characterized by abundant salt damage (salt efflorescence), 2 were
particularly distinctive and unique. Both isolates were obtained through the suspension of
the retrieved sample in 2 mL of sterile 0.9% (w/v) NaCl solution, vortexed, and plated on
Rose Bengal Agar Base (RB, DifcoTM, Sparks, MD, USA) supplemented with streptomycin
(0.5 g L−1). Inoculated media plates were incubated in the dark at 25 ± 2 ◦C for 6 months,
and the emerging colonies were transferred to axenic cultures in duplicate, onto Potato
Dextrose Agar medium (PDA, DifcoTM, Sparks, MD, USA) and RB (the medium from
which they were originally recovered).

2.2. DNA Extraction, PCR Amplification and Sequencing

Genomic DNA was extracted from PDA pure cultures of both isolates using the
REDExtract-N-Amp™ Plant PCR Kit (Sigma Aldrich, St. Louis, MO, USA), with several
modifications. About 1 mm3 of fungal biomass was collected from colonies, placed into
0.2 mL PCR microtubes with 20 µL of extraction solution, and incubated in a thermocycler
using the following protocol: 94 ◦C for 10 min, followed by 60 ◦C for 13 min and 10 ◦C for
15 min. After incubation, 20 µL of dilution solution was added, and the resulting mixture
was vortexed for 2 min. The obtained DNA was used for PCR amplification, using the
primer pairs ITS1-F/ITS4 [67,68], LSU1fd/LR5 [69,70], and frpb2-5F/frpb2-414R [71,72] to
amplify three nuclear regions, the Internal Transcribed Spacer (ITS), the 28S Large Subunit
of ribosomal DNA (LSU), and a protein coding region, the RNA Polymerase II Second
Largest Subunit (rpb2). Amplification reactions were performed in 50 µL final volumes
and consisted of 25 µL of NZYTaq Green Master Mix (NZYTech™, Lisbon, Portugal), 2 µL
of each primer (10 mM), 19 µL of ultra-pure water, and 2 µL of template DNA, using
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an ABI GeneAmp™ 9700 PCR System (Applied Biosystems, Waltham, MA, USA), with
the following conditions: initial denaturation temperature of 96 ◦C for 2 min, followed
by 40 cycles of denaturation temperature of 96 ◦C for 45 s, primer annealing at 54 ◦C
(ITS), 52 ◦C (LSU), 49 ◦C (rpb2), primer extension at 72 ◦C for 90 s, and a final extension
step at 72 ◦C for 2 min. The obtained amplicons were purified with the EXO/SAP Go
PCR Purification Kit (GRISP, Porto, Portugal) according to the manufacturer’s protocol
and sent for bidirectional Sanger sequencing, using an ABI 3730xl DNA Analyzer system
(96 capillary instruments), at STABVIDA, Portugal.

2.3. Phylogenetic Analysis

Sequence reads were quality checked using Chromas v.2.6.6 (Technelysium, Southport,
QLD, Australia) and aligned and assembled using BioEdit Sequence Alignment Editor©

v.7.2.5 (https://bioedit.software.informer.com/download/ (accessed on 20 April 2023)).
The obtained consensus sequences were deposited in the GenBank database with the acces-
sion numbers OR081767-OR081768 for ITS, OR081765-OR081766 for LSU, and OR074926-
OR074927 rpb2. Similarity queries were performed using the obtained sequences against the
National Center of Biotechnology Information (NCBI) nucleotide database using a BLASTn
search algorithm [73]. Based on the results obtained from this initial assessment of all three
regions, it was observed that they exhibited genetic similarity to taxa within the recently
described Aeminiaceae family. The similarity was approximately 94% for ITS and 88% to
89% for rpb2, and the LSU region was the only gene providing a reasonable match of 99%
in the BLAST analysis. The second closest matches for all sequences were Capnobotryella
sp. (88%) for ITS, Neodevriesia hilliana (94%) for LSU, and Cystocoleus ebeneus (78%) for rpb2.
Furthermore, environmental sequences obtained from deteriorated granite in the entrance
hall of the Palace of Xelmírez in Spain, originating from a dark green biofilm studied by
Vázquez-Nion and colleagues (2016) [74], also exhibited a significant ITS Blast result (92%
to 93%) and were previously reported as being related to Aeminiaceae. To better understand
the phylogenetics of the isolated strains, and based on these BLAST results, two datasets
were created encompassing all representative sequences within the Aeminiaceae family,
retrieved from GenBank, along with reference sequences from closely related families and
other orders within Capnodiales, taking into account all three regions (LSU, ITS, and rpb2)
(Table 1). For each gene, sequences were individually aligned using the online version of
MAFFT v.7 [75] and manually adjusted using UGENE v.1.26.3 [76]. The individual align-
ments were then concatenated using SeaView v.4 [77]. Prior to the phylogenetic analysis,
the model of nucleotide substitution was estimated under the Akaike Information Criterion
(AIC) using MrModeltest v.2.3 [78] (dataset 1—LSU nst = 6 rates = propinv, ITS nst = 6 rates
= invgamma, and rpb2 nst = 6 rates = gamma; dataset 2—LSU nst = 6 rates = invgamma,
ITS nst = 6 rates = invgamma, and rpb2 nst = 6 rates = invgamma). Phylogenetic analysis
was conducted considering both Maximum Likelihood (ML) and Bayesian (B) methods.
The Maximum Likelihood analysis was conducted using RaxmlGUI v.2.0.0 with 1000 boot-
strap replicates [79], while the Bayesian MCMC analysis was performed using MrBayes
v.3.2.6 [80], with the following parameters: four runs, ten million generations, heated chain
“temperature” of 0.15, trees being saved after every 100 generations, and a stop value of
0.01. Upon the analysis conclusion, Tracer v.1.5 [81] was used to ensure that convergence
had been reached. The burn-in phase (25%) was discharged, and the remaining trees were
used to calculate the Bayesian posterior probabilities in a 50% majority rule consensus
tree that was then viewed and edited in FigTree v.1.2.2 [82]. The trees were rooted with
Cladosporium ramotenellum (ATCC 36970) for dataset 1 and Parastagonospora nodorum (CBS
110109) for dataset 2. All the obtained alignments and phylogenetic trees were deposited in
Figshare (https://figshare.com/s/c68a893bc9b8f9f3c5d7, (accessed on 21 June 2023)).

https://bioedit.software.informer.com/download/
https://figshare.com/s/c68a893bc9b8f9f3c5d7
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Table 1. List of reference isolates considered in the phylogenetic analyses and their respective
GenBank accession numbers. The newly generated sequences are highlighted in bold for reference.

Species Strain ID 1,2 Country Substrate
GenBank Accession Number 3

LSU ITS rpb2

Aeminium ludgeri E8 Portugal Limestone MG938284 MG938056 MG948613
Aeminium ludgeri E11 Portugal Limestone MG938285 MG938057 MG948614
Aeminium ludgeri E12 Portugal Limestone MG938286 MG938054 MG948615
Aeminium ludgeri E13 Portugal Limestone MG938287 MG938061 MG948616
Aeminium ludgeri DSMZ 106916 T Portugal Limestone MG938288 MG938062 MG948617
Aeminium ludgeri E15 Portugal Limestone MG938289 MG938063 MG948618
Aeminium ludgeri E16 Portugal Limestone MG938290 MG938055 MG948619
Aeminium ludgeri E17 Portugal Limestone MG938291 MG938058 MG948620
Aeminium ludgeri E18 Portugal Limestone MG938292 MG938059 MG948621
Aeminium ludgeri E19 Portugal Limestone MG938293 MG938060 MG948622

Amycosphaerella africana CBS 110500 ET Australia Eucalyptus globulus KF901837 KF901516 KF902223
Capnodium gamsii CBS 146153 Thailand Lagerstroemia speciosa MN749168 MN749238 MN829263

Chaetothyrina guttulata MFLUCC15-1080 Thailand – KU358917 KX372277 –
Chaetothyrina musarum MFLUCC15-0383 Thailand – KU710171 KX372275 –

Cladosporium cladosporioides CBS 170.54 NT UK, England Arundo leaf MH868815 AY213640 GU357790
Cladosporium ramotenellum ATCC 36970 – Populus tremuloides MF951116 MF951281 MF951413

Comminutispora agavaciensis CBS 619.95 T USA Plant EU981286 MH862543 MN829337
Cystocoleus ebeneus L161 Austria Rock sample EU048578 – –
Cystocoleus ebeneus L348 Austria Rock sample EU048580 – –

Dissoconium aciculare CBS 342.82 Germany – EU019266 AF173308 –
Elsinoe phaseoli CBS 165.31 Cuba Paseolus lunatus DQ678095 KX887263 KX887144

Exopassalora zambiae CBS 112971 T Zambia Eucalyptus globulus EU019273 AY725523 MF951421
Extremus adstrictus TRN 96 ET Spain Rock KF310022 AY559346 KF310103
Extremus antarcticus CCFEE 5312 Antarctica Rock KF310020 KF309979 KF310086
Extremus antarcticus CCFEE 451 Antarctica Sandstone GU250360 KF309978 KF310085

Leptoxyphium
madagascariense CBS 124766 T Madagascar Eucalyptus sp. MH874923 GQ303277 MN829296

Mycosphaerella sumatrensis CBS 118502 Indonesia Eucalyptus sp. KF901996 JX901775 KF902222
Myriangium hispanicum CBS 247.33 – Acer monspessulanum KX887067 MH855426 GU371744
Neodevriesia bulbillosa CBS 118285 Spain Rock KF310029 AY559341 KF310102
Neodevriesia modesta CCFEE 5672 ET Italy Rock KF310026 NR_144975 KF310093
Neodevriesiaceae sp. CPC 19594 Brazil Mycoparasite KJ564327 – KJ564349

Neodevriesia queenslandica CBS 129527 Australia Scaevola taccada KF901839 JF951148 KF902234
Neophaeotheca salicorniae CBS 141299 Africa Salicornia meyeriana MH878214 KX228276 MN829343

Neophaeotheca triangularis CBS 471.90 T Belgium Humidifier NG057776 – MN829344
Neophaeotheca triangularis IHEM 5182 Belgium Humidifier MH873909 – –
Parastagonospora nodorum CBS 110109 Denmark Lolium perenne EU754175 KF251177 KF252185

Phaeotheca fissurella CBS 520.89 T Canada Pinus contorta MH873872 MH862184 MN829342
Phragmocapnias betle CPC 20476 Philippines Palm MN749222 MN749294 MN829324

Rachicladosporium
americanum CBS 124774 T USA Leaf litter GQ303323 GQ303292 MN829336

Rachicladosporium cboliae CBS 125424 T USA Twig debris MH875168 GU214650 LT799763
Rachicladosporium eucalypti CBS 138900 T Ethiopia Eucalyptus globulus NG070537 NR155718 –

Rachicladosporium pini CPC 16770 Netherlands Pinus monophylla JF951165 JF951145 LT799764
Racodium rupestre L346 Austria Rock sample EU048583 GU067666 –
Racodium rupestre L424 Italy Rock sample EU048582 GU067669 –

Ramularia endophylla CBS 113265 ET Netherlands Quercus robur KF902072 KF901725 KF902358
Readeriella nontingens CPC 14444 Australia Eucalyptus oblonga KF902073 KF901726 KF902378
Salinomyces thailandica CBS 125423 Thailand Syzygium siamense KF902125 GU214637 KF902206
Saxispiralis lemnorum

sp. nov. MUM 23.14 Portugal Limestone OR081765 OR081767 OR074926

Saxispiralis lemnorum
sp. nov. MUM 23.15 Portugal Limestone OR081766 OR081768 OR074927

Schizothyrium pomi CBS 486.50 Netherlands Polygonum sachalinense KF902024 – KF902385
Schizothyrium pomi CBS 228.57 Italy – KF902007 – KF902384

Schizothyrium wisconsinense OH49A1c USA Apple fruit FJ147158 FJ425209 –
Teratosphaeria nubilosa CBS 116005 Australia Eucalyptus globulus KF902031 KF901686 KF902460
Uwebraunia commune CPC 830 ET South Africa Eucalyptus nitens KJ564336 – KJ564351

Uwebraunia dekkeri CPC 13264 Australia Eucalyptus molucana GQ852593 – KJ564340
Xenodevriesia strelitziicola CBS 122480 South Africa Strelitzia sp. GU214417.1 GU214635.1 –

1 ATCC: American Type Culture Collection, Virginia, USA; BCCM/IHEM: Belgian Coordinated Collections of
Microorganisms/Fungi Collection: Human & Animal Health, Sciensano, Brussels, Belgium; CBS: Westerdijk
Fungal Biodiversity Institute, Utrecht, The Netherlands; CCFEE: Culture Collection of Fungi from Extreme
Environments, Dept. of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy; CPC: Collection
Pedro Crous, housed at CBS; DSMZ: German Collection of Microorganisms and Cell Cultures GmbH, Leibniz
Institute, Germany; MFLUCC: Culture collection of Mae Fah Luang University (MFLU), Chiang Rai, Thailand;
MUM: Micoteca da Universidade do Minho, Centre of Biological Engineering, University of Minho, Portugal;
TRN: T. Ruibal personal collection. 2 ET: ex-type; NT: ex-neotype strain; T: type. 3 ITS: Internal transcribed spacer
region; LSU: Large subunit of the 28S nrRNA; rpb2: partial DNA-directed RNA polymerase II second largest
subunit gene.
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2.4. Morphological Characterization

For macro-morphological characterization, strains were cultured on PDA, Malt Extract
Agar (DifcoTM, Sparks, MD, USA) supplemented with 10% NaCl (w/v) (MEA 10%), Leibniz
Institute DSMZ—German Collection of Microorganisms and Cell Cultures 372-Halobacteria
medium amended with 10% NaCl (w/v) (HM 10%), and Dichloran Glycerol Agar (DG 18,
Oxoid, Basingstoke, UK) at 25 ± 2 ◦C for 2 to 6 months [57]. Morphological traits such as
colony diameter, mycelium color, texture, and form, as well as other characteristics, were
recorded via direct observation of the cultured media plates. For micro-morphological
characterization, PDA (DifcoTM, Sparks, MD, USA) and synthetic low-nutrient agar (SNA),
following the recipe by Nirenberg [83], were used and observed directly with a light
microscope (Leica DM750 (Leica, Wetzlar, Germany)), as well as using the slide culture
technique, and both were photographed with a Leica ICC50W digital camera (Leica, Wetzlar,
Germany). At least 50 measurements per structure were considered. Both strains were
deposited and preserved in Micoteca da Universidade do Minho (MUM), Braga, Portugal.

2.5. Physiological Characterization

Temperature preferences, NaCl tolerance, and pH tolerance were evaluated using pro-
tocols adapted from Sterflinger [84] and Selbmann et al. [9]. To determine strain preferences
and tolerance ranges for these parameters, culture plates were divided into four sections. In-
oculation was performed at the intersection point of both axes, at the center of Petri dishes,
using small fragments (approximately 0.5 cm2 in size, collected using sterile scalpels) of
fungal mycelia from fresh, fully matured pure cultures. Following each analysis, the colony
diameter was measured along both axes of the sections (refer to Figure S1). Results from
the average diameter measurements and standard errors were calculated and recorded for
each temperature, NaCl concentration, and pH value using Microsoft 365® Excel® software
version 2208. Data from the pH and NaCl concentration assays were subjected to one-way
analysis of variance (ANOVA). Whenever significant differences were found (p ≤ 0.05), a
post hoc Tukey’s Honestly Significant Difference (HSD) test was used to further elucidate
differences among treatments, at a significance level α = 0.05. Data from the temperature
assay was subjected to the non-parametric Kruskal–Wallis test. Whenever significant dif-
ferences were found (p ≤ 0.05), Dunn’s post hoc analysis was conducted. All statistical
analysis was performed using PAST software (v.4.09 https://past.en.lo4d.com/windows,
accessed on 25 August 2023).

Tolerance to UV, high temperature, and cold stress was assessed following the method-
ology adapted from Rizk et al. [85] and Trovão et al. [57]. Inoculation was conducted in
the same manner as previously described for each tested condition. Colonies displaying a
diameter >2 mm were considered as positive, indicating their capability to recuperate after
exposure to stress.

2.5.1. Temperature Preferences

To determine the optimal temperature growth range, the fungal mycelium was in-
oculated onto PDA (DifcoTM, Sparks, MD, USA) plates and incubated at four different
temperatures (5 ◦C, 20 ◦C, 25 ◦C, and 29 ◦C) for two months. The colony diameter was then
measured for each temperature, following the procedure outlined above. Each experiment
was performed in triplicate.

2.5.2. NaCl Tolerance

To analyze the strain’s salinity preference and tolerance range, the fungal mycelium
was inoculated onto DSMZ 372-Halobacteria medium containing increasing concentrations
of NaCl, ranging from 0% to 30% in 5% increments. The plates were then incubated at
25 ± 2 ◦C for two months, after which the colony diameter was measured for each NaCl
concentration as described above. Each experiment was performed in triplicate.

https://past.en.lo4d.com/windows
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2.5.3. pH Tolerance

To access the strain’s ability to grow at different pH values, PDA (DifcoTM, Sparks,
MD, USA) medium with pH values ranging from 5 to 11 in steps of 1 was used. The
medium was adjusted to the different pH values using different buffer solutions, following
the protocol described by Tiago et al. [86]. The plates were incubated at 25 ± 2 ◦C for
two months, after which the colony diameter was measured for each pH as previously
described. The experiment was performed in triplicate.

2.5.4. UV Tolerance

The ability of the strain to survive after exposure to UV-C radiation (253.7 nm) was
tested under both wet and dry conditions. The fragments of fungal mycelium were
placed in sterile Petri dishes with 1 mL of sterile 0.9% (w/v) NaCl solution (for wet
conditions) and without the saline solution (for dry conditions). The Petri dishes were
then positioned at ≈30 cm from the UV source (without lids). After 30 min of exposure,
as well as at 1, 2, and 3 h, one treated mycelial piece was removed from each condition
(wet and dry) and reinoculated in triplicate onto PDA (DifcoTM, Sparks, MD, USA)
plates. The plates were then incubated at 25 ± 2 ◦C for one month to record the isolate
regrowth ability.

2.5.5. Heat and Cold Stress Tolerance

To examine heat resistance, fragments of fungal mycelium were placed in 2 mL tubes
containing 1 mL of sterile 0.9% (w/v) NaCl solution. These tubes were then placed into
a shaking thermoblock and exposed to temperatures ranging from 60 ◦C to 70 ◦C in 5 ◦C
increments. For each temperature, 3 tubes were utilized, each containing 3 fragments of
±0.5 cm2. After exposure periods of 15, 30, and 60 min at each temperature, one tube was
collected, and the treated mycelia were subsequently reinoculated onto PDA (DifcoTM,
Sparks, MD, USA) plates (1 fragment per plate, totaling 3 replicates). The plates were then
incubated at 25 ± 2 ◦C for one month to record the fungus’ regrowth ability. The same
experiment was repeated in dry conditions (without NaCl solution).

Cold resistance was assessed in a similar manner. Samples were prepared as described
earlier, in both wet and dry conditions, and placed in a freezer at −20 ◦C. After 1 h, 2 h,
and 24 h of cold exposure, the treated mycelia were reinoculated onto PDA (DifcoTM,
Sparks, MD, USA). The plates were kept at 25 ± 2 ◦C for one month to assess the isolate
regrowth ability.

2.6. Deteriorative Potential Analysis

As the fungal strains were originally isolated from deteriorated limestone, they were
screened for their in vitro biodegradative abilities, specifically calcium carbonate (CaCO3)
dissolution, coupled with the evaluation of media pH alteration (acidification of the culture
medium), calcium oxalate crystal formation, and other mineralization development. To
assess these abilities, the fungal strains were inoculated in triplicate at the center of Petri
dishes (±0.5 cm2 agar blocks) on various culture media, as specified in Table 2. The
effects were then evaluated after incubating for two months at 25 ± 2 ◦C. To rule out the
possibility of spontaneous events, we conducted parallel incubations of non-inoculated
Petri dishes using the same culture media utilized in all biodeterioration plate assays, and
the occurrence of such phenomena was not observed. Additionally, for the specific pH
variation test in Creatine Sucrose Agar (CREA), Penicillium brevicompactum (PL096 from
Paica et al. [62]), a known acid producer, was simultaneously inoculated to ensure the
medium’s sensitivity to pH alteration and its corresponding color change, serving as a
secondary control.
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Table 2. Biodeteriorative plate assays.

Analyses Culture Medium Composition * Final pH Positive Reaction Reference

CaCO3 dissolution CaCO3 Glucose Agar
(CGA)

5 g CaCO3, 5 g glucose,
and 15 g agar in 1 L

deionized water
7 Visualization of a clear

zone around the colony [87,88]

Calcium oxalate
crystal formation

Modified Malt Extract
Agar (MMA)

33.6 g MEA and 5 g/L of
CaCO3 in 1 L

deionized water
7

Observation of calcium
oxalate crystals under the

light microscope
[88,89]

Other mineral
precipitation

B4

10 g calcium acetate, 5 g
yeast extract, 5 g glucose,

and 15 g agar in 1 L
deionized water

8

Observation of mineral
precipitation (crystals)

under the light microscope
[63,88,90]

Modified B4
(MB4)

Same recipe as B4 medium
with substitution of

calcium acetate for CaCO3

8

HM 10%

5 g yeast extract, 5 g
casamino acids, 1 g

Na-glutamate, 2 g KCl, 3 g
Na3-citrate, 20 g

MgSO4·7H2O, 100 g NaCl,
36 g FeCl2·4H2O, 0.36 mg

MnCl2·4H2O, and 20 g agar
in 1 L deionized water

8

pH alteration Creatine Sucrose Agar
(CREA)

3 g creatine, 30 g sucrose,
1.3 g K2HPO4·3H2O, 0.5 g
MgSO4·7H2O, 0.5 g KCl,

0.01 g FeSO4·7H2O, 0.01 g
ZnSO4·7H2O, 0.005 g
CuSO4·5H2O, 0.05 g

Bromocresol purple, and
15 g agar in 1 L
deionized water

8 Visualization of a yellow
halo around the colony [88,91]

* All culture media components were sourced from VWR (Radnor, PA, USA), except for Malt Extract Agar (MEA),
which was from DifcoTM (Sparks, MD, USA), and Bromocresol purple, which was from Sigma Aldrich (St. Louis,
MO, USA).

3. Results and Discussion
3.1. Phylogenetic Analysis

Initial comparisons with the sequences deposited in the NCBI database revealed that
the isolates exhibited the highest similarity to representatives of the recently described
Aeminiaceae family within Capnodiales, in all three analyzed regions (ITS, LSU, and rpb2).
Other BLASTn results showed only distant relationships, with a decrease in similarity
ranging from 5% to 10% when comparing the best hits to the second-best result. These
findings strongly suggested that the isolates were affiliated with the Aeminiaceae family.

The initial phylogenetic analysis was conducted using the aligned sequences of the
three concatenated genes, totaling 1388 characters (700 for LSU, 449 for ITS, and 239 for
rpb2, including alignment gaps). The dataset comprised all 10 representative sequences
from the Aeminiaceae family, as well as selected representative sequences from the closely
related Extremaceae and Neodevriesiaceae families (Figure 1). The trees generated from Max-
imum Likelihood and Bayesian analyses exhibited consistent topologies, and both were
in accordance with the existing knowledge regarding this family [57]. Furthermore, the
phylogenetic analysis demonstrated that the studied strains formed a well-supported mono-
phyletic cluster (100% Bootstrap support and 1.00 Bayesian posterior probability), distinctly
placed from Aeminium ludgeri, the sole genus and species, previously documented within
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this family. Based on these findings, we propose the establishment of a new genus, Sax-
ispiralis gen. nov., and a new species, Saxispiralis lemnorum sp. nov., within the Aeminiaceae
family to accommodate this fungus.
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Figure 1. Consensus phylogenetic tree (ML, B) based on a concatenated alignment of LSU/ITS/rpb2,
including all representative sequences from the Aeminiaceae family and selected representatives from
closely related families. Families are indicated with colored blocks, and the newly described taxa
are highlighted in bold. The scale bar represents the number of substitutions per site, and support
values are indicated (>75% bootstrap values for Maximum Likelihood and >0.75 for Bayesian MCMC
posterior probabilities). The tree was rooted with Cladosporium ramotenellum (ATCC 36970).

The traditional monophyletic concept of the Capnodiales order was recently redefined
by Abdollahzadeh et al. [33] through a multigene phylogeny analysis and lifestyle types.
This redefinition involved rearranging the taxa previously classified under Capnodiales s. lat.,
resulting in the redefinition of Capnodiales s. str., the revival of the Mycosphaerellales order,
and the introduction of five new orders: Cladosporiales, Comminutisporales, Neophaeothe-
cales, Phaeothecales, and Racodiales. The proposed Mycosphaerellales order comprised eight
families, namely Cystocoleaceae, Dissoconiaceae, Extremaceae, Mycosphaerellaceae, Neodevriesi-
aceae, Phaeothecoidiellaceae, Schizothyriaceae, and Teratosphaeriaceae. However, the Aeminiaceae
family was not included in the analysis and therefore it remained associated with the
Capnodiales order [92]. Nevertheless, since Extremaceae and Neodevriesiaceae were included
in Mycosphaerellales and considering their close relationship to Aeminiaceae, the latter should
also be considered as part of the Mycosphaerellales order.

To further clarify the positioning of the Aeminiaceae family and the new genus and
species proposed in this study, a second analysis was conducted using the aligned se-
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quences of the three concatenated genes, resulting in a total of 1300 characters (681 for
LSU, 407 for ITS, and 212 for rpb2, including alignment gaps). Following the proposed
classification by Abdollahzadeh et al. [33], this second dataset included individuals an-
alyzed in the first dataset, along with representatives of all families associated with the
Mycosphaerellales order thus far, representatives of orders closely related to Mycosphaerellales
in Capnodiales s. lat., and representatives of an order outside of Capnodiales (Myrangiales)
(Figure 2). The trees generated from Maximum Likelihood and Bayesian phylogenetic
analyses exhibited somewhat similar topologies. Furthermore, the obtained tree aligns
with the aforementioned study, providing clear evidence of the placement of the Aemini-
aceae family within the Mycosphaerellales order (100% Bootstrap support and 1.00 Bayesian
posterior probability) within Capnodiales s. lat. Additionally, the studied strains remained a
well-supported monophyletic cluster (100% Bootstrap support and 1.00 Bayesian posterior
probability), clearly distinguished from Aeminium ludgeri within the Aeminiaceae family in
the Mycosphaerellales order, within Capnodiales s. lat. Moreover, Crous et al. [93] introduced
Xenodevriesiaceae as a new family within Capnodiales to accommodate Xenodevriesia strelitzi-
icola, a species morphologically similar to Devriesia and Pseudocercospora (both belonging
to the Teratosphaeriaceae family) but phylogenetically distinct from both genera. However,
the Xenodevriesiaceae family was not included in the analysis conducted by Abdollahzadeh
et al. [33], and like the Aeminiaceae family in the later study conducted by Wijayawardene
et al. [92], it also remained associated with Capnodiales. Nonetheless, based on the data
obtained in this study and in agreement with the available information for this family, our
findings suggest not only an affiliation with the Teratosphaeriaceae family but also a close
relationship with other families within Mycosphaerellales, indicating a probable placement
of this family within the order. Based on the gathered information, it can be inferred that
Mycosphaerellales may encompass not just 8, but rather 10 families.

To date, representatives of Aeminiaceae family have exclusively been found associated
with different deterioration scenarios affecting stone monuments in the Iberian Peninsula,
including Aeminium ludgeri isolated from limestone at the Old Cathedral of Coimbra [57], en-
vironmental samples obtained from granite at the Cathedral of Santiago de Compostela [74],
and Saxispiralis lemnorum found in Ançã limestone at the Lemos Pantheon of Trofa do Vouga,
Águeda. These findings provide important insights into the ecological aspects and potential
geographical distribution of this family, suggesting that it may be endemic to the Iberian
Peninsula and exclusively inhabit stone substrates.

3.2. Taxonomy and Morphological Characterization

Taxonomy
Aeminiaceae J. Trovão, I. Tiago and A. Portugal
Saxispiralis D.S. Paiva & A. Portugal, gen. nov. (Figures 3 and 4).
MycoBank number: MB849259.
Etymology: «Saxi» (L. neut. n. saxum, genitive) derives from the Latin word for stone,

reflecting the substratum from which the strain was isolated; «spiralis» (L. fem. adj.) is
derived from the Latin word for spiral, alluding to the distinctive spiral shape of its hyphae.

Type species: Saxispiralis lemnorum D.S. Paiva & A. Portugal.
Description: Monotypic genus to accommodate a novel fungal species in the Aem-

iniaceae family, Mycosphaerellales order. Filamentous, slow-growing, anamorphic fungus.
Mycelium consisting of cylindroid, pale brown, smooth, septate, and often branched hy-
phal cells. Prior to fragmentation into arthroconidia, the cells gradually become swollen
(torulose), thick-walled, and darker and develop into long meristematic terminal chains
of conidia. The conidia are dark brown, thick-walled, rugose, and globose. The arthric
disarticulation of hyphae creates a spiral-like shape in the conidial chains, which is unique
to this genus and is not reported in any phylogenetically close relatives. Chlamydospores
were not observed in culture, and a recognizable sexual morph is absent.

Saxispiralis lemnorum D.S. Paiva & A. Portugal, sp. nov. (Figures 3 and 4).
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Figure 2. Consensus phylogenetic tree (ML, B) based on a concatenated alignment of LSU/ITS/rpb2,
containing representative sequences from all families within the Mycosphaerellales order, as well as
representatives from orders closely related to Mycosphaerellales, within Capnodiales s. lat. Orders are
indicated with colored blocks, and the newly described taxa are highlighted in bold. The scale bar
represents the number of substitutions per site, and support values are indicated (>75% bootstrap
values for Maximum Likelihood and >0.75 for Bayesian MCMC posterior probabilities). The tree was
rooted with Parastagonospora nodorum (CBS 110109).
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Figure 3. Macromorphology of Saxispiralis lemnorum. (A,B,E) Colony appearance on PDA before and 
after maturation, with melanization progressing to a fully black color. (C,D) Colony appearance on 
DG 18 before and after maturation. (F,G) Colony appearance on HM 10%. (H) Colony appearance 
on MEA 10%. (I) Colony appearance on SNA. (J,K) Detail of the hyphae exhibiting a characteristic 
spiral-like shape in PDA and SNA, respectively. 

Figure 3. Macromorphology of Saxispiralis lemnorum. (A,B,E) Colony appearance on PDA before and
after maturation, with melanization progressing to a fully black color. (C,D) Colony appearance on
DG 18 before and after maturation. (F,G) Colony appearance on HM 10%. (H) Colony appearance
on MEA 10%. (I) Colony appearance on SNA. (J,K) Detail of the hyphae exhibiting a characteristic
spiral-like shape in PDA and SNA, respectively.

MycoBank number: MB849260.
Etymology: «Lemnorum» (derived Latinization of Portuguese “Lemos” to Latin “Lem-

nos”, genitive plural), in honor of the Lemos family, as the strain was found in the Lemos
Pantheon.

Typification: PORTUGAL, Aveiro, Águeda (40◦36.653′ N, 08◦28.729′ W), isolated from
a deteriorated funerary art piece carved in Ançã limestone with abundant salt damage, in
the Lemos Pantheon, 8 June 2021, D.S. Paiva, (holotype MUM-H 23.14, dried specimen),
ex-type culture MUM 23.14.
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Figure 4. Micromorphology of Saxispiralis lemnorum. (A,B) Unbranched spiral toruloid hyphae with
melanized cells. (C) Branched mature hyphae. (D) Incomplete disarticulation of artic conidia and hyphal
fragments remaining joined by connectives (arrow). (E) Mature globose conidia. (F) Blastic elongation
(arrow). (G) Filamentous hyphae with intercalary swollen cells terminating in a swollen ellipsoidal cell.
(H) Dumbbell-shaped hyphal cells with anastomosis (arrows). (I) Fragments from different stages of
Arthroconidia differentiation. (J) Blastic budding (arrows). (K) Enlarged meristematic cells subdivided by
septations in various directions (arrows). (L,M) Clumps of mature conidia.
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Description: Hyphae subhyaline to pale brown when young, consisting of cylindroid
cells, guttulate, thin- and smooth-walled, branched, 2.91 ± 0.44 µm wide, occasionally
terminating in a swollen ellipsoidal cell, with anastomoses often observed. Prior to mat-
uration, hyphae gradually become swollen, dumbbell-shaped, constricted at the septum,
thick-walled, and darker, and develop into long spirals of meristematic torulose conidial
chains. Arthroconidia dark brown, thick-walled, verrucose or coarsely punctate, spher-
ical, measuring 5.89 ± 0.52 µm, guttulate, resulting from the differentiation of terminal
toruloid-like hyphal cells. Terminal and lateral blastic budding cells are frequently pro-
duced, developing longitudinal and oblique septa, and sometimes forming multicellular
clumps. Occasionally, conidial secession is incomplete, leaving adjacent cells interconnected
by narrow and pale connectives. Chlamydospores absent. Teleomorph unknown.

Colony characteristics: On PDA at 25 ◦C, colonies grew slowly, reaching 13.4 mm in
diameter after 30 days and up to 24.8 mm after 2 months. Mycelium with fine velvety tex-
ture, dark greyish olive on the reverse (according to the ISCC-NBS Colour System No. 111)
and strong orange-yellow color (ISCC-NBS No. 68) with a dark greyish olive margin
(No. 111) on the obverse. After 2 months or longer, colonies reached full maturation and
became completely melanized and black (ISCC-NBS No. 267) on both sides of the culture.
Colonies raised centrally, cerebriform, flat near the periphery and partially immersed in the
agar, compact, stiff, lobed, with well-defined regular margin.

Colonies on MEA 10% at 25 ◦C exhibited a similar morphology to those on PDA, with
slight differences. No color alteration was observed; mycelium grew directly brownish
black (ISCC-NBS No. 65) both on the reverse and obverse. Colonies were less folded,
circular, velvety, with a slightly moist appearance, attaining a diameter of 12 mm in 30 days
and up to 35 mm in two months.

On DG-18 agar, at 25 ◦C, colonies exhibited slow to moderate growth, reaching 21 mm
in diameter after 30 days and attaining 32.7 mm after two months, circular, flat, margin
entire and slight submerged, velvety, with a slightly moist appearance and covered by
sparse whitish aerial mycelium, with a pale orange-yellow color (ISCC-NBS No. 73) on the
obverse and reverse. After 2 months or longer, colonies reached full maturation and became
completely melanized with a brownish-black color (ISCC-NBS No. 65) on both sides of the
culture, becoming raised, rugose, with short aerial hyphae present, and undulate margin.

Colonies on HM 10% at 25 ◦C showed slow to moderate growth, reaching 26 mm in
diameter after 30 days and up to 41 mm after two months, dark greyish olive in the reverse
(ISCC-NBS No. 111) and dark olive (ISCC-NBS No. 108) on the obverse, becoming white
(ISCC-NBS No. 263) near the periphery, circular, flat, with entire margin, producing thin
whitish aerial mycelium.

Substrate: Ançã limestone.
Distribution: Portugal.
Additional specimens examined: PORTUGAL, Aveiro, Águeda (40◦36.653′ N,

008◦28.729′ W), isolated from a deteriorated funerary art piece carved in Ançã limestone
with abundant salt damage, in the Lemos Pantheon, 8 June 2021, D.S. Paiva, MUM 23.15.

Notes: The newly identified species Saxispiralis lemnorum exhibits distinct phylogenetic
and morphological characteristics that set it apart from other previously described members
of the Aeminiaceae family. Phylogenetic analysis based on the concatenated ITS rDNA,
LSU, and rpb2 dataset considered in the present study revealed that the retrieved strains
form a distinct monophyletic lineage within the Aeminiaceae family, clearly separate from
the previously known genus Aeminium, which, until now, represented the sole genus in
this family. Phenotypically, it can be easily distinguished from A. ludgeri by its distinct
colony color and hyphal characteristics in terms of shape and structure (Appendix A,
Figures A1 and A2), as well as its larger size with pronounced rough texture conidia, which
are exclusive to this genus.
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3.3. Physiological Characterization

Physiological analyses were conducted on both isolates obtained in this study. How-
ever, no significant differences were observed among the isolates across the various tested
conditions. The summary of the results from physiological characterization for temperature,
pH, and salinity preference/tolerance is presented in Figure 5. The data obtained serve
as a comprehensive overview of the strain’s responses to temperature, pH, and salinity,
enabling a better understanding of their ecological preferences and adaptability.
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colony diameter reached after two-month incubation at 25 ± 2 ◦C. Temperature and pH tests were
conducted in PDA medium, while salinity preference was evaluated using DSMZ 372-Halobacteria
medium. Results linked by the same letter do not exhibit significant differences (α = 0.05).

Based on the observed growth patterns at the tested conditions, the strains exhibited
optimal growth at moderate temperatures, particularly at 20 ◦C, where the colony diameter
reached 2.63 cm after 2 months. At 25 ◦C, a slight decrease in growth was observed, and no
growth was recorded at lower and higher temperatures. Considering these findings, can be
inferred that the fungus displays a preference for mesophilic conditions.

Regarding the pH assessment, the strains displayed a wide range of tolerance, as
they grew across a broad spectrum of pH levels, ranging from acidic (pH 5.0) to alkaline
(pH 11.0). Optimal growth was observed between pH 7.0 and pH 8.0, while the lowest
growth was recorded at pH 11.0. Although the optimum pH for growth was pH 7, there
was only a slight decrease in growth at the more acidic pH values of 5 and 6, whereas
a more significant decrease was observed at higher alkaline pH values (pH 11). These
results indicate that the fungus can be classified as highly tolerant to pH fluctuations,
showcasing the ability to thrive across a wide pH spectrum without experiencing severe
growth impairments. This distinct characteristic sets it apart from Aeminium ludgeri, the
other member in Aeminiaceae family, considered a facultative alkaliphile, with no growth
being registered for pH levels below 6 and above 9 [57].

The isolates exhibited growth across the entire range of tested NaCl concentrations,
from 0% up to 30%. Optimal growth was observed at a concentration of 10% NaCl. Growth
was still observed at 30% NaCl, albeit at a slower rate (>2 mm diameter after 3-month post-
inoculation). Among halotolerant fungi, Hortaea werneckii is currently considered the most
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halotolerant fungus known to date, as it can tolerate a wide range of NaCl concentrations
from 0% to 32%, with an optimal growth range of 6% to 14% NaCl [17,94]. Additionally, a
recently discovered new ecotype of Pseudotaeniolina globosa [85] has also demonstrated the
ability to grow at up to 30% NaCl, placing Saxispiralis lemnorum alongside these notable
“kings” of salinity. The fungus’ capacity to develop in diverse NaCl concentrations assumes
particular significance when considering its original isolation from a sample collected in an
environment characterized by pronounced salt damage. This environmental context aligns
with its ability to thrive under high-salinity conditions. Based on this characteristic, the
fungus can be classified as halotolerant.

After subjecting the fungus to thermal stress, no growth was observed for any of the
tested conditions following the heat tolerance protocol. Consequently, the fungus was
classified as non-heat tolerant. On the other hand, when exposed to low-temperature shock,
across all tested conditions, the fungus consistently demonstrated recovery and growth,
indicating its cold-tolerant nature or psychrotrophic adaptation. A similar pattern was
observed when subjected to UV radiation stress, as it exhibited the ability to recover and
grow under all tested conditions. Additionally, based on its successful growth on DG-18
culture medium, which was used for morphological characterization, the fungus can be
considered as xerophilic.

The remarkable ability of this new species to tolerate a wide variety of physico-
chemical parameters and withstand different types of stress suggests an extremotolerant
nature. Furthermore, the gathered data provide strong evidence that Saxispiralis lemnorum
is well-suited for survival on stone surfaces, where high evaporation rates and low water
availability lead to local increases in ion concentrations and fluctuations in pH, creating an
environment to which it can successfully adapt.

3.4. Deteriorative Potential

When evaluating heritage items, it is imperative to not only assess the diversity and
viability of microorganisms but also conduct complementary studies on physiological
activities and their deteriorative potential. These additional studies are crucial for gaining a
comprehensive understanding of the occurring biodeterioration processes and developing
tailored and effective treatment strategies [88]. As the isolates were derived from deterio-
rated limestone, the evaluation of their deteriorative potential was determined by assessing
their ability to induce pH alteration, CaCO3 dissolution, and mineral production. The
overall results for the biodegradative plate assays considered in this study can be found
in Table 3.

Table 3. Biodeterioration assays.

Saxispiralis lemnorum
gen. et sp. nov.

Isolates

Acid
Production

CaCO3
Dissolution

Calcium Oxalate
Crystal Formation Other Mineral Precipitation

CREA 1 CGA 1 MMA 1 B4 1 MB4 1 HM10% 1

MUM 23.14 − − − + − +

MUM 23.15 − − − + − +

+—activity detected; −—activity absent. 1 CREA: Creatine Sucrose Agar; CGA: Calcium Carbonate Glucose Agar;
MMA: Modified Malt Extract Agar (with calcium carbonate); B4 (with calcium acetate); MB4: Modified B4 (with
calcium carbonate); HM10%: DSMZ 372-Halobacteria medium supplemented with 10% NaCl (w/v).

The presence of fungi on the stone surface can have a profound impact on the mate-
rial properties due to the secretion of inorganic and organic acids as a byproduct of their
metabolic processes [18–20,23,25,26]. Carbonate dissolution primarily occurs through the
action of organic acids [18,20,23]. However, our results demonstrate that the fungal strains
did not induce detectable pH alterations on CREA medium (Appendix A, Figure A3A)
and exhibited no ability to dissolve CaCO3. In most cases, the production and release of
acids into the substrate are particularly favored when fungi inhabit nutrient-rich substrates
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that promote rapid growth [95]. This intensive growth leads to the excessive production
of organic acids beyond the necessary requirements for normal metabolism, which are
subsequently excreted into the substrate, rendering them detectable [96]. Therefore, our
findings are consistent with expectations, considering that Saxispiralis lemnorum is a mi-
crocolonial fungus characterized by slow growth and adaptation to harsh oligotrophic
substrates. Furthermore, this is in line with current knowledge regarding MCF, as chemical
deterioration of stone by acid substances has never been demonstrated for this group of
fungi [20,26,97].

Fungal biological activities can release cations from minerals and lead to the formation
of secondary minerals through a process called biomineralization [21,24–26,98]. This
adaptation is particularly observed in fungi growing on calcium-rich substrates [99], and
such mineralization events can contribute to various biodeterioration phenomena [18,100].
Biogenic crystal formation was observed in the B4 and HM 10% media with different
configurations (Figure 6). In the B4 medium, spherical crystal formations were abundant
around the fungal mycelium and surrounding areas (Figure 6C,D), while tetragonal forms
were predominantly found at the edge of the Petri dish (Figure 6E). Irregularly shaped platy
crystal aggregates were observed in the HM 10% medium, typically found beneath or near
the fungal mycelium (Figure 6F–H). A possible explanation for the observed crystallization
phenomenon in the B4 medium, but not in media containing calcium carbonate, could be
attributed to fungal respiration activity, supplying the required CO2 for calcite precipitation.
In the B4 medium, the release of calcium does not necessarily rely on the fungi producing
organic acids, since calcium acetate is highly soluble, and calcium is readily available
in the solution. However, in the MB4 medium (e.g.), which contains nearly insoluble
calcium carbonate, the presence of organic acids becomes necessary to facilitate the release
of calcium [96].

However, since crystals of different conformations exist in the same medium, further
studies would be necessary to characterize their composition and understand the actual
mechanisms involved in their formation. The same applies to the crystals present in HM
10%. However, for this latter case, it is important to note that although this medium was
used with various salt concentrations in the NaCl tolerance assay, crystallization was only
observed at a 10% NaCl concentration, which is the optimal growth concentration. Crys-
tallization was never observed at lower or higher concentrations. Based on the obtained
results, Saxispiralis lemnorum has demonstrated the ability for secondary mineral formation,
suggesting its potential involvement in the promotion of significant stone biodeterioration.
The formation of crystals on the stone matrix can result in pore and fissure expansion,
efflorescence formation, as well as peeling and spalling of the materials [101], all of which
are consistent with the characteristics observed in the sampled area. Therefore, the prolifer-
ation of this species, influenced by specific environmental factors, is likely to contribute to
the observed deterioration phenomena in L4.

Another interesting observation made with some of the media used for characterizing
the isolates, e.g., PDA, was the presence of fungal growth not only on the surface, but also
hyphae growing within and through the medium. In many cases, this led to the medium
cracking and detaching from the Petri dish (Appendix A, Figure A3B,C). This could be an
indication of its potential to cause physical biodeterioration resulting from the mechanical
forces generated by hyphal penetration, which led to the breakage of the medium. MCF
have been consistently reported as capable of physically penetrating stone substrates
through the combined action of mechanical forces, exerted by hyphal expansion during
growth, and chemical processes involving metal chelating compounds [26,95,97,101]. This
penetration process can lead to the loosening of the intercrystalline stone matrix due to
internal pressure, ultimately resulting in detachment and material loss [96,101]. Taking this
into consideration, along with the aforementioned ability for secondary mineral formation,
this species is likely to actively contribute to the observed alterations in the sampled area.



J. Fungi 2023, 9, 916 18 of 25J. Fungi 2023, 9, 916 20 of 28 
 

 

 
Figure 6. Mycogenic minerals formed on inoculated B4 and HM10% media. (A,B) Colony appear-
ance on B4 medium, before and after maturation (black mycelium), respectively. (C–E) Different 
shapes of precipitated crystals on B4 medium: spherical clusters and combined forms of tetragonal 
prisms. (F) Direct visualization of the HM 10% culture plate displaying precipitated crystals. (G,H) 
Platy crystal aggregates. 

However, since crystals of different conformations exist in the same medium, further 
studies would be necessary to characterize their composition and understand the actual 
mechanisms involved in their formation. The same applies to the crystals present in HM 
10%. However, for this latter case, it is important to note that although this medium was 
used with various salt concentrations in the NaCl tolerance assay, crystallization was only 
observed at a 10% NaCl concentration, which is the optimal growth concentration. Crys-
tallization was never observed at lower or higher concentrations. Based on the obtained 
results, Saxispiralis lemnorum has demonstrated the ability for secondary mineral for-
mation, suggesting its potential involvement in the promotion of significant stone biodete-
rioration. The formation of crystals on the stone matrix can result in pore and fissure ex-
pansion, efflorescence formation, as well as peeling and spalling of the materials [101], all 
of which are consistent with the characteristics observed in the sampled area. Therefore, 
the proliferation of this species, influenced by specific environmental factors, is likely to 
contribute to the observed deterioration phenomena in L4. 

Another interesting observation made with some of the media used for characteriz-
ing the isolates, e.g., PDA, was the presence of fungal growth not only on the surface, but 
also hyphae growing within and through the medium. In many cases, this led to the 

Figure 6. Mycogenic minerals formed on inoculated B4 and HM10% media. (A,B) Colony appear-
ance on B4 medium, before and after maturation (black mycelium), respectively. (C–E) Different
shapes of precipitated crystals on B4 medium: spherical clusters and combined forms of tetragonal
prisms. (F) Direct visualization of the HM 10% culture plate displaying precipitated crystals.
(G,H) Platy crystal aggregates.

Furthermore, in the B4 medium, as well as in the more alkaline media used in the
pH tolerance assay (pH 9 to 11), the presence of a dark yellow pigment was observed
(Appendix A, Figure A3D,E). Along with its highly melanized mycelium, which gives it a
black color, these are indicators that these strains may cause chromatic alterations due to
mycelial growth and pigment production.

4. Conclusions

Our study reports a newly discovered microcolonial black fungus belonging to the
Aeminiaceae family, which had only one known representative until now. The fungal isolates
here described represent a novel genus and species, found as part of a complex community
colonizing deteriorated limestone in the Lemos Pantheon, highlighting the need for further
investigation of fungal communities in similar environments. This work provides valuable
molecular, morphological, and physiological data that enhance our understanding of fungi
in this recently described family. Furthermore, the physiological and biodeteriorative
potential assessment of this new species yielded data that demonstrate a significant de-
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teriorative activity, indicating its potential to harm the substrate and cause various types
of alterations. Further studies are currently underway to fully understand its nature and
abilities. Understanding the microbial agents involved in the materials’ biodeterioration is
crucial knowledge for appropriate safeguarding measures to be considered, discussed, and
implemented for effective conservation. By comprehensively studying the microbial agents
responsible for material deterioration, we can hope to preserve our cultural heritage for
future generations.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/jof9090916/s1, Figure S1: Visual representation outlining the measurement
process in the temperature, NaCl, and pH assays. The pre-segmentation of the culture plate serves to
establish a reliable reference line for measurements. This ensures that, particularly when colonies
exhibit irregular shapes, diameter measurements remain impartial, mitigating any potential bias
towards measuring the larger diameter, for instance.

Author Contributions: Conceptualization, D.S.P., N.M., I.T. and A.P.; Methodology, D.S.P. and L.F.;
Software, D.S.P. and J.T.; Validation, D.S.P., N.M., I.T. and A.P.; Formal analysis, D.S.P.; Investigation,
D.S.P.; Resources, N.M., I.T. and A.P.; Data Curation, D.S.P.; Writing—Original Draft Preparation,
D.S.P.; Writing—Review and Editing, D.S.P., J.T., L.F., N.M., I.T. and A.P.; Visualization, D.S.P.;
Supervision, N.M., I.T. and A.P.; Project Administration, A.P.; Funding Acquisition, A.P. All authors
have read and agreed to the published version of the manuscript.

Funding: Diana Paiva was supported by a PhD research grant (UI/BD/150843/2021) awarded
by the Centre for Functional Ecology—Science for People & the Planet (CFE) and co-funded by
Fundação para a Ciência e Tecnologia, I.P. (FCT) through national funding by the Ministério da
Ciência, Tecnologia e Ensino Superior (MCTES) from Fundo social Europeu (FSE). This work
was carried out in the R&D Unit Centre for Functional Ecology—Science for People & the Planet
(CFE), and Associate Laboratory TERRA, with references, respectively, UIDB/04004/2020 and
LA/P/0092/2020, financed by FCT/MCTES through national funds (PIDDAC). The authors
also gratefully acknowledge the funding of the PRR—Recovery and Resilience Plan and the
NextGeneration EU European Funds.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All relevant data are presented in the paper. The nucleotide sequences
were deposited in the GenBank database under the accession numbers OR081765-OR081766 (LSU),
OR081767-OR081768 (ITS), and OR074926-OR074926 (rpb2). The phylogenetic data can be accessed
on Figshare via the following link: https://figshare.com/s/c68a893bc9b8f9f3c5d7 (accessed on
21 June 2023).

Acknowledgments: Sampling was conducted with permission from the Trofa’s Administration
Parish Council and under the supervision of Father Pimenta. The authors express their gratitude to
Father José Luís Pimenta, the Parish Priest of the Church of Trofa do Vouga, for warmly welcoming
us and assistance during the sampling process. Additionally, his invaluable insights and knowledge
about the monument’s history were greatly appreciated. The authors also wish to express their
sincere gratitude to João Gouveia Monteiro of the University of Coimbra, for his unwavering support
and guidance in ensuring the accurate use of Latin names for the description of the new species
presented in this article. Figure S1 was generated using https://app.biorender.com/ (accessed on
25 August 2023).

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/jof9090916/s1
https://www.mdpi.com/article/10.3390/jof9090916/s1
https://figshare.com/s/c68a893bc9b8f9f3c5d7
https://app.biorender.com/


J. Fungi 2023, 9, 916 20 of 25

Appendix A

J. Fungi 2023, 9, 916 22 of 28 
 

 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: All relevant data are presented in the paper. The nucleotide sequences 
were deposited in the GenBank database under the accession numbers OR081765-OR081766 (LSU), 
OR081767-OR081768 (ITS), and OR074926-OR074926 (rpb2). The phylogenetic data can be accessed 
on Figshare via the following link: https://figshare.com/s/c68a893bc9b8f9f3c5d7. 

Acknowledgments: Sampling was conducted with permission from the Trofa’s Administration Par-
ish Council and under the supervision of Father Pimenta. The authors express their gratitude to 
Father José Luís Pimenta, the Parish Priest of the Church of Trofa do Vouga, for warmly welcoming 
us and assistance during the sampling process. Additionally, his invaluable insights and knowledge 
about the monument’s history were greatly appreciated. The authors also wish to express their sin-
cere gratitude to João Gouveia Monteiro of the University of Coimbra, for his unwavering support 
and guidance in ensuring the accurate use of Latin names for the description of the new species 
presented in this article. Figure S1 was generated using https://app.biorender.com/ (accessed on 25 
August 2023). 

Conflicts of Interest: The authors declare no conflicts of interest. 

Appendix A 

 
Figure A1. Direct comparison of the macromorphology between Aeminium ludgeri (PL125 isolate, 
also obtained during the same study and from the same sample [61]) and Saxispiralis lemnorum is 

Figure A1. Direct comparison of the macromorphology between Aeminium ludgeri (PL125 isolate,
also obtained during the same study and from the same sample [61]) and Saxispiralis lemnorum is
shown on different culture media after one month of inoculation (Ø 5 cm plates). PDA—Potato
Dextrose Agar (PDA); DG 18—Dichloran-Glycerol Agar; RB—Rose Bengal Agar; HM 10%—DSMZ
372-Halobacteria medium supplemented with 10% NaCl (w/v); CZ*—Czapek Solution Agar; MEA
10%—Malt Extract Agar supplemented with 10% NaCl (w/v). * Culture medium used in Paiva
et al. [61] for processing the initial samples.
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Figure A3. Observable alterations caused by Saxispiralis lemnorum in different culture media. (A) Poor
growth and absence of acid reactions on CREA medium. (B,C) Hyphal intrusion resulting in the
fragmentation of the PDA medium. (D,E) Noticeable production of dark yellow pigment in MEA
media adjusted to pH 10 and B4.
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