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Abstract: Capsicum annuum L. is a significant horticulture crop known for its pungent varieties and
used as a spice. The pungent character in the plant, known as capsaicinoid, has been discovered to
have various health benefits. However, its production has been affected due to various exogenous
stresses, including diseases caused by a soil-borne pathogen, Pythium spp. predominantly affecting
the Capsicum plant in younger stages and causing damping-off, this pathogen can incite root rot in
later plant growth stages. Due to the involvement of multiple Pythium spp. and their capability to
disperse through various routes, their detection and diagnosis have become crucial. However, the
quest for a point-of-care technology is still far from over. The use of an integrated approach with
cultural and biological techniques for the management of Pythium spp. can be the best and most
sustainable alternative to the traditionally used and hazardous chemical approach. The lack of race-
specific resistance genes against Pythium spp. can be compensated with the candidate quantitative
trait loci (QTL) genes in C. annuum L. This review will focus on the epidemiological factors playing
a major role in disease spread, the currently available diagnostics in species identification, and the
management strategies with a special emphasis on Pythium spp. causing damping-off and root rot in
different cultivars of C. annuum L.

Keywords: control strategies; diagnosis; epidemiology; post-emergence damping-off; pre-emergence
damping-off; Pythium; resistant cultivars; root rot

1. Introduction

Cultivars of Capsicum annuum L. (Solanaceae) are an essential part of many cuisines
worldwide as a spice. C. annuum L. is a semi-perennial herbaceous plant that is usually
grown as an annual crop worldwide, including in India [1]. The genus Capsicum is split into
three gene complexes based on the crossing ability between species [2], of which the species
of C. annuum complex (C. annuum, C. frutescens, and C. chinense) is commercially most
important [3]. In 2018, worldwide production of dry chilies and peppers was estimated to
be up to almost 4.2 million tons over an area of 1.8 million hectares. India is the biggest
producer of dry chilies and pepper grown worldwide. Capsaicinoids are distinctive of the
Capsicum genus and are produced entirely inside the fruit placenta [4], which causes the
characteristics of fruit pungency in this genus [5]. Capsaicinoids are a mixture of at least
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23 alkaloids (vanillylamines), a major representative of which are dihydrocapsaicin and
capsaicin, which collectively account for almost 90% of the total capsaicinoid content in the
fruit [6]. A mildly or non-pungent analog of the capsaicinoids, namely capsinoid, is also
present in pungent varieties in trace amounts and shares a similar structure with capsai-
cinoids [7]. Fresh Capsicum fruits are also rich in phenolic content, including flavonoids,
phenolic acids, and tannins [8]. Mature fruits are abundant in carotenoids such as capsan-
thin, capsorubin, β-carotene, etc., of which capsanthin is the major contributor [9]. Minerals
such as potassium, phosphorous, magnesium, calcium, sodium, iron, manganese, boron,
selenium, copper, and zinc are commonly found in Capsicum; however, their content is
dependent on variables such as the fruits’ variety, growth stage, environmental factors,
and the cultivation practices [10].

Various health benefits have been found to be related to different Capsicum cultivars.
Fresh green peppers and red peppers have ample amounts of vitamin A, C, and antioxidant
compounds [6,11–13]. Srinivasan [14], in his review on the biological activities of capsaicin,
documented the various potential anti-carcinogenic, anti-inflammatory, pain relief, weight
loss, gastrointestinal, and cardioprotective effects of capsaicin in detail.

Small-fruited cultivars were observed to form a more divergent phylogenetic group
than the large-fruited varieties, making the small-fruited cultivars genetically more dis-
tant [15]. Although various breeding programs have led to the creation of cultivars with
favorable traits, this has still not found full application in making disease-resistant varieties
because of many interspecific crossing barriers [6,16], including many factors both pre and
post-fertilization [2]. Production of C. annuum is restricted by many fungal, bacterial, viral,
and nematode diseases associated with it worldwide [17]. The damping-off caused by
various Pythium spp. is a significant disease of C. annuum cultivars that predominantly
occurs in nursery beds affecting seeds and young seedlings [18,19]. When the plant is in the
seed or seedling stage of its life cycle, infection by Pythium species causes pre-emergence
and post-emergence damping-off, decaying the seeds and seedlings before emergence and
after the emergence of the plant from the soil surface, respectively. However, infected
mature plants have also been found to show root rot symptoms. Pythium spp.mainly affect
the younger or juvenile tissues, which have not yet developed any secondary thickenings;
thus, the infection is limited to seeds, seedlings, and the younger roots. The post-emergence
damping-off of seedlings is often associated with symptoms such as reduced growth, wa-
ter soaking, wilting, black or brown discoloration, and root rot [20–22]. In more mature
plants, water-soaked roots and lesions of stem at the soil line, stunted growth, and brown
discoloration of roots are prevalent [23].

In India, chili was first reported as the host of Pythium spp. over 100 years ago [24].
Since then, there have been repeated records of damping-off and root rot incidences caused
by Pythium spp. in chili [25,26]. Pre-emergence and post-emergence incidences ranging
from 7% to 90% of crops have been reported in several states of India [27–31]. In Pakistan,
many occurrences of damping-off and root rot disease incidences ranging from 13% to 46%
have been reported [20,22,32], and an estimated loss of Rs. 70,000–100,000/acre, in the case
of hot pepper, has been observed [33]. Aside from damaging crops directly, Pythium spp.
have also been observed to break resistance to nematodes in chili plants [34]. Financial
losses due to Pythium infections are not limited to direct damage to crops; instead, they
also include the re-sowing costs [35].

Although Pythium spp. has been found to infect both sweet and pungent varieties,
the current study is centered on the pungent cultivars. Figure 1 presents a brief summary
of the components reviewed in this study. This study focuses on the techniques that have
been followed to detect and diagnose Pythium spp., the management strategies studied to
control Pythium spp.-related diseases in Capsicum since 2010, and resistant breeding against
Pythium spp.
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2. Pythium Species: Causal Agent of Damping-Off and Root Rot

The genus Pythium is a part of the Peronosporales order of the class Oomycetes or
the phylum Oomycota, a member of the kingdom Chromista (Stramenopiles) [36]. The
Pythium spp. are no longer considered to be true fungi; instead, they were found to be more
closely related to algae [37]. The class Oomycetes differ from true fungi in that they have
coenocytic hyphae, a diploid vegetative stage, cell wall content of β-glucan and cellulose,
biflagellate zoospores with tinsel, and whiplash flagella [37,38]. The Pythium genus contains
species that are pathogenic to plants [39–41], animals [42], algae [43], and other fungi [44].
More than 330 species of Pythium have been identified to date (www.mycobank.org), of
which many are pathogenic to plants. These pseudo-fungi cause many plant diseases,
including damping-off, root rot, collar rot, soft rot, and stem rot in different production
systems such as nurseries, greenhouses, and agricultural fields [45–47]. In C. annuum
plants, many Pythium spp. have been observed to cause diseases. Some of these species
have been identified using the morphological keys available and gene sequences (Table 1).
The next few sections discuss the ecology of the pathogen involved and the critical factors
involved in disease epidemics on C. annuum cultivars caused by various Pythium spp.

Table 1. Reported Pythium species associated with diseases in Capsicum annuum L.

Country Species Identification
Criteria

Sequence Used in
Molecular Identification Crops Affected Reference

Pakistan P. myriotylum Morphological and
molecular ITS sequence 13.8%–45.4% [20]

India P. graminicola Morphological and
molecular ITS sequence Not available [21]

Pakistan P. spinosum Morphological and
molecular ITS sequence Not available [23]

India

P. aphanidermatum,
P. graminicola,

P. ultimum,
P. diliense, P.

heterothallicum

Not available Not available Not available [26]

Pakistan P. debaryanum Morphological and
molecular ITS sequence 45% [32]

www.mycobank.org


Microorganisms 2021, 9, 823 4 of 17

Table 1. Cont.

Country Species Identification
Criteria

Sequence Used in
Molecular Identification Crops Affected Reference

India P. aphanidermatum Morphological Not available Not available [48]

Pakistan P. aphanidermatum Morphological and
molecular

ITS and partial LSU
sequence Not available [49]

Pakistan
P. aphanidermatum

P. spinosum
P. intermedium

Morphological and
molecular ITS Sequence Not available [50]

India P. aphanidermatum Not available Not available Not available [51]
India P. aphanidermatum Not available Not available Not available [52]

Pakistan Pythium spp. Not available Not available Not available [53]

ITS: Internal Transcribed spacer; LSU: Large subunit ribosomal DNA.

2.1. Ecology

Pythium spp. are soil-borne fungi. Indeed, members of this genus are no longer con-
sidered to be fungi but still share a striking similarity with true fungi in having vegetative
(mycelium), asexual (sporangia and zoospores), and sexual (oospores) stages in their life
cycle [54]. Figure 2 provides a standard overview of the disease cycle of Pythium species in
pepper plants. Pythium spp.inhabit the soil either as a propagule (Zoospore, oospore, or
sporangia) or in the mycelial form. The oospores are the primary survival structure and
infecting unit of the many species of the Pythium genus in the soil, which can stay viable in
the soil for long durations [37,55]. However, sporangia of some Pythium species have also
been reported to be survival propagules in soil [56,57]. The survivability of propagules of
Pythium in soil follow two critical mechanisms: (1) the constitutive dormancy of oospores—
i.e., their germination requires an internal stimulation other than the external stimulus,
because of which all the propagules present in the soil do not germinate simultaneously;
and (2) the formation of secondary resting propagules in the case of a shortfall of ample
nutrients [55,58]. The propagules can germinate and penetrate the host plant very rapidly
in the presence of exudates from roots and other supporting exogenous stimuli, which
makes their control very difficult [39]. Sporangia can infect the plant either directly through
hyphal tube germination or by producing zoospores in the presence of high moisture
conditions [55]. Besides the propagules, Pythium species also survive saprophytically as
mycelium in the soil and usually colonize the fresh organic substrate. However, this stage
of their life cycle is very prone to competition by other soil colonizers [59]. In the seeds,
seedlings, and younger roots of mature plants, after penetration, Pythium usually survives
necrotrophically, thus eventually leading to mortality.

2.2. Epidemiology

Pythium spp.are naturally attracted to the exudates released from the germinating
seeds, which are stimulatory to the growth of their propagules. While germinating, the
seeds imbibe water and release exudates, making them the primary target of infection
by a Pythium propagule [55]. Exogenous environmental factors have a critical role in the
predisposal of plants to infection and disease spread in the host after infection by Pythium.
However, the favorable conditions for disease spread by Pythium tend to vary with the
species [60]. Damages ranging from small outbreaks to an epidemic-level scale depend
mostly on variables such as moisture, temperature, and organic matter content; however,
factors such as pH and soil type also play a crucial role.

Temperature is undeniably the critical factor in the spread of disease by Pythium. An
array of temperature ranges represent thriving conditions for various Pythium spp. such
as P. graminicola have been observed to cause more damage in Capsicum at high cardinal
temperatures [21].
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Besides supporting the growth of Pythium, high-temperature conditions, in some
cases, place additional abiotic stress on the plants, which eventually enhances the severity
of root rot [61]. A high moisture content in the soil supports the motility of zoospores
and increases the size of the spermosphere—factors that play a crucial role in infections
by Pythium propagules [55]. Hyder et al. [62] observed high disease incidences and an
increased severity of damping-off in chili pepper crops in areas with canal irrigation
systems, and Majeed et al. [30] also reported that spaces with high natural moisture were
highly infested. A greenhouse environment with damp conditions and high temperatures
provides thriving conditions for Pythium [63]. Muthukumar et al. [64] observed the highest
incidences of damping-off in chili in clay soils, which was attributed to their high moisture-
holding capacity. Organic matter content in the soil sometimes supports the saprophytic
growth of Pythium in the absence of antagonistic microbial communities. Hansen and
Keinath [65] observed organic amendments of Brassica species that, rather than being
suppressive, supported the increase of Pythium populations.

3. Detection and Diagnosis of Pythium Species

Pythium spp. pathogenic to C. annuum plants have been identified using morphological
features and sequencing marker regions of the DNA of the isolated pathogen. Levesque
and Cock [66] found the sporangial morphology to be the most reliable morphological
feature in species identification, which was very much consistent with major clades formed
in molecular characterization. However, the correct identification of the Pythium spp. is
often hindered by the inability of heterothallic species to form reproductive structures
in cultures, overlapping some characters, and the inability to distinguish intraspecific
variation [21,66,67]. Nevertheless, the identification based on morphological features is
neither very time-efficient nor very reliable.

Pathogen detection and diagnosis have a vital role in correlating epidemiological
factors with the species involved in the disease spread. Damping-off and root rot diseases
sometimes involve a complex of pathogens, including species other than Pythium spp. [68].
The early diagnosis of Pythium can help in managing the further spread of the disease.
The accurate detection of the relevant species can prevent the wasteful usage of pesticides
and other resources because different species differ in their susceptibility to control strate-
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gies [38]. Thus, the potential diagnostic techniques have the prerequisites of being rapid,
accurate, easy to use, and cost-effective. The detection and diagnostic methods currently
used for plant pathogens can be broadly divided into two categories; i.e., immunodiag-
nostic methods and nucleotide-based methods [69]. In the context of Pythium spp., recent
studies have been primarily focused on advanced PCR-based molecular techniques such as
real-time PCR, multiplex PCR, and loop-mediated isothermal amplification (LAMP). The
Internal Transcribed Spacer (ITS) region, including ITS 1, 5.8 s, and ITS 2 sequences of nu-
clear rDNA, is the most frequently used sequence for identifying Pythium spp. [20,21,49,70].
The primers developed by White et al. [71], based on some conserved sequences in eukary-
otic DNA, as well as the primers based on the ITS sequence of the specific species, are used
most frequently in the PCR amplification of the ITS region of the specific species.

Immunological methods rely on antigen–antibody specificity. Although immuno-
logical methods for Pythium have been minimal because of the difficulty in producing
species-specific antibodies [37], they have a better potential for use in point of care test
systems operated by non-specialists [72]. Ray et al. [73,74] used the polypeptides released
during fungal infections as immunogens to develop polyclonal antibodies to detect early
P. aphanidermatum infections in turmeric and ginger rhizomes, respectively. In an ELISA
analysis, the developed antibodies showed a good sensitivity at very low concentrations.
Although the antigen load in the early stages of infection in rhizome was remarkably low
compared to more severely infected rhizomes, the infection was still detectable.

Similar to the rapid detection of the pathogen, inoculum quantification is also im-
portant. In real-time PCR amplification, the PCR product is monitored as it is amplified
after each cycle, providing an estimate of the pathogen present in the environmental sam-
ple [75]. Based on the inoculum present in the soil and plant, the amount of pesticide
application, crop area selection, non-host species, and seasonal variation in the pathogen
spread can be determined. Furthermore, the resistant varieties and genetically modified
resistant crops can be studied by observing the pathogen count in asymptomatic plant
parts [76]. Li et al. [77] estimated the population densities of P. intermedium in forest soils
using a real-time PCR technique. The primers Pf002 and Pr002b, designed using the ITS
region of the P. intermedium, were found to be highly species-specific. For the sensitive and
quantitative observation of Pythium spp., real-time PCR assays were also developed by
Li et al. [77], Li et al. [78], and Van der Heyden et al. [79].

Very often, multiple Pythium spp.are involved simultaneously in plant infections.
Multiplex PCR facilitates the simultaneous identification of the species present within a
sample. The multiple primers used in a single reaction are designed to hybridize specif-
ically to target DNA and amplify the target regions with different amplicon sizes that
can easily be separated by electrophoresis [38,80]. Nine primers—18S-69F, 18S-1118R,
AsARRR, AsAPH2B, AsTOR6, AsVANF, AsPyF, AsGRAF, and AsPyR—for identifying
five species of Pythium, P. arrhenomanes, P. graminicola, P. aphanidermatum, P. torulosum,
and P. vanterpooli that cause diseases in turfgrass were designed by Asano et al. [80]. In
the DNA extracted from plant samples showing symptoms, multiplex PCR was more
efficient in detecting the Pythium spp. compared to pathogen isolation using the selec-
tive medium. Based on the isolation of multiple Pythium spp. from one plant sample,
it was postulated that Pythium spp. would be involved in latent infections, and subse-
quently, visible symptoms were observed only when the conditions optimal for disease
induction occurred. Ishiguro et al. [81] developed a multiplex PCR detection method
to identify high-temperature-growing Pythium spp., P. aphanidermatum, P. helicoides, and
P. myriotylum in soil samples. Species-specific primers—kkMYRR for P. myriotylum and
kkhel F1mods2/kkhel R2 for P. helicoides—were newly designed. Other pre-designed
primers—AsPyF for P. aphanidermatum and P. myriotylum, AsAPH2B for P. aphanidermatum
—and two universal primers—18S69F and 18S1118R—were also used. Their analysis con-
cluded that the primers were highly species-specific and could efficiently detect specific
species from environmental samples.
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Loop-mediated isothermal amplification (LAMP), unlike other PCR techniques, does
not involve a thermal cycler; instead, nucleic acids are amplified under isothermal con-
ditions [82]. The use of four different primers explicitly designed for six different target
gene regions makes it highly specific [83]. Two loop primers were also used in an attempt
to reduce the amplification time. The amplification of nucleic acids relies on Bst DNA
polymerase, which uses autocycling strand displacement for DNA synthesis [84]. Fukuta
et al. [82] developed a LAMP assay to detect P. myriotylum detection in hydroponic solution
samples. The five primers—F3, B3, FIP, BIP, and B-Loop—designed using the ITS sequence
of P. myriotylum and related species from the B1 phylogenetic clade of the Pythium efficiently
amplified the target genes at 60 ◦C. The DNA extracted from the hydroponic nutrient solu-
tion showed the presence or absence of P. myriotylum accurately, which was confirmed by
the plate culture method. The presence of double-stranded DNA amplified by primers and
Bst DNA polymerase was observed by the fluorescence produced due to double-strand
binding intercalating dye. As the number of double-stranded DNA increases, fluores-
cence increases. Additionally, LAMP assays were also developed for P. irregulare [85],
P. aphanidermatum [85], P. ultimum [86], and P. spinosum [87]. Cao et al. [88] used a modifica-
tion of LAMP called RealAmp, where LAMP products were quantified in real-time. The
quantitative detection of the pathogen was done by measuring the increase in turbidity
derived from magnesium pyrophosphate to determine the amplified DNA product. The
only limitation associated with LAMP is the false-positive results produced due to the
presence of multiple primers, which enhances the sensitivity of the assay manifolds [82].
The LAMP method has a high potential for use in field conditions because of the low
requirement for sophisticated instruments; additionally, the environmental samples can be
analyzed directly without the need for DNA extraction [83,86].

PCR-based diagnosis provides advantages over conventional diagnostic procedures
of rapid detection, sensitivity, and the ability to avoid culturing a target pathogen [75].
However, using PCR technology to detect pathogens in environmental samples has its own
shortcomings. The extraction of Pythium DNA from environmental samples is hindered
by the presence of PCR inhibitors, the thick walls of dormant structures, and the strong
binding of microbes to soils or plant tissue [37,89,90]. The purity of extracted DNA, the
state of infection in plant tissue, and pathogen distribution in environmental samples can
also drastically affect the results [38]. PCR amplification cannot provide a delimitation
between viable and non-viable propagules because DNA can persist for more extended
periods even after cell death, thus hindering the assessment of a control strategy [91]. Using
real-time PCR with environmental samples can result in the incorrect quantification of the
pathogen in the test sample because of the presence of fluorescent molecules, the difference
in the copy number of nuclear rDNA between isolates, and the ambiguity of extracted
DNA from living and dead propagules [38,77,92]. Other than the technical limitations,
the skill requirements, high-end instruments, and high costs limit the use of PCR-based
diagnosis in actual field-based studies.

4. Control Measures
4.1. Cultural Control

Cultural techniques such as organic amendments, soil solarization, and cover cropping
have been observed to control Pythium-related diseases in C. annuum crops. The solarization
of soil has been a prevalent practice to manage various soil-borne diseases in greenhouses
and nursery beds. Soil solarization is a pre-sowing management approach that generally
reduces colony-forming units (CFUs) or propagules of various soil-inhabiting pathogens as
well as other microbes, as observed by Akhtar et al. [93], where CFUs of Pythium spp.were
reduced to 1.67 × 104 after 8 weeks of solarization as compared to 5.00 × 104 in pre-
solarized soils at a depth of 15 cm.

The use of isothiocyanates (ITCs) producing Brassicaceae cover crops for soil biofu-
migation has acquired increasing interest as an alternative to restricted chemical fumi-
gants such as methyl bromide for soil-borne disease control [94]. Although isolates of
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Pythium spp. were effectively inhibited by ITCs in in-vitro conditions [95], field experi-
ments using Brassica cover for biofumigation were not very efficient in reducing Pythium
populations in pepper crops [65]. However, high ITC levels were observed in field soils
after the pulverization and incorporation of Brassica cover crops in soils [65]. In contrast,
Handiseni et al. [96] saw an improvement in pepper seedling emergence of 40%–60% when
the ITC-producing intact seed meals of Brassica napus and Brassica juncea were incorporated
into P. ultimum-infested soils. The difference in observations by Hansen and Keinath [65]
and Handiseni et al. [96] can be attributed to the variability in sensitivity to ITC of different
species of Pythium.

4.2. Chemical Control

Despite their well-known detrimental effects, such as environmental toxicity and
accumulation at different trophic levels [97], the use of chemical pesticides is still relevant
because of their effective results. Fungicides used as a soil drenching, fumigation, and seed
treatment have been used to control soil-borne disease. Saha et al. [98], in a four-year-long
study, studied the effect of the treatment of chili seeds with the fungicidal formulations
Thiram 75 WS and Captan 50 WP on incidences of damping-off caused by P. aphanidermatum.
Treatment of seeds using Thiram 75 WS at the dose of 2.5 kg/g of seeds reduced the pre-
emergence damping-off losses from 29.06% in untreated control to 6.52% in treatment
and post-emergence damping-off losses from 59.12% in the untreated control to 16.15%
in treatment conditions. It was even attempted to integrate metalaxyl with biocontrol
agent Trichoderma harzianum as a seed treatment, which also produced good results as the
percentage of seed rot from 93.75% in untreated seeds was reduced to 52.08% in treated
seeds [28]. However, using a single active ingredient has resulted in the development of
resistant varieties, as can be seen in metalaxyl-resistant Pythium spp. [99,100]. A combination
of different fungicides, creating a cocktail of alternative chemistries, has provided the
solution to overcome the resistance developed by Pythium spp. [99,100]. The two or more
active compounds used in this pesticide cocktail mostly act additively, but synergism has
also been observed in some cases [101]. It is suggested to use Previcur 840 SL containing
propamocarb (47.3%) and fosetyl (27.7%) as a combination of active ingredients, which
is recommended for the effective control damping-off disease caused by Pythium spp. in
chili [102]. The efficacy of mixed fungicides in vitro on isolates of Pythium isolated from
diseased parts of chili plants was studied by Dubey et al. [21], who observed Vitavax
(Carboxin 37.5% + Thiram 37.5%) to be highly effective, inhibiting the growth of mycelia
by 93.3% at a concentration of 100 ppm.

As discussed in the previous sections, high moisture content in the soil is conducive
to the development of Pythium spp.; thus, events of extreme rainfall can lead to severe
disease outbreaks. Saha et al. [103] observed high mortality in the Capsicum crop after
Hurricane Frances, which was further aggravated due to the biological vacuum created by
pre-plant metalaxyl fumigation. The fumigation resulted in a severe reduction in beneficial
soil microbiota, which later supported the outbreak by Pythium spp. Kokalis-Burelle
et al. [104] also observed Pythium epidemics in methyl bromide-treated plots of pepper
plants in subsequent years, which were attributed to the biological vacuum created by
methyl bromide fumigation. Due to the fewer soil microorganisms present in the soil, no
competition was present to Pythium. Thus, disease forecasting based on variables such as
the number of pathogen propagules, the susceptible host, and the conducive environment
becomes crucial in deciding the timing and dose of fungicides to be used [105].

4.3. Biological Control

The antagonistic ability of many fungal, bacterial, and algal isolates has been investi-
gated directly and indirectly against phytopathogens, as shown in Table 2. The activity and
efficacy of biocontrol agents on damping-off in seeds and seedlings depends very much on
the texture of seeds, the associated microflora in the soil, and the physiological characters
of the plant. Therefore, it can be concluded that the efficacy of biocontrol tends to vary
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from species to species and crop to crop [68]. The antagonism exhibited by microbial bio-
control agents can follow different modes of actions such asc ompetition, induced systemic
resistance, antibiosis, and mycoparasitism (Figure 3).
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Table 2 shows that Bacillus spp. and Pseudomonas spp. are the most frequently used
and most successful bacterial biocontrol agents in pot trials and field applications. However,
both of these have diverse modes of action. Endophytic Pseudomonas fluorescens EBS20 iso-
lated from chili plants produced an antibiotic phenazine, which reduced the in vitro growth
of Pythium spp. [51]. The production of antimicrobial substances by Pseudomonas spp. and
Bacillus spp. was observed by Muthukumar et al. [106] and Amaresan et al. [107], respec-
tively. The disease-suppresupssing activity of plant growth-promoting rhizobacteria has
also been correlated with its efficiency in promoting plant growth [106]. Many species of
Pythium that are pathogenic to plants have a very high optimum temperature for growth
at which some biocontrol agents are not very effective [108]. Mehetre and Kale [109] at-
tempted to assess a thermophile Bacillus licheniformis NR1005 for its antagonism against
P. aphanidermatum, and promising results were obtained in suppressing the disease.

Table 2. Exploration of microbial species for Pythium control in Capsicum annuum (from 2010 to present).

Pathogen Species Microbial Control
Strain

Name/Commercial
Product

In Vitro Control In Vivo Control Mode of Action Reference

Bacteria

P. aphanidermatum Pseudomonas
fluorescens EBS20

76.66% reduction in
the growth of

mycelia.
Not available

Production of
phytopathogen

inhibitor phenazine.
[51]

P. aphanidermatum Pseudomonas.
fluorescens Biomonas * Not available.

10.46% and 20.28%
losses due to pre and

post-emergence
damping-off,

respectively, as opposed
to 29.06% and 59.12% in
control in nursery fields

using seed treatment.

Not available. [98]
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Table 2. Cont.

Pathogen Species Microbial Control
Strain

Name/Commercial
Product

In Vitro Control In Vivo Control Mode of Action Reference

P. aphanidermatum

Pseudomonas
fluorescens EBC 5

68.88% reduction in
the growth of

mycelia.

9.10% and 12.33%
incidences of pre and

post-emergence
damping-off when EBC

5 and EBC 7 were
combined in pot culture
using seed coating, as

opposed to 30.66% and
34% in control.

Production of
antifungal

metabolites reduced
mycelial growth

in-vitro.

[106]

Pseudomonas
fluorescens EBC 7

65.93% reduction in
the growth of

mycelia.

Pythium spp. Bacillus megaterium BECS7
45.9% reduction in

the growth of
mycelia.

2% incidences of
damping-off as opposed
to 14.67% in control in

field conditions.

Release of
hydrolytic enzymes

such as lipase,
cellulase, amylase,

and protease.

[107]

P. aphanidermatum Bacillus licheniformis NR1005
69.96% reduction in

the growth of
mycelia.

81.18% reduction in
damping-off incidence

over control in pot
culture using seed

treatment.

Not available. [109]

P. ultimum

Stenotrophomonas
rhizophila KM01

80% reduction in
the growth of

mycelia.

75%–100% reduction in
disease index over

control in pot culture
using root inoculation.

Not available. [110]
Stenotrophomonas

rhizophila KM02
76% reduction in

the growth of
mycelia.

75%–100% reduction in
disease index over

control in pot culture
using root inoculation.

Bacillus subtilis RBM02
67%–77% reduction

in the growth of
mycelia.

100% reduction in
disease index over

control in pot culture
using root inoculation.

P. debaryanum Bacillus subtilis RB-31 91% inhibition of
mycelial growth. Not available. Not available. [111]

Fungi

Pythium spp. Trichoderma
harzianum TK8

62.8% reduction in
the growth of

mycelia.
Not available. Not available. [29]

P. aphanidermatum Trichoderma
harzianum Not available

75.34% reduction in
the growth of

mycelia.

83.16% reduction in
damping-off incidence

over control in pot
culture using seed

treatment.

Not available. [109]

P. ultimum Cryptococcus
laurentii 2R1CB

75% reduction in
the growth of

mycelia.

75%–100% reduction in
disease index over

control in pot culture
using root inoculation.

Production of
β-1,3-glucanase

reduced the
mycelial growth

in vitro.

[110]

P. aphanidermatum Trichoderma viride Not available
76.1% reduction in

the growth of
mycelia.

Not available Production of
antibiotics. [112]

P. aphanidermatum Trichoderma viride TVC3

88% reduction in
the growth of

mycelia.
Not available

Volatile and
non-volatile
antibiotics

production and
mycoparasitism.

[113]

Fungi + Bacteria

P. aphanidermatm

Trichoderma viride +
Trichoderma
harzianum +
Pseudomonas

fluorescens + Bacillus
subtilis

Not available. Not available.

13.33% and 15.36%
incidences of pre and

post-emergence
damping-off,

respectively, as opposed
to 53.33% and 24.80% in

control in pot culture
using seed treatment.

Not available. [30]
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Table 2. Cont.

Pathogen Species Microbial Control
Strain

Name/Commercial
Product

In Vitro Control In Vivo Control Mode of Action Reference

P. aphanidermatum
Trichoderma viride +

Pseudomonas
fluorescens

TVA
EBL 20-PF Not available.

Reduction of 84% and
71.5% in pre and
post-emergence

damping-off incidences,
respectively, using seed

treatment and soil
application in pot

culture.

Induced systemic
resistance due to

increased activities
of PAL, PO, PPO,
and accumulation

of phenolics.

[52]

P. aphanidermatum
Trichoderma viride +

Pseudomonas
fluorescens

Not available.
82% reduction in
mycelial growth

over control.

Reduction of 72.2% and
59.2% in pre and
post-emergence

damping-off incidences,
respectively, in pot
culture, using seed

treatment.

Production of
antifungal
antibiotic.

[114]

Algae

P. aphanidermatum Calothrix elenkenii Not available.

Minimum
inhibitory

concentration of the
ethyl acetate extract

of culture filtrate
was 16.6 ppm.

Seed treatment with
ethyl acetate extract of
culture filtrate reduced

mortality to 10%–20% as
opposed to 60%–70% in
untreated controls in pot

culture.

Not available. [63]

* Commercial formulation product of Pseudomonas fluorescens.

Trichoderma spp. was found to be the most frequently studied fungal biocontrol
agent for the control of Pythium spp.-related diseases in Capsicum plants. Trichoderma spp.
has been observed to compete with phytopathogens directly by showing a competitive
saprophytic ability through the production of cellulase enzymes, thus competing with
Pythium spp. directly in their ecological niche [112]. The production of antimicrobial
substances by Trichoderma was also observed to be one of the mechanisms in the control of
Pythium spp. [112,113].

Compatible strains of bacteria and fungi were also observed to inhibit the activity
of Pythium spp. in vitro and in vivo; using a different mechanism of disease suppression,
exhibiting synergistic effects, proved more effective than individual antagonists [52,114].
In the combined treatment of Pseudomonas fluorescens EBL 20-PF and T. viride TVA on chili
plants, Muthukumar et al. [52] observed induced resistance in the plant itself. They noticed
increased activities of resistance-inducing enzymes and the accumulation of phenolic
compounds, resulting in a significant decrease in disease incidences.

Non-native antagonist isolates generally face resistance by pre-established and accli-
matized microflora and often fail to establish themselves [107]. Antagonists isolated from
the plant rhizosphere and from the plant itself have shown convincing results in reducing
incidences of damping-off [51,53,113]. However, as previously discussed, propagules of
Pythium spp. can germinate and infect very rapidly, sometimes even with a shortage of
nutrients and water, thus escaping natural antagonism [58]. An antagonist can only be
efficient against Pythium spp. if provided with an advantage in colonizing the roots and
rhizosphere of the plant. Early inoculation of the biocontrol agent before seeding or inocula-
tion close to the seed or seedling can increase the efficacy of an antagonist [115]. The rapid
colonization of an antagonist can also provide an extra advantage for its success [109,110].

5. Virulence Mechanism of Pythium spp. and Challenges in Resistant Breeding
against Pythium spp.

Disease development by Pythium spp. involves an extensive repertoire of carbohydrate-
active enzymes (CAZymes), including glycoside hydrolases, polysaccharide lyases, car-
bohydrate esterases, proteases, etc., which help in plant cell wall penetration and further
colonization [116,117]. Lévesque et al. [117], in their study of the P. ultimum genome,
observed high sequence similarity and synteny with another phytopathogenic oomycete,
Phytophthora, sharing genes and encoding enzymes involved in the metabolism of carbohy-
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drates. However, the absence or underrepresentation of many notable genes in Pythium en-
coding for cutinases, xylanases, pectinases, etc., that are present in the Phytophthora genome
suggests some difference in the methods of virulence between these oomycetes [118]. Even
the expression of cellulases and pectinases in Pythium spp. are limited; they are sufficient
for hyphal penetration but not for complete saccharification. Furthermore, the absence
of these complex carbohydrate-degrading enzymes and the presence of α-glucosidase,
α-amylases, α-glucoamylases, and invertases, degrading the plant starch and sucrose,
establishes the affirmation of phytopathogenic Pythium towards young plant tissues with
no secondary growth [116]. The presence of genes encoding proteases families such as
subtilisin-related proteases, metalloproteases, and E3 ligases, inducing necrosis and cell-
wall degradation in the core Pythium spp. genes and the absence or lack of RXLR effectors
in Pythium support its non-host specificity and necrotrophic lifestyle [117–119]. Unlike
Phytophthora, Pythium spp. have been observed to lack RXLR effectors with avirulence
activities [118,119]. The absence of these avirulence factors has been correlated with the
lack of gene-for-gene resistance against Pythium spp. Thus, the absence of a virulence factor
producing RXLR effectors makes the identification of race-specific resistance genes against
Pythium very difficult to explore [120]. However, Ai et al. [121] have recently identified
RXLR effectors in nine Pythium spp. that share a common ancestor with Phytophthora.
RXLR effectors in Pythium spp. exhibited necrosis-inducing activities resulting in plant
cell death. The difficulties in identifying race-specific resistance genes against Pythium spp.
make quantitative gene expression a more comfortable approach for developing resistant
varieties. Several major and minor quantitative trait loci (QTL) associated with root rot
resistance have been identified in Pythium spp.-affected crops such as snap bean [122] and
soybean [120,123–125]. The partial (horizontal) resistance achieved through the involve-
ment of multiple QTLs in the soybean plants leading to transgressive segregation has been
observed to confer a common response pattern against multiple Pythium spp. [120,125]. As
Pythium spp.-affected crops are often inhabited by several Pythium spp., the development
of a variety with resistance against multiple species would be more efficient.

6. Conclusions

As one of the significant horticulture crops in India and worldwide, improvements
in Capsicum production yield are a primary target that needs to be achieved. Biotic stress
due to different soil-borne pathogens poses a significant threat to that target. Different
Pythium spp. have been reported to cause infections in Capsicum cultivars with a disparate
reproductive behavior and growth environment. These factors make the detection of the
pathogen and correct identification of the species of paramount importance. The technology
for the detection and diagnosis of pathogens has evolved from polyclonal antibodies to the
use of multiple species-specific primers for a single species. The use of LAMP technology
has provided a possible escape from the use of sophisticated instruments and pure DNA
isolation. However, the search for a point-of-care technology that does not require a specific
skill set and can provide results in a shorter time frame is still far from over.

Although biological control has provided a viable alternative to chemical manage-
ment, in a natural setup, the comparative disease control of Pythium spp. has not been
achieved yet. Additionally, the successful expression of antagonism by the microbes par-
tially depends upon the cultural and environmental conditions. An integrated system
of cultural control and microbial control can provide the desired targets in Pythium spp.
disease control. The use of disease-resistant varieties is another sustainable alternative
for disease control. However, in this case, no research work could be found involving
Pythium-resistance development in C. annuum cultivars. The candidate QTL genes for the
resistance against multiple Pythium spp. could prove to be groundbreaking in resistance
breeding in C. annuum L.
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