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Abstract: A field trial was conducted in Inner Mongolia to evaluate the stabilization effects of
phyto-stabilization, biochar-stabilization, and their coupled stabilization for As, Cu, Pb, and Zn
in soil. Stabilization plants (Achnatherum splendens, Puccinellia chinampoensis, and Chinese small iris)
and biochar (wood charcoals and chelator-modified biochar) were introduced in the field trial. The
acid-extractable fraction and residual fraction of the elements were extracted following a three-stage
modified procedure to assess the stabilization effect. The results after 60 days showed that the
coupled stabilization produced a better stabilization effect than biochar-/phyto- stabilization alone.
Achnatherum splendens and Puccinellia chinampoensis were found to activate the target elements: the
residual fraction proportion of As, Cu, Pb, and Zn decreased while the acid-extractable fraction
proportion of Cu and Zn increased in the corresponding planting area. Neither type of biochar
produced a notable stabilization effect. The residual fraction proportion of As (20.8–84.0%, 29.2–82%),
Pb (31.6–39.3%, 32.1–48.9%), and Zn (30.0–36.2%, 30.1–41.4%) increased, while the acid-extractable
fraction proportion remained nearly unchanged after treatment using Chinese small iris-straw biochar
or Achnatherum splendens-straw biochar, respectively. The results indicate that phyto-stabilization
or biochar-stabilization alone are not suitable, whereas the coupled stabilization approach is a more
efficient choice.

Keywords: tailings; heavy metals; biochar-stabilization; phyto-stabilization

1. Introduction

China is a major producer of non-ferrous metals, accounting for nearly half of the total
global production; However, the production of non-ferrous metals also causes tremendous
environmental pollution, and large amounts of tailings are inevitably generated during
mine beneficiation [1]. Storage in outdoor yards is one of the most common and extensively
used means for tailings disposal because of its low cost. Nevertheless, this approach
tends to generate dust containing heavy metals that can be easily spread in the air by
wind transport [2], and rain can also introduce these elements into soil and water [3].
Sulfur-containing minerals or alkaline-beneficiation agents in tailings might lead to the
acidification [4] or alkalization [5] of soil. The accumulation of toxic elements in the
environment surrounding a tailings yard may affect human health [6]. These elements
can accumulate in animal bodies, including human beings [7], and heavy metal pollution
has been identified to harm neurons, the hematological system, kidneys, bones, and the
reproductive system, among other parts of the bodys [8–10]. The relationship between
heavy metals and human cancer incidence has been verified [11]. It is therefore of critical
importance to take appropriate measures to reduce the environmental risks of tailings
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stacks on the surrounding area. Stabilization methods, such as physical (vitrification),
chemical (soil washing, solidification and immobilizing agent addition), and biological
(phyto-stabilization) approaches, have been applied to reduce the contents or mobility of
toxic elements in soil contaminated by tailings [12]. Vitrification has had few site-scale
application cases owing to energy consumption limitations. Chemical stabilization is
one of the most commonly used stabilization approaches in soil remediation projects.
Chelating agents [13], phosphates [14], biochar [15], and red mud [16] have been commonly
applied for heavy metal stabilization. Solidified or stabilized heavy metal treatment using
a hydraulic binder is also an effective method to reduce leachable heavy metals. Common
Portland cement [17] or other binders containing calcium oxide [18] have also been used to
stabilize heavy metals in the soil surrounding smelters; However, the agents used in soil
washing may result in secondary pollution, and the addition of stabilization/solidification
materials may alter the soil ecological function. High costs are also an inevitably limiting
factor for physical/chemical stabilization.

Phyto-stabilization has attracted extensive attention because of its eco-friendly and
cost-effective characteristics compared with physical/chemical stabilization. Although
phyto-stabilization cannot reduce the content of heavy metals in soil, plant roots and
associated microorganisms can reduce the mobility and bioavailability of heavy metals
in soil [19]. Phyto-stabilization has been applied in some site-stabilization programs,
including tailings-containing sites [20], highway adjoining sites [21], and farmland [22].
Hyperaccumulation plants have been used in Shimen (Hunan Province, China) to remediate
the soil contaminated by As-bearing tailings [23]. The total stabilization area was 68 hm2

and the As content in soil was reduced by 13.6% after two years of stabilization.
Biochar has been considered to be a potential soil remediation material in recent years

owing to its low cost, low toxicity, and abundant resources. Biochar materials have a very
large specific area, porous structure, and abundant surface oxygen functional groups, and
can therefore easily combine with heavy metals in soil. Aside from adsorption, biochar can
also react with toxic elements through electron transfer via its aromatic and graphene struc-
tures. A typical example is the reduction transformation of Cr(VI) to Cr(III) [24]. Chelation
reactions and chemical precipitation also occur during the biochar stabilization process.
Although biochar can combine with heavy metal cations in soil [25], its stabilization ef-
fects on arsenic (As) are limited [26]. Modified biochar has thus been produced to fulfill
different demands. Common modified approaches include iron-based or magnetic modifi-
cation [27,28], acid or alkali modification [29], and chitosan modification [30]. In addition
to its use in pollution removal, biochar can also provide potential agronomic benefits [31].
The addition of biochar can change the pH and nutrient element distribution in soil [32].
Biochar can also alter the soil microorganism community’s composition and activity, which
is important for root development and nutrition transport, and may thus promote plant
growth [33]. Long stabilization periods have limited the application of phyto-stabilization,
whereas the introduction of biochar can shorten the stabilization cycle. Some studies have
shown that biochar can reduce the bioavailability of heavy metals in soil, but does not pro-
duce any effect or enhancement of heavy metal enrichment of the hyperaccumulator [34].
The combination of phyto-stabilization and biochar stabilization may therefore be a better
alternative compared with traditional single-method approaches. A series of biochar-based
soil stabilization projects have been conducted on tailings-contaminated soil. For example,
the application of biochar notably reduced the extractable fraction of Pb, Zn, and Cu [35] in
the soil of a smelter in Shanghai China.

The major non-ferrous metal production bases in China are situated in several provinces,
including Yunnan, Guizhou, Jiangxi and Inner Mongolia, where soil pollution incidents
caused by heavy metals are frequent. Although there had been large number of study
focused on soil pollution in the eastern and southern regions of China, few studies focused
on soil pollution in Inner Mongolia, one of the main non-ferrous metal production bases
in the country. Similar to the north and west of Inner Mongolia, the climate in this area
is dry and the soil properties differ from those in southern regions of China. A site-scale
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stabilization test is important for applying existing technology in Inner Mongolia. In this
study, a pasture that was formerly a tailings storage yard was chosen as the trial site. Three
stabilization techniques were applied to reduce the mobility of As, Cu, Pb, and Zn in the
onsite soil, including phyto-stabilization, biochar stabilization, and a coupled stabilization
of these two stabilization means. The proportion of As, Cu, Pb, and Zn divided by a
three-stage modified procedure recommended by BCR (European Community Bureau
of Reference) was determined before and after the trial. The change of acid-extractable
fraction proportion and residual fraction proportion were used to assess the stabilization
effect of the selected techniques. The aims of this work were as follows: (i) to verify the
stabilization effect of common technology through field scale trials, rather than batch trials
in the laboratory; and (ii) to propose the suitable stabilization mean under the environment
of studied area.

2. Materials and Methods
2.1. Study Area

The study area was situated in an abandoned weather tailings yard of a copper smelter
in Bayannur, Inner Mongolia (106.60◦ E, 41.28◦ N). The area now is a pasture. The region
was located in a mid-temperate zone with an annual average temperature of 3.9 ◦C. The
area is prone to drought with annual rainfall of 96–105.9 mm, and the extent of evaporation
is approximately 14 times that of precipitation [36]. The tailing stack is located in the
south of the study area. No pollution control means were applied to these weather tailings
stacks, thus, the surrounding area was polluted by toxic elements including Cu, Pb, As,
and Zn. The polluted surrounding area was defined as the so-called “tailing stacks effected
area”, and the trial was conducted in the north of this area. The investigation showed high
Cu and Pb contamination levels and relatively low Zn and As contamination levels. The
average contents of Cu, Pb, As, and Zn in the trial site were 716, 263, 30.2, and 145 mg·kg−1,
respectively. The trial site was divided into three parts for three stabilization techniques
(phyto-stabilization, biochar-stabilization, and coupled stabilization, i.e., a combination of
both stabilization methods), and the corresponding stabilization effects were examined.
The location of the trial field and field planning is shown in Figure 1.
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2.2. Phyto-Stabilization Experiment

Typical stabilization plants, such as Pteris vittatal [37] and Sedum alfredii Hance [38],
were not introduced owing to the arid climate and salinization of the soil in the study
area. Instead, native plants of the region, including Phragmites, Achnatherum splendens, and
Chinese small iris, were investigated. The content of As, Cu, Pb, and Zn in the aerial parts
and roots of these plants are listed in Table 1.

Table 1. Heavy metal contents in the aerial parts and roots of native plants in the study area.

Plant Species As (ppm) Cu (ppm) Pb (ppm) Zn (ppm)

aerial part
Phragmites 0 59.12 10.81 42.68

Achnatherum splendens 0.70 218.53 22.65 72.82
Chinese small iris 2.66 85.22 31.37 39.61

root
Phragmites 2.90 110.70 45.59 34.46

Achnatherum splendens 0.22 721.67 36.94 147.45
Chinese small iris 0 44.66 19.12 35.83

Achnatherum splendens and Chinese small iris showed a relatively higher heavy metal
content in the aerial part. The heavy metal content in the Phragmites’ biomass was con-
siderably lower than that of the other two investigated plants. Accordingly, Achnatherum
splendens and Chinese small iris were chosen as the native stabilization plants. A type of
salinity tolerant forage in Inner Mongolia, Puccinellia chinampoensis [39], was also intro-
duced into the trial. All three kinds of plants were planted in the phyto-stabilization zone
with equal planting areas (120 m2). Each seedling was planted with a row spacing of 1 m
and plant spacing of 0.5 m (Figure 2). Suitable holes were excavated before planting, and
seedlings were then placed into the holes.
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2.3. Biochar-Stabilization Experiment

Prior to adding biochar, the top soil (0–20 cm [40]) in the zone was dug and cultivated.
The biochar was then added into the soil and artificially mixed with the soil at a dosage of
5% (w/w) [41]. The zone was divided into square blocks of equal area, and a bag of biochar
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was placed into each block in advance. Each bag of biochar was opened individually and
thoroughly mixed with the soil in the block. The process was repeated in all blocks, one
block a time. The workflow was shown in Figure 3.

Two kinds of biochar were chosen: wood charcoals and chelator-modified straw
biochar. The wood charcoal was purchased from Senqi Environmental Technical Co.,
Ltd. in Shijiazhuang, China. The modified biochar was produced through an adsorption
procedure. Corn stalk biochar was added into a solution of chelating agent with a solid–
liquid ratio of 0.1 g/mL and agitated for 24 h. The solid was then separated and washed
with deionized water several times until the water pH was equal to 7. The solid was heated
at 60 ◦C for 12 h to produce the final modified biochar product.
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(b) cultivation of the soil in the biochar-stabilization zone, (c) transport of biochar, (d) artificial mixing
of biochar, and top soil.

2.4. Coupled Stabilization Experiment

In the coupled stabilization zone, both the phyto-stabilization and biochar-stabilization
techniques mentioned above were applied simultaneously. The plant species, row spacing,
and plant spacing were as same as those of the phyto-stabilization zone. The wood
charcoals used in biochar-stabilization were also added into soil at the same dosage of
5% (w/w). Seedlings were placed into the pre-dug holes and a mixture of soil and biochar
was backfilled. The regional division and workflow are shown in Figure 4.

2.5. Sample Collection, Handling, and Analyses

Each zone of the stabilization experiment was divided into three quadrilateral sam-
pling units with an area of 120 m2. To avoid soil variation, the sampling points were settled
on the quarter points and cross point of the diagonals in each unit. Equiponderant soil was
collected from each sampling point in the units that were mixed, and the mixed samples
were used to reflect the pollutant situation of the corresponding units. Soil samples were
collected at the beginning of the trial test and 30 and 60 days thereafter.
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Soil collected from all points was dried in air and sieved through a 100-mesh sieve [42]
to remove pebbles or other materials. Equiponderant treated soil from five points in one
sampling unit were thoroughly mixed. The mixed sample was used to analyze and reflect
the property of the corresponding sampling unit. The total content of Cu, Pb, As, and
Zn in soil were determined using an axial view inductively coupled plasma spectrometer
(SPECTRO ARCOS, SPECTRO Analytical Instruments, Kleve, Germany). A 0.1 g sample of
mixed soil was put into Poly tetra fluoroethylene tubes, and 5 mL of HNO3, 2 mL of HF,
and 1 mL of HClO4 were successively added into each tube [43]. The soil and mixed acid
were heated and the obtained solution was prepared up to 20 mL, with distilled water. All
solution samples were filtered through a 0.22-µm membrane for subsequent analysis.

The fractions of each element in the soil were extracted via a three-stage modified
sequential extraction procedure [44]. According to the order of extraction, the total content
of elements was divided into the acid-extractable fraction, reducible fraction, oxidizable
fraction, and residual fraction. The procedure is described as follows. Place 1 g of the
sieved mixed sample into the tubes, then add 20 mL of acetic acid solution (0.11 M). Sixteen
hours of shaking was applied at room temperature. After being shaken, the residual solid
was separated via centrifugation (4000 rpm, 20 min), and the supernatant was collected for
acid-extractable fraction analysis. Twenty milliliters of hydroxylamine hydrochloride were
then added to the solid, washed with distilled water following the same extraction and
centrifugation procedure, and the supernatant was collected for reducible fraction analysis.
Five milliliters of hydrogen peroxide (30%) were used to oxidize the sample (evaporated
hydrogen peroxide in an 85 ◦C bath to approximately 1 mL), followed by the addition
of ammonium acetate (1 M, pH = 2.0) to extract the oxidizable fraction using the same
procedure. The residual solid was digested as the process used the total content analysis to
quantify the residual fraction of each element.

The soil pH was measured as follows. Ten grams of dried and sieved soil was weighed
and put into a flask. After adding 25 mL of deionized water, the mixture of water and
soil was vigorously shaken for 5 min and then allowed to stand for 2 h. The pH of the
supernatant was measured using a pH meter as the soil pH.
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3. Results
3.1. Heavy Metal Fractionation in the Phyto-Stabilization Experiment

The proportion of different fractions of As, Cu, Pb, and Zn before and after the
phyto-stabilization application is shown in Figure 5. In the phyto-stabilization zone, the
acid-extractable fraction of As and Pb in the original soil was low. More than 80% of
As belongs to the residual fraction, while the percentages of residual fraction Pb in the
three sampling units of the phyto-stabilization zone were 62%, 88%, and 79%. Because the
residual fraction is considered nonbioavailable [45], the relatively high proportion of the
residual fraction indicates that As and Pb were chemically stable in the phyto-stabilization
zone. Correspondingly, almost no acid-extractable fraction of As and Pb was detected
in the original soil, which implies that As and Pb in the phyto-stabilization zone were
unleachable in rainfall erosion. Compared with As and Pb, Zn and Cu showed higher
mobility and a higher proportion of acid-extractable fractions in the original soil. The
proportions of acid-extractable fraction Cu in the original soil were 29.6%, 4.6%, and 5.8%
for unit C-1, unit C-2, and unit C-3. For Zn, the proportions were 45.0%, 10.1%, and 5.2%,
respectively. After 60 days of stabilization, the proportion of the residual fraction of As in
all units decreased, and Cu, Pb, and Zn showed the same trend. In units C-2 and C-3, the
residual fraction of Cu disappeared after 60 days of stabilization, while the proportion of
the residual fraction of Pb decreased from 88.7% to 37.3% in C-2, and 79.2% to 22.5% in
C-3. The acid-extractable As, Zn, and Cu increased after 60 days of stabilization. For Pb
and Cu, the reducible fraction notably increased and the residual fraction decreased. This
phenomenon revealed a potential transformation from one residual fraction to the other
fraction under the phyto-stabilization application.
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3.2. Heavy Metal Fractionation in the Biochar-Stabilization Experiment

The stabilization effect of biochar-stabilization is shown in Figure 6. In the biochar-
stabilization zone, all sampling units showed a higher proportion of acid-extractable
fractions of As and Pb than that of the phyto-stabilization zone. Aside from unit C-1,
the samples from the other two units also had a higher proportion of acid-extractable Cu
and Zn. After 60 days of stabilization, the As in two of the units showed a decline in the
residual fraction, while acid-extractable fraction showed no notable change. The proportion
of acid-extractable Cu fluctuated during stabilization, and the proportion of the residual
fraction decreased in units A-1 and A-3. The proportion of acid-extractable Zn initially
decreased and then increased, corresponding to the reduction of residual Zn in all units. In
units A-1 and A-2, the residual fraction of Pb decreased, and the proportion of reducible
fraction substantially increased. As in the phyto-stabilization zone, the environmental risk
caused by toxic elements was not reduced after stabilization. This result was unexpected
because biochar is considered to be an effective remediator for heavy metals based on its
high absorption capacity in lab-scale tests [46] and site stabilization.
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Figure 6. Effect of biochar-stabilization after 30 and 60 days: (a) the fraction distribution of As after
0 days, 30 days and 60 days; (b) the fraction distribution of Cu after 0 days, 30 days, and 60 days;
(c) the fraction distribution of Pb after 0 days, 30 days and 60 days; and (d) the fraction distribution
of Zn after 0 days, 30 days, and 60 days.

3.3. Heavy Metal Fractionation in the Coupled Stabilization Experiment

As shown in Figure 7, the residual fraction proportion of As in the native soil was
substantially less than that in the other zones. Although the content of acid-extractable
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As increased, the proportion of residual fraction increased to ~80% in unit B-1 and unit
B-2 after 60 days, indicating an outstanding stabilization effect. The increased residual
fraction proportion was also observed for Pb in units B-1 and B-2 with the acid extractable
fraction proportion having decreased from 6.8% to 4.0% in unit B-1, and from 6.8% to
2.9% in unit B-2; However, the coupled stabilization didn’t show a similar stabilization
effect for Cu. The acid-extractable Cu proportion increased after stabilization with the
residual fraction proportion decreasing gradually. In units B-1 and B-3, the residual fraction,
Cu, disappeared after the stabilization experiment with the acid extractable fraction, the
Cu proportion, increased to 56.5%, 54.7%, and 44.6% in unit B-1, unit B-2, and unit B-3,
respectively. The proportion of acid-extractable Zn increased in all units with stabilization;
However, the residual fraction proportion in units B-1 and B-2 also increased. Compared
with phyto-stabilization and biochar-stabilization, the coupled stabilization produced a
better stabilizer effect with a higher residual fraction proportion of As, Cu, and Zn after the
stabilization experiment, which was not observed in the other stabilization zones.
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4. Discussion
4.1. Evaluation of Different Stabilization Means

In phyto-stabilization zone, especially in units C-2 and C-3, the residual fraction
proportion of all elements decreased, and the acid extractable fraction proportion of Cu
and Zn increased obviously after the experiment, indicating that phyto-stabilization didn’t
get the stabilization effect and even activate the Cu and Zn in the zone. In other words,
phyto-stabilization did not reduce the environmental risk of As, Cu, Pb, or Zn. Achnatherum
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splendens and Puccinellia chinampoensis might not be suitable for phyto-stabilization. A
possible explanation for this is that the plant root exudates interact with heavy metal
elements in the soil, thus enhancing their solubility and resulting in the transformation of
the residual fraction [47]. The organic acids in root exudates might react with heavy metals
in the soil, and thus improve the mobility of heavy metals through chelation [48]. According
to a weathering experiment by Anna Potysz et al., the artificial root exudates improve the
release of elements from Zn–Pb-bearing rocks [49], which showed the possibility of heavy
metal activation through root exudates.

Reduction of residual fraction proportion and the increase of an acid extractable
fraction of elements were also observed in the biochar-stabilization zone, which showed
that biochar-stabilization wasn’t an effective stabilization mean in this experiment. Some
potential reasons leading to the poor stabilization effect might be as follows: (i) The first
reason might be the low content of acid fraction in the original soil. The original proportion
of the acid-extractable fraction was lower than 10% for As and Pb, and lower than 20%
for Cu. The high chemical activity of the acid-extractable fraction makes it more easily
react with the biochar surface. (ii) The second reason is the arid climate and water scarcity.
Related studies have shown that the soil treated with biochar consistently maintained a
relative stable moisture content (70% or higher) during the entirety of the stabilization
trials [50–52]. The annual precipitation in this area is only ~100 mm and the original soil
in stabilization zone was dry. Restricted by limited water resources, the soil was irrigated
every five days to preserve plant growth, but this amount was insufficient to keep the soil
always consistently wet. (iii) The third reason might be limitations of pristine biochar. As a
kind of alkaline material, pristine biochar can bind many cations; However, the application
of biochar might improve the bioavailability of As in soil [53,54]. The application of biochar
would generate dissolved organic carbon (DOC). The DOC could compete with As for
adsorption onto minerals in soil. This could explain the decrease of the proportion of
residual fraction As in the biochar-stabilization zone.

Compared with phyto-stabilization and biochar-stabilization, the application of cou-
pled stabilization increased the residual fraction proportion of As, Pb, and Zn, and behaved
a better stabilization effect. Besides B-3, the residual fraction proportion of As, Pb, and Zn,
in units B-1 and B-2, increased after the experiment. This demonstrates that the combination
of Chinese small iris-straw biochar and Achnatherum splendens-straw biochar had a better
stabilization ability for heavy metals in the soil than that of the Puccinellia chinampoensis-
straw biochar. The relatively higher non-residual fraction proportion of heavy metals in
the original soil might be a reason. The results could also be attributed to plant exudate
activation. Previous studies have shown that exudates, including organic acids and biosur-
factants, can increase the pH value of soil and the mobility of heavy metal elements [55].
The higher acid-extractable fraction proportion in the phyto-stabilization zone and coupled
stabilization zone verifies the activation effect of the stabilization plants. The increased
mobility promoted the combination of biochar and heavy metal elements. This process can
explain the poor stabilization effect in the biochar-stabilization zone with a high residual
fraction proportion in the native soil, and why the acid-extractable fraction proportion
increased in the phyto-stabilization zones.

4.2. Relationship between Change of Fraction

The pH is a critical parameter for heavy metal stabilization; the soil pH of all sampling
units was therefore measured before and after the stabilization treatment (Table 2). The
original soil pH of the trial site was neutral, except for unit C-1. After 60 days of treatment,
the soil pH in the biochar-stabilization zone remained constant, that in unit B-2 decreased,
and that in the phyto-stabilization zone substantially increased.

The Pearson correlation coefficients between pH, acid-extractable fraction, and resid-
ual fraction were calculated (Figure 8) to determine the effect of the pH change on the
heavy metal fraction and identify the potential relationship between the change of heavy
metal fraction. The soil pH showed an overall positive correlation with the acid-extractable



Minerals 2022, 12, 702 11 of 14

fraction of the heavy metals and an overall negative correlation with the residual fraction;
However, the correlation was not significant, indicating that the change of soil pH was
not the main mechanism to achieve the stabilization effect of the chosen technique. In
the coupled stabilization zone and phyto-stabilization zone, there was a significant nega-
tive correlation between the acid-extractable fraction proportion and the residual fraction
proportion, which implies a potential transformation between the two fractions, while a sig-
nificant correlation was not observed in the biochar stabilization zone. The relative positive
correlation between the residual fraction proportion of Zn, Cu, and Pb, and the negative
correlation between their residual fraction and acid-extractable fraction, demonstrate the
analogous stabilization process and mechanism of these elements.

Table 2. Soil pH of all sampling units at 0, 30, and 60 days.

Sampling
Date

Biochar-Stabilization Coupled Stabilization Phyto-Stabilization

Unit A-1 Unit A-2 Unit A-3 Unit B-1 Unit B-2 Unit B-3 Unit C-1 Unit C-2 Unit C-3

0 days 7.69 7.67 7.15 7.42 7.33 7.47 5.5 6.76 7.01
30 days 7.4 7.45 7.44 7.4 6.34 7.19 7.3 7.45 7.64
60 days 7.71 7.63 7.54 7.56 6.73 7.44 7.08 7.37 7.44
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5. Conclusions

The tests reveal that phyto-stabilization did not produce a stabilization effect, because
the residual fraction proportion of As, Cu, Pb, and Zn decreased after stabilization, and the
acid-extractable As and Zn increased. Some units also showed a higher acid-extractable
proportion of Cu and Zn. This might be attributed to the activation of root secretion. A
similar decrease of the residual fraction proportion of all elements was observed in the



Minerals 2022, 12, 702 12 of 14

biochar-stabilization zone. This demonstrates that a single approach of phyto-stabilization
or biochar-stabilization cannot stabilize heavy metals in the study area. In the coupled
stabilization zone, the residual fraction proportion of As, Pb, and Zn, in units B-1 and
B-2, increased after stabilization, thus showing the higher passivation effects of coupled
stabilization than in a single approach. The activation-stabilization mechanism of the
plant–biochar system might explain the improved stabilization effect. In summary, a single
stabilization approach might not be a suitable scheme, whereas the combination of phyto-
stabilization and biochar-stabilization may be a better choice in site stabilization practice.
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